CY7C1386DV25-250BGXI [CYPRESS]

Cache SRAM, 512KX36, 2.6ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, LEAD FREE, BGA-119;
CY7C1386DV25-250BGXI
型号: CY7C1386DV25-250BGXI
厂家: CYPRESS    CYPRESS
描述:

Cache SRAM, 512KX36, 2.6ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, LEAD FREE, BGA-119

时钟 静态存储器 内存集成电路
文件: 总29页 (文件大小:536K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1386DV25  
CY7C1387DV25  
18-Mbit (512K x 36/1M x 18)  
Pipelined DCD Sync SRAM  
Functional Description[1]  
Features  
• Supports bus operation up to 250 MHz  
The CY7C1386DV25/CY7C1387DV25 SRAM integrates  
512K x 36 and 1M x 18 SRAM cells with advanced  
synchronous peripheral circuitry and a two-bit counter for  
internal burst operation. All synchronous inputs are gated by  
registers controlled by a positive-edge-triggered Clock Input  
(CLK). The synchronous inputs include all addresses, all data  
• Available speed grades are 250, 200 and 167 MHz  
• Registered inputs and outputs for pipelined operation  
• Optimal for performance (Double-Cycle deselect)  
• Depth expansion without wait state  
inputs,  
address-pipelining  
Chip  
Enable  
(CE1),  
• 2.5V + 5% power supply (VDD  
)
depth-expansion Chip Enables (CE2 and CE3[2]), Burst  
Control inputs (ADSC, ADSP, and ADV), Write Enables (BWX,  
and BWE), and Global Write (GW). Asynchronous inputs  
include the Output Enable (OE) and the ZZ pin.  
• Fast clock-to-output times  
— 2.6 ns (for 250-MHz device)  
• Provide high-performance 3-1-1-1 access rate  
Addresses and chip enables are registered at rising edge of  
clock when either Address Strobe Processor (ADSP) or  
Address Strobe Controller (ADSC) are active. Subsequent  
burst addresses can be internally generated as controlled by  
the Advance pin (ADV).  
User-selectable burst counter supporting Intel®  
Pentium® interleaved or linear burst sequences  
• Separate processor and controller address strobes  
• Synchronous self-timed writes  
Address, data inputs, and write controls are registered on-chip  
to initiate a self-timed Write cycle.This part supports Byte Write  
operations (see Pin Descriptions and Truth Table for further  
details). Write cycles can be one to four bytes wide as  
• Asynchronous output enable  
• Available in JEDEC-standard lead-free 100-pin TQFP,  
lead-free and non-lead-free 119-Ball BGA and 165-Ball  
FBGA packages  
controlled by the byte write control inputs. GW  
active  
LOW  
This device incorporates an  
causes all bytes to be written.  
• IEEE 1149.1 JTAG-Compatible Boundary Scan  
• “ZZ” Sleep Mode Option  
additional pipelined enable register which delays turning off  
the output buffers an additional cycle when a deselect is  
executed.This feature allows depth expansion without penal-  
izing system performance.  
The CY7C1386DV25/CY7C1387DV25 operates from a +2.5V  
power supply. All inputs and outputs are JEDEC-standard  
JESD8-5-compatible.  
Selection Guide  
250 MHz  
2.6  
200 MHz  
3.0  
167 MHz  
3.4  
Unit  
ns  
Maximum Access Time  
Maximum Operating Current  
Maximum CMOS Standby Current  
350  
300  
275  
mA  
mA  
70  
70  
70  
Notes:  
1. For best-practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.  
2. CE and CE are for TQFP and 165 FBGA package only. 119 BGA is offered only in Single Chip Enable.  
3
2
Cypress Semiconductor Corporation  
Document #: 38-05548 Rev. *D  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised June 28, 2006  
CY7C1386DV25  
CY7C1387DV25  
1
Logic Block Diagram – CY7C1386DV25 (512K x 36)  
ADDRESS  
A0,A1,A  
REGISTER  
2
A[1:0]  
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER AND  
LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQD,DQP  
D
DQD,DQP  
D
BYTE  
BYTE  
BW  
D
WRITE REGISTER  
WRITE DRIVER  
DQ  
BYTE  
WRITE DRIVER  
c,DQPC  
DQ  
BYTE  
WRITE REGISTER  
c,DQPC  
MEMORY  
ARRAY  
BW  
C
OUTPUT  
BUFFERS  
OUTPUT  
REGISTERS  
SENSE  
AMPS  
DQs  
DQP  
DQP  
DQP  
A
DQ  
BYTE  
WRITE DRIVER  
B,DQPB  
E
DQ  
BYTE  
WRITE REGISTER  
B,DQPB  
B
C
BW  
BW  
B
A
DQP  
D
DQA,DQP  
A
DQA,DQP  
A
BYTE  
WRITE DRIVER  
BYTE  
WRITE REGISTER  
BWE  
INPUT  
REGISTERS  
GW  
ENABLE  
REGISTER  
PIPELINED  
ENABLE  
CE  
CE  
CE  
1
2
3
OE  
SLEEP  
ZZ  
CONTROL  
2
Logic Block Diagram – CY7C1387DV25 (1M x 18)  
ADDRESS  
REGISTER  
A0, A1, A  
2
A[1:0]  
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER AND  
LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQB , DQP  
BYTE  
WRITE DRIVER  
B
DQB, DQP  
BYTE  
WRITE REGISTER  
B
OUTPUT  
BUFFERS  
BW  
B
A
OUTPUT  
REGISTERS  
DQs,  
DQP  
DQP  
SENSE  
AMPS  
MEMORY  
ARRAY  
A
DQA, DQP  
BYTE  
WRITE DRIVER  
A
B
E
DQA , DQP  
BYTE  
WRITE REGISTER  
A
BW  
BWE  
GW  
INPUT  
REGISTERS  
ENABLE  
REGISTER  
CE  
CE  
CE  
1
PIPELINED  
ENABLE  
2
3
OE  
SLEEP  
ZZ  
CONTROL  
Document #: 38-05548 Rev. *D  
Page 2 of 29  
CY7C1386DV25  
CY7C1387DV25  
Pin Configurations  
100-pin TQFP Pinout (3 Chip Enables)  
DQPC  
1
DQPB  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
NC  
VDDQ  
VSSQ  
NC  
A
NC  
NC  
VDDQ  
VSSQ  
NC  
DQPA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
VSS  
NC  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQC  
2
DQC  
VDDQ  
VSSQ  
DQC  
3
4
5
6
DQC  
7
NC  
DQC  
8
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
NC  
VDD  
NC  
VSS  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQPB  
NC  
DQC  
9
10  
11  
9
VSSQ  
VDDQ  
DQC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
12  
DQC  
13  
NC  
14  
VDD  
15  
NC  
VDD  
ZZ  
CY7C1387DV25  
(1M x 18)  
CY7C1386DV25  
(512K X 36)  
NC  
16  
VDD  
ZZ  
VSS  
17  
DQD  
18  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
DQPA  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
NC  
DQD  
19  
20  
21  
VDDQ  
VSSQ  
DQD  
22  
DQD  
23  
DQD  
24  
DQD  
25  
26  
27  
NC  
VSSQ  
VDDQ  
DQD  
DQD  
29  
VSSQ  
VDDQ  
NC  
NC  
NC  
VSSQ  
VDDQ  
NC  
NC  
NC  
28  
DQPD  
30  
Document #: 38-05548 Rev. *D  
Page 3 of 29  
CY7C1386DV25  
CY7C1387DV25  
Pin Configurations (continued)  
119-Ball BGA (1 Chip Enable)  
CY7C1386DV25 (512K x 36)  
1
2
3
4
5
6
7
A
VDDQ  
A
A
A
A
VDDQ  
ADSP  
ADSC  
VDD  
A
A
B
C
NC/288M  
NC/144M  
A
A
A
A
A
A
NC/576M  
NC/1G  
D
E
F
DQC  
DQC  
VDDQ  
DQPC  
DQC  
DQC  
VSS  
VSS  
VSS  
NC  
VSS  
VSS  
VSS  
DQPB  
DQB  
DQB  
DQB  
CE1  
DQB  
VDDQ  
OE  
G
H
J
DQC  
DQC  
VDDQ  
DQD  
DQC  
DQC  
VDD  
BWC  
VSS  
NC  
BWB  
VSS  
NC  
DQB  
DQB  
VDD  
DQA  
DQB  
DQB  
VDDQ  
DQA  
ADV  
GW  
VDD  
K
DQD  
VSS  
CLK  
NC  
VSS  
L
M
N
DQD  
VDDQ  
DQD  
DQD  
DQD  
DQD  
DQA  
DQA  
DQA  
DQA  
VDDQ  
DQA  
BWD  
VSS  
VSS  
BWA  
VSS  
VSS  
BWE  
A1  
DQD  
NC  
DQPD  
A
VSS  
A0  
VSS  
NC  
DQPA  
A
DQA  
NC  
P
R
MODE  
VDD  
T
NC  
NC/72M  
TMS  
A
A
A
NC/36M  
NC  
ZZ  
VDDQ  
TDI  
TCK  
TDO  
VDDQ  
U
CY7C1387DV25 (1M x 18)  
2
1
3
A
4
5
A
6
A
7
VDDQ  
NC/576M  
NC/1G  
NC  
VDDQ  
A
A
A
B
C
D
E
F
ADSP  
