CY7C1443AV33-100BZXC [CYPRESS]

36-Mbit (1M x 36/2M x 18/512K x 72) Flow-Through SRAM; 36兆位( 1M ×36 / 2M ×18 / 512K X 72 )流通型SRAM
CY7C1443AV33-100BZXC
型号: CY7C1443AV33-100BZXC
厂家: CYPRESS    CYPRESS
描述:

36-Mbit (1M x 36/2M x 18/512K x 72) Flow-Through SRAM
36兆位( 1M ×36 / 2M ×18 / 512K X 72 )流通型SRAM

静态存储器
文件: 总31页 (文件大小:567K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1441AV33  
CY7C1443AV33  
CY7C1447AV33  
36-Mbit (1M x 36/2M x 18/512K x 72)  
Flow-Through SRAM  
Features  
Functional Description[1]  
• Supports 133-MHz bus operations  
• 1M x 36/2M x 18/512K x 72 common I/O  
• 3.3V core power supply  
The CY7C1441AV33/CY7C1443AV33/CY7C1447AV33 are  
3.3V, 1M x 36/2M x 18/512K x 72 Synchronous Flow-through  
SRAMs, respectively designed to interface with high-speed  
microprocessors with minimum glue logic. Maximum access  
delay from clock rise is 6.5 ns (133-MHz version). A 2-bit  
on-chip counter captures the first address in a burst and incre-  
ments the address automatically for the rest of the burst  
access. All synchronous inputs are gated by registers  
controlled by a positive-edge-triggered Clock Input (CLK). The  
synchronous inputs include all addresses, all data inputs,  
address-pipelining Chip Enable (CE1), depth-expansion Chip  
Enables (CE2 and CE3), Burst Control inputs (ADSC, ADSP,  
• 2.5V or 3.3V I/O power supply  
• Fast clock-to-output times  
— 6.5 ns (133-MHz version)  
• Provide high-performance 2-1-1-1 access rate  
User-selectable burst counter supporting Intel®  
Pentium® interleaved or linear burst sequences  
and ADV), Write Enables (BWx, and BWE), and Global Write  
(GW). Asynchronous inputs include the Output Enable (OE)  
and the ZZ pin.  
• Separate processor and controller address strobes  
• Synchronous self-timed write  
• Asynchronous output enable  
The CY7C1441AV33/CY7C1443AV33/CY7C1447AV33 allows  
either interleaved or linear burst sequences, selected by the  
MODE input pin. A HIGH selects an interleaved burst  
sequence, while a LOW selects a linear burst sequence. Burst  
accesses can be initiated with the Processor Address Strobe  
(ADSP) or the cache Controller Address Strobe (ADSC)  
inputs. Address advancement is controlled by the Address  
Advancement (ADV) input.  
• CY7C1441AV33, CY7C1443AV33 available in  
JEDEC-standard lead-free 100-pin TQFP package,  
lead-free and non-lead-free 165-ball FBGA package.  
CY7C1447AV33 available in lead-free and non-lead-free  
209-ball FBGA package  
• IEEE 1149.1 JTAG-Compatible Boundary Scan  
• “ZZ” Sleep Mode option  
Addresses and chip enables are registered at rising edge of  
clock when either Address Strobe Processor (ADSP) or  
Address Strobe Controller (ADSC) are active. Subsequent  
burst addresses can be internally generated as controlled by  
the Advance pin (ADV).  
The  
CY7C1441AV33/CY7C1443AV33/CY7C1447AV33  
operates from a +3.3V core power supply while all outputs may  
operate with either a +2.5 or +3.3V supply. All inputs and  
outputs are JEDEC-standard JESD8-5-compatible.  
Selection Guide  
133 MHz  
6.5  
100 MHz  
8.5  
Unit  
ns  
Maximum Access Time  
Maximum Operating Current  
Maximum CMOS Standby Current  
310  
290  
mA  
mA  
120  
120  
Note:  
1. For best-practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.  
Cypress Semiconductor Corporation  
Document #: 38-05357 Rev. *F  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised June 23, 2006  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33  
CY7C1447AV33  
1
Logic Block Diagram – CY7C1441AV33 (1M x 36)  
ADDRESS  
REGISTER  
A0, A1, A  
A[1:0]  
MODE  
ADV  
CLK  
Q1  
BURST  
COUNTER  
AND LOGIC  
Q0  
CLR  
ADSC  
ADSP  
DQ  
BYTE  
WRITE REGISTER  
D, DQPD  
DQ  
BYTE  
WRITE REGISTER  
D, DQPD  
BW  
D
DQ  
BYTE  
WRITE REGISTER  
C, DQPC  
DQ  
BYTE  
WRITE REGISTER  
C, DQPC  
BW  
C
OUTPUT  
BUFFERS  
DQs  
MEMORY  
ARRAY  
SENSE  
AMPS  
DQP  
DQP  
DQP  
A
DQ  
BYTE  
WRITE REGISTER  
B, DQPB  
B
C
DQ  
BYTE  
WRITE REGISTER  
B, DQPB  
BW  
B
DQPD  
DQ  
BYTE  
WRITE REGISTER  
A, DQPA  
DQ  
A, DQPA  
BW  
A
BYTE  
BWE  
WRITE REGISTER  
INPUT  
REGISTERS  
GW  
ENABLE  
REGISTER  
CE1  
CE2  
CE3  
OE  
SLEEP  
CONTROL  
ZZ  
2
Logic Block Diagram – CY7C1443AV33 (2Mx 18)  
ADDRESS  
REGISTER  
A0,A1,A  
A[1:0]  
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER AND  
LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQ  
B,DQPB  
DQ  
B,DQPB  
WRITE DRIVER  
WRITE REGISTER  
BW  
B
A
MEMORY  
ARRAY  
OUTPUT  
BUFFERS  
DQs  
DQP  
DQP  
SENSE  
AMPS  
A
B
DQ  
A,DQPA  
DQA,DQPA  
WRITE REGISTER  
WRITE DRIVER  
BW  
BWE  
GW  
INPUT  
REGISTERS  
ENABLE  
REGISTER  
CE  
CE  
CE  
1
2
3
OE  
SLEEP  
CONTROL  
ZZ  
Document #: 38-05357 Rev. *F  
Page 2 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33  
CY7C1447AV33  
Logic Block Diagram – CY7C1447AV33 (512K x 72)  
ADDRESS  
REGISTER  
A0, A1,A  
A[1:0]  
MODE  
Q1  
ADV  
CLK  
BINARY  
COUNTER  
CLR  
Q0  
ADSC  
ADSP  
DQ  
H
, DQP  
H
DQ  
H, DQPH  
BW  
BW  
H
G
WRITE DRIVER  
WRITE DRIVER  
DQ  
G, DQPG  
DQ  
F, DQPF  
WRITE DRIVER  
WRITE DRIVER  
DQ  
F, DQPF  
DQ  
F, DQPF  
BW  
BW  
F
E
WRITE DRIVER  
WRITE DRIVER  
DQ E  
E
, DQP  
DQ  
E, DQPE  
WRITE DRIVER  
WRITE DRIVER  
MEMORY  
ARRAY  
DQ  
D, DQPD  
DQ  
D, DQPD  
BW  
D
WRITE DRIVER  
WRITE DRIVER  
DQ  
C, DQPC  
DQ  
C, DQPC  
BW  
C
WRITE DRIVER  
WRITE DRIVER  
OUTPUT  
BUFFERS  
OUTPUT  
REGISTERS  
SENSE  
AMPS  
DQs  
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
A
B
C
D
E
E
DQ  
B, DQPB  
DQ  
B, DQPB  
WRITE DRIVER  
BW  
BW  
B
A
WRITE DRIVER  
DQ  
A, DQPA  
DQ  
A
, DQP  
A
F
WRITE DRIVER  
WRITE DRIVER  
G
H
BWE  
INPUT  
GW  
REGISTERS  
ENABLE  
REGISTER  
PIPELINED  
ENABLE  
CE1  
CE2  
CE3  
OE  
SLEEP  
CONTROL  
ZZ  
Document #: 38-05357 Rev. *F  
Page 3 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33  
CY7C1447AV33  
Pin Configurations  
100-pin TQFP Pinout  
DQPC  
1
DQPB  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
NC  
VDDQ  
VSSQ  
NC  
A
NC  
NC  
VDDQ  
VSSQ  
NC  
DQPA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
VSS  
NC  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQC  
2
DQC  
VDDQ  
VSSQ  
DQC  
3
4
5
6
DQC  
7
NC  
DQC  
8
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
NC  
VDD  
NC  
VSS  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQPB  
NC  
DQC  
9
10  
11  
9
VSSQ  
VDDQ  
DQC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
12  
DQC  
13  
NC  
14  
VDD  
15  
NC  
VDD  
ZZ  
CY7C1443AV33  
(2M x 18)  
CY7C1441AV33  
(1Mx 36)  
NC  
16  
VDD  
ZZ  
VSS  
17  
DQD  
18  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
DQPA  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
NC  
DQD  
19  
20  
21  
VDDQ  
VSSQ  
DQD  
22  
DQD  
23  
DQD  
24  
DQD  
25  
26  
27  
NC  
VSSQ  
VDDQ  
DQD  
DQD  
29  
VSSQ  
VDDQ  
NC  
NC  
NC  
VSSQ  
VDDQ  
NC  
NC  
NC  
28  
DQPD  
30  
Document #: 38-05357 Rev. *F  
Page 4 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33  
CY7C1447AV33  
Pin Configurations (continued)  
165-ball FBGA (15 x 17 x 1.4 mm) Pinout  
CY7C1441AV33 (1M x 36)  
1
2
A
3
CE1  
4
BWC  
5
BWB  
6
CE3  
7
8
9
ADV  
10  
A
11  
NC  
NC/288M  
NC/144M  
DQPC  
BWE  
GW  
VSS  
VSS  
ADSC  
A
B
C
D
A
CE2  
VDDQ  
VDDQ  
BWD  
VSS  
BWA  
VSS  
VSS  
CLK  
VSS  
VSS  
OE  
VSS  
VDD  
ADSP  
VDDQ  
VDDQ  
A
NC/576M  
DQPB  
DQB  
NC  
DQC  
NC/1G  
DQB  
DQC  
VDD  
DQC  
DQC  
DQC  
NC  
DQC  
DQC  
DQC  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
DQB  
DQB  
DQB  
NC  
DQB  
DQB  
DQB  
ZZ  
E
F
G
H
J
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
K
L
DQD  
DQPD  
NC  
DQD  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
A
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
DQA  
DQPA  
A
M
N
P
NC/72M  
TDI  
A1  
TDO  
A0  
MODE  
A
A
A
TMS  
TCK  
A
A
A
A
R
CY7C1443AV33 (2M x 18)  
1
2
A
3
CE1  
4
BWB  
5
NC  
6
CE3  
7
8
9
ADV  
10  
A
11  
A
NC/288M  
NC/144M  
NC  
BWE  
GW  
VSS  
VSS  
ADSC  
A
B
C
D
A
CE2  
NC  
BWA  
VSS  
VSS  
CLK  
VSS  
VSS  
OE  
VSS  
VDD  
ADSP  
VDDQ  
VDDQ  
A
NC/576M  
DQPA  
DQA  
NC  
VDDQ  
VDDQ  
VSS  
VDD  
NC/1G  
NC  
NC  
DQB  
NC  
NC  
DQB  
DQB  
DQB  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQA  
DQA  
DQA  
ZZ  
E
F
NC  
NC  
G
H
J
NC  
NC  
DQB  
DQB  
DQB  
NC  
VDDQ  
VDDQ  
VDDQ  
V
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
NC  
DD  
NC  
VDD  
VDD  
VDD  
VSS  
A
NC  
K
L
NC  
NC  
DQB  
DQPB  
NC  
NC  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
A
VSS  
NC  
VDDQ  
VDDQ  
A
DQA  
NC  
A
NC  
NC  
A
M
N
P
NC/72M  
TDI  
A1  
TDO  
MODE  
A
A
A
TMS  
A0  
TCK  
A
A
A
A
R
Document #: 38-05357 Rev. *F  
Page 5 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33  
CY7C1447AV33  
Pin Configurations (continued)  
209-ball FBGA (14 x 22 x 1.76 mm) Pinout  
CY7C1447AV33 (512K × 72)  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
C
D
E
F
DQG  
DQG  
DQG  
DQG  
A
CE2  
A
DQB  
DQB  
ADSP ADSC  
ADV  
A
CE3  
DQB  
DQB  
BWSB  
NC288M  
NC/144M  
BWSC  
BWSH  
VSS  
BW  
BWSF  
BWSG  
BWSD  
DQG  
DQG  
DQG  
DQG  
NC/576M  
GW  
BWSE  
NC  
CE1  
BWSA DQB  
DQB  
DQB  
NC/1G OE  
VSS  
NC  
DQB  
DQPG DQPC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VDD  
VDD  
VSS  
VDD  
DQPF DQPB  
DQC  
DQC  
VSS  
DQF  
DQF  
VSS  
VDDQ  
VSS  
NC  
NC  
NC  
NC  
VSS  
NC  
NC  
VSS  
G
H
J
DQC  
DQC  
DQC  
VDDQ  
VSS  
VDDQ  
VSS  
DQF  
DQF  
DQF  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
NC  
A
DQC  
DQC  
NC  
DQF  
DQF  
NC  
VDDQ  
DQC  
NC  
VDDQ  
VDDQ  
CLK  
VDDQ  
NC  
DQF  
NC  
K
L
NC  
NC  
DQH  
DQH  
DQH  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VDDQ  
VSS  
VDDQ  
VSS  
DQA  
DQA  
DQA  
M
N
P
R
T
VSS  
VDDQ  
VSS  
VDDQ  
NC  
DQH  
DQH  
DQH  
VSS  
VDD  
VSS  
DQA  
DQA  
DQA  
VDDQ  
DQH  
DQH  
DQPD  
DQD  
DQD  
VDDQ  
VSS  
NC  
ZZ  
DQA  
DQA  
DQPA  
DQE  
DQE  
VSS  
VDDQ  
VSS  
A
VDDQ  
VDD  
NC  
A
DQPH  
DQD  
DQD  
DQD  
DQD  
VDDQ  
VDD  
DQPE  
DQE  
DQE  
DQE  
DQE  
VSS  
NC  
A
MODE  
A
U
V
W
A
NC/72M  
A
A
A1  
A
DQD  
DQD  
A
A
A
A
DQE  
DQE  
TDI  
TDO  
TCK  
A0  
A
TMS  
Document #: 38-05357 Rev. *F  
Page 6 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33  
CY7C1447AV33  
Pin Definitions  
Name  
I/O  
Description  
A0, A1, A  
Input-  
Synchronous  
Address Inputs used to select one of the address locations. Sampled at  
the rising edge of the CLK if ADSP or ADSC is active LOW, and CE1, CE2,  
and CE3 are sampled active. A[1:0] feed the 2-bit counter.  
BWA, BWB  
BWC, BWD,  
BWE, BWF,  
BWG, BWH  
Input-  
Synchronous  
Byte Write Select Inputs, active LOW. Qualified with BWE to conduct byte  
writes to the SRAM. Sampled on the rising edge of CLK.  
GW  
CLK  
CE1  
Input-  
Synchronous  
Global Write Enable Input, active LOW. When asserted LOW on the rising  
edge of CLK, a global write is conducted (ALL bytes are written, regardless  
of the values on BWX and BWE).  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. Also used  
to increment the burst counter when ADV is asserted LOW, during a burst  
operation.  
Input-  
Synchronous  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used  
in conjunction with CE2 and CE3 to select/deselect the device. ADSP is  
ignored if CE1 is HIGH. CE1 is sampled only when a new external address is  
loaded.  
CE2  
CE3  
Input-  
Synchronous  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used  
in conjunction with CE1 and CE3 to select/deselect the device. CE2 is sampled  
only when a new external address is loaded.  
Input-  
Synchronous  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used  
in conjunction with CE1 and CE2 to select/deselect the device. CE3 is  
assumed active throughout this document for BGA. CE3 is sampled only when  
a new external address is loaded.  
OE  
Input-  
Asynchronous  
Output Enable, asynchronous input, active LOW. Controls the direction of  
the I/O pins. When LOW, the I/O pins behave as outputs. When deasserted  
HIGH, I/O pins are tri-stated, and act as input data pins. OE is masked during  
the first clock of a read cycle when emerging from a deselected state.  
ADV  
Input-  
Synchronous  
Advance Input signal, sampled onthe risingedge of CLK. Whenasserted,  
it automatically increments the address in a burst cycle.  
ADSP  
Input-  
Synchronous  
Address Strobe from Processor, sampled on the rising edge of CLK,  
active LOW. When asserted LOW, addresses presented to the device are  
captured in the address registers. A[1:0] are also loaded into the burst counter.  
When ADSP and ADSC are both asserted, only ADSP is recognized. ASDP  
is ignored when  
CE1 is deasserted HIGH  
ADSC  
Input-  
Synchronous  
Address Strobe from Controller, sampled on the rising edge of CLK,  
active LOW. When asserted LOW, addresses presented to the device are  
captured in the address registers. A[1:0] are also loaded into the burst counter.  
.
When ADSP and ADSC are both asserted, only ADSP is recognized  
BWE  
ZZ  
Input-  
Synchronous  
Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK.  
This signal must be asserted LOW to conduct a byte write.  
Input-  
Asynchronous  
ZZ “sleep” Input, active HIGH. When asserted HIGH places the device in a  
non-time-critical “sleep” condition with data integrity preserved. For normal  
operation, this pin has to be LOW or left floating. ZZ pin has an internal  
pull-down.  
I/O-  
Synchronous  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register  
that is triggered by the rising edge of CLK. As outputs, they deliver the data  
contained in the memory location specified by the addresses presented during  
the previous clock rise of the read cycle. The direction of the pins is controlled  
by OE. When OE is asserted LOW, the pins behave as outputs. When HIGH,  
DQs and DQPX are placed in a tri-state condition.The outputs are automati-  
cally tri-stated during the data portion of a write sequence, during the first clock  
when emerging from a deselected state, and when the device is deselected,  
regardless of the state of OE.  
DQs  
Document #: 38-05357 Rev. *F  
Page 7 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33  
CY7C1447AV33  
Pin Definitions (continued)  
Name  
I/O  
Description  
I/O-  
Bidirectional Data Parity I/O Lines. Functionally, these signals are identical  
to DQs. During write sequences, DQPx is controlled by BW[A:H] correspond-  
ingly.  
DQPX  
Synchronous  
Input-Static  
MODE  
Selects Burst Order. When tied to GND selects linear burst sequence. When  
tied to VDD or left floating selects interleaved burst sequence. This is a strap  
pin and should remain static during device operation. Mode Pin has an internal  
pull-up.  
VDD  
Power Supply  
I/O Power Supply  
Ground  
Power supply inputs to the core of the device.  
Power supply for the I/O circuitry.  
Ground for the core of the device.  
Ground for the I/O circuitry.  
VDDQ  
VSS  
VSSQ  
TDO  
I/O Ground  
JTAG serial output  
Synchronous  
Serial data-out to the JTAG circuit. Delivers data on the negative edge of  
TCK. If the JTAG feature is not being utilized, this pin should be left uncon-  
nected. This pin is not available on TQFP packages.  
TDI  
JTAG serial  
input  
Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the  
JTAG feature is not being utilized, this pin can be left floating or connected to  
Synchronous  
VDD through a pull up resistor. This pin is not available on TQFP packages.  
TMS  
TCK  
NC  
JTAG serial  
input  
Synchronous  
Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the  
JTAG feature is not being utilized, this pin can be disconnected or connected  
to VDD. This pin is not available on TQFP packages.  
JTAG-Clock  
Clock input to the JTAG circuitry. If the JTAG feature is not being utilized,  
this pin must be connected to VSS. This pin is not available on TQFP  
packages.  
-
-
No Connects. Not internally connected to the die. 72M, 144M and 288M are  
address expansion pins are not internally connected to the die.  
NC/72M, NC/144M,  
NC/288M, NC/576M  
NC/1G  
No Connects. Not internally connected to the die. NC/72M, NC/144M,  
