CY7C1441AV33-100BZC [CYPRESS]

Cache SRAM, 1MX36, 8.5ns, CMOS, PBGA165, 15 X 17 MM, 1.40 MM HEIGHT, FBGA-165;
CY7C1441AV33-100BZC
型号: CY7C1441AV33-100BZC
厂家: CYPRESS    CYPRESS
描述:

Cache SRAM, 1MX36, 8.5ns, CMOS, PBGA165, 15 X 17 MM, 1.40 MM HEIGHT, FBGA-165

时钟 静态存储器 内存集成电路
文件: 总31页 (文件大小:906K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1441AV33  
CY7C1443AV33,CY7C1447AV33  
36-Mbit (1M x 36/2M x 18/512K x 72)  
Flow-Through SRAM  
Features  
Functional Description  
Supports 133-MHz bus operations  
1M x 36/2M x 18/512K x 72 common IO  
3.3V core power supply  
The CY7C1441AV33/CY7C1443AV33/CY7C1447AV33[1] are  
3.3V, 1M x 36/2M x 18/512K x 72 Synchronous Flow-through  
SRAMs, respectively designed to interface with high-speed  
microprocessors with minimum glue logic. Maximum access  
delay from clock rise is 6.5 ns (133-MHz version). A 2-bit on-chip  
counter captures the first address in a burst and increments the  
address automatically for the rest of the burst access. All  
synchronous inputs are gated by registers controlled by a  
positive-edge-triggered Clock Input (CLK). The synchronous  
inputs include all addresses, all data inputs, address-pipelining  
Chip Enable (CE1), depth-expansion Chip Enables (CE2 and  
2.5V or 3.3V IO power supply  
Fast clock-to-output times  
6.5 ns (133-MHz version)  
Provide high-performance 2-1-1-1 access rate  
User-selectable burst counter supporting Intel® Pentium®  
interleaved or linear burst sequences  
CE3), Burst Control inputs (ADSC, ADSP, and ADV), Write  
Enables (BWx, and BWE), and Global Write (GW).  
Asynchronous inputs include the Output Enable (OE) and the ZZ  
pin.  
Separate processor and controller address strobes  
Synchronous self-timed write  
The CY7C1441AV33/CY7C1443AV33/CY7C1447AV33 allows  
either interleaved or linear burst sequences, selected by the  
MODE input pin. A HIGH selects an interleaved burst sequence,  
while a LOW selects a linear burst sequence. Burst accesses  
can be initiated with the Processor Address Strobe (ADSP) or the  
cache Controller Address Strobe (ADSC) inputs. Address  
advancement is controlled by the Address Advancement (ADV)  
input.  
Asynchronous output enable  
CY7C1441AV33, CY7C1443AV33 available in  
JEDEC-standard Pb-free 100-pin TQFP package, Pb-free and  
non-lead-free 165-ball FBGA package. CY7C1447AV33  
available in Pb-free and non-lead-free 209-ball FBGA package  
IEEE 1149.1 JTAG-Compatible Boundary Scan  
“ZZ” Sleep Mode option  
Addresses and chip enables are registered at rising edge of  
clock when either Address Strobe Processor (ADSP) or Address  
Strobe Controller (ADSC) are active. Subsequent burst  
addresses can be internally generated as controlled by the  
Advance pin (ADV).  
The CY7C1441AV33/CY7C1443AV33/CY7C1447AV33  
operates from a +3.3V core power supply while all outputs may  
operate with either a +2.5 or +3.3V supply. All inputs and outputs  
are JEDEC-standard JESD8-5-compatible.  
Selection Guide  
Description  
Maximum Access Time  
133 MHz  
6.5  
100 MHz  
8.5  
Unit  
ns  
Maximum Operating Current  
310  
290  
mA  
mA  
Maximum CMOS Standby Current  
120  
120  
Note  
1. For best-practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.  
Cypress Semiconductor Corporation  
Document #: 38-05357 Rev. *G  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised May 09, 2008  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33,CY7C1447AV33  
Logic Block Diagram – CY7C1441AV33 (1M x 36)  
ADDRESS  
REGISTER  
A0, A1,  
A
A
[1:0]  
MODE  
ADV  
CLK  
Q1  
Q0  
BURST  
COUNTER  
AND LOGIC  
CLR  
ADSC  
ADSP  
DQ  
BYTE  
WRITE REGISTER  
D, DQP D  
DQ  
BYTE  
WRITE REGISTER  
D, DQP D  
BW  
D
DQ  
BYTE  
WRITE REGISTER  
C, DQP C  
DQ  
BYTE  
WRITE REGISTER  
C, DQP C  
BW  
C
OUTPUT  
BUFFERS  
DQ s  
MEMORY  
ARRAY  
SENSE  
AMPS  
DQP  
DQP  
DQP  
DQP  
A
DQ  
BYTE  
WRITE REGISTER  
B, DQP B  
B
C
D
DQ  
BYTE  
WRITE REGISTER  
B, DQP B  
BW  
B
DQ  
BYTE  
WRITE REGISTER  
A, DQP A  
DQ  
A, DQPA  
BW  
A
BYTE  
BWE  
WRITE REGISTER  
INPUT  
GW  
REGISTERS  
ENABLE  
REGISTER  
CE1  
CE2  
CE3  
OE  
SLEEP  
CONTROL  
ZZ  
Logic Block Diagram – CY7C1443AV33 (2Mx 18)  
ADDRESS  
REGISTER  
A0,A1,A  
A[1:0]  
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER AND  
LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQ  
B,DQP B  
DQ  
B,DQP B  
WRITE DRIVER  
WRITE REGISTER  
BW  
B
MEMORY  
ARRAY  
OUTPUT  
BUFFERS  
DQs  
DQP  
DQP  
SENSE  
AMPS  
A
B
DQ  
A,DQP A  
DQ A,DQP A  
WRITE REGISTER  
WRITE DRIVER  
BW  
A
BWE  
GW  
INPUT  
REGISTERS  
ENABLE  
REGISTER  
CE  
CE  
1
2
3
CE  
OE  
SLEEP  
CONTROL  
ZZ  
Document #: 38-05357 Rev. *G  
Page 2 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33,CY7C1447AV33  
Logic Block Diagram – CY7C1447AV33 (512K x 72)  
ADDRESS  
REGISTER  
A0, A1,A  
A[1:0]  
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER  
AND LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQ  
H
,
DQP  
H
DQ  
H, DQPH  
BW  
BW  
H
G
WRITE REGISTER  
WRITE DRIVER  
DQ  
G, DQPG  
DQ  
F, DQPF  
WRITE DRIVER  
WRITE REGISTER  
DQ  
F, DQPF  
DQ  
F, DQPF  
BW  
BW  
BW  
BW  
F
E
WRITE DRIVER  
WRITE REGISTER  
DQ E  
E
,
DQP  
DQ  
E, DQPE  
WRITE DRIVER  
WRITE REGISTER  
MEMORY  
ARRAY  
DQ  
D, DQPD  
DQ  
D, DQPD  
D
WRITE REGISTER  
WRITE DRIVER  
DQ  
C, DQPC  
DQ  
C, DQPC  
C
WRITE DRIVER  
WRITE REGISTER  
OUTPUT  
BUFFERS  
DQs  
SENSE  
AMPS  
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
A
B
C
D
E
DQ  
B, DQPB  
DQ  
B, DQPB  
WRITE DRIVER  
BW  
BW  
B
WRITE REGISTER  
DQ  
A, DQPA  
F
DQ A, DQPA  
WRITE REGISTER  
WRITE DRIVER  
G
H
A
BWE  
INPUT  
REGISTERS  
GW  
ENABLE  
REGISTER  
CE1  
CE2  
CE3  
OE  
SLEEP  
CONTROL  
ZZ  
Document #: 38-05357 Rev. *G  
Page 3 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33,CY7C1447AV33  
Pin Configurations  
Figure 1. 100-Pin TQFP Pinout  
DQPC  
1
DQPB  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
NC  
VDDQ  
VSSQ  
NC  
A
NC  
NC  
VDDQ  
VSSQ  
NC  
DQPA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
VSS  
NC  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQC  
2
DQC  
VDDQ  
VSSQ  
DQC  
3
4
5
6
DQC  
7
NC  
DQC  
8
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
NC  
VDD  
NC  
VSS  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQPB  
NC  
DQC  
9
10  
11  
9
VSSQ  
VDDQ  
DQC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
12  
DQC  
13  
NC  
14  
VDD  
15  
NC  
VDD  
ZZ  
CY7C1443AV33  
(2M x 18)  
CY7C1441AV33  
(1Mx 36)  
NC  
16  
VDD  
ZZ  
VSS  
17  
DQD  
18  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
DQPA  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
NC  
DQD  
19  
20  
21  
VDDQ  
VSSQ  
DQD  
22  
DQD  
23  
DQD  
24  
DQD  
25  
26  
27  
NC  
VSSQ  
VDDQ  
DQD  
DQD  
29  
VSSQ  
VDDQ  
NC  
NC  
NC  
VSSQ  
VDDQ  
NC  
NC  
NC  
28  
DQPD  
30  
Document #: 38-05357 Rev. *G  
Page 4 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33,CY7C1447AV33  
Pin Configurations (continued)  
165-ball FBGA (15 x 17 x 1.4 mm) Pinout  
CY7C1441AV33 (1M x 36)  
1
2
A
3
CE1  
4
BWC  
5
BWB  
6
CE3  
7
8
9
ADV  
10  
A
11  
NC  
NC/288M  
NC/144M  
DQPC  
BWE  
GW  
VSS  
VSS  
ADSC  
A
B
C
D
A
CE2  
VDDQ  
VDDQ  
BWD  
VSS  
BWA  
VSS  
VSS  
CLK  
VSS  
VSS  
OE  
VSS  
VDD  
ADSP  
VDDQ  
VDDQ  
A
NC/576M  
DQPB  
DQB  
NC  
DQC  
NC/1G  
DQB  
DQC  
VDD  
DQC  
DQC  
DQC  
NC  
DQC  
DQC  
DQC  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
DQB  
DQB  
DQB  
NC  
DQB  
DQB  
DQB  
ZZ  
E
F
G
H
J
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
K
L
DQD  
DQPD  
NC  
DQD  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
A
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
DQA  
DQPA  
A
M
N
P
NC/72M  
TDI  
A1  
TDO  
A0  
MODE  
A
A
A
TMS  
TCK  
A
A
A
A
R
CY7C1443AV33 (2M x 18)  
1
2
A
3
CE1  
4
BWB  
5
NC  
6
CE3  
7
8
9
ADV  
10  
A
11  
A
NC/288M  
NC/144M  
NC  
BWE  
GW  
VSS  
VSS  
ADSC  
A
B
C
D
A
CE2  
VDDQ  
VDDQ  
NC  
VSS  
VDD  
BWA  
VSS  
VSS  
CLK  
VSS  
VSS  
OE  
VSS  
VDD  
ADSP  
VDDQ  
VDDQ  
A
NC/576M  
DQPA  
DQA  
NC  
NC/1G  
NC  
NC  
DQB  
NC  
NC  
DQB  
DQB  
DQB  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQA  
DQA  
DQA  
ZZ  
E
F
NC  
NC  
G
H
J
NC  
NC  
DQB  
DQB  
DQB  
NC  
VDDQ  
VDDQ  
VDDQ  
V
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
NC  
DD  
NC  
VDD  
VDD  
VDD  
VSS  
A
NC  
K
L
NC  
NC  
DQB  
DQPB  
NC  
NC  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
A
VSS  
NC  
VDDQ  
VDDQ  
A
DQA  
NC  
A
NC  
NC  
A
M
N
P
NC/72M  
TDI  
A1  
TDO  
MODE  
A
A
A
TMS  
A0  
TCK  
A
A
A
A
R
Document #: 38-05357 Rev. *G  
Page 5 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33,CY7C1447AV33  
Pin Configurations (continued)  
209-ball FBGA (14 x 22 x 1.76 mm) Pinout  
CY7C1447AV33 (512K × 72)  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
C
D
E
F
DQG  
DQG  
DQG  
DQG  
A
CE2  
A
DQB  
DQB  
DQB  
ADSP ADSC  
ADV  
A
CE3  
DQB  
DQB  
BWSB  
NC288M  
NC/144M  
BWSC  
BWSH  
VSS  
BW  
BWSF  
BWSA  
VSS  
BWSG  
BWSD  
DQG  
DQG  
DQG  
DQG  
NC/576M  
GW  
BWSE  
NC  
CE1  
DQB  
DQB  
NC/1G OE  
NC  
DQB  
DQPG DQPC  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VDD  
VDD  
VSS  
VDD  
DQPF DQPB  
DQC  
DQC  
DQF  
DQF  
VSS  
VDDQ  
VSS  
NC  
NC  
NC  
NC  
VSS  
NC  
NC  
VSS  
G
H
J
DQC  
DQC  
DQC  
VDDQ  
VSS  
VDDQ  
VSS  
DQF  
DQF  
DQF  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
NC  
A
DQC  
DQC  
NC  
DQF  
DQF  
NC  
VDDQ  
DQC  
NC  
VDDQ  
VDDQ  
CLK  
VDDQ  
NC  
DQF  
NC  
K
L
NC  
NC  
DQH  
DQH  
DQH  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
DQA  
DQA  
DQA  
M
N
P
R
T
VSS  
VDDQ  
VSS  
VDDQ  
NC  
DQH  
DQH  
DQH  
VSS  
VDD  
VSS  
DQA  
DQA  
DQA  
VDDQ  
DQH  
DQH  
DQPD  
DQD  
DQD  
NC  
ZZ  
DQA  
DQA  
DQPA  
DQE  
DQE  
VSS  
VDDQ  
VSS  
A
VDDQ  
VDD  
NC  
A
DQPH  
DQD  
DQD  
DQD  
DQD  
VDDQ  
VDD  
DQPE  
DQE  
DQE  
DQE  
DQE  
VSS  
NC  
A
MODE  
A
U
V
W
A
NC/72M  
A
A
A1  
A
DQD  
DQD  
A
A
A
A
DQE  
DQE  
TDI  
TDO  
TCK  
A0  
A
TMS  
Document #: 38-05357 Rev. *G  
Page 6 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33,CY7C1447AV33  
Pin Definitions  
Name  
IO  
Description  
A0, A1, A  
Input-  
Synchronous  
Address Inputs Used to Select One of the Address Locations. Sampled  
at the rising edge of the CLK if ADSP or ADSC is active LOW, and CE1, CE2,  
and CE3 are sampled active. A[1:0] feed the 2-bit counter.  
BWA, BWB  
BWC, BWD,  
BWE, BWF,  
BWG, BWH  
Input-  
Synchronous  
Byte Write Select Inputs, Active LOW. Qualified with BWE to conduct byte  
writes to the SRAM. Sampled on the rising edge of CLK.  
GW  
CLK  
CE1  
Input-  
Synchronous  
Global Write Enable Input, Active LOW. When asserted LOW on the rising  
edge of CLK, a global write is conducted (ALL bytes are written, regardless  
of the values on BWX and BWE).  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. Also used  
to increment the burst counter when ADV is asserted LOW, during a burst  
operation.  
Input-  
Synchronous  
Chip Enable 1 Input, Active LOW. Sampled on the rising edge of CLK. Used  
in conjunction with CE2 and CE3 to select/deselect the device. ADSP is  
ignored if CE1 is HIGH. CE1 is sampled only when a new external address is  
loaded.  
CE2  
CE3  
Input-  
Synchronous  
Chip Enable 2 Input, Active HIGH. Sampled on the rising edge of CLK. Used  
in conjunction with CE1 and CE3 to select/deselect the device. CE2 is sampled  
only when a new external address is loaded.  
Input-  
Synchronous  
Chip Enable 3 Input, Active LOW. Sampled on the rising edge of CLK. Used  
in conjunction with CE1 and CE2 to select/deselect the device. CE3 is  
assumed active throughout this document for BGA. CE3 is sampled only when  
a new external address is loaded.  
OE  
Input-  
Asynchronous  
Output Enable, Asynchronous Input, Active LOW. Controls the direction  
of the IO pins. When LOW, the IO pins behave as outputs. When deasserted  
HIGH, IO pins are tri-stated, and act as input data pins. OE is masked during  
the first clock of a read cycle when emerging from a deselected state.  
ADV  
Input-  
Synchronous  
Advance Input Signal, Sampled on the Rising Edge of CLK. When  
asserted, it automatically increments the address in a burst cycle.  
ADSP  
Input-  
Synchronous  
Address Strobe from Processor, Sampled on the Rising Edge of CLK,  
Active LOW. When asserted LOW, addresses presented to the device are  
captured in the address registers. A[1:0] are also loaded into the burst counter.  
When ADSP and ADSC are both asserted, only ADSP is recognized. ASDP  
is ignored when  
CE1 is deasserted HIGH  
ADSC  
Input-  
Synchronous  
Address Strobe from Controller, Sampled on the Rising Edge of CLK,  
Active LOW. When asserted LOW, addresses presented to the device are  
captured in the address registers. A[1:0] are also loaded into the burst counter.  
.
When ADSP and ADSC are both asserted, only ADSP is recognized  
BWE  
ZZ  
Input-  
Synchronous  
Byte Write Enable Input, Active LOW. Sampled on the rising edge of CLK.  
This signal must be asserted LOW to conduct a byte write.  
Input-  
Asynchronous  
ZZ “sleep” Input, Active HIGH. When asserted HIGH places the device in  
a non-time-critical “sleep” condition with data integrity preserved. For normal  
operation, this pin must be LOW or left floating. ZZ pin has an internal pull  
down.  
Document #: 38-05357 Rev. *G  
Page 7 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33,CY7C1447AV33  
Pin Definitions (continued)  
Name  
IO  
Description  
IO-  
Bidirectional Data IO lines. As inputs, they feed into an on-chip data register  
that is triggered by the rising edge of CLK. As outputs, they deliver the data  
contained in the memory location specified by the addresses presented during  
the previous clock rise of the read cycle. The direction of the pins is controlled  
by OE. When OE is asserted LOW, the pins behave as outputs. When HIGH,  
DQs and DQPX are placed in a tri-state condition.The outputs are automati-  
cally tri-stated during the data portion of a write sequence, during the first clock  
when emerging from a deselected state, and when the device is deselected,  
regardless of the state of OE.  
DQs  
Synchronous  
IO-  
Bidirectional Data Parity IO Lines. Functionally, these signals are identical  
to DQs. During write sequences, DQPx is controlled by BW[A:H] correspond-  
ingly.  
DQPX  
Synchronous  
MODE  
Input-Static  
Selects Burst Order. When tied to GND selects linear burst sequence. When  
tied to VDD or left floating selects interleaved burst sequence. This is a strap  
pin and should remain static during device operation. Mode Pin has an internal  
pull up.  
VDD  
Power Supply  
IO Power Supply  
Ground  
Power Supply Inputs to the Core of the Device.  
Power Supply for the IO Circuitry.  
Ground for the Core of the Device.  
Ground for the IO Circuitry.  
VDDQ  
VSS  
VSSQ  
TDO  
IO Ground  
JTAG serial output  
Synchronous  
Serial Data-Out to the JTAG Circuit. Delivers data on the negative edge of  
TCK. If the JTAG feature is not being utilized, this pin should be left uncon-  
nected. This pin is not available on TQFP packages.  
TDI  
JTAG serial  
input  
Synchronous  
Serial Data-In to the JTAG Circuit. Sampled on the rising edge of TCK. If  
the JTAG feature is not being utilized, this pin can be left floating or connected  
to VDD through a pull up resistor. This pin is not available on TQFP packages.  
TMS  
TCK  
NC  
JTAG serial  
input  
Synchronous  
Serial Data-In to the JTAG Circuit. Sampled on the rising edge of TCK. If  
the JTAG feature is not being utilized, this pin can be disconnected or  
connected to VDD. This pin is not available on TQFP packages.  
JTAG-Clock  
Clock Input to the JTAG Circuitry. If the JTAG feature is not being utilized,  
this pin must be connected to VSS. This pin is not available on TQFP  
packages.  
-
-
No Connects. Not internally connected to the die. 72M, 144M and 288M are  
address expansion pins are not internally connected to the die.  
NC/72M, NC/144M,  
NC/288M, NC/576M  
NC/1G  
No Connects. Not internally connected to the die. NC/72M, NC/144M,  
NC/288M, NC/576M and NC/1G are address expansion pins are not internally  
connected to the die.  
Document #: 38-05357 Rev. *G  
Page 8 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33,CY7C1447AV33  
Single Write Accesses Initiated by ADSC  
Functional Overview  
This write access is initiated when the following conditions are  
satisfied at clock rise: (1) CE1, CE2, and CE3 are all asserted  
active, (2) ADSC is asserted LOW, (3) ADSP is deasserted  
HIGH, and (4) the write input signals (GW, BWE, and BWX)  
indicate a write access. ADSC is ignored if ADSP is active LOW.  
All synchronous inputs pass through input registers controlled by  
the rising edge of the clock. Maximum access delay from the  
clock rise (tCDV) is 6.5 ns (133-MHz device).  
The  
CY7C1441AV33/CY7C1443AV33/CY7C1447AV33  
supports secondary cache in systems utilizing either a linear or  
interleaved burst sequence. The interleaved burst order  
supports Pentium and i486™ processors. The linear burst  
sequence is suited for processors that utilize a linear burst  
sequence. The burst order is user-selectable, and is determined  
by sampling the MODE input. Accesses can be initiated with  
either the Processor Address Strobe (ADSP) or the Controller  
Address Strobe (ADSC). Address advancement through the  
burst sequence is controlled by the ADV input. A two-bit on-chip  
wraparound burst counter captures the first address in a burst  
sequence and automatically increments the address for the rest  
of the burst access.  
The addresses presented are loaded into the address register  
and the burst counter/control logic and delivered to the memory  
core. The information presented to DQS is written into the  
specified address location. Byte writes are allowed. All IOs are  
tri-stated when a write is detected, even a byte write. Since this  
is a common IO device, the asynchronous OE input signal must  
be deasserted and the IOs must be tri-stated prior to the presen-  
tation of data to DQs. As a safety precaution, the data lines are  
tri-stated once a write cycle is detected, regardless of the state  
of OE.  
Burst Sequences  
Byte write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BWx) inputs. A Global Write  
Enable (GW) overrides all byte write inputs and writes data to all  
four bytes. All writes are simplified with on-chip synchronous  
self-timed write circuitry.  
The CY7C1441AV33/CY7C1443AV33/CY7C1447AV33  
provides an on-chip two-bit wraparound burst counter inside the  
SRAM. The burst counter is fed by A[1:0], and can follow either a  
linear or interleaved burst order. The burst order is determined  
by the state of the MODE input. A LOW on MODE selects a linear  
burst sequence. A HIGH on MODE selects an interleaved burst  
order. Leaving MODE unconnected causes the device to default  
to a interleaved burst sequence.  
Three synchronous Chip Selects (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output tri-state control. ADSP is ignored if CE1 is  
HIGH.  
Interleaved Burst Address Table  
Single Read Accesses  
(MODE = Floating or V )  
DD  
A single read access is initiated when the following conditions  
are satisfied at clock rise: (1) CE1, CE2, and CE3 are all asserted  
active, and (2) ADSP or ADSC is asserted LOW (if the access is  
initiated by ADSC, the write inputs must be deasserted during  
this first cycle). The address presented to the address inputs is  
latched into the address register and the burst counter/control  
logic and presented to the memory core. If the OE input is  
asserted LOW, the requested data is available at the data  
outputs a maximum to tCDV after clock rise. ADSP is ignored if  
CE1 is HIGH.  
First  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Address  
A1: A0  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Linear Burst Address Table  
(MODE = GND)  
Single Write Accesses Initiated by ADSP  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) CE1, CE2, CE3 are all asserted active,  
and (2) ADSP is asserted LOW. The addresses presented are  
loaded into the address register and the burst inputs (GW, BWE,  
and BWX)are ignored during this first clock cycle. If the write  
inputs are asserted active (see Write Cycle Descriptions table for  
appropriate states that indicate a write) on the next clock rise, the  
appropriate data is latched and written into the device. Byte  
writes are allowed. All IOs are tri-stated during a byte write.Since  
this is a common IO device, the asynchronous OE input signal  
must be deasserted and the IOs must be tri-stated prior to the  
presentation of data to DQs. As a safety precaution, the data  
lines are tri-stated once a write cycle is detected, regardless of  
the state of OE.  
First  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Address  
A1: A0  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ places  
the SRAM in a power conservation “sleep” mode. Two clock  
cycles are required to enter into or exit from this “sleep” mode.  
While in this mode, data integrity is guaranteed. Accesses  
pending when entering the “sleep” mode are not considered valid  
nor is the completion of the operation guaranteed. The device  
must be deselected prior to entering the “sleep” mode. CE1, CE2,  
CE3, ADSP, and ADSC must remain inactive for the duration of  
tZZREC after the ZZ input returns LOW.  
Document #: 38-05357 Rev. *G  
Page 9 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33,CY7C1447AV33  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
Test Conditions  
ZZ > VDD – 0.2V  
Min.  
Max.  
100  
Unit  
mA  
ns  
tZZS  
ZZ > VDD – 0.2V  
2tCYC  
tZZREC  
tZZI  
ZZ recovery time  
ZZ < 0.2V  
2tCYC  
0
ns  
2tCYC  
ZZ active to sleep current  
ZZ Inactive to exit sleep current  
This parameter is sampled  
This parameter is sampled  
ns  
tRZZI  
ns  
Truth Table  
tThe truth table for CY7C1441AV33/CY7C1443AV33/CY7C1447AV33 follows.[2, 3, 4, 5, 6]  
ADDRESS  
Cycle Description  
CE1 CE2 CE3 ZZ ADSP ADSC ADV WRITE OE CLK  
DQ  
Used  
None  
None  
None  
None  
None  
None  
Deselected Cycle, Power down  
Deselected Cycle, Power down  
Deselected Cycle, Power down  
Deselected Cycle, Power down  
Deselected Cycle, Power down  
Sleep Mode, Power down  
H
L
X
L
X
X
H
X
X
X
L
L
L
L
L
H
X
L
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L
X
L
L
L
H
H
X
X
X
X
X
L
X
X
Tri-State  
Read Cycle, Begin Burst  
Read Cycle, Begin Burst  
Write Cycle, Begin Burst  
Read Cycle, Begin Burst  
Read Cycle, Begin Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
External  
External  
External  
External  
External  
Next  
L
L
H
H
H
H
H
X
X
X
L
L
L
L
L
X
X
X
L
L
L
L
L
L
L
L
L
L
X
X
L
X
X
X
X
X
L
X
X
L
L
H
X
L
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
Q
Tri-State  
L
H
H
H
H
H
X
D
Q
L
L
H
H
H
H
H
Tri-State  
L
L
H
L
X
X
H
H
H
H
Q
Tri-State  
Next  
L
H
L
Next  
L
Q
Read Cycle, Continue Burst  
Write Cycle, Continue Burst  
Write Cycle, Continue Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
Next  
H
X
H
X
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
L
L
L
L
L
L
L
L
L
X
H
X
H
H
X
X
H
X
H
H
H
H
H
H
H
H
H
L
L
H
L
H
X
X
L
L-H Tri-State  
Next  
L-H  
L-H  
L-H  
D
D
Q
Next  
L
L
Current  
Current  
Current  
Current  
Current  
Current  
H
H
H
H
H
H
H
H
H
H
L
H
L
L-H Tri-State  
L-H  
L-H Tri-State  
Q
H
X
X
L-H  
L-H  
D
D
L
Notes  
2. X = “Don't Care.” H = Logic HIGH, L = Logic LOW.  
3. WRITE = L when any one or more Byte Write enable signals and BWE = L or GW = L. WRITE = H when all Byte write enable signals, BWE, GW = H.  
4. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.  
5. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks after  
X
the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the write cycle to allow the outputs to tri-state. OE is a don't care  
for the remainder of the write cycle.  
6. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are tri-state when OE is inactive  
or when the device is deselected, and all data bits behave as output when OE is active (LOW).  
Document #: 38-05357 Rev. *G  
Page 10 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33,CY7C1447AV33  
Partial Truth Table for Read/Write  
Function (CY7C1441AV33)[2, 7]  
GW  
H
BWE  
BWD  
X
BWC  
X
BWB  
X
BWA  
X
Read  
H
L
L
L
L
L
L
L
L
Read  
H
H
H
H
H
Write Byte A (DQA, DQPA)  
Write Byte B(DQB, DQPB)  
H
H
H
H
L
H
H
H
L
H
Write Bytes A, B (DQA, DQB, DQPA, DQPB)  
Write Byte C (DQC, DQPC)  
Write Bytes C, A (DQC, DQA, DQPC, DQPA)  
Write Bytes C, B (DQC, DQB, DQPC, DQPB)  
H
H
H
L
L
H
H
L
H
H
H
H
L
H
L
H
H
L
L
H
Write Bytes C, B, A (DQC, DQB, DQA, DQPC,  
DQPB, DQPA)  
H
H
L
L
L
Write Byte D (DQD, DQPD)  
H
H
H
H
L
L
L
L
L
L
L
L
H
H
H
H
H
H
L
H
L
Write Bytes D, A (DQD, DQA, DQPD, DQPA)  
Write Bytes D, B (DQD, DQA, DQPD, DQPA)  
H
L
Write Bytes D, B, A (DQD, DQB, DQA, DQPD,  
DQPB, DQPA)  
L
Write Bytes D, B (DQD, DQB, DQPD, DQPB)  
H
H
L
L
L
L
L
L
H
H
H
L
Write Bytes D, B, A (DQD, DQC, DQA, DQPD,  
DQPC, DQPA)  
Write Bytes D, C, A (DQD, DQB, DQA, DQPD,  
DQPB, DQPA)  
H
L
L
L
L
H
Write All Bytes  
Write All Bytes  
H
L
L
L
L
L
L
X
X
X
X
X
Truth Table for Read/Write  
Function (CY7C1443AV33)[2]  
Read  
GW  
H
BWE  
BWB  
X
BWA  
H
L
L
L
L
X
X
H
L
Read  
H
H
Write Byte A - (DQA and DQPA)  
Write Byte B - (DQB and DQPB)  
Write All Bytes  
H
H
H
L
H
L
H
L
Write All Bytes  
L
X
X
Truth Table for Read/Write  
Function (CY7C1447AV33)[2, 8]  
GW  
H
BWE  
BWX  
Read  
H
L
L
L
X
X
Read  
H
All BW = H  
Write Byte x – (DQx and DQPx)  
Write All Bytes  
H
L
All BW = L  
X
H
Write All Bytes  
L
Notes  
7. Table only lists a partial listing of the byte write combinations. Any Combination of BW is valid Appropriate write is done based on which byte write is active.  
X
8. BWx represents any byte write signal BW  
.To enable any byte write BW a Logic LOW signal should be applied at clock rise.Any number of bye writes can be  
[A..H]  
x,  
enabled at the same time for any given write.  
Document #: 38-05357 Rev. *G  
Page 11 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33,CY7C1447AV33  
this ball unconnected if the TAP is not used. The ball is pulled up  
internally, resulting in a logic HIGH level.  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The CY7C1441AV33/CY7C1443AV33/CY7C1447AV33 incor-  
porates a serial boundary scan test access port (TAP). This part  
is fully compliant with 1149.1. The TAP operates using  
JEDEC-standard 3.3V or 2.5V IO logic levels.  
Test Data-In (TDI)  
The TDI ball is used to serially input information into the registers  
and can be connected to the input of any of the registers. The  
register between TDI and TDO is chosen by the instruction that  
is loaded into the TAP instruction register. TDI is internally pulled  
up and can be unconnected if the TAP is unused in an appli-  
cation. TDI is connected to the most significant bit (MSB) of any  
register. (See Tap Controller Block Diagram.)  
The  
CY7C1441AV33/CY7C1443AV33/CY7C1447AV33  
contains a TAP controller, instruction register, boundary scan  
register, bypass register, and ID register.  
Disabling the JTAG Feature  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are inter-  
nally pulled up and may be unconnected. They may alternately  
be connected to VDD through a pull up resistor. TDO should be  
left unconnected. Upon power up, the device comes up in a reset  
state which does not interfere with the operation of the device.  
Test Data-Out (TDO)  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current state  
of the TAP state machine. The output changes on the falling edge  
of TCK. TDO is connected to the least significant bit (LSB) of any  
register. (See Tap Controller State Diagram.)  
TAP Controller State Diagram  
TAP Controller State Diagram  
TEST-LOGIC  
1
RESET  
0
TEST-LOGIC  
1
RESET  
0
1
1
1
RUN-TEST/  
IDLE  
SELECT  
SELECT  
0
DR-SCAN  
IR-SCAN  
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
0
0
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
0
0
SHIFT-DR  
0
SHIFT-IR  
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
1
1
1
1
EXIT1-DR  
EXIT1-IR  
1
1
EXIT1-DR  
EXIT1-IR  
0
0
0
0
PAUSE-DR  
1
0
PAUSE-IR  
1
0
PAUSE-DR  
1
0
PAUSE-IR  
1
0
0
0
EXIT2-DR  
1
EXIT2-IR  
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
UPDATE-DR  
UPDATE-IR  
1
0
1
0
1
0
1
0
Performing a TAP Reset  
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
A RESET is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This RESET does not affect the operation of the  
SRAM and may be performed while the SRAM is operating.  
Test Access Port (TAP)  
At power up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs are  
captured on the rising edge of TCK. All outputs are driven from  
the falling edge of TCK.  
TAP Registers  
Registers are connected between the TDI and TDO balls and  
scan data into and out of the SRAM test circuitry. Only one  
register can be selected at a time through the instruction register.  
Data is serially loaded into the TDI ball on the rising edge of TCK.  
Data is output on the TDO ball on the falling edge of TCK.  
Test MODE SELECT (TMS)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to leave  
Document #: 38-05357 Rev. *G  
Page 12 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33,CY7C1447AV33  
Instruction Register  
IDCODE  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the TDI  
and TDO balls as shown in the Tap Controller Block Diagram.  
Upon power up, the instruction register is loaded with the  
IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as described  
in the previous section.  
The IDCODE instruction loads a vendor-specific, 32-bit code into  
the instruction register. It also places the instruction register  
between the TDI and TDO balls and shifts the IDCODE out of the  
device when the TAP controller enters the Shift-DR state.  
The IDCODE instruction is loaded into the instruction register  
upon power up or whenever the TAP controller is given a test  
logic reset state.  
When the TAP controller is in the Capture-IR state, the two least  
significant bits are loaded with a binary “01” pattern to allow for  
fault isolation of the board-level serial test data path.  
SAMPLE Z  
The SAMPLE Z instruction connects the boundary scan register  
between the TDI and TDO pins when the TAP controller is in a  
Shift-DR state. The SAMPLE Z command puts the output bus  
into a High-Z state until the next command is given during the  
“Update IR” state.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This shifts data through the SRAM with  
minimal delay. The bypass register is set LOW (VSS) when the  
BYPASS instruction is executed.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When  
the SAMPLE/PRELOAD instructions are loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and output pins is  
captured in the boundary scan register.  
Boundary Scan Register  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because there  
is a large difference in the clock frequencies, it is possible that  
during the Capture-DR state, an input or output undergoes a  
transition. The TAP may then try to capture a signal while in  
transition (metastable state). This does not harm the device, but  
there is no guarantee as to the value that is captured.  
Repeatable results may not be possible.  
The boundary scan register is loaded with the contents of the  
RAM IO ring when the TAP controller is in the Capture-DR state  
and is then placed between the TDI and TDO balls when the  
controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used to  
capture the contents of the IO ring.  
The Boundary Scan Order tables show the order in which the bits  
are connected. Each bit corresponds to one of the bumps on the  
SRAM package. The MSB of the register is connected to TDI,  
and the LSB is connected to TDO.  
To guarantee that the boundary scan register captures the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller's capture setup plus hold  
times (tCS and tCH). The SRAM clock input might not be captured  
correctly if there is no way in a design to stop (or slow) the clock  
during a SAMPLE/PRELOAD instruction. If this is an issue, it is  
still possible to capture all other signals and simply ignore the  
value of the CK and CK captured in the boundary scan register.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired into  
the SRAM and can be shifted out when the TAP controller is in  
the Shift-DR state. The ID register has a vendor code and other  
information described in the Identification Register Definitions  
table.  
After the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the boundary  
scan register between the TDI and TDO pins.  
PRELOAD places an initial data pattern at the latched parallel  
outputs of the boundary scan register cells prior to the selection  
of another boundary scan test operation.  
TAP Instruction Set  
Overview  
The shifting of data for the SAMPLE and PRELOAD phases can  
occur concurrently when required—that is, while data captured  
is shifted out, the preloaded data can be shifted in.  
Eight different instructions are possible with the three bit  
instruction register. All combinations are listed in the Instruction  
Codes table. Three of these instructions are listed as  
RESERVED and should not be used. The other five instructions  
are described in this section in detail.  
BYPASS  
When the BYPASS instruction is loaded in the instruction register  
and the TAP is placed in a Shift-DR state, the bypass register is  
placed between the TDI and TDO pins. The advantage of the  
BYPASS instruction is that it shortens the boundary scan path  
when multiple devices are connected together on a board.  
Instructions are loaded into the TAP controller during the Shift-IR  
state when the instruction register is placed between TDI and  
TDO. During this state, instructions are shifted through the  
instruction register through the TDI and TDO balls. To execute  
the instruction once it is shifted in, the TAP controller must be  
moved into the Update-IR state.  
Document #: 38-05357 Rev. *G  
Page 13 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33,CY7C1447AV33  
EXTEST  
instruction. When HIGH, it enables the output buffers to drive the  
output bus. When LOW, this bit places the output bus into a  
High-Z condition.  
The EXTEST instruction drives the preloaded data out through  
the system output pins. This instruction also connects the  
boundary scan register for serial access between the TDI and  
TDO in the shift-DR controller state.  
This bit can be set by entering the SAMPLE/PRELOAD or  
EXTEST command, and then shifting the desired bit into that cell,  
during the “Shift-DR” state. During “Update-DR”, the value  
loaded into that shift-register cell latches into the preload  
register. When the EXTEST instruction is entered, this bit directly  
controls the output Q-bus pins. Note that this bit is pre-set HIGH  
to enable the output when the device is powered-up, and also  
when the TAP controller is in the “Test-Logic-Reset” state.  
EXTEST OUTPUT BUS TRI-STATE  
IEEE Standard 1149.1 mandates that the TAP controller be able  
to put the output bus into a tri-state mode.  
The boundary scan register has a special bit located at bit #89  
(for 165-FBGA package) or bit #138 (for 209-FBGA package).  
When this scan cell, called the “extest output bus tri-state”, is  
latched into the preload register during the “Update-DR” state in  
the TAP controller, it directly controls the state of the output  
(Q-bus) pins, when the EXTEST is entered as the current  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
Document #: 38-05357 Rev. *G  
Page 14 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33,CY7C1447AV33  
TAP AC Switching Characteristics  
Over the Operating Range[9, 10]  
Parameter  
Clock  
tTCYC  
tTF  
Description  
Min.  
Max.  
Unit  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH time  
TCK Clock LOW time  
50  
ns  
MHz  
ns  
20  
tTH  
20  
20  
tTL  
ns  
Output Times  
tTDOV  
TCK Clock LOW to TDO Valid  
10  
ns  
ns  
tTDOX  
TCK Clock LOW to TDO Invalid  
0
Setup Times  
tTMSS  
TMS Setup to TCK Clock Rise  
TDI Setup to TCK Clock Rise  
Capture Setup to TCK Rise  
5
5
5
ns  
ns  
ns  
tTDIS  
tCS  
Hold Times  
tTMSH  
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
tTDIH  
tCH  
Capture Hold after Clock Rise  
Notes  
9.  
t
and t refer to the setup and hold time requirements of latching data from the boundary scan register.  
CS CH  
10. Test conditions are specified using the load in TAP AC test Conditions. t /t = 1 ns.  
R
F
Document #: 38-05357 Rev. *G  
Page 15 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33,CY7C1447AV33  
3.3V TAP AC Test Conditions  
2.5V TAP AC Test Conditions  
Input pulse levels.................................................VSS to 3.3V  
Input rise and fall times....................................................1 ns  
Input timing reference levels........................................... 1.5V  
Output reference levels .................................................. 1.5V  
Test load termination supply voltage .............................. 1.5V  
Input pulse levels.................................................VSS to 2.5V  
Input rise and fall time .....................................................1 ns  
Input timing reference levels......................................... 1.25V  
Output reference levels ................................................ 1.25V  
Test load termination supply voltage ............................ 1.25V  
3.3V TAP AC Output Load Equivalent  
2.5V TAP AC Output Load Equivalent  
1.5V  
1.25V  
50Ω  
50Ω  
TDO  
TDO  
ZO = 50Ω  
ZO = 50Ω  
20p F  
20p F  
TAP DC Electrical Characteristics And Operating Conditions  
(0°C < TA < +70°C; VDD = 3.135V to 3.6V unless otherwise noted)[11]  
Parameter  
VOH1  
Description  
Description  
Conditions  
VDDQ = 3.3V  
Min.  
2.4  
2.0  
2.9  
2.1  
Max.  
Unit  
V
Output HIGH Voltage IOH = –4.0 mA  
IOH = –1.0 mA  
VDDQ = 2.5V  
VDDQ = 3.3V  
V
VOH2  
VOL1  
VOL2  
VIH  
Output HIGH Voltage IOH = –100 µA  
V
VDDQ = 2.5V  
V
Output LOW Voltage IOL = 8.0 mA  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
0.4  
0.4  
V
I
OL = 1.0 mA  
V
Output LOW Voltage IOL = 100 µA  
0.2  
V
0.2  
V
Input HIGH Voltage  
2.0  
1.7  
VDD + 0.3  
VDD + 0.3  
0.8  
V
V
DDQ = 2.5V  
VDDQ = 3.3V  
DDQ = 2.5V  
V
VIL  
Input LOW Voltage  
–0.3  
–0.3  
–5  
V
V
0.7  
V
IX  
Input Load Current  
GND < VIN < VDDQ  
5
µA  
Note  
11. All voltages referenced to V (GND).  
SS  
Document #: 38-05357 Rev. *G  
Page 16 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33,CY7C1447AV33  
Identification Register Definitions  
CY7C1441AV33 CY7C1443AV33 CY7C1447AV33  
Instruction Field  
(1M x 36)  
Description  
(2M x 18)  
(512K x 72)  
Revision Number (31:29)  
Device Depth (28:24)  
000  
000  
000  
Describes the version number.  
Reserved for Internal Use  
01011  
000001  
01011  
01011  
Architecture/Memory  
Type(23:18)[12]  
000001  
000001  
Defines memory type and architecture  
Bus Width/Density(17:12)  
100111  
010111  
110111  
Defines width and density  
Cypress JEDEC ID Code (11:1)  
00000110100  
00000110100  
00000110100 Allows unique identification of SRAM  
vendor.  
ID Register Presence Indicator (0)  
1
1
1
Indicates the presence of an ID  
register.  
Scan Register Sizes  
Register Name  
Bit Size (x36)  
Bit Size (x18)  
Bit Size (x18)  
Instruction  
3
3
3
Bypass  
ID  
1
32  
89  
-
1
32  
89  
-
1
32  
-
Boundary Scan Order (165-ball FBGA package)  
Boundary Scan Order (209-ball FBGA package)  
138  
Identification Codes  
Instruction  
EXTEST  
Code  
000  
Description  
Captures IO ring contents.  
IDCODE  
001  
Loads the ID register with the vendor ID code and places the register between TDI and  
TDO. This operation does not affect SRAM operations.  
SAMPLE Z  
010  
Captures IO ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
RESERVED  
011  
100  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures IO ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
Note  
12. Bit #24 is “1” in the ID Register Definitions for both 2.5V and 3.3V versions of this device.  
Document #: 38-05357 Rev. *G  
Page 17 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33,CY7C1447AV33  
165-ball FBGA Boundary Scan Order[13,14]  
CY7C1441AV33 (1M x 36), CY7C1443AV33 (2M x 18)  
Bit #  
1
Ball ID  
Bit #  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
Ball ID  
E11  
D11  
G10  
F10  
E10  
D10  
C11  
A11  
B11  
A10  
B10  
A9  
Bit #  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
Ball ID  
A3  
A2  
B2  
C2  
B1  
A1  
C1  
D1  
E1  
F1  
Bit #  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
Ball ID  
N1  
N6  
N7  
N10  
P11  
P8  
2
N2  
3
P1  
4
R1  
5
R2  
6
R8  
P3  
7
R9  
R3  
8
P9  
P2  
9
P10  
R10  
R11  
H11  
N11  
M11  
L11  
K11  
J11  
M10  
L10  
K10  
J10  
H9  
R4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
P4  
G1  
D2  
E2  
F2  
N5  
P6  
B9  
R6  
C10  
A8  
Internal  
G2  
H1  
H3  
J1  
B8  
A7  
B7  
B6  
K1  
L1  
A6  
M1  
J2  
B5  
A5  
A4  
B4  
B3  
H10  
G11  
F11  
K2  
L2  
M2  
Notes  
13. Balls which are NC (No Connect) are preset LOW.  
14. Bit# 89 is preset HIGH.  
Document #: 38-05357 Rev. *G  
Page 18 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33,CY7C1447AV33  
DC Input Voltage ................................... –0.5V to VDD + 0.5V  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
Exceeding maximum ratings may shorten the useful life of the  
device. User guidelines are not tested.  
Static Discharge Voltage........................................... >2001V  
(per MIL-STD-883, Method 3015)  
Storage Temperature ................................. –65°C to +150°C  
Latch-up Current..................................................... >200 mA  
Ambient Temperature with  
Power Applied ............................................ –55°C to +125°C  
Operating Range  
Supply Voltage on VDD Relative to GND ........–0.3V to +4.6V  
Supply Voltage on VDDQ Relative to GND...... –0.3V to +VDD  
Ambient  
Temperature  
Range  
VDD  
VDDQ  
Commercial  
Industrial  
0°C to +70°C 3.3V –5%/+10% 2.5V –5%  
DC Voltage Applied to Outputs  
in Tri-State ...........................................–0.5V to VDDQ + 0.5V  
to VDD  
–40°C to +85°C  
Electrical Characteristics Over the Operating Range[15, 16]  
DC Electrical Characteristics Over the Operating Range  
Parameter  
Description  
Power Supply Voltage  
IO Supply Voltage  
Test Conditions  
Min.  
3.135  
3.135  
2.375  
2.4  
Max.  
Unit  
V
V
3.6  
DD  
V
V
V
V
V
I
for 3.3V IO  
for 2.5V IO  
V
V
DDQ  
DD  
2.625  
V
Output HIGH Voltage  
Output LOW Voltage  
for 3.3V IO, I = –4.0 mA  
V
OH  
OL  
IH  
OH  
for 2.5V IO, I = –1.0 mA  
2.0  
V
OH  
for 3.3V IO, I = 8.0 mA  
0.4  
0.4  
V
OL  
for 2.5V IO, I = 1.0 mA  
V
OL  
[15]  
Input HIGH Voltage  
for 3.3V IO  
for 2.5V IO  
for 3.3V IO  
for 2.5V IO  
GND V V  
2.0  
1.7  
V
V
+ 0.3V  
V
DD  
DD  
+ 0.3V  
V
[15]  
Input LOW Voltage  
–0.3  
–0.3  
–5  
0.8  
V
IL  
0.7  
5
V
Input Leakage Current  
except ZZ and MODE  
μA  
X
I
DDQ  
Input Current of MODE  
Input = V  
Input = V  
Input = V  
Input = V  
–30  
–5  
μA  
μA  
μA  
μA  
μA  
mA  
mA  
mA  
SS  
DD  
SS  
DD  
5
Input Current of ZZ  
30  
5
I
I
Output Leakage Current  
GND V V  
Output Disabled  
–5  
OZ  
I
DDQ,  
V
Operating Supply  
V
= Max., I  
= 0 mA,  
7.5-ns cycle, 133 MHz  
10-ns cycle, 100 MHz  
All Speeds  
310  
290  
180  
DD  
DD  
DD  
OUT  
= 1/t  
MAX CYC  
Current  
f = f  
I
I
I
I
Automatic CE  
Max. V , Device Deselected,  
DD  
SB1  
Power down  
V V or V V , f = f  
IN IH IN IL MAX,  
Current—TTL Inputs  
inputs switching  
Automatic CE  
Max. V , Device Deselected,  
All speeds  
All Speeds  
All Speeds  
120  
180  
135  
mA  
mA  
mA  
SB2  
SB3  
SB4  
DD  
Power down  
V V – 0.3V or V 0.3V,  
IN DD IN  
Current—CMOS Inputs  
f = 0, inputs static  
Automatic CE  
Max. V , Device Deselected,  
DD  
Power down  
V
V  
– 0.3V or V 0.3V,  
DDQ IN  
IN  
Current—CMOS Inputs  
f = f  
, inputs switching  
MAX  
Automatic CE  
Max. V , Device Deselected,  
DD  
Power down  
V V – 0.3V or V 0.3V,  
IN DD IN  
Current—TTL Inputs  
f = 0, inputs static  
Notes  
15. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2), undershoot: V (AC) > –2V (Pulse width less than t /2).  
CYC  
IH  
DD  
CYC  
IL  
16. T  
: Assumes a linear ramp from 0V to V (min.) within 200 ms. During this time V < V and V  
< V  
Power-up  
DD  
IH  
DD  
DDQ DD.  
Document #: 38-05357 Rev. *G  
Page 19 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33,CY7C1447AV33  
Capacitance  
Parameter[17]  
100 TQFP  
Max.  
165 FBGA 209 FBGA  
Description  
Test Conditions  
Unit  
Max.  
Max.  
CIN  
Input Capacitance  
TA = 25°C, f = 1 MHz,  
6.5  
3
7
7
6
5
5
7
pF  
pF  
pF  
V
DD = 3.3V  
CCLK  
CIO  
Clock Input Capacitance  
Input/Output Capacitance  
VDDQ = 2.5V  
5.5  
Thermal Resistance  
100 TQFP  
Package  
165 FBGA 209 FBGA  
Parameter[17]  
Description  
Test Conditions  
Unit  
Package  
Package  
ΘJA  
Thermal Resistance  
(Junction to Ambient)  
Test conditions follow standard  
test methods and procedures for  
measuring thermal impedance,  
per EIA/JESD51.  
25.21  
20.8  
25.31  
°C/W  
ΘJC  
Thermal Resistance  
(Junction to Case)  
2.28  
3.2  
4.48  
°C/W  
Figure 2. AC Test Loads and Waveforms  
3.3V IO Test Load  
R = 317Ω  
3.3V  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
OUTPUT  
90%  
10%  
Z = 50Ω  
0
R = 50Ω  
10%  
L
GND  
5 pF  
R = 351Ω  
1 ns  
1 ns  
V = 1.5V  
T
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
2.5V IO Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
90%  
10%  
Z = 50Ω  
0
10%  
L
5 pF  
R = 1538Ω  
1 ns  
1 ns  
V = 1.25V  
T
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Note  
17. Tested initially and after any design or process change that may affect these parameters  
Document #: 38-05357 Rev. *G  
Page 20 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33,CY7C1447AV33  
Switching Characteristics  
Over the Operating Range[22, 23]  
–133  
–100  
Description  
Unit  
Parameter  
Min.  
Max.  
Min.  
Max.  
tPOWER  
Clock  
tCYC  
VDD (Typical) to the first Access[18]  
1
1
ms  
Clock Cycle Time  
Clock HIGH  
7.5  
2.5  
2.5  
10  
3.0  
3.0  
ns  
ns  
ns  
tCH  
tCL  
Clock LOW  
Output Times  
tCDV  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
Clock to Low-Z[19, 20, 21]  
6.5  
8.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDOH  
2.5  
2.5  
2.5  
2.5  
0
tCLZ  
tCHZ  
Clock to High-Z[19, 20, 21]  
3.8  
3.0  
4.5  
3.8  
tOEV  
OE LOW to Output Valid  
tOELZ  
tOEHZ  
Setup Times  
tAS  
OE LOW to Output Low-Z[19, 20, 21]  
OE HIGH to Output High-Z[19, 20, 21]  
0
0
3.0  
4.0  
Address Setup Before CLK Rise  
ADSP, ADSC Setup Before CLK Rise  
ADV Setup Before CLK Rise  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADS  
tADVS  
tWES  
GW, BWE, BWX Setup Before CLK Rise  
Data Input Setup Before CLK Rise  
Chip Enable Setup  
tDS  
tCES  
Hold Times  
tAH  
Address Hold After CLK Rise  
ADSP, ADSC Hold After CLK Rise  
GW, BWE, BWX Hold After CLK Rise  
ADV Hold After CLK Rise  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADH  
tWEH  
tADVH  
tDH  
Data Input Hold After CLK Rise  
Chip Enable Hold After CLK Rise  
tCEH  
Notes  
18. This part has a voltage regulator internally; t  
is the time that the power must be supplied above V (minimum) initially, before a read or write operation can be  
DD  
POWER  
initiated.  
19. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of “AC Test Loads and Waveforms” on page 20. Transition is measured ± 200 mV  
OEHZ  
CHZ CLZ OELZ  
from steady-state voltage.  
20. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same data  
CLZ  
OEHZ  
OELZ  
CHZ  
bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to achieve  
High-Z prior to Low-Z under the same system conditions.  
21. This parameter is sampled and not 100% tested.  
22. Timing reference level is 1.5V when V  
= 3.3V and is 1.25V when V  
= 2.5V.  
DDQ  
DDQ  
23. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
Document #: 38-05357 Rev. *G  
Page 21 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33,CY7C1447AV33  
Timing Diagrams  
Figure 3. Read Cycle Timing[24]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
ADDRESS  
t
t
WES  
WEH  
GW, BWE,BW  
X
Deselect Cycle  
t
t
CES  
CEH  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
t
CDV  
OEV  
OELZ  
t
t
OEHZ  
CHZ  
t
DOH  
t
CLZ  
Q(A2)  
Q(A2  
+
1)  
Q(A2  
+
2)  
Q(A2  
+
3)  
Q(A2)  
Q(A2  
+
1)  
Q(A2  
+
2)  
Q(A1)  
Data Out (Q)  
High-Z  
t
CDV  
Burst wraps around  
to its initial state  
Single READ  
BURST  
READ  
DON’T CARE  
UNDEFINED  
.
Note  
24. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
Document #: 38-05357 Rev. *G  
Page 22 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33,CY7C1447AV33  
Timing Diagrams (continued)  
Figure 4. Write Cycle Timing[24, 25]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Byte write signals are ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BWE,  
BWX  
t
t
WEH  
WES  
GW  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
ADV suspends burst  
OE  
t
t
DH  
DS  
Data in (D)  
High-Z  
D(A2)  
D(A2  
+
1)  
D(A2  
+
1)  
D(A2  
+
2)  
D(A2  
+
3)  
D(A3)  
D(A3  
+
1)  
D(A3 + 2)  
D(A1)  
t
OEHZ  
Data Out (Q)  
BURST READ  
BURST WRITE  
Extended BURST WRITE  
Single WRITE  
DON’T CARE  
UNDEFINED  
.
Note  
25.  
Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BW LOW  
X
Document #: 38-05357 Rev. *G  
Page 23 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33,CY7C1447AV33  
Timing Diagrams (continued)  
Figure 5. Read/Write Cycle Timing[24, 26, 27]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
t
t
WEH  
WES  
BWE, BW  
X
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
DS  
t
OELZ  
t
High-Z  
D(A3)  
D(A5)  
D(A6)  
Data In (D)  
t
OEHZ  
CDV  
Data Out (Q)  
Q(A1)  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
Back-to-Back  
WRITEs  
Back-to-Back READs  
Single WRITE  
BURST READ  
DON’T CARE  
UNDEFINED  
.
Note  
26. The data bus (Q) remains in high-Z following a WRITE cycle, unless a new read access is initiated by ADSP or ADSC.  
27.  
GW is HIGH  
Document #: 38-05357 Rev. *G  
Page 24 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33,CY7C1447AV33  
Timing Diagrams (continued)  
Figure 6. ZZ Mode Timing[28, 29]  
CLK  
ZZ  
t
t
ZZ  
ZZREC  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Note  
28. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device.  
29. DQs are in high-Z when exiting ZZ sleep mode.  
Document #: 38-05357 Rev. *G  
Page 25 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33,CY7C1447AV33  
Ordering Information  
Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or  
visit www.cypress.com for actual products offered.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Part and Package Type  
Ordering Code  
133 CY7C1441AV33-133AXC  
CY7C1443AV33-133AXC  
CY7C1441AV33-133BZC  
CY7C1443AV33-133BZC  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-free  
Commercial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1441AV33-133BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-free  
CY7C1443AV33-133BZXC  
CY7C1447AV33-133BGC  
CY7C1447AV33-133BGXC  
CY7C1441AV33-133AXI  
CY7C1443AV33-133AXI  
CY7C1441AV33-133BZI  
CY7C1443AV33-133BZI  
CY7C1441AV33-133BZXI  
CY7C1443AV33-133BZXI  
CY7C1447AV33-133BGI  
CY7C1447AV33-133BGXI  
100 CY7C1441AV33-100AXC  
CY7C1443AV33-100AXC  
CY7C1441AV33-100BZC  
CY7C1443AV33-100BZC  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 x 22 x 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 x 22 x 1.76 mm) Pb-free  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-free  
lndustrial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-free  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 x 22 x 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 x 22 x 1.76 mm) Pb-free  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-free  
Commercial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1441AV33-100BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-free  
CY7C1443AV33-100BZXC  
CY7C1447AV33-100BGC  
CY7C1447AV33-100BGXC  
CY7C1441AV33-100AXI  
CY7C1443AV33-100AXI  
CY7C1441AV33-100BZI  
CY7C1443AV33-100BZI  
CY7C1441AV33-100BZXI  
CY7C1443AV33-100BZXI  
CY7C1447AV33-100BGI  
CY7C1447AV33-100BGXI  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 x 22 x 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 x 22 x 1.76 mm) Pb-free  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-free  
lndustrial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-free  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 x 22 x 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 x 22 x 1.76 mm) Pb-free  
Document #: 38-05357 Rev. *G  
Page 26 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33,CY7C1447AV33  
Package Diagrams  
Figure 1. 100-pin TQFP (14 x 20 x 1.4 mm) (51-85050)  
16.00 0.20  
14.00 0.10  
1.40 0.05  
100  
81  
80  
1
0.30 0.08  
0.65  
TYP.  
12° 1°  
(8X)  
SEE DETAIL  
A
30  
51  
31  
50  
0.20 MAX.  
1.60 MAX.  
R 0.08 MIN.  
0.20 MAX.  
0° MIN.  
SEATING PLANE  
STAND-OFF  
0.05 MIN.  
0.15 MAX.  
NOTE:  
1. JEDEC STD REF MS-026  
0.25  
GAUGE PLANE  
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH  
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE  
R 0.08 MIN.  
0.20 MAX.  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH  
3. DIMENSIONS IN MILLIMETERS  
0°-7°  
0.60 0.15  
0.20 MIN.  
1.00 REF.  
DETAIL  
A
51-85050-*B  
Document #: 38-05357 Rev. *G  
Page 27 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33,CY7C1447AV33  
Package Diagrams (continued)  
Figure 2. 165-ball FBGA (15 x 17 x 1.4 mm) (51-85165)  
PIN 1 CORNER  
BOTTOM VIEW  
TOP VIEW  
Ø0.05 M C  
PIN 1 CORNER  
Ø0.25 M C A B  
Ø0.45 0.05(165X)  
1
2
3
4
5
6
7
8
9
10  
11  
11 10  
9
8
7
6
5
4
3
2
1
A
B
A
B
C
D
C
D
E
E
F
F
G
G
H
J
H
J
K
K
L
L
M
M
N
P
R
N
P
R
A
1.00  
5.00  
10.00  
B
15.00 0.10  
0.15(4X)  
SEATING PLANE  
C
51-85165-*A  
Document #: 38-05357 Rev. *G  
Page 28 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33,CY7C1447AV33  
Package Diagrams (continued)  
Figure 3. 209-ball FBGA (14 x 22 x1.76 mm) (51-85167)  
51-85167-**  
Document #: 38-05357 Rev. *G  
Page 29 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33,CY7C1447AV33  
Document History Page  
Document Title: CY7C1441AV33/CY7C1443AV33/CY7C1447AV33 36-Mbit (1M x 36/2M x 18/512K x 72) Flow-Through SRAM  
Document Number: 38-05357  
Orig. of  
REV.  
**  
ECN NO. Issue Date Change  
Description of Change  
124459  
254910  
03/06/03  
See ECN  
CJM  
SYT  
New Data Sheet  
*A  
Part number changed from previous revision. New and old part number differ by  
the letter “A”  
Modified Functional Block diagrams  
Modified switching waveforms  
Added Footnote #13 (32-Bit Vendor I.D Code changed)  
Added Boundary scan information  
Added IDD, IX and ISB values in the DC Electrical Characteristics  
Added tPOWER specifications in Switching Characteristics table  
Removed 119 PBGA Package  
Changed 165 FBGA Package from BB165C (15 x 17 x 1.20 mm) to BB165  
(15 x 17 x 1.40 mm)  
Changed 209-Lead PBGA BG209 (14 x 22 x 2.20 mm) to BB209A  
(14 x 22 x 1.76 mm)  
*B  
*C  
300131  
320813  
See ECN  
See ECN  
SYT  
SYT  
Removed 150 and 117 MHz Speed Bins  
Changed ΘJA and ΘJC from TBD to 25.21 and 2.58 °C/W respectively for TQFP  
Package on Pg # 21  
Added lead-free information for 100-pin TQFP, 165 FBGA and 209 BGA  
Packages.  
Added comment of ‘Lead-free BG and BZ packages availability’ below the  
Ordering Information  
Changed H9 pin from VSSQ to VSS on the Pin Configuration table for 209 FBGA  
Changed the test condition from VDD = Min. to VDD = Max for VOL in the Electrical  
Characteristics table.  
Replaced the TBD’s for IDD, ISB1, ISB2, ISB3 and ISB4 to their respective values.  
Replaced TBD’s for ΘJA and ΘJC to their respective values for 165 fBGA and 209  
fBGA packages on the Thermal Resistance table.  
Changed CIN,CCLK and CIO to 6.5, 3 and 5.5 pF from 5, 5 and 7 pF for TQFP  
Package.  
Removed “Lead-free BG and BZ packages availability” comment below the  
Ordering Information  
*D  
331551  
See ECN  
SYT  
Modified Address Expansion balls in the pinouts for 165 FBGA and 209 BGA  
Packages as per JEDEC standards and updated the Pin Definitions accordingly  
Modified VOL, VOH test conditions  
Replaced TBD to 100 mA for IDDZZ  
Changed CIN, CCLK and CIO to 7, 7and 6 pF from 5, 5 and 7 pF for 165 FBGA  
Package.  
Added Industrial Temperature Grade  
Changed ISB2 and ISB4 from 100 and 110 mA to 120 and 135 mA respectively  
Updated the Ordering Information by shading and unshading MPNs as per avail-  
ability  
Document #: 38-05357 Rev. *G  
Page 30 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33,CY7C1447AV33  
Document Title: CY7C1441AV33/CY7C1443AV33/CY7C1447AV33 36-Mbit (1M x 36/2M x 18/512K x 72) Flow-Through SRAM  
Document Number: 38-05357  
Orig. of  
REV.  
ECN NO. Issue Date Change  
Description of Change  
Converted from Preliminary to Final.  
*E  
417547  
See ECN  
RXU  
Changed address of Cypress Semiconductor Corporation on Page# 1 from “3901  
North First Street” to “198 Champion Court”.  
Changed IX current value in MODE from –5 & 30 μA to –30 & 5 μA respectively  
and also Changed IX current value in ZZ from –30 & 5 μA to –5 & 30 μA respec-  
tively on page# 19.  
Modified test condition in note# 8 from VIH < VDD to VIH < VDD.  
Modified “Input Load” to “Input Leakage Current except ZZ and MODE” in the  
Electrical Characteristics Table.  
Replaced Package Name column with Package Diagram in the Ordering  
Information table.  
Replaced Package Diagram of 51-85050 from *A to *B  
Updated the Ordering Information.  
*F  
473650  
See ECN  
VKN  
Added the Maximum Rating for Supply Voltage on VDDQ Relative to GND.  
Changed tTH, tTL from 25 ns to 20 ns and tTDOV from 5 ns to 10 ns in TAP AC  
Switching Characteristics table.  
Updated the Ordering Information table.  
*G  
2447027  
See ECN VKN/AESA Corrected typo in the Ordering Information table  
Corrected typo in the CY7C1447AV33 ‘s Logic Block diagram  
Updated the x72 block diagram  
© Cypress Semiconductor Corporation, 2003-2008. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document #: 38-05357 Rev. *G  
Revised May 09, 2008  
Page 31 of 31  
i486 is a trademark, and Intel and Pentium are registered trademarks of Intel Corporation. PowerPC is a trademark of IBM Corporation. All product and company names mentioned in this document  
are the trademarks of their respective holders.  
[+] Feedback  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY