CY7C1383B-133BGC [CYPRESS]

Standard SRAM, 1MX18, 6.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, FBGA-119;
CY7C1383B-133BGC
型号: CY7C1383B-133BGC
厂家: CYPRESS    CYPRESS
描述:

Standard SRAM, 1MX18, 6.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, FBGA-119

静态存储器
文件: 总30页 (文件大小:844K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1CY7C1381B  
CY7C1381B  
CY7C1383B  
PRELIMINARY  
512K x 36 / 1 Mb x 18 Flow-Thru SRAM  
nal burst operation. All synchronous inputs are gated by reg-  
isters controlled by a positive-edge-triggered clock input  
(CLK). The synchronous inputs include all addresses, all data  
inputs, address-pipelining Chip Enable (CE), Burst Control In-  
Features  
• Fast access times: 6.5, 7.5, 8.5 ns  
• Fast clock speed: 133, 117, 100 MHz  
• Provide high-performance 3-1-1-1 access rate  
• Optimal for depth expansion  
puts (ADSC, ADSP, and ADV), Write Enables (BWa, BWb,  
BWc, BWd, and BWe), and Global Write (GW).  
• 3.3V (–5% / +10%) power supply  
Asynchronous inputs include the Output Enable (OE) and  
Burst Mode Control (MODE). The data outputs (Q), enabled  
by OE, are also asynchronous.  
• Common data inputs and data outputs  
• Byte Write Enable and Global Write control  
• Chip enable for address pipeline  
• Address, data and control registers  
• Internally self-timed Write Cycle  
• Burst control pins (interleaved or linear burst se-  
quence)  
• Automatic power-down for portable applications  
• High-density, high-speed packages  
Addresses and chip enables are registered with either Ad-  
dress Status Processor (ADSP) or address status controller  
(ADSC) input pins. Subsequent burst addresses can be inter-  
nally generated as controlled by the Burst Advance Pin (ADV).  
Address, data inputs, and write controls are registered on-chip  
to initiate self-timed WRITE cycle. WRITE cycles can be one  
to four bytes wide as controlled by the write control inputs.  
Individual byte write allows individual byte to be written. BWa  
controls DQ1-DQ8 and DQP1. BWb controls DQ9-DQ16 and  
DQP2. BWc controls DQ17-DQ24and DQP3. BWd controls  
DQ25-DQ32 and DQP4. BWa, BWb BWc, and BWd can be  
active only with BWe being LOW. GW being LOW causes all  
bytes to be written. WRITE pass-through capability allows writ-  
ten data available at the output for the immediately next READ  
cycle. This device also incorporates pipelined enable circuit for  
easy depth expansion without penalizing system performance.  
• JTAG boundary scan for BGA packaging version  
Functional Description  
The Cypress Synchronous Burst SRAM family employs  
high-speed, low power CMOS designs using advanced sin-  
gle-layer polysilicon, triple-layer metal technology. Each mem-  
ory cell consists of six transistors.  
The CY7C1381B and CY7C1383A SRAMs integrate  
524,288x36 and 1,048,576x18 SRAM cells with advanced  
synchronous peripheral circuitry and a 2-bit counter for inter-  
All inputs and outputs of the CY7C1381B and the CY7C1383A  
are JEDEC standard JESD8-5 compatible.  
Selection Guide  
-133 MHz  
6.5  
-117 MHz  
7.5  
-100 MHz  
8.5  
Maximum Access Time (ns)  
Maximum Operating Current (mA)  
200  
175  
150  
Maximum CMOS Standby Current (mA)  
30  
30  
30  
Shaded areas contain advance information  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
July 2, 2001  
CY7C1381B  
CY7C1383B  
PRELIMINARY  
Functional Block Diagram  
Logic Block Diagram x18:  
MODE  
2
(A ,A )  
0
1
Q
CLK  
ADV  
ADSC  
0
BURST  
COUNTER  
CE  
Q1  
Q
CLR  
ADSP  
18  
20  
ADDRESS  
REGISTER  
CE  
D
1 Mb X 18  
A
[19:0]  
20  
18  
MEMORY  
ARRAY  
GW  
DQb[15:8],DP1  
D
Q
Q
BYTEWRITE  
BWE  
REGISTERS  
BWS  
b
D DQa[7:0],DP0  
BYTEWRITE  
REGISTERS  
BWS  
a
18  
18  
CE  
CE  
CE  
1
2
3
D
CE  
ENABLE  
Q
REGISTER  
CLK  
INPUT  
REGISTERS  
CLK  
OE  
ZZ  
SLEEP  
CONTROL  
DQ  
DP  
[15:0]  
[1:0]  
Logic Block Diagram x36:  
MODE  
2
(A ,A )  
0
1
Q
CLK  
ADV  
ADSC  
0
Q1  
Q
BURST  
COUNTER  
CE  
CLR  
ADSP  
17  
19  
ADDRESS  
REGISTER  
CE  
D
512K X 36  
A
[18:0]  
19  
17  
MEMORY  
ARRAY  
GW  
DQd[31:24],DP3  
D
D
Q
BYTEWRITE  
REGISTERS  
BWE  
BWS  
d
DQc[23:16],DP2  
Q
BYTEWRITE  
REGISTERS  
BWS  
BWS  
c
D
D
DQb[15:8],DP1  
Q
BYTEWRITE  
REGISTERS  
b
DQa[7:0],DP0Q  
BWS  
BYTEWRITE  
a
REGISTERS  
36  
36  
CE  
CE  
CE  
1
2
3
D
ENABLE  
Q
CE REGISTER  
CLK  
INPUT  
REGISTERS  
CLK  
OE  
ZZ  
SLEEP  
CONTROL  
DQ  
DP  
[31:0]  
[3:0]  
2
CY7C1381B  
CY7C1383B  
PRELIMINARY  
Pin Configurations  
100-Pin TQFP  
NC  
NC  
NC  
VDDQ  
VSSQ  
NC  
NC,DPc  
1
A
NC  
NC  
VDDQ  
VSSQ  
NC  
DPa  
DQa  
DQa  
VSSQ  
VDDQ  
DQa  
DQa  
VSS  
NC  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC,DPb  
DQb  
DQb  
VDDQ  
VSSQ  
DQb  
DQb  
DQb  
DQb  
VSSQ  
VDDQ  
DQb  
DQb  
VSS  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQc  
2
DQc  
VDDQ  
VSSQ  
DQc  
3
4
5
6
NC  
DQc  
7
DQb  
DQb  
VSSQ  
VDDQ  
DQb  
DQb  
NC  
VDD  
NC  
VSS  
DQb  
DQb  
VDDQ  
VSSQ  
DQb  
DQb  
DPb  
NC  
DQc  
8
DQc  
9
9
10  
11  
VSSQ  
VDDQ  
DQc  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
12  
DQc  
13  
NC  
14  
VDD  
15  
NC  
VDD  
ZZ  
CY7C1381B  
(512K X 36)  
CY7C1383B  
(1 Mb x 18)  
NC  
16  
VDD  
ZZ  
VSS  
17  
DQd  
18  
DQa  
DQa  
VDDQ  
VSSQ  
DQa  
DQa  
NC  
DQa  
DQa  
VDDQ  
VSSQ  
DQa  
DQa  
DQa  
DQa  
VSSQ  
VDDQ  
DQa  
DQa  
NC,DPa  
DQd  
19  
20  
21  
VDDQ  
VSSQ  
DQd  
22  
DQd  
23  
DQd  
24  
DQd  
NC  
25  
26  
27  
VSSQ  
VDDQ  
NC  
NC  
NC  
VSSQ  
VDDQ  
DQd  
DQd  
29  
VSSQ  
VDDQ  
NC  
NC  
NC  
28  
NC,DPd  
30  
3
CY7C1381B  
CY7C1383B  
PRELIMINARY  
Pin Configurations (continued)  
119-Ball BGA  
CY7C1381B (512K x 36)  
2
A
1
3
A
4
5
A
6
A
7
A
B
C
D
E
F
VDDQ  
ADSP  
ADSC  
VDD  
NC  
VDDQ  
NC  
NC  
NC  
A
A
A
A
A
A
A
A
NC  
DQc  
DQc  
VDDQ  
DQPc  
DQc  
DQc  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQPb  
DQb  
DQb  
DQb  
DQb  
VDDQ  
CE1  
OE  
G
H
J
DQc  
DQc  
VDDQ  
DQc  
DQc  
VDD  
BWc  
VSS  
NC  
ADV  
GW  
VDD  
BWb  
VSS  
NC  
DQb  
DQb  
VDD  
DQb  
DQb  
VDDQ  
K
L
DQd  
DQd  
DQd  
DQd  
DQd  
VSS  
BWd  
VSS  
CLK  
NC  
VSS  
BWa  
VSS  
DQa  
DQa  
DQa  
DQa  
DQa  
M
VDDQ  
BWE  
VDDQ  
N
P
R
T
DQd  
DQd  
NC  
DQd  
VSS  
VSS  
MODE  
A
A1  
A0  
VSS  
VSS  
NC  
A
DQa  
DQPa  
A
DQa  
DQa  
NC  
DQPd  
VDD  
A
A
NC  
NC  
NC  
ZZ  
VDDQ  
TMS  
TDI  
TCK  
TDO  
NC  
VDDQ  
U
CY7C1383B (1M x 18)  
2
A
1
3
A
4
5
A
6
A
7
VDDQ  
NC  
ADSP  
ADSC  
VDD  
NC  
VDDQ  
NC  
A
B
C
D
E
F
A
A
A
A
NC  
A
A
A
A
NC  
DQb  
NC  
NC  
DQb  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQPa  
NC  
DQa  
NC  
CE1  
OE  
DQa  
VDDQ  
VDDQ  
G
H
J
NC  
DQb  
VDDQ  
NC  
DQb  
NC  
BWb  
VSS  
NC  
ADV  
GW  
VDD  
CLK  
NC  
VSS  
VSS  
NC  
NC  
DQb  
VDD  
NC  
DQa  
NC  
VDD  
DQb  
NC  
VDDQ  
DQa  
NC  
VSS  
VSS  
VSS  
BWa  
K
L
DQb  
DQa  
M
VDDQ  
DQb  
NC  
DQb  
NC  
VSS  
VSS  
VSS  
BWE  
A1  
VSS  
VSS  
VSS  
NC  
DQa  
NC  
VDDQ  
NC  
N
P
DQPb  
A0  
DQa  
R
T
NC  
NC  
A
A
MODE  
A
VDD  
NC  
NC  
A
A
A
NC  
ZZ  
VDDQ  
TMS  
TDI  
TCK  
TDO  
NC  
VDDQ  
U
4
CY7C1381B  
CY7C1383B  
PRELIMINARY  
Pin Definitions  
Name  
I/O  
Description  
A0  
A1  
A
Input-  
Synchronous  
Address Inputs used to select one of the address locations. Sampled at the  
rising edge of the CLK if ADSP or ADSC is active LOW, and CE1, CE2, and  
CE3 are sampled active. A[1:0] feed the 2-bit counter.  
BWa  
BWb  
BWc  
BWd  
Input-  
Synchronous  
Byte Write Select Inputs, active LOW. Qualified with BWE to conduct byte  
writes to the SRAM. Sampled on the rising edge of CLK.  
GW  
Input-  
Synchronous  
Global Write Enable Input, active LOW. When asserted LOW on the rising  
edge of CLK, a global write is conducted (ALL bytes are written, regardless of  
the values on BWa,b,c,d and BWE).  
BWE  
CLK  
Input-  
Synchronous  
Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This  
signal must be asserted LOW to conduct a byte write.  
Input-Clock  
Clock Input. Used to capture all synchronous inputs to the device. Also used  
to increment the burst counter when ADV is asserted LOW, during a burst  
operation.  
CE1  
Input-  
Synchronous  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used  
in conjunction with CE2 and CE3 to select/deselect the device. ADSP is ig-  
nored if CE1 is HIGH.  
CE2  
CE3  
OE  
Input-  
Synchronous  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used  
in conjunction with CE1 and CE3 to select/deselect the device.(TQFP Only)  
Input-  
Synchronous  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used  
in conjunction with CE1 and CE2 to select/deselect the device. (TQFP Only)  
Input-  
Asynchronous  
Output Enable, asynchronous input, active LOW. Controls the direction of the  
I/O pins. When LOW, the I/O pins behave as outputs. When deasserted HIGH,  
I/O pins are three-stated, and act as input data pins. OE is masked during the  
first clock of a read cycle when emerging from a deselected state.  
ADV  
Input-  
Synchronous  
Advance Input signal, sampled on the rising edge of CLK. When asserted, it  
automatically increments the address in a burst cycle.  
ADSP  
Input-  
Synchronous  
Address Strobe from Processor, sampled on the rising edge of CLK. When  
asserted LOW, A is captured in the address registers. A[1:0] are also loaded  
into the burst counter. When ADSP and ADSC are both asserted, only ADSP  
is recognized. ASDP is ignored when CE1 is deasserted HIGH.  
ADSC  
Input-  
Synchronous  
Address Strobe from Controller, sampled on the rising edge of CLK. When  
asserted LOW, A[x:0] is captured in the address registers. A[1:0] are also loaded  
into the burst counter. When ADSP and ADSC are both asserted, only ADSP  
is recognized.  
MODE  
ZZ  
Input-  
Static  
Selects burst order. When tied to GND selects linear burst sequence. When  
tied to VDDQ or left floating selects interleaved burst sequence. This is a strap  
pin and should remain static during device operation.  
Input-  
Asynchronous  
ZZ “sleep” Input. This active HIGH input places the device in a non-time critical  
“sleep” condition with data integrity preserved.  
DQa, DQPa  
DQb, DQPb  
DQc, DQPc  
DQd, DQPd  
I/O-  
Synchronous  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register  
that is triggered by the rising edge of CLK. As outputs, they deliver the data  
contained in the memory location specified by A during the previous clock rise  
of the read cycle. The direction of the pins is controlled by OE. When OE is  
asserted LOW, the pins behave as outputs. When HIGH, DQa–DQd and DQ-  
Pa–DQPd are placed in a three-state condition.  
TDO  
JTAG serial  
output  
Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK  
(BGA Only).  
Synchronous  
5
CY7C1381B  
CY7C1383B  
PRELIMINARY  
Pin Definitions  
Name  
I/O  
Description  
TDI  
JTAG serial  
input  
Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK (BGA  
Only).  
Synchronous  
TMS  
TCK  
VDD  
Test Mode Select  
Synchronous  
This pin controls the Test Access Port state machine. Sampled on the rising  
edge of TCK (BGA Only).  
JTAG serial  
clock  
Serial clock to the JTAG circuit (BGA Only).  
Power Supply  
Power supply inputs to the core of the device. Should be connected to 2.5V  
power supply.  
VSS  
Ground  
Ground for the core of the device. Should be connected to ground of the sys-  
tem.  
VDDQ  
I/O Power  
Supply  
Power supply for the I/O circuitry. Should be connected to a 2.5V power supply.  
VSSQ  
NC  
I/O Ground  
-
Ground for the I/O circuitry. Should be connected to ground of the system.  
No Connects.  
6
CY7C1381B  
CY7C1383B  
PRELIMINARY  
will remain unaltered. All I/Os are three-stated during a byte  
write because the CY7C1381B/CY7C1383B is a common I/O  
device, the Output Enable (OE) must be deasserted HIGH be-  
fore presenting data to the DQx inputs. Doing so will  
three-state the output drivers. As a safety precaution, DQx are  
automatically three-stated whenever a write cycle is detected,  
regardless of the state of OE.  
Functional Description  
Single Read Accesses  
This access is initiated when the following conditions are sat-  
isfied at clock rise: (1) ADSP or ADSC is asserted LOW, (2)  
chip enable (CE1, CE2, CE3 on TQFP, CE1 on BGA) asserted  
active, and (3) the write signals (GW, BWE) are all deasserted  
HIGH. ADSP is ignored if CE1 is HIGH. The address presented  
to the address inputs is stored into the address advancement  
logic and the Address Register while being presented to the  
memory core. If the OE input is asserted LOW, the requested  
data will be available at the data outputs a maximum to tCDV  
after clock rise. ADSP is ignored if CE1 is HIGH.  
Burst Sequences  
The CY7C1381B/CY7C1383B provides a two-bit wraparound  
counter, fed by A[1:0], that implements either an interleaved or  
linear burst sequence. to support processors that follow a lin-  
ear burst sequence. The burst sequence is user selectable  
through the MODE input.  
Asserting ADV LOW at clock rise will automatically increment  
the burst counter to the next address in the burst sequence.  
Both read and write burst operations are supported.  
Single Write Accesses Initiated by ADSP  
This access is initiated when both of the following conditions  
are satisfied at clock rise: (1) ADSP is asserted LOW, and (2)  
Chip Enable asserted active. The address presented is loaded  
into the address register and the address advancement logic  
while being delivered to the RAM core. The write signals (GW,  
BWE, and BWx) and ADV inputs are ignored during this first  
clock cycle. If the write inputs are asserted active (see Write  
Cycle Descriptions table for appropriate states that indicate a  
write) on the next clock rise, the appropriate data will be  
Interleaved Burst Sequence  
First  
Address  
Second  
Address  
Third  
Address  
Fourth  
Address  
A[1:0]  
A[1:0]  
A[1:0]  
A[1:0]  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
latched  
and  
written  
into  
the  
device.  
The  
CY7C1381B/CY7C1383B provides byte write capability that is  
described in the Write Cycle Description table. Asserting the  
Byte Write Enable input (BWE) with the selected Byte Write  
(BWa,b,c,d for CY7C1381B and BWa,b for CY7C1383B) input  
will selectively write to only the desired bytes. Bytes not select-  
ed during a byte write operation will remain unaltered. All I/Os  
are three-stated during a byte write.  
Linear Burst Sequence  
First  
Address  
Second  
Address  
Third  
Address  
Fourth  
Address  
Because the CY7C1381B/CY7C1383B is a common I/O de-  
vice, the Output Enable (OE) must be deasserted HIGH before  
presenting data to the DQxinputs. Doing so will three-state the  
output drivers. As a safety precaution, DQx are automatically  
three-stated whenever a write cycle is detected, regardless of  
the state of OE.  
A[1:0]  
A[1:0]  
A[1:0]  
A[1:0]  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
Single Write Accesses Initiated by ADSC  
ADSC write accesses are initiated when the following condi-  
tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is  
deasserted HIGH, (3) Chip Enable (CE1, CE2, CE3 on TQFP,  
CE1 on BGA) asserted active, and (4) the appropriate combi-  
nation of the write inputs (GW, BWE, and BWx) are asserted  
active to conduct a write to the desired byte(s). ADSC is ig-  
nored if ADSP is active LOW.  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ HIGH  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed. Ac-  
cesses pending when entering the “sleep” mode are not con-  
sidered valid nor is the completion of the operation guaran-  
teed. The device must be deselected prior to entering the  
“sleep” mode. Chip Enable (CE1, CE2, CE3, on TQFP, CE1 on  
BGA), ADSP and ADSC must remain inactive for the duration  
of tZZREC after the ZZ input returns LOW. Leaving ZZ uncon-  
nected defaults the device into an active state.  
The address presented to A[17:0] is loaded into the address  
register and the address advancement logic while being deliv-  
ered to the RAM core. The ADV input is ignored during this  
cycle. If a global write is conducted, the data presented to the  
DQx is written into the corresponding address location in the  
RAM core. If a byte write is conducted, only the selected bytes  
are written. Bytes not selected during a byte write operation  
7
CY7C1381B  
CY7C1383B  
PRELIMINARY  
ZZ Mode Electrical Characteristics  
Parameter  
ICCZZ  
Description  
Test Conditions  
Min.  
Max.  
Unit  
Snooze mode  
standby current  
ZZ > VDD 0.2V  
15  
mA  
tZZS  
Deviceoperationto  
ZZ  
ZZ > VDD 0.2V  
ZZ < 0.2V  
2tCYC  
ns  
ns  
tZZREC  
ZZ recovery time  
2tCYC  
Cycle Descriptions[1, 2, 3]  
Next Cycle  
Unselected  
Add. Used  
None  
ZZ  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
CE3  
X
1
CE2  
X
X
0
CE1  
1
ADSP  
X
0
ADSC  
ADV  
X
X
X
X
X
X
X
0
OE  
X
X
X
X
X
X
X
1
DQ  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
DQ  
Write  
X
0
X
X
0
0
X
0
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
X
Unselected  
None  
0
X
Unselected  
None  
X
1
0
0
X
Unselected  
None  
X
0
0
1
X
Unselected  
None  
X
0
0
1
X
Begin Read  
External  
External  
Next  
1
0
0
X
Begin Read  
0
1
0
1
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
X
Continue Read  
Continue Read  
Continue Read  
Continue Read  
Suspend Read  
Suspend Read  
Suspend Read  
Suspend Read  
Begin Write  
X
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
X
1
X
X
1
1
Next  
1
0
0
Next  
X
X
1
0
1
Hi-Z  
DQ  
Next  
1
0
0
Current  
Current  
Current  
Current  
Current  
Current  
External  
Next  
X
X
1
1
1
Hi-Z  
DQ  
1
1
0
X
X
1
1
1
Hi-Z  
DQ  
1
1
0
X
1
1
X
X
X
X
X
X
X
X
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Begin Write  
X
1
1
Begin Write  
0
X
0
Continue Write  
Continue Write  
Suspend Write  
Suspend Write  
X
X
X
X
X
X
X
X
X
X
X
1
1
Next  
X
1
0
Current  
Current  
None  
X
1
1
X
X
1
ZZ “sleep”  
X
X
Note:  
1. X =”Don't Care”, 1 = HIGH, 0 = LOW.  
2. The SRAM always initiates a read cycle when ADSP asserted, regardless of the state of GW, BWE, or BWx. Writes may occur only on subsequent clocks  
after the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the write cycle to allow the outputs to three-state. OE  
is a “Don't Care” for the remainder of the write cycle.  
3. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle DQ = High-Z when OE is inactive  
or when the device is deselected, and DQ = data when OE is active.  
8
CY7C1381B  
CY7C1383B  
PRELIMINARY  
Write Cycle Description[1, 2, 3]  
Function (CY7C1381B)  
Read  
GW  
1
BWE  
BWd  
X
1
BWc  
X
1
BWb  
BWa  
X
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
X
X
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
X
Read  
1
Write Byte 0 - DQa  
Write Byte 1 - DQb  
Write Bytes 1, 0  
Write Byte 2 - DQc  
Write Bytes 2, 0  
Write Bytes 2, 1  
Write Bytes 2, 1, 0  
Write Byte 3 - DQd  
Write Bytes 3, 0  
Write Bytes 3, 1  
Write Bytes 3, 1, 0  
Write Bytes 3, 2  
Write Bytes 3, 2, 0  
Write Bytes 3, 2, 1  
Write All Bytes  
1
1
1
0
1
1
1
1
1
1
1
0
1
1
0
1
1
1
0
0
1
1
0
1
1
1
0
0
1
0
1
1
1
0
1
0
1
0
1
1
1
0
1
0
1
0
0
1
1
0
0
0
1
0
0
1
1
0
0
0
Write All Bytes  
0
X
X
X
Function (CY7C1383B)  
Read  
GW  
BWE  
BWb  
BWa  
1
1
1
1
1
0
1
0
0
0
0
X
X
1
1
0
0
X
X
1
0
1
0
X
Read  
Write Byte 0 - DQa and DPa  
Write Byte 1 - DQb and DPb  
Write All Bytes  
Write All Bytes  
9
CY7C1381B  
CY7C1383B  
PRELIMINARY  
ry. Only one register can be selected at a time through the  
instruction registers. Data is serially loaded into the TDI pin on  
the rising edge of TCK. Data is output on the TDO pin on the  
falling edge of TCK.  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The CY7C1381B/CY7C1383B incorporates a serial boundary  
scan Test Access Port (TAP) in the FBGA package only. The  
TQFP package does not offer this functionality. This port oper-  
ates in accordance with IEEE Standard 1149.1-1900, but does  
not have the set of functions required for full 1149.1 compli-  
ance. These functions from the IEEE specification are exclud-  
ed because their inclusion places an added delay in the critical  
speed path of the SRAM. Note that the TAP controller func-  
tions in a manner that does not conflict with the operation of  
other devices using 1149.1 fully compliant TAPs. The TAP op-  
erates using JEDEC standard 3.3V I/O logic levels.  
Instruction Register  
Three-bit instructions can be serially loaded into the instruc-  
tion register. This register is loaded when it is placed between  
the TDI and TDO pins as shown in the TAP Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as de-  
scribed in the previous section.  
Disabling the JTAG Feature  
When the TAP controller is in the CaptureIR state, the two least  
significant bits are loaded with a binary "01" pattern to allow  
for fault isolation of the board level serial test path.  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are inter-  
nally pulled up and may be unconnected. They may alternately  
be connected to VDD through a pull-up resistor. TDO should  
be left unconnected. Upon power-up, the device will come up  
in a reset state which will not interfere with the operation of the  
device.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain states. The bypass  
register is a single-bit register that can be placed between TDI  
and TDO pins. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
Test Access Port (TAP) - Test Clock  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Boundary Scan Register  
The boundary scan register is connected to all the input and  
output pins on the SRAM. Several no connect (NC) pins are  
also included in the scan register to reserve pins for higher  
density devices. The x36 configuration has a xx-bit-long regis-  
ter, and the x18 configuration has a yy-bit-long register.  
Test Mode Select  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this pin unconnected if the TAP is not used. The pin is  
pulled up internally, resulting in a logic HIGH level.  
The boundary scan register is loaded with the contents of the  
RAM Input and Output ring when the TAP controller is in the  
Capture-DR state and is then placed between the TDI and  
TDO pins when the controller is moved to the Shift-DR state.  
The EXTEST, SAMPLE/PRELOAD and SAMPLE Z instruc-  
tions can be used to capture the contents of the Input and  
Output ring.  
Test Data-In (TDI)  
The TDI pin is used to serially input information into the regis-  
ters and can be connected to the input of any of the registers.  
The register between TDI and TDO is chosen by the instruc-  
tion that is loaded into the TAP instruction register. For infor-  
mation on loading the instruction register, see the TAP Control-  
ler State Diagram. TDI is internally pulled up and can be  
unconnected if the TAP is unused in an application. TDI is con-  
nected to the Most Significant Bit (MSB) on any register.  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI, and the LSB is connected to TDO.  
Identification (ID) Register  
Test Data Out (TDO)  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register Defi-  
nitions table.  
The TDO output pin is used to serially clock data-out from the  
registers. The e output is active depending upon the current  
state of the TAP state machine (see TAP Controller State  
Diagram). The output changes on the falling edge of TCK.  
TDO is connected to the Least Significant Bit (LSB) of any  
register.  
Performing a TAP Reset  
TAP Instruction Set  
A Reset is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This RESET does not affect the operation of the  
SRAM and may be performed while the SRAM is operating. At  
power-up, the TAP is reset internally to ensure that TDO  
comes up in a high-Z state.  
Eight different instructions are possible with the three-bit in-  
struction register. All combinations are listed in the Instruction  
Code table. Three of these instructions are listed as RE-  
SERVED and should not be used. The other five instructions  
are described in detail below.  
TAP Registers  
The TAP controller used in this SRAM is not fully compliant to  
the 1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented. The TAP controller can-  
not be used to load address, data or control signals into the  
Registers are connected between the TDI and TDO pins and  
allow data to be scanned into and out of the SRAM test circuit-  
10  
CY7C1381B  
CY7C1383B  
PRELIMINARY  
SRAM and cannot preload the Input or Output buffers. The  
SRAM does not implement the 1149.1 commands EXTEST or  
INTEST or the PRELOAD portion of SAMPLE / PRELOAD;  
rather it performs a capture of the Inputs and Output ring when  
these instructions are executed.  
When the SAMPLE / PRELOAD instructions loaded into the  
instruction register and the TAP controller in the Capture-DR  
state, a snapshot of data on the inputs and output pins is cap-  
tured in the boundary scan register.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 10 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is possible  
that during the Capture-DR state, an input or output will under-  
go a transition. The TAP may then try to capture a signal while  
in transition (metastable state). This will not harm the device,  
but there is no guarantee as to the value that will be captured.  
Repeatable results may not be possible.  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO pins.  
To execute the instruction once it is shifted in, the TAP control-  
ler needs to be moved into the Update-IR state.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is to be ex-  
ecuted whenever the instruction register is loaded with all 0s.  
EXTEST is not implemented in the TAP controller, and there-  
fore this device is not compliant to the 1149.1 standard.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller's capture set-up plus  
hold times (TCS and TCH). The SRAM clock input might not  
be captured correctly if there is no way in a design to stop (or  
slow) the clock during a SAMPLE / PRELOAD instruction. If  
this is an issue, it is still possible to capture all other signals  
and simply ignore the value of the CK and CK captured in the  
boundary scan register.  
The TAP controller does recognize an all-0 instruction. When  
an EXTEST instruction is loaded into the instruction register,  
the SRAM responds as if a SAMPLE / PRELOAD instruction  
has been loaded. There is one difference between the two  
instructions. Unlike the SAMPLE / PRELOAD instruction, EX-  
TEST places the SRAM outputs in a High-Z state.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the bound-  
ary scan register between the TDI and TDO pins.  
IDCODE  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO pins and allows  
the IDCODE to be shifted out of the device when the TAP con-  
troller enters the Shift-DR state. The IDCODE instruction is  
Note that since the PRELOAD part of the command is not  
implemented, putting the TAP into the Update to the  
Update-DR state while performing a SAMPLE / PRELOAD in-  
struction will have the same effect as the Pause-DR command.  
loaded into the instruction register upon power-up or whenever  
the TAP controller is given a test logic reset state.  
Bypass  
When the BYPASS instruction is loaded in the instruction reg-  
ister and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO pins. The advan-  
tage of the BYPASS instruction is that it shortens the boundary  
scan path when multiple devices are connected together on a  
board.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO pins when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
Reserved  
SAMPLE / PRELOAD  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
SAMPLE / PRELOAD is a 1149.1 mandatory instruction. The  
PRELOAD portion of this instruction is not implemented, so  
the TAP controller is not fully 1149.1 compliant.  
11  
CY7C1381B  
CY7C1383B  
PRELIMINARY  
TAP Controller State Diagram  
TEST-LOGIC  
1
RESET  
1
1
1
TEST-LOGIC/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
0
CAPTURE-DR  
0
1
1
CAPTURE-DR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
EXIT1-DR  
0
1
EXIT1-IR  
0
1
0
0
PAUSE-DR  
1
PAUSE-IR  
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
1
0
0
Note: The 0/1 next to each state represents the value at TMS at the rising edge of TCK.  
12  
CY7C1381B  
CY7C1383B  
PRELIMINARY  
TAP Controller Block Diagram  
0
Bypass Register  
Selection  
Circuitry  
Selection  
Circuitry  
2
1
0
TDO  
TDI  
Instruction Register  
29  
Identification Register  
31 30  
.
.
2
1
1
0
0
.
x
.
.
.
2
Boundary Scan Register  
TCK  
TMS  
TAP Controller  
TAP Electrical Characteristics Over the Operating Range[4, 5]  
Parameter  
VOH1  
VOH2  
VOL1  
VOL2  
VIH  
Description  
Test Conditions  
Min.  
1.7  
Max.  
Unit  
V
Output HIGH Voltage  
Output HIGH Voltage  
Output LOW Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Load Current  
IOH = –2.0 mA  
IOH = –100 mA  
IOL = 2.0 mA  
IOL = 100 mA  
2.1  
V
0.7  
0.2  
V
V
1.7  
–0.3  
–5  
VDD+0.3  
0.7  
V
VIL  
V
IX  
GND < VI < VDDQ  
5
mA  
4. All Voltage referenced to Ground.  
5. Overshoot: VIH(AC)<VDD+1.5V for t<tTCYC/2. Undershoot:VIL(AC)<0.5V for t<tTCYC/2. Power-up: VIH<2.6V and VDD<2.4V and VDDQ<1.4V for t<200 ms.  
13  
CY7C1381B  
CY7C1383B  
PRELIMINARY  
TAP AC Switching Characteristics Over the Operating Range[6, 7]  
Parameters  
tTCYC  
Description  
Min.  
Max.  
Unit  
ns  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH  
100  
tTF  
10  
MHz  
ns  
tTH  
40  
40  
tTL  
TCK Clock LOW  
ns  
Set-up Times  
tTMSS  
TMS Set-up to TCK Clock Rise  
TDI Set-up to TCK Clock Rise  
Capture Set-up to TCK Rise  
10  
10  
10  
ns  
ns  
ns  
tTDIS  
tCS  
Hold Times  
tTMSH  
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
10  
10  
10  
ns  
ns  
ns  
tTDIH  
tCH  
Capture Hold after Clock Rise  
Output Times  
tTDOV  
TCK Clock LOW to TDO Valid  
TCK Clock LOW to TDO Invalid  
20  
ns  
ns  
tTDOX  
0
Notes:  
6. tCS and tCH refer to the set-up and hold time requirements of latching data from the boundary scan register.  
7. Test conditions are specified using the load in TAP AC test conditions. Tr/Tf = 1 ns.  
14  
CY7C1381B  
CY7C1383B  
PRELIMINARY  
TAP Timing and Test Conditions  
1.25V  
50Ω  
ALL INPUT PULSES  
1.50V  
TDO  
3.3V  
Z =50Ω  
0
C =20 pF  
L
0V  
GND  
(a)  
tTL  
tTH  
Test Clock  
TCK  
tTCYC  
tTMSS  
tTMSH  
Test Mode Select  
TMS  
tTDIS  
tTDIH  
Test Data-In  
TDI  
Test Data-Out  
TDO  
tTDOX  
tTDOV  
15  
CY7C1381B  
CY7C1383B  
PRELIMINARY  
Identification Register Definitions  
Instruction Field  
Revision Number  
512K x 36  
1 Mb x 18  
Description  
xxxx  
xxxx  
Reserved for version number.  
(31:28)  
Device Depth  
(27:23)  
00111  
00100  
01000  
00011  
Defines depth of SRAM. 512K or 1 Mb  
Defines with of the SRAM. x36 or x18  
Reserved for future use.  
Device Width  
(22:18)  
Cypress Device ID  
(17:12)  
xxxxx  
xxxxx  
Cypress JEDEC ID  
(11:1)  
00011100100  
1
00011100100  
1
Allows unique identification of SRAM vendor.  
Indicate the presence of an ID register.  
ID Register Presence  
(0)  
Scan Register Sizes  
Register Name  
Instruction  
Bit Size (x18)  
Bit Size (x36)  
3
1
3
1
Bypass  
ID  
32  
70  
32  
51  
Boundary Scan  
Identification Codes  
Instruction  
Code  
Description  
EXTEST  
000  
Captures the Input/Output ring contents. Places the boundary scan register  
between the TDI and TDO. Forces all SRAM outputs to High-Z state. This  
instruction is not 1149.1 compliant.  
IDCODE  
001  
010  
Loads the ID register with the vendor ID code and places the register be-  
tween TDI and TDO. This operation does not affect SRAM operation.  
SAMPLE Z  
Captures the Input/Output contents. Places the boundary scan register be-  
tween TDI and TDO. Forces all SRAM output drivers to a High-Z state.  
RESERVED  
011  
100  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures the Input/Output ring contents. Places the boundary scan register  
between TDI and TDO. Does not affect the SRAM operation. This instruction  
does not implement 1149.1 preload function and is therefore not 1149.1  
compliant.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not  
affect SRAM operation.  
16  
CY7C1381B  
CY7C1383B  
PRELIMINARY  
Boundary Scan Order (512K X 18)  
Boundary Scan Order (1 Mb X 18)  
Signal  
Name  
Bump  
ID  
Signal  
Name  
Bump  
ID  
Signal  
Name  
Bump  
ID  
Signal  
Name  
Bump  
ID  
Bit #  
Bit #  
36  
Bit #  
Bit #  
36  
1
A
2R  
A
6B  
1
A
2R  
DQb  
2E  
2
A
3T  
4T  
5T  
6R  
3B  
5B  
6P  
7N  
6M  
7L  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
BWa#  
BWb#  
BWc#  
BWd#  
A
5L  
2
A
2T  
3T  
5T  
6R  
3B  
5B  
7P  
6N  
6L  
7K  
7T  
6H  
7G  
6F  
7E  
6D  
6T  
6A  
5A  
4G  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
DQb  
DQb  
NC  
2G  
1H  
5R  
2K  
1L  
3
A
5G  
3G  
3L  
3
A
4
A
4
A
5
A
5
A
DQb  
DQb  
DQb  
DQb  
DQb  
MODE  
A
6
A
2B  
4E  
3A  
2A  
2D  
1E  
2F  
1G  
1D  
1D  
2E  
2G  
1H  
5R  
2K  
1L  
6
A
7
A
CE#  
A
7
A
2M  
1N  
2P  
3R  
2C  
3C  
5C  
6C  
4N  
4P  
8
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
ZZ  
8
DQa  
DQa  
DQa  
DQa  
ZZ  
9
A
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
6K  
7P  
6N  
6L  
A
DQa  
DQa  
DQa  
DQa  
DQa  
A
A
A
A1  
7K  
7T  
6H  
7G  
6F  
7E  
6D  
7H  
6G  
6E  
7D  
6A  
5A  
4G  
A0  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
A
A
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
MODE  
A
A
ADV#  
2M  
1N  
2P  
1K  
2L  
ADSP# 4A  
ADSC# 4B  
OE#  
BWE#  
GW#  
CLK  
A
4F  
4M  
4H  
4K  
6B  
5L  
2N  
1P  
3R  
2C  
3C  
5C  
6C  
4N  
4P  
A
ADV#  
BWa#  
BWb#  
A
ADSP# 4A  
ADSC# 4B  
3G  
2B  
4E  
3A  
2A  
1D  
A
OE#  
4F  
4M  
4H  
4K  
A
CE#  
A
BWE#  
GW#  
CLK  
A
A1  
A
A0  
DQb  
17  
CY7C1381B  
CY7C1383B  
PRELIMINARY  
Static Discharge Voltage >2001V  
(per MIL-STD-883, Method 3015)  
Maximum Ratings  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Storage Temperature 65°C to +150°C  
Ambient Temperature with  
Power Applied55°C to +125°C  
Latch-Up Current >200 mA  
Operating Range  
Ambient  
Range  
Temp.[9]  
VDD  
VDDQ  
Supply Voltage on VDD Relative to GND0.3V to +4.6V  
DC Voltage Applied to Outputs  
Com’l  
0 70°C 3.3V +10%/–5%  
2.375V–VDD  
in High Z State[8]0.5V to VDDQ + 0.5V  
DC Input Voltage[8]0.5V to VDDQ + 0.5V  
Current into Outputs (LOW)20 mA  
Electrical Characteristics Over the Operating Range  
Parameter  
VDD  
Description  
Test Conditions  
Min.  
3.135  
2.375  
2.4  
Max.  
3.6  
Unit  
V
Power Supply Voltage  
I/O Supply Voltage  
Output HIGH Voltage  
3.3V range  
3.3V range  
VDDQ  
VDD  
V
VOH  
VDD = Min., IOH = 1.0 mA  
3.3V  
2.5V  
3.3V  
2.5V  
3.3V  
2.5V  
3.3V  
2.5V  
V
1.7  
V
VOL  
VIH  
VIL  
IX  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage[8]  
VDD = Min., IOL = 1.0 mA  
0.4  
0.7  
V
1.8  
1.7  
V
V
0.3  
–0.3  
5  
0.8  
0.7  
5
Input Load Current  
GND VI VDDQ  
µA  
except ZZ and MODE  
Input Current of MODE  
Input Current of ZZ  
30  
5  
30  
µA  
µA  
IZZ  
Input = VSS  
Note:  
8. Minimum voltage equals –2.0V for pulse durations of less than 20 ns  
9. TA is the temperature.  
18  
CY7C1381B  
CY7C1383B  
PRELIMINARY  
Electrical Characteristics Over the Operating Range (continued)  
Parameter  
Description  
Test Conditions  
Min.  
Max.  
Unit  
IOZ  
Output Leakage  
Current  
GND VI VDDQ, Output Disabled  
2  
2
µA  
IDD  
VDD Operating Supply  
Current  
VDD = Max., IOUT = 0 mA,  
f = fMAX = 1/tCYC  
7.5-ns cycle, 133 MHz  
200  
175  
150  
100  
85  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
8.5-ns cycle, 117 MHz  
10-ns cycle, 100 MHz  
7.5-ns cycle, 133 MHz  
8.5-ns cycle, 117 MHz  
10-ns cycle, 100 MHz  
All Speeds  
ISB1  
ISB2  
ISB3  
ISB4  
Automatic CS  
Power-Down  
Current—TTL Inputs  
Max. VDD, Device Deselect-  
ed, VIN VIH or  
VIN VIL  
f = fMAX = 1/tCYC  
70  
Automatic CS  
Power-Down  
Current—CMOS Inputs  
Max. VDD, Device Deselect-  
ed, VIN 0.3V or  
VIN > VDDQ – 0.3V, f = 0  
30  
Automatic CS  
Power-Down  
Current—CMOS Inputs VIN > VDDQ – 0.3V  
Max. VDD, Device  
Deselected, or VIN 0.3V or  
7.5-ns cycle, 133 MHz  
8.5-ns cycle, 117 MHz  
10-ns cycle, 100 MHz  
All Speeds  
70  
60  
50  
40  
mA  
mA  
mA  
mA  
f = fMAX = 1/tCYC  
Automatic CS  
Power-Down  
Max. VDD, Device  
Deselected,  
Current—TTL Inputs  
VIN VIH or VIN VIL,f = 0  
19  
CY7C1381B  
CY7C1383B  
PRELIMINARY  
Capacitance[10]  
Parameter  
Description  
Test Conditions  
Max.  
Unit  
pF  
CIN  
Input Capacitance  
TA = 25°C, f = 1 MHz,  
DD = 3.3V,  
DDQ = 2.5V  
3
3
3
V
V
CCLK  
CI/O  
Clock Input Capacitance  
Input/Output Capacitance  
pF  
pF  
AC Test Loads and Waveforms[11]  
R=1667Ω  
2.5V  
OUTPUT  
[10]  
OUTPUT  
ALL INPUT PULSES  
90%  
2.5V  
GND  
90%  
10%  
Z =50Ω  
0
R =50Ω  
10%  
L
5 pF  
R=1538Ω  
1 V/ns  
1V/ns  
= 1.25V  
VTH  
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Note:  
10. Tested initially and after any design or process changes that may affect these parameters.  
11. Input waveform should have a slew rate of 1 V/ns.  
20  
CY7C1381B  
CY7C1383B  
PRELIMINARY  
Switching Characteristics Over the Operating Range[12, 13, 14]  
-133  
Max.  
-117  
Max.  
-100  
Max.  
Parameter  
tCYC  
Description  
Min.  
7.5  
3.0  
3.0  
2.0  
0.5  
Min.  
8.5  
3.0  
3.0  
2.0  
0.5  
Min.  
10.0  
3.0  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock Cycle Time  
Clock HIGH  
tCH  
tCL  
Clock LOW  
3.0  
tAS  
Address Set-Up Before CLK Rise  
Address Hold After CLK Rise  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
ADSP, ADSC Set-Up Before CLK Rise  
ADSP, ADSC Hold After CLK Rise  
BWE, GW, BWx Set-Up Before CLK Rise  
BWE, GW, BWx Hold After CLK Rise  
ADV Set-Up Before CLK Rise  
ADV Hold After CLK Rise  
2.0  
tAH  
0.5  
tCO  
6.5  
7.5  
8.5  
tDOH  
tADS  
tADH  
tWES  
tWEH  
tADVS  
tADVH  
tDS  
1.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
0
1.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
0
1.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
0.5  
0
Data Input Set-Up Before CLK Rise  
Data Input Hold After CLK Rise  
Chip enable Set-Up  
tDH  
tCES  
tCEH  
tCHZ  
tCLZ  
tEOHZ  
tEOLZ  
tEOV  
Chip enable Hold After CLK Rise  
Clock to High-Z[13]  
Clock to Low-Z[13]  
OE HIGH to Output High-Z[13, 14]  
OE LOW to Output Low-Z[13, 14]  
OE LOW to Output Valid[13]  
4.0  
3.5  
3.5  
4.0  
3.5  
3.5  
5.0  
4.0  
4.0  
0
0
0
0
0
0
Shaded areas contain advance information.  
Notes:  
12. Unless otherwise noted, test conditions assume signal transition time of 2.5 ns or less, timing reference levels of 1.25V, input pulse levels of 0 to 2.5V, and  
output loading of the specified IOL/IOH and load capacitance. Shown in (a), (b) and (c) of AC Test Loads.  
13. tCHZ, tCLZ, tOEV, tEOLZ, and tEOHZ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ± 200 mV from  
steady-state voltage.  
14. At any given voltage and temperature, tEOHZ is less than tEOLZ and tCHZ is less than tCLZ  
.
21  
CY7C1381B  
CY7C1383B  
PRELIMINARY  
1
Switching Waveforms  
Write Cycle Timing[15,16]  
Single Write  
tCYC  
tADH  
Burst Write  
Pipelined Write  
tCH  
Unselected  
CLK  
tADS  
tCL  
ADSP ignored with CE1 inactive  
ADSP  
ADSC  
ADV  
tADH  
tADS  
ADSC initiated write  
tADVH  
tADVS  
tAS  
ADV Must Be Inactive for ADSP Write  
WD3  
ADD  
GW  
WE  
WD1  
WD2  
tAH  
tWH  
tWH  
tWS  
tWS  
tCES  
tCEH  
CE1 masks ADSP  
CE  
1
tCEH  
tCES  
Unselected with CE2  
CE  
2
CE  
3
tCES  
tCEH  
OE  
tDH  
tDS  
High-Z  
High-Z  
Data In  
3a  
2a  
2d  
= DON’T CARE  
1a  
2b  
2c  
= UNDEFINED  
Notes:  
15. WE is the combination of BWE, BWx, and GW to define a write cycle (see Write Cycle Descriptions table).  
16. WDx stands for Write Data to Address X.  
22  
CY7C1381B  
CY7C1383B  
PRELIMINARY  
Switching Waveforms (continued)  
Read Cycle Timing[15, 17]  
Burst Read  
Single Read  
Unselected  
tCYC  
tCH  
Pipelined Read  
CLK  
tADH  
tADS  
tCL  
ADSP ignored with CE1 inactive  
ADSP  
tADS  
ADSC initiated read  
ADSC  
ADV  
tADVS  
tADH  
Suspend Burst  
tADVH  
tAS  
ADD  
GW  
RD1  
RD3  
RD2  
tAH  
tWS  
tWS  
tWH  
WE  
tCES  
tCEH  
tWH  
CE1 masks ADSP  
CE1  
Unselected with CE2  
CE2  
tCES  
tCEH  
CE3  
OE  
tCEH  
tEOV  
tCES  
tOEHZ  
tDOH  
tCDV  
3a  
Data Out  
2d  
2a  
2b  
2c  
1a  
tCLZ  
tCHZ  
= DON’T CARE  
= UNDEFINED  
Note:  
17. RDx stands for Read Data from Address X.  
23  
CY7C1381B  
CY7C1383B  
PRELIMINARY  
Switching Waveforms (continued)  
Read/Write Cycle Timing[15, 16, 17]  
Read/Write Timing  
tCYC  
tCL  
tCH  
CLK  
tAH  
tAS  
A
D
B
C
ADD  
tADH  
tADS  
ADSP  
tADH  
tADS  
ADSC  
tADVH  
tADVS  
ADV  
tCEH  
tCES  
CE1  
CE  
tCEH  
tCES  
tWES  
tWEH  
WE  
OE  
ADSP ignored  
with CE1 HIGH  
tEOHZ  
tCLZ  
Data  
Q
(B+3)  
D
(C+1)  
D
(C+2)  
D
(C+3)  
Q
(B+2)  
Q
(B+1)  
Q(B)  
Q(B)  
D(C)  
Q(D)  
Q(A)  
In/Out  
tCDV  
tDOH  
tCHZ  
Device originally  
deselected  
WE is the combination of BWE, BWx, and GW to define a write cycle (see Write Cycle Description table).  
CE is the combination of CE2 and CE3. All chip selects need to be active in order to select  
the device. RAx stands for Read Address X, WAx stands for Write Address X, Dx stands for Data-in X,  
Qx stands for Data-out X.  
= UNDEFINED  
= DON’T CARE  
24  
CY7C1381B  
CY7C1383B  
PRELIMINARY  
Switching Waveforms (continued)  
Pipeline Timing[18, 19]  
tCYC  
tCL  
tCH  
CLK  
tAS  
WD1  
WD2  
WD3  
WD4  
RD1  
RD2  
RD3  
RD4  
ADD  
tADS  
tADH  
ADSC initiated Reads  
ADSC  
ADSP initiated Reads  
ADSP  
ADV  
tCEH  
tCES  
CE1  
CE  
tWES  
tWEH  
WE  
OE  
ADSP ignored  
with CE1 HIGH  
tCLZ  
Data In/Out  
tCDV  
1a  
In  
1a  
2a  
3a  
4a  
2a  
In  
3a  
In  
4a  
Out Out Out Out  
In  
tDOH  
Back to Back Reads  
tCHZ  
Back to Back Writes  
= UNDEFINED  
= DON’T CARE  
25  
CY7C1381B  
CY7C1383B  
PRELIMINARY  
Switching Waveforms (continued)  
Notes:  
18. Device originally deselected.  
19. CE is the combination of CE2 and CE3. All chip selects need to be active in order to select the device.  
OE Switching Waveforms  
OE  
tEOV  
tEOHZ  
Three-State  
I/Os  
tEOLZ  
26  
CY7C1381B  
CY7C1383B  
PRELIMINARY  
Switching Waveforms (continued)  
ZZ Mode Timing [18, 20]  
CLK  
ADSP  
HIGH  
ADSC  
CE1  
LOW  
CE2  
HIGH  
CE3  
ZZ  
tZZS  
ICC  
ICC(active)  
tZZREC  
ICCZZ  
I/Os  
Three-state  
Note:  
20. I/Os are in three-state when exiting ZZ sleep mode.  
27  
CY7C1381B  
CY7C1383B  
PRELIMINARY  
Ordering Information  
Speed  
Package  
Name  
Operating  
Range  
(MHz)  
133  
117  
100  
133  
117  
100  
133  
117  
100  
133  
117  
100  
Ordering Code  
Package Type  
100-Lead Thin Quad Flat Pack  
CY7C1381B-133AC  
CY7C1381B-117AC  
CY7C1381B-100AC  
CY7C1383B-133AC  
CY7C1383B-117AC  
CY7C1383B-100AC  
CY7C1381B-133BGC  
CY7C1381B-117BGC  
CY7C1381B-100BGC  
CY7C1383B-133BGC  
CY7C1383B-117BGC  
CY7C1383B-100BGC  
A101  
Commercial  
BG119  
119 Ball BGA  
Document #: 38-01077-*A  
28  
CY7C1381B  
CY7C1383B  
PRELIMINARY  
Pin Configurations  
100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
51-85050-A  
29  
CY7C1381B  
CY7C1383B  
PRELIMINARY  
Pin Configurations (continued)  
119-Lead FBGA (14 x 22 x 2.4 mm) BG119  
51-85115  
Revision History  
Document Title: CY7C1381B/CY7C1383B 512K x36/1M x18 Sync. Flowthrough  
Document Number:38-01077  
ORIG. OF  
REV.  
**  
ECN NO.  
ISSUE DATE  
9/30/2000  
05/04/01  
CHANGE  
DESCRIPTION OF CHANGE  
1. New Data sheet  
MPR  
*A  
3772  
PKS  
1. Changed Icc/Vih/Vil values  
2. Changed Pin capacitance values  
© Cypress Semiconductor Corporation, 2001. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  

相关型号:

CY7C1383B-83AC

512 】 36/1M 】 18 Flow-Thru SRAM
CYPRESS

CY7C1383B-83AI

512 】 36/1M 】 18 Flow-Thru SRAM
CYPRESS

CY7C1383B-83BGC

512 】 36/1M 】 18 Flow-Thru SRAM
CYPRESS

CY7C1383B-83BGI

512 】 36/1M 】 18 Flow-Thru SRAM
CYPRESS

CY7C1383B-83BZC

512 】 36/1M 】 18 Flow-Thru SRAM
CYPRESS

CY7C1383B-83BZI

512 】 36/1M 】 18 Flow-Thru SRAM
CYPRESS
ETC

CY7C1383BV25-100AC

Standard SRAM, 1MX18, 8.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1383BV25-100AI

Standard SRAM, 1MX18, 8.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1383BV25-100BGI

Standard SRAM, 1MX18, 8.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, PLASTIC, BGA-119
CYPRESS

CY7C1383BV25-100BZI

Standard SRAM, 1MX18, 8.5ns, CMOS, PBGA165, 13 X 15 MM, 1.20 MM HEIGHT, FBGA-165
CYPRESS

CY7C1383BV25-117AC

Standard SRAM, 1MX18, 7.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS