CY7C1441AV25-133BZXIT [CYPRESS]

Standard SRAM, 1MX36, 6.5ns, CMOS, PBGA165;
CY7C1441AV25-133BZXIT
型号: CY7C1441AV25-133BZXIT
厂家: CYPRESS    CYPRESS
描述:

Standard SRAM, 1MX36, 6.5ns, CMOS, PBGA165

时钟 静态存储器 内存集成电路
文件: 总33页 (文件大小:1379K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1441AV25  
CY7C1447AV25  
36-Mbit (1M × 36/512K × 72)  
Flow-Through SRAM  
36-Mbit (1M  
× 36/512K × 72) Flow-Through SRAM  
Features  
Functional Description  
Supports 133 MHz bus operations  
1M × 36/512K × 72 common I/O  
2.5 V core power supply  
The CY7C1441AV25/CY7C1447AV25 are 2.5 V, 1M × 36/512K × 72  
Synchronous Flow-Through SRAMs, designed to interface with  
high speed microprocessors with minimum glue logic. Maximum  
access delay from clock rise is 6.5 ns (133 MHz version). A 2-bit  
on-chip counter captures the first address in a burst and  
increments the address automatically for the rest of the burst  
access. All synchronous inputs are gated by registers controlled  
2.5 V I/O power supply  
Fast clock-to-output times  
6.5 ns (133 MHz version)  
by  
a
positive edge-triggered Clock Input (CLK). The  
synchronous inputs include all addresses, all data inputs,  
address pipelining Chip Enable (CE1), depth expansion Chip  
Enables (CE2 and CE3), Burst Control inputs (ADSC, ADSP, and  
ADV), Write Enables (BWx and BWE), and Global Write (GW).  
Asynchronous inputs include the Output Enable (OE) and the ZZ  
pin.  
Provide high performance 2-1-1-1 access rate  
User selectable burst counter supporting IntelPentium  
interleaved or linear burst sequences  
Separate processor and controller address strobes  
Synchronous self timed write  
The CY7C1441AV25/CY7C1447AV25 allows either interleaved  
or linear burst sequences, selected by the MODE input pin. A  
HIGH selects an interleaved burst sequence and a LOW selects  
a linear burst sequence. Burst accesses can be initiated with the  
Processor Address Strobe (ADSP) or the cache Controller  
Address Strobe (ADSC) inputs. Address advancement is  
controlled by the Address Advancement (ADV) input.  
Asynchronous output enable  
CY7C1441AV25 available in Pb-free 165-ball FBGA package.  
CY7C1447AV25 available in non Pb-free 209-ball FBGA  
package.  
JTAG boundary scan for FBGA package  
ZZ sleep mode option  
Addresses and chip enables are registered at rising edge of  
clock when either ADSP or ADSC are active. Subsequent burst  
addresses can be internally generated as controlled by the ADV.  
operates from a  
+2.5 V core power supply while all outputs may operate with  
either +2.5 supply. All inputs and outputs are  
The CY7C1441AV25/CY7C1447AV25  
a
V
JEDEC-standard JESD8-5 compatible.  
For a complete list of related documentation, click here.  
Selection Guide  
Description  
Maximum Access Time  
133 MHz Unit  
6.5  
270  
120  
ns  
Maximum Operating Current  
mA  
mA  
Maximum CMOS Standby Current  
Cypress Semiconductor Corporation  
Document Number: 001-75380 Rev. *F  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised March 7, 2016  
 
 
CY7C1441AV25  
CY7C1447AV25  
Logic Block Diagram – CY7C1441AV25  
ADDRESS  
REGISTER  
A0, A1,  
A
A
[1:0]  
MODE  
ADV  
CLK  
Q1  
Q0  
BURST  
COUNTER  
AND LOGIC  
CLR  
ADSC  
ADSP  
DQ  
BYTE  
WRITE REGISTER  
D, DQP D  
DQ  
BYTE  
WRITE REGISTER  
D, DQP D  
BW  
D
DQ  
BYTE  
WRITE REGISTER  
C, DQP C  
DQ  
BYTE  
WRITE REGISTER  
C, DQP C  
BW  
C
OUTPUT  
BUFFERS  
DQ s  
MEMORY  
ARRAY  
SENSE  
AMPS  
DQP  
DQP  
DQP  
DQP  
A
DQ  
BYTE  
WRITE REGISTER  
B, DQP B  
B
C
D
DQ  
BYTE  
WRITE REGISTER  
B, DQP B  
BW  
B
DQ  
BYTE  
WRITE REGISTER  
A, DQP A  
DQ  
A, DQPA  
BW  
A
BYTE  
BWE  
WRITE REGISTER  
INPUT  
GW  
REGISTERS  
ENABLE  
REGISTER  
CE1  
CE2  
CE3  
OE  
SLEEP  
CONTROL  
ZZ  
Document Number: 001-75380 Rev. *F  
Page 2 of 33  
CY7C1441AV25  
CY7C1447AV25  
Logic Block Diagram – CY7C1447AV25  
ADDRESS  
REGISTER  
A0, A1,A  
A[1:0]  
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER  
AND LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQ  
H
,
DQP  
H
DQ  
H, DQPH  
BW  
BW  
H
G
WRITE REGISTER  
WRITE DRIVER  
DQ  
G, DQPG  
DQ  
F, DQPF  
WRITE DRIVER  
WRITE REGISTER  
DQ  
F, DQPF  
DQ  
F, DQPF  
BW  
BW  
BW  
BW  
F
E
WRITE DRIVER  
WRITE REGISTER  
DQ E  
E
,
DQP  
DQ  
E, DQPE  
WRITE DRIVER  
WRITE REGISTER  
MEMORY  
ARRAY  
DQ  
D, DQPD  
DQ  
D, DQPD  
D
WRITE REGISTER  
WRITE DRIVER  
DQ  
C, DQPC  
DQ  
C, DQPC  
C
WRITE DRIVER  
WRITE REGISTER  
OUTPUT  
BUFFERS  
DQs  
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
SENSE  
AMPS  
A
B
C
D
E
DQ  
B, DQPB  
DQ  
B, DQPB  
WRITE DRIVER  
BW  
BW  
B
WRITE REGISTER  
DQ  
A, DQPA  
F
DQ A, DQPA  
WRITE REGISTER  
WRITE DRIVER  
G
H
A
BWE  
INPUT  
REGISTERS  
GW  
ENABLE  
REGISTER  
CE1  
CE2  
CE3  
OE  
SLEEP  
CONTROL  
ZZ  
Document Number: 001-75380 Rev. *F  
Page 3 of 33  
CY7C1441AV25  
CY7C1447AV25  
Contents  
Pin Configurations ...........................................................5  
Pin Definitions ..................................................................7  
Functional Overview ........................................................8  
Single Read Accesses ................................................8  
Single Write Accesses Initiated by ADSP ...................8  
Single Write Accesses Initiated by ADSC ...................8  
Burst Sequences .........................................................9  
Sleep Mode .................................................................9  
Interleaved Burst Address Table .................................9  
Linear Burst Address Table .........................................9  
ZZ Mode Electrical Characteristics ..............................9  
Truth Table ......................................................................10  
Partial Truth Table for Read/Write ................................11  
Partial Truth Table for Read/Write ................................11  
IEEE 1149.1 Serial Boundary Scan (JTAG) ..................12  
Disabling the JTAG Feature ......................................12  
Test Access Port (TAP) .............................................12  
Performing a TAP Reset ...........................................12  
TAP Registers ...........................................................12  
TAP Instruction Set ...................................................12  
Tap Controller State Diagram ........................................14  
Tap Controller Block Diagram .......................................15  
TAP Timing ......................................................................15  
TAP AC Switching Characteristics ...............................16  
2.5 V TAP AC Test Conditions .......................................17  
2.5 V TAP AC Output Load Equivalent .........................17  
TAP DC Electrical Characteristics  
Identification Register Definitions ................................18  
Scan Register Sizes .......................................................18  
Identification Codes .......................................................18  
Boundary Scan Order ....................................................19  
Boundary Scan Order ....................................................20  
Maximum Ratings ...........................................................21  
Operating Range .............................................................21  
Electrical Characteristics ...............................................21  
Capacitance ....................................................................22  
Thermal Resistance ........................................................22  
AC Test Loads and Waveforms .....................................22  
Switching Characteristics ..............................................23  
Timing Diagrams ............................................................24  
Ordering Information ......................................................28  
Ordering Code Definitions .........................................28  
Package Diagrams ..........................................................29  
Acronyms ........................................................................31  
Document Conventions .................................................31  
Units of Measure .......................................................31  
Document History Page .................................................32  
Sales, Solutions, and Legal Information ......................33  
Worldwide Sales and Design Support .......................33  
Products ....................................................................33  
PSoC® Solutions ......................................................33  
Cypress Developer Community .................................33  
Technical Support .....................................................33  
and Operating Conditions .............................................17  
Document Number: 001-75380 Rev. *F  
Page 4 of 33  
CY7C1441AV25  
CY7C1447AV25  
Pin Configurations  
Figure 1. 165-ball FBGA (15 × 17 × 1.4 mm) pinout  
CY7C1441AV25 (1M × 36)  
1
2
A
3
CE1  
4
BWC  
5
BWB  
6
CE3  
7
8
9
ADV  
10  
A
11  
NC  
NC/288M  
NC/144M  
DQPC  
BWE  
GW  
VSS  
VSS  
ADSC  
A
B
C
D
A
CE2  
VDDQ  
VDDQ  
BWD  
VSS  
BWA  
VSS  
VSS  
CLK  
VSS  
VSS  
OE  
VSS  
VDD  
ADSP  
VDDQ  
VDDQ  
A
NC/576M  
DQPB  
DQB  
NC  
DQC  
NC/1G  
DQB  
DQC  
VDD  
DQC  
DQC  
DQC  
NC  
DQC  
DQC  
DQC  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
DQB  
DQB  
DQB  
NC  
DQB  
DQB  
DQB  
ZZ  
E
F
G
H
J
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
K
L
DQD  
DQPD  
NC  
DQD  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
A
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
DQA  
DQPA  
A
M
N
P
NC/72M  
TDI  
A1  
TDO  
A0  
MODE  
A
A
A
TMS  
TCK  
A
A
A
A
R
Document Number: 001-75380 Rev. *F  
Page 5 of 33  
 
CY7C1441AV25  
CY7C1447AV25  
Pin Configurations (continued)  
Figure 2.  
209-ball FBGA (14 × 22 × 1.76 mm) pinout  
CY7C1447AV25 (512K × 72)  
1
2
3
4
5
6
7
8
9
10  
11  
DQG  
DQG  
DQG  
A
B
C
D
E
F
DQG  
DQG  
CE3  
DQB  
DQB  
CE2  
ADSP  
ADV  
A
DQB  
DQB  
ADSC  
BW  
A
A
BWSB  
NC/288M  
NC/144M  
BWSC  
BWSH  
VSS  
BWSF  
BWSG  
BWSD  
DQG  
DQG  
NC/576M  
GW  
BWSE  
NC  
CE1  
OE  
BWSA DQB  
DQB  
DQB  
DQG  
NC/1G  
VSS  
NC  
DQB  
DQPG DQPC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VDD  
NC  
NC  
NC  
NC  
VSS  
NC  
NC  
VDD  
VSS  
VDD  
DQPF DQPB  
DQC  
DQC  
VSS  
DQF  
DQF  
VSS  
VDDQ  
VSS  
VSS  
G
H
J
DQC  
DQC  
DQC  
VDDQ  
VSS  
VDDQ  
VSS  
DQF  
DQF  
DQF  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
NC  
A
VSS  
DQC  
DQC  
NC  
DQF  
DQF  
NC  
VDDQ  
DQC  
NC  
VDDQ  
VDDQ  
NC  
VDDQ  
CLK  
DQF  
NC  
K
L
NC  
VDDQ  
VSS  
NC  
DQH  
DQH  
DQH VDDQ  
VDDQ  
VDDQ  
VSS  
DQA  
DQA  
DQA  
M
N
P
R
T
VSS  
VSS  
VDDQ  
VSS  
VDDQ  
NC  
DQH  
VSS  
VDD  
VSS  
DQA  
DQA  
DQA  
VDDQ  
DQH  
DQH  
DQPD  
DQD  
DQD  
VDDQ  
DQH  
VDDQ  
VSS  
NC  
ZZ  
DQA  
DQA  
DQPA  
DQE  
DQE  
DQH  
VSS  
VSS  
VDDQ  
VSS  
A
VDDQ  
VDD  
NC  
A
DQPH  
DQD  
DQD  
DQD  
DQD  
VDDQ  
VDD  
DQPE  
DQE  
DQE  
DQE  
DQE  
VSS  
NC  
A
MODE  
A
U
V
W
A
NC/72M  
A
A
A1  
A
DQD  
DQD  
A
A
A
A
DQE  
DQE  
TDI  
TDO  
TCK  
A0  
A
TMS  
Document Number: 001-75380 Rev. *F  
Page 6 of 33  
CY7C1441AV25  
CY7C1447AV25  
Pin Definitions  
Name  
I/O  
Description  
Address Inputs. Used to select one of the address locations. Sampled at the rising edge of the CLK if  
A0, A1, A  
Input-  
Synchronous ADSP or ADSC is active LOW, and CE1, CE2, and CE3 are sampled active. A[1:0] feed the 2-bit counter.  
Input- Byte Write Select Inputs, Active LOW. Qualified with BWE to conduct byte writes to the SRAM.  
Synchronous Sampled on the rising edge of CLK.  
BWA,  
BWB,  
BWC,  
BWD,  
BWE,BWF,  
BWG, BWH  
GW  
CLK  
CE1  
Input-  
Global Write Enable Input, Active LOW. When asserted LOW on the rising edge of CLK, a global write  
Synchronous is conducted (ALL bytes are written, regardless of the values on BWX and BWE).  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. Also used to increment the burst  
counter when ADV is asserted LOW during a burst operation.  
Input-  
Chip Enable 1 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE2  
Synchronous and CE3 to select or deselect the device. ADSP is ignored if CE1 is HIGH. CE1 is sampled only when  
a new external address is loaded.  
CE2  
CE3  
OE  
Input-  
Chip Enable 2 Input, Active HIGH. Sampled on the rising edge of CLK. Used in conjunction with CE1  
Synchronous and CE3 to select or deselect the device. CE2 is sampled only when a new external address is loaded.  
Input- Chip Enable 3 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE1  
Synchronous and CE2 to select or deselect the device. CE3 is sampled only when a new external address is loaded.  
Input- Output Enable, Asynchronous Input, Active LOW. Controls the direction of the I/O pins. When LOW,  
Asynchronou the I/O pins behave as outputs. When deasserted HIGH, I/O pins are tri-stated and act as input data  
s
pins. OE is masked during the first clock of a read cycle when emerging from a deselected state.  
ADV  
Input-  
Advance Input Signal. Sampled on the rising edge of CLK. When asserted, it automatically increments  
Synchronous the address in a burst cycle.  
ADSP  
Input-  
Address Strobe from Processor. Sampled on the rising edge of CLK, active LOW. When asserted  
Synchronous LOW, addresses presented to the device are captured in the address registers. A[1:0] are also loaded  
into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized. ASDP is  
ignored when  
CE1 is deasserted HIGH.  
ADSC  
Input-  
Address Strobe from Controller. Sampled on the rising edge of CLK, active LOW. When asserted  
Synchronous LOW, addresses presented to the device are captured in the address registers. A[1:0] are also loaded  
into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized.  
BWE  
ZZ  
Input-  
Byte Write Enable Input, Active LOW. Sampled on the rising edge of CLK. This signal must be  
Synchronous asserted LOW to conduct a byte write.  
Input-  
ZZ Sleep Input, Active HIGH. When asserted HIGH places the device in a non time-critical “sleep”  
Asynchronou condition with data integrity preserved. For normal operation, this pin must be LOW or left floating. ZZ  
s
pin has an internal pull down.  
I/O-  
Bidirectional Data I/O Lines. As inputs, they feed into an on-chip data register that is triggered by the  
DQs  
Synchronous rising edge of CLK. As outputs, they deliver the data contained in the memory location specified by the  
addresses presented during the previous clock rise of the read cycle. The direction of the pins is  
controlled by OE. When OE is asserted LOW, the pins behave as outputs. When HIGH, DQs and DQPX  
are placed in a tri-state condition.The outputs are automatically tri-stated during the data portion of a  
write sequence, during the first clock when emerging from a deselected state, and when the device is  
deselected, regardless of the state of OE.  
I/O-  
Bidirectional Data Parity I/O Lines. Functionally, these signals are identical to DQs. During write  
DQPX  
Synchronous sequences, DQPx is controlled by BWX correspondingly.  
MODE  
Input-Static Selects Burst Order. When tied to GND selects linear burst sequence. When tied to VDD or left floating  
selects interleaved burst sequence. This is a strap pin and should remain static during device operation.  
Mode pin has an internal pull up.  
Document Number: 001-75380 Rev. *F  
Page 7 of 33  
CY7C1441AV25  
CY7C1447AV25  
Pin Definitions (continued)  
Name  
VDD  
I/O  
Description  
Power Supply Inputs to the Core of the Device.  
Power  
Supply  
VDDQ  
I/O Power Power Supply for I/O Circuitry.  
Supply  
VSS  
Ground  
I/O Ground Ground for I/O Circuitry.  
JTAG Serial Serial Data-Out to the JTAG Circuit. Delivers data on the negative edge of TCK. If the JTAG feature  
Ground for the Core of the Device.  
VSSQ  
TDO  
Output  
is not utilized, this pin should be left unconnected.  
Synchronous  
TDI  
JTAG Serial Serial Data-In to the JTAG Circuit. Sampled on the rising edge of TCK. If the JTAG feature is not  
Input  
utilized, this pin can be left floating or connected to VDD through a pull up resistor.  
Synchronous  
TMS  
JTAG Serial Serial Data-In to the JTAG Circuit. Sampled on the rising edge of TCK. If the JTAG feature is not  
Input  
utilized, this pin can be disconnected or connected to VDD.  
Synchronous  
TCK  
NC  
JTAG-  
Clock  
Clock Input to the JTAG Circuitry. If the JTAG feature is not utilized, this pin must be connected to VSS  
.
No Connects. Not internally connected to the die.  
NC/72M,  
NC/144M,  
NC/288M,  
NC/576M,  
NC/1G  
No Connects. Not internally connected to the die. NC/72M, NC/144M, NC/288M, NC/576M, and NC/1G  
are address expansion pins and are not internally connected to the die.  
active and (2) ADSP or ADSC is asserted LOW (if the access is  
initiated by ADSC, the write inputs must be deasserted during  
Functional Overview  
this first cycle). The address presented to the address inputs is  
latched into the address register and the burst counter or control  
logic and presented to the memory core. If the OE input is  
asserted LOW, the requested data is available as the data  
outputs a maximum to tCDV after clock rise. ADSP is ignored if  
CE1 is HIGH.  
All synchronous inputs pass through input registers controlled by  
the rising edge of the clock. Maximum access delay from the  
clock rise (tCDV) is 6.5 ns (133 MHz device).  
The CY7C1441AV25/CY7C1447AV25 supports secondary  
cache in systems utilizing either a linear or interleaved burst  
sequence. The interleaved burst order supports Pentium and  
i486™ processors. The linear burst sequence is suited for  
processors that utilize a linear burst sequence. The burst order  
is user selectable and is determined by sampling the MODE  
input. Accesses are initiated with either ADSP or ADSC. Address  
advancement through the burst sequence is controlled by the  
ADV input. A two-bit on-chip wraparound burst counter captures  
the first address in a burst sequence and automatically  
increments the address for the rest of the burst access.  
Single Write Accesses Initiated by ADSP  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) CE1, CE2, CE3 are all asserted active  
and (2) ADSP is asserted LOW. The addresses presented are  
loaded into the address register and the burst inputs (GW, BWE,  
and BWX) are ignored during this first clock cycle. If the write  
inputs are asserted active (see Truth Table on page 10 for  
appropriate states that indicate a write) on the next clock rise, the  
appropriate data is latched and written into the device. Byte  
writes are allowed. All I/Os are tri-stated during a byte write.  
Because this is a common I/O device, the asynchronous OE  
input signal must be deasserted and the I/Os must be tri-stated  
prior to the presentation of data to DQs. As a safety precaution,  
the data lines are tri-stated when a write cycle is detected,  
regardless of the state of OE.  
Byte write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BWx) inputs. A Global Write  
Enable (GW) overrides all byte write inputs and writes data to all  
four bytes. All writes are simplified with on-chip synchronous self  
timed write circuitry.  
Three synchronous chip selects (CE1, CE2, CE3) and an  
asynchronous output enable (OE) provide for easy bank  
selection and output tri-state control. ADSP is ignored if CE1 is  
HIGH.  
Single Write Accesses Initiated by ADSC  
This write access is initiated when the following conditions are  
satisfied at clock rise: (1) CE1, CE2, and CE3 are all asserted  
active, (2) ADSC is asserted LOW, (3) ADSP is deasserted  
Single Read Accesses  
A single read access is initiated when the following conditions  
are satisfied at clock rise: (1) CE1, CE2, and CE3 are all asserted  
Document Number: 001-75380 Rev. *F  
Page 8 of 33  
 
CY7C1441AV25  
CY7C1447AV25  
HIGH, and (4) the write input signals (GW, BWE, and BWX)  
indicate a write access. ADSC is ignored if ADSP is active LOW.  
deselected prior to entering the sleep mode. CE1, CE2, CE3,  
ADSP, and ADSC must remain inactive for the duration of tZZREC  
after the ZZ input returns LOW.  
The addresses presented are loaded into the address register  
and the burst counter or control logic and delivered to the  
memory core. The information presented to DQS is written into  
the specified address location. Byte writes are allowed. All I/Os  
are tri-stated when a write is detected, even a byte write.  
Because this is a common I/O device, the asynchronous OE  
input signal must be deasserted and the I/Os must be tri-stated  
prior to the presentation of data to DQs. As a safety precaution,  
the data lines are tri-stated when a write cycle is detected,  
regardless of the state of OE.  
Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
First  
Address  
A1:A0  
Second  
Address  
A1:A0  
Third  
Address  
A1:A0  
Fourth  
Address  
A1:A0  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Burst Sequences  
The CY7C1441AV25/CY7C1447AV25 provides an on-chip  
two-bit wraparound burst counter inside the SRAM. The burst  
counter is fed by A[1:0], and can follow either a linear or inter-  
leaved burst order. The burst order is determined by the state of  
the MODE input. A LOW on MODE selects a linear burst  
sequence. A HIGH on MODE selects an interleaved burst order.  
Leaving MODE unconnected causes the device to default to a  
interleaved burst sequence.  
Linear Burst Address Table  
(MODE = GND)  
First  
Address  
A1:A0  
Second  
Address  
A1:A0  
Third  
Address  
A1:A0  
Fourth  
Address  
A1:A0  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ places  
the SRAM in a power conservation sleep mode. Two clock cycles  
are required to enter into or exit from this sleep mode. When in  
this mode, data integrity is guaranteed. Accesses pending when  
entering the sleep mode are not considered valid nor is the  
completion of the operation guaranteed. The device must be  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
ZZ recovery time  
Test Conditions  
Min  
Max  
100  
2tCYC  
Unit  
mA  
ns  
ZZ > VDD– 0.2 V  
tZZS  
ZZ > VDD – 0.2 V  
ZZ < 0.2 V  
2tCYC  
tZZREC  
tZZI  
ns  
ZZ active to sleep current  
This parameter is sampled  
2tCYC  
ns  
tRZZI  
ZZ Inactive to exit sleep current This parameter is sampled  
0
ns  
Document Number: 001-75380 Rev. *F  
Page 9 of 33  
CY7C1441AV25  
CY7C1447AV25  
Truth Table  
The truth table for CY7C1441AV25/CY7C1447AV25 follows. [1, 2, 3, 4, 5]  
Cycle Description  
Address Used CE1 CE2 CE3 ZZ ADSP ADSC ADV WRITE OE CLK  
DQ  
Deselected Cycle, Power Down  
Deselected Cycle, Power Down  
Deselected Cycle, Power Down  
Deselected Cycle, Power Down  
Deselected Cycle, Power Down  
Sleep Mode, Power Down  
Read Cycle, Begin Burst  
None  
None  
H
L
X
L
X
X
H
X
X
X
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
L
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
L
L–H Tri-State  
L–H Tri-State  
L–H Tri-State  
L–H Tri-State  
L–H Tri-State  
None  
L
X
L
L
None  
L
H
H
X
L
None  
X
X
L
X
X
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
L
None  
X
X
X
L
X
Tri-State  
Q
External  
External  
External  
External  
External  
Next  
L–H  
Read Cycle, Begin Burst  
L
L
L
H
X
L
L–H Tri-State  
Write Cycle, Begin Burst  
L
L
H
H
H
H
H
X
X
H
X
H
H
X
X
H
X
L–H  
L–H  
D
Q
Read Cycle, Begin Burst  
L
L
L
H
H
H
H
H
H
L
Read Cycle, Begin Burst  
L
L
L
H
L
L–H Tri-State  
L–H  
L–H Tri-State  
L–H  
L–H Tri-State  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Write Cycle, Continue Burst  
Write Cycle, Continue Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
X
X
H
H
X
H
X
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
Q
Next  
L
H
L
Next  
L
Q
Next  
L
H
X
X
L
Next  
L
L–H  
L–H  
L–H  
D
D
Q
Next  
L
L
Current  
Current  
Current  
Current  
Current  
Current  
H
H
H
H
H
H
H
H
H
H
L
H
L
L–H Tri-State  
L–H  
L–H Tri-State  
Q
H
X
X
L–H  
L–H  
D
D
L
Notes  
1. X = “Don't Care.” H = Logic HIGH, L = Logic LOW.  
2. WRITE = L when any one or more Byte Write enable signals and BWE = L or GW = L. WRITE = H when all Byte write enable signals, BWE, GW = H.  
3. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.  
4. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks after the  
X
ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the write cycle to allow the outputs to tri-state. OE is a don't care for  
the remainder of the write cycle.  
5. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are Tri-State when OE is inactive  
or when the device is deselected, and all data bits behave as output when OE is active (LOW).  
Document Number: 001-75380 Rev. *F  
Page 10 of 33  
 
 
 
 
CY7C1441AV25  
CY7C1447AV25  
Partial Truth Table for Read/Write  
The partial truth table for read/write for CY7C1441AV25 follows. [6, 7]  
Function (CY7C1441AV25)  
GW  
BWE  
BWD  
BWC  
BWB  
BWA  
Read  
Read  
H
H
X
X
X
X
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H
H
H
H
H
L
H
H
L
H
L
Write Byte A (DQA, DQPA)  
Write Byte B(DQB, DQPB)  
H
L
Write Bytes A, B (DQA, DQB, DQPA, DQPB)  
Write Byte C (DQC, DQPC)  
L
H
H
L
H
L
Write Bytes C, A (DQC, DQA, DQPC, DQPA)  
Write Bytes C, B (DQC, DQB, DQPC, DQPB)  
L
L
H
L
Write Bytes C, B, A (DQC, DQB, DQA, DQPC, DQPB,  
DQPA)  
L
L
Write Byte D (DQD, DQPD)  
H
H
H
H
L
L
L
L
L
L
L
L
H
H
H
H
H
H
L
H
L
Write Bytes D, A (DQD, DQA, DQPD, DQPA)  
Write Bytes D, B (DQD, DQA, DQPD, DQPA)  
H
L
Write Bytes D, B, A (DQD, DQB, DQA, DQPD, DQPB,  
DQPA)  
L
Write Bytes D, B (DQD, DQB, DQPD, DQPB)  
H
H
L
L
L
L
L
L
H
H
H
L
Write Bytes D, B, A (DQD, DQC, DQA, DQPD, DQPC,  
DQPA)  
Write Bytes D, C, A (DQD, DQB, DQA, DQPD, DQPB,  
DQPA)  
H
L
L
L
L
H
Write All Bytes  
Write All Bytes  
H
L
L
L
L
L
L
X
X
X
X
X
Partial Truth Table for Read/Write  
The partial truth table for read/write for CY7C1447AV25 follows. [6, 8]  
Function (CY7C1447AV25)  
GW  
H
BWE  
BWx  
Read  
H
L
L
L
X
X
Read  
H
All BW = H  
Write Byte x – (DQx and DQPx)  
Write All Bytes  
H
L
All BW = L  
X
H
Write All Bytes  
L
Notes  
6. X = “Don't Care.” H = Logic HIGH, L = Logic LOW.  
7. Table only lists a partial listing of the byte write combinations. Any combination of BW is valid. Appropriate write is done based on which byte write is active.  
X
8. BWx represents any byte write signal BW .To enable any byte write BW a logic LOW signal should be applied at clock rise. Any number of bye writes can be enabled  
X
x,  
at the same time for any given write.  
Document Number: 001-75380 Rev. *F  
Page 11 of 33  
 
 
CY7C1441AV25  
CY7C1447AV25  
Only one register can be selected at a time through the  
instruction register. Data is serially loaded into the TDI ball on the  
rising edge of TCK. Data is output on the TDO ball on the falling  
edge of TCK.  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The CY7C1441AV25/CY7C1447AV25 incorporates a serial  
boundary scan test access port (TAP). This part is fully compliant  
with 1149.1. The TAP operates using JEDEC-standard 2.5 V I/O  
logic level.  
Instruction Register  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the TDI  
and TDO balls as shown in the Tap Controller Block Diagram on  
page 15. On power up, the instruction register is loaded with the  
IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as described  
in the previous section.  
The  
CY7C1441AV25/CY7C1447AV25 contains  
a
TAP  
controller, instruction register, boundary scan register, bypass  
register, and ID register.  
Disabling the JTAG Feature  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are  
internally pulled up and may be unconnected. They may  
alternately be connected to VDD through a pull up resistor. TDO  
must be left unconnected. On power up, the device comes up in  
a reset state, which does not interfere with the operation of the  
device.  
When the TAP controller is in the Capture-IR state, the two least  
significant bits are loaded with a binary ‘01’ pattern to allow fault  
isolation of the board level serial test data path.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that is placed between the TDI and  
TDO balls. This allows data to be shifted through the SRAM with  
minimal delay. The bypass register is set LOW (VSS) when the  
BYPASS instruction is executed.  
Test Access Port (TAP)  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs are  
captured on the rising edge of TCK. All outputs are driven from  
the falling edge of TCK.  
Boundary Scan Register  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
Test Mode Select (TMS)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. This ball can be left  
unconnected if the TAP is not used. The ball is pulled up  
internally, resulting in a logic HIGH level.  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR state.  
It is then placed between the TDI and TDO balls when the  
controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions are used to  
capture the contents of the I/O ring.  
Test Data-In (TDI)  
The TDI ball is used to serially input information into the registers  
and can be connected to the input of any of the registers. The  
register between TDI and TDO is chosen by the instruction that  
is loaded into the TAP instruction register. For information on  
loading the instruction register, see Tap Controller State Diagram  
on page 14. TDI is internally pulled up and can be unconnected  
if the TAP is unused in an application. TDI is connected to the  
most significant bit (MSB) of any register.  
The Boundary Scan Order tables show the order in which the bits  
are connected. Each bit corresponds to one of the bumps on the  
SRAM package. The MSB of the register is connected to TDI and  
the LSB is connected to TDO.  
Identification (ID) Register  
The ID register is loaded with a vendor specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired into  
the SRAM and can be shifted out when the TAP controller is in  
the Shift-DR state. The ID register has a vendor code and other  
information described in the Identification Register Definitions on  
page 18.  
Test Data-Out (TDO)  
The TDO output ball is used to serially clock data out from the  
registers. The output is active depending on the current state of  
the TAP state machine (see Identification Codes on page 18).  
The output changes on the falling edge of TCK. TDO is  
connected to the least significant bit (LSB) of any register.  
TAP Instruction Set  
Performing a TAP Reset  
Overview  
A RESET is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This RESET does not affect the operation of the  
SRAM and may be performed while the SRAM is operating.  
Eight different instructions are possible with the three bit  
instruction register.All combinations are listed in the Identification  
Codes on page 18. Three of these instructions are listed as  
RESERVED and should not be used. The other five instructions  
are described in detail below.  
At power up, the TAP is reset internally to ensure that TDO  
comes up in a High Z state.  
Instructions are loaded into the TAP controller during the Shift-IR  
state when the instruction register is placed between TDI and  
TDO. During this state, instructions are shifted through the  
instruction register through the TDI and TDO balls. To execute  
TAP Registers  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned into and out of the SRAM test circuitry.  
Document Number: 001-75380 Rev. *F  
Page 12 of 33  
 
CY7C1441AV25  
CY7C1447AV25  
the instruction after it is shifted in, the TAP controller must be  
moved into the Update-IR state.  
PRELOAD allows an initial data pattern to be placed at the  
latched parallel outputs of the boundary scan register cells prior  
to the selection of another boundary scan test operation.  
IDCODE  
The shifting of data for the SAMPLE and PRELOAD phases can  
occur concurrently when required – that is, while data captured  
is shifted out, the preloaded data can be shifted in.  
The IDCODE instruction causes a vendor specific, 32-bit code to  
be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
BYPASS  
When the BYPASS instruction is loaded in the instruction register  
and the TAP is placed in a Shift-DR state, the bypass register is  
placed between the TDI and TDO pins. The advantage of the  
BYPASS instruction is that it shortens the boundary scan path  
when multiple devices are connected together on a board.  
The IDCODE instruction is loaded into the instruction register on  
power up or whenever the TAP controller is given a test logic  
reset state.  
SAMPLE Z  
EXTEST  
The SAMPLE Z instruction causes the boundary scan register to  
be connected between the TDI and TDO pins when the TAP  
controller is in a Shift-DR state. The SAMPLE Z command puts  
the output bus into a High Z state until the next command is given  
during the “Update IR” state.  
The EXTEST instruction enables the preloaded data to be driven  
out through the system output pins. This instruction also selects  
the boundary scan register to be connected for serial access  
between the TDI and TDO in the Shift-DR controller state.  
SAMPLE/PRELOAD  
EXTEST OUTPUT BUS TRI-STATE  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When  
the SAMPLE/PRELOAD instructions are loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and output pins is  
captured in the boundary scan register.  
IEEE Standard 1149.1 mandates that the TAP controller be able  
to put the output bus into a tri-state mode.  
The boundary scan register has a special bit located at bit #138  
(for 209-ball FBGA package). When this scan cell, called the  
“extest output bus tri-state”, is latched into the preload register  
during the Update-DR state in the TAP controller, it directly  
controls the state of the output (Q-bus) pins when the EXTEST  
is entered as the current instruction. When HIGH, it enables the  
output buffers to drive the output bus. When LOW, this bit places  
the output bus into a High Z condition.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because there  
is a large difference in the clock frequencies, it is possible that  
during the Capture-DR state, an input or output may undergo a  
transition. The TAP may then try to capture a signal while in  
transition (metastable state). This does not harm the device, but  
there is no guarantee as to the value that is captured.  
Repeatable results may not be possible.  
This bit can be set by entering the SAMPLE/PRELOAD, or  
EXTEST command and then shifting the desired bit into that cell  
during the Shift-DR state. During Update-DR, the value loaded  
into that shift register cell latches into the preload register. When  
the EXTEST instruction is entered, this bit directly controls the  
output Q-bus pins. Note that this bit is preset HIGH to enable the  
output when the device is powered up and also when the TAP  
controller is in the Test-Logic-Reset” state.  
To guarantee that the boundary scan register captures the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller’s capture setup plus hold  
times (tCS and tCH). The SRAM clock input might not be captured  
correctly if there is no way in a design to stop (or slow) the clock  
during a SAMPLE/PRELOAD instruction. If this is an issue, it is  
still possible to capture all other signals and simply ignore the  
value of the CK and CK captured in the boundary scan register.  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
When the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the boundary  
scan register between the TDI and TDO pins.  
Document Number: 001-75380 Rev. *F  
Page 13 of 33  
CY7C1441AV25  
CY7C1447AV25  
TAP Controller State Diagram  
TEST-LOGIC  
1
RESET  
0
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
1
1
EXIT1-DR  
EXIT1-IR  
0
0
PAUSE-DR  
1
0
PAUSE-IR  
1
0
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
0
1
0
The 0/1 next to each state represents the value of TMS at the rising edge of TCK.  
Document Number: 001-75380 Rev. *F  
Page 14 of 33  
CY7C1441AV25  
CY7C1447AV25  
TAP Controller Block Diagram  
TAP Timing  
Figure 3. TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
Document Number: 001-75380 Rev. *F  
Page 15 of 33  
CY7C1441AV25  
CY7C1447AV25  
TAP AC Switching Characteristics  
Over the Operating Range  
Parameter [9, 10]  
Clock  
Parameter  
Min  
Max  
Unit  
tTCYC  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH time  
TCK Clock LOW time  
50  
20  
ns  
MHz  
ns  
tTF  
tTH  
20  
20  
tTL  
ns  
Output Times  
tTDOV  
tTDOX  
Setup Times  
tTMSS  
tTDIS  
TCK Clock LOW to TDO Valid  
TCK Clock LOW to TDO Invalid  
0
10  
ns  
ns  
TMS Setup to TCK Clock Rise  
TDI Setup to TCK Clock Rise  
Capture SetUp to TCK Rise  
5
5
5
ns  
ns  
ns  
tCS  
Hold Times  
tTMSH  
tTDIH  
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
tCH  
Capture Hold after Clock Rise  
Notes  
9.  
t
and t refer to the setup and hold time requirements of latching data from the boundary scan register.  
CS CH  
10. Test conditions are specified using the load in TAP AC test Conditions. t /t = 1 ns.  
R
F
Document Number: 001-75380 Rev. *F  
Page 16 of 33  
 
CY7C1441AV25  
CY7C1447AV25  
2.5 V TAP AC Test Conditions  
2.5 V TAP AC Output Load Equivalent  
Input pulse levels ...............................................VSS to 2.5 V  
Input rise and fall time ....................................................1 ns  
Input timing reference levels ....................................... 1.25 V  
Output reference levels .............................................. 1.25 V  
Test load termination supply voltage .......................... 1.25 V  
1.25V  
50Ω  
TDO  
ZO = 50Ω  
20p F  
TAP DC Electrical Characteristics and Operating Conditions  
(0 °C < TA < +70 °C; VDD = 2.5 V ± 0.125 V unless otherwise noted)  
Parameter [11]  
Description  
Output HIGH Voltage  
Output HIGH Voltage  
Output LOW Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Load Current  
Description  
IOH = –1.0 mA  
Conditions  
VDDQ = 2.5 V  
Min  
Max  
Unit  
V
VOH1  
VOH2  
VOL1  
VOL2  
VIH  
2.0  
2.1  
IOH = –100 µA  
IOL = 1.0 mA  
IOL = 100 µA  
VDDQ = 2.5 V  
VDDQ = 2.5 V  
VDDQ = 2.5 V  
VDDQ = 2.5 V  
VDDQ = 2.5 V  
0.4  
V
V
0.2  
V
1.7  
–0.3  
–5  
VDD + 0.3  
0.7  
V
VIL  
V
IX  
GND < VIN < VDDQ  
5
µA  
Note  
11. All voltages referenced to V (GND).  
SS  
Document Number: 001-75380 Rev. *F  
Page 17 of 33  
 
 
CY7C1441AV25  
CY7C1447AV25  
Identification Register Definitions  
Bit Configuration  
Bit Configuration  
Instruction Field  
Description  
CY7C1441AV25 (1M × 36) CY7C1447AV25 (512K × 72)  
Revision Number (31:29)  
Device Depth (28:24)  
000  
000  
Describes the version number.  
Reserved for internal use.  
01011  
000001  
01011  
000001  
Architecture and Memory Type  
(23:18)  
Defines memory type and  
architecture.  
Bus Width and Density (17:12)  
Cypress JEDEC ID Code (11:1)  
100111  
110111  
Defines width and density.  
00000110100  
00000110100  
Allows unique identification of  
SRAM vendor.  
ID Register Presence Indicator (0)  
1
1
Indicates the presence of an ID  
register.  
Scan Register Sizes  
Register Name  
Bit Size (× 36)  
Bit Size (× 72)  
Instruction Bypass  
3
1
3
1
Bypass  
ID  
32  
89  
32  
Boundary Scan Order (165-ball FBGA package)  
Boundary Scan Order (209-ball FBGA package)  
138  
Identification Codes  
Instruction  
EXTEST  
Code  
000  
Description  
Captures I/O ring contents.  
IDCODE  
001  
Loads the ID register with the vendor ID code and places the register between TDI and TDO.  
This operation does not affect SRAM operations.  
SAMPLE Z  
010  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces  
all SRAM output drivers to a High Z state.  
RESERVED  
011  
100  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Does  
not affect SRAM operation.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
Document Number: 001-75380 Rev. *F  
Page 18 of 33  
 
 
CY7C1441AV25  
CY7C1447AV25  
Boundary Scan Order  
165-ball FBGA [12, 13]  
CY7C1441AV25 (1M × 36)  
Bit #  
1
Ball ID  
Bit #  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
Ball ID  
E11  
D11  
G10  
F10  
E10  
D10  
C11  
A11  
B11  
A10  
B10  
A9  
Bit #  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
Ball ID  
A3  
A2  
B2  
C2  
B1  
A1  
C1  
D1  
E1  
F1  
Bit #  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
Ball ID  
N1  
N6  
N7  
2
N2  
3
N10  
P11  
P8  
P1  
4
R1  
5
R2  
6
R8  
P3  
7
R9  
R3  
8
P9  
P2  
9
P10  
R10  
R11  
H11  
N11  
M11  
L11  
K11  
J11  
M10  
L10  
K10  
J10  
H9  
R4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
P4  
G1  
D2  
E2  
F2  
N5  
P6  
B9  
R6  
C10  
A8  
Internal  
G2  
H1  
H3  
J1  
B8  
A7  
B7  
B6  
K1  
L1  
A6  
M1  
J2  
B5  
A5  
A4  
B4  
B3  
H10  
G11  
F11  
K2  
L2  
M2  
Notes  
12. Balls which are NC (No Connect) are preset LOW.  
13. Bit# 89 is preset HIGH.  
Document Number: 001-75380 Rev. *F  
Page 19 of 33  
 
 
CY7C1441AV25  
CY7C1447AV25  
Boundary Scan Order  
209-ball FBGA [14, 15]  
CY7C1447AV25 (512K × 72)  
Bit #  
1
Ball ID  
Bit #  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
Ball ID  
F6  
Bit #  
71  
Ball ID  
Bit #  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
Ball ID  
K3  
W6  
V6  
H6  
C6  
B6  
A6  
A5  
B5  
C5  
D5  
D4  
C4  
A4  
B4  
C3  
B3  
A3  
A2  
A1  
B2  
B1  
C2  
C1  
D2  
D1  
E1  
E2  
F2  
F1  
G1  
G2  
H2  
H1  
J2  
2
K8  
72  
K4  
3
U6  
K9  
73  
K6  
4
W7  
V7  
K10  
J11  
J10  
H11  
H10  
G11  
G10  
F11  
F10  
E10  
E11  
D11  
D10  
C11  
C10  
B11  
B10  
A11  
A10  
C9  
74  
K2  
5
75  
L2  
6
U7  
76  
L1  
7
T7  
77  
M2  
M1  
N2  
N1  
P2  
8
V8  
78  
9
U8  
79  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
T8  
80  
V9  
81  
U9  
82  
P1  
P6  
83  
R2  
R1  
T2  
W11  
W10  
V11  
V10  
U11  
U10  
T11  
T10  
R11  
R10  
P11  
P10  
N11  
N10  
M11  
M10  
L11  
L10  
K11  
M6  
84  
85  
86  
T1  
87  
U2  
U1  
V2  
88  
89  
90  
V1  
91  
W2  
W1  
T6  
92  
93  
B9  
94  
U3  
V3  
A9  
95  
D7  
96  
T4  
C8  
97  
T5  
B8  
98  
U4  
V4  
A8  
99  
D8  
100  
101  
102  
103  
104  
105  
5W  
5V  
C7  
B7  
5U  
Internal  
A7  
J1  
L6  
D6  
K1  
N6  
J6  
G6  
Notes  
14. Balls which are NC (No Connect) are preset LOW.  
15. Bit# 138 is preset HIGH.  
Document Number: 001-75380 Rev. *F  
Page 20 of 33  
 
CY7C1441AV25  
CY7C1447AV25  
DC Input Voltage ................................ –0.5 V to VDD + 0.5 V  
Current into Outputs (LOW) ........................................ 20 mA  
Maximum Ratings  
Exceeding maximum ratings may impair the useful life of the  
device. These user guidelines are not tested.  
Static Discharge Voltage  
(per MIL-STD-883, Method 3015) ..........................> 2001 V  
Storage Temperature ............................... –65 °C to +150 °C  
Latch Up Current ...................................................> 200 mA  
Ambient Temperature  
with Power Applied .................................. –55 °C to +125 °C  
Operating Range  
Supply Voltage on VDD Relative to GND .....–0.3 V to +3.6 V  
Supply Voltage on VDDQ Relative to GND .... –0.3 V to +VDD  
Ambient  
Temperature  
Range  
VDD  
VDDQ  
DC Voltage Applied to Outputs  
in Tri-State ........................................–0.5 V to VDDQ + 0.5 V  
Industrial  
–40 °C to +85 °C 2.5 V+ 5% 1.7 V to VDD  
Electrical Characteristics  
Over the Operating Range  
Parameter[16, 17]  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Test Conditions  
Min  
2.375  
2.375  
2.0  
Max  
2.625  
2.625  
Unit  
V
VDD  
VDDQ  
VOH  
VOL  
VIH  
for 2.5 V I/O  
V
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage [16]  
Input LOW Voltage [16]  
for 2.5 V I/O, IOH = –1.0 mA  
for 2.5 V I/O, IOL = 1.0 mA  
for 2.5 V I/O  
V
0.4  
V
1.7  
VDD + 0.3  
0.7  
V
VIL  
for 2.5 V I/O  
–0.3  
–5  
V
IX  
Input Leakage Current except ZZ GND VI VDDQ  
and MODE  
5
A  
Input Current of MODE  
Input = VSS  
–30  
5
A  
A  
A  
A  
A  
mA  
Input = VDD  
Input Current of ZZ  
Input = VSS  
–5  
Input = VDD  
30  
5
IOZ  
IDD  
Output Leakage Current  
GND VI VDDQ, Output Disabled  
–5  
VDD Operating Supply Current  
VDD = Max, IOUT = 0 mA,  
f = fMAX = 1/tCYC  
7.5 ns cycle,  
133 MHz  
270  
ISB1  
ISB2  
ISB3  
ISB4  
Automatic CE Power Down  
Current – TTL Inputs  
Max VDD, Device Deselected,  
7.5 ns cycle,  
133 MHz  
150  
120  
150  
135  
mA  
mA  
mA  
mA  
VIN VIH or VIN VIL, f = fMAX  
,
Inputs Switching  
Automatic CE Power Down  
Current – CMOS Inputs  
Max VDD, Device Deselected,  
VIN VDD – 0.3 V or VIN 0.3 V, 133 MHz  
f = 0, Inputs Static  
7.5 ns cycle,  
Automatic CE Power Down  
Current – CMOS Inputs  
Max VDD, Device Deselected,  
VIN VDDQ – 0.3 V or VIN 0.3 V, 133 MHz  
f = fMAX, Inputs Switching  
7.5 ns cycle,  
Automatic CE Power Down  
Current – TTL Inputs  
Max VDD, Device Deselected,  
VIN VDD – 0.3 V or VIN 0.3 V, 133 MHz  
f = 0, Inputs Static  
7.5 ns cycle,  
Notes  
16. Overshoot: V  
< V +1.5 V (Pulse width less than t  
/2), undershoot: V  
> –2 V (Pulse width less than t  
/2).  
CYC  
IH(AC)  
DD  
CYC  
IL(AC)  
17. T  
: Assumes a linear ramp from V to V  
within 200 ms. During this time V < V and V  
< V  
.
Power-up  
DD(min)  
IH  
DD  
DDQ  
DD  
Document Number: 001-75380 Rev. *F  
Page 21 of 33  
 
 
 
CY7C1441AV25  
CY7C1447AV25  
Capacitance  
165-ball FBGA 209-ball FBGA  
Parameter [18]  
Description  
Input capacitance  
Test Conditions  
Unit  
Max  
Max  
CIN  
TA = 25 C, f = 1 MHz, VDD = 2.5 V,  
VDDQ = 2.5 V  
7
7
6
5
5
7
pF  
pF  
pF  
CCLK  
CI/O  
Clock input capacitance  
Input/Output capacitance  
Thermal Resistance  
165-ballFBGA 209-ballFBGA  
Parameter [18]  
Description  
Test Conditions  
Unit  
Package  
Package  
JA  
Thermal resistance  
(junction to ambient)  
Test conditions follow standard test  
methods and procedures for measuring  
thermal impedance, per EIA/JESD51.  
20.8  
25.31  
°C/W  
JC  
Thermal resistance  
(junction to case)  
3.2  
4.48  
°C/W  
AC Test Loads and Waveforms  
Figure 4. AC Test Loads and Waveforms  
2.5 V I/O Test Load  
R = 1667  
2.5V  
OUTPUT  
R = 50  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
90%  
10%  
Z = 50  
0
10%  
L
GND  
5 pF  
INCLUDING  
R = 1538  
1 ns  
1 ns  
V = 1.25V  
T
JIG AND  
SCOPE  
(a)  
(b)  
(c)  
Note  
18. Tested initially and after any design or process change that may affect these parameters.  
Document Number: 001-75380 Rev. *F  
Page 22 of 33  
 
 
 
 
CY7C1441AV25  
CY7C1447AV25  
Switching Characteristics  
Over the Operating Range  
-133  
Unit  
Parameter [19, 20]  
Description  
VDD(typical) to the first access [21]  
Min  
Max  
tPOWER  
Clock  
tCYC  
1
ms  
Clock cycle time  
Clock HIGH  
7.5  
2.5  
2.5  
ns  
ns  
ns  
tCH  
tCL  
Clock LOW  
Output Times  
tCDV  
Data output valid after CLK rise  
Data output hold after CLK rise  
Clock to low Z [22, 23, 24]  
2.5  
2.5  
6.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDOH  
tCLZ  
tCHZ  
Clock to high Z [22, 23, 24]  
3.8  
3.0  
tOEV  
OE LOW to output valid  
tOELZ  
tOEHZ  
Setup Times  
tAS  
OE LOW to output low Z [22, 23, 24]  
OE HIGH to output high Z [22, 23, 24]  
0
3.0  
Address setup before CLK rise  
ADSP, ADSC setup before CLK rise  
ADV setup before CLK rise  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADS  
tADVS  
tWES  
GW, BWE, BWX setup before CLK rise  
Data input setup before CLK rise  
Chip enable setup  
tDS  
tCES  
Hold Times  
tAH  
Address hold after CLK rise  
ADSP, ADSC hold after CLK rise  
GW, BWE, BWX hold after CLK rise  
ADV hold after CLK rise  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADH  
tWEH  
tADVH  
tDH  
Data input hold after CLK rise  
Chip enable hold after CLK rise  
tCEH  
Notes  
19. Timing reference level is 1.25 V when V  
= 2.5 V.  
DDQ  
20. Test conditions shown in (a) of Figure 4 on page 22 unless otherwise noted.  
21. This part has a voltage regulator internally; t  
is the time that the power needs to be supplied above V  
initially, before a read or write operation can  
POWER  
DD(minimum)  
be initiated.  
22. t  
, t  
, t  
, and t  
are specified with AC test conditions shown in part (b) of Figure 4 on page 22. Transition is measured ±200 mV from steady-state voltage.  
CHZ CLZ OELZ  
OEHZ  
23. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same data  
CLZ  
OEHZ  
OELZ  
CHZ  
bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to achieve  
High Z prior to Low Z under the same system conditions.  
24. This parameter is sampled and not 100% tested.  
Document Number: 001-75380 Rev. *F  
Page 23 of 33  
 
 
 
 
 
CY7C1441AV25  
CY7C1447AV25  
Timing Diagrams  
Figure 5. Read Cycle Timing [25]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
ADDRESS  
t
t
WES  
WEH  
GW, BWE,BW  
X
Deselect Cycle  
t
t
CES  
CEH  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
t
CDV  
OEV  
OELZ  
t
t
OEHZ  
CHZ  
t
DOH  
t
CLZ  
Q(A2)  
Q(A2  
+
1)  
Q(A2  
+
2)  
Q(A2  
+
3)  
Q(A2)  
Q(A2  
+
1)  
Q(A2  
+
2)  
Q(A1)  
Data Out (Q)  
High-Z  
t
CDV  
Burst wraps around  
to its initial state  
Single READ  
BURST  
READ  
DON’T CARE  
UNDEFINED  
Note  
25. In this diagram, when CE is LOW: CE is LOW, CE is HIGH, and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
Document Number: 001-75380 Rev. *F  
Page 24 of 33  
 
 
CY7C1441AV25  
CY7C1447AV25  
Timing Diagrams (continued)  
Figure 6. Write Cycle Timing [26, 27]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Byte write signals are ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BWE,  
BWX  
t
t
WEH  
WES  
GW  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
ADV suspends burst  
OE  
t
t
DH  
DS  
Data in (D)  
High-Z  
D(A2)  
D(A2  
+
1)  
D(A2  
+
1)  
D(A2  
+
2)  
D(A2  
+
3)  
D(A3)  
D(A3  
+
1)  
D(A3 + 2)  
D(A1)  
t
OEHZ  
Data Out (Q)  
BURST READ  
BURST WRITE  
Extended BURST WRITE  
Single WRITE  
DON’T CARE  
UNDEFINED  
Notes  
26. In this diagram, when CE is LOW: CE is LOW, CE is HIGH, and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
27.  
Full width write is initiated by either GW LOW; or by GW HIGH, BWE LOW, and BW LOW.  
X
Document Number: 001-75380 Rev. *F  
Page 25 of 33  
 
CY7C1441AV25  
CY7C1447AV25  
Timing Diagrams (continued)  
Figure 7. Read/Write Cycle Timing [28, 29, 30]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
t
t
WEH  
WES  
BWE, BW  
X
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
DS  
t
OELZ  
t
High-Z  
D(A3)  
D(A5)  
D(A6)  
Data In (D)  
t
OEHZ  
CDV  
Data Out (Q)  
Q(A1)  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
Back-to-Back  
WRITEs  
Back-to-Back READs  
Single WRITE  
BURST READ  
DON’T CARE  
UNDEFINED  
Notes  
28. In this diagram, when CE is LOW: CE is LOW, CE is HIGH, and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
29.  
30.  
.
The data bus (Q) remains in high Z following a WRITE cycle, unless a new read access is initiated by  
GW is HIGH.  
ADSP or ADSC  
Document Number: 001-75380 Rev. *F  
Page 26 of 33  
 
CY7C1441AV25  
CY7C1447AV25  
Timing Diagrams (continued)  
Figure 8. ZZ Mode Timing [31, 32]  
CLK  
ZZ  
t
t
ZZ  
ZZREC  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes  
31. Device must be deselected when entering ZZ mode. See Truth Table on page 10 for all possible signal conditions to deselect the device.  
32. DQs are in high Z when exiting ZZ sleep mode.  
Document Number: 001-75380 Rev. *F  
Page 27 of 33  
 
 
CY7C1441AV25  
CY7C1447AV25  
Ordering Information  
Not all of the speed, package, and temperature ranges are available. Contact your local sales representative or visit  
www.cypress.com for actual products offered.  
Speed  
(MHz)  
MPN  
Package  
Operating  
Range  
Ordering Code  
Part and Package Type  
Status Diagram  
133 CY7C1441AV25-133BZXI [33]  
NRND 51-85195 165-ball FBGA (15 × 17 × 1.4 mm) Pb-free  
lndustrial  
Ordering Code Definitions  
CY  
7
C 144X  
A V25 -  
I
X
XX  
133  
Temperature Grade:  
I = Industrial  
Pb-free  
Package Type: XX = BZ  
BZ = 165-ball FBGA  
Speed Grade: 133 MHz  
V25 = 2.5 V  
Die Revision  
Part Identifier: 144X = 1441  
1441 = FT, 1M × 36 (36 Mb)  
Technology Code: C = CMOS  
Marketing Code: 7 = SRAM  
Company ID: CY = Cypress  
Note  
33. This MPN is not recommended for new designs.  
Document Number: 001-75380 Rev. *F  
Page 28 of 33  
 
 
CY7C1441AV25  
CY7C1447AV25  
Package Diagrams  
Figure 9. 165-ball FBGA (15 × 17 × 1.40 mm) (0.50 Ball Diameter) Package Outline, 51-85195  
51-85195 *D  
Document Number: 001-75380 Rev. *F  
Page 29 of 33  
 
CY7C1441AV25  
CY7C1447AV25  
Package Diagrams (continued)  
Figure 10. 209-ball FBGA (14 × 22 × 1.76 mm) BB209A Package Outline, 51-85167  
51-85167 *C  
Document Number: 001-75380 Rev. *F  
Page 30 of 33  
CY7C1441AV25  
CY7C1447AV25  
Acronyms  
Document Conventions  
Units of Measure  
Acronym  
Description  
CE  
Chip Enable  
Symbol  
°C  
Unit of Measure  
CMOS  
EIA  
Complementary Metal Oxide Semiconductor  
Electronic Industries Alliance  
Fine-Pitch Ball Grid Array  
Input/Output  
degree Celsius  
megahertz  
microampere  
milliampere  
millimeter  
millisecond  
millivolt  
MHz  
µA  
mA  
mm  
ms  
mV  
ns  
FBGA  
I/O  
JEDEC  
JTAG  
OE  
Joint Electron Devices Engineering Council  
Joint Test Action Group  
Output Enable  
nanosecond  
ohm  
SRAM  
TAP  
Static Random Access Memory  
Test Access Port  
%
percent  
TCK  
TDI  
Test Clock  
pF  
V
picofarad  
volt  
Test Data-In  
TDO  
TMS  
TTL  
Test Data-Out  
W
watt  
Test Mode Select  
Transistor-Transistor Logic  
Document Number: 001-75380 Rev. *F  
Page 31 of 33  
CY7C1441AV25  
CY7C1447AV25  
Document History Page  
Document Title: CY7C1441AV25/CY7C1447AV25, 36-Mbit (1M × 36/512K × 72) Flow-Through SRAM  
Document Number: 001-75380  
Orig. of  
Change  
Rev.  
ECN No.  
Issue Date  
Description of Change  
**  
3534404  
3606230  
02/28/2012  
05/02/2012  
GOPA  
New data sheet.  
*A  
PRIT /  
GOPA  
Updated Features (Included CY7C1441AV25 related information).  
Updated Functional Description (Included CY7C1441AV25 related  
information).  
Included Logic Block Diagram – CY7C1441AV25.  
Updated Pin Configurations (Included CY7C1441AV25 related information,  
included 165-ball FBGA package related information).  
Updated Functional Overview (Included CY7C1441AV25 related information).  
Updated Truth Table (Included CY7C1441AV25 related information).  
Added Partial Truth Table for Read/Write (Corresponding to CY7C1441AV25).  
Updated IEEE 1149.1 Serial Boundary Scan (JTAG) (Included  
CY7C1441AV25 related information).  
Updated Identification Register Definitions (Included CY7C1441AV25 related  
information).  
Updated Scan Register Sizes (Included 165-ball FBGA package related  
information, added Bit Size (× 36) column).  
Added Boundary Scan Order (Corresponding to CY7C1441AV25).  
Updated Capacitance (Included 165-ball FBGA package related information).  
Updated Thermal Resistance (Included 165-ball FBGA package related  
information).  
Updated Ordering Information (Updated part numbers).  
Updated Package Diagrams (Included 165-ball FBGA package related  
information (spec 51-85165)).  
*B  
*C  
*D  
3925180  
4575392  
4675874  
03/07/2013  
11/20/2014  
03/04/2015  
PRIT  
PRIT  
PRIT  
Updated Package Diagrams:  
spec 51-85167 – Changed revision from *B to *C.  
Updated Functional Description:  
Added “For a complete list of related documentation, click here.” at the end.  
Updated Ordering Information:  
Updated part numbers.  
Updated Package Diagrams:  
Removed spec 51-85165 *D.  
Added spec 51-85195 *C.  
Updated to new template.  
*E  
4908404  
09/04/2015  
PRIT  
Removed 1.8 V TAP AC Test Conditions.  
Removed 1.8 V TAP AC Output Load Equivalent.  
Updated TAP DC Electrical Characteristics and Operating Conditions:  
Removed details corresponding to Test Condition “VDDQ = 1.8 V” for all  
parameters.  
Updated Electrical Characteristics:  
Removed details corresponding to Test Condition “for 1.8 V I/O” for all  
parameters.  
Updated Package Diagrams:  
spec 51-85195 – Changed revision from *C to *D.  
*F  
5164560  
03/07/2016  
PRIT  
Added watermark “Not Recommended for New Designs.” across the  
document.  
Updated Ordering Information:  
No change in part numbers.  
Added a column “MPN Status”.  
Added Note 33 and referred the same note in “CY7C1441AV25-133BZXI”.  
Updated to new template.  
Completing Sunset Review.  
Document Number: 001-75380 Rev. *F  
Page 32 of 33  
CY7C1441AV25  
CY7C1447AV25  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
ARM® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/powerpsoc  
cypress.com/memory  
cypress.com/psoc  
cypress.com/psoc  
Automotive  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP  
Clocks & Buffers  
Interface  
Cypress Developer Community  
Community | Forums | Blogs | Video | Training  
Lighting & Power Control  
Memory  
Technical Support  
cypress.com/support  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/touch  
cypress.com/usb  
cypress.com/wireless  
© Cypress Semiconductor Corporation 2012-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document,  
including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you under its copyright rights in the Software, a personal, non-exclusive, nontransferable license (without the right to sublicense) (a) for Software provided in source code form, to modify  
and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either  
directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units. Cypress also grants you a personal, non-exclusive, nontransferable, license (without the right  
to sublicense) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely to the minimum  
extent that is necessary for you to exercise your rights under the copyright license granted in the previous sentence. Any other use, reproduction, modification, translation, or compilation of the Software  
is prohibited.  
CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED  
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes to this document without further notice. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or  
programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application  
made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of  
weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or  
hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any  
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole  
or in part, and Company shall and hereby does release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. Company shall indemnify  
and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress  
products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United  
States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 001-75380 Rev. *F  
Revised March 7, 2016  
Page 33 of 33  
i486 is a trademark, and Intel and Pentium are registered trademarks of Intel Corporation. PowerPC is a trademark of IBM Corporation.  

相关型号:

CY7C1441AV25_13

36-Mbit (1 M x 36/512 K x 72) Flow-Through SRAM
CYPRESS

CY7C1441AV33

36-Mbit (1M x 36/2M x 18/512K x 72) Flow-Through SRAM
CYPRESS

CY7C1441AV33-100AXC

Cache SRAM, 1MX36, 8.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, LEAD FREE, MS-026, TQFP-100
CYPRESS

CY7C1441AV33-100AXI

Cache SRAM, 1MX36, 8.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, LEAD FREE, MS-026, TQFP-100
CYPRESS

CY7C1441AV33-100BZC

Cache SRAM, 1MX36, 8.5ns, CMOS, PBGA165, 15 X 17 MM, 1.40 MM HEIGHT, FBGA-165
CYPRESS

CY7C1441AV33-100BZXC

Cache SRAM, 1MX36, 8.5ns, CMOS, PBGA165, 15 X 17 MM, 1.40 MM HEIGHT, LEAD FREE, FBGA-165
CYPRESS

CY7C1441AV33-100BZXI

Cache SRAM, 1MX36, 8.5ns, CMOS, PBGA165, 15 X 17 MM, 1.40 MM HEIGHT, LEAD FREE, FBGA-165
CYPRESS

CY7C1441AV33-133AXC

36-Mbit (1 M x 36/2 M x 18/512 k x 72) Flow-Through SRAM
CYPRESS

CY7C1441AV33-133AXCT

Cache SRAM, 1MX36, 6.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, LEAD FREE, MS-026, TQFP-100
CYPRESS

CY7C1441AV33-133AXI

36-Mbit (1 M x 36/2 M x 18/512 k x 72) Flow-Through SRAM
CYPRESS

CY7C1441AV33-133AXIT

Standard SRAM, 1MX36, 6.5ns, CMOS, PQFP100
CYPRESS

CY7C1441AV33-133BZC

Cache SRAM, 1MX36, 6.5ns, CMOS, PBGA165, 15 X 17 MM, 1.40 MM HEIGHT, FBGA-165
CYPRESS