NC/288M  
NC/144M  
DQB  
A
A
A
ADSC  
VDD  
A
A
A
A
NC  
DQB  
NC  
VSS  
VSS  
VSS  
NC  
VSS  
VSS  
VSS  
DQPA  
NC  
DQA  
NC  
DQA  
CE1  
VDDQ  
VDDQ  
OE  
NC  
DQB  
NC  
VDD  
NC  
VSS  
NC  
NC  
DQA  
VDD  
DQA  
NC  
VDDQ  
G
H
J
BWB  
VSS  
NC  
ADV  
DQB  
VDDQ  
GW  
VDD  
K
NC  
DQB  
VSS  
CLK  
NC  
VSS  
NC  
DQA  
L
M
N
P
DQB  
VDDQ  
DQB  
NC  
NC  
DQB  
NC  
NC  
VSS  
VSS  
VSS  
DQA  
NC  
NC  
VDDQ  
NC  
BWA  
VSS  
BWE  
A1  
VSS  
VSS  
DQA  
NC  
DQPB  
A0  
DQA  
R
T
NC  
A
A
MODE  
A
VDD  
NC/36M  
TCK  
NC  
A
A
A
NC  
ZZ  
NC/72M  
VDDQ  
TMS  
TDI  
TDO  
NC  
VDDQ  
U
Document #: 38-05548 Rev. *D  
Page 4 of 29  
CY7C1386DV25  
CY7C1387DV25  
Pin Configurations (continued)  
165-Ball FBGA Pinout (3 Chip Enable)  
CY7C1386DV25 (512K x 36)  
1
2
A
3
4
5
6
7
8
9
10  
A
11  
NC  
NC/288M  
NC/144M  
DQPC  
A
B
C
D
CE1  
BWC  
BWD  
VSS  
VDD  
BWB  
BWA  
VSS  
VSS  
CE3  
CLK  
VSS  
VSS  
ADSC  
OE  
BWE  
GW  
VSS  
VSS  
ADV  
ADSP  
VDDQ  
VDDQ  
A
CE2  
A
NC/576M  
DQPB  
DQB  
NC  
DQC  
VDDQ  
VDDQ  
VSS  
VDD  
NC/1G  
DQB  
DQC  
DQC  
DQC  
DQC  
NC  
DQC  
DQC  
DQC  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
DQB  
DQB  
DQB  
NC  
DQB  
DQB  
DQB  
ZZ  
E
F
G
H
J
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
K
L
DQD  
DQPD  
NC  
DQD  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
A
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
DQA  
DQPA  
A
M
N
P
NC/72M  
TDI  
A1  
TDO  
A0  
MODE NC/36M  
A
A
TMS  
TCK  
A
A
A
A
R
CY7C1387DV25 (1M x 18)  
1
2
A
3
4
5
NC  
6
7
8
9
10  
A
11  
A
NC/288M  
NC/144M  
NC  
A
B
C
D
BWB  
NC  
CE3  
CLK  
VSS  
VSS  
CE1  
CE2  
BWE  
GW  
VSS  
VSS  
ADSC  
OE  
ADV  
ADSP  
VDDQ  
VDDQ  
A
BWA  
VSS  
VSS  
A
NC/576M  
DQPA  
DQA  
NC  
VDDQ  
VDDQ  
VSS  
VDD  
VSS  
NC/1G  
NC  
NC  
DQB  
VDD  
NC  
NC  
DQB  
DQB  
DQB  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
‘VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQA  
DQA  
DQA  
ZZ  
E
F
NC  
NC  
G
H
J
NC  
NC  
DQB  
DQB  
DQB  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
NC  
NC  
NC  
K
L
NC  
NC  
DQB  
DQPB  
NC  
NC  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
A
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
NC  
NC  
A
M
N
P
NC/72M  
TDI  
A1  
A0  
TDO  
MODE NC/36M  
A
A
TMS  
TCK  
A
A
A
A
R
Document #: 38-05548 Rev. *D  
Page 5 of 29  
CY7C1386DV25  
CY7C1387DV25  
Pin Definitions  
Name  
I/O  
Description  
Address Inputs used to select one of the address locations. Sampled at the  
rising edge of the CLK if ADSP or ADSC is active LOW, and CE1, CE2, and CE3  
A0, A1, A  
Input-  
Synchronous  
[2]  
are sampled active. A1: A0 are fed to the two-bit counter.  
.
BWA, BWB  
BWC, BWD  
Input-  
Synchronous  
Byte Write Select Inputs, active LOW. Qualified with BWE to conduct byte writes  
to the SRAM. Sampled on the rising edge of CLK.  
GW  
Input-  
Synchronous  
Global Write Enable Input, active LOW. When asserted LOW on the rising edge  
of CLK, a global write is conducted (ALL bytes are written, regardless of the values  
on BWX and BWE).  
BWE  
CLK  
CE1  
Input-  
Synchronous  
Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This  
signal must be asserted LOW to conduct a byte write.  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. Also used to  
increment the burst counter when ADV is asserted LOW, during a burst operation.  
Input-  
Synchronous  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in  
conjunction with CE2 and CE3[2] to select/deselect the device. ADSP is ignored if  
CE1 is HIGH. CE1 is sampled only when a new external address is loaded.  
[2]  
CE2  
Input-  
Synchronous  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in  
conjunction with CE1 and CE3[2] to select/deselect the device. CE2 is sampled only  
when a new external address is loaded.  
[2]  
CE3  
Input-  
Synchronous  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in  
conjunction with CE1 andCE2 to select/deselect the device. Not connected for BGA.  
Where referenced, CE3[2] is assumed active throughout this document for BGA.  
CE3 is sampled only when a new external address is loaded.  
OE  
Input-  
Output Enable, asynchronous input, active LOW. Controls the direction of the  
Asynchronous I/O pins. When LOW, the I/O pins behave as outputs. When deasserted HIGH, DQ  
pins are tri-stated, and act as input data pins. OE is masked during the first clock of  
a read cycle when emerging from a deselected state.  
ADV  
Input-  
Synchronous  
Advance Input signal, sampled on the rising edge of CLK, active LOW. When  
asserted, it automatically increments the address in a burst cycle.  
ADSP  
Input-  
Synchronous  
Address Strobe from Processor, sampled on the rising edge of CLK, active  
LOW. When asserted LOW, addresses presented to the device are captured in the  
address registers. A1: A0 are also loaded into the burst counter. When ADSP and  
ADSC are both asserted, only ADSP is recognized. ASDP is ignored when CE1 is  
deasserted HIGH.  
ADSC  
Input-  
Synchronous  
Address Strobe from Controller, sampled on the rising edge of CLK, active  
LOW. When asserted LOW, addresses presented to the device are captured in the  
address registers. A1: A0 are also loaded into the burst counter. When ADSP and  
ADSC are both asserted, only ADSP is recognized.  
ZZ  
Input-  
ZZ “sleep” Input, active HIGH. When asserted HIGH places the device in a  
Asynchronous non-time-critical “sleep” condition with data integrity preserved. For normal  
operation, this pin has to be LOW or left floating. ZZ pin has an internal pull-down.  
I/O-  
Synchronous  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that  
is triggered by the rising edge of CLK. As outputs, they deliver the data contained  
in the memory location specified by the addresses presented during the previous  
clock rise of the read cycle. The direction of the pins is controlled by OE. When OE  
is asserted LOW, the pins behave as outputs. When HIGH, DQs and DQPX are  
placed in a tri-state condition.  
DQs, DQPs  
VDD  
Power Supply Power supply inputs to the core of the device.  
VSS  
Ground  
Ground for the core of the device.  
Ground for the I/O circuitry.  
VSSQ  
VDDQ  
I/O Ground  
I/O Power Supply Power supply for the I/O circuitry.  
Document #: 38-05548 Rev. *D  
Page 6 of 29  
CY7C1386DV25  
CY7C1387DV25  
Pin Definitions (continued)  
Name  
I/O  
Description  
MODE  
Input-  
Static  
Selects Burst Order. When tied to GND selects linear burst sequence. When tied  
to VDD or left floating selects interleaved burst sequence. This is a strap pin and  
should remain static during device operation. Mode Pin has an internal pull-up.  
TDO  
TDI  
JTAGserialoutput Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK. If  
Synchronous  
the JTAG feature is not being utilized, this pin should be disconnected. This pin is  
not available on TQFP packages.  
JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG  
Synchronous  
feature is not being utilized, this pin can be disconnected or connected to VDD. This  
pin is not available on TQFP packages.  
TMS  
JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG  
Synchronous  
feature is not being utilized, this pin can be disconnected or connected to VDD. This  
pin is not available on TQFP packages.  
TCK  
NC  
JTAG-  
Clock  
Clock input to the JTAG circuitry. If the JTAG feature is not being utilized, this pin  
must be connected to VSS. This pin is not available on TQFP packages.  
No Connects. Not internally connected to the die  
NC/(36M, 72M, 144M,  
288M, 576M, 1G)  
These pins are not connected. They will be used for expansion to the 36M, 72M,  
144M, 288M, 576M and 1G densities.  
Document #: 38-05548 Rev. *D  
Page 7 of 29  
CY7C1386DV25  
CY7C1387DV25  
then the write operation is controlled by BWE and BWX  
signals. The CY7C1386DV25/CY7C1387DV25 provides byte  
write capability that is described in the Write Cycle Description  
table. Asserting the Byte Write Enable input (BWE) with the  
selected Byte Write input will selectively write to only the  
desired bytes. Bytes not selected during a byte write operation  
Functional Overview  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock.  
The CY7C1386DV25/CY7C1387DV25 supports secondary  
cache in systems utilizing either a linear or interleaved burst  
sequence. The interleaved burst order supports Pentium and  
i486processors. The linear burst sequence is suited for  
processors that utilize a linear burst sequence. The burst order  
is user selectable, and is determined by sampling the MODE  
will remain unaltered.  
A synchronous self-timed write  
mechanism has been provided to simplify the write operations.  
Because the CY7C1386DV25/CY7C1387DV25 is a common  
I/O device, the Output Enable (OE) must be deasserted HIGH  
before presenting data to the DQ inputs. Doing so will tri-state  
the output drivers. As a safety precaution, DQ are automati-  
cally tri-stated whenever a write cycle is detected, regardless  
of the state of OE.  
input. Accesses can  
be initiated with either the Processor  
Address Strobe (ADSP)  
or the Controller Address Strobe  
(ADSC). Address advancement through the burst sequence is  
controlled by the ADV input. A two-bit on-chip wraparound  
burst counter captures the first address in a burst sequence  
and automatically increments the address for the rest of the  
burst access.  
Byte write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BWX) inputs. A Global Write  
Enable (GW) overrides all byte write inputs and writes data to  
all four bytes. All writes are simplified with on-chip  
synchronous self-timed write circuitry.  
Single Write Accesses Initiated by ADSC  
ADSC write accesses are initiated when the following condi-  
tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is  
deasserted HIGH, (3) chip select is asserted active, and (4)  
the appropriate combination of the write inputs (GW, BWE,  
and  
) are asserted active to conduct a write to the desired  
BWX  
byte(s). ADSC triggered write accesses require a single clock  
cycle to complete. The address presented is loaded into the  
address register and the address advancement logic while  
being delivered to the memory core. The ADV input is ignored  
during this cycle. If a global write is conducted, the data  
presented to the DQX is written into the corresponding address  
location in the memory core. If a byte write is conducted, only  
the selected bytes are written. Bytes not selected during a byte  
[2]  
Synchronous Chip Selects CE1, CE2, CE3  
asynchronous Output Enable (OE) provide for easy bank  
and an  
output tri-state control.  
selection and  
ADSP is ignored if CE1  
is HIGH.  
Single Read Accesses  
write operation will remain unaltered.  
A synchronous  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW, (2)  
chip selects are all asserted active, and (3) the write signals  
(GW, BWE) are all deasserted HIGH. ADSP is ignored if CE1  
is HIGH. The address presented to the address inputs is  
stored into the address advancement logic and the Address  
Register while being presented to the memory core. The corre-  
sponding data is allowed to propagate to the input of the  
Output Registers. At the rising edge of the next clock the data  
is allowed to propagate through the output register and onto  
the data bus within tCO if OE is active LOW. The only exception  
occurs when the SRAM is emerging from a deselected state  
to a selected state, its outputs are always tri-stated during the  
first cycle of the access. After the first cycle of the access, the  
outputs are controlled by the OE signal. Consecutive single  
read cycles are supported.  
self-timed write mechanism has been provided to simplify the  
write operations.  
Because the CY7C1386DV25/CY7C1387DV25 is a common  
I/O device, the Output Enable (OE) must be deasserted HIGH  
before presenting data to the DQX inputs. Doing so will tri-state  
the output drivers. As a safety precaution, DQX are automati-  
cally tri-stated whenever a write cycle is detected, regardless  
of the state of OE.  
Burst Sequences  
The CY7C1386DV25/CY7C1387DV25 provides a two-bit  
wraparound counter, fed by A[1:0], that implements either an  
interleaved or linear burst sequence. The interleaved burst  
sequence is designed specifically to support Intel Pentium  
applications. The linear burst sequence is designed to support  
processors that follow a linear burst sequence. The burst  
sequence is user selectable through the MODE input. Both  
read and write burst operations are supported.  
The CY7C1386DV25/CY7C1387DV25 is a double-cycle  
deselect part. Once the SRAM is deselected at clock rise by  
the chip select and either ADSP or ADSC signals, its output  
will tri-state immediately after the next clock rise.  
Asserting ADV LOW at clock rise will automatically increment  
the burst counter to the next address in the burst sequence.  
Both read and write burst operations are supported.  
Single Write Accesses Initiated by ADSP  
This access is initiated when both of the following conditions  
are satisfied at clock rise: (1) ADSP is asserted LOW, and (2)  
chip select is asserted active. The address presented is  
loaded into the address register and the address  
advancement logic while being delivered to the memory core.  
Interleaved Burst Address Table  
(MODE = Floating or VDD)  
First  
Address  
A1: A0  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
The write signals (GW, BWE, and  
ignored during this first cycle.  
) and ADV inputs are  
BWX  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
ADSP triggered write accesses require two clock cycles to  
complete. If GW is asserted LOW on the second clock rise, the  
data presented to the DQx inputs is written into the corre-  
sponding address location in the memory core. If GW is HIGH,  
Document #: 38-05548 Rev. *D  
Page 8 of 29  
CY7C1386DV25  
CY7C1387DV25  
Sleep Mode  
Linear Burst Address Table (MODE = GND)  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the “sleep” mode. CEs, ADSP, and ADSC must remain  
inactive for the duration of tZZREC after the ZZ input returns  
First  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Address  
A1: A0  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
LOW  
.
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
ZZ recovery time  
Test Conditions  
ZZ > VDD – 0.2V  
Min.  
Max.  
80  
Unit  
mA  
ns  
tZZS  
ZZ > VDD – 0.2V  
2tCYC  
tZZREC  
tZZI  
ZZ < 0.2V  
2tCYC  
0
ns  
ZZ Active to sleep current  
This parameter is sampled  
This parameter is sampled  
2tCYC  
ns  
tRZZI  
ZZ Inactive to exit sleep current  
ns  
Truth Table[ 3, 4, 5, 6, 7, 8]  
Operation  
Add. Used CE1 CE2  
ZZ ADSP ADSC ADV WRITE OE CLK  
DQ  
CE3  
X
X
H
X
H
X
L
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Sleep Mode, Power Down  
READ Cycle, Begin Burst  
READ Cycle, Begin Burst  
WRITE Cycle, Begin Burst  
READ Cycle, Begin Burst  
READ Cycle, Begin Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
WRITE Cycle, Continue Burst  
WRITE Cycle, Continue Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
None  
None  
H
L
X
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
X
L
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
L
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
None  
L
X
L
L
None  
L
H
H
X
L
None  
L
X
X
H
H
H
H
H
X
X
X
X
X
X
X
X
L
None  
X
L
X
X
X
L
X
Tri-State  
Q
External  
External  
External  
External  
External  
Next  
L-H  
L
L
L
H
X
L
L-H Tri-State  
L
L
H
H
H
H
H
X
X
H
X
H
H
L-H  
L-H  
D
Q
L
L
L
H
H
H
H
H
H
L
L
L
L
H
L
L-H Tri-State  
L-H  
L-H Tri-State  
L-H  
L-H Tri-State  
X
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
H
H
H
H
H
H
H
H
Q
Next  
L
H
L
Next  
L
Q
Next  
L
H
X
X
L
Next  
L
L-H  
L-H  
L-H  
D
D
Q
Next  
L
L
Current  
Current  
H
H
H
H
H
L-H Tri-State  
Notes:  
3. X = “Don't Care.” H = Logic HIGH, L = Logic LOW.  
4. WRITE = L when any one or more Byte Write enable signals and BWE = L or GW = L. WRITE = H when all Byte write enable signals, BWE, GW = H.  
5. The DQ pins are controlled by the current cycle and the signal. is asynchronous and is not sampled with the clock.  
OE  
OE  
6. CE , CE , and CE are available only in the TQFP package. BGA package has only 2chip selects CE and CE .  
1
2
3
1
2
7. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks  
X
after the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the write cycle to allow the outputs to tri-state. OE is a  
don't care for the remainder of the write cycle.  
8. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are Tri-State when OE is  
inactive or when the device is deselected, and all data bits behave as output when OE is active (LOW).  
Document #: 38-05548 Rev. *D  
Page 9 of 29  
CY7C1386DV25  
CY7C1387DV25  
Truth Table[ 3, 4, 5, 6, 7, 8] (continued)  
Operation  
Add. Used CE1 CE2  
ZZ ADSP ADSC ADV WRITE OE CLK  
DQ  
CE3  
X
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
WRITE Cycle, Suspend Burst  
WRITE Cycle, Suspend Burst  
Current  
Current  
Current  
Current  
H
H
X
H
X
X
X
X
L
L
L
L
X
X
H
X
H
H
H
H
H
H
H
H
H
H
L
L
H
X
X
L-H  
Q
X
L-H Tri-State  
X
L-H  
L-H  
D
D
X
L
Partial Truth Table for Read/Write[5, 9]  
Function (CY7C1386DV25)  
GW  
BWE  
BWD  
BWC  
BWB  
BWA  
Read  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
X
H
H
H
H
H
H
H
H
L
X
H
H
H
H
L
X
H
H
L
X
H
L
Read  
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write Bytes B, A  
H
L
L
Write Byte C – (DQC and DQPC)  
Write Bytes C, A  
H
H
L
H
L
L
Write Bytes C, B  
L
H
L
Write Bytes C, B, A  
Write Byte D – (DQD and DQPD)  
Write Bytes D, A  
L
L
H
H
H
H
L
H
H
L
H
L
L
Write Bytes D, B  
L
H
L
Write Bytes D, B, A  
Write Bytes D, C  
L
L
L
H
H
L
H
L
Write Bytes D, C, A  
Write Bytes D, C, B  
Write All Bytes  
L
L
L
L
H
L
L
L
L
Write All Bytes  
X
X
X
X
Truth Table for Read/Write[5, 9]  
Function (CY7C1387DV25)  
GW  
BWE  
BWB  
BWA  
Read  
H
H
H
H
H
L
H
L
L
L
L
X
X
H
H
L
X
H
L
Read  
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write All Bytes  
H
L
L
Write All Bytes  
X
X
Note:  
9. Table only lists a partial listing of the byte write combinations. Any Combination of BW is valid Appropriate write will be done based on which byte write is active.  
X
Document #: 38-05548 Rev. *D  
Page 10 of 29  
CY7C1386DV25  
CY7C1387DV25  
Test Data-In (TDI)  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The TDI ball is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. For  
information on loading the instruction register, see TAP  
Controller State Diagram. TDI is internally pulled up and can  
be unconnected if the TAP is unused in an application. TDI is  
connected to the most significant bit (MSB) of any register.  
(See Tap Controller Block Diagram.)  
The CY7C1386DV25/CY7C1387DV25 incorporates a serial  
boundary scan test access port (TAP).This part is fully  
compliant with 1149.1. The TAP operates using  
JEDEC-standard 3.3V or 2.5V I/O logic levels.  
The CY7C1386DV25/CY7C1387DV25 contains  
a
TAP  
controller, instruction register, boundary scan register, bypass  
register, and ID register.  
Disabling the JTAG Feature  
Test Data-Out (TDO)  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are inter-  
nally pulled up and may be unconnected. They may alternately  
be connected to VDD through a pull-up resistor. TDO should be  
left unconnected. Upon power-up, the device will come up in  
a reset state which will not interfere with the operation of the  
device.  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current  
state of the TAP state machine. The output changes on the  
falling edge of TCK. TDO is connected to the least significant  
bit (LSB) of any register. (See Tap Controller State Diagram.)  
TAP Controller Block Diagram  
TAP Controller State Diagram  
0
Bypass Register  
TEST-LOGIC  
1
RESET  
0
2
1
0
0
0
Selection  
Circuitry  
1
1
1
Instruction Register  
31 30 29  
Identification Register  
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
S
election  
0
TDI  
TDO  
Circuitr  
y
.
.
. 2 1  
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
x
.
.
.
.
. 2 1  
SHIFT-DR  
0
SHIFT-IR  
0
Boundary Scan Register  
1
1
1
1
EXIT1-DR  
EXIT1-IR  
TCK  
TMS  
0
0
TAP CONTROLLER  
PAUSE-DR  
0
PAUSE-IR  
0
1
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
Performing a TAP Reset  
A RESET is performed by forcing TMS HIGH (VDD) for five  
rising edges of TCK. This RESET does not affect the operation  
of the SRAM and may be performed while the SRAM is  
operating.  
UPDATE-DR  
UPDATE-IR  
1
0
1
0
At power-up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
TAP Registers  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned into and out of the SRAM test  
circuitry. Only one register can be selected at a time through  
the instruction register. Data is serially loaded into the TDI ball  
on the rising edge of TCK. Data is output on the TDO ball on  
the falling edge of TCK.  
Test Access Port (TAP)  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Instruction Register  
Test MODE SELECT (TMS)  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO balls as shown in the Tap Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this ball unconnected if the TAP is not used. The ball is  
pulled up internally, resulting in a logic HIGH level.  
Document #: 38-05548 Rev. *D  
Page 11 of 29  
CY7C1386DV25  
CY7C1387DV25  
When the TAP controller is in the Capture-IR state, the two  
least significant bits are loaded with a binary “01” pattern to  
allow for fault isolation of the board-level serial test data path.  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
The IDCODE instruction is loaded into the instruction register  
upon power-up or whenever the TAP controller is given a test  
logic reset state.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO balls when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
Boundary Scan Register  
SAMPLE/PRELOAD  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When  
the SAMPLE/PRELOAD instructions are loaded into the in-  
struction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and output pins is cap-  
tured in the boundary scan register.  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR  
state and is then placed between the TDI and TDO balls when  
the controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used  
to capture the contents of the I/O ring.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is possi-  
ble that during the Capture-DR state, an input or output will  
undergo a transition. The TAP may then try to capture a signal  
while in transition (metastable state). This will not harm the  
device, but there is no guarantee as to the value that will be  
captured. Repeatable results may not be possible.  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI and the LSB is connected to TDO.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions table.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller's capture set-up plus  
hold times (tCS and tCH). The SRAM clock input might not be  
captured correctly if there is no way in a design to stop (or  
slow) the clock during a SAMPLE/PRELOAD instruction. If this  
is an issue, it is still possible to capture all other signals and  
simply ignore the value of the CK and CK captured in the  
boundary scan register.  
TAP Instruction Set  
Overview  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the bound-  
ary scan register between the TDI and TDO pins.  
Eight different instructions are possible with the three bit  
instruction register. All combinations are listed in the  
Instruction Codes table. Three of these instructions are listed  
as RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
PRELOAD allows an initial data pattern to be placed at the  
latched parallel outputs of the boundary scan register cells pri-  
or to the selection of another boundary scan test operation.  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO balls.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
The shifting of data for the SAMPLE and PRELOAD phases  
can occur concurrently when required—that is, while data  
captured is shifted out, the preloaded data can be shifted in.  
BYPASS  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO balls. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
EXTEST  
The EXTEST instruction enables the preloaded data to be  
driven out through the system output pins. This instruction also  
selects the boundary scan register to be connected for serial  
access between the TDI and TDO in the shift-DR controller  
state.  
EXTEST Output Bus Tri-State  
IEEE Standard 1149.1 mandates that the TAP controller be  
able to put the output bus into a tri-state mode.  
IDCODE  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
The boundary scan register has a special bit located at bit #85  
(for 119-BGA package) or bit #89 (for 165-fBGA package).  
When this scan cell, called the “extest output bus tri-state,” is  
latched into the preload register during the “Update-DR” state  
Document #: 38-05548 Rev. *D  
Page 12 of 29  
CY7C1386DV25  
CY7C1387DV25  
in the TAP controller, it will directly control the state of the  
output (Q-bus) pins, when the EXTEST is entered as the  
current instruction. When HIGH, it will enable the output  
buffers to drive the output bus. When LOW, this bit will place  
the output bus into a High-Z condition.  
register. When the EXTEST instruction is entered, this bit will  
directly control the output Q-bus pins. Note that this bit is  
preset HIGH to enable the output when the device is  
powered-up, and also when the TAP controller is in the  
Test-Logic-Reset” state.  
This bit can be set by entering the SAMPLE/PRELOAD or  
EXTEST command, and then shifting the desired bit into that  
cell, during the “Shift-DR” state. During “Update-DR,” the value  
loaded into that shift-register cell will latch into the preload  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
TAP AC Switching Characteristics Over the Operating Range[10, 11]  
Parameter  
Clock  
tTCYC  
tTF  
Description  
Min.  
Max.  
Unit  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH time  
TCK Clock LOW time  
50  
ns  
MHz  
ns  
20  
tTH  
20  
20  
tTL  
ns  
Output Times  
tTDOV TCK Clock LOW to TDO Valid  
tTDOX TCK Clock LOW to TDO Invalid  
Set-up Times  
tTMSS TMS Set-up to TCK Clock Rise  
tTDIS  
10  
ns  
ns  
0
5
5
5
ns  
ns  
ns  
TDI Set-up to TCK Clock Rise  
Capture Set-up to TCK Rise  
tCS  
Hold Times  
tTMSH  
tTDIH  
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
tCH  
Capture Hold after Clock Rise  
Notes:  
10. t and t refer to the setup and hold time requirements of latching data from the boundary scan register.  
CS  
CH  
11. Test conditions are specified using the load in TAP AC test Conditions. t /t = 1 ns.  
R
F
Document #: 38-05548 Rev. *D  
Page 13 of 29  
CY7C1386DV25  
CY7C1387DV25  
TAP AC Test Conditions  
TAP AC Output Load Equivalent  
1.25V  
Input pulse levels ................................................ VSS to 2.5V  
Input rise and fall time..................................................... 1 ns  
Input timing reference levels.........................................1.25V  
Output reference levels.................................................1.25V  
Test load termination supply voltage.............................1.25V  
50  
TDO  
ZO= 50Ω  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
(0°C < TA < +70°C; VDD = 2.5V ±0.165V unless otherwise noted)[12]  
Parameter  
VOH1  
Description  
Output HIGH Voltage  
Output HIGH Voltage  
Output LOW Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Load Current  
Test Conditions  
IOH = –1.0 mA  
Min.  
1.7  
Max.  
Unit  
V
VOH2  
VOL1  
VOL2  
VIH  
IOH = –100 µA  
IOL = 1.0 mA  
IOL = 100 µA  
2.1  
V
0.4  
0.2  
V
V
1.7  
–0.3  
–5  
VDD + 0.3  
V
VIL  
0.7  
5
V
IX  
GND < VIN < VDDQ  
µA  
Identification Register Definitions  
Instruction Field  
Revision Number (31:29)  
CY7C1386DV25  
CY7C1387DV25  
Description  
000  
01011  
000  
01011  
Describes the version number.  
Reserved for Internal Use  
Device Depth (28:24)  
Device Width (23:18) 119-BGA  
Device Width (23:18) 165-FBGA  
Cypress Device ID (17:12)  
Cypress JEDEC ID Code (11:1)  
101110  
101110  
Defines memory type and architecture  
Defines memory type and architecture  
Defines width and density  
000110  
000110  
100101  
010101  
00000110100  
00000110100  
Allows unique identification of SRAM  
vendor.  
ID Register Presence Indicator (0)  
1
1
Indicates the presence of an ID register.  
Scan Register Sizes  
Register Name  
Bit Size (x18)  
Bit Size (x36)  
Instruction  
Bypass  
ID  
3
3
1
1
32  
85  
89  
32  
85  
89  
Boundary Scan Order (119-ball BGA package)  
Boundary Scan Order (165-ball fBGA package)  
Note:  
12. All voltages referenced to V (GND).  
SS  
Document #: 38-05548 Rev. *D  
Page 14 of 29  
CY7C1386DV25  
CY7C1387DV25  
Identification Codes  
Instruction  
Code  
Description  
EXTEST  
000  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to High-Z state.  
IDCODE  
001  
010  
Loads the ID register with the vendor ID code and places the register between TDI and  
TDO. This operation does not affect SRAM operations.  
SAMPLE Z  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
RESERVED  
011  
100  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
119-Ball BGA Boundary Scan Order [13, 14]  
Bit #  
1
Ball ID  
Bit #  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
Ball ID  
F6  
Bit #  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
Ball ID  
G4  
A4  
G3  
C3  
B2  
B3  
A3  
C2  
A2  
B1  
C1  
D2  
E1  
F2  
Bit #  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
Ball ID  
L1  
H4  
T4  
T5  
T6  
R5  
L5  
2
E7  
D7  
H7  
G6  
E6  
D6  
C7  
B7  
C6  
A6  
C5  
B5  
G5  
B6  
D4  
B4  
F4  
M2  
N1  
3
4
P1  
5
K1  
6
L2  
7
R6  
U6  
R7  
T7  
P6  
N7  
M6  
L7  
N2  
P2  
8
9
R3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
T1  
R1  
T2  
L3  
R2  
K6  
P7  
N6  
L6  
G1  
H2  
D1  
E2  
G2  
H1  
J3  
T3  
L4  
N4  
P4  
K7  
J5  
M4  
A5  
K4  
E4  
Internal  
H6  
G7  
2K  
Notes:  
13. Balls which are NC (No Connect) are pre-set LOW.  
14. Bit# 85 is pre-set HIGH.  
Document #: 38-05548 Rev. *D  
Page 15 of 29  
CY7C1386DV25  
CY7C1387DV25  
165-Ball FBGA Boundary Scan Order [13, 15]  
Bit #  
1
Ball ID  
N6  
Bit #  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
Ball ID  
D10  
C11  
A11  
B11  
A10  
B10  
A9  
Bit #  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
Ball ID  
G1  
D2  
E2  
2
N7  
3
N10  
P11  
P8  
4
F2  
5
G2  
H1  
H3  
J1  
6
R8  
7
R9  
8
P9  
B9  
9
P10  
R10  
R11  
H11  
N11  
M11  
L11  
K11  
J11  
M10  
L10  
K10  
J10  
H9  
C10  
A8  
K1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
L1  
B8  
M1  
J2  
A7  
B7  
K2  
B6  
L2  
A6  
M2  
N1  
N2  
P1  
B5  
A5  
A4  
B4  
R1  
R2  
P3  
B3  
A3  
A2  
R3  
P2  
H10  
G11  
F11  
E11  
D11  
G10  
F10  
E10  
B2  
C2  
R4  
P4  
B1  
A1  
N5  
P6  
C1  
D1  
R6  
Internal  
E1  
F1  
Note:  
15. Bit# 89 is pre-set HIGH.  
Document #: 38-05548 Rev. *D  
Page 16 of 29  
CY7C1386DV25  
CY7C1387DV25  
DC Input Voltage ................................... –0.5V to VDD + 0.5V  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Static Discharge Voltage........................................... >2001V  
(per MIL-STD-883, Method 3015)  
Storage Temperature .................................65°C to +150°C  
Latch-up Current..................................................... >200 mA  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Supply Voltage on VDD Relative to GND........ –0.5V to +3.6V  
Supply Voltage on VDDQ Relative to GND ......0.5V to +VDD  
Operating Range  
Ambient  
Range  
Temperature  
VDD  
VDDQ  
DC Voltage Applied to Outputs  
in Tri-State........................................... –0.5V to VDDQ + 0.5V  
Commercial 0°C to +70°C  
2.5V ±5%  
2.5V –5%  
to VDD  
Industrial  
–40°C to +85°C  
Electrical Characteristics Over the Operating Range[16, 17]  
Parameter  
VDD  
Description  
Test Conditions  
Min.  
2.375  
2.375  
2.0  
Max.  
Unit  
V
Power Supply Voltage  
I/O Supply Voltage  
Output HIGH Voltage  
Output LOW Voltage  
2.625  
VDD  
VDDQ  
VOH  
for 2.5V I/O  
V
for 2.5V I/O, IOH = –1.0 mA  
for 2.5V I/O, IOL = 1.0 mA  
V
VOL  
0.4  
V
VIH  
Input HIGH Voltage[16] for 2.5V I/O  
Input LOW Voltage[16]  
for 2.5V I/O  
1.7  
–0.3  
–5  
VDD + 0.3V  
V
VIL  
0.7  
5
V
IX  
Input Leakage Current GND VI VDDQ  
except ZZ and MODE  
µA  
Input Current of MODE Input = VSS  
Input = VDD  
–30  
–5  
µA  
µA  
5
Input Current of ZZ  
Input = VSS  
Input = VDD  
µA  
30  
5
µA  
IOZ  
IDD  
Output Leakage Current GND VI VDDQ, Output Disabled  
–5  
µA  
VDD Operating Supply VDD = Max., IOUT = 0 mA,  
4.0-ns cycle, 250 MHz  
5-ns cycle, 200 MHz  
6-ns cycle, 167 MHz  
350  
300  
275  
160  
150  
140  
70  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Current  
f = fMAX = 1/tCYC  
ISB1  
Automatic CE  
Power-down  
Current—TTL Inputs  
VDD = Max, Device Deselected, 4.0-ns cycle, 250 MHz  
VIN VIH or VIN VIL  
f = fMAX = 1/tCYC  
5-ns cycle, 200 MHz  
6-ns cycle, 167 MHz  
ISB2  
Automatic CE  
Power-down  
Current—CMOS Inputs f = 0  
VDD = Max, Device Deselected, All speeds  
VIN 0.3V or VIN > VDDQ – 0.3V,  
ISB3  
Automatic CE  
Power-down  
Current—CMOS Inputs f = fMAX = 1/tCYC  
V
DD = Max, Device Deselected, 4.0-ns cycle, 250 MHz  
135  
130  
125  
80  
mA  
mA  
mA  
mA  
or VIN 0.3V or VIN > VDDQ – 0.3V  
5-ns cycle, 200 MHz  
6-ns cycle, 167 MHz  
ISB4  
Automatic CE  
Power-down  
Current—TTL Inputs  
VDD = Max, Device Deselected, All Speeds  
VIN VIH or VIN VIL, f = 0  
Notes:  
16. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2), undershoot: V (AC) > –2V (Pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
17. T  
: Assumes a linear ramp from 0V to V (min.) within 200 ms. During this time V < V and V  
< V  
Power-up  
DD  
IH  
DD  
DDQ DD.  
Document #: 38-05548 Rev. *D  
Page 17 of 29  
CY7C1386DV25  
CY7C1387DV25  
Capacitance[18]  
100 TQFP  
Package  
119 BGA  
165 FBGA  
Package  
Parameter  
Description  
Test Conditions  
Package  
Unit  
pF  
CIN  
Input Capacitance  
TA = 25°C, f = 1 MHz,  
DD/VDDQ = 2.5V  
5
5
5
8
8
8
9
9
9
V
CCLK  
CI/O  
Clock Input Capacitance  
Input/Output Capacitance  
pF  
pF  
Thermal Resistance[18]  
100 TQFP  
Package  
119 BGA  
Package  
165 FBGA  
Package  
Parameter  
Description  
Test Conditions  
Unit  
ΘJA  
Thermal Resistance  
(Junction to Ambient)  
Test conditions follow  
standard test methods and  
procedures for measuring  
thermal impedance, per  
EIA/JESD51.  
28.66  
23.8  
20.7  
°C/W  
ΘJC  
Thermal Resistance  
(Junction to Case)  
4.08  
6.2  
4.0  
°C/W  
AC Test Loads and Waveforms  
2.5V I/O Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
90%  
10%  
Z = 50Ω  
0
10%  
L
GND  
5 pF  
R = 1538Ω  
1 ns  
1 ns  
V = 1.25V  
T
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Note:  
18. Tested initially and after any design or process change that may affect these parameters.  
Document #: 38-05548 Rev. *D  
Page 18 of 29  
CY7C1386DV25  
CY7C1387DV25  
Switching Characteristics Over the Operating Range[23, 24]  
250 MHz  
200 MHz  
167 MHz  
Parameter  
tPOWER  
Description  
VDD(Typical) to the first Access[19]  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
1
1
1
ms  
Clock  
tCYC  
Clock Cycle Time  
Clock HIGH  
4.0  
1.7  
1.7  
5.0  
2.0  
2.0  
6.0  
2.2  
2.2  
ns  
ns  
ns  
tCH  
tCL  
Clock LOW  
Output Times  
tCO  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
Clock to Low-Z[20, 21, 22]  
2.6  
3.0  
3.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDOH  
1.0  
1.0  
1.3  
1.3  
1.3  
1.3  
tCLZ  
tCHZ  
Clock to High-Z[20, 21, 22]  
2.6  
2.6  
3.0  
3.0  
3.4  
3.4  
tOEV  
OE LOW to Output Valid  
tOELZ  
tOEHZ  
Setup Times  
tAS  
OE LOW to Output Low-Z[20, 21, 22]  
OE HIGH to Output High-Z[20, 21, 22]  
0
0
0
2.6  
3.0  
3.4  
Address Set-up Before CLK Rise  
ADSC, ADSP Set-up Before CLK Rise  
ADV Set-up Before CLK Rise  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADS  
tADVS  
tWES  
GW, BWE, BWX Set-up Before CLK Rise  
Data Input Set-up Before CLK Rise  
Chip Enable Set-Up Before CLK Rise  
tDS  
tCES  
Hold Times  
tAH  
Address Hold After CLK Rise  
ADSP, ADSC Hold After CLK Rise  
ADV Hold After CLK Rise  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADH  
tADVH  
tWEH  
GW, BWE, BWX Hold After CLK Rise  
Data Input Hold After CLK Rise  
Chip Enable Hold After CLK Rise  
tDH  
tCEH  
Notes:  
19. This part has a voltage regulator internally; t  
is the time that the power needs to be supplied above V (minimum) initially before a read or write operation  
DD  
POWER  
can be initiated.  
20. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
OEHZ  
CHZ CLZ OELZ  
21. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
OEHZ  
OELZ  
CHZ  
CLZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions.  
22. This parameter is sampled and not 100% tested.  
23. Timing reference level is 1.25V when V  
= 2.5V.  
DDQ  
24. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
Document #: 38-05548 Rev. *D  
Page 19 of 29  
CY7C1386DV25  
CY7C1387DV25  
Switching Waveforms  
Read Cycle Timing[25]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Burst continued with  
new base address  
t
t
WEH  
WES  
GW, BWE,BWX  
Deselect  
cycle  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
OEV  
CO  
t
t
CHZ  
t
t
t
OELZ  
OEHZ  
DOH  
CLZ  
t
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A2 + 3)  
Q(A2)  
Q(A2 + 1)  
Q(A3)  
Q(A1)  
Data Out (DQ)  
High-Z  
CO  
Burst wraps around  
to its initial state  
Single READ  
BURST READ  
DON’T CARE  
UNDEFINED  
Notes:  
25. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
Document #: 38-05548 Rev. *D  
Page 20 of 29  
CY7C1386DV25  
CY7C1387DV25  
Switching Waveforms (continued)  
Write Cycle Timing[25, 26]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
BWE,  
Byte write signals are ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BW  
X
t
t
WEH  
WES  
GW  
CE  
t
t
CEH  
CES  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
DH  
DS  
D(A2)  
D(A2 + 1)  
D(A2 + 1)  
D(A2 + 2)  
D(A2 + 3)  
D(A3)  
D(A3 + 1)  
D(A3 + 2)  
D(A1)  
High-Z  
Data in (D)  
t
OEHZ  
Data Out (Q)  
BURST READ  
BURST WRITE  
DON’T CARE  
Single WRITE  
Extended BURST WRITE  
UNDEFINED  
Note:  
26.  
Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BW LOW.  
X
Document #: 38-05548 Rev. *D  
Page 21 of 29  
CY7C1386DV25  
CY7C1387DV25  
Switching Waveforms (continued)  
Read/Write Cycle Timing[25, 27, 28]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
t
t
WEH  
WES  
BWE, BW  
X
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
t
CO  
DS  
t
OELZ  
Data In (D)  
High-Z  
High-Z  
D(A3)  
D(A5)  
D(A6)  
t
t
OEHZ  
CLZ  
Data Out (Q)  
Q(A1)  
Back-to-Back READs  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
BURST READ  
Back-to-Back  
Single WRITE  
DON’T CARE  
WRITEs  
UNDEFINED  
Notes:  
27. The data bus (Q) remains in high-Z following a Write cycle, unless a new read access is initiated by ADSP or ADSC.  
28. GW is HIGH.  
Document #: 38-05548 Rev. *D  
Page 22 of 29  
CY7C1386DV25  
CY7C1387DV25  
Switching Waveforms (continued)  
ZZ Mode Timing [29, 30]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes:  
29. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device.  
30. DQs are in high-Z when exiting ZZ sleep mode.  
Document #: 38-05548 Rev. *D  
Page 23 of 29  
CY7C1386DV25  
CY7C1387DV25  
Ordering Information  
Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or  
visit www.cypress.com for actual products offered.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Ordering Code  
Part and Package Type  
167  
CY7C1386DV25-167AXC  
CY7C1387DV25-167AXC  
CY7C1386DV25-167BGC  
CY7C1387DV25-167BGC  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free Commercial  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
CY7C1386DV25-167BGXC 51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Lead-Free  
CY7C1387DV25-167BGXC  
CY7C1386DV25-167BZC  
CY7C1387DV25-167BZC  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
CY7C1386DV25-167BZXC 51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
Lead-Free  
CY7C1387DV25-167BZXC  
CY7C1386DV25-167AXI  
CY7C1387DV25-167AXI  
CY7C1386DV25-167BGI  
CY7C1387DV25-167BGI  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
Industrial  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
CY7C1386DV25-167BGXI 51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Lead-Free  
CY7C1387DV25-167BGXI  
CY7C1386DV25-167BZI  
CY7C1387DV25-167BZI  
CY7C1386DV25-167BZXI  
CY7C1387DV25-167BZXI  
CY7C1386DV25-200AXC  
CY7C1387DV25-200AXC  
CY7C1386DV25-200BGC  
CY7C1387DV25-200BGC  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
Lead-Free  
200  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free Commercial  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
CY7C1386DV25-200BGXC 51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Lead-Free  
CY7C1387DV25-200BGXC  
CY7C1386DV25-200BZC  
CY7C1387DV25-200BZC  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
CY7C1386DV25-200BZXC 51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
Lead-Free  
CY7C1387DV25-200BZXC  
CY7C1386DV25-200AXI  
CY7C1387DV25-200AXI  
CY7C1386DV25-200BGI  
CY7C1387DV25-200BGI  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
Industrial  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
CY7C1386DV25-200BGXI 51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Lead-Free  
CY7C1387DV25-200BGXI  
CY7C1386DV25-200BZI  
CY7C1387DV25-200BZI  
CY7C1386DV25-200BZXI  
CY7C1387DV25-200BZXI  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
Lead-Free  
Document #: 38-05548 Rev. *D  
Page 24 of 29  
CY7C1386DV25  
CY7C1387DV25  
Ordering Information (continued)  
Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or  
visit www.cypress.com for actual products offered.  
250  
CY7C1386DV25-250AXC  
CY7C1387DV25-250AXC  
CY7C1386DV25-250BGC  
CY7C1387DV25-250BGC  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free Commercial  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
CY7C1386DV25-250BGXC 51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Lead-Free  
CY7C1387DV25-250BGXC  
CY7C1386DV25-250BZC  
CY7C1387DV25-250BZC  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
CY7C1386DV25-250BZXC 51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
Lead-Free  
CY7C1387DV25-250BZXC  
CY7C1386DV25-250AXI  
CY7C1387DV25-250AXI  
CY7C1386DV25-250BGI  
CY7C1387DV25-250BGI  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
Industrial  
51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
CY7C1386DV25-250BGXI 51-85115 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Lead-Free  
CY7C1387DV25-250BGXI  
CY7C1386DV25-250BZI  
CY7C1387DV25-250BZI  
CY7C1386DV25-250BZXI  
CY7C1387DV25-250BZXI  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
51-85180 165-ball Fine-Pitch Ball Grid Array (13 x 15 x 1.4 mm)  
Lead-Free  
Document #: 38-05548 Rev. *D  
Page 25 of 29  
CY7C1386DV25  
CY7C1387DV25  
Package Diagrams  
100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) (51-85050)  
16.00 0.20  
14.00 0.10  
1.40 0.05  
100  
81  
80  
1
0.30 0.08  
0.65  
TYP.  
12° 1°  
(8X)  
SEE DETAIL  
A
30  
51  
31  
50  
0.20 MAX.  
1.60 MAX.  
R 0.08 MIN.  
0.20 MAX.  
0° MIN.  
SEATING PLANE  
STAND-OFF  
0.05 MIN.  
0.15 MAX.  
NOTE:  
1. JEDEC STD REF MS-026  
0.25  
GAUGE PLANE  
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH  
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE  
R 0.08 MIN.  
0.20 MAX.  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH  
3. DIMENSIONS IN MILLIMETERS  
0°-7°  
0.60 0.15  
0.20 MIN.  
51-85050-*B  
1.00 REF.  
DETAIL  
A
Document #: 38-05548 Rev. *D  
Page 26 of 29  
CY7C1386DV25  
CY7C1387DV25  
Package Diagrams (continued)  
119-Ball BGA (14 x 22 x 2.4 mm) (51-85115)  
51-85115-*B  
Document #: 38-05548 Rev. *D  
Page 27 of 29  
CY7C1386DV25  
CY7C1387DV25  
Package Diagrams (continued)  
165-Ball FBGA (13 x 15 x 1.4 mm) (51-85180)  
BOTTOM VIEW  
PIN 1 CORNER  
TOP VIEW  
Ø0.05 M C  
PIN 1 CORNER  
Ø0.25 M C A B  
-0.06  
Ø0.50
(165X)  
+0.14  
1
2
3
4
5
6
7
8
9
10  
11  
11 10  
9
8
7
6
5
4
3
2
1
A
A
B
B
C
D
C
D
E
E
F
F
G
G
H
J
H
J
K
K
L
L
M
M
N
P
R
N
P
R
A
A
1.00  
5.00  
10.00  
13.00 0.10  
B
B
13.00 0.10  
0.15(4X)  
NOTES :  
SOLDER PAD TYPE : NON-SOLDER MASK DEFINED (NSMD)  
PACKAGE WEIGHT : 0.475g  
JEDECREFERENCE: MO-216 / DESIGN 4.6C  
PACKAGE CODE : BB0AC  
SEATING PLANE  
C
51-85180-*A  
i486 is a trademark, and Intel and Pentium are registered trademarks of Intel Corporation. PowerPC is a trademark of IBM  
Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.  
Document #: 38-05548 Rev. *D  
Page 28 of 29  
© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
CY7C1386DV25  
CY7C1387DV25  
Document History Page  
Document Title: CY7C1386DV25/CY7C1387DV25 18-Mbit (512K x 36/1M x 18)  
Pipelined DCD Sync SRAM  
Document Number: 38-05548  
Orig. of  
REV.  
**  
ECN NO. Issue Date Change  
Description of Change  
254550  
288531  
See ECN  
See ECN  
RKF  
SYT  
New data sheet  
*A  
Edited description under “IEEE 1149.1 Serial Boundary Scan (JTAG)” for  
non-compliance with 1149.1  
Removed 225 Mhz Speed Bin  
Added lead-free information for 100-Pin TQFP, 119 BGA and 165 FBGA  
Packages  
Added comment of ‘Lead-free BG packages availability’ below the Ordering  
Information  
*B  
326078  
See ECN  
PCI  
Address expansion pins/balls in the pinouts for all packages are modified as  
per JEDEC standard  
Added description on EXTEST Output Bus Tri-State  
Changed description on the Tap Instruction Set Overview and Extest  
Changed Device Width (23:18) for 119-BGA from 000110 to 101110  
Added separate row for 165 -FBGA Device Width (23:18)  
Changed ΘJA and ΘJC for TQFP Package from 31 and 6 °C/W to 28.66 and  
4.08 °C/W respectively  
Changed ΘJA and ΘJC for BGA Package from 45 and 7 °C/W to 23.8 and 6.2  
°C/W respectively  
Changed ΘJA and ΘJC for FBGA Package from 46 and 3 °C/W to 20.7 and  
4.0 °C/W respectively  
Modified VOL, VOH test conditions  
Removed shading on DC Table for 200 MHz speed bin  
Removed comment of ‘Lead-free BG packages availability’ below the  
Ordering Information  
*C  
418125  
See ECN  
NXR  
Changed address of Cypress Semiconductor Corporation on Page# 1 from  
“3901 North First Street” to “198 Champion Court”  
Changed the description of IX from Input Load Current to Input Leakage  
Current on page# 18  
Changed the IX current values of MODE on page # 18 from –5 µA and 30 µA  
to –30 µA and 5 µA  
Changed the IX current values of ZZ on page # 18 from –30 µA and 5 µA  
to °5 µA and 30 µA  
Changed VIH < VDD to VIH < VDDon page # 18  
Updated Ordering Information Table  
*D  
475009  
See ECN  
VKN  
Converted from Preliminary to Final.  
Added the Maximum Rating for Supply Voltage on VDDQ Relative to GND  
Changed tTH, tTL from 25 ns to 20 ns and tTDOV from 5 ns to 10 ns in TAP  
AC Switching Characteristics table.  
Updated the Ordering Information table.  
Document #: 38-05548 Rev. *D  
Page 29 of 29  

相关型号:

CY7C1386DV25-250BZC

18-Mbit (512K x 36/1M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1386DV25-250BZI

18-Mbit (512K x 36/1M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1386DV25-250BZXC

18-Mbit (512K x 36/1M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1386DV25-250BZXI

18-Mbit (512K x 36/1M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1386D_07

18-Mbit (512K x 36/1 Mbit x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1386D_11

18-Mbit (512 K x 36/1 M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1386D_12

18-Mbit (512 K × 36/1 M × 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1386F

18-Mbit (512 K x 36/1 M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1386F-167BGC

18-Mbit (512K x 36/1 Mbit x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1386F-167BGI

18-Mbit (512K x 36/1 Mbit x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1386F-167BGXC

18-Mbit (512K x 36/1 Mbit x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1386F-167BGXI

18-Mbit (512K x 36/1 Mbit x 18) Pipelined DCD Sync SRAM
CYPRESS