CY7C1382B-200BZC [CYPRESS]

512K x 36/1M x 18 Pipelined SRAM; 512K ×36 / 1M ×18的SRAM流水线
CY7C1382B-200BZC
型号: CY7C1382B-200BZC
厂家: CYPRESS    CYPRESS
描述:

512K x 36/1M x 18 Pipelined SRAM
512K ×36 / 1M ×18的SRAM流水线

存储 内存集成电路 静态存储器 时钟
文件: 总34页 (文件大小:842K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
380B  
CY7C1380B  
CY7C1382B  
512K x 36/1M x 18 Pipelined SRAM  
isters controlled by a positive-edge-triggered Clock Input  
(CLK). The synchronous inputs include all addresses, all data  
inputs, address-pipelining Chip Enable (CE), burst control in-  
puts (ADSC, ADSP, and ADV), write enables (BWa, BWb,  
BWc, BWd and BWE), and Global Write (GW).  
Features  
• Fast clock speed: 200, 167, 150, 133 MHz  
• Provide high-performance 3-1-1-1 access rate  
• Fast OE access times: 3.0, 3.4, 3.8, and 4.2 ns  
• Optimal for depth expansion  
Asynchronous inputs include the Output Enable (OE) and  
burst mode control (MODE). DQa,b,c,d and DPa,b,c,d apply to  
CY7C1380B and DQa,b and DPa,b apply to CY7C1382B. a, b,  
c, d each are 8 bits wide in the case of DQ and 1 bit wide in  
the case of DP.  
• 3.3V (–5% / +10%) power supply  
• Common data inputs and data outputs  
• Byte Write Enable and Global Write control  
• Chip enable for address pipeline  
• Address, data, and control registers  
• Internally self-timed Write Cycle  
Addresses and chip enables are registered with either Ad-  
dress Status Processor (ADSP) or Address Status Controller  
(ADSC) input pins. Subsequent burst addresses can be inter-  
nally generated as controlled by the Burst Advance Pin (ADV).  
• Burst control pins (interleaved or linear burst se-  
quence)  
• Automatic power-down available using ZZ mode or CE  
deselect  
Address, data inputs, and write controls are registered on-chip  
to initiate self-timed WRITE cycle. WRITE cycles can be one  
to four bytes wide as controlled by the write control inputs.  
Individual byte write allows individual byte to be written. BWa  
• High-density, high-speed packages  
controls DQa and DPa. BWb controls DQ and DP . BWc con-  
b
b
• JTAG boundary scan for BGA packaging version  
trols DQc and DPc. BWd controls DQd and DPd. BWa, BWb,  
BWc, and BWd can be active only with BWE being LOW. GW  
being LOW causes all bytes to be written. WRITE  
pass-through capability allows written data available at the out-  
put for the immediately next READ cycle. This device also in-  
corporates pipelined enable circuit for easy depth expansion  
without penalizing system performance.  
Functional Description  
The Cypress Synchronous Burst SRAM family employs  
high-speed, low-power CMOS designs using advanced sin-  
gle-layer polysilicon, triple-layer metal technology. Each mem-  
ory cell consists of six transistors.  
The CY7C1380B and CY7C1382B SRAMs integrate  
524,288x36 and 1,048,576x18 SRAM cells with advanced  
synchronous peripheral circuitry and a 2-bit counter for inter-  
nal burst operation. All synchronous inputs are gated by reg-  
All inputs and outputs of the CY7C1380B and the CY7C1382B  
are JEDEC standard JESD8-5 compatible.  
Selection Guide  
200 MHz  
167 MHz  
3.4  
150 MHz  
3.8  
133 MHz  
4.2  
Maximum Access Time (ns)  
3.0  
315  
20  
Maximum Operating Current (mA)  
Maximum CMOS Standby Current (mA)  
Commercial  
285  
265  
245  
20  
20  
20  
Cypress Semiconductor Corporation  
Document #: 38-05267 Rev. *A  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
Revised October 8, 2001  
CY7C1380B  
CY7C1382B  
Logic Block Diagram CY7C1380B - 512K x 36  
MODE  
2
(A[1;0]  
)
Q
Q
CLK  
ADV  
ADSC  
0
BURST  
COUNTER  
CE  
CLR  
1
ADSP  
Q
17  
19  
ADDRESS  
REGISTER  
CE  
D
512KX36  
MEMORY  
ARRAY  
A[18:0]  
GW  
19  
17  
DQd, DPd  
BYTEWRITE  
REGISTERS  
D
Q
BWE  
BW  
d
DQc, DPc  
BYTEWRITE  
REGISTERS  
D
D
D
Q
Q
Q
BW  
c
DQb, DPb  
BYTEWRITE  
REGISTERS  
BW  
b
DQa, DPa  
BYTEWRITE  
REGISTERS  
BW  
a
36  
36  
CE  
2
1
CE  
D
D
Q
ENABLE CE  
REGISTER  
CE  
3
Q
OUTPUT  
REGISTERS  
CLK  
INPUT  
REGISTERS  
CLK  
ENABLE DELAY  
REGISTER  
OE  
ZZ  
SLEEP  
CONTROL  
DQa,b,c,d  
DPa,b  
Logic Block Diagram CY7C1382B - 1M x 18  
MODE  
2
(A[1;0]  
)
Q
Q
CLK  
ADV  
ADSC  
0
BURST  
COUNTER  
CE  
CLR  
1
ADSP  
Q
17  
19  
ADDRESS  
REGISTER  
CE  
D
1M X 18  
A[19:0]  
GW  
19  
17  
MEMORY  
ARRAY  
DQb, DPb  
BYTEWRITE  
REGISTERS  
D
Q
BWE  
BW  
b
DQa, DPa  
BYTEWRITE  
REGISTERS  
D
Q
BW  
a
18  
18  
CE  
2
1
CE  
D
CE  
Q
ENABLE CE  
REGISTER  
CE  
3
D
Q
OUTPUT  
INPUT  
REGISTERS  
CLK  
ENABLE DELAY  
REGISTER  
REGISTERS  
CLK  
OE  
ZZ  
SLEEP  
CONTROL  
DQa,b  
DPa,b  
Document #: 38-05267 Rev. *A  
Page 2 of 34  
CY7C1380B  
CY7C1382B  
Pin Configurations  
100-Pin TQFP  
(Top View)  
DQPc  
1
NC  
NC  
NC  
VDDQ  
VSSQ  
NC  
DQPb  
DQb  
DQb  
VDDQ  
VSSQ  
DQb  
DQb  
DQb  
DQb  
VSSQ  
VDDQ  
DQb  
DQb  
VSS  
A
NC  
NC  
VDDQ  
VSSQ  
NC  
DPa  
DQa  
DQa  
VSSQ  
VDDQ  
DQa  
DQa  
VSS  
NC  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQc  
2
DQc  
VDDQ  
VSSQ  
DQc  
3
4
5
6
DQc  
7
NC  
DQc  
8
DQb  
DQb  
VSSQ  
VDDQ  
DQb  
DQb  
NC  
VDD  
NC  
VSS  
DQb  
DQb  
VDDQ  
VSSQ  
DQb  
DQb  
DPb  
NC  
DQc  
9
9
VSSQ  
10  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDDQ  
11  
DQc  
12  
DQc  
13  
NC  
14  
CY7C1382B  
(1M x 18)  
CY7C1380B  
(512K X 36)  
VDD  
15  
NC  
VDD  
ZZ  
NC  
16  
VDD  
ZZ  
VSS  
17  
DQd  
18  
DQa  
DQa  
VDDQ  
VSSQ  
DQa  
DQa  
DQa  
DQa  
VSSQ  
VDDQ  
DQa  
DQa  
DQa  
DQa  
VDDQ  
VSSQ  
DQa  
DQa  
NC  
DQd  
19  
VDDQ  
20  
VSSQ  
21  
DQd  
22  
DQd  
23  
DQd  
24  
DQd  
25  
NC  
VSSQ  
26  
VSSQ  
VDDQ  
NC  
VSSQ  
VDDQ  
NC  
NC  
NC  
VDDQ  
27  
DQd  
28  
DQd  
29  
NC  
DQPa NC  
DQPd  
30  
Document #: 38-05267 Rev. *A  
Page 3 of 34  
CY7C1380B  
CY7C1382B  
Pin Configurations (continued)  
CY7C1380B (512K x 36)  
1
2
3
4
5
6
A
7
A
B
C
D
E
F
VDDQ  
NC  
A
A
A
A
ADSP  
ADSC  
VDD  
A
A
VDDQ  
NC  
A
NC  
A
A
A
A
NC  
DQc  
DQc  
VDDQ  
DPc  
DQc  
DQc  
VSS  
VSS  
VSS  
NC  
VSS  
VSS  
VSS  
DPb  
DQb  
DQb  
DQb  
DQb  
VDDQ  
CE1  
OE  
G
H
J
DQc  
DQc  
VDDQ  
DQd  
DQc  
DQc  
VDD  
DQd  
BWc  
VSS  
NC  
ADV  
GW  
VDD  
CLK  
BWb  
VSS  
NC  
DQb  
DQb  
VDD  
DQb  
DQb  
VDDQ  
DQa  
K
VSS  
VSS  
DQa  
DQd  
VDDQ  
DQd  
DQd  
DQd  
DQd  
BWd  
VSS  
VSS  
NC  
BWE  
A1  
BWa  
VSS  
VSS  
DQa  
DQa  
DQa  
DQa  
VDDQ  
DQa  
L
M
N
P
R
T
DQd  
NC  
DPd  
A
VSS  
MODE  
A
A0  
VDD  
A
VSS  
VDD  
A
DPa  
A
DQa  
NC  
NC  
64M  
TMS  
32M  
NC  
ZZ  
U
VDDQ  
TDI  
TCK  
TDO  
VDDQ  
CY7C1382B (1M x 18)  
2
1
3
A
4
5
A
6
A
7
A
B
C
D
E
F
VDDQ  
NC  
A
A
ADSP  
ADSC  
VDD  
NC  
VDDQ  
NC  
A
A
A
NC  
A
A
A
A
NC  
DQb  
NC  
NC  
DQb  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DPa  
NC  
DQa  
NC  
CE1  
OE  
DQa  
VDDQ  
VDDQ  
NC  
DQb  
VDDQ  
NC  
DQb  
NC  
BWb  
VSS  
NC  
ADV  
GW  
VDD  
CLK  
VSS  
VSS  
NC  
NC  
DQa  
VDD  
NC  
DQa  
NC  
G
H
J
VDD  
DQb  
VDDQ  
DQa  
VSS  
VSS  
K
L
M
N
DQb  
VDDQ  
DQb  
NC  
DQb  
NC  
VSS  
VSS  
VSS  
NC  
BWE  
A1  
BWa  
VSS  
VSS  
DQa  
NC  
NC  
VDDQ  
NC  
DQa  
NC  
NC  
DPb  
A
VSS  
MODE  
A
A0  
VSS  
VDD  
A
NC  
A
DQa  
NC  
P
R
T
VDD  
32M  
TCK  
64M  
VDDQ  
A
A
ZZ  
U
TMS  
TDI  
TDO  
NC  
VDDQ  
Document #: 38-05267 Rev. *A  
Page 4 of 34  
CY7C1380B  
CY7C1382B  
Pin Configurations (continued)  
165-Ball Bump FBGA  
CY7C1380B (512K x 36) - 11 x 15 FBGA  
1
2
3
4
5
6
7
8
9
10  
11  
NC  
A
CE  
BWc  
BWb  
CE  
BWE  
A
ADSC  
ADV  
A
NC  
1
2
3
NC  
DPc  
DQc  
A
CE  
BWd  
BWa  
CLK  
GW  
B
C
D
E
F
OE  
ADSP  
A
128M  
DPb  
NC  
V
V
V
V
V
V
V
V
V
V
V
NC  
DDQ  
DDQ  
SS  
SS  
SS  
SS  
SS  
DDQ  
DQc  
V
V
V
V
V
V
DQb  
DQb  
DD  
SS  
SS  
SS  
DD  
DDQ  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
V
V
V
V
V
V
DQb  
DQb  
DQb  
NC  
DQb  
DQb  
DQb  
ZZ  
DDQ  
DDQ  
DDQ  
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
V
V
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
V
V
G
H
J
DD  
DDQ  
DD  
SS  
SS  
SS  
V
V
V
NC  
V
V
V
V
NC  
DD  
DD  
SS  
DD  
SS  
SS  
SS  
V
V
DQd  
DQd  
DQd  
DQd  
DPd  
NC  
DQd  
DQd  
DQd  
DQd  
NC  
V
V
V
V
V
DQa  
DQa  
DQa  
DQa  
NC  
DQa  
DQa  
DQa  
DQa  
DPa  
A
DD  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DD  
SS  
SS  
SS  
V
V
V
V
V
V
V
V
V
V
K
L
DD  
DDQ  
DD  
SS  
SS  
SS  
V
V
V
V
V
V
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
M
N
P
V
V
DD  
SS  
SS  
SS  
DD  
DDQ  
V
NC  
TDI  
A
V
V
V
DDQ  
SS  
SS  
SS  
DDQ  
64M  
A
A
A
A1  
A0  
TDO  
TCK  
A
A
A
A
A
MODE  
32M  
A
TMS  
R
A
A
CY7C1382B (1M x 18) - 11 x 15 FBGA  
1
2
3
4
5
6
7
8
9
10  
11  
NC  
A
CE  
BWb  
NC  
CE  
BWE  
A
ADSC  
ADV  
A
A
1
2
3
NC  
NC  
NC  
NC  
NC  
NC  
A
CE  
NC  
BWa  
CLK  
GW  
B
C
D
E
F
OE  
ADSP  
A
128M  
DPa  
NC  
V
V
V
V
V
V
V
V
V
V
V
NC  
NC  
DDQ  
DDQ  
SS  
SS  
SS  
SS  
SS  
DDQ  
DQb  
DQb  
DQb  
DQb  
V
V
V
V
V
V
DQa  
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
V
V
NC  
NC  
DQa  
DQa  
DQa  
ZZ  
DDQ  
DDQ  
DDQ  
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
V
V
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
G
H
J
V
V
NC  
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
NC  
V
V
V
V
V
NC  
NC  
DD  
SS  
DD  
SS  
SS  
SS  
DD  
DQb  
DQb  
DQb  
DQb  
DPb  
NC  
NC  
NC  
NC  
NC  
NC  
64M  
V
V
V
V
V
V
V
DQa  
DQa  
DQa  
DQa  
NC  
NC  
NC  
NC  
NC  
NC  
A
DDQ  
DDQ  
DDQ  
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
V
V
V
V
V
V
K
L
DD  
DDQ  
DD  
SS  
SS  
SS  
V
V
V
V
V
V
DD  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
M
N
P
V
V
DDQ  
DD  
SS  
SS  
SS  
DD  
DDQ  
V
NC  
TDI  
A
V
V
V
DDQ  
SS  
SS  
SS  
DDQ  
A
A
A
A1  
A0  
TDO  
TCK  
A
A
A
A
A
MODE  
32M  
A
TMS  
R
A
A
Document #: 38-05267 Rev. *A  
Page 5 of 34  
CY7C1380B  
CY7C1382B  
Pin Definitions  
Name  
I/O  
Description  
A0  
A1  
A
Input-  
Synchronous  
Address Inputs used to select one of the address locations. Sampled at the  
rising edge of the CLK if ADSP or ADSC is active LOW, and CE1, CE2, and  
CE3 are sampled active. A[1:0] feed the 2-bit counter.  
BWa  
BWb  
BWc  
BWd  
Input-  
Synchronous  
Byte Write Select Inputs, active LOW. Qualified with BWE to conduct byte  
writes to the SRAM. Sampled on the rising edge of CLK.  
GW  
Input-  
Synchronous  
Global Write Enable Input, active LOW. When asserted LOW on the rising  
edge of CLK, a global write is conducted (ALL bytes are written, regardless of  
the values on BWa,b,c,d and BWE).  
BWE  
CLK  
Input-  
Synchronous  
Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This  
signal must be asserted LOW to conduct a byte write.  
Input-Clock  
Clock Input. Used to capture all synchronous inputs to the device. Also used  
to increment the burst counter when ADV is asserted LOW, during a burst  
operation.  
CE1  
Input-  
Synchronous  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used  
in conjunction with CE2 and CE3 to select/deselect the device. ADSP is ig-  
nored if CE1 is HIGH.  
CE2  
CE3  
OE  
Input-  
Synchronous  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used  
in conjunction with CE1 and CE3 to select/deselect the device.(TQFP Only)  
Input-  
Synchronous  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used  
in conjunction with CE1 and CE2 to select/deselect the device.(TQFP Only)  
Input-  
Asynchronous  
Output Enable, asynchronous input, active LOW. Controls the direction of the  
I/O pins. When LOW, the I/O pins behave as outputs. When deasserted HIGH,  
I/O pins are three-stated, and act as input data pins. OE is masked during the  
first clock of a read cycle when emerging from a deselected state.  
ADV  
Input-  
Synchronous  
Advance Input signal, sampled on the rising edge of CLK. When asserted, it  
automatically increments the address in a burst cycle.  
ADSP  
Input-  
Synchronous  
Address Strobe from Processor, sampled on the rising edge of CLK. When  
asserted LOW, A is captured in the address registers. A[1:0] are also loaded  
into the burst counter. When ADSP and ADSC are both asserted, only ADSP  
is recognized. ASDP is ignored when CE1 is deasserted HIGH.  
ADSC  
Input-  
Synchronous  
Address Strobe from Controller, sampled on the rising edge of CLK. When  
asserted LOW, A[x:0] is captured in the address registers. A[1:0] are also loaded  
into the burst counter. When ADSP and ADSC are both asserted, only ADSP  
is recognized.  
MODE  
ZZ  
Input Pin  
Selects Burst Order. When tied to GND selects linear burst sequence. When  
tied to VDDQ or left floating selects interleaved burst sequence. This is a strap  
pin and should remain static during device operation.  
Input-  
Asynchronous  
ZZ sleepInput. This active HIGH input places the device in a non-time critical  
sleepcondition with data integrity preserved.  
DQa, DPa  
DQb, DPb  
DQc, DPc  
DQd, DPd  
I/O-  
Synchronous  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register  
that is triggered by the rising edge of CLK. As outputs, they deliver the data  
contained in the memory location specified by AX during the previous clock  
rise of the read cycle. The direction of the pins is controlled by OE. When OE  
is asserted LOW, the pins behave as outputs. When HIGH, DQx and DPx are  
placed in a three-state condition.DQ a,b,c and d are 8 bits wide. DP a,b,c and  
d are 1 bit wide.  
TDO  
JTAG serial output  
Synchronous  
Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK.  
(BGA Only)  
Document #: 38-05267 Rev. *A  
Page 6 of 34  
CY7C1380B  
CY7C1382B  
Pin Definitions  
Name  
I/O  
Description  
TDI  
JTAG serial input  
Synchronous  
Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK.(BGA  
Only)  
TMS  
Test Mode Select  
Synchronous  
This pin controls the Test Access Port state machine. Sampled on the rising  
edge of TCK. (BGA Only)  
TCK  
VDD  
JTAG Serial Clock  
Power Supply  
Serial clock to the JTAG circuit. (BGA Only)  
Power supply inputs to the core of the device. Should be connected to 3.3V  
5% +10% power supply.  
VSS  
Ground  
Ground for the core of the device. Should be connected to ground of the sys-  
tem.  
VDDQ  
I/O Power Supply  
Power supply for the I/O circuitry. Should be connected to a 2.5 5% 3.3V  
10% power supply.  
VSSQ  
I/O Ground  
-
Ground for the I/O circuitry. Should be connected to ground of the system.  
32M  
64M  
128M  
No connects. Reserved for address expansion. Pins are not internally connect-  
ed.  
NC  
-
No connects. Pins are not internally connected.  
Document #: 38-05267 Rev. *A  
Page 7 of 34  
CY7C1380B  
CY7C1382B  
(GW, BWE, and BWx) and ADV inputs are ignored during this  
first cycle.  
Introduction  
Functional Overview  
ADSP triggered write accesses require two clock cycles to  
complete. If GW is asserted LOW on the second clock rise, the  
data presented to the DQx inputs is written into the corre-  
sponding address location in the RAM core. If GW is HIGH,  
then the write operation is controlled by BWE and BWx sig-  
nals. The CY7C1380B/CY7C1382B provides byte write capa-  
bility that is described in the Write Cycle Description table.  
Asserting the Byte Write Enable input (BWE) with the selected  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock. Max-  
imum access delay from the clock rise (tCO) is 4.2 ns (133-MHz  
device).  
The CY7C1380B/CY7C1382B supports secondary cache in  
systems utilizing either a linear or interleaved burst sequence.  
The interleaved burst order supports Pentium® and i486 pro-  
cessors. The linear burst sequence is suited for processors  
that utilize a linear burst sequence. The burst order is user  
selectable, and is determined by sampling the MODE input.  
Accesses can be initiated with either the Processor Address  
Strobe (ADSP) or the Controller Address Strobe (ADSC). Ad-  
dress advancement through the burst sequence is controlled  
by the ADV input. A two-bit on-chip wraparound burst counter  
captures the first address in a burst sequence and automati-  
cally increments the address for the rest of the burst access.  
Byte Write (BWa,b,c,d for CY7C1380B  
&
BWa,b for  
CY7C1382B) input will selectively write to only the desired  
bytes. Bytes not selected during a byte write operation will  
remain unaltered. A synchronous self-timed write mechanism  
has been provided to simplify the write operations.  
Because the CY7C1380B/CY7C1382B is a common I/O de-  
vice, the Output Enable (OE) must be deasserted HIGH before  
presenting data to the DQ inputs. Doing so will three-state the  
output drivers. As a safety precaution, DQ are automatically  
three-stated whenever a write cycle is detected, regardless of  
the state of OE.  
Byte write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BWa,b,c,d for CY7C1380 and  
BWa,b for CY7C1382) inputs. A Global Write Enable (GW)  
overrides all byte write inputs and writes data to all four bytes.  
All writes are simplified with on-chip synchronous self-timed  
write circuitry.  
Single Write Accesses Initiated by ADSC  
ADSC write accesses are initiated when the following condi-  
tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is  
deasserted HIGH, (3) chip select is asserted active, and (4)  
the appropriate combination of the write inputs (GW, BWE,  
and BWx) are asserted active to conduct a write to the desired  
byte(s). ADSC triggered write accesses require a single clock  
cycle to complete. The address presented to A[17:0] is loaded  
into the address register and the address advancement logic  
while being delivered to the RAM core. The ADV input is ig-  
nored during this cycle. If a global write is conducted, the data  
presented to the DQ[x:0] is written into the corresponding ad-  
dress location in the RAM core. If a byte write is conducted,  
only the selected bytes are written. Bytes not selected during  
a byte write operation will remain unaltered. A synchronous  
self-timed write mechanism has been provided to simplify the  
write operations.  
Synchronous Chip Selects (CE1, CE2, CE3 for TQFP / CE1 for  
BGA) and an asynchronous Output Enable (OE) provide for  
easy bank selection and output three-state control. ADSP is  
ignored if CE1 is HIGH.  
Single Read Accesses  
This access is initiated when the following conditions are sat-  
isfied at clock rise: (1) ADSP or ADSC is asserted LOW, (2)  
chip selects are all asserted active, and (3) the write signals  
(GW, BWE) are all deasserted HIGH. ADSP is ignored if CE1  
is HIGH. The address presented to the address inputs is  
stored into the address advancement logic and the Address  
Register while being presented to the memory core. The cor-  
responding data is allowed to propagate to the input of the  
Output Registers. At the rising edge of the next clock the data  
is allowed to propagate through the output register and onto  
the data bus within 3.0 ns (200-MHz device) if OE is active  
LOW. The only exception occurs when the SRAM is emerging  
from a deselected state to a selected state, its outputs are  
always three-stated during the first cycle of the access. After  
the first cycle of the access, the outputs are controlled by the  
OE signal. Consecutive single read cycles are supported.  
Once the SRAM is deselected at clock rise by the chip select  
and either ADSP or ADSC signals, its output will three-state  
immediately.  
Because the CY7C1380B/CY7C1382B is a common I/O de-  
vice, the Output Enable (OE) must be deasserted HIGH before  
presenting data to the DQ[x:0] inputs. Doing so will three-state  
the output drivers. As a safety precaution, DQ[x:0] are automat-  
ically three-stated whenever a write cycle is detected, regard-  
less of the state of OE.  
Burst Sequences  
The CY7C1380B/CY7C1382B provides a two-bit wraparound  
counter, fed by A[1:0], that implements either an interleaved or  
linear burst sequence. The interleaved burst sequence is de-  
signed specifically to support Intel® Pentium applications. The  
linear burst sequence is designed to support processors that  
follow a linear burst sequence. The burst sequence is user  
selectable through the MODE input.  
Single Write Accesses Initiated by ADSP  
This access is initiated when both of the following conditions  
are satisfied at clock rise: (1) ADSP is asserted LOW, and (2)  
chip select is asserted active. The address presented is load-  
ed into the address register and the address advancement  
logic while being delivered to the RAM core. The write signals  
Asserting ADV LOW at clock rise will automatically increment  
the burst counter to the next address in the burst sequence.  
Both read and write burst operations are supported.  
Document #: 38-05267 Rev. *A  
Page 8 of 34  
CY7C1380B  
CY7C1382B  
Interleaved Burst Sequence  
Linear Burst Sequence  
First  
Second  
Third  
Fourth  
First  
Second  
Third  
Fourth  
Address  
Address  
Address  
Address  
Address  
Address  
Address  
A[1:0]  
10  
Address  
A[1:0]]  
00  
A[1:0]  
01  
A[1:0]  
10  
A[1:0]  
11  
A[1:0]  
00  
A[1:0]  
01  
A[1:0]  
11  
01  
00  
11  
10  
01  
10  
11  
00  
10  
11  
00  
01  
10  
11  
00  
01  
11  
10  
01  
00  
11  
00  
01  
10  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ plac-  
es the SRAM in a power conservation sleepmode. Two clock  
cycles are required to enter into or exit from this sleepmode.  
While in this mode, data integrity is guaranteed. Accesses  
pending when entering the sleepmode are not considered  
valid nor is the completion of the operation guaranteed. The  
device must be deselected prior to entering the sleepmode.  
CEs, ADSP, and ADSC must remain inactive for the duration  
of tZZREC after the ZZ input returns LOW.  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Test Conditions  
Min.  
Max.  
Unit  
Sleep mode stand- ZZ > VDD 0.2V  
20  
mA  
by current  
tZZS  
Deviceoperationto  
ZZ  
ZZ > VDD 0.2V  
2tCYC  
ns  
ns  
tZZREC  
ZZ recovery time  
ZZ < 0.2V  
2tCYC  
Document #: 38-05267 Rev. *A  
Page 9 of 34  
CY7C1380B  
CY7C1382B  
Cycle Descriptions[1, 2, 3, 4]  
Next Cycle  
Unselected  
Add. Used  
None  
ZZ  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
CE3  
X
1
CE2  
X
X
0
CE1  
1
ADSP  
X
0
ADSC  
ADV  
X
X
X
X
X
X
X
0
OE  
X
X
X
X
X
X
X
1
DQ  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
DQ  
Write  
X
0
X
X
0
0
X
0
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
X
Unselected  
None  
0
X
Unselected  
None  
X
1
0
0
X
Unselected  
None  
X
0
0
1
X
Unselected  
None  
X
0
0
1
X
Begin Read  
External  
External  
Next  
1
0
0
X
Begin Read  
0
1
0
1
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
X
Continue Read  
Continue Read  
Continue Read  
Continue Read  
Suspend Read  
Suspend Read  
Suspend Read  
Suspend Read  
Begin Write  
X
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
X
1
X
X
1
1
Next  
1
0
0
Next  
X
X
1
0
1
Hi-Z  
DQ  
Next  
1
0
0
Current  
Current  
Current  
Current  
Current  
Current  
External  
Next  
X
X
1
1
1
Hi-Z  
DQ  
1
1
0
X
X
1
1
1
Hi-Z  
DQ  
1
1
0
X
1
1
X
X
X
X
X
X
X
X
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Begin Write  
X
1
1
Begin Write  
0
X
0
Continue Write  
Continue Write  
Suspend Write  
Suspend Write  
X
X
X
X
X
X
X
X
X
X
X
1
1
Next  
X
1
0
Current  
Current  
None  
X
1
1
X
X
1
ZZ sleep”  
X
X
Notes:  
1. X =Don't Care.1 = HIGH, 0 = LOW.  
2. Write is defined by BWE, BWx, and GW. See Write Cycle Descriptions table.  
3. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.  
4. CE1, CE2, and CE3 are available only in the TQFP package. BGA package has a single chip select CE1.  
Document #: 38-05267 Rev. *A  
Page 10 of 34  
CY7C1380B  
CY7C1382B  
Write Cycle Descriptions  
Function (1380)  
Read  
GW  
1
BWE  
1
BWd  
X
1
BWc  
X
1
BWb  
X
1
BWa  
X
1
Read  
1
0
Write Byte 0 - DQa  
Write Byte 1 - DQb  
Write Bytes 1, 0  
Write Byte 2 - DQc  
Write Bytes 2, 0  
Write Bytes 2, 1  
Write Bytes 2, 1, 0  
Write Byte 3 - DQd  
Write Bytes 3, 0  
Write Bytes 3, 1  
Write Bytes 3, 1, 0  
Write Bytes 3, 2  
Write Bytes 3, 2, 0  
Write Bytes 3, 2, 1  
Write All Bytes  
1
0
1
1
1
0
1
0
1
1
0
1
1
0
1
1
0
0
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
0
1
1
0
1
0
0
0
1
0
0
1
1
1
1
0
0
1
1
0
1
0
0
1
0
1
1
0
0
1
0
0
1
0
0
0
1
1
1
0
0
0
1
0
1
0
0
0
0
1
1
0
0
0
0
0
Write All Bytes  
0
X
X
X
X
X
Function (1382)  
Read  
GW  
BWE  
BWb  
BWa  
1
1
1
1
1
0
1
0
0
0
0
X
X
1
1
0
0
X
X
1
0
1
0
X
Read  
Write Byte 0 - DQ[7:0] and DP0  
Write Byte 1 - DQ[15:8] and DP1  
Write All Bytes  
Write All Bytes  
Document #: 38-05267 Rev. *A  
Page 11 of 34  
CY7C1380B  
CY7C1382B  
ry. Only one register can be selected at a time through the  
instruction registers. Data is serially loaded into the TDI pin on  
the rising edge of TCK. Data is output on the TDO pin on the  
falling edge of TCK.  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The CY7C1380B/CY7C1382B incorporates a serial boundary  
scan Test Access Port (TAP) in the FBGA package only. The  
TQFP package does not offer this functionality. This port oper-  
ates in accordance with IEEE Standard 1149.1-1900, but does  
not have the set of functions required for full 1149.1 compli-  
ance. These functions from the IEEE specification are exclud-  
ed because their inclusion places an added delay in the critical  
speed path of the SRAM. Note that the TAP controller func-  
tions in a manner that does not conflict with the operation of  
other devices using 1149.1 fully compliant TAPs. The TAP op-  
erates using JEDEC standard 3.3V I/O logic levels.  
Instruction Register  
Three-bit instructions can be serially loaded into the instruc-  
tion register. This register is loaded when it is placed between  
the TDI and TDO pins as shown in the TAP Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as de-  
scribed in the previous section.  
When the TAP controller is in the CaptureIR state, the two least  
significant bits are loaded with a binary 01pattern to allow  
for fault isolation of the board level serial test path.  
Disabling the JTAG Feature  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are inter-  
nally pulled up and may be unconnected. They may alternately  
be connected to VDD through a pull-up resistor. TDO should  
be left unconnected. Upon power-up, the device will come up  
in a reset state which will not interfere with the operation of the  
device.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain states. The bypass  
register is a single-bit register that can be placed between TDI  
and TDO pins. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
Test Access Port (TAP) - Test Clock  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Boundary Scan Register  
The boundary scan register is connected to all the input and  
output pins on the SRAM. Several no connect (NC) pins are  
also included in the scan register to reserve pins for higher  
density devices. The x36 configuration has a xx-bit-long regis-  
ter, and the x18 configuration has a yy-bit-long register.  
Test Mode Select  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this pin unconnected if the TAP is not used. The pin is  
pulled up internally, resulting in a logic HIGH level.  
The boundary scan register is loaded with the contents of the  
RAM Input and Output ring when the TAP controller is in the  
Capture-DR state and is then placed between the TDI and  
TDO pins when the controller is moved to the Shift-DR state.  
The EXTEST, SAMPLE/PRELOAD and SAMPLE Z instruc-  
tions can be used to capture the contents of the Input and  
Output ring.  
Test Data-In (TDI)  
The TDI pin is used to serially input information into the regis-  
ters and can be connected to the input of any of the registers.  
The register between TDI and TDO is chosen by the instruc-  
tion that is loaded into the TAP instruction register. For infor-  
mation on loading the instruction register, see the TAP Control-  
ler State Diagram. TDI is internally pulled up and can be  
unconnected if the TAP is unused in an application. TDI is con-  
nected to the Most Significant Bit (MSB) on any register.  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI, and the LSB is connected to TDO.  
Identification (ID) Register  
Test Data Out (TDO)  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register Defi-  
nitions table.  
The TDO output pin is used to serially clock data-out from the  
registers. The e output is active depending upon the current  
state of the TAP state machine (see TAP Controller State  
Diagram). The output changes on the falling edge of TCK.  
TDO is connected to the Least Significant Bit (LSB) of any  
register.  
Performing a TAP Reset  
TAP Instruction Set  
A Reset is performed by forcing TMS HIGH (VDD) for five ris-  
ing edges of TCK. This RESET does not affect the operation  
of the SRAM and may be performed while the SRAM is oper-  
ating. At power-up, the TAP is reset internally to ensure that  
TDO comes up in a high-Z state.  
Eight different instructions are possible with the three-bit in-  
struction register. All combinations are listed in the Instruction  
Code table. Three of these instructions are listed as RE-  
SERVED and should not be used. The other five instructions  
are described in detail below.  
The TAP controller used in this SRAM is not fully compliant to  
the 1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented. The TAP controller can-  
not be used to load address, data or control signals into the  
TAP Registers  
Registers are connected between the TDI and TDO pins and  
allow data to be scanned into and out of the SRAM test circuit-  
Document #: 38-05267 Rev. *A  
Page 12 of 34  
CY7C1380B  
CY7C1382B  
SRAM and cannot preload the Input or Output buffers. The  
SRAM does not implement the 1149.1 commands EXTEST or  
INTEST or the PRELOAD portion of SAMPLE / PRELOAD;  
rather it performs a capture of the Inputs and Output ring when  
these instructions are executed.  
When the SAMPLE / PRELOAD instructions loaded into the  
instruction register and the TAP controller in the Capture-DR  
state, a snapshot of data on the inputs and output pins is cap-  
tured in the boundary scan register.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 10 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is possible  
that during the Capture-DR state, an input or output will under-  
go a transition. The TAP may then try to capture a signal while  
in transition (metastable state). This will not harm the device,  
but there is no guarantee as to the value that will be captured.  
Repeatable results may not be possible.  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO pins.  
To execute the instruction once it is shifted in, the TAP control-  
ler needs to be moved into the Update-IR state.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is to be ex-  
ecuted whenever the instruction register is loaded with all 0s.  
EXTEST is not implemented in the TAP controller, and there-  
fore this device is not compliant to the 1149.1 standard.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controllers capture set-up plus  
hold times (TCS and TCH). The SRAM clock input might not  
be captured correctly if there is no way in a design to stop (or  
slow) the clock during a SAMPLE / PRELOAD instruction. If  
this is an issue, it is still possible to capture all other signals  
and simply ignore the value of the CK and CK captured in the  
boundary scan register.  
The TAP controller does recognize an all-0 instruction. When  
an EXTEST instruction is loaded into the instruction register,  
the SRAM responds as if a SAMPLE / PRELOAD instruction  
has been loaded. There is one difference between the two  
instructions. Unlike the SAMPLE / PRELOAD instruction, EX-  
TEST places the SRAM outputs in a High-Z state.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the bound-  
ary scan register between the TDI and TDO pins.  
IDCODE  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO pins and allows  
the IDCODE to be shifted out of the device when the TAP con-  
troller enters the Shift-DR state. The IDCODE instruction is  
loaded into the instruction register upon power-up or whenever  
the TAP controller is given a test logic reset state.  
Note that since the PRELOAD part of the command is not  
implemented, putting the TAP into the Update to the  
Update-DR state while performing a SAMPLE / PRELOAD in-  
struction will have the same effect as the Pause-DR command.  
Bypass  
When the BYPASS instruction is loaded in the instruction reg-  
ister and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO pins. The advan-  
tage of the BYPASS instruction is that it shortens the boundary  
scan path when multiple devices are connected together on a  
board.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO pins when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
Reserved  
SAMPLE / PRELOAD  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
SAMPLE / PRELOAD is a 1149.1 mandatory instruction. The  
PRELOAD portion of this instruction is not implemented, so  
the TAP controller is not fully 1149.1 compliant.  
Document #: 38-05267 Rev. *A  
Page 13 of 34  
CY7C1380B  
CY7C1382B  
TAP Controller State Diagram  
TEST-LOGIC  
1
RESET  
1
1
1
TEST-LOGIC/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
0
0
1
1
CAPTURE-DR  
CAPTURE-DR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
EXIT1-DR  
0
1
EXIT1-IR  
0
1
0
0
PAUSE-DR  
1
PAUSE-IR  
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
1
0
0
Note: The 0/1 next to each state represents the value at TMS at the rising edge of TCK.  
Document #: 38-05267 Rev. *A  
Page 14 of 34  
CY7C1380B  
CY7C1382B  
TAP Controller Block Diagram  
0
Bypass Register  
Selection  
Circuitry  
Selection  
Circuitry  
2
1
0
TDO  
TDI  
Instruction Register  
29  
Identification Register  
31 30  
.
.
2
1
1
0
0
.
.
.
.
.
2
Boundary Scan Register  
TCK  
TMS  
TAP Controller  
TAP Electrical Characteristics Over the Operating Range[5, 6]  
Parameter  
VOH1  
VOH2  
VOL1  
VOL2  
VIH  
Description  
Test Conditions  
Min.  
2.4  
Max.  
Unit  
Output HIGH Voltage  
Output HIGH Voltage  
Output LOW Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Load Current  
IOH = 4.0 mA  
IOH = 100 µA  
IOL = 8.0 mA  
IOL = 100 µA  
V
V
VDD - 0.2  
0.4  
0.2  
V
V
1.7  
0.5  
5  
V
DD+0.3  
V
VIL  
0.7  
V
IX  
GND VI VDDQ  
5
µA  
Notes:  
5. All Voltage referenced to Ground.  
6. Overshoot: VIH(AC)<VDD+1.5V for t<tTCYC/2, Undershoot:VIL(AC)<0.5V for t<tTCYC/2, Power-up: VIH<2.6V and VDD<2.4V and VDDQ<1.4V for t<200 ms.  
Document #: 38-05267 Rev. *A  
Page 15 of 34  
CY7C1380B  
CY7C1382B  
TAP AC Switching Characteristics Over the Operating Range[7, 8]  
Parameters  
tTCYC  
Description  
Min.  
Max  
Unit  
ns  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH  
100  
tTF  
10  
MHz  
ns  
tTH  
40  
40  
tTL  
TCK Clock LOW  
ns  
Set-up Times  
tTMSS  
TMS Set-up to TCK Clock Rise  
TDI Set-up to TCK Clock Rise  
Capture Set-up to TCK Rise  
10  
10  
10  
ns  
ns  
ns  
tTDIS  
tCS  
Hold Times  
tTMSH  
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
10  
10  
10  
ns  
ns  
ns  
tTDIH  
tCH  
Capture Hold after Clock Rise  
Output Times  
tTDOV  
TCK Clock LOW to TDO Valid  
TCK Clock HIGH to TDO Invalid  
20  
ns  
ns  
tTDOX  
0
Notes:  
7. tCS and tCH refer to the set-up and hold time requirements of latching data from the boundary scan register.  
8. Test conditions are specified using the load in TAP AC test conditions. TR/TF = 1 ns.  
Document #: 38-05267 Rev. *A  
Page 16 of 34  
CY7C1380B  
CY7C1382B  
TAP Timing and Test Conditions  
1.25V  
50Ω  
ALL INPUT PULSES  
1.50V  
TDO  
3.3V  
Z =50Ω  
0
C =20 pF  
L
0V  
GND  
(a)  
tTL  
tTH  
Test Clock  
TCK  
tTCYC  
tTMSS  
tTMSH  
Test Mode Select  
TMS  
tTDIS  
tTDIH  
Test Data-In  
TDI  
Test Data-Out  
TDO  
tTDOV  
tTDOX  
Document #: 38-05267 Rev. *A  
Page 17 of 34  
CY7C1380B  
CY7C1382B  
Identification Register Definitions  
Instruction Field  
Revision Number  
512K x 36  
1M x 18  
Description  
xxxx  
xxxx  
Reserved for version number  
(31:28)  
Device Depth  
(27:23)  
00111  
01000  
00011  
Defines depth of SRAM. 512K or 1M  
Defines with of the SRAM. x36 or x18  
Reserved for future use  
Device Width  
(22:18)  
00100  
Cypress Device ID  
(17:12)  
xxxxx  
xxxxx  
Cypress JEDEC ID  
(11:1)  
00011100100  
1
00011100100  
1
Allows unique identification of SRAM vendor  
Indicate the presence of an ID register  
ID Register Presence  
(0)  
Scan Register Sizes  
Register Name  
Instruction  
Bit Size (x18)  
Bit Size (x36)  
3
1
3
1
Bypass  
ID  
32  
51  
32  
70  
Boundary Scan  
Identification Codes  
Instruction  
Code  
Description  
EXTEST  
000  
Captures the Input/Output ring contents. Places the boundary scan register  
between the TDI and TDO. Forces all SRAM outputs to High-Z state. This  
instruction is not 1149.1 compliant.  
IDCODE  
001  
010  
Loads the ID register with the vendor ID code and places the register be-  
tween TDI and TDO. This operation does not affect SRAM operation.  
SAMPLE Z  
Captures the Input/Output contents. Places the boundary scan register be-  
tween TDI and TDO. Forces all SRAM output drivers to a High-Z state.  
RESERVED  
011  
100  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures the Input/Output ring contents. Places the boundary scan register  
between TDI and TDO. Does not affect the SRAM operation. This instruction  
does not implement 1149.1 preload function and is therefore not 1149.1  
compliant.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not  
affect SRAM operation.  
Document #: 38-05267 Rev. *A  
Page 18 of 34  
CY7C1380B  
CY7C1382B  
Boundary Scan Order (512K X 36)  
Boundary Scan Order (1M X 18)  
Signal  
Name  
Bump  
ID  
Signal  
Name  
Bump  
ID  
Signal  
Name  
Bump  
ID  
Signal  
Name  
Bump  
ID  
Bit #  
Bit #  
36  
Bit #  
Bit #  
36  
1
A
2R  
A
6B  
1
A
2R  
DQb  
2E  
2
A
3T  
4T  
5T  
6R  
3B  
5B  
6P  
7N  
6M  
7L  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
BWa  
BWb  
BWc  
BWd  
A
5L  
2
A
2T  
3T  
5T  
6R  
3B  
5B  
7P  
6N  
6L  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
DQb  
DQb  
NC  
2G  
1H  
5R  
2K  
1L  
3
A
5G  
3G  
3L  
3
A
4
A
4
A
5
A
5
A
DQb  
DQb  
DQb  
DQb  
DQb  
MODE  
A
6
A
2B  
4E  
3A  
2A  
2D  
1E  
2F  
1G  
1D  
1D  
2E  
2G  
1H  
5R  
2K  
1L  
6
A
7
A
CE  
7
A
2M  
1N  
2P  
3R  
2C  
3C  
5C  
6C  
4N  
4P  
8
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
ZZ  
A
8
DQa  
DQa  
DQa  
DQa  
ZZ  
9
A
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
7K  
7T  
6H  
7G  
6F  
7E  
6D  
6T  
6A  
5A  
4G  
4A  
4B  
4F  
4M  
4H  
4K  
6B  
5L  
6K  
7P  
6N  
6L  
A
DQa  
DQa  
DQa  
DQa  
DQa  
A
A
A
A1  
7K  
7T  
6H  
7G  
6F  
7E  
6D  
7H  
6G  
6E  
7D  
6A  
5A  
4G  
4A  
4B  
4F  
4M  
4H  
4K  
A0  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
A
A
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
MODE  
A
A
ADV  
ADSP  
ADSC  
OE  
BWE  
GW  
CLK  
A
2M  
1N  
2P  
1K  
2L  
2N  
1P  
3R  
2C  
3C  
5C  
6C  
4N  
4P  
A
ADV  
ADSP  
ADSC  
OE  
BWa  
BWb  
A
3G  
2B  
4E  
3A  
2A  
1D  
A
A
CE  
A
BWE  
GW  
CLK  
A
A1  
A
A0  
DQb  
Document #: 38-05267 Rev. *A  
Page 19 of 34  
CY7C1380B  
CY7C1382B  
Static Discharge Voltage .......................................... >1500V  
(per MIL-STD-883, Method 3015)  
Maximum Ratings  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-Up Current.................................................... >200 mA  
Operating Range  
Storage Temperature .................................65°C to +150°C  
Ambient Temperature with  
Ambient  
Power Applied.............................................55°C to +125°C  
Range  
Coml  
Indl  
Temp.[10]  
0°C to +70°C  
40°C to +85°C  
VDD  
VDDQ  
Supply Voltage on VDD Relative to GND ....... 0.3V to +4.6V  
3.3V  
5% / +10%  
2.5V 5%  
3.3V + 10%  
DC Voltage Applied to Outputs  
in High Z State[9]................................. 0.5V to VDDQ + 0.5V  
DC Input Voltage[9] ............................. 0.5V to VDDQ + 0.5V  
Current into Outputs (LOW).........................................20 mA  
Electrical Characteristics Over the Operating Range  
Parameter  
VDD  
Description  
Test Conditions  
Min.  
3.135  
2.375  
2.4  
Max.  
3.63  
3.63  
Unit  
Power Supply Voltage  
I/O Supply Voltage  
Output HIGH Voltage  
V
V
VDDQ  
VOH  
VDD = Min., IOH = 4.0 mA  
3.3V  
2.5V  
3.3V  
2.5V  
3.3 V  
2.5V  
3.3V  
2.5V  
V
VDD = Min., IOH = 1.0 mA  
VDD = Min., IOL = 8.0 mA  
VDD = Min., IOL = 1.0 mA  
2.0  
V
VOL  
VIH  
VIL  
IX  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage[9]  
0.4  
0.4  
V
V
2.0  
1.7  
V
V
0.3  
0.3  
0.8  
0.7  
5
V
V
Input Load Current  
Input Current of MODE  
Input Current of ZZ  
GND < VI < VDDQ  
Input = VSS  
µA  
µA  
µA  
µA  
-30  
-30  
30  
30  
5
IOZ  
IDD  
Output Leakage  
Current  
GND < VI < VDDQ, Output Disabled  
VDD Operating Supply  
VDD = Max., IOUT = 0 mA,  
f = fMAX = 1/tCYC  
5.0-ns cycle, 200 MHz  
315  
285  
265  
245  
140  
120  
110  
105  
20  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
6.0-ns cycle, 167 MHz  
6.7-ns cycle, 150 MHz  
7.5-ns cycle, 133 MHz  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167MHz  
6.7-ns cycle, 150 MHz  
7.5-ns cycle, 133 MHz  
All speed grades  
ISB1  
Automatic CE  
Power-Down  
CurrentTTL Inputs  
Max. VDD, Device  
Deselected,  
VIN > VIH or VIN <VIL  
f = fMAX = 1/tCYC  
ISB2  
Automatic CE  
Power-Down  
Max. VDD, Device  
Deselected, VIN < 0.3V or  
CurrentCMOS Inputs VIN > VDDQ 0.3V, f = 0  
Notes:  
9. Minimum voltage equals 2.0V for pulse durations of less than 20 ns.  
10. TA is the temperature.  
Document #: 38-05267 Rev. *A  
Page 20 of 34  
CY7C1380B  
CY7C1382B  
Electrical Characteristics Over the Operating Range (continued)  
Parameter  
Description  
Automatic CE  
Power-Down  
Test Conditions  
Min.  
Max.  
110  
100  
90  
Unit  
mA  
mA  
mA  
mA  
mA  
ISB3  
Max. VDD, Device  
Deselected, or VIN 0.3V or  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
6.7-ns cycle, 150 MHz  
7.5-ns cycle, 133 MHz  
All Speeds  
CurrentCMOS Inputs VIN > VDDQ 0.3V  
f = fMAX = 1/tCYC  
85  
ISB4  
Automatic CS  
Power-Down  
Max. VDD, Device  
Deselected,  
50  
CurrentTTL Inputs  
VIN VIH or VIN VIL, f = 0  
Capacitance[11]  
Parameter  
Description  
Input Capacitance  
Test Conditions  
TA = 25°C, f = 1MHz,  
Max.  
Unit  
CIN  
3
3
3
pF  
pF  
pF  
VDD = 3.3V,  
DDQ = 3.3V  
CCLK  
CI/O  
Clock Input Capacitance  
Input/Output Capacitance  
V
AC Test Loads and Waveforms[12]  
R=317Ω  
3.3V  
OUTPUT  
OUTPUT  
ALL INPUT PULSES  
90%  
3.0V  
GND  
90%  
10%  
Z =50Ω  
0
R =50Ω  
10%  
L
5 pF  
R=351Ω  
1 V/ns  
1 V/ns  
= 1.5V  
VTH  
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Thermal Resistance[11]  
Description  
Test Conditions  
Symbol  
TQFP Typ.  
Thermal Resistance  
(Junction to Ambient)  
Still Air, soldered on a  
4.25 x 1.125 inch, 4-lay-  
er printed circuit board  
ΘJA  
25  
Thermal Resistance  
(Junction to Case)  
ΘJC  
9
Notes:  
11. Tested initially and after any design or process changes that may affect these parameters.  
12. Input waveform should have a slew rate of 1 V/ns.  
Document #: 38-05267 Rev. *A  
Page 21 of 34  
CY7C1380B  
CY7C1382B  
Switching Characteristics Over the Operating Range[13, 14, 15]  
-200  
-167  
-150  
-133  
Parameter  
tCYC  
tCH  
Description  
Clock Cycle Time  
Min. Max. Min. Max. Min. Max. Min. Max. Unit  
5.0  
1.8  
1.8  
1.4  
0.4  
6.0  
2.1  
2.1  
1.5  
0.5  
6.7  
2.3  
2.3  
1.5  
0.5  
7.5  
2.5  
2.5  
1.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock HIGH  
tCL  
Clock LOW  
tAS  
Address Set-Up Before CLK Rise  
Address Hold After CLK Rise  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
ADSP, ADSC Set-Up Before CLK Rise  
ADSP, ADSC Hold After CLK Rise  
tAH  
tCO  
3.0  
3.4  
3.8  
4.2  
tDOH  
tADS  
tADH  
tWES  
tWEH  
tADVS  
tADVH  
tDS  
1.3  
1.4  
0.4  
1.3  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.3  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.3  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
BWE, GW, BWx Set-Up Before CLK Rise 1.4  
BWE, GW, BWx Hold After CLK Rise  
ADV Set-Up Before CLK Rise  
ADV Hold After CLK Rise  
0.4  
1.4  
0.4  
1.4  
0.4  
1.4  
0.4  
Data Input Set-Up Before CLK Rise  
Data Input Hold After CLK Rise  
Chip enable Set-Up  
tDH  
tCES  
tCEH  
tCHZ  
tCLZ  
Chip enable Hold After CLK Rise  
Clock to High-Z[14]  
Clock to Low-Z[14]  
OE HIGH to Output High-Z[14, 15]  
OE LOW to Output Low-Z[14, 15]  
OE LOW to Output Valid[14]  
3.0  
4.0  
3.0  
3.0  
4.0  
3.4  
3.0  
4.0  
3.8  
3.0  
4.0  
4.2  
1.3  
0
1.3  
0
1.3  
0
1.3  
0
tEOHZ  
tEOLZ  
tEOV  
Notes:  
13. Unless otherwise noted, test conditions assume signal transition time of 2.5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and  
output loading of the specified IOL/IOH and load capacitance. Shown in (a), (b) and (c) of AC Test Loads.  
14.  
tCHZ, tCLZ, tOEV, tEOLZ, and tEOHZ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state  
voltage.  
15. At any given voltage and temperature, tEOHZ is less than tEOLZ and tCHZ is less than tCLZ  
.
Document #: 38-05267 Rev. *A  
Page 22 of 34  
CY7C1380B  
CY7C1382B  
1
Switching Waveforms  
Write Cycle Timing[4, 16, 17]  
Single Write  
Burst Write  
Pipelined Write  
t
Unselected  
CH  
t
CYC  
CLK  
t
ADH  
t
ADS  
t
ADSP ignored with CE inactive  
CL  
1
ADSP  
ADSC  
ADV  
t
ADH  
t
ADSC initiated write  
ADS  
t
t
ADVH  
ADVS  
t
ADV Must Be Inactive for ADSP Write  
WD2  
AS  
WD3  
ADD  
GW  
WD1  
t
AH  
t
WH  
t
WH  
t
WS  
t
WS  
BWE  
t
t
CES  
CEH  
CE masks ADSP  
1
CE  
1
t
t
CEH  
CES  
Unselected with CE  
2
CE  
2
CE  
3
t
CES  
t
CEH  
OE  
t
DH  
t
DS  
High-Z  
High-Z  
Data In  
3a  
2a  
= UNDEFINED  
1a  
2b  
2c  
2d  
= DONT CARE  
Notes:  
16. WE is the combination of BWE, BWx, and GW to define a write cycle (see Write Cycle Descriptions table).  
17. WDx stands for Write Data to Address X.  
Document #: 38-05267 Rev. *A  
Page 23 of 34  
CY7C1380B  
CY7C1382B  
Switching Waveforms (continued)  
Read Cycle Timing[4, 16, 18]  
Burst Read  
Single Read  
tCYC  
Unselected  
tCH  
Pipelined Read  
CLK  
tADH  
tADS  
tCL  
ADSP ignored with CE1 inactive  
ADSP  
tADS  
ADSC initiated read  
ADSC  
ADV  
tADVS  
tADH  
Suspend Burst  
tADVH  
tAS  
ADD  
GW  
RD1  
RD3  
RD2  
tAH  
tWS  
tWS  
tWH  
BWE  
CE1  
tCES  
tCEH  
tWH  
CE1 masks ADSP  
Unselected with CE2  
CE2  
tCES  
tCEH  
CE3  
OE  
tCES  
tEOV  
tCEH  
tOEHZ  
tDOH  
tCO  
Data Out  
2c  
1a  
2d  
3a  
2a  
2b  
tCLZ  
tCHZ  
= DONT CARE  
= UNDEFINED  
Note:  
18. RDx stands for Read Data from Address X.  
Document #: 38-05267 Rev. *A  
Page 24 of 34  
CY7C1380B  
CY7C1382B  
Switching Waveforms (continued)  
Read/Write Cycle Timing[4, 16, 17, 18]  
Single Read  
tCYC  
Single Write  
tCH  
Unselected  
Burst Read  
Pipelined Read  
CLK  
tADH  
tADS  
tCL  
ADSP ignored with CE1 inactive  
ADSP  
ADSC  
ADV  
tADS  
tADVS  
tADH  
tAS  
tADVH  
WD2  
ADD  
RD1  
RD3  
tAH  
GW  
tWS  
tWS  
tWH  
BWE  
CE1  
tCES  
tCEH  
tWH  
CE1 masks ADSP  
CE2  
tCES  
tCEH  
CE3  
OE  
tEOV  
tCES  
tCEH  
tEOHZ  
tDS  
tDH  
tDOH  
tEOLZ  
tCO  
2a  
Out  
3b  
Out  
3c  
Out  
3a  
Out  
3d  
Data In/Out  
1a  
2a  
In  
Out  
Out  
tCHZ  
= UNDEFINED  
= DONT CARE  
Document #: 38-05267 Rev. *A  
Page 25 of 34  
CY7C1380B  
CY7C1382B  
Switching Waveforms (continued)  
Pipeline Timing[4, 19, 20]  
tCYC  
tCL  
tCH  
CLK  
tAS  
WD1  
WD2  
WD3  
WD4  
RD1  
RD2  
RD3  
RD4  
ADD  
tADS  
tADH  
ADSC initiated Reads  
ADSC  
ADSP initiated Reads  
ADSP  
ADV  
tCEH  
tCES  
CE1  
CE  
tWES  
tWEH  
BWE  
OE  
ADSP ignored  
with CE1 HIGH  
tCLZ  
Data In/Out  
1a  
In  
1a  
2a  
3a  
4a  
2a  
In  
3a  
In  
4a  
Out Out Out Out  
In  
tCDV  
tDOH  
Back to Back Reads  
tCHZ  
= UNDEFINED  
= DONT CARE  
Notes:  
19. Device originally deselected.  
20. CE is the combination of CE2 and CE3. All chip selects need to be active in order to select the device.  
Document #: 38-05267 Rev. *A  
Page 26 of 34  
CY7C1380B  
CY7C1382B  
Switching Waveforms (continued)  
OE Switching Waveforms  
OE  
tEOV  
tEOHZ  
Three-State  
tEOLZ  
I/Os  
Document #: 38-05267 Rev. *A  
Page 27 of 34  
CY7C1380B  
CY7C1382B  
Switching Waveforms (continued)  
ZZ Mode Timing [4, 21, 22]  
CLK  
ADSP  
HIGH  
ADSC  
CE1  
LOW  
CE2  
HIGH  
CE3  
ZZ  
tZZS  
IDD  
IDD(active)  
tZZREC  
IDDZZ  
I/Os  
Three-state  
NotefjdfdhfdjfdfjdjdjdjNo  
Note:  
21. Device must be deselected when entering ZZ mode. See Cycle Descriptions Table for all possible signal conditions to deselect the device.  
22. I/Os are in three-state when exiting ZZ sleep mode.  
Document #: 38-05267 Rev. *A  
Page 28 of 34  
CY7C1380B  
CY7C1382B  
Ordering Information  
Speed  
Package  
Name  
Operating  
Range  
(MHz)  
200  
167  
150  
133  
200  
167  
150  
133  
200  
167  
150  
133  
200  
167  
150  
133  
200  
167  
150  
133  
200  
167  
150  
133  
Ordering Code  
Package Type  
CY7C1380B-200AC  
CY7C1380B-167AC  
CY7C1380B-150AC  
CY7C1380B-133AC  
CY7C1382B-200AC  
CY7C1382B-167AC  
CY7C1382B-150AC  
CY7C1382B-133AC  
CY7C1380B-200BGC  
CY7C1380B-167BGC  
CY7C1380B-150BGC  
CY7C1380B-133BGC  
CY7C1382B-200BGC  
CY7C1382B-167BGC  
CY7C1382B-150BGC  
CY7C1382B-133BGC  
CY7C1380B-200BZC  
CY7C1380B-167BZC  
CY7C1380B-150BZC  
CY7C1380B-133BZC  
CY7C1382B-200BZC  
CY7C1382B-167BZC  
CY7C1382B-150BZC  
CY7C1382B-133BZC  
A101  
BG119  
BB165A  
100-Lead Thin Quad Flat Pack  
Commercial  
119 BGA  
165 FBGA  
Document #: 38-05267 Rev. *A  
Page 29 of 34  
CY7C1380B  
CY7C1382B  
Ordering Information  
Speed  
Package  
Name  
Operating  
Range  
(MHz)  
167  
150  
133  
167  
150  
133  
167  
150  
133  
167  
150  
133  
167  
150  
133  
167  
150  
133  
Ordering Code  
Package Type  
CY7C1380B-167AI  
CY7C1380B-150AI  
CY7C1380B-133AI  
CY7C1382B-167AI  
CY7C1382B-150AI  
CY7C1382B-133AI  
CY7C1380B-167BGI  
CY7C1380B-150BGI  
CY7C1380B-133BGI  
CY7C1382B-167BGI  
CY7C1382B-150BGI  
CY7C1382B-133BGI  
CY7C1380B-167BZI  
CY7C1380B-150BZI  
CY7C1380B-133BZI  
CY7C1382B-167BZI  
CY7C1382B-150BZI  
CY7C1382B-133BZI  
A101  
BG119  
BB165A  
100-Lead Thin Quad Flat Pack  
Industrial  
119 BGA  
165 FBGA  
Shaded areas contain advance information.  
Pentium is a registered trademark of Intel Corporation. All product and company names mentioned in this document may be the  
trademarks of their respective holders.  
Document #: 38-05267 Rev. *A  
Page 30 of 34  
CY7C1380B  
CY7C1382B  
Package Diagrams  
100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
51-85050-A  
Document #: 38-05267 Rev. *A  
Page 31 of 34  
CY7C1380B  
CY7C1382B  
Package Diagrams (continued)  
165-Ball FBGA (13 x 15 x 1.2 mm) BB165A  
51-85122-*B  
Document #: 38-05267 Rev. *A  
Page 32 of 34  
CY7C1380B  
CY7C1382B  
Package Diagrams (continued)  
119-Lead PBGA (14 x 22 x 2.4 mm) BG119  
51-85115-*A  
Document #: 38-05267 Rev. *A  
Page 33 of 34  
© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
CY7C1380B  
CY7C1382B  
Revision History  
Document Title: CY7C1380B, CY7C1382B 512K x 36M/1M x 18 Pipelined SRAM  
Document Number: 38-05267  
Issue  
Date  
Orig. of  
Change  
REV.  
**  
ECN NO.  
114166  
114817  
DESCRIPTION OF CHANGE  
3/18/02  
4/10/02  
DSG  
DSG  
Change from Spec number: 38-01074 to 38-05267  
*A  
Converted updated version: earlier version converted in Rev. **.  
The following are the differences between versions:  
1. Changed VOH and VOL values to reflect new char. values  
2. Maximum voltage rating to 4.6V  
3. Modified ESD voltage to 1500V  
4. Changed tDOH to 1.3 ns  
5. Changed VDD range to +10%/5%  
6. Changed the IDD and ISB values to reflect new char values  
7. Added 165 fBGA packaging  
8. Added I-temp  
9. Changed set-up time from 2.0 ns to 1.5 ns  
10.Changed leakage current from mA to µA  
11. Changed tEOHZ from 3.0 ns to 4.0 ns  
12. Added Thermal Resistance Table  
13. Preliminary to Final  
Document #: 38-05267 Rev. *A  
Page 34 of 34  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY