CY7C1380CV25-225AC [CYPRESS]

18-Mbit (512K x 36/1M x 18) Pipelined SRAM; 18兆位( 512K ×36 / 1M ×18 )流水线SRAM
CY7C1380CV25-225AC
型号: CY7C1380CV25-225AC
厂家: CYPRESS    CYPRESS
描述:

18-Mbit (512K x 36/1M x 18) Pipelined SRAM
18兆位( 512K ×36 / 1M ×18 )流水线SRAM

静态存储器
文件: 总33页 (文件大小:511K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1380CV25  
CY7C1382CV25  
18-Mbit (512K x 36/1M x 18) Pipelined SRAM  
Features  
Functional Description[1]  
• Supports bus operation up to 250 MHz  
The CY7C1380CV25/CY7C1382CV25 SRAM integrates  
524,288 x 36 and 1,048,576 x 18 SRAM cells with advanced  
synchronous peripheral circuitry and a two-bit counter for  
internal burst operation. All synchronous inputs are gated by  
registers controlled by a positive-edge-triggered Clock Input  
(CLK). The synchronous inputs include all addresses, all data  
• Available speed grades are 250, 225, 200,166 and  
133 MHz  
• Registered inputs and outputs for pipelined operation  
• 2.5V core power supply  
• Fast clock-to-output times  
inputs, address-pipelining Chip Enable  
(
), depth-  
CE1  
[2]  
expansion Chip Enables (CE2 and  
), Burst Control  
CE3  
— 2.6 ns (for 250-MHz device)  
inputs ( ,  
and  
ADSC ADSP  
,
), Write Enables ( , and  
ADV  
BWX  
— 2.8 ns (for 225-MHz device)  
), and Global Write (  
BWE  
). Asynchronous inputs include  
GW  
— 3.0 ns (for 200-MHz device)  
the Output Enable ( ) and the ZZ pin.  
OE  
— 3.4 ns (for 166-MHz device)  
Addresses and chip enables are registered at rising edge of  
— 4.2 ns (for 133-MHz device)  
clock when either Address Strobe Processor (  
) or  
ADSP  
Address Strobe Controller (  
) are active. Subsequent  
ADSC  
• Provide high-performance 3-1-1-1 access rate  
burst addresses can be internally generated as controlled by  
the Advance pin ( ).  
• User-selectable burst counter supporting Intel  
Pentium interleaved or linear burst sequences  
ADV  
Address, data inputs, and write controls are registered on-chip  
to initiate a self-timed Write cycle.This part supports Byte Write  
operations (see Pin Descriptions and Truth Table for further  
details). Write cycles can be one to two or four bytes wide as  
• Separate processor and controller address strobes  
• Synchronous self-timed writes  
• Asynchronous output enable  
controlled by the byte write control inputs.  
when active  
GW  
• Single Cycle Chip Deselect  
causes all bytes to be written.  
LOW  
• Offered in JEDEC-standard 100-pin TQFP, 119-ball BGA  
The CY7C1380CV25/CY7C1382CV25 operates from a +2.5V  
core power supply. All outputs also operate with a +2.5 supply.  
All inputs and outputs are JEDEC-standard JESD8-5-  
compatible.  
and 165-Ball fBGA packages  
• IEEE 1149.1 JTAG-Compatible Boundary Scan  
• “ZZ” Sleep Mode Option  
Selection Guide  
250 MHz  
225 MHz  
2.8  
200 MHz  
3.0  
167 MHz  
3.4  
133 MHz  
4.2  
Unit  
ns  
mA  
mA  
Maximum Access Time  
Maximum Operating Current  
Maximum CMOS Standby Current  
2.6  
350  
70  
325  
70  
300  
70  
275  
70  
245  
70  
Shaded areas contain advance information. Please contact your local Cypress sales representative for availability of these parts.  
Notes:  
1. For best–practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.  
2. CE , CE are for TQFP and 165 fBGA package only. 119 BGA is offered only in 1 Chip Enable.  
3
2
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Document #: 38-05240 Rev. *C  
Revised May 11, 2004  
CY7C1380CV25  
CY7C1382CV25  
1
Logic Block Diagram – CY7C1380CV25 (512K x 36)  
A0, A1, A  
ADDRESS  
REGISTER  
2
A[1:0]  
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER  
AND  
CLR  
Q0  
LOGIC  
ADSC  
ADSP  
DQ  
BYTE  
WRITE REGISTER  
D ,DQPD  
DQ  
BYTE  
WRITE DRIVER  
D ,DQPD  
BW  
D
DQC ,DQP  
BYTE  
WRITE DRIVER  
C
DQC ,DQP  
BYTE  
WRITE REGISTER  
C
BW  
C
OUTPUT  
BUFFERS  
OUTPUT  
REGISTERS  
MEMORY  
ARRAY  
DQ s  
SENSE  
AMPS  
DQPA  
DQB ,DQP  
BYTE  
WRITE DRIVER  
B
E
DQB ,DQP  
BYTE  
WRITE REGISTER  
B
DQP  
DQP  
B
C
BW  
BW  
B
A
DQPD  
DQ  
BYTE  
WRITE DRIVER  
A ,DQPA  
DQ  
A ,DQPA  
BYTE  
WRITE REGISTER  
BWE  
INPUT  
REGISTERS  
GW  
ENABLE  
REGISTER  
PIPELINED  
ENABLE  
CE  
CE  
CE  
1
2
3
OE  
SLEEP  
CONTROL  
ZZ  
2
Logic Block Diagram – CY7C1382CV25 (1M x 18)  
ADDRESS  
A0, A1, A  
REGISTER  
A[1:0]  
2
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER AND  
LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQB,DQP  
B
DQB,DQP  
WRITE REGISTER  
B
WRITE DRIVER  
OUTPUT  
BUFFERS  
BW  
B
A
DQs  
DQP  
DQP  
OUTPUT  
REGISTERS  
SENSE  
AMPS  
MEMORY  
ARRAY  
A
B
DQA,DQP  
A
E
DQA,DQP  
WRITE REGISTER  
A
WRITE DRIVER  
BW  
BWE  
GW  
INPUT  
REGISTERS  
ENABLE  
REGISTER  
CE1  
CE2  
PIPELINED  
ENABLE  
CE3  
OE  
ZZ  
SLEEP  
CONTROL  
3
Document #: 38-05240 Rev. *C  
Page 2 of 33  
CY7C1380CV25  
CY7C1382CV25  
Pin Configurations  
100-pin TQFP Pinout  
DQPC  
1
DQP  
B
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
A
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQC  
DQB  
B
2
NC  
2
DQc  
VDDQ  
VSSQ  
DQ  
3
NC  
NC  
3
VDDQ  
4
VDDQ  
VSSQ  
NC  
VDDQ  
VSSQ  
NC  
4
VSSQ  
5
5
DQ  
DQ  
DQ  
C
DQ  
DQ  
DQ  
DQ  
B
B
B
B
6
6
C
C
7
NC  
DQP  
A
7
8
DQ  
B
B
DQ  
A
A
8
DQ  
C
9
DQ  
DQ  
9
VSSQ  
VDDQ  
VSSQ  
VDDBQ  
DQ  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VSSQ  
VSSQ  
VDDAQ  
DQ  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDDQ  
DQ  
C
DQ  
B
B
DQ  
C
DQ  
B
DQ  
DQ  
A
NC  
VDD  
NC  
VSS  
NC  
VDD  
ZZ  
NC  
VDD  
NC  
VSS  
NC  
VDD  
ZZ  
CY7C1382CV25  
(1M x 18)  
CY7C1380CV25  
(512K X 36)  
VSDS  
VSBS  
DQ  
DQ  
A
DQ  
DQ  
A
A
DQ  
D
DQA  
DQ  
B
DQ  
VDDQ  
VSSQ  
VDDQ  
VSSQ  
VDDQ  
VSSQ  
VDDQ  
VSSQ  
DQ  
D
DQ  
DQ  
DQ  
DQ  
A
A
A
A
DQ  
B
B
B
DQ  
DQ  
NC  
NC  
A
A
DQ  
D
DQ  
DQ  
D
DQP  
DQ  
D
NC  
VSSQ  
VDDQ  
NC  
VSSQ  
VDDQ  
VSSQ  
VDDAQ  
DQ  
VSSQ  
VDDQ  
NC  
DQ  
D
DQ  
D
DQA  
NC  
NC  
DQPD  
DQP  
A
NC  
NC  
Document #: 38-05240 Rev. *C  
Page 3 of 33  
CY7C1380CV25  
CY7C1382CV25  
Pin Configurations (continued)  
119-ball BGA (1 Chip Enable with JTAG)  
CY7C1380CV25 (512K x 36)  
1
2
3
4
5
6
7
VDDQ  
A
A
A
A
VDDQ  
A
B
C
ADSP  
ADSC  
VDD  
NC  
NC  
A
A
A
A
A
A
A
A
NC  
NC  
DQC  
DQC  
VDDQ  
DQPC  
DQC  
DQC  
VSS  
VSS  
VSS  
NC  
CE1  
VSS  
VSS  
VSS  
DQPB  
DQB  
DQB  
DQB  
DQB  
VDDQ  
D
E
F
OE  
DQC  
DQC  
VDDQ  
DQD  
DQD  
VDDQ  
DQD  
DQC  
DQC  
VDD  
BWC  
VSS  
NC  
BWB  
VSS  
NC  
DQB  
DQB  
VDD  
DQA  
DQA  
DQA  
DQA  
DQB  
DQB  
VDDQ  
DQA  
DQA  
VDDQ  
DQA  
G
H
J
ADV  
GW  
VDD  
CLK  
NC  
BWE  
A1  
DQD  
VSS  
VSS  
K
L
M
N
DQD  
DQD  
DQD  
BWD  
VSS  
VSS  
BWA  
VSS  
VSS  
P
R
DQD  
NC  
DQPD  
A
VSS  
MODE  
A0  
VDD  
VSS  
NC  
DQPA  
A
DQA  
NC  
T
U
NC  
VDDQ  
NC / 72M  
TMS  
A
TDI  
A
TCK  
A
TDO  
NC / 36M  
NC  
ZZ  
VDDQ  
CY7C1382CV25 (1M x 18)  
2
A
A
1
3
A
A
4
5
A
A
6
A
A
7
A
B
C
D
E
F
VDDQ  
NC  
NC  
DQB  
NC  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQA  
VDDQ  
ADSP  
ADSC  
VDD  
NC  
CE1  
A
A
A
A
NC  
DQB  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQPA  
NC  
DQA  
OE  
G
H
J
NC  
DQB  
VDDQ  
DQB  
NC  
VDD  
VSS  
VSS  
NC  
NC  
DQA  
VDD  
DQA  
NC  
VDDQ  
BWB  
VSS  
NC  
ADV  
GW  
VDD  
NC  
DQB  
VSS  
CLK  
NC  
BWE  
A1  
VSS  
NC  
DQA  
NC  
DQA  
NC  
DQA  
K
L
M
N
P
DQB  
VDDQ  
DQB  
NC  
NC  
DQB  
NC  
VSS  
VSS  
VSS  
VSS  
NC  
VDDQ  
NC  
BWA  
VSS  
VSS  
VSS  
DQPB  
A0  
DQA  
R
T
U
NC  
NC / 72M  
VDDQ  
A
A
TMS  
MODE  
A
TDI  
VDD  
NC / 36M  
TCK  
NC  
A
TDO  
A
A
NC  
NC  
ZZ  
VDDQ  
Document #: 38-05240 Rev. *C  
Page 4 of 33  
CY7C1380CV25  
CY7C1382CV25  
Pin Configurations (continued)  
165-ball fBGA  
CY7C1380CV25 (512K x 36)  
1
NC / 288M  
NC  
DQPC  
DQC  
2
3
4
5
6
7
8
9
10  
11  
NC  
NC / 144M  
DQPB  
DQB  
A
A
B
C
D
E
F
G
H
J
K
L
CE1  
BWC  
BWD  
VSS  
VDD  
BWB  
BWA  
VSS  
VSS  
CE3  
CLK  
VSS  
VSS  
ADSC  
A
BWE  
GW  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
ADV  
ADSP  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
A
NC  
DQC  
DQC  
DQC  
DQC  
VSS  
DQD  
DQD  
DQD  
CE2  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
VDDQ  
VDDQ  
VDDQ  
A
NC  
DQB  
DQB  
DQB  
DQB  
NC  
DQA  
DQA  
DQA  
OE  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
DQC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQB  
DQC  
DQC  
NC  
DQD  
DQD  
DQD  
DQB  
DQB  
ZZ  
DQA  
DQA  
DQA  
VDDQ  
VDDQ  
VDDQ  
DQD  
DQPD  
NC  
DQD  
NC  
NC / 72M  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
TDI  
VSS  
A
A1  
VSS  
NC  
TDO  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
DQA  
DQPA  
A
M
N
P
A0  
MODE NC / 36M  
A
A
TMS  
TCK  
A
A
A
A
R
CY7C1382CV25 (1M x 18)  
1
NC / 288M  
NC  
2
3
CE1  
CE2  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
4
BWB  
NC  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
5
6
7
8
9
10  
11  
A
A
NC  
A
A
CE  
BWE  
GW  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
ADSC  
OE  
VSS  
ADV  
ADSP  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
3
A
NC  
DQB  
DQB  
DQB  
DQB  
VSS  
NC  
NC  
NC  
BWA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
CLK  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A
NC  
NC  
NC  
NC  
NC  
NC / 144M  
DQPA  
DQA  
B
C
D
E
F
G
H
J
K
L
NC  
NC  
NC  
NC  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
DQA  
DQA  
DQA  
ZZ  
NC  
NC  
NC  
NC  
DQB  
DQB  
DQB  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
NC  
DQB  
DQPB  
NC  
NC  
NC  
NC / 72M  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
TDI  
VSS  
A
A1  
VSS  
NC  
TDO  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
NC  
NC  
A
M
N
P
MODE NC / 36M  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
Document #: 38-05240 Rev. *C  
Page 5 of 33  
CY7C1380CV25  
CY7C1382CV25  
CY7C1380CV25–Pin Definitions  
Name  
TQFP  
BGA  
fBGA  
I/O  
Description  
A0, A1, A  
37,36,32,  
33,34,35,  
42,43,44,45,  
46,47,48,  
49,50,81,  
82,99,100  
P4,N4,  
R6,P6,A2,  
Input-  
Address Inputs used to select one of the  
A2,B2,  
A10,B2,  
Synchronous address locations. Sampled at the rising edge  
C2,R2,  
B10,N6,P3,P4,  
P8,P9,P10,  
P11,R3,R4,R8,  
R9,R10,R11  
of the CLK if  
or is active LOW, and  
ADSP ADSC  
A3,B3,C3,  
T3,T4,A5,B5,  
C5,  
CE1,CE2, andCE3[2]aresampledactive. A1:A0  
are fed to the two-bit counter.  
.
T5,A6,B6,C6,R6  
93,94,95,  
96  
L5,G5,  
B5,A5,A4,  
B4  
Input-  
Byte Write Select Inputs, active LOW.  
Qualified with BWE to conduct byte writes to the  
SRAM. Sampled on the rising edge of CLK.  
BWA,BWB  
BWC,BWD  
G3,L3  
Synchronous  
H4  
B7  
Input-  
Global Write Enable Input, active LOW. When  
88  
GW  
Synchronous asserted LOW on the rising edge of CLK, a  
global write is conducted (ALL bytes are written,  
regardless of the values on BWX and BWE).  
87  
89  
M4  
K4  
A7  
B6  
Input-  
Byte Write Enable Input, active LOW.  
BWE  
CLK  
Synchronous Sampled on the rising edge of CLK. This signal  
must be asserted LOW to conduct a byte write.  
Input-  
Clock  
Clock Input. Used to capture all synchronous  
inputs to the device. Also used to increment the  
burst counter when ADV is asserted LOW,  
during a burst operation.  
98  
E4  
A3  
Input-  
Chip Enable 1 Input, active LOW. Sampled on  
CE1  
Synchronous the rising edge of CLK. Used in conjunction with  
CE2 and CE3 to select/deselect the device.  
ADSP is ignored if CE1 is HIGH.  
[2]  
CE2  
97  
92  
-
-
B3  
A6  
Input-  
Chip Enable 2 Input, active HIGH. Sampled on  
Synchronous the rising edge of CLK. Used in conjunction with  
CE1 and CE3 to select/deselect the device.  
Input-  
Chip Enable 3 Input, active LOW. Sampled on  
[2]  
CE3  
Synchronous the rising edge of CLK. Used in conjunction with  
CE1 and CE2 to select/deselect the device.Not  
available for AJ package version.  
Not connected  
for BGA. Where referenced, CE3 is assumed  
active throughout this document for BGA.  
86  
F4  
B8  
Input-  
Output Enable, asynchronous input, active  
OE  
Asynchronous LOW. Controls the direction of the I/O pins.  
When LOW, the I/O pins behave as outputs.  
When deasserted HIGH, I/O pins are  
three-stated, and act as input data pins. OE is  
masked during the first clock of a read cycle  
when emerging from a deselected state.  
83  
84  
G4  
A4  
A9  
B9  
Input-  
Advance Input signal, sampled on the rising  
ADV  
Synchronous edge of CLK, active LOW. When asserted, it  
automatically increments the address in a burst  
cycle.  
Input-  
Address Strobe from Processor, sampled on  
ADSP  
Synchronous the rising edge of CLK, active LOW. When  
asserted LOW, addresses presented to the  
devicearecapturedintheaddressregisters. A1:  
A0 are also loaded into the burst counter. When  
ADSP and ADSC are both asserted, only ADSP  
is recognized. ASDP is ignored when CE1 is  
deasserted HIGH.  
Document #: 38-05240 Rev. *C  
Page 6 of 33  
CY7C1380CV25  
CY7C1382CV25  
CY7C1380CV25–Pin Definitions (continued)  
Name  
TQFP  
BGA  
fBGA  
I/O  
Description  
B4  
A8  
Input-  
Address Strobe from Controller, sampled on  
85  
ADSC  
Synchronous the rising edge of CLK, active LOW. When  
asserted LOW, addresses presented to the  
devicearecapturedintheaddressregisters. A1:  
A0 are also loaded into the burst counter. When  
ADSP and ADSC are both asserted, only ADSP  
is recognized.  
ZZ  
64  
T7  
H11  
Input-  
ZZ “sleep” Input, active HIGH. When asserted  
Asynchronous HIGH places the device in a non-time-critical  
“sleep” condition with data integrity preserved.  
For normal operation, this pin has to be LOW or  
left floating. ZZ pin has an internal pull-down.  
52,53,56,  
57,58,59,  
62,63,68,  
69,72,73,  
74,75,78,  
79,2,3,6,7,8,9,  
12,13,18,19,22  
,
K6,L6,  
M6,N6,  
K7,L7,  
N7,P7,  
E6,F6,  
G6,H6,  
D7,E7,  
G7,H7,  
D1,E1,  
G1,H1,  
E2,F2,  
G2,H2,  
K1,L1,  
N1,P1,  
K2,L2,  
M2,N2,  
P6,D6,  
D2,P2  
M11,L11,  
K11,J11,  
I/O-  
Bidirectional Data I/O lines. As inputs, they  
DQs,  
Synchronous feed into an on-chip data register that is  
triggered by the rising edge of CLK. As outputs,  
they deliver the data contained in the memory  
location specified by the addresses presented  
DQPs  
J10,K10,  
L10,M10,  
D10,E10,  
F10,G10,  
D11,E11,  
F11,G11,  
D1,E1,F1,  
G1,D2,E2,F2,  
G2,J1,  
during the previous  
clock rise of the read cycle.  
The direction of the pins is controlled by OE.  
When OE is asserted LOW, the pins behave as  
outputs. When HIGH, DQs and DQPX are  
placed in a three-state condition.  
23,24,25,  
28,29,51,  
80,1,30  
K1,L1,M1,  
J2,K2,L2,  
M2,N11,  
C11,C1,N1  
VDD  
15,41,65,  
91  
J2,C4,J4,R4,  
D4,D8,E4,E8, Power Supply Power supply inputs to the core of the  
J6  
F4,F8,  
G4,G8,H4,H8,  
J4,J8,  
device.  
K4,K8,L4,  
L8,M4,M8  
VSS  
17,40,67,  
90  
D3,E3,  
F3,H3,  
K3,M3,  
N3,P3,  
D5,E5,  
F5,H5,  
K5,M5,  
N5,P5  
C4,C5,C6,C7,  
C8,D5,D6,D7,  
E5,E6,E7,F5,  
F6,F7,G5,G6,  
G7,H2,H5,H6,  
H7,J5,J6,J7,  
K5,K6,K7,  
Ground  
Ground for the core of the device.  
L5,L6,L7,  
M5,M6,M7,N4,  
N8  
VSSQ  
5,10,21,26,55,  
60,71,  
-
-
I/O Ground Ground for the I/O circuitry.  
76  
Document #: 38-05240 Rev. *C  
Page 7 of 33  
CY7C1380CV25  
CY7C1382CV25  
CY7C1380CV25–Pin Definitions (continued)  
Name  
TQFP  
BGA  
fBGA  
I/O  
Description  
VDDQ  
4,11,20,27,54, A1,F1,J1,M1,U1, C3,C9,D3,D9,  
I/O Power Power supply for the I/O circuitry.  
61,70,  
77  
A7,F7,J7,M7,U7 E3,E9,F3,F9,G  
Supply  
3,  
G9,J3,J9,  
K3,K9,L3,  
L9,M3,M9,N3,  
N9  
MODE  
31  
R3  
R1  
Input-  
Static  
Selects Burst Order. When tied to GND selects  
linear burst sequence. When tied to VDD or left  
floating selects interleaved burst sequence.  
This is a strap pin and should remain static  
during device operation. Mode Pin has an  
internal pull-up.  
TDO  
TDI  
-
-
-
-
U5  
U3  
U2  
U4  
P7  
P5  
R5  
R7  
JTAG serial Serial data-out to the JTAG circuit. Delivers  
output  
data on the negative edge of TCK. If the JTAG  
Synchronous feature is not being utilized, this pin should be  
disconnected. This pin is not available on TQFP  
packages.  
JTAG serial Serial data-In to the JTAG circuit. Sampled on  
input  
the rising edge of TCK. If the JTAG feature is not  
Synchronous being utilized, this pin can be disconnected or  
connected to VDD. This pin is not available on  
TQFP packages.  
TMS  
JTAG serial Serial data-In to the JTAG circuit. Sampled on  
input  
the rising edge of TCK. If the JTAG feature is not  
Synchronous being utilized, this pin can be disconnected or  
connected to VDD. This pin is not available on  
TQFP packages.  
TCK  
NC  
JTAG-Clock Clock input to the JTAG circuitry. If the JTAG  
feature is not being utilized, this pin must be  
connected to VSS. This pin is not available on  
TQFP packages.  
14,16,66,  
39,38  
B1,C1,  
R1,T1,T2,J3,  
D4,  
A11,B1,C2,  
C10,H1,H3,H9  
,H10,  
-
No Connects. Not internally connected to the  
die  
L4,J5,R5,6T,  
6U,  
N2,N5,N7,N10  
,P1,A1,B11,P2  
,R2,N6  
B7,C7,  
R7  
CY7C1382CV25–Pin Definitions  
Name  
A0, A1, A  
TQFP  
BGA  
fBGA  
I/O  
Input-  
Description  
37,36,32,  
33,34,35,  
42,43,44,  
45,46,47,  
48,49,50,  
80,81,82,  
99,100  
P4,N4,  
A2,B2,  
C2,R2,  
T2,A3,  
B3,C3,  
T3,A5,  
B5,C5,  
T5,A6,  
B6,C6,  
R6,T6  
R6,P6,A2,  
Address Inputs used to select one of the  
A10,A11,  
Synchronous address locations. Sampled at the rising  
B2,B10,P3,P4,N6,P  
8,P9,  
edge of the CLK if  
or  
is active  
ADSP ADSC  
LOW, and CE1, CE2, and CE3 are sampled  
active. A1: A0 are fed to the two-bit counter.  
P10,P11,  
.
R3,R4,R8,R9,R10,  
R11  
93,94  
G3,L5  
B5,A4  
Input-  
Byte Write Select Inputs, active LOW.  
BWA,BWB  
Synchronous  
Qualified with BWE to conduct byte writes to  
the SRAM. Sampled on the rising edge of CLK  
.
Document #: 38-05240 Rev. *C  
Page 8 of 33  
CY7C1380CV25  
CY7C1382CV25  
CY7C1382CV25–Pin Definitions (continued)  
Name  
TQFP  
BGA  
fBGA  
I/O  
Description  
H4  
B7  
Input-  
Global Write Enable Input, active LOW.  
88  
GW  
Synchronous When asserted LOW on the rising edge of  
CLK, a global write is conducted (ALL bytes  
are written, regardless of the values on BWX  
and BWE).  
87  
89  
M4  
K4  
A7  
B6  
Input-  
Byte Write Enable Input, active LOW.  
BWE  
CLK  
Synchronous Sampled on the rising edge of CLK. This signal  
must be asserted LOW to conduct a byte write.  
Input-  
Clock Input. Used to capture all synchronous  
inputstothedevice. Alsousedtoincrementthe  
burst counter when ADV is asserted LOW,  
during a burst operation.  
Clock  
98  
97  
92  
E4  
A3  
B3  
A6  
Input-  
Chip Enable 1 Input, active LOW. Sampled  
CE1  
Synchronous on the rising edge of CLK. Used in conjunction  
with CE2 and CE3 to select/deselect the  
device. ADSP is ignored if CE1 is HIGH.  
Chip Enable 2 Input, active HIGH. Sampled  
[2]  
CE2  
-
-
Input-  
Synchronous on the rising edge of CLK. Used in conjunction  
with CE1 and CE3 to select/deselect the  
device.  
Input-  
Chip Enable 3 Input, active LOW. Sampled  
[2]  
CE3  
Synchronous on the rising edge of CLK. Used in conjunction  
with CE1 and CE2 to select/deselect the  
device. Not available for AJ package  
version.  
Not connected for BGA. Where refer-  
enced, CE3 is assumed active throughout this  
document for BGA.  
86  
F4  
B8  
Input-  
Output Enable, asynchronous input, active  
OE  
Asynchronou LOW. Controls the direction of the I/O pins.  
s
When LOW, the I/O pins behave as outputs.  
When deasserted HIGH, I/O pins are  
three-stated, and act as input data pins. OE is  
masked during the first clock of a read cycle  
when emerging from a deselected state.  
83  
84  
G4  
A4  
A9  
B9  
Input-  
Advance Input signal, sampled on the  
ADV  
Synchronous rising edge of CLK, active LOW. When  
asserted, it automatically increments the  
address in a burst cycle.  
Input-  
Address Strobe from Processor, sampled  
ADSP  
Synchronous on the rising edge of CLK, active LOW.  
When asserted LOW, addresses presented to  
the device are captured in the address  
registers. A1: A0 are also loaded into the burst  
counter. When ADSP and ADSC are both  
asserted, only ADSP is recognized. ASDP is  
ignored when CE1 is deasserted HIGH.  
P4  
A8  
Input-  
Address Strobe from Controller, sampled  
85  
ADSC  
Synchronous on the rising edge of CLK, active LOW.  
When asserted LOW, addresses presented to  
the device are captured in the address  
registers. A1: A0 are also loaded into the burst  
counter. When ADSP and ADSC are both  
asserted, only ADSP is recognized.  
Document #: 38-05240 Rev. *C  
Page 9 of 33  
CY7C1380CV25  
CY7C1382CV25  
CY7C1382CV25–Pin Definitions (continued)  
Name  
TQFP  
BGA  
fBGA  
I/O  
Description  
ZZ  
64  
T7  
H11  
Input-  
ZZ “sleep” Input, active HIGH. When  
Asynchronou asserted HIGH places the device in a  
s
non-time-critical “sleep” condition with data  
integrity preserved. For normal operation, this  
pin has to be LOW or left floating. ZZ pin has  
an internal pull-down.  
58,59,62,  
63,68,69,  
72,73,8,9,  
12,13,18,  
19,22,23,  
74,24  
P7,K7,  
G7,E7,  
F6,H6,L6,N6,  
D1,  
J10,K10,  
L10,M10,  
I/O-  
Bidirectional Data I/O lines. As inputs, they  
DQs,  
Synchronous feed into an on-chip data register that is  
triggeredbytherisingedgeofCLK. Asoutputs,  
they deliver the data contained in the memory  
location specified by the addresses presented  
DQPs  
D11,E11,  
F11,G11,J1,K1,L1,M  
1,D2,E2,F2,  
G2,C11,N1  
H1,L1,  
N1,E2,  
G2,K2,  
M2,D6,  
P2  
during the previous  
clock rise of the read cycle.  
The direction of the pins is controlled by OE.  
When OE is asserted LOW, the pins behave  
as outputs. When HIGH, DQs and DQPX are  
placed in a three-state condition.  
VDD  
15,41,65,  
91  
C4,J2,J4,J6, D4,D8,E4,E8,F4,F8, Power Supply Power supply inputs to the core of the  
R4  
G4,G8,H4,  
H8,J4,J8,  
K4,K8,L4,  
L8,M4,M8  
device.  
VSS  
17,40,67,  
90  
D3,D5,  
H2,C4,C5,C6,C7,C8  
Ground  
Ground for the core of the device.  
E5,E3,F3,F5, ,D5,D6,D7,E5,E6,E7  
G5,  
H3,H5,  
K3,K5,L3,M3,  
M5,  
,
F5,F6,F7,  
G5,G6,G7,  
H5,H6,H7,J5,J6,J7,  
K5,K6,K7,  
N3,N5,  
P3,P5  
L5,L6,L7,  
M5,M6,M7,N4,N8  
VSSQ  
5,10,21,26,55,  
60,71,  
-
-
I/O Ground Ground for the I/O circuitry.  
76  
VDDQ  
4,11,20,27,54, A1,A7,F1,F7, C3,C9,D3,D9,E3,E9 I/O Power Power supply for the I/O circuitry.  
61,70,  
77  
J1,J7,M1,M7,  
U1,U7  
,
Supply  
F3,F9,G3,  
G9,J3,J9,  
K3,K9,L3,  
L9,M3,M9,N3,N9  
MODE  
31  
R3  
R1  
Input-  
Static  
Selects Burst Order. When tied to GND  
selects linear burst sequence. When tied to  
V
DD or left floating selects interleaved burst  
sequence. This is a strap pin and should  
remain static during device operation. Mode  
Pin has an internal pull-up.  
TDO  
TDI  
-
-
U5  
U3  
P7  
P5  
JTAG serial Serial data-out to the JTAG circuit. Delivers  
output  
data on the negative edge of TCK. If the JTAG  
Synchronous feature is not being utilized, this pin should be  
left unconnected. This pin is not available on  
TQFP packages.  
JTAG serial Serial data-In to the JTAG circuit. Sampled  
input  
on the rising edge of TCK. If the JTAG feature  
Synchronous is not being utilized, this pin can be left floating  
or connected to VDD through a pull up resistor.  
This pin is not available on TQFP packages.  
Document #: 38-05240 Rev. *C  
Page 10 of 33  
CY7C1380CV25  
CY7C1382CV25  
CY7C1382CV25–Pin Definitions (continued)  
Name  
TQFP  
BGA  
fBGA  
I/O  
Description  
TMS  
-
U2  
R5  
JTAG serial Serial data-In to the JTAG circuit. Sampled  
input  
on the rising edge of TCK. If the JTAG feature  
Synchronous is not being utilized, this pin can be discon-  
nected or connected to VDD. This pin is not  
available on TQFP packages.  
TCK  
NC  
-
U4  
R7  
JTAG-Clock ClockinputtotheJTAGcircuitry. IftheJTAG  
feature is not being utilized, this pin must be  
connected to VSS. This pin is not available on  
TQFP packages.  
1,2,3,6,7,  
14,16,25,  
28,29,30,  
38,39,  
B1,B7,  
C1,C7,  
A5,B1,B4,  
C1,C2,C10,D1,D10,  
E1,E10,F1,  
F10,G1,  
-
No Connects. Not internally connected to the  
die.  
D2,D4,  
D7,E1,  
51,52,53,  
56,57,66,  
75,78,79,  
95,96  
E6,H2,  
G10,H1,H3,H9,H10,  
J2,J11,  
F2,G1,  
G6,H7,  
K2,  
J3,J5,K1,  
K6,L4,L2,L7,  
M6,  
K11,L2,L1,M2,M11,  
N2,N7,N10,  
N5,  
N2,L7,P1,P6,  
R1,  
N11,P1,A1,  
B11,  
R5,R7,  
P2,R2  
T1,T4,U6  
Functional Overview  
CE1 is HIGH. The address presented to the address inputs (A)  
is stored into the address advancement logic and the Address  
Register while being presented to the memory array. The  
corresponding data is allowed to propagate to the input of the  
Output Registers. At the rising edge of the next clock the data  
is allowed to propagate through the output register and onto  
the data bus within 3.0 ns (200-MHz device) if OE is active  
LOW. The only exception occurs when the SRAM is emerging  
from a deselected state to a selected state, its outputs are  
always three-stated during the first cycle of the access. After  
the first cycle of the access, the outputs are controlled by the  
OE signal. Consecutive single Read cycles are supported.  
Once the SRAM is deselected at clock rise by the chip select  
and either ADSP or ADSC signals, its output will three-state  
immediately.  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock.  
Maximum access delay from the clock rise (tCO) is 3.0ns  
(200-MHz device).  
The CY7C1380CV25/CY7C1382CV25 supports secondary  
cache in systems utilizing either a linear or interleaved burst  
sequence. The interleaved burst order supports Pentium and  
i486processors. The linear burst sequence is suited for  
processors that utilize a linear burst sequence. The burst order  
is user selectable, and is determined by sampling the MODE  
input. Accesses can be initiated with either the Processor  
Address Strobe (ADSP) or the Controller Address Strobe  
(ADSC). Address advancement through the burst sequence is  
controlled by the ADV input. A two-bit on-chip wraparound  
burst counter captures the first address in a burst sequence  
and automatically increments the address for the rest of the  
burst access.  
Byte Write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BWX) inputs. A Global Write  
Enable (GW) overrides all Byte Write inputs and writes data to  
all four bytes. All writes are simplified with on-chip  
synchronous self-timed Write circuitry.  
Three synchronous Chip Selects (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output three-state control. ADSP is ignored if  
CE1 is HIGH.  
Single Write Accesses Initiated by ADSP  
This access is initiated when both of the following conditions  
are satisfied at clock rise: (1) ADSP is asserted LOW, and  
(2) CE1, CE2, CE3 are all asserted active. The address  
presented to A is loaded into the address register and the  
address advancement logic while being delivered to the  
memory array. The Write signals (GW, BWE, and BWX) and  
ADV inputs are ignored during this first cycle.  
ADSP-triggered Write accesses require two clock cycles to  
complete. If GW is asserted LOW on the second clock rise, the  
data presented to the DQs inputs is written into the corre-  
sponding address location in the memory array. If GW is HIGH,  
then the Write operation is controlled by BWE and BWX  
signals. The CY7C1380CV25/CY7C1382CV25 provides Byte  
Write capability that is described in the Write Cycle Descrip-  
tions table. Asserting the Byte Write Enable input (BWE) with  
the selected Byte Write (BWX) input, will selectively write to  
only the desired bytes. Bytes not selected during a Byte Write  
operation will remain unaltered. A synchronous self-timed  
Single Read Accesses  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW, (2)  
CE1, CE2, CE3 are all asserted active, and (3) the Write  
signals (GW, BWE) are all deserted HIGH. ADSP is ignored if  
Document #: 38-05240 Rev. *C  
Page 11 of 33  
CY7C1380CV25  
CY7C1382CV25  
Write mechanism has been provided to simplify the Write  
operations.  
processors that follow a linear burst sequence. The burst  
sequence is user selectable through the MODE input.  
Because the CY7C1380CV25/CY7C1382CV25 is a common  
I/O device, the Output Enable (OE) must be deserted HIGH  
before presenting data to the DQs inputs. Doing so will  
three-state the output drivers. As a safety precaution, DQs are  
automatically three-stated whenever a Write cycle is detected,  
regardless of the state of OE.  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
Single Write Accesses Initiated by ADSC  
ADSC Write accesses are initiated when the following condi-  
tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is  
deserted HIGH, (3) CE1, CE2, CE3 are all asserted active, and  
(4) the appropriate combination of the Write inputs (GW, BWE,  
and BWX) are asserted active to conduct a Write to the desired  
byte(s). ADSC-triggered Write accesses require a single clock  
cycle to complete. The address presented to A is loaded into  
the address register and the address advancement logic while  
being delivered to the memory array. The ADV input is ignored  
during this cycle. If a global Write is conducted, the data  
presented to the DQs is written into the corresponding address  
location in the memory core. If a Byte Write is conducted, only  
the selected bytes are written. Bytes not selected during a  
Byte Write operation will remain unaltered. A synchronous  
self-timed Write mechanism has been provided to simplify the  
Write operations.  
the  
“sleep” mode. CE1, CE2, CE3, ADSP, and ADSC must  
remain inactive for the duration of tZZREC after the ZZ input  
returns LOW.  
Asserting ADV LOW at clock rise will automatically increment  
the burst counter to the next address in the burst sequence.  
Both Read and Write burst operations are supported.  
.
Interleaved Burst Address Table  
(MODE = Floating or VDD)  
First  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Address  
A1: A0  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Because the CY7C1380CV25/CY7C1382CV25 is a common  
I/O device, the Output Enable (OE) must be deserted HIGH  
before presenting data to the DQs inputs. Doing so will  
three-state the output drivers. As a safety precaution, DQs are  
automatically three-stated whenever a Write cycle is detected,  
regardless of the state of OE.  
Linear Burst Address Table (MODE = GND)  
First  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Address  
A1: A0  
Burst Sequences  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
The CY7C1380CV25/CY7C1382CV25 provides a two-bit  
wraparound counter, fed by A1: A0, that implements either an  
interleaved or linear burst sequence. The interleaved burst  
sequence is designed specifically to support Intel Pentium  
applications. The linear burst sequence is designed to support  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
tZZS  
Description  
Snooze mode standby current  
Device operation to ZZ  
Test Conditions  
ZZ > VDD – 0.2V  
ZZ > VDD – 0.2V  
Min.  
Max.  
60mA  
2tCYC  
Unit  
mA  
ns  
tZZREC  
tZZI  
tRZZI  
ZZ recovery time  
ZZ Active to snooze current  
ZZ Inactive to exit snooze current  
ZZ < 0.2V  
This parameter is sampled  
This parameter is sampled  
2tCYC  
0
ns  
ns  
ns  
2tCYC  
Document #: 38-05240 Rev. *C  
Page 12 of 33  
CY7C1380CV25  
CY7C1382CV25  
Truth Table[ 3, 4, 5, 6, 7, 8]  
Operation  
Add. Used  
None  
CE2  
X
L
X
L
CE3  
X
X
H
X
H
X
L
L
L
L
L
X
X
X
X
X
WRITE  
CLK  
DQ  
CE1  
H
L
L
L
L
X
L
L
L
ZZ ADSP ADSC ADV  
OE  
X
Deselect Cycle, Power-down  
Deselect Cycle, Power-down  
Deselect Cycle, Power-down  
Deselect Cycle, Power-down  
Deselect Cycle, Power-down  
Snooze Mode, Power-down  
READ Cycle, Begin Burst  
READ Cycle, Begin Burst  
WRITE Cycle, Begin Burst  
READ Cycle, Begin Burst  
READ Cycle, Begin Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
WRITE Cycle, Continue  
Burst  
WRITE Cycle, Continue  
Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
WRITE Cycle,Suspend Burst Current  
WRITE Cycle,Suspend Burst Current  
L
L
L
L
L
H
L
L
L
L
L
L
L
L
L
L
X
L
L
H
H
X
L
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
L
X
L-H three-state  
L-H three-state  
L-H three-state  
L-H three-state  
L-H three-state  
None  
None  
None  
None  
X
X
X
X
X
X
X
L
H
H
H
H
H
H
L
X
X
X
X
X
L
H
X
L
H
L
H
L
X
X
L
None  
X
X
X
L
L
L
H
H
H
H
H
X
L-H  
three-state  
Q
External  
External  
External  
External  
External  
Next  
Next  
Next  
Next  
Next  
H
H
H
H
H
X
X
X
X
X
L
L-H three-state  
L-H  
L-H  
H
H
H
H
H
X
X
H
D
Q
L
L
L-H three-state  
L-H  
L-H three-state  
L-H  
L-H three-state  
L-H  
L-H  
L-H  
L-H three-state  
L-H  
L-H three-state  
L-H  
L-H  
X
X
H
H
X
Q
L
L
L
L
Q
H
X
D
D
Q
Next  
H
X
X
L
X
H
L
L
X
Current  
Current  
Current  
Current  
X
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
L
L
L
L
L
L
H
H
X
X
H
X
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
L
H
L
H
X
X
Q
D
D
L
Truth Table for Read/Write [5]  
Function (CY7C1380CV25)  
Read  
Read  
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write Bytes B, A  
Write Byte C – (DQC and DQPC)  
Write Bytes C, A  
BWD  
X
BWC  
X
BWB  
BWA  
X
H
L
H
L
H
L
H
GW  
BWE  
H
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
X
H
H
L
H
H
H
H
H
H
H
H
H
H
H
L
L
H
H
L
L
L
Write Bytes C, B  
Notes:  
3. X = “Don't Care.” H = Logic HIGH, L = Logic LOW.  
4. WRITE = L when any one or more Byte Write enable signals and BWE = L or GW= L. WRITE = H when all Byte write enable signals, BWE, GW = H.  
5. The DQ pins are controlled by the current cycle and the  
signal.  
is asynchronous and is not sampled with the clock.  
OE  
OE  
6. CE , CE , and CE are available only in the TQFP package. BGA package has only 2 chip selects CE and CE .  
1
2
3
1
2
7. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks  
X
after the  
or with the assertion of  
. As a result,  
must be driven HIGH prior to the start of the write cycle to allow the outputs to three-state.  
OE  
is  
ADSC  
a don't care for the remainder of the write cycle  
is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are three-state when  
OE  
ADSP  
8.  
OE  
is  
OE  
.
is active (LOW)  
inactive or when the device is deselected, and all data bits behave as output when  
OE  
Document #: 38-05240 Rev. *C  
Page 13 of 33  
CY7C1380CV25  
CY7C1382CV25  
Truth Table for Read/Write (continued)[5]  
Function (CY7C1380CV25)  
Write Bytes C, B, A  
Write Byte D – (DQD and DQPD)  
Write Bytes D, A  
Write Bytes D, B  
Write Bytes D, B, A  
Write Bytes D, C  
Write Bytes D, C, A  
Write Bytes D, C, B  
Write All Bytes  
BWD  
H
BWC  
L
BWB  
L
H
H
L
BWA  
L
H
L
H
L
H
L
H
L
GW  
BWE  
H
L
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
L
X
L
L
L
L
L
L
L
L
X
H
H
H
H
L
L
L
L
X
L
H
H
L
L
X
Write All Bytes  
X
Truth Table for Read/Write[5]  
Function (CY7C1382CV25)  
BWB  
X
H
H
L
L
L
X
BWA  
GW  
BWE  
Read  
Read  
H
H
L
L
L
L
L
X
X
H
L
H
L
L
X
H
H
H
H
H
L
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write Bytes B, A  
Write All Bytes  
Write All Bytes  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
TAP Controller State Diagram  
TEST-LOGIC  
The CY7C1380CV25/CY7C1382CV25 incorporates a serial  
boundary scan test access port (TAP). This port operates in  
accordance with IEEE Standard 1149.1-1990 but does not  
have the set of functions required for full 1149.1 compliance.  
These functions from the IEEE specification are excluded  
because their inclusion places an added delay in the critical  
speed path of the SRAM. Note that the TAP controller  
functions in a manner that does not conflict with the operation  
of other devices using 1149.1 fully compliant TAPs. The TAP  
operates using JEDEC-standard 2.5V I/O logic levels.  
1
RESET  
0
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
0
IR-SCAN  
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
The CY7C1380CV25/CY7C1382CV25 contains  
a
TAP  
1
1
EXIT1-DR  
EXIT1-IR  
controller, instruction register, boundary scan register, bypass  
register, and ID register.  
0
0
PAUSE-DR  
0
PAUSE-IR  
0
Disabling the JTAG Feature  
1
1
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied  
LOW(VSS) to prevent clocking of the device. TDI and TMS are  
internally pulled up and may be unconnected. They may alter-  
nately be connected to VDD through a pull-up resistor. TDO  
should be left unconnected. Upon power-up, the device will  
come up in a reset state which will not interfere with the  
operation of the device.  
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
0
1
0
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
Document #: 38-05240 Rev. *C  
Page 14 of 33  
CY7C1380CV25  
CY7C1382CV25  
Test Access Port (TAP)  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
circuitry. Only one register can be selected at a time through  
the instruction register. Data is serially loaded into the TDI ball  
on the rising edge of TCK. Data is output on the TDO ball on  
the falling edge of TCK.  
Instruction Register  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO balls as shown in the Tap Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
When the TAP controller is in the Capture-IR state, the two  
least significant bits are loaded with a binary “01” pattern to  
allow for fault isolation of the board-level serial test data path.  
Test MODE SELECT (TMS)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this ball unconnected if the TAP is not used. The ball is  
pulled up internally, resulting in a logic HIGH level.  
Test Data-In (TDI)  
The TDI ball is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. For  
information on loading the instruction register, see Figure . TDI  
is internally pulled up and can be unconnected if the TAP is  
unused in an application. TDI is connected to the most signif-  
icant bit (MSB) of any register. (See Tap Controller Block  
Diagram.)  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
Test Data-Out (TDO)  
Boundary Scan Register  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM. The SRAM has a 75-bit-long  
register.  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR  
state and is then placed between the TDI and TDO balls when  
the controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used  
to capture the contents of the I/O ring.  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI, and the LSB is connected to TDO.  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current  
state of the TAP state machine. The output changes on the  
falling edge of TCK. TDO is connected to the least significant  
bit (LSB) of any register. (See Tap Controller State Diagram.)  
TAP Controller Block Diagram  
0
Bypass Register  
2
1
0
0
0
Selection  
Circuitry  
Instruction Register  
31 30 29  
Identification Register  
S
election  
TDI  
TDO  
Circuitr  
y
.
.
. 2 1  
Identification (ID) Register  
x
.
.
.
.
. 2 1  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions table.  
Boundary Scan Register  
TCK  
TMS  
TAP CONTROLLER  
TAP Instruction Set  
Overview  
Performing a TAP Reset  
Eight different instructions are possible with the three bit  
instruction register. All combinations are listed in the  
Instruction Codes table. Three of these instructions are listed  
as RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
The TAP controller used in this SRAM is not fully compliant to  
the 1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented.  
A RESET is performed by forcing TMS HIGH (VDD) for five  
rising edges of TCK. This RESET does not affect the operation  
of the SRAM and may be performed while the SRAM is  
operating.  
At power-up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
TAP Registers  
The TAP controller cannot be used to load address data or  
Registers are connected between the TDI and TDO balls and  
control signals into the SRAM and cannot preload the I/O  
allow data to be scanned into and out of the SRAM test  
Document #: 38-05240 Rev. *C  
Page 15 of 33  
CY7C1380CV25  
CY7C1382CV25  
buffers. The SRAM does not implement the 1149.1 commands  
EXTEST or INTEST or the PRELOAD portion of  
SAMPLE/PRELOAD; rather, it performs a capture of the I/O  
ring when these instructions are executed.  
When the SAMPLE/PRELOAD instruction is loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and bidirectional balls  
is captured in the boundary scan register.  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO balls.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 10 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is  
possible that during the Capture-DR state, an input or output  
will undergo a transition. The TAP may then try to capture a  
signal while in transition (metastable state). This will not harm  
the device, but there is no guarantee as to the value that will  
be captured. Repeatable results may not be possible.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller’s capture setup plus  
hold time (tCS plus tCH).  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is to be  
executed whenever the instruction register is loaded with all  
0s. EXTEST is not implemented in this SRAM TAP controller,  
and therefore this device is not compliant to 1149.1. The TAP  
controller does recognize an all-0 instruction.  
When an EXTEST instruction is loaded into the instruction  
register, the SRAM responds as if a SAMPLE/PRELOAD  
instruction has been loaded. There is one difference between  
the two instructions. Unlike the SAMPLE/PRELOAD  
instruction, EXTEST places the SRAM outputs in a High-Z  
state.  
The SRAM clock input might not be captured correctly if there  
is no way in a design to stop (or slow) the clock during a  
SAMPLE/PRELOAD instruction. If this is an issue, it is still  
possible to capture all other signals and simply ignore the  
value of the CLK captured in the boundary scan register.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the  
boundary scan register between the TDI and TDO balls.  
Note that since the PRELOAD part of the command is not  
implemented, putting the TAP to the Update-DR state while  
performing a SAMPLE/PRELOAD instruction will have the  
same effect as the Pause-DR command.  
IDCODE  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
The IDCODE instruction is loaded into the instruction register  
upon power-up or whenever the TAP controller is given a test  
logic reset state.  
BYPASS  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO balls. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO balls when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
Reserved  
These instructions are not implemented but are reserved for  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. The  
PRELOAD portion of this instruction is not implemented, so  
the device TAP controller is not fully 1149.1 compliant.  
future use. Do not use these instructions.  
Document #: 38-05240 Rev. *C  
Page 16 of 33  
CY7C1380CV25  
CY7C1382CV25  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
TAP AC Switching Characteristics Over the operating Range[9, 10]  
Parameter  
Description  
Min.  
Max.  
Unit  
Clock  
tTCYC  
tTF  
tTH  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH time  
TCK Clock LOW time  
Output Times  
100  
ns  
MHz  
ns  
10  
40  
40  
tTL  
ns  
tTDOV  
tTDOX  
TCK Clock LOW to TDO Valid  
TCK Clock LOW to TDO Invalid  
Set-up Times  
20  
ns  
ns  
0
tTMSS  
tTDIS  
tCS  
TMS Set-up to TCK Clock Rise  
TDI Set-up to TCK Clock Rise  
Capture Set-up to TCK Rise  
Hold Times  
10  
10  
10  
ns  
ns  
tTMSH  
tTDIH  
tCH  
TMS hold after TCK Clock Rise  
TDI Hold after Clock Rise  
Capture Hold after Clock Rise  
10  
10  
10  
ns  
ns  
ns  
Notes:  
t
t
9. CS and CH refer to the setup and hold time requirements of latching data from the boundary scan register.  
10. Test conditions are specified using the load in TAP AC test Conditions. t /t = 1ns.  
R
F
Document #: 38-05240 Rev. *C  
Page 17 of 33  
CY7C1380CV25  
CY7C1382CV25  
2.5V TAP AC Test Conditions  
Input pulse levels ......................................... V to 2.5V  
2.5V TAP AC Output Load Equivalent  
1.25V  
SS  
Input rise and fall time..................................................... 1 ns  
Input timing reference levels.........................................1.25V  
Output reference levels.................................................1.25V  
Test load termination supply voltage.............................1.25V  
50  
TDO  
ZO= 50Ω  
20pF  
TAP DC Electrical Characteristics And Operating Conditions (0°C < TA < +70°C; Vdd = 2.5V ±0.125V unless  
otherwise noted)[11]  
Parameter  
VOH1  
VOH2  
VOL1  
VOL2  
VIH  
Description  
Description  
Conditions  
VDDQ = 2.5V  
Min.  
2.0  
2.1  
Max.  
Unit  
V
V
V
V
V
V
µA  
Output HIGH Voltage IOH = -1.0 mA  
Output HIGH Voltage IOH = -100 µA  
Output LOW Voltage IOL = 8.0 mA  
Output LOW Voltage IOL = 100 µA  
Input HIGH Voltage  
VDDQ = 2.5V  
VDDQ = 2.5V  
VDDQ = 2.5V  
VDDQ = 2.5V  
VDDQ = 2.5V  
0.4  
0.2  
VDD + 0.3  
0.7  
1.7  
-0.3  
-5  
VIL  
IX  
Input LOW Voltage  
Input Load Current  
5
GND < VIN < VDDQ  
Identification Register Definitions  
CY7C1380CV25  
CY7C1382CV25  
Instruction Field  
Revision Number (31:29)  
Device Depth (28:24)  
(512Kx36)  
010  
(1Mx18)  
010  
Description  
Describes the version number.  
Reserved for internal use.  
01011  
01011  
000000  
100101  
00000110100  
1
000000  
010101  
00000110100  
1
Architecture/Memory type(23:18)  
Bus Width/Density(17:12)  
Cypress JEDEC ID Code (11:1)  
ID Register Presence Indicator (0)  
Defines memory type and architecture.  
Defines width and density.  
Allows unique identification of SRAM vendor.  
Indicates the presence of an ID register.  
Scan Register Sizes  
Register Name  
Bit Size (x36)  
Bit Size (x18)  
Instruction  
3
3
Bypass  
1
1
ID  
32  
72  
32  
72  
Boundary Scan Order  
Identification Codes  
Instruction  
Code  
Description  
000  
EXTEST  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to High-Z state. This instruction is not 1149.1 compliant.  
001  
010  
011  
IDCODE  
Loads the ID register with the vendor ID code and places the register between TDI and  
TDO. This operation does not affect SRAM operations.  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
SAMPLE Z  
RESERVED  
Note:  
Do Not Use: This instruction is reserved for future use.  
11. All voltages referenced to VSS (GND).  
Document #: 38-05240 Rev. *C  
Page 18 of 33  
CY7C1380CV25  
CY7C1382CV25  
Identification Codes (continued)  
Instruction  
Code  
Description  
100  
SAMPLE/PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation. This instruction does not implement 1149.1 preload  
function and is therefore not 1149.1 compliant.  
101  
110  
111  
RESERVED  
RESERVED  
BYPASS  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
119-Ball BGA Boundary Scan Order  
CY7C1380CV25  
(512K x 36)  
Bit#  
1
2
3
4
5
6
7
8
Ball ID  
Bit#  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
Ball ID  
B2  
P4  
N4  
R6  
T5  
T3  
R2  
R3  
P2  
P1  
N2  
L2  
K1  
N1  
M2  
K4  
H4  
M4  
F4  
B4  
A4  
G4  
C6  
A6  
D6  
D7  
E6  
G6  
H7  
E7  
F6  
G7  
H6  
T7  
K7  
L6  
N6  
P7  
K6  
L7  
M6  
N7  
P6  
B5  
B3  
C5  
C3  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
L1  
K2  
Not Bonded (Preset to1)  
H1  
G2  
E2  
D1  
H2  
G1  
F2  
E1  
D2  
A5  
A3  
E4  
Internal  
L3  
Document #: 38-05240 Rev. *C  
Page 19 of 33  
CY7C1380CV25  
CY7C1382CV25  
119-Ball BGA Boundary Scan Order (continued)  
33  
34  
35  
36  
C2  
A2  
T4  
B6  
69  
70  
71  
72  
G3  
G5  
L5  
Internal  
CY7C1382CV25 (1M x 18)  
Bit#  
1
2
3
4
5
6
7
8
Ball ID  
Bit#  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
Ball ID  
B2  
P4  
N4  
R6  
T5  
T3  
R2  
K4  
H4  
M4  
F4  
B4  
A4  
G4  
C6  
A6  
T6  
R3  
9
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
P2  
N1  
M2  
L1  
D6  
E7  
F6  
G7  
H6  
T7  
K7  
L6  
K2  
Not Bonded (Preset to 1)  
H1  
G2  
E2  
D1  
N6  
P7  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
A5  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
B5  
A3  
E4  
Internal  
B3  
C5  
CY7C1382CV25 (1M x 18) (continued)  
Bit#  
32  
33  
34  
35  
Ball ID  
Bit#  
68  
69  
70  
71  
Ball ID  
Not Bonded (Preset to 0)  
C3  
C2  
A2  
T2  
B6  
Internal  
G3  
L5  
36  
72  
Internal  
Document #: 38-05240 Rev. *C  
Page 20 of 33  
CY7C1380CV25  
CY7C1382CV25  
165-Ball fBGA Boundary Scan Order  
CY7C1380CV25 (512K x 36)  
Bit#  
1
2
3
4
5
6
7
8
Ball ID  
B6  
B7  
A7  
B8  
A8  
B9  
A9  
Bit#  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
Ball ID  
N6  
R6  
P6  
R4  
R3  
P4  
P3  
R1  
N1  
L2  
K2  
J2  
M2  
M1  
L1  
B10  
A10  
C11  
E10  
F10  
G10  
D10  
D11  
E11  
F11  
G11  
H11  
J10  
K10  
L10  
M10  
J11  
K11  
L11  
M11  
N11  
R11  
R10  
R9  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
K1  
J1  
Not Bonded (Preset to1)  
G2  
F2  
E2  
D2  
G1  
F1  
E1  
D1  
C1  
A2  
B2  
A3  
B3  
CY7C1380CV25 (512K x 36) (continued)  
Bit#  
32  
Ball ID  
R8  
Bit#  
68  
Ball ID  
B4  
33  
34  
P10  
P9  
69  
70  
A4  
A5  
35  
P8  
71  
B5  
36  
P11  
72  
A6  
CY7C1382CV25 (1M x 18)  
Bit#  
1
2
3
4
Ball ID  
Bit#  
37  
Ball ID  
N6  
R6  
P6  
R4  
B6  
B7  
A7  
B8  
A8  
38  
39  
40  
41  
5
R3  
Document #: 38-05240 Rev. *C  
Page 21 of 33  
CY7C1380CV25  
CY7C1382CV25  
165-Ball fBGA Boundary Scan Order (continued)  
6
B9  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
P4  
P3  
R1  
7
A9  
8
B10  
9
A10  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
A11  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
N1  
M1  
L1  
K1  
C11  
D11  
E11  
F11  
G11  
H11  
J10  
K10  
J1  
Not Bonded (Preset to 1)  
G2  
F2  
E2  
D2  
L10  
M10  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
A2  
B2  
A3  
B3  
R11  
R10  
R9  
R8  
P10  
P9  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
A4  
B5  
A6  
P8  
P11  
Document #: 38-05240 Rev. *C  
Page 22 of 33  
CY7C1380CV25  
CY7C1382CV25  
DC Input Voltage ................................... –0.5V to VDD + 0.5V  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
(Above which the useful life may be impaired. For user guide-  
Static Discharge Voltage.......................................... > 2001V  
lines, not tested.)  
(per MIL-STD-883, Method 3015)Latch-up Current > 200 mA  
Storage Temperature .................................65°C to +150°C  
Operating Range  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Ambient  
Supply Voltage on VDD Relative to GND........ –0.3V to +4.6V  
Range  
Temperature  
VDD  
VDDQ  
DC Voltage Applied to Outputs  
Commercial 0°C to +70°C 2.5V – 5%/+5% 2.5V – 5%  
in three-state....................................... –0.5V to VDDQ + 0.5V  
to VDD  
Industrial  
–40°C to +85°C  
[12, 13]  
Electrical Characteristics Over the Operating Range  
Parameter  
VDD  
VDDQ  
VOH  
VOL  
VIH  
Description  
Test Conditions  
Min.  
2.375  
2.375  
2.0  
Max.  
2.625  
VDD  
Unit  
V
V
V
V
V
V
µA  
Power Supply Voltage  
I/O Supply Voltage  
Output HIGH Voltage  
Output LOW Voltage  
VDDQ = 2.5V  
VDDQ = 2.5V, VDD = Min., IOH = –1.0 mA  
VDDQ = 2.5V, VDD = Min., IOL = 1.0 mA  
0.4  
Input HIGH Voltage[12] VDDQ = 2.5V  
1.7 VDD + 0.3V  
–0.3  
–5  
VIL  
IX  
Input LOW Voltage[12]  
VDDQ = 2.5V  
GND VI VDDQ  
0.7  
5
Input Load Current  
except ZZ and MODE  
Input Current of MODE Input = VSS  
Input = VDD  
–30  
–30  
–5  
µA  
µA  
µA  
µA  
µA  
5
Input Current of ZZ  
Input = VSS  
Input = VDD  
5
5
IOZ  
IDD  
Output Leakage Current GND VI VDDQ, Output Disabled  
VDD Operating Supply VDD = Max., IOUT = 0 mA,  
4.0-ns cycle, 250 MHz  
4.4-ns cycle, 225 MHz  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
7.5-ns cycle, 133 MHz  
4.0-ns cycle, 250 MHz  
4.4-ns cycle, 225 MHz  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
7.5-ns cycle, 133 MHz  
350  
325  
300  
275  
245  
120  
110  
100  
90  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Current  
f = fMAX = 1/tCYC  
ISB1  
Automatic CE  
VDD = Max, Device Deselected,  
Power-down  
VIN VIH or VIN VIL  
Current—TTL Inputs  
f = fMAX = 1/tCYC  
85  
70  
ISB2  
Automatic CE  
VDD = Max, Device Deselected, VIN All speeds  
Power-down  
0.3V or VIN > VDDQ – 0.3V, f = 0  
Current—CMOS Inputs  
ISB3  
Automatic CE  
V
DD = Max, Device Deselected, or VIN 4.0-ns cycle, 250 MHz  
105  
100  
95  
85  
80  
mA  
mA  
mA  
mA  
mA  
mA  
Power-down  
0.3V or VIN > VDDQ – 0.3V  
4.4-ns cycle, 225 MHz  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
7.5-ns cycle, 133 MHz  
All speeds  
Current—CMOS Inputs f = fMAX = 1/tCYC  
ISB4  
Automatic CE  
V
DD = Max, Device Deselected,  
80  
Power-down  
V
IN VIH or VIN VIL, f = 0  
Current—TTL Inputs  
Shaded areas contain advance information.  
Notes:  
12. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2), undershoot: V (AC) > -2V (Pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
13. TPower-up: Assumes a linear ramp from 0v to V (min.) within 200ms. During this time V < V and V  
< V  
.
DD  
DD  
IH  
DD  
DDQ  
Document #: 38-05240 Rev. *C  
Page 23 of 33  
CY7C1380CV25  
CY7C1382CV25  
Thermal Resistance[14]  
TQFP  
BGA  
fBGA  
Parameter  
Description  
Test Conditions  
Package  
Package  
Package  
Unit  
ΘJA  
Thermal Resistance  
Test conditions follow standard  
test methods and procedures  
for measuring thermal  
31  
45  
46  
°C/W  
(Junction to Ambient)  
ΘJC  
Thermal Resistance  
(Junction to Case)  
6
7
3
°C/W  
impedence, per EIA / JESD51.  
Capacitance[14]  
TQFP  
BGA  
fBGA  
Parameter  
CIN  
CCLK  
CI/O  
Description  
Input Capacitance  
Clock Input Capacitance  
Input/Output Capacitance  
Test Conditions  
Package  
Package  
Package  
Unit  
pF  
pF  
TA = 25°C, f = 1 MHz,  
5
5
5
8
8
8
9
9
9
V
DD = 2.5V.  
VDDQ = 2.5V  
pF  
AC Test Loads and Waveforms  
2.5V I/O Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDD  
90%  
10%  
Z = 50Ω  
0
10%  
L
GND  
1ns  
5 pF  
R =1538Ω  
1ns  
INCLUDING  
JIG AND  
SCOPE  
V = 1.25V  
L
(a)  
(b)  
(c)  
Switching Characteristics Over the Operating Range [19, 20]  
250 MHz  
225 MHz  
200 MHz  
167 MHz  
133 MHz  
Parameter  
tPOWER  
Clock  
tCYC  
tCH  
tCL  
Description  
Min. Max. Min. Max. Min. Max. Min. Max Min. Max Unit  
VDD(Typical) to the first Access[15]  
1
1
1
1
1
ms  
Clock Cycle Time  
Clock HIGH  
4.0  
1.7  
1.7  
4.4  
2.0  
2.0  
5
2.0  
2.0  
6
2.2  
2.2  
7.5  
2.5  
2.5  
ns  
ns  
ns  
Clock LOW  
Output Times  
tCO  
tDOH  
tCLZ  
tCHZ  
tOEV  
tOELZ  
tOEHZ  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
Clock to Low-Z[16, 17, 18]  
2.6  
2.8  
3.0  
3.4  
4.2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1.0  
1.0  
1.0  
1.0  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
Clock to High-Z[16, 17, 18]  
2.6  
2.6  
2.8  
2.8  
3.0  
3.0  
3.4  
3.4  
3.4  
4.2  
OE LOW to Output Valid  
LOW to Output Low-Z[16, 17, 18]  
OE  
0
0
0
0
0
OE HIGH to Output High-Z[16, 17, 18]  
2.6  
2.8  
3.0  
3.4  
4.0  
Shaded areas contain advance information.  
Notes:  
14. Tested initially and after any design or process change that may affect these parameters  
15. This part has a voltage regulator internally; t  
can be initiated.  
is the time that the power needs to be supplied above V (minimum) initially before a read or write operation  
DD  
POWER  
16. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
OEHZ  
CHZ CLZ OELZ  
17. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
CLZ  
OEHZ  
OELZ  
CHZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions  
18. This parameter is sampled and not 100% tested.  
19. Timing reference level is 1.25V when V  
=2.5V.  
DDQ  
20. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
Document #: 38-05240 Rev. *C  
Page 24 of 33  
CY7C1380CV25  
CY7C1382CV25  
Switching Characteristics Over the Operating Range (continued)[19, 20]  
250 MHz  
225 MHz  
200 MHz  
167 MHz  
133 MHz  
Parameter  
Set-up Times  
tAS  
Description  
Min. Max. Min. Max. Min. Max. Min. Max Min. Max Unit  
Address Set-up Before CLK Rise  
1.2  
1.2  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
tADS  
,
ADSC ADSP Set-up Before CLK  
Rise  
tADVS  
tWES  
1.2  
1.2  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ADV Set-up Before CLK Rise  
Set-up Before CLK  
GW, BWE, BWX  
Rise  
tDS  
tCES  
Data Input Set-up Before CLK Rise  
Chip Enable Set-Up Before CLK Rise 1.2  
1.2  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
Hold Times  
tAH  
tADH  
tADVH  
tWEH  
tDH  
Address Hold After CLK Rise  
Hold After CLK Rise  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
,
ADSP ADSC  
ADV Hold After CLK Rise  
,
,
GW BWE BWX Hold After CLK Rise  
Data Input Hold After CLK Rise  
tCEH  
Chip Enable Hold After CLK Rise  
Document #: 38-05240 Rev. *C  
Page 25 of 33  
CY7C1380CV25  
CY7C1382CV25  
Switching Waveforms  
Read Cycle Timing[21]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Burst continued with  
new base address  
t
t
WEH  
WES  
GW, BWE,  
BWx  
Deselect  
cycle  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV  
suspends  
burst.  
t
t
OEV  
CO  
t
t
OEHZ  
t
OELZ  
t
CHZ  
DOH  
t
CLZ  
t
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A2 + 3)  
Q(A2)  
Q(A2 + 1)  
Q(A1)  
Data Out (Q)  
High-Z  
CO  
Burst wraps around  
to its initial state  
Single READ  
BURST READ  
DON’T CARE  
UNDEFINED  
Notes:  
21. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
22.  
Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BW LOW.  
X
Document #: 38-05240 Rev. *C  
Page 26 of 33  
CY7C1380CV25  
CY7C1382CV25  
Switching Waveforms (continued)  
Write Cycle Timing[21, 22]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
ADSC  
ADDRESS  
BWE,  
t
t
AH  
AS  
A1  
A2  
A3  
Byte write signals are  
ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BW  
X
t
t
WEH  
WES  
GW  
CE  
t
t
CEH  
CES  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
DH  
DS  
Data In (D)  
D(A2)  
D(A2 + 1)  
D(A2 + 1)  
D(A2 + 2)  
D(A2 + 3)  
D(A3)  
D(A3 + 1)  
D(A3 + 2)  
D(A1)  
High-Z  
t
OEHZ  
Data Out (Q)  
BURST READ  
Single WRITE  
BURST WRITE  
Extended BURST WRITE  
DON’T CARE  
UNDEFINED  
Document #: 38-05240 Rev. *C  
Page 27 of 33  
CY7C1380CV25  
CY7C1382CV25  
Switching Waveforms (continued)  
Read/Write Cycle Timing[21, 23, 24]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
BWE,  
t
t
WEH  
WES  
BW  
X
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
t
CO  
DS  
t
OELZ  
Data In (D)  
High-Z  
High-Z  
D(A3)  
D(A5)  
D(A6)  
t
t
OEHZ  
CLZ  
Data Out (Q)  
Q(A1)  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
Back-to-Back READs  
Single WRITE  
BURST READ  
Back-to-Back  
WRITEs  
DON’T CARE  
UNDEFINED  
ZZ Mode Timing [25, 26]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes:  
23.  
.
The data bus (Q) remains in high-Z following a WRITE cycle, unless a new read access is initiated by  
ADSP or ADSC  
24. GW is HIGH.  
Document #: 38-05240 Rev. *C  
Page 28 of 33  
CY7C1380CV25  
CY7C1382CV25  
Ordering Information  
Speed  
Package  
Name  
A101  
Operating  
Range  
Commercial  
(MHz)  
Ordering Code  
Part and Package Type  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)  
250  
CY7C1380CV25-250AC  
CY7C1382CV25-250AC  
CY7C1380CV25-250BGC  
CY7C1382CV25-250BGC  
BG119 119 PBGA  
BB165A 165 fBGA  
CY7C1380CV25-250BZC  
CY7C1382CV25-250BZC  
225  
200  
CY7C1380CV25-225AC  
CY7C1382CV25-225AC  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)  
CY7C1380CV25-225BGC  
BG119 119 PBGA  
BB165A 165 fBGA  
CY7C1382CV25-225BGC  
CY7C1380CV25-225BZC  
CY7C1382CV25-225BZC  
CY7C1380CV25-200AC  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)  
CY7C1382CV25-200AC  
CY7C1380CV25-200BGC  
CY7C1382CV25-200BGC  
CY7C1380CV25-200BZC  
CY7C1382CV25-200BZC  
CY7C1380CV25-167AC  
CY7C1382CV25-167AC  
CY7C1380CV25-167BGC  
CY7C1382CV25-167BGC  
BG119 119 PBGA  
BB165A 165 fBGA  
167  
133  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)  
BG119 119 PBGA  
BB165A 165 fBGA  
CY7C1380CV25-167BZC  
CY7C1382CV25-167BZC  
CY7C1380CV25-133AC  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)  
Notes:  
25. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device.  
26. DQs are in high-Z when exiting ZZ sleep mode.  
167  
CY7C1380CV25-167AI  
CY7C1382CV25-167AI  
A101  
100-lead Thin Quad Flat Pack (14 x 20 x 1.4 mm)  
Industrial  
CY7C1380CV25-167BGI  
BG119 119 PBGA  
BB165A 165 fBGA  
CY7C1382CV25-167BGI  
CY7C1380CV25-167BZI  
CY7C1382CV25-167BZI  
Shaded areas contain advance information. Please contact your local sales representative for availability of these parts.  
Document #: 38-05240 Rev. *C  
Page 29 of 33  
CY7C1380CV25  
CY7C1382CV25  
Package Diagrams  
100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
DIMENSIONS ARE IN MILLIMETERS.  
ꢁ6.00 0.20  
ꢁ4.00 0.ꢁ0  
ꢁ.40 0.05  
ꢁ00  
ꢀꢁ  
ꢀ0  
0.30 0.0ꢀ  
0.65  
TYP.  
ꢁ2° ꢁ°  
(ꢀX)  
SEE DETAIL  
A
30  
5ꢁ  
3ꢁ  
50  
0.20 MAX.  
ꢁ.60 MAX.  
R 0.0ꢀ MIN.  
0.20 MAX.  
0° MIN.  
STAND-OFF  
0.05 MIN.  
0.ꢁ5 MAX.  
SEATING PLANE  
0.25  
GAUGE PLANE  
R 0.0ꢀ MIN.  
0.20 MAX.  
0°-7°  
0.60 0.ꢁ5  
0.20 MIN.  
ꢁ.00 REF.  
51-85050-*A  
DETAIL  
A
Document #: 38-05240 Rev. *C  
Page 30 of 33  
CY7C1380CV25  
CY7C1382CV25  
Package Diagrams (continued)  
119-Lead PBGA (14 x 22 x 2.4 mm) BG119  
51-85115-*B  
Document #: 38-05240 Rev. *C  
Page 31 of 33  
CY7C1380CV25  
CY7C1382CV25  
Package Diagrams (continued)  
165-Ball FBGA (13 x 15 x 1.2 mm) BB165A  
51-85122-*C  
i486 is a trademark, and Intel and Pentium are registered trademarks of Intel Corporation. PowerPC is a trademark of IBM  
Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.  
Document #: 38-05240 Rev. *C  
Page 32 of 33  
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
CY7C1380CV25  
CY7C1382CV25  
Document History Page  
Document Title: CY7C1380CV25/CY7C1382CV25 18-Mbit (512K x 36/1M x 18) Pipelined SRAM  
Document Number: 38-05240  
Orig. of  
REV.  
**  
ECN NO. Issue Date Change  
Description of Change  
116280  
08/29/02  
SKX  
New Data Sheet  
*A  
121543  
11/21/02  
DSG  
Updated package diagrams 51-85115 (BG119) to rev. *B and 51-85122  
(BB165A) to rev. *C  
*B  
*C  
206081  
230388  
See ECN  
See ECN  
RKF  
VBL  
Final data sheet  
Update Ordering Info section:  
Shade Selection Guide and Characteristics table  
Changed the title for 119-BGA pin table for CY7C1382CV25 from  
“512K x 18” to “1M x 18”  
Modified Identification Register Definitions table: Changed Bit #24 from “0”  
to “1” and changed “Device Width” to “Architecture/Memory type”  
Document #: 38-05240 Rev. *C  
Page 33 of 33  

相关型号:

CY7C1380CV25-225AI

512K x 36/1M x 18 Pipelined SRAM
CYPRESS

CY7C1380CV25-225BGC

18-Mbit (512K x 36/1M x 18) Pipelined SRAM
CYPRESS

CY7C1380CV25-225BGI

512K x 36/1M x 18 Pipelined SRAM
CYPRESS

CY7C1380CV25-225BZC

18-Mbit (512K x 36/1M x 18) Pipelined SRAM
CYPRESS

CY7C1380CV25-250AC

18-Mbit (512K x 36/1M x 18) Pipelined SRAM
CYPRESS

CY7C1380CV25-250BGC

18-Mbit (512K x 36/1M x 18) Pipelined SRAM
CYPRESS

CY7C1380CV25-250BZC

18-Mbit (512K x 36/1M x 18) Pipelined SRAM
CYPRESS

CY7C1380CV25_04

18-Mbit (512K x 36/1M x 18) Pipelined SRAM
CYPRESS

CY7C1380D

18-Mbit (512K x 36/1M x 18) Pipelined SRAM
CYPRESS

CY7C1380D-167AXC

18-Mbit (512K x 36/1M x 18) Pipelined SRAM
CYPRESS

CY7C1380D-167AXI

18-Mbit (512K x 36/1M x 18) Pipelined SRAM
CYPRESS

CY7C1380D-167BGC

18-Mbit (512K x 36/1M x 18) Pipelined SRAM
CYPRESS