CY7C1367C-166BZI [CYPRESS]

9-Mbit (256K x 36/512K x 18) Pipelined DCD Sync SRAM; 9兆位( 256K ×36 / 512K ×18 )流水线DCD同步SRAM
CY7C1367C-166BZI
型号: CY7C1367C-166BZI
厂家: CYPRESS    CYPRESS
描述:

9-Mbit (256K x 36/512K x 18) Pipelined DCD Sync SRAM
9兆位( 256K ×36 / 512K ×18 )流水线DCD同步SRAM

静态存储器 CD
文件: 总29页 (文件大小:544K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1366C  
CY7C1367C  
9-Mbit (256K x 36/512K x 18) Pipelined DCD Sync SRAM  
Features  
Functional Description[1]  
• Supports bus operation up to 250 MHz  
The CY7C1366C/CY7C1367C SRAM integrates 256K x 36  
and 512K x 18 SRAM cells with advanced synchronous  
peripheral circuitry and a two-bit counter for internal burst  
operation. All synchronous inputs are gated by registers  
controlled by a positive-edge-triggered Clock Input (CLK). The  
synchronous inputs include all addresses, all data inputs,  
address-pipelining Chip Enable (CE1), depth-expansion Chip  
Enables (CE2 and CE3[2]), Burst Control inputs (ADSC, ADSP,  
• Available speed grades are 250, 200, and 166 MHz  
• Registered inputs and outputs for pipelined operation  
• Optimal for performance (Double-Cycle deselect)  
—Depth expansion without wait state  
• 3.3V –5% and +10% core power supply (VDD  
)
• 2.5 V/3.3V I/O power supply (VDDQ  
)
ADV), Write Enables (BW , and BWE), and Global Write  
and  
X
(GW). Asynchronous inputs include the Output Enable (OE)  
and the ZZ pin.  
• Fast clock-to-output times  
— 2.8 ns (for 250-MHz device)  
Addresses and chip enables are registered at rising edge of  
clock when either Address Strobe Processor (ADSP) or  
Address Strobe Controller (ADSC) are active. Subsequent  
burst addresses can be internally generated as controlled by  
the Advance pin (ADV).  
• Provide high-performance 3-1-1-1 access rate  
User-selectable burst counter supporting Intel®  
Pentium® interleaved or linear burst sequences  
• Separate processor and controller address strobes  
• Synchronous self-timed writes  
Address, data inputs, and write controls are registered on-chip  
to initiate a self-timed Write cycle.This part supports Byte Write  
operations (see Pin Descriptions and Truth Table for further  
details). Write cycles can be one to four bytes wide as  
• Asynchronous output enable  
• Available in lead-Free 100-Pin TQFP, lead-free and non  
lead-free 119-Ball BGA package and 165-Ball FBGA  
package  
controlled by the byte write control inputs. GW  
active  
LOW  
This device incorporates an  
causes all bytes to be written.  
additional pipelined enable register which delays turning off  
the output buffers an additional cycle when a deselect is  
executed.This feature allows depth expansion without penal-  
izing system performance.  
• IEEE 1149.1 JTAG-Compatible Boundary Scan  
• “ZZ” Sleep Mode Option  
The CY7C1366C/CY7C1367C operates from a +3.3V core  
power supply while all outputs operate with a +3.3V or a +2.5V  
supply. All inputs and outputs are JEDEC-standard  
JESD8-5-compatible.  
Selection Guide  
250 MHz  
200 MHz  
3.0  
166 MHz  
3.5  
Unit  
ns  
Maximum Access Time  
2.8  
250  
40  
Maximum Operating Current  
Maximum CMOS Standby Current  
220  
180  
mA  
mA  
40  
40  
Notes:  
1. For best-practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.  
2. CE is for TQFP and 165 FBGA package only. 119 BGA is offered only in 2 Chip Enable.  
3
Cypress Semiconductor Corporation  
Document #: 38-05542 Rev. *E  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised September 14, 2006  
[+] Feedback  
CY7C1366C  
CY7C1367C  
1
Logic Block Diagram – CY7C1366C (256K x 36)  
ADDRESS  
A0,A1,A  
REGISTER  
2
A[1:0]  
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER AND  
LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQD,DQP  
D
DQD,DQP  
D
BYTE  
BYTE  
BW  
D
WRITE REGISTER  
WRITE DRIVER  
DQ  
BYTE  
WRITE DRIVER  
c,DQPC  
DQ  
BYTE  
WRITE REGISTER  
c,DQPC  
MEMORY  
ARRAY  
BW  
C
OUTPUT  
BUFFERS  
OUTPUT  
REGISTERS  
SENSE  
AMPS  
DQs  
DQP  
DQP  
DQP  
A
DQ  
BYTE  
WRITE DRIVER  
B,DQPB  
E
DQ  
BYTE  
WRITE REGISTER  
B,DQPB  
B
C
BW  
BW  
B
A
DQP  
D
DQA,DQP  
A
DQA,DQP  
A
BYTE  
WRITE DRIVER  
BYTE  
WRITE REGISTER  
BWE  
INPUT  
REGISTERS  
GW  
ENABLE  
REGISTER  
PIPELINED  
ENABLE  
CE  
CE  
CE  
1
2
3
OE  
SLEEP  
ZZ  
CONTROL  
2
Logic Block Diagram – CY7C1367C (512K x 18)  
ADDRESS  
REGISTER  
A0, A1, A  
2
A[1:0]  
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER AND  
LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQB , DQP  
BYTE  
WRITE DRIVER  
B
DQB, DQP  
BYTE  
WRITE REGISTER  
B
OUTPUT  
BUFFERS  
BW  
B
A
OUTPUT  
REGISTERS  
DQs,  
DQP  
DQP  
SENSE  
AMPS  
MEMORY  
ARRAY  
A
DQA, DQP  
BYTE  
WRITE DRIVER  
A
B
E
DQA , DQP  
BYTE  
WRITE REGISTER  
A
BW  
BWE  
GW  
INPUT  
REGISTERS  
ENABLE  
REGISTER  
CE  
CE  
CE  
1
PIPELINED  
ENABLE  
2
3
OE  
SLEEP  
ZZ  
CONTROL  
Document #: 38-05542 Rev. *E  
Page 2 of 29  
[+] Feedback  
CY7C1366C  
CY7C1367C  
Pin Configurations  
100-Pin TQFP Pinout (3 Chip Enables)  
DQPC  
1
DQPB  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
NC  
VDDQ  
VSSQ  
NC  
A
NC  
NC  
VDDQ  
VSSQ  
NC  
DQPA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
VSS  
NC  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQC  
2
DQC  
VDDQ  
VSSQ  
DQC  
3
4
5
6
DQC  
7
NC  
DQC  
8
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
NC  
VDD  
NC  
VSS  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQPB  
NC  
DQC  
9
10  
11  
9
VSSQ  
VDDQ  
DQC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
12  
DQC  
13  
NC  
14  
VDD  
15  
NC  
VDD  
ZZ  
CY7C1367C  
(512K x 18)  
CY7C1366C  
(256K X 36)  
NC  
16  
VDD  
ZZ  
VSS  
17  
DQD  
18  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
DQPA  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
NC  
DQD  
19  
20  
21  
VDDQ  
VSSQ  
DQD  
22  
DQD  
23  
DQD  
24  
DQD  
25  
26  
27  
NC  
VSSQ  
VDDQ  
DQD  
DQD  
29  
VSSQ  
VDDQ  
NC  
NC  
NC  
VSSQ  
VDDQ  
NC  
NC  
NC  
28  
DQPD  
30  
Document #: 38-05542 Rev. *E  
Page 3 of 29  
[+] Feedback  
CY7C1366C  
CY7C1367C  
Pin Configurations (continued)  
119-Ball BGA Pinout (2 Chip Enable with JTAG)  
CY7C1366C (256K x 36)  
1
2
3
4
5
6
7
A
VDDQ  
A
A
A
A
VDDQ  
ADSP  
ADSC  
VDD  
B
C
NC/288M  
NC/144M  
CE2  
A
A
A
A
A
A
A
NC/576M  
NC/1G  
D
E
F
DQC  
DQC  
VDDQ  
DQPC  
DQC  
VSS  
VSS  
VSS  
NC  
VSS  
VSS  
VSS  
DQPB  
DQB  
DQB  
DQB  
CE1  
DQC  
DQB  
VDDQ  
OE  
G
H
J
DQC  
DQC  
VDDQ  
DQD  
DQC  
DQC  
VDD  
BWC  
VSS  
NC  
BWB  
VSS  
NC  
DQB  
DQB  
VDD  
DQA  
DQB  
DQB  
VDDQ  
DQA  
ADV  
GW  
VDD  
K
DQD  
VSS  
CLK  
NC  
VSS  
L
M
N
DQD  
VDDQ  
DQD  
DQD  
DQD  
DQD  
DQA  
DQA  
DQA  
DQA  
VDDQ  
DQA  
BWD  
VSS  
VSS  
BWA  
VSS  
VSS  
BWE  
A1  
DQD  
NC  
DQPD  
A
VSS  
A0  
VSS  
NC  
DQPA  
A
DQA  
NC  
P
R
MODE  
VDD  
T
NC  
NC/72M  
TMS  
A
A
A
NC/36M  
NC  
ZZ  
VDDQ  
TDI  
TCK  
TDO  
VDDQ  
U
CY7C1367C (512K x 18)  
2
A
1
3
A
4
5
A
6
A
7
VDDQ  
NC/576M  
NC/1G  
NC  
VDDQ  
A
B
C
D
E
F
ADSP  
NC/288M  
NC/144M  
DQB  
CE2  
A
A
A
A
ADSC  
VDD  
A
A
A
NC  
DQB  
NC  
VSS  
VSS  
VSS  
NC  
VSS  
VSS  
VSS  
DQPA  
NC  
DQA  
NC  
DQA  
CE1  
VDDQ  
VDDQ  
OE  
NC  
DQB  
NC  
VDD  
VSS  
VSS  
NC  
NC  
DQA  
VDD  
DQA  
NC  
VDDQ  
G
H
J
BWB  
VSS  
NC  
ADV  
DQB  
VDDQ  
GW  
VDD  
K
NC  
DQB  
VSS  
CLK  
NC  
VSS  
NC  
DQA  
L
M
N
P
DQB  
VDDQ  
DQB  
NC  
NC  
DQB  
NC  
VSS  
VSS  
VSS  
VSS  
DQA  
NC  
NC  
VDDQ  
NC  
BWA  
VSS  
BWE  
A1  
VSS  
VSS  
DQA  
NC  
DQPB  
A0  
DQA  
R
T
NC  
A
A
MODE  
A
VDD  
NC/36M  
TCK  
NC  
A
A
A
NC  
ZZ  
NC/72M  
VDDQ  
TMS  
TDI  
TDO  
NC  
VDDQ  
U
Document #: 38-05542 Rev. *E  
Page 4 of 29  
[+] Feedback  
CY7C1366C  
CY7C1367C  
Pin Configurations (continued)  
165-ball FBGA Pinout (3 Chip Enable)  
CY7C1366C (256K x 36)  
1
2
3
4
5
6
7
8
9
1
0
11
NC/  
C/  
PC  
2
88M  
A
NC  
A
C
E1  
B
WC  
B
WB  
CE3  
CLK  
ADSC  
OE  
BWE  
GW  
ADV  
ADSP  
VD
N
1
4
4M
A
C
E2  
B
WD  
B
WA  
A
NC/576M
B
D
Q
N
C
VD
VS
VS
VS
VS
VS
N
C
/
1
G  
DQPB  
C
D
Q
S
S
S
S
S
D
Q
D
QC  
QC  
QC  
QC  
D
QC  
QC  
QC  
QC  
VD
VD
VS
VS
VS
VD
VD
VD
VD
VD
D
QB  
QB  
QB  
QB  
D
QB  
QB  
QB  
QB  
D
D
Q
D
S
S
S
D
D
Q
D
D
VD
VD
VS
VS
VS
VD
D
D
E
D
Q
D
S
S
S
D
D
Q
D
D
VD
VD
VS
VS
VS
VD
D
D
F
D
Q
D
S
S
S
D
D
Q
D
D
VD
VD
VS
VS
VS
VD
D
D
G
D
Q
D
S
S
S
D
D
Q
N
C
VS
NC  
VD
VS
VS
VD
N
C
N
C
Z
H
SS  
S
D
S
S
D
D
QD  
QD  
QD  
QD  
D
QD  
QD  
QD  
QD  
VD
VD
VS
VS
VS
VD
VD
VD
VD
VD
VD
D
QA  
QA  
QA  
QA  
D
QA  
QA  
QA  
QA  
J
D
Q
D
S
S
S
D
D
Q
D
D
VD
VD
VS
VS
VS
VD
D
D
K
D
Q
D
S
S
S
D
D
Q
D
D
VD
VD
VS
VS
VS
VD
D
D
L
D
Q
D
S
S
S
D
D
Q
D
D
VD
VD
VS
VS
VS
VD
D
D
M
D
Q
D
S
S
S
D
D
Q
D
Q
PD  
N
C
VD
VS
N
C
N  
C/  
1
8
M
N
C
VS
N
C
DQPA  
N
D
Q
S
S
D
Q
N
C
N
C/  
7
2
M
A
T
D
I
A
1
T
D
O
A
A
A
P
A
A
0  
M
O
D
E
N  
C/  
3
6
M
A
A
T
MS  
T
C
K
A
A  
A
A
R
CY7C1367C (512K x 18)  
1
2
3
4
5
6
7
8
9
10  
11  
NC/288M  
NC/144M  
NC  
A
NC  
A
A
A
B
C
D
BWB  
NC  
CE3  
CLK  
VSS  
VSS  
CE1  
CE2  
BWE  
GW  
VSS  
VSS  
ADSC  
OE  
ADV  
A
BWA  
VSS  
VSS  
ADSP  
A
NC/576M  
DQPA  
DQA  
NC  
VDDQ  
VDDQ  
VSS  
VDD  
VSS  
VDDQ NC/1G  
NC  
DQB  
VDD  
VDDQ  
NC  
NC  
NC  
DQB  
DQB  
DQB  
VSS  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
‘VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQA  
DQA  
DQA  
ZZ  
E
F
NC  
NC  
G
H
J
NC  
NC  
DQB  
DQB  
DQB  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
NC  
NC  
NC  
K
L
NC  
NC  
DQB  
DQPB  
NC  
NC  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
NC/18M  
A1  
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
NC  
NC  
A
M
N
P
NC/72M  
TDI  
TDO  
MODE NC/36M  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
Document #: 38-05542 Rev. *E  
Page 5 of 29  
[+] Feedback  
CY7C1366C  
CY7C1367C  
Pin Definitions  
Name  
I/O  
Description  
A0, A1, A  
Input-  
Synchronous  
Address Inputs used to select one of the address locations. Sampled at the rising edge of  
the CLK if ADSP or ADSC is active LOW, and CE1, CE2, and CE3[2 ]are sampled active. A1: A0  
are fed to the two-bit counter.  
BWA,BWB  
BWC,BWD  
Input-  
Synchronous  
Byte Write Select Inputs, active LOW. Qualified with BWE to conduct byte writes to the SRAM.  
Sampled on the rising edge of CLK.  
GW  
Input-  
Synchronous  
Global Write Enable Input, active LOW. When asserted LOW on the rising edge of CLK, a  
global write is conducted (ALL bytes are written, regardless of the values on BWX and BWE).  
BWE  
CLK  
CE1  
Input-  
Synchronous  
Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This signal must be  
asserted LOW to conduct a byte write.  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. Also used to increment the  
burst counter when ADV is asserted LOW, during a burst operation.  
Input-  
Synchronous  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
CE2 and CE3[2] to select/deselect the device. ADSP is ignored if CE1 is HIGH. CE1 is sampled  
only when a new external address is loaded.  
CE2  
Input-  
Synchronous  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction with  
CE1 and CE3[2] to select/deselect the device. CE2 is sampled only when a new external address  
is loaded.  
[2]  
CE3  
Input-  
Synchronous  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
CE and CE to select/deselect the device.  
CE [2] is  
Not connected for BGA. Where referenced,  
3
1
assumed ac2tive throughout this document for BGA.  
CE3 is sampled only when a new external address is loaded.  
OE  
Input-  
Output Enable, asynchronous input, active LOW. Controls the direction of the I/O pins. When  
Asynchronous LOW, the I/O pins behave as outputs. When deasserted HIGH, DQ pins are tri-stated, and act  
as input data pins. OE is masked during the first clock of a read cycle when emerging from a  
deselected state.  
ADV  
Input-  
Synchronous  
Advance Input signal, sampled on the rising edge of CLK, active LOW. When asserted, it  
automatically increments the address in a burst cycle.  
ADSP  
Input-  
Synchronous  
Address Strobe from Processor, sampled on the rising edge of CLK, active LOW. When  
asserted LOW, addresses presented to the device are captured in the address registers. A1: A0  
are also loaded into the burst counter. When ADSP and ADSC are both asserted, only ADSP is  
recognized. ASDP is ignored when CE1 is deasserted HIGH.  
ADSC  
ZZ  
Input-  
Synchronous  
Address Strobe from Controller, sampled on the rising edge of CLK, active LOW. When  
asserted LOW, addresses presented to the device are captured in the address registers. A1: A0  
are also loaded into the burst counter. When ADSP and ADSC are both asserted, only ADSP is  
recognized.  
Input-  
ZZ “sleep” Input, active HIGH. When asserted HIGH places the device in a non-time-critical  
Asynchronous “sleep” condition with data integrity preserved. For normal operation, this pin has to be LOW or  
left floating. ZZ pin has an internal pull-down.  
I/O-  
Synchronous  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is triggered  
by the rising edge of CLK. As outputs, they deliver the data contained in the memory location  
specified by the addresses presented during the previous clock rise of the read cycle. The  
direction of the pins is controlled by OE. When OE is asserted LOW, the pins behave as outputs.  
When HIGH, DQs and DQPX are placed in a tri-state condition.  
DQs,  
DQPs  
VDD  
Power Supply Power supply inputs to the core of the device.  
VSS  
Ground  
Ground for the core of the device.  
Ground for the I/O circuitry.  
VSSQ  
VDDQ  
MODE  
I/O Ground  
I/O Power Supply Power supply for the I/O circuitry.  
Input-  
Static  
Selects Burst Order. When tied to GND selects linear burst sequence. When tied to VDD or left  
floating selects interleaved burst sequence. This is a strap pin and should remain static during  
device operation. Mode Pin has an internal pull-up.  
Document #: 38-05542 Rev. *E  
Page 6 of 29  
[+] Feedback  
CY7C1366C  
CY7C1367C  
Pin Definitions (continued)  
Name  
TDO  
I/O  
Description  
JTAG serial output Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK. If the JTAG  
Synchronous  
feature is not being utilized, this pin should be disconnected. This pin is not available on TQFP  
packages.  
TDI  
JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG feature is  
Synchronous  
not being utilized, this pin can be disconnected or connected to VDD. This pin is not available on  
TQFP packages.  
TMS  
JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG feature is  
Synchronous  
not being utilized, this pin can be disconnected or connected to VDD. This pin is not available on  
TQFP packages.  
TCK  
NC  
JTAG-  
Clock  
Clock input to the JTAG circuitry. If the JTAG feature is not being utilized, this pin must be  
connected to VSS. This pin is not available on TQFP packages.  
No Connects. Not internally connected to the die.18M, 36M, 72M, 144M, 288M, 576M, and 1G  
are address expansion pins and are not internally connected to the die.  
outputs are controlled by the OE signal. Consecutive single  
read cycles are supported.  
Functional Overview  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock.  
The CY7C1366C/CY7C1367C is a double-cycle deselect part.  
Once the SRAM is deselected at clock rise by the chip select  
and either ADSP or ADSC signals, its output will tri-state  
immediately after the next clock rise.  
The CY7C1366C/CY7C1367C supports secondary cache in  
systems utilizing either a linear or interleaved burst sequence.  
The interleaved burst order supports Pentium and i486™  
processors. The linear burst sequence is suited for processors  
that utilize a linear burst sequence. The burst order is user  
selectable, and is determined by sampling the MODE input.  
Accesses can be initiated with either the Processor Address  
Strobe (ADSP) or the Controller Address Strobe (ADSC).  
Address advancement through the burst sequence is  
controlled by the ADV input. A two-bit on-chip wraparound  
burst counter captures the first address in a burst sequence  
and automatically increments the address for the rest of the  
burst access.  
Single Write Accesses Initiated by ADSP  
This access is initiated when both of the following conditions  
are satisfied at clock rise: (1) ADSP is asserted LOW, and (2)  
chip select is asserted active. The address presented is  
loaded into the address register and the address  
advancement logic while being delivered to the memory core.  
The write signals (GW, BWE, and BWX) and ADV inputs are  
ignored during this first cycle.  
ADSP triggered write accesses require two clock cycles to  
complete. If GW is asserted LOW on the second clock rise, the  
data presented to the DQx inputs is written into the corre-  
sponding address location in the memory core. If GW is HIGH,  
Byte write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BWX) inputs. A Global Write  
Enable (GW) overrides all byte write inputs and writes data to  
all four bytes. All writes are simplified with on-chip  
synchronous self-timed write circuitry.  
then the write operation is controlled by BWE and  
BWX  
signals. The CY7C1366C/CY7C1367C provides byte write  
capability that is described in the Write Cycle Description table.  
Asserting the Byte Write Enable input (BWE) with the selected  
Byte Write input will selectively write to only the desired bytes.  
Bytes not selected during a byte write operation will remain  
unaltered. A synchronous self-timed write mechanism has  
been provided to simplify the write operations.  
[2]  
Synchronous Chip Selects CE1, CE2, CE3  
and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output tri-state control. ADSP is ignored if CE1  
is HIGH.  
Because the CY7C1366C/CY7C1367C is a common I/O  
device, the Output Enable (OE) must be deasserted HIGH  
before presenting data to the DQ inputs. Doing so will tri-state  
the output drivers. As a safety precaution, DQ are automati-  
cally tri-stated whenever a write cycle is detected, regardless  
of the state of OE.  
Single Read Accesses  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW, (2)  
chip selects are all asserted active, and (3) the write signals  
(GW, BWE) are all deasserted HIGH. ADSP is ignored if CE1  
is HIGH. The address presented to the address inputs is  
stored into the address advancement logic and the Address  
Register while being presented to the memory core. The corre-  
sponding data is allowed to propagate to the input of the  
Output Registers. At the rising edge of the next clock the data  
is allowed to propagate through the output register and onto  
the data bus within tco if OE is active LOW. The only exception  
occurs when the SRAM is emerging from a deselected state  
to a selected state, its outputs are always tri-stated during the  
first cycle of the access. After the first cycle of the access, the  
Single Write Accesses Initiated by ADSC  
ADSC write accesses are initiated when the following condi-  
tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is  
deasserted HIGH, (3) chip select is asserted active, and (4)  
the appropriate combination of the write inputs (GW, BWE,  
and  
) are asserted active to conduct a write to the desired  
BWX  
byte(s). ADSC triggered write accesses require a single clock  
cycle to complete. The address presented is loaded into the  
address register and the address advancement logic while  
being delivered to the memory core. The ADV input is ignored  
Document #: 38-05542 Rev. *E  
Page 7 of 29  
[+] Feedback  
CY7C1366C  
CY7C1367C  
during this cycle. If a global write is conducted, the data  
presented to the DQX is written into the corresponding address  
location in the memory core. If a byte write is conducted, only  
the selected bytes are written. Bytes not selected during a byte  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the “sleep” mode. CEs, ADSP, and ADSC must remain  
inactive for the duration of tZZREC after the ZZ input returns  
LOW.  
write operation will remain unaltered.  
A synchronous  
self-timed write mechanism has been provided to simplify the  
write operations.  
Because the CY7C1366C/CY7C1367C is a common I/O  
device, the Output Enable (OE) must be deasserted HIGH  
before presenting data to the DQX inputs. Doing so will tri-state  
the output drivers. As a safety precaution, DQX are automati-  
cally tri-stated whenever a write cycle is detected, regardless  
of the state of OE.  
Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
First  
Address  
A1: A0  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Burst Sequences  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
The CY7C1366C/CY7C1367C provides a two-bit wraparound  
counter, fed by A[1:0], that implements either an interleaved or  
linear burst sequence. The interleaved burst sequence is  
designed specifically to support Intel Pentium applications.  
The linear burst sequence is designed to support processors  
that follow a linear burst sequence. The burst sequence is user  
selectable through the MODE input. Both read and write burst  
operations are supported.  
Linear Burst Address Table (MODE = GND)  
First  
Address  
A1: A0  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Asserting ADV LOW at clock rise will automatically increment  
the burst counter to the next address in the burst sequence.  
Both read and write burst operations are supported.  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
Test Conditions  
ZZ > VDD – 0.2V  
Min.  
Max.  
Unit  
mA  
ns  
50  
tZZS  
ZZ > VDD – 0.2V  
2tCYC  
tZZREC  
tZZI  
ZZ recovery time  
ZZ < 0.2V  
2tCYC  
0
ns  
ZZ active to sleep current  
ZZ Inactive to exit sleep current  
This parameter is sampled  
This parameter is sampled  
2tCYC  
ns  
tRZZI  
ns  
Document #: 38-05542 Rev. *E  
Page 8 of 29  
[+] Feedback  
CY7C1366C  
CY7C1367C  
Partial Truth Table for Read/Write[5, 10]  
Function (CY7C1366C)  
Read  
GW  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
BWE  
H
L
BWD  
X
H
H
H
H
H
H
H
H
L
BWC  
X
H
H
H
H
L
BWB  
BWA  
X
H
L
X
H
H
L
Read  
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write Bytes B, A  
L
L
H
L
L
L
Write Byte C – (DQC and DQPC)  
Write Bytes C, A  
L
H
H
L
H
L
L
L
Write Bytes C, B  
L
L
H
L
Write Bytes C, B, A  
Write Byte D – (DQD and DQPD)  
Write Bytes D, A  
L
L
L
L
H
H
H
H
L
H
H
L
H
L
L
L
Write Bytes D, B  
L
L
H
L
Write Bytes D, B, A  
Write Bytes D, C  
L
L
L
L
L
H
H
L
H
L
Write Bytes D, C, A  
Write Bytes D, C, B  
Write All Bytes  
L
L
L
L
L
L
H
L
L
L
L
L
Write All Bytes  
X
X
X
X
X
Truth Table for Read/Write[5, 10]  
Function (CY7C1367C)  
Read  
GW  
H
BWE  
BWB  
X
BWA  
H
L
L
L
L
X
X
H
L
Read  
H
H
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write All Bytes  
H
H
H
L
H
L
H
L
Write All Bytes  
L
X
X
Document #: 38-05542 Rev. *E  
Page 9 of 29  
[+] Feedback  
CY7C1366C  
CY7C1367C  
Test MODE SELECT (TMS)  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this ball unconnected if the TAP is not used. The ball is  
pulled up internally, resulting in a logic HIGH level.  
The CY7C1366C/CY7C1367C incorporates a serial boundary  
scan test access port (TAP) in the BGA package only. The  
TQFP package does not offer this functionality. This part  
operates in accordance with IEEE Standard 1149.1-1900, but  
doesn’t have the set of functions required for full 1149.1  
compliance. These functions from the IEEE specification are  
excluded because their inclusion places an added delay in the  
critical speed path of the SRAM. Note the TAP controller  
functions in a manner that does not conflict with the operation  
of other devices using 1149.1 fully compliant TAPs. The TAP  
operates using JEDEC-standard 3.3V or 2.5V I/O logic levels.  
Test Data-In (TDI)  
The TDI ball is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. TDI  
is internally pulled up and can be unconnected if the TAP is  
unused in an application. TDI is connected to the most signif-  
icant bit (MSB) of any register. (See Tap Controller Block  
Diagram.)  
The CY7C1366C/CY7C1367C contains a TAP controller,  
instruction register, boundary scan register, bypass register,  
and ID register.  
Test Data-Out (TDO)  
Disabling the JTAG Feature  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current  
state of the TAP state machine. The output changes on the  
falling edge of TCK. TDO is connected to the least significant  
bit (LSB) of any register. (See Tap Controller State Diagram.)  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are inter-  
nally pulled up and may be unconnected. They may alternately  
be connected to VDD through a pull-up resistor. TDO should be  
left unconnected. Upon power-up, the device will come up in  
a reset state which will not interfere with the operation of the  
device.  
TAP Controller Block Diagram  
0
Bypass Register  
TAP Controller State Diagram  
2
1
0
0
0
TEST-LOGIC  
1
Selection  
Circuitry  
Instruction Register  
31 30 29  
Identification Register  
RESET  
0
Selection  
TDI  
TDO  
Circuitr  
y
.
.
. 2 1  
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
0
0
x
.
.
.
.
. 2 1  
1
1
CAPTURE-DR  
CAPTURE-IR  
Boundary Scan Register  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
TCK  
TMS  
1
1
EXIT1-DR  
EXIT1-IR  
TAP CONTROLLER  
0
0
PAUSE-DR  
0
PAUSE-IR  
0
1
1
Performing a TAP Reset  
0
0
EXIT2-DR  
1
EXIT2-IR  
1
A RESET is performed by forcing TMS HIGH (VDD) for five  
rising edges of TCK. This RESET does not affect the operation  
of the SRAM and may be performed while the SRAM is  
operating.  
UPDATE-DR  
UPDATE-IR  
1
0
1
0
At power-up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
TAP Registers  
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned into and out of the SRAM test  
circuitry. Only one register can be selected at a time through  
the instruction register. Data is serially loaded into the TDI ball  
on the rising edge of TCK. Data is output on the TDO ball on  
the falling edge of TCK.  
Test Access Port (TAP)  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Instruction Register  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
Document #: 38-05542 Rev. *E  
Page 10 of 29  
[+] Feedback  
CY7C1366C  
CY7C1367C  
TDI and TDO balls as shown in the Tap Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
through the instruction register through the TDI and TDO balls.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is to be  
executed whenever the instruction register is loaded with all  
0s. EXTEST is not implemented in this SRAM TAP controller,  
and therefore this device is not compliant to 1149.1. The TAP  
controller does recognize an all-0 instruction.  
When the TAP controller is in the Capture-IR state, the two  
least significant bits are loaded with a binary “01” pattern to  
allow for fault isolation of the board-level serial test data path.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
When an EXTEST instruction is loaded into the instruction  
register, the SRAM responds as if a SAMPLE/PRELOAD  
instruction has been loaded. There is one difference between  
the two instructions. Unlike the SAMPLE/PRELOAD  
instruction, EXTEST places the SRAM outputs in a High-Z  
state.  
Boundary Scan Register  
IDCODE  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR  
state and is then placed between the TDI and TDO balls when  
the controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used  
to capture the contents of the I/O ring.  
The IDCODE instruction is loaded into the instruction register  
upon power-up or whenever the TAP controller is given a test  
logic reset state.  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI and the LSB is connected to TDO.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO balls when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions table.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When  
the SAMPLE/PRELOAD instructions are loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and output pins is  
captured in the boundary scan register.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is  
possible that during the Capture-DR state, an input or output  
will undergo a transition. The TAP may then try to capture a  
signal while in transition (metastable state). This will not harm  
the device, but there is no guarantee as to the value that will  
be captured. Repeatable results may not be possible.  
TAP Instruction Set  
Overview  
Eight different instructions are possible with the three-bit  
instruction register. All combinations are listed in the  
Instruction Codes table. Three of these instructions are listed  
as RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
The TAP controller used in this SRAM is not fully compliant to  
the 1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller's capture set-up plus  
hold times (tCS and tCH). The SRAM clock input might not be  
captured correctly if there is no way in a design to stop (or  
slow) the clock during a SAMPLE/PRELOAD instruction. If this  
is an issue, it is still possible to capture all other signals and  
simply ignore the value of the CK and CK# captured in the  
boundary scan register.  
The TAP controller cannot be used to load address data or  
control signals into the SRAM and cannot preload the I/O  
buffers. The SRAM does not implement the 1149.1 commands  
EXTEST or INTEST or the PRELOAD portion of  
SAMPLE/PRELOAD; rather, it performs a capture of the I/O  
ring when these instructions are executed.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the  
boundary scan register between the TDI and TDO pins.  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
Document #: 38-05542 Rev. *E  
Page 11 of 29  
[+] Feedback  
CY7C1366C  
CY7C1367C  
PRELOAD allows an initial data pattern to be placed at the  
latched parallel outputs of the boundary scan register cells  
prior to the selection of another boundary scan test operation.  
register is placed between the TDI and TDO balls. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
The shifting of data for the SAMPLE and PRELOAD phases  
can occur concurrently when required—that is, while data  
captured is shifted out, the preloaded data can be shifted in.  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
BYPASS  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
TAP AC Switching Characteristics Over the Operating Range[3, 4]  
Parameter  
Clock  
tTCYC  
tTF  
Description  
Min.  
Max.  
Unit  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH Time  
TCK Clock LOW Time  
50  
ns  
MHz  
ns  
20  
tTH  
20  
20  
tTL  
ns  
Output Times  
tTDOV TCK Clock LOW to TDO Valid  
tTDOX TCK Clock LOW to TDO Invalid  
Set-up Times  
tTMSS TMS Set-up to TCK Clock Rise  
tTDIS  
10  
ns  
ns  
0
5
5
5
ns  
ns  
ns  
TDI Set-up to TCK Clock Rise  
Capture Set-up to TCK Rise  
tCS  
Hold Times  
tTMSH  
tTDIH  
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
tCH  
Capture Hold after Clock Rise  
Notes:  
3. t and t refer to the set-up and hold time requirements of latching data from the boundary scan register.  
CS  
CH  
4. Test conditions are specified using the load in TAP AC test Conditions. t /t = 1 ns.  
R
F
Document #: 38-05542 Rev. *E  
Page 12 of 29  
[+] Feedback  
CY7C1366C  
CY7C1367C  
3.3V TAP AC Test Conditions  
2.5V TAP AC Test Conditions  
Input pulse levels ............................................... VSS to 3.3V  
Input rise and fall times................................................... 1 ns  
Input timing reference levels...........................................1.5V  
Output reference levels...................................................1.5V  
Test load termination supply voltage...............................1.5V  
Input pulse levels ................................................VSS to 2.5V  
Input rise and fall time .....................................................1 ns  
Input timing reference levels......................................... 1.25V  
Output reference levels ................................................ 1.25V  
Test load termination supply voltage ............................ 1.25V  
3.3V TAP AC Output Load Equivalent  
2.5V TAP AC Output Load Equivalent  
1.5V  
1.25V  
50  
50  
TDO  
TDO  
ZO= 50Ω  
ZO= 50Ω  
20pF  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
(0°C < TA < +70°C; VDD = 3.3V ±0.165V unless otherwise noted)[5]  
Parameter  
VOH1  
Description  
Conditions  
VDDQ = 3.3V  
Min.  
2.4  
2.0  
2.9  
2.1  
Max.  
Unit  
V
Output HIGH Voltage IOH = –4.0 mA  
I
OH = –1.0 mA  
VDDQ = 2.5V  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
V
VOH2  
VOL1  
VOL2  
VIH  
Output HIGH Voltage IOH = –100 µA  
V
V
Output LOW Voltage IOL = 8.0 mA  
0.4  
0.4  
V
I
OL = 8.0 mA  
V
Output LOW Voltage IOL = 100 µA  
0.2  
V
VDDQ = 2.5V  
0.2  
V
Input HIGH Voltage  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
2.0  
1.7  
VDD + 0.3  
VDD + 0.3  
0.7  
V
V
VIL  
Input LOW Voltage  
–0.5  
–0.3  
–5  
V
VDDQ = 2.5V  
0.7  
V
IX  
Input Load Current  
GND < VIN < VDDQ  
5
µA  
Identification Register Definitions  
CY7C1366C  
CY7C1367C  
(512K x18)  
Instruction Field  
Revision Number (31:29)  
Device Depth (28:24)[6]  
(256K x36)  
Description  
000  
000  
Describes the version number.  
Reserved for Internal Use  
01011  
01011  
101110  
000110  
010110  
Device Width (23:18) 119-BGA  
Device Width (23:18) 165-FBGA  
Cypress Device ID (17:12)  
Cypress JEDEC ID Code (11:1)  
ID Register Presence Indicator (0)  
101110  
000110  
100110  
00000110100  
1
Defines memory type and architecture  
Defines memory type and architecture  
Defines width and density  
00000110100 Allows unique identification of SRAM vendor.  
Indicates the presence of an ID register.  
1
Notes:  
5. All voltages referenced to V (GND).  
SS  
6. Bit #24 is “1” in the Register Definitions for both 2.5V and 3.3V versions of this device.  
Document #: 38-05542 Rev. *E  
Page 13 of 29  
[+] Feedback  
CY7C1366C  
CY7C1367C  
Scan Register Sizes  
Register Name  
Bit Size (x36)  
Bit Size (x18)  
Instruction  
3
3
Bypass  
1
1
ID  
32  
71  
71  
32  
71  
71  
Boundary Scan Order (119-ball BGA package)  
Boundary Scan Order (165-ball FBGA package)  
Identification Codes  
Instruction  
EXTEST  
Code  
Description  
000  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to High-Z state.  
IDCODE  
001  
010  
Loads the ID register with the vendor ID code and places the register between TDI and  
TDO. This operation does not affect SRAM operations.  
SAMPLE Z  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
RESERVED  
011  
100  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
Document #: 38-05542 Rev. *E  
Page 14 of 29  
[+] Feedback  
CY7C1366C  
CY7C1367C  
119-Ball BGA Boundary Scan Order  
CY7C1366C (256K x 36)  
CY7C1367C (512K x 18)  
Signal  
Signal  
Signal  
Name  
Signal  
Name  
Bit # ball ID  
Name  
CLK  
GW  
BWE  
OE  
Bit # ball ID  
Bit #  
1
ball ID  
Name  
CLK  
GW  
Bit #  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
ball ID  
1
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
P4  
N4  
R6  
T5  
A0  
A1  
P4  
A0  
K4  
H4  
M4  
F4  
B4  
A4  
G4  
C3  
B3  
D6  
H7  
G6  
E6  
D7  
E7  
F6  
G7  
H6  
T7  
K7  
L6  
K4  
H4  
2
2
N4  
A1  
3
A
3
M4  
BWE  
OE  
R6  
A
4
A
4
F4  
T5  
A
5
ADSC  
ADSP  
ADV  
A
T3  
A
5
B4  
ADSC  
ADSP  
ADV  
A
T3  
A
6
R2  
R3  
P2  
A
6
A4  
R2  
A
7
MODE  
DQPD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
Internal  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQPC  
A
7
G4  
R3  
MODE  
Internal  
Internal  
Internal  
Internal  
DQPB  
DQB  
8
8
C3  
Internal  
Internal  
Internal  
Internal  
P2  
9
A
P1  
9
B3  
A
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
DQPB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
ZZ  
L2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
T2  
A
K1  
Internal  
Internal  
Internal  
D6  
Internal  
Internal  
Internal  
DQPA  
DQA  
DQA  
DQA  
DQA  
ZZ  
N2  
N1  
M2  
L1  
N1  
M2  
DQB  
E7  
L1  
DQB  
K2  
F6  
K2  
DQB  
Internal  
H1  
G2  
E2  
G7  
Internal  
H1  
Internal  
DQB  
H6  
T7  
G2  
DQB  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQPA  
A
K7  
DQA  
DQA  
DQA  
DQA  
Internal  
Internal  
Internal  
Internal  
Internal  
A
E2  
DQB  
D1  
H2  
G1  
F2  
L6  
D1  
DQB  
N6  
P7  
N7  
M6  
L7  
N6  
Internal  
Internal  
Internal  
Internal  
Internal  
C2  
Internal  
Internal  
Internal  
Internal  
Internal  
A
P7  
Internal  
Internal  
Internal  
Internal  
Internal  
T6  
E1  
D2  
C2  
A2  
K6  
P6  
T4  
A3  
C5  
B5  
A5  
C6  
A6  
B6  
A
A2  
A
E4  
CE1  
CE2  
BWD  
BWC  
BWB  
BWA  
Internal  
E4  
CE1  
A
B2  
A3  
A
B2  
CE2  
A
L3  
C5  
A
Internal  
Internal  
G3  
Internal  
Internal  
BWB  
BWA  
Internal  
A
G3  
G5  
L5  
B5  
A
A
A5  
A
A
C6  
A
L5  
A
Internal  
A6  
A
Internal  
A
B6  
A
Document #: 38-05542 Rev. *E  
Page 15 of 29  
[+] Feedback  
CY7C1366C  
CY7C1367C  
165-Ball FBGA Boundary Scan Order  
CY7C1366C (256K x 36)  
CY7C1367C (512K x 18)  
Signal  
Signal  
Name  
Signal  
Name  
Signal  
Name  
Bit # ball ID  
Name  
CLK  
GW  
BWE  
OE  
Bit #  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
ball ID  
R6  
P6  
R4  
P4  
R3  
P3  
R1  
N1  
L2  
Bit #  
1
ball ID  
B6  
Bit #  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
ball ID  
R6  
1
B6  
B7  
A0  
A1  
CLK  
GW  
A0  
A1  
2
2
B7  
P6  
3
A7  
A
3
A7  
BWE  
OE  
R4  
A
4
B8  
A
4
B8  
P4  
A
5
A8  
ADSC  
ADSP  
ADV  
A
A
5
A8  
ADSC  
ADSP  
ADV  
A
R3  
A
6
B9  
A
6
B9  
P3  
A
7
A9  
MODE  
DQPD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
Internal  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQC  
DQPC  
A
7
A9  
R1  
MODE  
Internal  
Internal  
Internal  
Internal  
DQPB  
DQB  
8
B10  
A10  
C11  
E10  
F10  
G10  
D10  
D11  
E11  
F11  
G11  
H11  
J10  
K10  
L10  
M10  
J11  
K11  
L11  
M11  
N11  
R11  
R10  
P10  
R9  
8
B10  
Internal  
Internal  
Internal  
Internal  
N1  
9
A
9
A10  
A
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
DQPB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
DQB  
ZZ  
K2  
J2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
A11  
A
Internal  
Internal  
Internal  
C11  
Internal  
Internal  
Internal  
DQPA  
DQA  
DQA  
DQA  
DQA  
ZZ  
M2  
M1  
L1  
M1  
L1  
DQB  
K1  
J1  
D11  
K1  
DQB  
E11  
J1  
DQB  
Internal  
G2  
F2  
F11  
Internal  
G2  
Internal  
DQB  
G11  
H11  
F2  
DQB  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
DQPA  
A
E2  
D2  
G1  
F1  
J10  
DQA  
DQA  
DQA  
DQA  
Internal  
Internal  
Internal  
Internal  
Internal  
A
E2  
DQB  
K10  
D2  
DQB  
L10  
Internal  
Internal  
Internal  
Internal  
Internal  
B2  
Internal  
Internal  
Internal  
Internal  
Internal  
A
M10  
Internal  
Internal  
Internal  
Internal  
Internal  
R11  
E1  
D1  
C1  
B2  
A2  
A3  
B3  
B4  
A4  
A5  
B5  
A6  
A
A2  
A
CE1  
CE2  
BWD  
BWC  
BWB  
BWA  
CE3  
A3  
CE1  
A
R10  
P10  
A
B3  
CE2  
A
A
Internal  
Internal  
A4  
Internal  
Internal  
BWB  
BWA  
CE3  
A
R9  
A
P9  
A
P9  
A
R8  
A
R8  
A
B5  
P8  
A
P8  
A
A6  
P11  
A
P11  
A
Document #: 38-05542 Rev. *E  
Page 16 of 29  
[+] Feedback  
CY7C1366C  
CY7C1367C  
DC Input Voltage ................................... –0.5V to VDD + 0.5V  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Static Discharge Voltage.......................................... > 2001V  
(per MIL-STD-883, Method 3015)  
Storage Temperature .................................65°C to +150°C  
Latch-up Current.................................................... > 200 mA  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Operating Range  
Supply Voltage on VDD Relative to GND........ –0.5V to +4.6V  
Supply Voltage on VDDQ Relative to GND ......0.5V to +VDD  
Ambient  
Temperature  
Range  
VDD  
VDDQ  
DC Voltage Applied to Outputs  
in tri-state ............................................ –0.5V to VDDQ + 0.5V  
Commercial 0°C to +70°C 3.3V – 5%/+10% 2.5V – 5%  
to VDD  
Industrial  
–40°C to +85°C  
Electrical Characteristics Over the Operating Range [7, 8]  
Parameter  
VDD  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Test Conditions  
Min.  
3.135  
3.135  
2.375  
2.4  
Max.  
3.6  
Unit  
V
VDDQ  
for 3.3V I/O  
for 2.5V I/O  
VDD  
V
2.625  
V
VOH  
VOL  
VIH  
VIL  
IX  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage[7]  
Input LOW Voltage[7]  
for 3.3V I/O, IOH = 4.0 mA  
for 2.5V I/O, IOH = 1.0 mA  
for 3.3V I/O, IOL= 8.0 mA  
for 2.5V I/O, IOL= 1.0 mA  
for 3.3V I/O  
V
2.0  
V
0.4  
0.4  
V
V
2.0  
1.7  
VDD + 0.3V  
V
for 2.5V I/O  
V
DD + 0.3V  
V
for 3.3V I/O  
–0.3  
–0.3  
–5  
0.8  
0.7  
5
V
for 2.5V I/O  
V
Input Leakage Current GND VI VDDQ  
except ZZ and MODE  
µA  
Input Current of MODE Input = VSS  
Input = VDD  
–30  
–5  
µA  
µA  
5
Input Current of ZZ  
Input = VSS  
Input = VDD  
µA  
30  
5
µA  
IOZ  
IDD  
Output Leakage Current GND VI VDDQ, Output Disabled  
–5  
µA  
VDD Operating Supply VDD = Max., IOUT = 0 mA,  
4-ns cycle, 250 MHz  
5-ns cycle, 200 MHz  
6-ns cycle, 166 MHz  
4-ns cycle, 250 MHz  
5-ns cycle, 200 MHz  
6-ns cycle, 166 MHz  
All speeds  
250  
220  
180  
130  
120  
110  
40  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Current  
f = fMAX = 1/tCYC  
ISB1  
Automatic CE  
Power-down  
Current—TTL Inputs  
VDD = Max, Device Deselected,  
VIN VIH or VIN VIL  
f = fMAX = 1/tCYC  
ISB2  
Automatic CE  
Power-down  
Current—CMOS Inputs f = 0  
VDD = Max, Device Deselected,  
VIN 0.3V or VIN > VDDQ – 0.3V,  
ISB3  
Automatic CE  
Power-down  
Current—CMOS Inputs f = fMAX = 1/tCYC  
VDD = Max, Device Deselected, or 4-ns cycle, 250 MHz  
120  
110  
100  
40  
mA  
mA  
mA  
mA  
VIN 0.3V or VIN > VDDQ – 0.3V  
5-ns cycle, 200 MHz  
6-ns cycle, 166 MHz  
All Speeds  
ISB4  
Automatic CE  
Power-down  
Current—TTL Inputs  
VDD = Max, Device Deselected,  
VIN VIH or VIN VIL, f = 0  
Notes:  
7. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2), undershoot: V (AC) > –2V (Pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
8. TPower-up: Assumes a linear ramp from 0V to V (min.) within 200 ms. During this time V < V and V  
< V  
DD  
IH  
DD  
DDQ  
DD.  
Document #: 38-05542 Rev. *E  
Page 17 of 29  
[+] Feedback  
CY7C1366C  
CY7C1367C  
Capacitance[9]  
100 TQFP  
Max.  
119 BGA  
Max.  
165 FBGA  
Parameter  
CIN  
Description  
Input Capacitance  
Test Conditions  
Max.  
Unit  
pF  
TA = 25°C, f = 1 MHz,  
5
5
5
5
5
7
5
5
7
VDD = 3.3V.  
CCLK  
Clock Input Capacitance  
Input/Output Capacitance  
pF  
VDDQ = 2.5V  
CI/O  
pF  
Thermal Resistance[9]  
100 TQFP  
Package  
119 BGA  
Package  
165 FBGA  
Package  
Parameter  
Description  
Test Conditions  
Unit  
ΘJA  
Thermal Resistance  
(Junction to Ambient)  
Test conditions follow standard  
test methods and procedures  
for measuring thermal  
29.41  
34.1  
16.8  
°C/W  
ΘJC  
Thermal Resistance  
(Junction to Case)  
6.31  
14.0  
3.0  
°C/W  
impedance, per EIA/JESD51.  
AC Test Loads and Waveforms  
3.3V I/O Test Load  
R = 317Ω  
3.3V  
OUTPUT  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
90%  
10%  
Z = 50Ω  
0
10%  
R = 50Ω  
L
GND  
5 pF  
R = 351Ω  
1ns  
1ns  
V = 1.5V  
T
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
2.5V I/O Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
90%  
10%  
Z = 50Ω  
0
10%  
L
5 pF  
R =1538Ω  
1ns  
1ns  
V = 1.25V  
T
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Note:  
9. Tested initially and after any design or process change that may affect these parameters.  
Document #: 38-05542 Rev. *E  
Page 18 of 29  
[+] Feedback  
CY7C1366C  
CY7C1367C  
Switching Characteristics Over the Operating Range[14, 15]  
–250  
–200  
166 MHz  
Parameter  
tPOWER  
Clock  
tCYC  
Description  
VDD(Typical) to the first Access[10]  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
1
1
1
ms  
Clock Cycle Time  
Clock HIGH  
4.0  
1.8  
1.8  
5.0  
2.0  
2.0  
6.0  
2.4  
2.4  
ns  
ns  
ns  
tCH  
tCL  
Clock LOW  
Output Times  
tCO  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
Clock to Low-Z[11, 12, 13]  
2.8  
3.0  
3.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDOH  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
tCLZ  
tCHZ  
Clock to High-Z[11, 12, 13]  
2.8  
2.8  
3.0  
3.0  
3.5  
3.5  
tOEV  
OE LOW to Output Valid  
tOELZ  
tOEHZ  
Set-up Times  
tAS  
OE LOW to Output Low-Z[11, 12, 13]  
OE HIGH to Output High-Z[11, 12, 13]  
0
0
0
2.8  
3.0  
3.5  
Address Set-up Before CLK Rise  
ADSC, ADSP Set-up Before CLK Rise  
ADV Set-up Before CLK Rise  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADS  
tADVS  
tWES  
GW, BWE, BWX Set-up Before CLK Rise  
Data Input Set-up Before CLK Rise  
Chip Enable Set-up Before CLK Rise  
tDS  
tCES  
Hold Times  
tAH  
Address Hold After CLK Rise  
ADSP, ADSC Hold After CLK Rise  
ADV Hold After CLK Rise  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADH  
tADVH  
tWEH  
GW, BWE, BWX Hold After CLK Rise  
Data Input Hold After CLK Rise  
Chip Enable Hold After CLK Rise  
tDH  
tCEH  
Notes:  
10. This part has a voltage regulator internally; t  
is the time that the power needs to be supplied above V (minimum) initially before a read or write operation  
DD  
POWER  
can be initiated.  
11. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
CHZ CLZ OELZ  
OEHZ  
12. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
CLZ  
OEHZ  
OELZ  
CHZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions.  
13. This parameter is sampled and not 100% tested.  
14. Timing reference level is 1.5V when V  
= 3.3V and is 1.25V when V  
= 2.5V.  
DDQ  
DDQ  
15. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
Document #: 38-05542 Rev. *E  
Page 19 of 29  
[+] Feedback  
CY7C1366C  
CY7C1367C  
Switching Waveforms  
Read Cycle Timing[16]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Burst continued with  
new base address  
t
t
WEH  
WES  
GW, BWE,BWX  
Deselect  
cycle  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
OEV  
CO  
t
t
CHZ  
t
t
t
OELZ  
OEHZ  
DOH  
CLZ  
t
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A2 + 3)  
Q(A2)  
Q(A2 + 1)  
Q(A3)  
Q(A1)  
Data Out (DQ)  
High-Z  
CO  
Burst wraps around  
to its initial state  
Single READ  
BURST READ  
DON’T CARE  
UNDEFINED  
Note:  
16. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
Document #: 38-05542 Rev. *E  
Page 20 of 29  
[+] Feedback  
CY7C1366C  
CY7C1367C  
Switching Waveforms (continued)  
Write Cycle Timing[16, 17]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
BWE,  
Byte write signals are ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BW  
X
t
t
WEH  
WES  
GW  
CE  
t
t
CEH  
CES  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
DH  
DS  
D(A2)  
D(A2 + 1)  
D(A2 + 1)  
D(A2 + 2)  
D(A2 + 3)  
D(A3)  
D(A3 + 1)  
D(A3 + 2)  
D(A1)  
High-Z  
Data in (D)  
t
OEHZ  
Data Out (Q)  
BURST READ  
BURST WRITE  
DON’T CARE  
Single WRITE  
Extended BURST WRITE  
UNDEFINED  
Note:  
17.  
Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BW LOW.  
X
Document #: 38-05542 Rev. *E  
Page 21 of 29  
[+] Feedback  
CY7C1366C  
CY7C1367C  
Switching Waveforms (continued)  
Read/Write Cycle Timing[16, 18, 19]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
t
t
WEH  
WES  
BWE, BW  
X
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
t
CO  
DS  
t
OELZ  
Data In (D)  
High-Z  
High-Z  
D(A3)  
D(A5)  
D(A6)  
t
t
OEHZ  
CLZ  
Data Out (Q)  
Q(A1)  
Back-to-Back READs  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
BURST READ  
Back-to-Back  
Single WRITE  
DON’T CARE  
WRITEs  
UNDEFINED  
Notes:  
18. The data bus (Q) remains in high-Z following a WRITE cycle, unless a new read access is initiated by ADSP or ADSC.  
19. GW is HIGH.  
Document #: 38-05542 Rev. *E  
Page 22 of 29  
[+] Feedback  
CY7C1366C  
CY7C1367C  
Switching Waveforms (continued)  
ZZ Mode Timing[20, 21]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes:  
20. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device.  
21. DQs are in high-Z when exiting ZZ sleep mode.  
Document #: 38-05542 Rev. *E  
Page 23 of 29  
[+] Feedback  
CY7C1366C  
CY7C1367C  
Ordering Information  
Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or  
visit www.cypress.com for actual products offered.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Ordering Code  
CY7C1366C-166AXC  
CY7C1367C-166AXC  
CY7C1366C-166BGC  
CY7C1367C-166BGC  
Part and Package Type  
166  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
Commercial  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
CY7C1366C-166BGXC 51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Lead-Free  
CY7C1367C-166BGXC  
CY7C1366C-166BZC  
CY7C1367C-166BZC  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
CY7C1366C-166BZXC 51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Lead-Free  
CY7C1367C-166BZXC  
CY7C1366C-166AXI  
CY7C1367C-166AXI  
CY7C1366C-166BGI  
CY7C1367C-166BGI  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
Industrial  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
CY7C1366C-166BGXI 51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Lead-Free  
CY7C1367C-166BGXI  
CY7C1366C-166BZI  
CY7C1367C-166BZI  
CY7C1366C-166BZXI  
CY7C1367C-166BZXI  
CY7C1366C-200AXC  
CY7C1367C-200AXC  
CY7C1366C-200BGC  
CY7C1367C-200BGC  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Lead-Free  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
200  
Commercial  
CY7C1366C-200BGXC 51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Lead-Free  
CY7C1367C-200BGXC  
CY7C1366C-200BZC  
CY7C1367C-200BZC  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
CY7C1366C-200BZXC 51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Lead-Free  
CY7C1367C-200BZXC  
CY7C1366C-200AXI  
CY7C1367C-200AXI  
CY7C1366C-200BGI  
CY7C1367C-200BGI  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
Industrial  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
CY7C1366C-200BGXI 51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Lead-Free  
CY7C1367C-200BGXI  
CY7C1366C-200BZI  
CY7C1367C-200BZI  
CY7C1366C-200BZXI  
CY7C1367C-200BZXI  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Lead-Free  
Document #: 38-05542 Rev. *E  
Page 24 of 29  
[+] Feedback  
CY7C1366C  
CY7C1367C  
Ordering Information (continued)  
Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or  
visit www.cypress.com for actual products offered.  
250  
CY7C1366C-250AXC  
CY7C1367C-250AXC  
CY7C1366C-250BGC  
CY7C1367C-250BGC  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
Commercial  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
CY7C1366C-250BGXC 51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Lead-Free  
CY7C1367C-250BGXC  
CY7C1366C-250BZC  
CY7C1367C-250BZC  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
CY7C1366C-250BZXC 51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Lead-Free  
CY7C1367C-250BZXC  
CY7C1366C-250AXI  
CY7C1367C-250AXI  
CY7C1366C-250BGI  
CY7C1367C-250BGI  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
Industrial  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
CY7C1366C-250BGXI 51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Lead-Free  
CY7C1367C-250BGXI  
CY7C1366C-250BZI  
CY7C1367C-250BZI  
CY7C1366C-250BZXI  
CY7C1367C-250BZXI  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm) Lead-Free  
Document #: 38-05542 Rev. *E  
Page 25 of 29  
[+] Feedback  
CY7C1366C  
CY7C1367C  
Package Diagrams  
100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) (51-85050)  
16.00 0.20  
14.00 0.10  
1.40 0.05  
100  
81  
80  
1
0.30 0.08  
0.65  
TYP.  
12° 1°  
(8X)  
SEE DETAIL  
A
30  
51  
31  
50  
0.20 MAX.  
1.60 MAX.  
R 0.08 MIN.  
0.20 MAX.  
0° MIN.  
SEATING PLANE  
STAND-OFF  
0.05 MIN.  
0.15 MAX.  
NOTE:  
1. JEDEC STD REF MS-026  
0.25  
GAUGE PLANE  
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH  
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE  
R 0.08 MIN.  
0.20 MAX.  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH  
3. DIMENSIONS IN MILLIMETERS  
0°-7°  
0.60 0.15  
0.20 MIN.  
51-85050-*B  
1.00 REF.  
DETAIL  
A
Document #: 38-05542 Rev. *E  
Page 26 of 29  
[+] Feedback  
CY7C1366C  
CY7C1367C  
Package Diagrams (continued)  
119-Ball BGA (14 x 22 x 2.4 mm) (51-85115)  
Ø0.05 M C  
Ø0.25 M C A B  
A1 CORNER  
Ø0.75 0.15(119X)  
Ø1.00(3X) REF.  
1
2
3
4
5
6
7
7
6
5
4
3
2
1
A
B
C
D
E
A
B
C
D
E
F
F
G
H
G
H
J
K
L
J
K
L
M
N
P
R
T
M
N
P
R
T
U
U
1.27  
0.70 REF.  
A
3.81  
12.00  
7.62  
B
14.00 0.20  
0.15(4X)  
30° TYP.  
51-85115-*B  
SEATING PLANE  
C
Document #: 38-05542 Rev. *E  
Page 27 of 29  
[+] Feedback  
CY7C1366C  
CY7C1367C  
Package Diagrams (continued)  
165-Ball FBGA (13 x 15 x 1.4 mm) (51-85180)  
BOTTOM VIEW  
PIN 1 CORNER  
TOP VIEW  
Ø0.05 M C  
PIN 1 CORNER  
Ø0.25 M C A B  
-0.06  
Ø0.50
(165X)  
+0.14  
1
2
3
4
5
6
7
8
9
10  
11  
11 10  
9
8
7
6
5
4
3
2
1
A
A
B
B
C
D
C
D
E
E
F
F
G
G
H
J
H
J
K
K
L
L
M
M
N
P
R
N
P
R
A
A
1.00  
5.00  
10.00  
13.00 0.10  
B
B
13.00 0.10  
0.15(4X)  
NOTES :  
SOLDER PAD TYPE : NON-SOLDER MASK DEFINED (NSMD)  
PACKAGE WEIGHT : 0.475g  
JEDECREFERENCE: MO-216 / DESIGN 4.6C  
PACKAGE CODE : BB0AC  
SEATING PLANE  
C
51-85180-*A  
i486 is a trademark, and Intel and Pentium are registered trademarks of Intel Corporation. PowerPC is a trademark of IBM  
Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.  
Document #: 38-05542 Rev. *E  
Page 28 of 29  
© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
[+] Feedback  
CY7C1366C  
CY7C1367C  
Document History Page  
Document Title: CY7C1366C/CY7C1367C 9-Mbit (256K x 36/512K x 18) Pipelined DCD Sync SRAM  
Document Number: 38-05542  
Orig. of  
REV.  
**  
ECN NO.  
241690  
278969  
332059  
Issue Date  
See ECN  
See ECN  
See ECN  
Change  
Description of Change  
RKF  
New data sheet  
*A  
RKF  
Changed Boundary Scan order to match the B rev of these devices  
*B  
PCI  
Changed 225-MHz to 250 MHz Speed bins  
Changed tCYC for 250 MHz from 4.4 ns to 4.0 ns  
Unshaded 200 and 166 MHz speed bins in the AC/DC Table and Selection  
Guide  
Address expansion pins/balls in the pinouts for all packages are modified as  
per JEDEC standard  
Added Address Expansion pins in the Pin Definitions Table  
Changed Device Width (23:18) for 119-BGA from 000110 to 101110  
Added separate row for 165 -FBGA Device Width (23:18)  
Included ZZ Mode Electrical Characteristics table  
Modified VOL, VOH test conditions  
Changed IDDZZ from 35 mA to 50 mA  
Changed ISB1 from 50 mA to 130, 120 and 110 mA for 250, 200 and 166 MHz  
Changed ISB3 from 50 mA to 120, 110 and 100 mA for 250, 200 and 166 MHz  
Changed ΘJA and ΘJC from 25 and 9 °C/W to 29.41 and 6.31 °C/W respec-  
tively for 100 TQFP Package  
Changed ΘJA and ΘJC from 25 and 6 °C/W to 34.1 and 14.0 °C/W respec-  
tively for 119 BGA Package  
Changed ΘJA andΘJC from 27 and 6 °C/W to 16.8 and 3.0 °C/W respectively  
for 165 FBGA Package  
Added lead-free information for 100-pin TQFP, 119 BGA and 165 FBGA  
packages  
Updated Ordering Information Table  
*C  
*D  
377095  
408298  
See ECN  
See ECN  
PCI  
Changed ISB2 from 30 to 40 mA  
Modified test condition in note# 8 from VIH < VDD to VIH < VDD  
RXU  
Changed address of Cypress Semiconductor Corporation on Page# 1 from  
“3901 North First Street” to “198 Champion Court”  
Converted from Preliminary to Final  
Modified “Input Load” to “Input Leakage Current except ZZ and MODE” in the  
Electrical Characteristics Table  
Replaced Package Name column with Package Diagram in the Ordering  
Information table  
Updated the ordering information  
*E  
501793  
See ECN  
VKN  
Added the Maximum Rating for Supply Voltage on VDDQ Relative to GND.  
Changed tTH, tTL from 25 ns to 20 ns and tTDOV from 5 ns to 10 ns in TAP AC  
Switching Characteristics table.  
Updated the Ordering Information table.  
Document #: 38-05542 Rev. *E  
Page 29 of 29  
[+] Feedback  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY