CY7C1381KV33-133AXC [CYPRESS]

18-Mbit (512K × 36/1M × 18) Flow-Through SRAM (With ECC);
CY7C1381KV33-133AXC
型号: CY7C1381KV33-133AXC
厂家: CYPRESS    CYPRESS
描述:

18-Mbit (512K × 36/1M × 18) Flow-Through SRAM (With ECC)

静态存储器
文件: 总34页 (文件大小:1120K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1381KV33/CY7C1381KVE33  
CY7C1383KV33/CY7C1383KVE33  
18-Mbit (512K × 36/1M × 18)  
Flow-Through SRAM (With ECC)  
18-Mbit (512K  
× 36/1M × 18) Flow-Through SRAM (With ECC)  
Features  
Functional Description  
Supports 133 MHz bus operations  
512K × 36 and 1M × 18 common I/O  
The CY7C1381KV33/CY7C1381KVE33/CY7C1383KV33/  
CY7C1383KVE33 are a 3.3 V, 512K × 36 and 1M × 18  
synchronous flow through SRAMs, designed to interface with  
high speed microprocessors with minimum glue logic. Maximum  
access delay from clock rise is 6.5 ns (133 MHz version). A 2-bit  
on-chip counter captures the first address in a burst and  
increments the address automatically for the rest of the burst  
access. All synchronous inputs are gated by registers controlled  
by a positive edge triggered clock input (CLK). The synchronous  
inputs include all addresses, all data inputs, address pipelining  
chip enable (CE1), depth-expansion chip enables (CE2 and  
CE3), burst control inputs (ADSC, ADSP, and ADV), write  
enables (BWx, and BWE), and global write (GW). Asynchronous  
inputs include the output enable (OE) and the ZZ pin.  
3.3 V core power supply (VDD  
)
2.5 V or 3.3 V I/O supply (VDDQ  
)
Fast clock-to-output time  
6.5 ns (133 MHz version)  
Provides high performance 2-1-1-1 access rate  
User selectable burst counter supporting interleaved or linear  
burst sequences  
Separate processor and controller address strobes  
Synchronous self-timed write  
CY7C1381KV33/CY7C1381KVE33/CY7C1383KV33/  
The  
CY7C1383KVE33  
allows interleaved or linear burst sequences,  
selected by the MODE input pin. A HIGH selects an interleaved  
burst sequence, while a LOW selects a linear burst sequence.  
Burst accesses can be initiated with the processor address  
strobe (ADSP) or the cache controller address strobe (ADSC)  
inputs. Address advancement is controlled by the address  
advancement (ADV) input.  
Asynchronous output enable  
CY7C1381KV33/CY7C1381KVE33  
available  
in  
JEDEC-standard Pb-free 100-pin TQFP, Pb-free 165-ball  
FBGA package. CY7C1383KV33/CY7C1383KVE33 available  
in JEDEC-standard Pb-free 100-pin TQFP.  
Addresses and chip enables are registered at rising edge of  
clock when address strobe processor (ADSP) or address strobe  
controller (ADSC) are active. Subsequent burst addresses can  
be internally generated as controlled by the advance pin (ADV).  
IEEE 1149.1 JTAG-Compatible Boundary Scan  
ZZ sleep mode option.  
CY7C1381KV33/CY7C1381KVE33/CY7C1383KV33/  
On-chip error correction code (ECC) to reduce soft error rate  
(SER)  
CY7C1383KVE33 operates from a +3.3 V core power supply  
while all outputs operate with a +2.5 V or +3.3 V supply. All inputs  
and outputs are JEDEC-standard and JESD8-5-compatible.  
Selection Guide  
Description  
Maximum access time  
133 MHz  
6.5  
100 MHz Unit  
8.5  
114  
134  
ns  
Maximum operating current  
× 18  
× 36  
129  
mA  
mA  
149  
Cypress Semiconductor Corporation  
Document Number: 001-97888 Rev. *F  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised February 16, 2018  
CY7C1381KV33/CY7C1381KVE33  
CY7C1383KV33/CY7C1383KVE33  
Logic Block Diagram – CY7C1381KV33  
(512K × 36)  
ADDRESS  
REGISTER  
A0, A1, A  
A
[1:0]  
MODE  
ADV  
CLK  
Q1  
Q0  
BURST  
COUNTER  
AND LOGIC  
CLR  
ADSC  
ADSP  
DQ  
BYTE  
WRITE REGISTER  
D, DQP D  
DQ  
BYTE  
WRITE REGISTER  
D, DQP D  
BW  
D
DQ C , DQP C  
DQ C , DQP C  
BW  
C
WRITE REGISTER  
DQ DQP  
OUTPUT  
BUFFERS  
DQs  
DQP  
DQP  
DQP  
DQP  
WRITE REGISTER  
MEMORY  
ARRAY  
SENSE  
AMPS  
A
B
B
,
B
DQ B, DQP B  
BW  
B
C
D
WRITE REGISTER  
DQ DQP  
WRITE REGISTER  
A
,
BYTE  
DQ  
BYTE  
WRITE REGISTER  
A, DQP A  
BW  
A
WRITE REGISTER  
BWE  
INPUT  
GW  
REGISTERS  
ENABLE  
REGISTER  
CE1  
CE2  
CE3  
OE  
SLEEP  
Logic Block Diagram – CY7C1381KVE33  
(512K × 36)  
ADDRESS  
REGISTER  
A0, A1, A  
A[1:0]  
MODE  
ADV  
CLK  
Q1  
Q0  
BURST  
COUNTER  
AND LOGIC  
CLR  
ADSC  
ADSP  
DQ  
BYTE  
WRITE REGISTER  
D, DQPD  
DQ  
BYTE  
WRITE REGISTER  
D, DQPD  
BWD  
DQ  
BYTE  
WRITE REGISTER  
C, DQPC  
DQ  
BYTE  
WRITE REGISTER  
C, DQPC  
BW  
C
ECC  
DECODER  
OUTPUT  
BUFFERS  
DQs  
MEMORY  
ARRAY  
SENSE  
AMPS  
DQP  
DQP  
DQP  
A
DQ  
BYTE  
WRITE REGISTER  
B, DQPB  
B
C
DQ  
BYTE  
WRITE REGISTER  
B, DQPB  
BW  
B
DQP  
D
DQ  
BYTE  
WRITE REGISTER  
A, DQPA  
DQ  
BYTE  
WRITE REGISTER  
A, DQPA  
BW  
A
BWE  
ECC  
ENCODER  
INPUT  
REGISTERS  
GW  
ENABLE  
REGISTER  
CE1  
CE2  
CE3  
OE  
SLEEP  
CONTROL  
ZZ  
Document Number: 001-97888 Rev. *F  
Page 2 of 34  
CY7C1381KV33/CY7C1381KVE33  
CY7C1383KV33/CY7C1383KVE33  
Logic Block Diagram – CY7C1383KV33  
(1M × 18)  
ADDRESS  
REGISTER  
A0,A1,A  
A[1:0]  
MODE  
ADV  
Q1  
COUNTER AND  
BURST  
Q0  
DQ  
B
,DQP  
B
DQ  
DQ  
B
,DQP  
,DQP  
B
WRITE DRIVER  
BW  
BW  
B
MEMORY  
ARRAY  
OUTPUT  
BUFFERS  
DQs  
DQP  
DQP  
SENSE  
AMPS  
A
B
DQ  
A,DQP A  
A
A
WRITE DRIVER  
A
BWE  
GW  
INPUT  
REGISTERS  
ENABLE  
CE  
CE  
1
2
CE  
3
OE  
SLEEP  
CONTROL  
Logic Block Diagram – CY7C1383KVE33  
(1M × 18)  
Document Number: 001-97888 Rev. *F  
Page 3 of 34  
CY7C1381KV33/CY7C1381KVE33  
CY7C1383KV33/CY7C1383KVE33  
Contents  
Pin Configurations ...........................................................5  
Pin Definitions ..................................................................7  
Functional Overview ........................................................9  
Single Read Accesses ................................................9  
Single Write Accesses Initiated by ADSP ...................9  
Single Write Accesses Initiated by ADSC ...................9  
Burst Sequences .........................................................9  
Sleep Mode .................................................................9  
Interleaved Burst Address Table ...............................10  
Linear Burst Address Table .......................................10  
ZZ Mode Electrical Characteristics ............................10  
Truth Table ......................................................................11  
Truth Table for Read/Write ............................................12  
Truth Table for Read/Write ............................................12  
IEEE 1149.1 Serial Boundary Scan (JTAG) ..................13  
Disabling the JTAG Feature ......................................13  
Test Access Port (TAP) .............................................13  
PERFORMING A TAP RESET ..................................13  
TAP REGISTERS ......................................................13  
TAP Instruction Set ...................................................14  
TAP Controller State Diagram .......................................15  
TAP Controller Block Diagram ......................................16  
TAP Timing ......................................................................17  
TAP AC Switching Characteristics ...............................17  
3.3 V TAP AC Test Conditions .......................................18  
3.3 V TAP AC Output Load Equivalent .........................18  
2.5 V TAP AC Test Conditions .......................................18  
2.5 V TAP AC Output Load Equivalent .........................18  
TAP DC Electrical Characteristics  
and Operating Conditions .............................................18  
Identification Register Definitions ................................19  
Scan Register Sizes .......................................................19  
Instruction Codes ...........................................................19  
Boundary Scan Order ....................................................20  
Maximum Ratings ...........................................................21  
Operating Range .............................................................21  
Neutron Soft Error Immunity .........................................21  
Electrical Characteristics ...............................................21  
Capacitance ....................................................................23  
Thermal Resistance ........................................................23  
AC Test Loads and Waveforms .....................................23  
Switching Characteristics ..............................................24  
Timing Diagrams ............................................................25  
Ordering Information ......................................................29  
Ordering Code Definitions .........................................29  
Package Diagrams ..........................................................30  
Acronyms ........................................................................32  
Document Conventions .................................................32  
Units of Measure .......................................................32  
Document History Page .................................................33  
Sales, Solutions, and Legal Information ......................34  
Worldwide Sales and Design Support .......................34  
Products ....................................................................34  
PSoC® Solutions ......................................................34  
Cypress Developer Community .................................34  
Technical Support .....................................................34  
Document Number: 001-97888 Rev. *F  
Page 4 of 34  
CY7C1381KV33/CY7C1381KVE33  
CY7C1383KV33/CY7C1383KVE33  
Pin Configurations  
Figure 1. 100-pin TQFP (14 × 20 × 1.4 mm) pinout (3-Chip Enable)  
CY7C1381KV33/CY7C1381KVE33 (512K × 36) CY7C1383KV33/CY7C1383KVE33 (1M × 18)  
Document Number: 001-97888 Rev. *F  
Page 5 of 34  
CY7C1381KV33/CY7C1381KVE33  
CY7C1383KV33/CY7C1383KVE33  
Pin Configurations (continued)  
Figure 2. 165-ball FBGA (13 × 15 × 1.4 mm) pinout (3-Chip Enable)  
CY7C1381KV33 (512K × 36)  
1
2
3
4
5
6
7
8
9
10  
A
11  
NC  
NC/288M  
NC/144M  
DQPC  
A
B
C
D
CE1  
BWC  
BWD  
VSS  
VDD  
BWB  
BWA  
VSS  
VSS  
CE3  
CLK  
VSS  
VSS  
ADSC  
OE  
A
BWE  
GW  
VSS  
VSS  
ADV  
ADSP  
VDDQ  
VDDQ  
A
CE2  
VDDQ  
VDDQ  
A
NC/576M  
DQPB  
DQB  
NC  
VSS  
VDD  
NC/1G  
DQB  
DQC  
DQC  
DQC  
DQC  
DQC  
NC  
DQC  
DQC  
DQC  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
DQB  
DQB  
DQB  
NC  
DQB  
DQB  
DQB  
ZZ  
E
F
G
H
J
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
K
L
DQD  
DQPD  
NC  
DQD  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
A
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
DQA  
DQPA  
A
M
N
P
NC/72M  
TDI  
A1  
TDO  
A0  
MODE NC/36M  
A
A
TMS  
TCK  
A
A
A
A
R
Document Number: 001-97888 Rev. *F  
Page 6 of 34  
CY7C1381KV33/CY7C1381KVE33  
CY7C1383KV33/CY7C1383KVE33  
Pin Definitions  
Name  
A ,  
I/O  
Description  
Input  
Synchronous  
Address inputs used to select one of the address locations. Sampled at the rising edge of the CLK  
if ADSP or ADSC is active LOW, and CE1, CE2, andCE3 are sampled active. A[1:0] feed the 2-bit counter.  
A ,  
A
0
1
BWA, BWB,  
Input  
Byte write select inputs, active LOW. Qualified with BWE to conduct byte writes to the SRAM. Sampled  
BWC, BWD Synchronous  
on the rising edge of CLK.  
GW  
CLK  
CE1  
Input  
Synchronous  
Global write enable input, active LOW. When asserted LOW on the rising edge of CLK, a global write is  
conducted (all bytes are written, regardless of the values on BW[A:D] and BWE).  
Input  
Clock  
Clock input. Used to capture all synchronous inputs to the device. Also used to increment the burst  
counter when ADV is asserted LOW, during a burst operation.  
Input  
Synchronous  
Chip enable 1 input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE2  
and CE3 to select or deselect the device. ADSP is ignored if CE1 is HIGH. CE1 is sampled only when a  
new external address is loaded.  
CE2  
CE3  
OE  
Input  
Synchronous  
Chip enable 2 input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction with CE1  
and CE3 to select or deselect the device. CE2 is sampled only when a new external address is loaded.  
Input  
Synchronous  
Chip enable 3 input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE1  
and CE2 to select or deselect the device. CE3 is sampled only when a new external address is loaded.  
Input  
Asynchronou  
s
Output enable, asynchronous input, active LOW. Controls the direction of the I/O pins. When LOW,  
the I/O pins behave as outputs. When deasserted HIGH, I/O pins are tristated, and act as input data  
pins. OE is masked during the first clock of a read cycle when emerging from a deselected state.  
ADV  
Input  
Synchronous  
Advance input signal. Sampled on the rising edge of CLK. When asserted, it automatically increments  
the address in a burst cycle.  
ADSP  
Input  
Synchronous  
Address strobe from processor, sampled on the rising edge of CLK, active LOW. When asserted  
LOW, addresses presented to the device are captured in the address registers. A[1:0] are also loaded  
into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized. ASDP is  
ignored when CE1 is deasserted HIGH.  
ADSC  
Input  
Synchronous  
Address strobe from controller, sampled on the rising edge of CLK, active LOW. When asserted  
LOW, addresses presented to the device are captured in the address registers. A[1:0] are also loaded  
.
into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized  
BWE  
ZZ  
Input  
Synchronous  
Byte write enable input, active LOW. Sampled on the rising edge of CLK. This signal must be asserted  
LOW to conduct a byte write.  
Input  
Asynchronou  
s
ZZ sleep input. This active HIGH input places the device in a non time critical sleep condition with data  
integrity preserved. For normal operation, this pin has to be LOW or left floating. ZZ pin has an internal  
pull down.  
I/O  
Bidirectional data I/O lines. As inputs, they feed into an on-chip data register that is triggered by the  
rising edge of CLK. As outputs, they deliver the data contained in the memory location specified by the  
DQs  
Synchronous  
addresses presented during the previous  
read cycle. The direction of the pins is  
clock rise of the  
controlled by OE. When OE is asserted LOW, the pins behave as outputs. When HIGH, DQs and DQPX  
are placed in a tristate condition.The outputs are automatically tristated during the data portion of a write  
sequence, during the first clock when emerging from a deselected state, and when the device is  
deselected, regardless of the state of OE.  
I/O  
Bidirectional data parity I/O lines. Functionally, these signals are identical to DQs. During write  
sequences, DQPX is controlled by BWX correspondingly.  
DQPX  
Synchronous  
Document Number: 001-97888 Rev. *F  
Page 7 of 34  
CY7C1381KV33/CY7C1381KVE33  
CY7C1383KV33/CY7C1383KVE33  
Pin Definitions (continued)  
Name  
MODE  
I/O  
Description  
Input Static Selects burst order. When tied to GND selects linear burst sequence. When tied to VDD or left floating  
selects interleaved burst sequence. This is a strap pin and must remain static during device operation.  
Mode pin has an internal pull-up.  
VDD  
PowerSupply Power supply inputs to the core of the device.  
VDDQ  
I/O Power Power supply for the I/O circuitry.  
Supply  
VSS  
Ground  
Ground for the core of the device.  
VSSQ  
TDO  
I/O Ground Ground for the I/O circuitry.  
JTAG Serial Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK. If the JTAG feature is  
Output  
Synchronous  
not being used, this pin can be left unconnected. This pin is not available on TQFP packages.  
TDI  
JTAG Serial Serial data-in to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG feature is not being  
Input  
used, this pin can be left floating or connected to VDD through a pull-up resistor. This pin is not available  
on TQFP packages.  
Synchronous  
TMS  
JTAG Serial Serial data-in to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG feature is not being  
Input  
used, this pin can be disconnected or connected to VDD. This pin is not available on TQFP packages.  
Synchronous  
TCK  
JTAG  
Clock  
Clock input to the JTAG circuitry. If the JTAG feature is not being used, this pin must be connected  
to VSS. This pin is not available on TQFP packages.  
NC  
No connects. Not internally connected to the die. 36M, 72M, 144M, 288M, 576M, and 1G are address  
expansion pins and are not internally connected to the die.  
VSS/DNU  
Ground/DNU This pin can be connected to ground or can be left floating.  
Document Number: 001-97888 Rev. *F  
Page 8 of 34  
CY7C1381KV33/CY7C1381KVE33  
CY7C1383KV33/CY7C1383KVE33  
clock rise, the appropriate data is latched and written into the  
device. Byte writes are allowed. All I/O are tristated during a byte  
write. As this is a common I/O device, the asynchronous OE  
input signal must be deasserted and the I/O must be tristated  
prior to the presentation of data to DQs. As a safety precaution,  
the data lines are tristated when a write cycle is detected,  
regardless of the state of OE.  
Functional Overview  
All synchronous inputs pass through input registers controlled by  
the rising edge of the clock. Maximum access delay from the  
clock rise (tCDV) is 6.5 ns (133 MHz device).  
CY7C1381KV33/CY7C1381KVE33/CY7C1383KV33/CY7C138  
3KVE33 supports secondary cache in systems using a linear or  
interleaved burst sequence. The linear burst sequence is suited  
for processors that use a linear burst sequence. The burst order  
is user selectable, and is determined by sampling the MODE  
input. Accesses can be initiated with the processor address  
strobe (ADSP) or the controller address strobe (ADSC). Address  
advancement through the burst sequence is controlled by the  
ADV input. A two-bit on-chip wraparound burst counter captures  
the first address in a burst sequence and automatically  
increments the address for the rest of the burst access.  
Single Write Accesses Initiated by ADSC  
This write access is initiated when the following conditions are  
satisfied at clock rise: (1) CE1, CE2, and CE3 are all asserted  
active, (2) ADSC is asserted LOW, (3) ADSP is deasserted  
HIGH, and (4) the write input signals (GW, BWE, and BWX)  
indicate a write access. ADSC is ignored if ADSP is active LOW.  
The addresses presented are loaded into the address register  
and the burst counter, the control logic, or both, and delivered to  
the memory core The information presented to DQ[A:D] is written  
into the specified address location. Byte writes are allowed. All  
I/O are tristated when a write is detected, even a byte write.  
Because this is a common I/O device, the asynchronous OE  
input signal must be deasserted and the I/O must be tristated  
prior to the presentation of data to DQs. As a safety precaution,  
the data lines are tristated when a write cycle is detected,  
regardless of the state of OE.  
Byte write operations are qualified with the byte write enable  
(BWE) and byte write select (BWX) inputs. A global write enable  
(GW) overrides all byte write inputs and writes data to all four  
bytes. All writes are simplified with on-chip synchronous  
self-timed write circuitry.  
Three synchronous chip selects (CE1, CE2, CE3) and an  
asynchronous output enable (OE) provide for easy bank  
selection and output tristate control. ADSP is ignored if CE1 is  
HIGH.  
Burst Sequences  
Single Read Accesses  
CY7C1381KV33/CY7C1381KVE33/CY7C1383KV33/CY7C138  
3KVE33 provides an on-chip two-bit wraparound burst counter  
inside the SRAM. The burst counter is fed by A[1:0], and can  
follow either a linear or interleaved burst order. The burst order  
is determined by the state of the MODE input. A LOW on MODE  
selects a linear burst sequence. A HIGH on MODE selects an  
interleaved burst order. Leaving MODE unconnected causes the  
device to default to a interleaved burst sequence.  
A single read access is initiated when the following conditions  
are satisfied at clock rise: (1) CE1, CE2, and CE3 are all asserted  
active, and (2) ADSP or ADSC is asserted LOW (if the access is  
initiated by ADSC, the write inputs must be deasserted during  
this first cycle). The address presented to the address inputs is  
latched into the address register and the burst counter and/or  
control logic, and later presented to the memory core. If the OE  
input is asserted LOW, the requested data is available at the data  
outputs with a maximum to tCDV after clock rise. ADSP is ignored  
if CE1 is HIGH.  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ places  
the SRAM in a power conservation sleep mode. Two clock cycles  
are required to enter into or exit from this sleep mode. While in  
this mode, data integrity is guaranteed. Accesses pending when  
entering the sleep mode are not considered valid nor is the  
completion of the operation guaranteed. The device must be  
deselected prior to entering the sleep mode. CE1, CE2, CE3,  
ADSP, and ADSC must remain inactive for the duration of tZZREC  
after the ZZ input returns LOW.  
Single Write Accesses Initiated by ADSP  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) CE1, CE2, CE3 are all asserted active,  
and (2) ADSP is asserted LOW. The addresses presented are  
loaded into the address register and the burst inputs (GW, BWE,  
and BWX) are ignored during this first clock cycle. If the write  
inputs are asserted active (see Truth Table for Read/Write on  
page 12 for appropriate states that indicate a write) on the next  
Document Number: 001-97888 Rev. *F  
Page 9 of 34  
CY7C1381KV33/CY7C1381KVE33  
CY7C1383KV33/CY7C1383KVE33  
Interleaved Burst Address Table  
(MODE = Floating or VDD  
Linear Burst Address Table  
)
(MODE = GND)  
First  
Address  
A1:A0  
Second  
Address  
A1:A0  
Third  
Address  
A1:A0  
Fourth  
Address  
A1:A0  
First  
Address  
A1:A0  
Second  
Address  
A1:A0  
Third  
Address  
A1:A0  
Fourth  
Address  
A1:A0  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
ZZ recovery time  
Test Conditions  
Min  
Max  
65  
Unit  
mA  
ns  
ZZ > VDD– 0.2 V  
tZZS  
ZZ > VDD – 0.2 V  
ZZ < 0.2 V  
2tCYC  
2tCYC  
tZZREC  
tZZI  
ns  
ZZ active to sleep current  
This parameter is sampled  
2tCYC  
ns  
tRZZI  
ZZ inactive to exit sleep current This parameter is sampled  
0
ns  
Document Number: 001-97888 Rev. *F  
Page 10 of 34  
CY7C1381KV33/CY7C1381KVE33  
CY7C1383KV33/CY7C1383KVE33  
Truth Table  
The truth table for CY7C1381KV33/CY7C1381KVE33/CY7C1383KV33/CY7C1383KVE33 follows. [1, 2, 3, 4, 5]  
Cycle Description  
Deselected Cycle, Power Down  
Deselected Cycle, Power Down  
Deselected Cycle, Power Down  
Deselected Cycle, Power Down  
Deselected Cycle, Power Down  
Sleep Mode, Power Down  
Read Cycle, Begin Burst  
Address Used CE1 CE2 CE3 ZZ ADSP ADSC ADV WRITE OE CLK  
DQ  
None  
None  
H
L
X
L
X
X
H
X
H
X
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
L
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
L
L–H Tri-State  
L–H Tri-State  
L–H Tri-State  
L–H Tri-State  
L–H Tri-State  
None  
L
X
L
L
None  
L
H
H
X
L
None  
X
X
L
X
X
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
L
None  
X
X
X
L
X
Tri-State  
Q
External  
External  
External  
External  
External  
Next  
L–H  
Read Cycle, Begin Burst  
L
L
L
H
X
L
L–H Tri-State  
Write Cycle, Begin Burst  
L
L
H
H
H
H
H
X
X
H
X
H
H
X
X
H
X
L–H  
L–H  
D
Q
Read Cycle, Begin Burst  
L
L
L
H
H
H
H
H
H
L
Read Cycle, Begin Burst  
L
L
L
H
L
L–H Tri-State  
L–H  
L–H Tri-State  
L–H  
L–H Tri-State  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Write Cycle, Continue Burst  
Write Cycle, Continue Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
X
X
H
H
X
H
X
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
Q
Next  
L
H
L
Next  
L
Q
Next  
L
H
X
X
L
Next  
L
L–H  
L–H  
L–H  
D
D
Q
Next  
L
L
Current  
Current  
Current  
Current  
Current  
Current  
H
H
H
H
H
H
H
H
H
H
L
H
L
L–H Tri-State  
L–H  
L–H Tri-State  
Q
H
X
X
L–H  
L–H  
D
D
L
Notes  
1. X = Don't Care, H = Logic HIGH, L = Logic LOW.  
2. WRITE = L when any one or more byte write enable signals, and BWE = L or GW = L. WRITE = H when all byte write enable signals, BWE, GW = H.  
3. The DQ pins are controlled by the current cycle and the signal. is asynchronous and is not sampled with the clock.  
OE  
OE  
must be driven HIGH prior to the start of the write cycle to allow the outputs to tristate.  
4. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks after the  
X
or with the assertion of  
. As a result,  
is a don't care for the  
OE  
ADSC  
OE  
ADSP  
remainder of the write cycle.  
5.  
is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are tristate when  
is  
inactive  
OE  
or when the device is deselected, and all data bits behave as output when  
OE  
is active (LOW).  
OE  
Document Number: 001-97888 Rev. *F  
Page 11 of 34  
CY7C1381KV33/CY7C1381KVE33  
CY7C1383KV33/CY7C1383KVE33  
Truth Table for Read/Write  
The truth table for CY7C1381KV33/CY7C1381KVE33 read/write follows. [6, 7]  
Function (CY7C1381KV33/CY7C1381KVE33)  
Read  
GW  
H
BWE  
BWD  
X
BWC  
X
BWB  
X
BWA  
X
H
L
L
L
L
L
L
L
L
Read  
H
H
H
H
H
Write Byte A (DQA, DQPA)  
H
H
H
H
L
Write Byte B(DQB, DQPB)  
H
H
H
L
H
Write Bytes A, B (DQA, DQB, DQPA, DQPB)  
Write Byte C (DQC, DQPC)  
H
H
H
L
L
H
H
L
H
H
Write Bytes C, A (DQC, DQA, DQPC, DQPA)  
Write Bytes C, B (DQC, DQB, DQPC, DQPB)  
H
H
L
H
L
H
H
L
L
H
Write Bytes C, B, A (DQC, DQB, DQA, DQPC, DQPB,  
DQPA)  
H
H
L
L
L
Write Byte D (DQD, DQPD)  
H
H
H
H
L
L
L
L
L
L
L
L
H
H
H
H
H
H
L
H
L
Write Bytes D, A (DQD, DQA, DQPD, DQPA)  
Write Bytes D, B (DQD, DQA, DQPD, DQPA)  
H
L
Write Bytes D, B, A (DQD, DQB, DQA, DQPD, DQPB,  
DQPA)  
L
Write Bytes D, B (DQD, DQB, DQPD, DQPB)  
H
H
L
L
L
L
L
L
H
H
H
L
Write Bytes D, B, A (DQD, DQC, DQA, DQPD, DQPC,  
DQPA)  
Truth Table for Read/Write  
The truth table for CY7C1383KV33/CY7C1383KVE33 read/write follows. [6, 7]  
Function (CY7C1383KV33/CY7C1383KVE33)  
GW  
BWE  
BWB  
BWA  
Write Bytes D, C, A (DQD, DQB, DQA, DQPD, DQPB,  
DQPA)  
H
L
L
L
Write All Bytes  
H
L
L
X
H
L
L
X
X
H
H
L
L
X
X
H
L
Write All Bytes  
Read  
H
H
H
H
H
L
Read  
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write All Bytes  
L
L
H
L
L
L
Write All Bytes  
X
X
X
Notes  
6. X=Don't Care, H = Logic HIGH, L = Logic LOW.  
7. The table only lists a partial listing of the byte write combinations. Any combination of BW is valid. Appropriate write is done based on which byte write is active.  
X
Document Number: 001-97888 Rev. *F  
Page 12 of 34  
CY7C1381KV33/CY7C1381KVE33  
CY7C1383KV33/CY7C1383KVE33  
TAP Registers  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned in and out of the SRAM test circuitry.  
Only one register can be selected at a time through the  
instruction registers. Data is serially loaded into the TDI ball on  
the rising edge of TCK. Data is output on the TDO ball on the  
falling edge of TCK.  
The CY7C1381KV33 incorporates a serial boundary scan test  
access port (TAP). This part is fully compliant with 1149.1. The  
TAP operates using JEDEC-standard 3.3 V or 2.5 V I/O logic  
levels.  
CY7C1381KV33 contains a TAP controller, instruction register,  
boundary scan register, bypass register, and ID register.  
Instruction Register  
Disabling the JTAG Feature  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the TDI  
and TDO balls as shown in the TAP Controller Block Diagram on  
page 16. Upon power up, the instruction register is loaded with  
the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as described  
in the previous section.  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are  
internally pulled up and may be unconnected. They may  
alternately be connected to VDD through a pull-up resistor. TDO  
may be left unconnected. At power up, the device comes up in a  
reset state, which does not interfere with the operation of the  
device.  
When the TAP controller is in the Capture-IR state, the two least  
significant bits are loaded with a binary ‘01’ pattern to allow for  
fault isolation of the board level serial test path.  
Test Access Port (TAP)  
Bypass Register  
Test Clock (TCK)  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
The test clock is used only with the TAP controller. All inputs are  
captured on the rising edge of TCK. All outputs are driven from  
the falling edge of TCK.  
Test Mode Select (TMS)  
SRAM with minimal delay. The bypass register is set LOW (VSS  
)
when the BYPASS instruction is executed.  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. This pin may be left  
unconnected if the TAP is not used. The ball is pulled up  
internally, resulting in a logic HIGH level.  
Boundary Scan Register  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
Test Data-In (TDI)  
The boundary scan register is loaded with the contents of the  
RAM input and output ring when the TAP controller is in the  
Capture-DR state and is then placed between the TDI and TDO  
balls when the controller is moved to the Shift-DR state. The  
EXTEST, SAMPLE/PRELOAD, and SAMPLE Z instructions can  
be used to capture the contents of the input and output ring.  
The TDI ball is used to serially input information into the registers  
and can be connected to the input of any of the registers. The  
register between TDI and TDO is chosen by the instruction that  
is loaded into the TAP instruction register. For information on  
loading the instruction register, see the TAP Controller State  
Diagram on page 15. TDI is internally pulled up and can be  
unconnected if the TAP is unused in an application. TDI is  
connected to the most significant bit (MSB) of any register.  
The Boundary Scan Order on page 20 show the order in which  
the bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected to  
TDI, and the LSB is connected to TDO.  
Test Data-Out (TDO)  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current state  
of the TAP state machine (see Instruction Codes on page 19).  
The output changes on the falling edge of TCK. TDO is  
connected to the least significant bit (LSB) of any register.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired into  
the SRAM and can be shifted out when the TAP controller is in  
the Shift-DR state. The ID register has a vendor code and other  
information described in Identification Register Definitions on  
page 19.  
Performing a TAP Reset  
A reset is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This reset does not affect the operation of the  
SRAM and may be performed while the SRAM is operating. At  
power up, the TAP is reset internally to ensure that TDO comes  
up in a high Z state.  
Document Number: 001-97888 Rev. *F  
Page 13 of 34  
CY7C1381KV33/CY7C1381KVE33  
CY7C1383KV33/CY7C1383KVE33  
there is no guarantee as to the value that is captured.  
Repeatable results may not be possible.  
TAP Instruction Set  
Overview  
To guarantee that the boundary scan register captures the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller’s capture setup plus hold  
times (tCS and tCH). The SRAM clock input might not be captured  
correctly if there is no way in a design to stop (or slow) the clock  
during a SAMPLE/PRELOAD instruction. If this is an issue, it is  
still possible to capture all other signals and simply ignore the  
value of the CK and CK captured in the boundary scan register.  
Eight different instructions are possible with the three bit  
instruction register. All combinations are listed in Instruction  
Codes on page 19. Three of these instructions are listed as  
RESERVED and must not be used. The other five instructions  
are described in detail below.  
Instructions are loaded into the TAP controller during the Shift-IR  
state, when the instruction register is placed between TDI and  
TDO. During this state, instructions are shifted through the  
instruction register through the TDI and TDO balls. To execute  
the instruction when it is shifted in, the TAP controller needs to  
be moved into the Update-IR state.  
After the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the boundary  
scan register between the TDI and TDO pins.  
PRELOAD allows an initial data pattern to be placed at the  
latched parallel outputs of the boundary scan register cells prior  
to the selection of another boundary scan test operation.  
EXTEST  
The EXTEST instruction enables the preloaded data to be driven  
out through the system output pins. This instruction also selects  
the boundary scan register to be connected for serial access  
between the TDI and TDO in the Shift-DR controller state.  
The shifting of data for the SAMPLE and PRELOAD phases can  
occur concurrently when required; that is, while data captured is  
shifted out, the preloaded data is shifted in.  
BYPASS  
IDCODE  
When the BYPASS instruction is loaded in the instruction register  
and the TAP is placed in a Shift-DR state, the bypass register is  
placed between the TDI and TDO balls. The advantage of the  
BYPASS instruction is that it shortens the boundary scan path  
when multiple devices are connected together on a board.  
The IDCODE instruction causes a vendor-specific 32-bit code to  
be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
The IDCODE instruction is loaded into the instruction register  
upon power up or whenever the TAP controller is given a test  
logic reset state.  
EXTEST Output Bus Tri-State  
IEEE standard 1149.1 mandates that the TAP controller be able  
to put the output bus into a tristate mode.  
SAMPLE Z  
The boundary scan register has a special bit located at bit #89  
(for 165-ball FBGA package). When this scan cell, called the  
“extest output bus tristate,” is latched into the preload register  
during the Update-DR state in the TAP controller, it directly  
controls the state of the output (Q-bus) pins, when the EXTEST  
is entered as the current instruction. When HIGH, it enables the  
output buffers to drive the output bus. When LOW, this bit places  
the output bus into a high Z condition.  
The SAMPLE Z instruction causes the boundary scan register to  
be connected between the TDI and TDO balls when the TAP  
controller is in a Shift-DR state. The SAMPLE Z command places  
all SRAM outputs into a high Z state.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When  
the SAMPLE/PRELOAD instructions are loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and output pins is  
captured in the boundary scan register.  
This bit can be set by entering the SAMPLE/PRELOAD or  
EXTEST command, and then shifting the desired bit into that cell,  
during the Shift-DR state. During Update-DR, the value loaded  
into that shift-register cell latches into the preload register. When  
the EXTEST instruction is entered, this bit directly controls the  
output Q-bus pins. Note that this bit is preset HIGH to enable the  
output when the device is powered up, and also when the TAP  
controller is in the Test-Logic-Reset state.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because there  
is a large difference in the clock frequencies, it is possible that  
during the Capture-DR state, an input or output undergoes a  
transition. The TAP may then try to capture a signal while in  
transition (metastable state). This does not harm the device, but  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
Document Number: 001-97888 Rev. *F  
Page 14 of 34  
CY7C1381KV33/CY7C1381KVE33  
CY7C1383KV33/CY7C1383KVE33  
TAP Controller State Diagram  
TEST-LOGIC  
1
RESET  
0
1
1
1
RUN-TEST/  
0
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
IDLE  
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
1
1
EXIT1-DR  
EXIT1-IR  
0
0
PAUSE-DR  
1
0
PAUSE-IR  
1
0
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
0
1
0
The 0 or 1 next to each state represents the value of TMS at the rising edge of TCK.  
Document Number: 001-97888 Rev. *F  
Page 15 of 34  
CY7C1381KV33/CY7C1381KVE33  
CY7C1383KV33/CY7C1383KVE33  
TAP Controller Block Diagram  
0
Bypass Register  
2
1
0
0
0
Selection  
Circuitry  
Instruction Register  
31 30 29 .  
Selection  
TDI  
TDO  
Circuitr  
y
.
. 2 1  
Identification Register  
x
.
.
.
.
. 2 1  
Boundary Scan Register  
TCK  
TMS  
TAP CONTROLLER  
Document Number: 001-97888 Rev. *F  
Page 16 of 34  
CY7C1381KV33/CY7C1381KVE33  
CY7C1383KV33/CY7C1383KVE33  
TAP Timing  
Figure 3. TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
TAP AC Switching Characteristics  
Over the Operating Range  
Parameter [8, 9]  
Clock  
Description  
Min  
Max  
Unit  
tTCYC  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH Time  
TCK Clock LOW Time  
50  
20  
ns  
MHz  
ns  
tTF  
tTH  
20  
20  
tTL  
ns  
Output Times  
tTDOV  
tTDOX  
Setup Times  
tTMSS  
tTDIS  
TCK Clock LOW to TDO Valid  
TCK Clock LOW to TDO Invalid  
0
10  
ns  
ns  
TMS Setup to TCK Clock Rise  
TDI Setup to TCK Clock Rise  
Capture Setup to TCK Rise  
5
5
5
ns  
ns  
ns  
tCS  
Hold Times  
tTMSH  
tTDIH  
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
tCH  
Capture Hold after Clock Rise  
Notes  
8.  
t
and t refer to the setup and hold time requirements of latching data from the boundary scan register.  
CS CH  
9. Test conditions are specified using the load in TAP AC test conditions. t /t = 1 ns.  
R
F
Document Number: 001-97888 Rev. *F  
Page 17 of 34  
CY7C1381KV33/CY7C1381KVE33  
CY7C1383KV33/CY7C1383KVE33  
3.3 V TAP AC Test Conditions  
2.5 V TAP AC Test Conditions  
Input pulse levels ...............................................VSS to 3.3 V  
Input rise and fall times (Slew Rate) ........................... 2 V/ns  
Input timing reference levels ......................................... 1.5 V  
Output reference levels ................................................ 1.5 V  
Test load termination supply voltage ............................ 1.5 V  
Input pulse levels ...............................................VSS to 2.5 V  
Input rise and fall time (Slew Rate) ............................. 2 V/ns  
Input timing reference levels ....................................... 1.25 V  
Output reference levels .............................................. 1.25 V  
Test load termination supply voltage .......................... 1.25 V  
3.3 V TAP AC Output Load Equivalent  
2.5 V TAP AC Output Load Equivalent  
1.5V  
1.25V  
50Ω  
50Ω  
TDO  
TDO  
ZO= 50 Ω  
20pF  
ZO= 50 Ω  
20pF  
TAP DC Electrical Characteristics and Operating Conditions  
(0 °C < TA < +70 °C; VDD = 3.3 V ± 0.165 V unless otherwise noted)  
Parameter [10]  
Description  
Test Conditions  
VDDQ = 3.3 V  
Min  
2.4  
2.0  
2.9  
2.1  
Max  
Unit  
V
VOH1  
Output HIGH Voltage  
IOH = –4.0 mA  
IOH = –1.0 mA  
IOH = –100 µA  
VDDQ = 2.5 V  
VDDQ = 3.3 V  
VDDQ = 2.5 V  
VDDQ = 3.3 V  
VDDQ = 2.5 V  
VDDQ = 3.3 V  
VDDQ = 2.5 V  
VDDQ = 3.3 V  
VDDQ = 2.5 V  
VDDQ = 3.3 V  
VDDQ = 2.5 V  
V
VOH2  
VOL1  
VOL2  
VIH  
Output HIGH Voltage  
Output LOW Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Load Current  
V
V
IOL = 8.0 mA  
IOL = 8.0 mA  
IOL = 100 µA  
0.4  
0.4  
0.2  
0.2  
V
V
V
V
2.0  
1.7  
–0.3  
–0.3  
–5  
VDD + 0.3  
V
VDD + 0.3  
V
VIL  
0.8  
0.7  
5
V
V
IX  
GND < VIN < VDDQ  
µA  
Note  
10. All voltages referenced to V (GND).  
SS  
Document Number: 001-97888 Rev. *F  
Page 18 of 34  
CY7C1381KV33/CY7C1381KVE33  
CY7C1383KV33/CY7C1383KVE33  
Identification Register Definitions  
CY7C1381KV33  
(512K × 36)  
Instruction Field  
Description  
Revision Number (31:29)  
Device Depth (28:24) [11]  
000  
Describes the version number.  
Reserved for internal use.  
01011  
Device Width (23:18)  
165-ball FBGA  
000001  
Defines the memory type and architecture.  
Cypress Device ID (17:12)  
100101  
Defines the width and density.  
Cypress JEDEC ID Code  
(11:1)  
00000110100  
Allows unique identification of SRAM vendor.  
ID Register Presence  
Indicator (0)  
1
Indicates the presence of an ID register.  
Scan Register Sizes  
Register Name  
Bit Size (× 36)  
Instruction Bypass  
3
1
Bypass  
ID  
32  
89  
Boundary Scan Order (165-ball FBGA package)  
Instruction Codes  
Instruction  
EXTEST  
Code  
Description  
000  
Captures Input/Output ring contents. Places the boundary scan register between TDI and  
TDO. Forces all SRAM outputs to high Z state.  
IDCODE  
001  
010  
Loads the ID register with the vendor ID code and places the register between TDI and TDO.  
This operation does not affect SRAM operations.  
SAMPLE Z  
Captures Input/Output ring contents. Places the boundary scan register between TDI and  
TDO. Forces all SRAM output drivers to a high Z state.  
RESERVED  
011  
100  
Do Not Use. This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures Input/Output ring contents. Places the boundary scan register between TDI and  
TDO. Does not affect SRAM operation.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use. This instruction is reserved for future use.  
Do Not Use. This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
Note  
11. Bit #24 is “1” in the register definitions for both 2.5 V and 3.3 V versions of this device.  
Document Number: 001-97888 Rev. *F  
Page 19 of 34  
CY7C1381KV33/CY7C1381KVE33  
CY7C1383KV33/CY7C1383KVE33  
Boundary Scan Order  
165-ball FBGA [12, 13]  
Bit #  
1
Ball ID  
Bit #  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Ball ID  
D10  
C11  
A11  
B11  
A10  
B10  
A9  
Bit #  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
Ball ID  
G1  
D2  
E2  
N6  
N7  
2
3
N10  
P11  
P8  
4
F2  
5
G2  
H1  
H3  
J1  
6
R8  
7
R9  
8
P9  
B9  
9
P10  
R10  
R11  
H11  
N11  
M11  
L11  
K11  
J11  
M10  
L10  
K10  
J10  
H9  
C10  
A8  
K1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
L1  
B8  
M1  
J2  
A7  
B7  
K2  
B6  
L2  
A6  
M2  
N1  
N2  
P1  
B5  
A5  
A4  
B4  
R1  
R2  
P3  
B3  
A3  
A2  
R3  
P2  
H10  
G11  
F11  
E11  
D11  
G10  
F10  
E10  
B2  
C2  
B1  
R4  
P4  
A1  
N5  
P6  
C1  
D1  
E1  
R6  
Internal  
F1  
Notes  
12. Balls which are NC (No Connect) are pre-set LOW.  
13. Bit# 89 is pre-set HIGH.  
Document Number: 001-97888 Rev. *F  
Page 20 of 34  
CY7C1381KV33/CY7C1381KVE33  
CY7C1383KV33/CY7C1383KVE33  
Maximum Ratings  
Operating Range  
Ambient  
Temperature  
Exceeding the maximum ratings may impair the useful life of the  
device. For user guidelines, not tested.  
Range  
VDD  
VDDQ  
Commercial  
Industrial  
0 °C to +70 °C  
3.3 V– 5% / 2.5 V – 5% to  
Storage Temperature ............................... –65 °C to +150 °C  
+ 10%  
VDD  
–40 °C to +85 °C  
Ambient Temperature with  
Power Applied ......................................... –55 °C to +125 °C  
Supply Voltage on VDD Relative to GND .....–0.3 V to +4.6 V  
Supply Voltage on VDDQ Relative to GND .... –0.3 V to +VDD  
Neutron Soft Error Immunity  
Test  
Parameter Description  
Conditions  
Typ Max* Unit  
DC Voltage Applied to Outputs  
in Tri-State ........................................–0.5 V to VDDQ + 0.5 V  
LSBU  
Logical  
Single-Bit  
Upsets  
25 °C  
<5  
5
FIT/  
Mb  
DC Input Voltage ................................0.5 V to VDD + 0.5 V  
Current into Outputs (LOW) ........................................ 20 mA  
(Device  
without  
ECC)  
Static Discharge Voltage  
(per MIL-STD-883, Method 3015) ..........................> 2001 V  
LSBU  
(Device with  
ECC)  
0
0
0
0.01 FIT/  
Mb  
Latch-up Current ....................................................> 200 mA  
LMBU  
SEL  
Logical  
Multi-Bit  
Upsets  
25 °C  
85 °C  
0.01 FIT/  
Mb  
Single Event  
Latch up  
0.1  
FIT/  
Dev  
* No LMBU or SEL events occurred during testing; this column represents a  
2
statistical , 95% confidence limit calculation. For more details refer to Application  
Note AN54908 “Accelerated Neutron SER Testing and Calculation of Terrestrial  
Failure Rates”.  
Electrical Characteristics  
Over the Operating Range  
Parameter [14, 15]  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Test Conditions  
Min  
3.135  
3.135  
2.375  
2.4  
Max  
Unit  
V
VDD  
3.6  
VDDQ  
for 3.3 V I/O  
for 2.5 V I/O  
VDD  
V
2.625  
V
VOH  
VOL  
VIH  
VIL  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage[14]  
Input LOW Voltage[14]  
for 3.3 V I/O, IOH = –4.0 mA  
for 2.5 V I/O, IOH = –1.0 mA  
for 3.3 V I/O, IOL = 8.0 mA  
for 2.5 V I/O, IOL = 1.0 mA  
for 3.3 V I/O  
V
2.0  
0.4  
V
V
0.4  
V
2.0  
VDD + 0.3 V  
VDD + 0.3 V  
0.8  
V
for 2.5 V I/O  
1.7  
V
for 3.3 V I/O  
–0.3  
–0.3  
V
for 2.5 V I/O  
0.7  
V
Notes  
14. Overshoot: V  
< V + 1.5 V (Pulse width less than t  
/2), undershoot: V  
> –2 V (Pulse width less than t  
/2).  
IH(AC)  
DD  
CYC  
IL(AC)  
CYC  
15. T  
: Assumes a linear ramp from 0 V to V  
of at least 200 ms. During this time V < V and V  
<V  
.
Power-up  
DD(min.)  
IH  
DD  
DDQ  
DD  
Document Number: 001-97888 Rev. *F  
Page 21 of 34  
CY7C1381KV33/CY7C1381KVE33  
CY7C1383KV33/CY7C1383KVE33  
Electrical Characteristics (continued)  
Over the Operating Range  
Parameter [14, 15]  
Description  
Test Conditions  
Min  
Max  
Unit  
IX  
Input Leakage Current except ZZ GND VI VDDQ  
and MODE  
–5  
5
A  
Input Current of MODE  
Input = VSS  
–30  
5
Input = VDD  
Input Current of ZZ  
Input = VSS  
–5  
Input = VDD  
30  
5
IOZ  
IDD  
Output Leakage Current  
VDD Operating Supply  
GND VI VDDQ, Output Disabled  
–5  
A  
VDD = Max.,  
IOUT = 0 mA,  
f = fMAX = 1/tCYC  
100 MHz  
133 MHz  
100 MHz  
133 MHz  
× 18  
× 36  
× 18  
× 36  
× 18  
× 36  
× 18  
× 36  
× 18  
× 36  
114  
134  
129  
149  
75  
80  
75  
80  
65  
70  
mA  
ISB1  
Automatic CE Power-down  
Current – TTL Inputs  
Max. VDD  
,
mA  
Device Deselected,  
VIN VIH or VIN VIL,  
f = fMAX = 1/tCYC  
ISB2  
Automatic CE Power-down  
Current – CMOS Inputs  
Max. VDD  
,
All speed  
grades  
mA  
mA  
Device Deselected,  
VIN 0.3 V or  
VIN > VDDQ 0.3 V,  
f = 0  
ISB3  
Automatic CE Power-down  
Current – CMOS Inputs  
Max. VDD  
,
100 MHz  
133 MHz  
× 18  
× 36  
× 18  
× 36  
× 18  
× 36  
75  
80  
75  
80  
65  
70  
Device Deselected,  
VIN 0.3 V or  
VIN > VDDQ 0.3 V,  
f = fMAX = 1/tCYC  
ISB4  
Automatic CE Power-down  
Current – TTL Inputs  
Max. VDD  
,
All speed  
grades  
mA  
Device Deselected,  
VIN VIH or VIN VIL,  
f = 0  
Document Number: 001-97888 Rev. *F  
Page 22 of 34  
CY7C1381KV33/CY7C1381KVE33  
CY7C1383KV33/CY7C1383KVE33  
Capacitance  
100-pin TQFP 165-ballFBGA  
Parameter  
Description  
Test Conditions  
Unit  
Package  
Package  
CIN  
Input capacitance  
TA = 25 °C, f = 1 MHz,  
VDD = 3.3 V, VDDQ = 2.5 V  
5
5
5
5
5
5
pF  
pF  
pF  
CCLK  
CIO  
Clock input capacitance  
Input/Output capacitance  
Thermal Resistance  
100-pin TQFP 165-ballFBGA  
Parameter  
Description  
Test Conditions  
Unit  
Package  
Package  
17.34  
14.33  
12.63  
8.95  
JA  
Thermal resistance  
(junction to ambient)  
Test conditions follow With Still Air (0 m/s)  
37.95  
C/W  
C/W  
C/W  
C/W  
standard  
methods  
test  
and  
With Air Flow (1 m/s)  
33.19  
procedures  
measuring  
impedance,  
EIA/JESD51.  
for With Air Flow (3 m/s)  
thermal  
per  
30.44  
JB  
JC  
Thermal resistance  
(junction to board)  
--  
24.07  
Thermal resistance  
(junction to case)  
8.36  
3.50  
C/W  
AC Test Loads and Waveforms  
Figure 4. AC Test Loads and Waveforms  
3.3 V I/O Test Load  
R = 317  
3.3 V  
OUTPUT  
R = 50   
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
90%  
10%  
Z = 50   
0
10%  
L
GND  
5 pF  
R = 351   
1 ns  
1 ns  
INCLUDING  
JIG AND  
SCOPE  
V = 1.5 V  
T
(a)  
(b)  
(c)  
2.5 V I/O Test Load  
R = 1667   
2.5 V  
OUTPUT  
R = 50   
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
90%  
10%  
Z = 50   
0
10%  
L
GND  
5 pF  
R = 1538   
1 ns  
1 ns  
INCLUDING  
JIG AND  
SCOPE  
V = 1.25 V  
T
(a)  
(b)  
(c)  
Document Number: 001-97888 Rev. *F  
Page 23 of 34  
CY7C1381KV33/CY7C1381KVE33  
CY7C1383KV33/CY7C1383KVE33  
Switching Characteristics  
Over the Operating Range  
133 MHz  
Max  
100 MHz  
Max  
Parameter [16, 17]  
Description  
Unit  
Min  
Min  
tPOWER  
Clock  
tCYC  
VDD(typical) to the first access [18]  
1
1
ms  
Clock cycle time  
Clock HIGH  
7.5  
2.1  
2.1  
10  
2.5  
2.5  
ns  
ns  
ns  
tCH  
tCL  
Clock LOW  
Output Times  
tCDV  
Data output valid after CLK rise  
Data output hold after CLK rise  
Clock to low Z [19, 20, 21]  
2.0  
2.0  
0
6.5  
2.0  
2.0  
0
8.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDOH  
tCLZ  
tCHZ  
Clock to high Z [19, 20, 21]  
4.0  
3.2  
5.0  
3.8  
tOEV  
OE LOW to output valid  
tOELZ  
tOEHZ  
Setup Times  
tAS  
OE LOW to output low Z [19, 20, 21]  
OE HIGH to output high Z [19, 20, 21]  
0
0
4.0  
5.0  
Address setup before CLK rise  
ADSP, ADSC setup before CLK rise  
ADV setup before CLK rise  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADS  
tADVS  
tWES  
GW, BWE, BW[A:D] setup before CLK rise  
Data input setup before CLK rise  
Chip enable setup  
tDS  
tCES  
Hold Times  
tAH  
Address hold after CLK rise  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADH  
ADSP, ADSC hold after CLK rise  
GW, BWE, BW[A:D] hold after CLK rise  
ADV hold after CLK rise  
tWEH  
tADVH  
tDH  
Data input hold after CLK rise  
Chip enable hold after CLK rise  
tCEH  
Notes  
16. Timing reference level is 1.5 V when V  
= 3.3 V and is 1.25 V when V  
= 2.5 V.  
DDQ  
DDQ  
17. Test conditions shown in (a) of Figure 4 on page 23 unless otherwise noted.  
18. This part has a voltage regulator internally; t  
is the time that the power needs to be supplied above V  
initially, before a read or write operation can be  
POWER  
DD(minimum)  
initiated.  
19. t  
, t  
, t  
, and t  
are specified with AC test conditions shown in part (b) of Figure 4 on page 23. Transition is measured ±200 mV from steady-state voltage  
OEHZ  
CHZ CLZ OELZ  
20. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same data  
OEHZ  
OELZ  
CHZ  
CLZ  
bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to achieve  
high Z prior to low Z under the same system condition.  
21. This parameter is sampled and not 100% tested.  
Document Number: 001-97888 Rev. *F  
Page 24 of 34  
CY7C1381KV33/CY7C1381KVE33  
CY7C1383KV33/CY7C1383KVE33  
Timing Diagrams  
Figure 5. Read Cycle Timing [22]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
ADDRESS  
t
t
WES  
WEH  
GW, BWE,BW  
X
Deselect Cycle  
t
t
CES  
CEH  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
t
CDV  
OEV  
OELZ  
t
t
OEHZ  
CHZ  
t
DOH  
t
CLZ  
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A2  
+
3)  
Q(A2)  
Q(A2  
+
1)  
Q(A2  
+
2)  
Q(A1)  
Data Out (Q)  
High-Z  
t
CDV  
Burst wraps around  
to its initial state  
Single READ  
BURST  
READ  
DON’T CARE  
UNDEFINED  
.
Note  
22. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
Document Number: 001-97888 Rev. *F  
Page 25 of 34  
CY7C1381KV33/CY7C1381KVE33  
CY7C1383KV33/CY7C1383KVE33  
Timing Diagrams (continued)  
Figure 6. Write Cycle Timing [23, 24]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Byte write signals are ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BWE,  
BWX  
t
t
WEH  
WES  
GW  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
ADV suspends burst  
OE  
t
t
DH  
DS  
Data in (D)  
High-Z  
D(A2)  
D(A2  
+
1)  
D(A2  
+
1)  
D(A2  
+
2)  
D(A2  
+
3)  
D(A3)  
D(A3  
+
1)  
D(A3 + 2)  
D(A1)  
t
OEHZ  
Data Out (Q)  
BURST READ  
BURST WRITE  
Extended BURST WRITE  
Single WRITE  
DON’T CARE  
UNDEFINED  
.
Notes  
23. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
24.  
Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BW LOW.  
X
Document Number: 001-97888 Rev. *F  
Page 26 of 34  
CY7C1381KV33/CY7C1381KVE33  
CY7C1383KV33/CY7C1383KVE33  
Timing Diagrams (continued)  
Figure 7. Read/Write Cycle Timing [25, 26, 27]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
t
t
WEH  
WES  
BWE, BW  
X
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
DS  
t
OELZ  
t
High-Z  
D(A3)  
D(A5)  
D(A6)  
Data In (D)  
t
OEHZ  
CDV  
Data Out (Q)  
Q(A1)  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
Back-to-Back  
WRITEs  
Back-to-Back READs  
Single WRITE  
BURST READ  
DON’T CARE  
UNDEFINED  
.
Notes  
25. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
26. The data bus (Q) remains in high Z following a Write cycle, unless a new read access is initiated by ADSP or ADSC.  
27. GW is HIGH.  
Document Number: 001-97888 Rev. *F  
Page 27 of 34  
CY7C1381KV33/CY7C1381KVE33  
CY7C1383KV33/CY7C1383KVE33  
Timing Diagrams (continued)  
Figure 8. ZZ Mode Timing [28, 29]  
CLK  
ZZ  
t
t
ZZ  
ZZREC  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes  
28. Device must be deselected when entering ZZ mode. See Truth Table on page 11 for all possible signal conditions to deselect the device.  
29. DQs are in high Z when exiting ZZ sleep mode.  
Document Number: 001-97888 Rev. *F  
Page 28 of 34  
CY7C1381KV33/CY7C1381KVE33  
CY7C1383KV33/CY7C1383KVE33  
Ordering Information  
Cypress offers other versions of this type of product in many different configurations and features. The below table contains only the  
list of parts that are currently available. For a complete listing of all options, visit the Cypress website at www.cypress.com and refer  
to the product summary page at http://www.cypress.com/products or contact your local sales representative. Cypress maintains a  
worldwide network of offices, solution centers, manufacturer's representatives and distributors. To find the office closest to you, visit  
us at t http://www.cypress.com/go/datasheet/offices.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Ordering Code  
Part and Package Type  
133 CY7C1381KV33-133AXC  
CY7C1383KV33-133AXC  
CY7C1381KVE33-133AXI  
CY7C1381KV33-133AXI  
51-85050 100-pin TQFP (14 × 20 × 1.4 mm) Pb-free  
Commercial  
lndustrial  
CY7C1383KVE33-133AXI  
CY7C1383KV33-133AXI  
100 CY7C1381KV33-100AXC  
CY7C1381KV33-100BZXI  
51-85050 100-pin TQFP (14 × 20 × 1.4 mm) Pb-free  
51-85180 165-ball FBGA (13 × 15 × 1.4 mm) Pb-free  
Commercial  
lndustrial  
Ordering Code Definitions  
-
33  
E
CY  
7
C
13XX  
KV  
XXX XX  
X X  
Temperature range: X = C or I  
C = Commercial = 0 °C to +70 °C; I = Industrial = -40 °C to +85 °C  
X = Pb-free; X Absent = Leaded  
Package Type: XX = A or BZ  
A = 100-pin TQFP  
BZ = 165-ball FBGA  
Speed Grade: XXX = 100 MHz or 133 MHz  
33 = 3.3 V VDD  
E = Device with ECC; E Absent = Device without ECC  
Process Technology: K =65 nm  
Part Identifier: 13XX = 1381 or 1383  
1381 = FT, 512Kb × 36 (18Mb)  
1383 = FT, 1Mb × 18 (18Mb)  
Technology Code: C = CMOS  
Marketing Code: 7 = SRAM  
Company ID: CY = Cypress  
Document Number: 001-97888 Rev. *F  
Page 29 of 34  
CY7C1381KV33/CY7C1381KVE33  
CY7C1383KV33/CY7C1383KVE33  
Package Diagrams  
Figure 9. 100-pin TQFP (14 × 20 × 1.4 mm) A100RA Package Outline, 51-85050  
ș 2  
ș
1
ș
DIMENSIONS  
MIN. NOM. MAX.  
1.60  
NOTE:  
SYMBOL  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2. BODY LENGTH DIMENSION DOES NOT  
INCLUDE MOLD PROTRUSION/END FLASH.  
MOLD PROTRUSION/END FLASH SHALL  
A
0.05  
0.15  
A1  
A2  
D
1.35 1.40 1.45  
15.80 16.00 16.20  
13.90 14.00 14.10  
21.80 22.00 22.20  
19.90 20.00 20.10  
NOT EXCEED 0.0098 in (0.25 mm) PER SIDE.  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC  
D1  
E
E1  
BODY SIZE INCLUDING MOLD MISMATCH.  
3. JEDEC SPECIFICATION NO. REF: MS-026.  
0.08  
0.08  
0°  
R
R
ș
0.20  
0.20  
7°  
1
2
ș 1  
ș 2  
c
0°  
11° 12° 13°  
0.20  
0.22 0.30 0.38  
0.45 0.60 0.75  
1.00 REF  
b
L
L1  
L 2  
L 3  
e
0.25 BSC  
0.20  
0.65 TYP  
51-85050 *G  
Document Number: 001-97888 Rev. *F  
Page 30 of 34  
CY7C1381KV33/CY7C1381KVE33  
CY7C1383KV33/CY7C1383KVE33  
Package Diagrams (continued)  
Figure 10. 165-ball FBGA (13 × 15 × 1.4 mm) BB165D/BW165D (0.5 Ball Diameter) Package Outline, 51-85180  
51-85180 *G  
Document Number: 001-97888 Rev. *F  
Page 31 of 34  
CY7C1381KV33/CY7C1381KVE33  
CY7C1383KV33/CY7C1383KVE33  
Acronyms  
Document Conventions  
Units of Measure  
Acronym  
Description  
CE  
Chip Enable  
Symbol  
°C  
Unit of Measure  
CMOS  
EIA  
Complementary Metal Oxide Semiconductor  
Electronic Industries Alliance  
Fine-Pitch Ball Grid Array  
Input/Output  
degree Celsius  
megahertz  
microampere  
milliampere  
millimeter  
millisecond  
millivolt  
MHz  
µA  
mA  
mm  
ms  
mV  
ns  
FBGA  
I/O  
JEDEC  
JTAG  
LMBU  
LSB  
Joint Electron Devices Engineering Council  
Joint Test Action Group  
Logical Multi-Bit Upsets  
Least Significant Bit  
nanosecond  
ohm  
LSBU  
MSB  
OE  
Logical Single-Bit Upsets  
Most Significant Bit  
%
percent  
Output Enable  
pF  
V
picofarad  
volt  
SEL  
Single Event Latch Up  
Static Random Access Memory  
Test Access Port  
SRAM  
TAP  
W
watt  
TCK  
TDI  
Test Clock  
Test Data-In  
TDO  
TMS  
TQFP  
TTL  
Test Data-Out  
Test Mode Select  
Thin Quad Flat Pack  
Transistor-Transistor Logic  
Document Number: 001-97888 Rev. *F  
Page 32 of 34  
CY7C1381KV33/CY7C1381KVE33  
CY7C1383KV33/CY7C1383KVE33  
Document History Page  
Document Title: CY7C1381KV33/CY7C1381KVE33/CY7C1383KV33/CY7C1383KVE33, 18-Mbit (512K × 36/1M × 18)  
Flow-Through SRAM (With ECC)  
Document Number: 001-97888  
Orig. of  
Change  
Submission  
Date  
Rev.  
ECN No.  
Description of Change  
*C  
4983482  
DEVM  
10/26/2015 Changed status from Preliminary to Final.  
*D  
*E  
5085859  
5333612  
DEVM  
PRIT  
01/14/2016 Post to external web.  
07/01/2016 Updated Truth Table:  
Updated details in “CE3” column corresponding to fifth row of “Deselected  
Cycle, Power Down”.  
Updated Neutron Soft Error Immunity:  
Updated values in “Typ” and “Max” columns corresponding to LSBU (Device  
without ECC) parameter.  
Updated to new template.  
*F  
6073260  
CNX  
02/16/2018 Updated Package Diagrams:  
spec 51-85050 – Changed revision from *E to *G.  
Updated to new template.  
Document Number: 001-97888 Rev. *F  
Page 33 of 34  
CY7C1381KV33/CY7C1381KVE33  
CY7C1383KV33/CY7C1383KVE33  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
Arm® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Community | Projects | Video | Blogs | Training | Components  
Technical Support  
Internet of Things  
Memory  
cypress.com/support  
cypress.com/memory  
cypress.com/mcu  
Microcontrollers  
PSoC  
cypress.com/psoc  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless Connectivity  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
cypress.com/wireless  
© Cypress Semiconductor Corporation, 2015-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document,  
including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to  
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users  
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation  
of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent  
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any  
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is  
the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products  
are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or  
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the  
device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably  
expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,  
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other  
liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 001-97888 Rev. *F  
Revised February 16, 2018  
Page 34 of 34  

相关型号:

CY7C1381KV33-133AXI

18-Mbit (512K × 36/1M × 18) Flow-Through SRAM (With ECC)
CYPRESS

CY7C1381KVE33

18-Mbit (512K × 36/1M × 18) Flow-Through SRAM (With ECC)
CYPRESS

CY7C1381KVE33-133AXI

18-Mbit (512K × 36/1M × 18) Flow-Through SRAM (With ECC)
CYPRESS

CY7C1382A-100AC

Cache SRAM, 1MX18, 5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1382A-100BGC

Cache SRAM, 1MX18, 5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, FBGA-119
CYPRESS

CY7C1382A-133BGC

Cache SRAM, 1MX18, 4.2ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, FBGA-119
CYPRESS

CY7C1382A-150AC

Cache SRAM, 1MX18, 3.8ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1382A-150BGC

Cache SRAM, 1MX18, 3.8ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, FBGA-119
CYPRESS

CY7C1382AV25-100AC

Standard SRAM, 1MX18, 5ns, CMOS, PQFP100
CYPRESS

CY7C1382AV25-133BGC

Standard SRAM, 1MX18, 4.2ns, CMOS, PBGA119
CYPRESS

CY7C1382AV25-150AC

Standard SRAM, 1MX18, 3.8ns, CMOS, PQFP100
CYPRESS

CY7C1382AV25-167AC

Standard SRAM, 1MX18, 3.4ns, CMOS, PQFP100
CYPRESS