NC/288M, NC/576M and NC/1G are address expansion pins are not internally  
connected to the die.  
Document #: 38-05357 Rev. *F  
Page 8 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33  
CY7C1447AV33  
HIGH, and (4) the write input signals (GW, BWE, and BWX)  
indicate a write access. ADSC is ignored if ADSP is active  
LOW.  
Functional Overview  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. Maximum access delay from  
the clock rise (tCDV) is 6.5 ns (133-MHz device).  
The addresses presented are loaded into the address register  
and the burst counter/control logic and delivered to the  
memory core. The information presented to DQS will be written  
into the specified address location. Byte writes are allowed. All  
I/Os are tri-stated when a write is detected, even a byte write.  
Since this is a common I/O device, the asynchronous OE input  
signal must be deasserted and the I/Os must be tri-stated prior  
to the presentation of data to DQs. As a safety precaution, the  
data lines are tri-stated once a write cycle is detected,  
regardless of the state of OE.  
The  
CY7C1441AV33/CY7C1443AV33/CY7C1447AV33  
supports secondary cache in systems utilizing either a linear  
or interleaved burst sequence. The interleaved burst order  
supports Pentium and i486™ processors. The linear burst  
sequence is suited for processors that utilize a linear burst  
sequence. The burst order is user-selectable, and is deter-  
mined by sampling the MODE input. Accesses can be initiated  
with either the Processor Address Strobe (ADSP) or the  
Controller Address Strobe (ADSC). Address advancement  
through the burst sequence is controlled by the ADV input. A  
two-bit on-chip wraparound burst counter captures the first  
address in a burst sequence and automatically increments the  
address for the rest of the burst access.  
Burst Sequences  
The  
CY7C1441AV33/CY7C1443AV33/CY7C1447AV33  
provides an on-chip two-bit wraparound burst counter inside  
the SRAM. The burst counter is fed by A[1:0], and can follow  
either a linear or interleaved burst order. The burst order is  
determined by the state of the MODE input. A LOW on MODE  
will select a linear burst sequence. A HIGH on MODE will  
select an interleaved burst order. Leaving MODE unconnected  
will cause the device to default to a interleaved burst  
sequence.  
Byte write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BWx) inputs. A Global Write  
Enable (GW) overrides all byte write inputs and writes data to  
all four bytes. All writes are simplified with on-chip  
synchronous self-timed write circuitry.  
Three synchronous Chip Selects (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output tri-state control. ADSP is ignored if CE1  
is HIGH.  
Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
First  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Single Read Accesses  
Address  
A1: A0  
A single read access is initiated when the following conditions  
are satisfied at clock rise: (1) CE1, CE2, and CE3 are all  
asserted active, and (2) ADSP or ADSC is asserted LOW (if  
the access is initiated by ADSC, the write inputs must be  
deasserted during this first cycle). The address presented to  
the address inputs is latched into the address register and the  
burst counter/control logic and presented to the memory core.  
If the OE input is asserted LOW, the requested data will be  
available at the data outputs a maximum to tCDV after clock  
rise. ADSP is ignored if CE1 is HIGH.  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Linear Burst Address Table  
(MODE = GND)  
First  
Address  
A1: A0  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Single Write Accesses Initiated by ADSP  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) CE1, CE2, CE3 are all asserted  
active, and (2) ADSP is asserted LOW. The addresses  
presented are loaded into the address register and the burst  
inputs (GW, BWE, and BWX)are ignored during this first clock  
cycle. If the write inputs are asserted active (see Write Cycle  
Descriptions table for appropriate states that indicate a write)  
on the next clock rise, the appropriate data will be latched and  
written into the device. Byte writes are allowed. All I/Os are  
tri-stated during a byte write.Since this is a common I/O  
device, the asynchronous OE input signal must be deasserted  
and the I/Os must be tri-stated prior to the presentation of data  
to DQs. As a safety precaution, the data lines are tri-stated  
once a write cycle is detected, regardless of the state of OE.  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the “sleep” mode. CE1, CE2, CE3, ADSP, and ADSC must  
remain inactive for the duration of tZZREC after the ZZ input  
returns LOW.  
Single Write Accesses Initiated by ADSC  
This write access is initiated when the following conditions are  
satisfied at clock rise: (1) CE1, CE2, and CE3 are all asserted  
active, (2) ADSC is asserted LOW, (3) ADSP is deasserted  
Document #: 38-05357 Rev. *F  
Page 9 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33  
CY7C1447AV33  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
Test Conditions  
ZZ > VDD – 0.2V  
Min.  
Max.  
100  
Unit  
mA  
ns  
tZZS  
ZZ > VDD – 0.2V  
2tCYC  
tZZREC  
tZZI  
ZZ recovery time  
ZZ < 0.2V  
2tCYC  
0
ns  
2tCYC  
ZZ active to sleep current  
ZZ Inactive to exit sleep current  
This parameter is sampled  
This parameter is sampled  
ns  
tRZZI  
ns  
Truth Table[2, 3, 4, 5, 6]  
ADDRESS  
Used  
Cycle Description  
CE1 CE2 CE3 ZZ ADSP ADSC ADV WRITE OE CLK  
DQ  
Deselected Cycle, Power-down  
Deselected Cycle, Power-down  
Deselected Cycle, Power-down  
Deselected Cycle, Power-down  
Deselected Cycle, Power-down  
Sleep Mode, Power-down  
None  
None  
None  
None  
None  
None  
H
L
X
L
X
X
H
X
X
X
L
L
L
L
L
H
X
L
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L
X
L
L
L
H
H
X
X
X
X
X
L
X
X
Tri-State  
Read Cycle, Begin Burst  
Read Cycle, Begin Burst  
Write Cycle, Begin Burst  
Read Cycle, Begin Burst  
Read Cycle, Begin Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
External  
External  
External  
External  
External  
Next  
L
L
H
H
H
H
H
X
X
X
L
L
L
L
L
X
X
X
L
L
L
L
L
L
L
L
L
L
X
X
L
X
X
X
X
X
L
X
X
L
L
H
X
L
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
Q
Tri-State  
L
H
H
H
H
H
X
D
Q
L
L
H
H
H
H
H
Tri-State  
L
L
H
L
X
X
H
H
H
H
Q
Tri-State  
Next  
L
H
L
Next  
L
Q
Read Cycle, Continue Burst  
Write Cycle, Continue Burst  
Write Cycle, Continue Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
Next  
H
X
H
X
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
L
L
L
L
L
L
L
L
L
X
H
X
H
H
X
X
H
X
H
H
H
H
H
H
H
H
H
L
L
H
L
H
X
X
L
L-H Tri-State  
Next  
L-H  
L-H  
L-H  
D
D
Q
Next  
L
L
Current  
Current  
Current  
Current  
Current  
Current  
H
H
H
H
H
H
H
H
H
H
L
H
L
L-H Tri-State  
L-H  
L-H Tri-State  
Q
H
X
X
L-H  
L-H  
D
D
L
Notes:  
2. X = “Don't Care.” H = Logic HIGH, L = Logic LOW.  
3. WRITE = L when any one or more Byte Write enable signals and BWE = L or GW = L. WRITE = H when all Byte write enable signals, BWE, GW = H.  
4. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.  
5. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks  
X
after the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the write cycle to allow the outputs to tri-state. OE is a  
don't care for the remainder of the write cycle.  
6. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are tri-state when OE is  
inactive or when the device is deselected, and all data bits behave as output when OE is active (LOW).  
Document #: 38-05357 Rev. *F  
Page 10 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33  
CY7C1447AV33  
Partial Truth Table for Read/Write[2, 7]  
Function (CY7C1441AV33)  
Read  
GW  
H
BWE  
BWD  
X
BWC  
X
BWB  
X
BWA  
X
H
L
L
L
L
L
L
L
L
Read  
H
H
H
H
H
Write Byte A (DQA, DQPA)  
Write Byte B(DQB, DQPB)  
H
H
H
H
L
H
H
H
L
H
Write Bytes A, B (DQA, DQB, DQPA, DQPB)  
Write Byte C (DQC, DQPC)  
Write Bytes C, A (DQC, DQA, DQPC, DQPA)  
Write Bytes C, B (DQC, DQB, DQPC, DQPB)  
H
H
H
L
L
H
H
L
H
H
H
H
L
H
L
H
H
L
L
H
Write Bytes C, B, A (DQC, DQB, DQA, DQPC,  
DQPB, DQPA)  
H
H
L
L
L
Write Byte D (DQD, DQPD)  
H
H
H
H
L
L
L
L
L
L
L
L
H
H
H
H
H
H
L
H
L
Write Bytes D, A (DQD, DQA, DQPD, DQPA)  
Write Bytes D, B (DQD, DQA, DQPD, DQPA)  
H
L
Write Bytes D, B, A (DQD, DQB, DQA, DQPD,  
DQPB, DQPA)  
L
Write Bytes D, B (DQD, DQB, DQPD, DQPB)  
H
H
L
L
L
L
L
L
H
H
H
L
Write Bytes D, B, A (DQD, DQC, DQA, DQPD,  
DQPC, DQPA)  
Write Bytes D, C, A (DQD, DQB, DQA, DQPD,  
DQPB, DQPA)  
H
L
L
L
L
H
Write All Bytes  
Write All Bytes  
H
L
L
L
L
L
L
X
X
X
X
X
Truth Table for Read/Write[2]  
Function (CY7C1443AV33)  
Read  
GW  
H
BWE  
BWB  
X
BWA  
H
L
L
L
L
X
X
H
L
Read  
H
H
Write Byte A - (DQA and DQPA)  
Write Byte B - (DQB and DQPB)  
Write All Bytes  
H
H
H
L
H
L
H
L
Write All Bytes  
L
X
X
Truth Table for Read/Write[2, 8]  
Function (CY7C1447AV33)  
GW  
H
BWE  
BWX  
Read  
H
L
L
L
X
X
Read  
H
All BW = H  
Write Byte x – (DQx and DQPx)  
Write All Bytes  
H
L
All BW = L  
X
H
Write All Bytes  
L
Notes:  
7. Table only lists a partial listing of the byte write combinations. Any Combination of BW is valid Appropriate write will be done based on which byte write is active.  
X
8. BWx represents any byte write signal BW  
.To enable any byte write BW a Logic LOW signal should be applied at clock rise.Any number of bye writes can  
[A..H]  
x,  
be enabled at the same time for any given write.  
Document #: 38-05357 Rev. *F  
Page 11 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33  
CY7C1447AV33  
Test Data-In (TDI)  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The TDI ball is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. TDI  
is internally pulled up and can be unconnected if the TAP is  
unused in an application. TDI is connected to the most signif-  
icant bit (MSB) of any register. (See Tap Controller Block  
Diagram.)  
The CY7C1441AV33/CY7C1443AV33/CY7C1447AV33 incor-  
porates a serial boundary scan test access port (TAP). This  
part is fully compliant with 1149.1. The TAP operates using  
JEDEC-standard 3.3V or 2.5V I/O logic levels.  
The  
CY7C1441AV33/CY7C1443AV33/CY7C1447AV33  
contains a TAP controller, instruction register, boundary scan  
register, bypass register, and ID register.  
Disabling the JTAG Feature  
Test Data-Out (TDO)  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are inter-  
nally pulled up and may be unconnected. They may alternately  
be connected to VDD through a pull-up resistor. TDO should be  
left unconnected. Upon power-up, the device will come up in  
a reset state which will not interfere with the operation of the  
device.  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current  
state of the TAP state machine. The output changes on the  
falling edge of TCK. TDO is connected to the least significant  
bit (LSB) of any register. (See Tap Controller State Diagram.)  
TAP Controller Block Diagram  
0
TAP Controller State Diagram  
Bypass Register  
TEST-LOGIC  
1
2
1
0
0
0
RESET  
0
Selection  
Circuitry  
Instruction Register  
31 30 29  
Identification Register  
Selection  
TDI  
TDO  
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
Circuitr  
y
.
.
. 2 1  
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
x
.
.
.
.
. 2 1  
0
0
Boundary Scan Register  
SHIFT-DR  
0
SHIFT-IR  
0
1
1
1
1
EXIT1-DR  
EXIT1-IR  
TCK  
TMS  
TAP CONTROLLER  
0
0
PAUSE-DR  
0
PAUSE-IR  
0
1
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
Performing a TAP Reset  
A RESET is performed by forcing TMS HIGH (VDD) for five  
rising edges of TCK. This RESET does not affect the operation  
of the SRAM and may be performed while the SRAM is  
operating.  
UPDATE-DR  
UPDATE-IR  
1
0
1
0
At power-up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
TAP Registers  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned into and out of the SRAM test  
circuitry. Only one register can be selected at a time through  
the instruction register. Data is serially loaded into the TDI ball  
on the rising edge of TCK. Data is output on the TDO ball on  
the falling edge of TCK.  
Test Access Port (TAP)  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Instruction Register  
Test MODE SELECT (TMS)  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO balls as shown in the Tap Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this ball unconnected if the TAP is not used. The ball is  
pulled up internally, resulting in a logic HIGH level.  
Document #: 38-05357 Rev. *F  
Page 12 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33  
CY7C1447AV33  
When the TAP controller is in the Capture-IR state, the two  
least significant bits are loaded with a binary “01” pattern to  
allow for fault isolation of the board-level serial test data path.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO pins when the TAP  
controller is in a Shift-DR state. The SAMPLE Z command puts  
the output bus into a High-Z state until the next command is  
given during the “Update IR” state.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When  
the SAMPLE/PRELOAD instructions are loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and output pins is  
captured in the boundary scan register.  
Boundary Scan Register  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is  
possible that during the Capture-DR state, an input or output  
will undergo a transition. The TAP may then try to capture a  
signal while in transition (metastable state). This will not harm  
the device, but there is no guarantee as to the value that will  
be captured. Repeatable results may not be possible.  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR  
state and is then placed between the TDI and TDO balls when  
the controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used  
to capture the contents of the I/O ring.  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI, and the LSB is connected to TDO.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller's capture set-up plus  
hold times (tCS and tCH). The SRAM clock input might not be  
captured correctly if there is no way in a design to stop (or  
slow) the clock during a SAMPLE/PRELOAD instruction. If this  
is an issue, it is still possible to capture all other signals and  
simply ignore the value of the CK and CK captured in the  
boundary scan register.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions table.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the  
boundary scan register between the TDI and TDO pins.  
TAP Instruction Set  
PRELOAD allows an initial data pattern to be placed at the  
latched parallel outputs of the boundary scan register cells  
prior to the selection of another boundary scan test operation.  
Overview  
Eight different instructions are possible with the three bit  
instruction register. All combinations are listed in the  
Instruction Codes table. Three of these instructions are listed  
as RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
The shifting of data for the SAMPLE and PRELOAD phases  
can occur concurrently when required—that is, while data  
captured is shifted out, the preloaded data can be shifted in.  
BYPASS  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO balls.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO pins. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
IDCODE  
EXTEST  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
The EXTEST instruction enables the preloaded data to be  
driven out through the system output pins. This instruction also  
selects the boundary scan register to be connected for serial  
access between the TDI and TDO in the shift-DR controller  
state.  
The IDCODE instruction is loaded into the instruction register  
upon power-up or whenever the TAP controller is given a test  
logic reset state.  
EXTEST OUTPUT BUS TRI-STATE  
IEEE Standard 1149.1 mandates that the TAP controller be  
able to put the output bus into a tri-state mode.  
The boundary scan register has a special bit located at bit #89  
(for 165-FBGA package) or bit #138 (for 209-FBGA package).  
Document #: 38-05357 Rev. *F  
Page 13 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33  
CY7C1447AV33  
When this scan cell, called the “extest output bus tri-state”, is  
latched into the preload register during the “Update-DR” state  
in the TAP controller, it will directly control the state of the  
output (Q-bus) pins, when the EXTEST is entered as the  
current instruction. When HIGH, it will enable the output  
buffers to drive the output bus. When LOW, this bit will place  
the output bus into a High-Z condition.  
loaded into that shift-register cell will latch into the preload  
register. When the EXTEST instruction is entered, this bit will  
directly control the output Q-bus pins. Note that this bit is  
pre-set HIGH to enable the output when the device is  
powered-up, and also when the TAP controller is in the  
Test-Logic-Reset” state.  
Reserved  
This bit can be set by entering the SAMPLE/PRELOAD or  
EXTEST command, and then shifting the desired bit into that  
cell, during the “Shift-DR” state. During “Update-DR”, the value  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
TAP AC Switching Characteristics Over the Operating Range[9, 10]  
Parameter  
Clock  
tTCYC  
tTF  
Description  
Min.  
Max.  
Unit  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH time  
TCK Clock LOW time  
50  
ns  
MHz  
ns  
20  
tTH  
20  
20  
tTL  
ns  
Output Times  
tTDOV TCK Clock LOW to TDO Valid  
tTDOX TCK Clock LOW to TDO Invalid  
Set-up Times  
tTMSS TMS Set-up to TCK Clock Rise  
tTDIS  
10  
ns  
ns  
0
5
5
5
ns  
ns  
ns  
TDI Set-up to TCK Clock Rise  
Capture Set-up to TCK Rise  
tCS  
Hold Times  
tTMSH  
tTDIH  
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
tCH  
Capture Hold after Clock Rise  
Notes:  
9. t and t refer to the setup and hold time requirements of latching data from the boundary scan register.  
CS  
CH  
10. Test conditions are specified using the load in TAP AC test Conditions. t /t = 1 ns.  
R
F
Document #: 38-05357 Rev. *F  
Page 14 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33  
CY7C1447AV33  
3.3V TAP AC Test Conditions  
2.5V TAP AC Test Conditions  
Input pulse levels ............................................... .VSS to 3.3V  
Input rise and fall times................................................... 1 ns  
Input timing reference levels...........................................1.5V  
Output reference levels...................................................1.5V  
Test load termination supply voltage...............................1.5V  
Input pulse levels.................................................VSS to 2.5V  
Input rise and fall time .....................................................1 ns  
Input timing reference levels......................................... 1.25V  
Output reference levels ................................................ 1.25V  
Test load termination supply voltage ............................ 1.25V  
3.3V TAP AC Output Load Equivalent  
2.5V TAP AC Output Load Equivalent  
1.5V  
1.25V  
50  
50  
TDO  
TDO  
ZO= 50Ω  
ZO= 50Ω  
20pF  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
(0°C < TA < +70°C; VDD = 3.135V to 3.6V unless otherwise noted)[11]  
Parameter  
VOH1  
Description  
Output HIGH Voltage IOH = –4.0 mA  
OH = –1.0 mA  
Description  
Conditions  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
Min.  
2.4  
2.0  
2.9  
2.1  
Max.  
Unit  
V
I
V
VOH2  
VOL1  
VOL2  
VIH  
Output HIGH Voltage IOH = –100 µA  
V
V
Output LOW Voltage IOL = 8.0 mA  
0.4  
0.4  
V
IOL = 1.0 mA  
V
Output LOW Voltage IOL = 100 µA  
0.2  
V
VDDQ = 2.5V  
0.2  
V
Input HIGH Voltage  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
2.0  
1.7  
VDD + 0.3  
VDD + 0.3  
0.8  
V
V
VIL  
Input LOW Voltage  
–0.3  
–0.3  
–5  
V
VDDQ = 2.5V  
0.7  
V
IX  
Input Load Current  
GND < VIN < VDDQ  
5
µA  
Note:  
11. All voltages referenced to V (GND).  
SS  
Document #: 38-05357 Rev. *F  
Page 15 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33  
CY7C1447AV33  
Identification Register Definitions  
CY7C1441AV33 CY7C1443AV33 CY7C1447AV33  
Instruction Field  
Revision Number (31:29)  
Device Depth (28:24)  
(1M x 36)  
(2M x 18)  
(512K x 72)  
Description  
000  
000  
000  
Describes the version number.  
01011  
01011  
01011  
Reserved for Internal Use  
Architecture/Memory  
Type(23:18)[12]  
000001  
000001  
000001  
Defines memory type and architecture  
Bus Width/Density(17:12)  
100111  
010111  
110111  
Defines width and density  
Cypress JEDEC ID Code (11:1)  
00000110100  
00000110100  
00000110100 Allows unique identification of SRAM  
vendor.  
ID Register Presence Indicator (0)  
1
1
1
Indicates the presence of an ID  
register.  
Scan Register Sizes  
Register Name  
Bit Size (x36)  
Bit Size (x18)  
Bit Size (x18)  
Instruction  
3
3
3
Bypass  
ID  
1
32  
89  
-
1
32  
89  
-
1
32  
-
Boundary Scan Order (165-ball FBGA package)  
Boundary Scan Order (209-ball FBGA package)  
138  
Identification Codes  
Instruction  
EXTEST  
Code  
000  
Description  
Captures I/O ring contents.  
IDCODE  
001  
Loads the ID register with the vendor ID code and places the register between TDI and  
TDO. This operation does not affect SRAM operations.  
SAMPLE Z  
010  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
RESERVED  
011  
100  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
Note:  
12. Bit #24 is “1” in the ID Register Definitions for both 2.5V and 3.3V versions of this device.  
Document #: 38-05357 Rev. *F  
Page 16 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33  
CY7C1447AV33  
165-ball FBGA Boundary Scan Order[13,14]  
CY7C1441AV33 (1M x 36), CY7C1443AV33 (2M x 18)  
Bit #  
1
Ball ID  
Bit #  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
Ball ID  
E11  
D11  
G10  
F10  
E10  
D10  
C11  
A11  
B11  
A10  
B10  
A9  
Bit #  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
Ball ID  
A3  
A2  
B2  
C2  
B1  
A1  
C1  
D1  
E1  
F1  
Bit #  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
Ball ID  
N1  
N6  
N7  
N10  
P11  
P8  
2
N2  
3
P1  
4
R1  
5
R2  
6
R8  
P3  
7
R9  
R3  
8
P9  
P2  
9
P10  
R10  
R11  
H11  
N11  
M11  
L11  
K11  
J11  
M10  
L10  
K10  
J10  
H9  
R4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
P4  
G1  
D2  
E2  
F2  
N5  
P6  
B9  
R6  
C10  
A8  
Internal  
G2  
H1  
H3  
J1  
B8  
A7  
B7  
B6  
K1  
L1  
A6  
M1  
J2  
B5  
A5  
A4  
B4  
B3  
H10  
G11  
F11  
K2  
L2  
M2  
Notes:  
13. Balls which are NC (No Connect) are preset LOW.  
14. Bit# 89 is preset HIGH.  
Document #: 38-05357 Rev. *F  
Page 17 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33  
CY7C1447AV33  
209-ball FBGA Boundary Scan Order [13,15]  
CY7C1447AV33 (512K x 72)  
Bit #  
1
Ball ID  
Bit #  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
Ball ID  
F6  
Bit #  
71  
Ball ID  
Bit #  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
Ball ID  
K3  
W6  
V6  
H6  
C6  
B6  
A6  
A5  
B5  
C5  
D5  
D4  
C4  
A4  
B4  
C3  
B3  
A3  
A2  
A1  
B2  
B1  
C2  
C1  
D2  
D1  
E1  
E2  
F2  
F1  
G1  
G2  
H2  
H1  
J2  
2
K8  
72  
K4  
3
U6  
K9  
73  
K6  
4
W7  
V7  
K10  
J11  
J10  
H11  
H10  
G11  
G10  
F11  
F10  
E10  
E11  
D11  
D10  
C11  
C10  
B11  
B10  
A11  
A10  
C9  
74  
K2  
5
75  
L2  
6
U7  
76  
L1  
7
T7  
77  
M2  
M1  
N2  
N1  
P2  
8
V8  
78  
9
U8  
79  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
T8  
80  
V9  
81  
U9  
82  
P1  
P6  
83  
R2  
R1  
T2  
W11  
W10  
V11  
V10  
U11  
U10  
T11  
T10  
R11  
R10  
P11  
P10  
N11  
N10  
M11  
M10  
L11  
L10  
K11  
M6  
84  
85  
86  
T1  
87  
U2  
U1  
V2  
88  
89  
90  
V1  
91  
W2  
W1  
T6  
92  
93  
B9  
94  
U3  
V3  
A9  
95  
D7  
96  
T4  
C8  
97  
T5  
B8  
98  
U4  
V4  
A8  
99  
D8  
100  
101  
102  
103  
104  
105  
5W  
5V  
C7  
B7  
5U  
Internal  
A7  
J1  
L6  
D6  
K1  
N6  
J6  
G6  
Note:  
15. Bit# 138 is preset HIGH.  
Document #: 38-05357 Rev. *F  
Page 18 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33  
CY7C1447AV33  
DC Input Voltage ................................... –0.5V to VDD + 0.5V  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Static Discharge Voltage........................................... >2001V  
(per MIL-STD-883, Method 3015)  
Storage Temperature .................................65°C to +150°C  
Latch-up Current..................................................... >200 mA  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Operating Range  
Supply Voltage on VDD Relative to GND........ –0.3V to +4.6V  
Supply Voltage on VDDQ Relative to GND ......0.3V to +VDD  
Ambient  
Temperature  
Range  
VDD  
VDDQ  
DC Voltage Applied to Outputs  
in Tri-State........................................... –0.5V to VDDQ + 0.5V  
Commercial 0°C to +70°C 3.3V –5%/+10% 2.5V –5%  
to VDD  
Industrial  
–40°C to +85°C  
Electrical Characteristics Over the Operating Range[16, 17]  
DC Electrical Characteristics Over the Operating Range  
Parameter  
VDD  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Test Conditions  
Min.  
3.135  
3.135  
2.375  
2.4  
Max.  
3.6  
Unit  
V
VDDQ  
for 3.3V I/O  
for 2.5V I/O  
VDD  
V
2.625  
V
VOH  
VOL  
VIH  
VIL  
IX  
Output HIGH Voltage  
Output LOW Voltage  
for 3.3V I/O, IOH = –4.0 mA  
for 2.5V I/O, IOH = –1.0 mA  
for 3.3V I/O, IOL = 8.0 mA  
for 2.5V I/O, IOL = 1.0 mA  
V
2.0  
V
0.4  
0.4  
V
V
Input HIGH Voltage[16] for 3.3V I/O  
2.0  
1.7  
VDD + 0.3V  
VDD + 0.3V  
0.8  
V
for 2.5V I/O  
V
Input LOW Voltage[16]  
for 3.3V I/O  
for 2.5V I/O  
–0.3  
–0.3  
–5  
V
0.7  
V
Input Leakage Current GND VI VDDQ  
except ZZ and MODE  
5
µA  
Input Current of MODE Input = VSS  
Input = VDD  
–30  
–5  
µA  
µA  
µA  
µA  
µA  
mA  
mA  
mA  
5
Input Current of ZZ  
Input = VSS  
Input = VDD  
30  
5
IOZ  
IDD  
Output Leakage Current GND VI VDDQ, Output Disabled  
–5  
VDD Operating Supply VDD = Max., IOUT = 0 mA,  
7.5-ns cycle, 133 MHz  
10-ns cycle, 100 MHz  
All Speeds  
310  
290  
180  
Current  
f = fMAX = 1/tCYC  
ISB1  
ISB2  
ISB3  
Automatic CE  
Power-down  
Current—TTL Inputs  
Max. VDD, Device Deselected,  
VIN VIH or VIN VIL, f = fMAX,  
inputs switching  
Automatic CE  
Power-down  
Current—CMOS Inputs f = 0, inputs static  
Max. VDD, Device Deselected,  
VIN VDD – 0.3V or VIN 0.3V,  
All speeds  
All Speeds  
All Speeds  
120  
180  
135  
mA  
mA  
mA  
Automatic CE  
Power-down  
Current—CMOS Inputs f = fMAX, inputs switching  
Max. VDD, Device Deselected,  
VIN VDDQ – 0.3V or VIN 0.3V,  
ISB4  
Automatic CE  
Power-down  
Current—TTL Inputs  
Max. VDD, Device Deselected,  
VIN VDD – 0.3V or VIN 0.3V,  
f = 0, inputs static  
Notes:  
16. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2), undershoot: V (AC) > –2V (Pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
17. T  
: Assumes a linear ramp from 0V to V (min.) within 200 ms. During this time V < V and V  
< V  
Power-up  
DD  
IH  
DD  
DDQ DD  
Document #: 38-05357 Rev. *F  
Page 19 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33  
CY7C1447AV33  
Capacitance[18]  
100 TQFP  
Max.  
165 FBGA 209 FBGA  
Parameter  
Description  
Input Capacitance  
Test Conditions  
Max.  
Max.  
Unit  
pF  
CIN  
TA = 25°C, f = 1 MHz,  
6.5  
3
7
7
6
5
5
7
VDD = 3.3V  
CCLK  
CI/O  
Clock Input Capacitance  
Input/Output Capacitance  
pF  
VDDQ = 2.5V  
5.5  
pF  
Thermal Resistance[18]  
100 TQFP  
Package  
165 FBGA 209 FBGA  
Parameter  
Description  
Test Conditions  
Package  
Package  
Unit  
ΘJA  
Thermal Resistance  
(Junction to Ambient)  
Test conditions follow standard  
testmethodsandproceduresfor  
measuring thermal impedance,  
per EIA/JESD51.  
25.21  
20.8  
25.31  
°C/W  
ΘJC  
Thermal Resistance  
(Junction to Case)  
2.28  
3.2  
4.48  
°C/W  
AC Test Loads and Waveforms  
3.3V I/O Test Load  
R = 317Ω  
3.3V  
OUTPUT  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
90%  
10%  
Z = 50Ω  
0
R = 50Ω  
10%  
L
GND  
5 pF  
R = 351Ω  
1 ns  
1 ns  
V = 1.5V  
T
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
2.5V I/O Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
90%  
10%  
Z = 50Ω  
0
10%  
L
5 pF  
R = 1538Ω  
1 ns  
1 ns  
V = 1.25V  
T
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Note:  
18. Tested initially and after any design or process change that may affect these parameters.  
Document #: 38-05357 Rev. *F  
Page 20 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33  
CY7C1447AV33  
Switching Characteristics Over the Operating Range[23, 24]  
–133  
–100  
Parameter  
tPOWER  
Clock  
tCYC  
Description  
VDD (Typical) to the first Access[19]  
Min.  
Max.  
Min.  
Max.  
Unit  
1
1
ms  
Clock Cycle Time  
Clock HIGH  
7.5  
2.5  
2.5  
10  
3.0  
3.0  
ns  
ns  
ns  
tCH  
tCL  
Clock LOW  
Output Times  
tCDV  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
Clock to Low-Z[20, 21, 22]  
6.5  
8.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDOH  
2.5  
2.5  
2.5  
2.5  
0
tCLZ  
tCHZ  
Clock to High-Z[20, 21, 22]  
3.8  
3.0  
4.5  
3.8  
tOEV  
OE LOW to Output Valid  
tOELZ  
tOEHZ  
Set-up Times  
tAS  
OE LOW to Output Low-Z[20, 21, 22]  
OE HIGH to Output High-Z[20, 21, 22]  
0
0
3.0  
4.0  
Address Set-up Before CLK Rise  
ADSP, ADSC Set-up Before CLK Rise  
ADV Set-up Before CLK Rise  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADS  
tADVS  
tWES  
GW, BWE, BWX Set-up Before CLK Rise  
Data Input Set-up Before CLK Rise  
Chip Enable Set-up  
tDS  
tCES  
Hold Times  
tAH  
Address Hold After CLK Rise  
ADSP, ADSC Hold After CLK Rise  
GW, BWE, BWX Hold After CLK Rise  
ADV Hold After CLK Rise  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADH  
tWEH  
tADVH  
tDH  
Data Input Hold After CLK Rise  
Chip Enable Hold After CLK Rise  
tCEH  
Notes:  
19. This part has a voltage regulator internally; t  
is the time that the power needs to be supplied above V (minimum) initially, before a read or write operation  
DD  
POWER  
can be initiated.  
20. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
CHZ CLZ OELZ  
OEHZ  
21. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
CLZ  
OEHZ  
OELZ  
CHZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions.  
22. This parameter is sampled and not 100% tested.  
23. Timing reference level is 1.5V when V  
= 3.3V and is 1.25V when V  
= 2.5V.  
DDQ  
DDQ  
24. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
Document #: 38-05357 Rev. *F  
Page 21 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33  
CY7C1447AV33  
Timing Diagrams  
Read Cycle Timing[25]  
t
CYC  
t
CLK  
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
ADDRESS  
t
t
WES  
WEH  
GW, BWE,BW  
X
Deselect Cycle  
t
t
CES  
CEH  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
t
CDV  
OEV  
OELZ  
t
t
OEHZ  
CHZ  
t
DOH  
t
CLZ  
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A2 + 3)  
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A1)  
Data Out (Q)  
High-Z  
t
CDV  
Burst wraps around  
to its initial state  
Single READ  
BURST  
READ  
DON’T CARE  
UNDEFINED  
Note:  
25. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
Document #: 38-05357 Rev. *F  
Page 22 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33  
CY7C1447AV33  
Timing Diagrams (continued)  
Write Cycle Timing[25, 26]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Byte write signals are ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BWE,  
BW  
X
t
t
WEH  
WES  
GW  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
ADV suspends burst  
OE  
t
t
DH  
DS  
Data in (D)  
High-Z  
D(A2)  
D(A2 + 1)  
D(A2 + 1)  
D(A2 + 2)  
D(A2 + 3)  
D(A3)  
D(A3 + 1)  
D(A3 + 2)  
D(A1)  
t
OEHZ  
Data Out (Q)  
BURST READ  
BURST WRITE  
Extended BURST WRITE  
Single WRITE  
DON’T CARE  
UNDEFINED  
Note:  
26.  
Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BW LOW.  
X
Document #: 38-05357 Rev. *F  
Page 23 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33  
CY7C1447AV33  
Timing Diagrams (continued)  
Read/Write Cycle Timing[25, 27, 28]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
t
t
WEH  
WES  
BWE, BW  
X
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
DS  
t
OELZ  
t
High-Z  
D(A3)  
D(A5)  
D(A6)  
Data In (D)  
t
OEHZ  
CDV  
Data Out (Q)  
Q(A1)  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
Back-to-Back  
Back-to-Back READs  
Single WRITE  
BURST READ  
WRITEs  
DON’T CARE  
UNDEFINED  
Notes:  
27. The data bus (Q) remains in high-Z following a WRITE cycle, unless a new read access is initiated by ADSP or ADSC.  
28.  
GW is HIGH.  
Document #: 38-05357 Rev. *F  
Page 24 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33  
CY7C1447AV33  
Timing Diagrams (continued)  
ZZ Mode Timing[29, 30]  
CLK  
ZZ  
t
t
ZZ  
ZZREC  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes:  
29. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device.  
30. DQs are in high-Z when exiting ZZ sleep mode.  
Document #: 38-05357 Rev. *F  
Page 25 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33  
CY7C1447AV33  
Ordering Information  
Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or  
visit www.cypress.com for actual products offered.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Ordering Code  
Part and Package Type  
133 CY7C1441AV25-133AXC 51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
CY7C1443AV33-133AXC  
Commercial  
CY7C1441AV25-133BZC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1443AV33-133BZC  
CY7C1441AV25-133BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free  
CY7C1443AV33-133BZXC  
CY7C1447AV33-133BGC 51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
CY7C1447AV33-133BGXC  
CY7C1441AV25-133AXI  
CY7C1443AV33-133AXI  
CY7C1441AV25-133BZI  
CY7C1443AV33-133BZI  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
lndustrial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1441AV25-133BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free  
CY7C1443AV33-133BZXI  
CY7C1447AV33-133BGI  
CY7C1447AV33-133BGXI  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free  
100 CY7C1441AV25-100AXC 51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
CY7C1443AV33-100AXC  
Commercial  
CY7C1441AV25-100BZC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1443AV33-100BZC  
CY7C1441AV25-100BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free  
CY7C1443AV33-100BZXC  
CY7C1447AV33-100BGC 51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
CY7C1447AV33-100BGXC  
CY7C1441AV25-100AXI  
CY7C1443AV33-100AXI  
CY7C1441AV25-100BZI  
CY7C1443AV33-100BZI  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
lndustrial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1441AV25-100BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free  
CY7C1443AV33-100BZXI  
CY7C1447AV33-100BGI  
CY7C1447AV33-100BGXI  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free  
Document #: 38-05357 Rev. *F  
Page 26 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33  
CY7C1447AV33  
Package Diagrams  
100-pin TQFP (14 x 20 x 1.4 mm) (51-85050)  
16.00 0.20  
1.40 0.05  
14.00 0.10  
100  
81  
80  
1
0.30 0.08  
0.65  
TYP.  
12° 1°  
(8X)  
SEE DETAIL  
A
30  
51  
31  
50  
0.20 MAX.  
1.60 MAX.  
R 0.08 MIN.  
0.20 MAX.  
0° MIN.  
SEATING PLANE  
STAND-OFF  
0.05 MIN.  
0.15 MAX.  
NOTE:  
0.25  
1. JEDEC STD REF MS-026  
GAUGE PLANE  
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH  
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE  
R 0.08 MIN.  
0.20 MAX.  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH  
3. DIMENSIONS IN MILLIMETERS  
0°-7°  
0.60 0.15  
0.20 MIN.  
51-85050-*B  
1.00 REF.  
DETAIL  
A
Document #: 38-05357 Rev. *F  
Page 27 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33  
CY7C1447AV33  
Package Diagrams (continued)  
PIN 1 CORNER  
BOTTOM VIEW  
165-ball FBGA (15 x 17 x 1.4 mm) (51-85165)  
TOP VIEW  
Ø0.05 M C  
PIN 1 CORNER  
Ø0.25 M C A B  
Ø0.45 0.05(165X)  
1
2
3
4
5
6
7
8
9
10  
11  
11 10  
9
8
7
6
5
4
3
2
1
A
B
A
B
C
D
C
D
E
E
F
F
G
G
H
J
H
J
K
K
L
L
M
M
N
P
R
N
P
R
A
1.00  
5.00  
10.00  
B
15.00 0.10  
0.15(4X)  
51-85165-*A  
SEATING PLANE  
C
Document #: 38-05357 Rev. *F  
Page 28 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33  
CY7C1447AV33  
Package Diagrams (continued)  
209-ball FBGA (14 x 22 x 1.76 mm) (51-85167)  
51-85167-**  
i486 is a trademark, and Intel and Pentium are registered trademarks of Intel Corporation. PowerPC is a trademark of IBM  
Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.  
Document #: 38-05357 Rev. *F  
Page 29 of 31  
© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33  
CY7C1447AV33  
Document History Page  
Document Title: CY7C1441AV33/CY7C1443AV33/CY7C1447AV33 36-Mbit (1M x 36/2M x 18/512K x 72) Flow-Through  
SRAM  
Document Number: 38-05357  
Orig. of  
REV.  
**  
ECN NO. Issue Date Change  
Description of Change  
124459  
254910  
03/06/03  
See ECN  
CJM  
SYT  
New Data Sheet  
*A  
Part number changed from previous revision. New and old part number differ  
by the letter “A”  
Modified Functional Block diagrams  
Modified switching waveforms  
Added Footnote #13 (32-Bit Vendor I.D Code changed)  
Added Boundary scan information  
Added IDD, IX and ISB values in the DC Electrical Characteristics  
Added tPOWER specifications in Switching Characteristics table  
Removed 119 PBGA Package  
Changed 165 FBGA Package from BB165C (15 x 17 x 1.20 mm) to BB165  
(15 x 17 x 1.40 mm)  
Changed 209-Lead PBGA BG209 (14 x 22 x 2.20 mm) to BB209A  
(14 x 22 x 1.76 mm)  
*B  
*C  
300131  
320813  
See ECN  
See ECN  
SYT  
SYT  
Removed 150 and 117 MHz Speed Bins  
Changed ΘJA and ΘJC from TBD to 25.21 and 2.58 °C/W respectively for  
TQFP Package on Pg # 21  
Added lead-free information for 100-pin TQFP, 165 FBGA and 209 BGA  
Packages.  
Added comment of ‘Lead-free BG and BZ packages availability’ below the  
Ordering Information  
Changed H9 pin from VSSQ to VSS on the Pin Configuration table for 209 FBGA  
Changed the test condition from VDD = Min. to VDD = Max for VOL in the  
Electrical Characteristics table.  
Replaced the TBD’s for IDD, ISB1, ISB2, ISB3 and ISB4 to their respective values.  
Replaced TBD’s for ΘJA and ΘJC to their respective values for 165 fBGA and  
209 fBGA packages on the Thermal Resistance table.  
Changed CIN,CCLK and CI/O to 6.5, 3 and 5.5 pF from 5, 5 and 7 pF for TQFP  
Package.  
Removed “Lead-free BG and BZ packages availability” comment below the  
Ordering Information  
*D  
331551  
See ECN  
SYT  
Modified Address Expansion balls in the pinouts for 165 FBGA and 209 BGA  
Packages as per JEDEC standards and updated the Pin Definitions accord-  
ingly  
Modified VOL, VOH test conditions  
Replaced TBD to 100 mA for IDDZZ  
Changed CIN, CCLK and CI/O to 7, 7and 6 pF from 5, 5 and 7 pF for 165 FBGA  
Package.  
Added Industrial Temperature Grade  
Changed ISB2 and ISB4 from 100 and 110 mA to 120 and 135 mA respectively  
Updated the Ordering Information by shading and unshading MPNs as per  
availability  
*E  
417547  
See ECN  
RXU  
Converted from Preliminary to Final.  
Changed address of Cypress Semiconductor Corporation on Page# 1 from  
“3901 North First Street” to “198 Champion Court”.  
Changed IX current value in MODE from –5 & 30 µA to –30 & 5 µA respectively  
and also Changed IX current value in ZZ from –30 & 5 µA to –5 & 30 µA  
respectively on page# 19.  
Modified test condition in note# 8 from VIH < VDD to VIH < VDD.  
Modified “Input Load” to “Input Leakage Current except ZZ and MODE” in the  
Electrical Characteristics Table.  
Replaced Package Name column with Package Diagram in the Ordering  
Information table.  
Replaced Package Diagram of 51-85050 from *A to *B  
Updated the Ordering Information.  
Document #: 38-05357 Rev. *F  
Page 30 of 31  
[+] Feedback  
CY7C1441AV33  
CY7C1443AV33  
CY7C1447AV33  
Document Title: CY7C1441AV33/CY7C1443AV33/CY7C1447AV33 36-Mbit (1M x 36/2M x 18/512K x 72) Flow-Through  
SRAM  
Document Number: 38-05357  
Orig. of  
REV.  
ECN NO. Issue Date Change  
Description of Change  
*F  
473650  
See ECN  
VKN  
Added the Maximum Rating for Supply Voltage on VDDQ Relative to GND.  
Changed tTH, tTL from 25 ns to 20 ns and tTDOV from 5 ns to 10 ns in TAP AC  
Switching Characteristics table.  
Updated the Ordering Information table.  
Document #: 38-05357 Rev. *F  
Page 31 of 31  
[+] Feedback  

相关型号:

CY7C1443AV33-100BZXI

36-Mbit (1M x 36/2M x 18/512K x 72) Flow-Through SRAM
CYPRESS

CY7C1443AV33-133AXC

36-Mbit (1M x 36/2M x 18/512K x 72) Flow-Through SRAM
CYPRESS

CY7C1443AV33-133AXI

36-Mbit (1M x 36/2M x 18/512K x 72) Flow-Through SRAM
CYPRESS

CY7C1443AV33-133BZC

36-Mbit (1M x 36/2M x 18/512K x 72) Flow-Through SRAM
CYPRESS

CY7C1443AV33-133BZI

36-Mbit (1M x 36/2M x 18/512K x 72) Flow-Through SRAM
CYPRESS

CY7C1443AV33-133BZXC

36-Mbit (1M x 36/2M x 18/512K x 72) Flow-Through SRAM
CYPRESS

CY7C1443AV33-133BZXI

36-Mbit (1M x 36/2M x 18/512K x 72) Flow-Through SRAM
CYPRESS

CY7C1443KV33

36-Mbit (1M × 36/2M × 18) Flow-Through SRAM (With ECC)
CYPRESS

CY7C1443KV33-133AXI

36-Mbit (1M × 36/2M × 18) Flow-Through SRAM (With ECC)
CYPRESS

CY7C1443V25-117AC

Standard SRAM, 2MX18, 7.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1443V25-117BZC

Standard SRAM, 2MX18, 7.5ns, CMOS, PBGA165, 15 X 17 MM, FBGA-165
CYPRESS

CY7C1443V25-133AC

Standard SRAM, 2MX18, 6.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS