CY7C1443KV33 [CYPRESS]

36-Mbit (1M × 36/2M × 18) Flow-Through SRAM (With ECC);
CY7C1443KV33
型号: CY7C1443KV33
厂家: CYPRESS    CYPRESS
描述:

36-Mbit (1M × 36/2M × 18) Flow-Through SRAM (With ECC)

静态存储器
文件: 总32页 (文件大小:1026K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1441KV33  
CY7C1443KV33  
CY7C1441KVE33  
36-Mbit (1M × 36/2M × 18)  
Flow-Through SRAM (With ECC)  
36-Mbit (1M  
× 36/2M × 18) Flow-Through SRAM (With ECC)  
Features  
Functional Description  
Supports 133-MHz bus operations  
1M × 36/2M × 18 common I/O  
3.3 V core power supply  
The CY7C1441KV33/CY7C1443KV33/CY7C1441KVE33 are  
3.3 V, 1M × 36/2M × 18/1M × 36 synchronous flow-through  
SRAMs, respectively designed to interface with high-speed  
microprocessors with minimum glue logic. Maximum access  
delay from clock rise is 6.5 ns (133 MHz version). A 2-bit on-chip  
counter captures the first address in a burst and increments the  
address automatically for the rest of the burst access. All  
synchronous inputs are gated by registers controlled by a  
positive-edge-triggered Clock (CLK) input. The synchronous  
inputs include all addresses, all data inputs, address-pipelining  
Chip Enable (CE1), depth-expansion Chip Enables (CE2 and  
CE3), Burst Control inputs (ADSC, ADSP, and ADV), Write  
Enables (BWx, and BWE), and Global Write (GW).  
Asynchronous inputs include the Output Enable (OE) and the ZZ  
pin.  
2.5 V or 3.3 V I/O power supply  
Fast clock-to-output times  
6.5 ns (133 MHz version)  
Provide high-performance 2-1-1-1 access rate  
User-selectable burst counter supporting IntelPentium  
interleaved or linear burst sequences  
Separate processor and controller address strobes  
Synchronous self-timed write  
Asynchronous output enable  
CY7C1441KVE33  
The CY7C1441KV33/CY7C1443KV33/  
allow  
either interleaved or linear burst sequences, selected by the  
MODE input pin. A HIGH selects an interleaved burst sequence,  
while a LOW selects a linear burst sequence. Burst accesses  
can be initiated with the Processor Address Strobe (ADSP) or the  
cache Controller Address Strobe (ADSC) inputs. Address  
advancement is controlled by the Address Advancement (ADV)  
input.  
CY7C1441KV33, CY7C1443KV33, and CY7C1441KVE33 are  
available in JEDEC-standard 100-pin TQFP and 165-ball  
FBGA Pb-free packages.  
IEEE 1149.1 JTAG-Compatible Boundary Scan  
“ZZ” Sleep Mode option  
On-chip error correction code (ECC) to reduce soft error rate  
(SER)  
Addresses and chip enables are registered at rising edge of  
clock when either Address Strobe Processor (ADSP) or Address  
Strobe Controller (ADSC) are active. Subsequent burst  
addresses can be internally generated as controlled by the  
Advance pin (ADV).  
The  
CY7C1441KV33/CY7C1443KV33/CY7C1441KVE33  
operate from a +3.3 V core power supply while all outputs may  
operate with either a +2.5 V or +3.3 V supply. All inputs and  
outputs are JEDEC-standard JESD8-5-compatible.  
Selection Guide  
Description  
Maximum access time  
133 MHz  
6.5  
Unit  
ns  
Maximum operating current  
× 18  
× 36  
150  
mA  
170  
Cypress Semiconductor Corporation  
Document Number: 001-66677 Rev. *I  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised February 15, 2018  
CY7C1441KV33  
CY7C1443KV33  
CY7C1441KVE33  
Logic Block Diagram – CY7C1441KV33  
ADDRESS  
REGISTER  
A0, A1,  
A
A
[1:0]  
MODE  
ADV  
CLK  
Q1  
Q0  
BURST  
COUNTER  
AND LOGIC  
CLR  
ADSC  
ADSP  
DQ  
BYTE  
WRITE REGISTER  
D, DQP D  
DQ  
BYTE  
WRITE REGISTER  
D, DQP D  
BW  
D
DQ  
BYTE  
WRITE REGISTER  
C, DQP C  
DQ  
BYTE  
WRITE REGISTER  
C, DQP C  
BW  
C
OUTPUT  
BUFFERS  
DQ s  
MEMORY  
ARRAY  
SENSE  
AMPS  
DQP  
DQP  
DQP  
DQP  
A
DQ  
BYTE  
WRITE REGISTER  
B, DQP B  
B
C
D
DQ  
BYTE  
WRITE REGISTER  
B, DQP B  
BW  
B
DQ  
BYTE  
WRITE REGISTER  
A, DQP A  
DQ  
A, DQPA  
BW  
A
BYTE  
BWE  
WRITE REGISTER  
INPUT  
GW  
REGISTERS  
ENABLE  
REGISTER  
CE1  
CE2  
CE3  
OE  
SLEEP  
CONTROL  
ZZ  
Logic Block Diagram – CY7C1443KV33  
ADDRESS  
REGISTER  
A0,A1,A  
A[1:0]  
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER AND  
LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQ  
B,DQP B  
DQ  
B,DQP B  
WRITE DRIVER  
WRITE REGISTER  
BW  
B
MEMORY  
ARRAY  
OUTPUT  
BUFFERS  
DQs  
DQP  
DQP  
SENSE  
AMPS  
A
B
DQ  
A,DQP A  
DQ A,DQP A  
WRITE REGISTER  
WRITE DRIVER  
BW  
A
BWE  
GW  
INPUT  
REGISTERS  
ENABLE  
REGISTER  
CE  
CE  
1
2
3
CE  
OE  
SLEEP  
CONTROL  
ZZ  
Document Number: 001-66677 Rev. *I  
Page 2 of 32  
CY7C1441KV33  
CY7C1443KV33  
CY7C1441KVE33  
Logic Block Diagram – CY7C1441KVE33  
ADDRESS  
REGISTER  
A0, A1, A  
A[1:0]  
MODE  
ADV  
CLK  
Q1  
Q0  
BURST  
COUNTER  
AND LOGIC  
CLR  
ADSC  
ADSP  
DQ  
BYTE  
WRITE REGISTER  
D, DQPD  
DQ  
BYTE  
WRITE REGISTER  
D, DQPD  
BWD  
DQ  
BYTE  
WRITE REGISTER  
C, DQPC  
DQ  
BYTE  
WRITE REGISTER  
C, DQPC  
BW  
C
ECC  
DECODER  
OUTPUT  
BUFFERS  
DQs  
MEMORY  
ARRAY  
SENSE  
AMPS  
DQP  
DQP  
DQP  
A
DQ  
BYTE  
WRITE REGISTER  
B, DQPB  
B
C
DQ  
BYTE  
WRITE REGISTER  
B, DQPB  
BW  
B
DQP  
D
DQ  
BYTE  
WRITE REGISTER  
A, DQPA  
DQ  
BYTE  
WRITE REGISTER  
A, DQPA  
BW  
A
BWE  
ECC  
ENCODER  
INPUT  
REGISTERS  
GW  
ENABLE  
REGISTER  
CE1  
CE2  
CE3  
OE  
SLEEP  
CONTROL  
ZZ  
Document Number: 001-66677 Rev. *I  
Page 3 of 32  
CY7C1441KV33  
CY7C1443KV33  
CY7C1441KVE33  
Contents  
Pin Configurations ...........................................................5  
Pin Definitions ..................................................................7  
Functional Overview ........................................................8  
Single Read Accesses ................................................8  
Single Write Accesses Initiated by ADSP ...................8  
Single Write Accesses Initiated by ADSC ...................9  
Burst Sequences .........................................................9  
Sleep Mode .................................................................9  
On-Chip ECC ..............................................................9  
Interleaved Burst Address Table .................................9  
Linear Burst Address Table .........................................9  
ZZ Mode Electrical Characteristics ..............................9  
Truth Table ......................................................................10  
Partial Truth Table for Read/Write ................................11  
Partial Truth Table for Read/Write ................................11  
IEEE 1149.1 Serial Boundary Scan (JTAG) ..................12  
Disabling the JTAG Feature ......................................12  
Test Access Port (TAP) .............................................12  
PERFORMING A TAP RESET ..................................12  
TAP REGISTERS ......................................................12  
TAP Instruction Set ...................................................13  
TAP Controller State Diagram .......................................14  
TAP Controller Block Diagram ......................................14  
TAP Timing ......................................................................14  
TAP AC Switching Characteristics ...............................15  
3.3 V TAP AC Test Conditions .......................................15  
3.3 V TAP AC Output Load Equivalent .........................15  
2.5 V TAP AC Test Conditions .......................................15  
2.5 V TAP AC Output Load Equivalent .........................15  
TAP DC Electrical Characteristics  
and Operating Conditions .............................................16  
Identification Register Definitions ................................17  
Scan Register Sizes .......................................................17  
Identification Codes .......................................................17  
Boundary Scan Order ....................................................18  
Maximum Ratings ...........................................................19  
Operating Range .............................................................19  
Neutron Soft Error Immunity .........................................19  
Electrical Characteristics ...............................................19  
DC Characteristics ....................................................19  
Capacitance ....................................................................21  
Thermal Resistance ........................................................21  
AC Test Loads and Waveforms .....................................21  
Switching Characteristics ..............................................22  
Timing Diagrams ............................................................23  
Ordering Information ......................................................27  
Ordering Code Definitions .........................................27  
Package Diagrams ..........................................................28  
Acronyms ........................................................................30  
Document Conventions .................................................30  
Units of Measure .......................................................30  
Document History Page .................................................31  
Sales, Solutions, and Legal Information ......................32  
Worldwide Sales and Design Support .......................32  
Products ....................................................................32  
PSoC® Solutions ......................................................32  
Cypress Developer Community .................................32  
Technical Support .....................................................32  
Document Number: 001-66677 Rev. *I  
Page 4 of 32  
CY7C1441KV33  
CY7C1443KV33  
CY7C1441KVE33  
Pin Configurations  
Figure 1. 100-pin TQFP Pinout  
DQPC  
1
DQPB  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
NC  
VDDQ  
VSSQ  
NC  
A
NC  
NC  
VDDQ  
VSSQ  
NC  
DQPA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
VSS  
NC  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQC  
2
DQC  
VDDQ  
VSSQ  
DQC  
3
4
5
6
DQC  
7
NC  
DQC  
8
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
NC  
VDD  
NC  
VSS  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQPB  
NC  
DQC  
9
10  
11  
9
VSSQ  
VDDQ  
DQC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
12  
DQC  
13  
NC  
14  
VDD  
NC  
VSS  
NC  
VDD  
ZZ  
15  
CY7C1443KV33  
(2M × 18)  
CY7C1441KV33/CY7C1441KVE33  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDD  
ZZ  
(1M × 36)  
DQD  
DQD  
VDDQ  
VSSQ  
DQD  
DQD  
DQD  
DQD  
VSSQ  
VDDQ  
DQD  
DQD  
DQPD  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
DQPA  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
NC  
NC  
VSSQ  
VDDQ  
NC  
NC  
NC  
VSSQ  
VDDQ  
NC  
NC  
NC  
Document Number: 001-66677 Rev. *I  
Page 5 of 32  
CY7C1441KV33  
CY7C1443KV33  
CY7C1441KVE33  
Pin Configurations (continued)  
Figure 2. 165-ball FBGA Pinout  
CY7C1441KV33 (1M × 36)  
1
2
A
3
CE1  
4
BWC  
5
BWB  
6
CE3  
7
8
9
ADV  
10  
A
11  
NC  
NC/288M  
NC/144M  
DQPC  
BWE  
GW  
VSS  
VSS  
ADSC  
A
B
C
D
A
CE2  
VDDQ  
VDDQ  
BWD  
VSS  
BWA  
VSS  
VSS  
CLK  
VSS  
VSS  
OE  
VSS  
VDD  
ADSP  
VDDQ  
VDDQ  
A
NC/576M  
DQPB  
DQB  
NC  
DQC  
NC/1G  
DQB  
DQC  
VDD  
DQC  
DQC  
DQC  
NC  
DQC  
DQC  
DQC  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
DQB  
DQB  
DQB  
NC  
DQB  
DQB  
DQB  
ZZ  
E
F
G
H
J
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
K
L
DQD  
DQPD  
NC  
DQD  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
A
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
DQA  
DQPA  
A
M
N
P
NC/72M  
TDI  
A1  
TDO  
A0  
MODE  
A
A
A
TMS  
TCK  
A
A
A
A
R
Document Number: 001-66677 Rev. *I  
Page 6 of 32  
CY7C1441KV33  
CY7C1443KV33  
CY7C1441KVE33  
Pin Definitions  
Name  
I/O  
Description  
A0, A1, A  
Input-Synchronous Address Inputs Used to Select One of the Address Locations. Sampled at the  
rising edge of the CLK if ADSP or ADSC is active LOW, and CE1, CE2, and CE3 are  
sampled active. A[1:0] feed the 2-bit counter.  
BWA, BWB, BWC, BWD Input-Synchronous Byte Write Select Inputs, Active LOW. Qualified with BWE to conduct byte writes to  
the SRAM. Sampled on the rising edge of CLK.  
GW  
Input-Synchronous Global Write Enable Input, Active LOW. When asserted LOW on the rising edge of  
CLK, a global write is conducted (ALL bytes are written, regardless of the values on  
BWX and BWE).  
CLK  
CE1  
Input-Clock  
Clock Input. Used to capture all synchronous inputs to the device. Also used to  
increment the burst counter when ADV is asserted LOW, during a burst operation.  
Input-Synchronous Chip Enable 1 Input, Active LOW. Sampled on the rising edge of CLK. Used in  
conjunction with CE2 and CE3 to select/deselect the device. ADSP is ignored if CE1  
is HIGH. CE1 is sampled only when a new external address is loaded.  
CE2  
CE3  
Input-Synchronous Chip Enable 2 Input, Active HIGH. Sampled on the rising edge of CLK. Used in  
conjunction with CE1 and CE3 to select/deselect the device. CE2 is sampled only when  
a new external address is loaded.  
Input-Synchronous Chip Enable 3 Input, Active LOW. Sampled on the rising edge of CLK. Used in  
conjunction with CE1 and CE2 to select/deselect the device. CE3 is assumed active  
throughout this document for BGA. CE3 is sampled only when a new external address  
is loaded.  
OE  
Input-Asynchronous Output Enable, Asynchronous Input, Active LOW. Controls the direction of the I/O  
pins. When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins  
are tristated, and act as input data pins. OE is masked during the first clock of a read  
cycle when emerging from a deselected state.  
ADV  
Input-Synchronous Advance Input Signal, Sampled on the Rising Edge of CLK. When asserted, it  
automatically increments the address in a burst cycle.  
ADSP  
Input-Synchronous Address Strobe from Processor, Sampled on the Rising Edge of CLK, Active  
LOW. When asserted LOW, addresses presented to the device are captured in the  
address registers. A[1:0] are also loaded into the burst counter. When ADSP and ADSC  
are both asserted, only ADSP is recognized. ASDP is ignored when  
CE1 is deasserted  
HIGH.  
ADSC  
Input-Synchronous Address Strobe from Controller, Sampled on the Rising Edge of CLK, Active  
LOW. When asserted LOW, addresses presented to the device are captured in the  
address registers. A[1:0] are also loaded into the burst counter. When ADSP and ADSC  
are both asserted, only ADSP is recognized.  
BWE  
ZZ  
Input-Synchronous Byte Write Enable Input, ActiveLOW. Sampled on the rising edge of CLK. This signal  
must be asserted LOW to conduct a byte write.  
Input-Asynchronous ZZ “sleep” Input, Active HIGH. When asserted HIGH places the device in a  
non-time-critical “sleep” condition with data integrity preserved. For normal operation,  
this pin must be LOW or left floating. ZZ pin has an internal pull down.  
I/O-Synchronous Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is  
triggered by the rising edge of CLK. As outputs, they deliver the data contained in the  
memory location specified by the addresses presented during the read cycle. The  
direction of the pins is controlled by OE. When OE is asserted LOW, the pins behave  
as outputs. When HIGH, DQs and DQPX are placed in a tristate condition.The outputs  
are automatically tristated during the data portion of a write sequence, during the first  
clock when emerging from a deselected state, and when the device is deselected,  
regardless of the state of OE.  
DQs  
Document Number: 001-66677 Rev. *I  
Page 7 of 32  
CY7C1441KV33  
CY7C1443KV33  
CY7C1441KVE33  
Pin Definitions (continued)  
Name  
I/O  
Description  
I/O-Synchronous Bidirectional Data Parity I/O Lines. Functionally, these signals are identical to DQs.  
DQPX  
During write sequences, DQPx is controlled by BW[A:H] correspondingly.  
MODE  
Input-Static  
Selects Burst Order. When tied to GND selects linear burst sequence. When tied to  
VDD or left floating selects interleaved burst sequence. This is a strap pin and should  
remain static during device operation. Mode Pin has an internal pull up.  
VDD  
Power Supply  
Power Supply Inputs to the Core of the Device.  
VDDQ  
VSS  
I/O Power Supply Power Supply for the I/O Circuitry.  
Ground  
Ground for the Core of the Device.  
Ground for the I/O Circuitry.  
VSSQ  
TDO  
I/O Ground  
JTAG serial output Serial Data-Out to the JTAG Circuit. Delivers data on the negative edge of TCK. If  
Synchronous  
the JTAG feature is not being utilized, this pin should be left unconnected. This pin is  
not available on TQFP packages.  
TDI  
JTAG serial input Serial Data-In to the JTAG Circuit. Sampled on the rising edge of TCK. If the JTAG  
Synchronous  
feature is not being utilized, this pin can be left floating or connected to VDD through a  
pull up resistor. This pin is not available on TQFP packages.  
TMS  
JTAG serial input Serial Data-In to the JTAG Circuit. Sampled on the rising edge of TCK. If the JTAG  
Synchronous  
feature is not being utilized, this pin can be disconnected or connected to VDD. This  
pin is not available on TQFP packages.  
TCK  
NC  
JTAG-Clock  
Clock Input to the JTAG Circuitry. If the JTAG feature is not being utilized, this pin  
must be connected to VSS. This pin is not available on TQFP packages.  
No Connects. Not internally connected to the die. 72M, 144M and 288M are address  
expansion pins are not internally connected to the die.  
NC/72M, NC/144M,  
NC/288M, NC/576M,  
NC/1G  
No Connects. Not internally connected to the die. NC/72M, NC/144M, NC/288M,  
NC/576M and NC/1G are address expansion pins are not internally connected to the  
die.  
Single Read Accesses  
Functional Overview  
A single read access is initiated when the following conditions  
All synchronous inputs pass through input registers controlled by  
the rising edge of the clock. Maximum access delay from the  
clock rise (tCDV) is 6.5 ns (133-MHz device).  
are satisfied at clock rise: (1) CE1, CE2, and CE3 are all asserted  
active, and (2) ADSP or ADSC is asserted LOW (if the access is  
initiated by ADSC, the write inputs must be deasserted during  
this first cycle). The address presented to the address inputs is  
latched into the address register and the burst counter/control  
logic and presented to the memory core. If the OE input is  
asserted LOW, the requested data is available at the data  
outputs a maximum to tCDV after clock rise. ADSP is ignored if  
CE1 is HIGH.  
The  
CY7C1441KV33/CY7C1443KV33/CY7C1441KVE33  
support secondary cache in systems utilizing either a linear or  
interleaved burst sequence. The interleaved burst order  
supports Pentium processors. The burst order is  
user-selectable, and is determined by sampling the MODE input.  
Accesses can be initiated with either the Processor Address  
Strobe (ADSP) or the Controller Address Strobe (ADSC).  
Address advancement through the burst sequence is controlled  
by the ADV input. A two-bit on-chip wraparound burst counter  
captures the first address in a burst sequence and automatically  
increments the address for the rest of the burst access.  
Single Write Accesses Initiated by ADSP  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) CE1, CE2, CE3 are all asserted active,  
and (2) ADSP is asserted LOW. The addresses presented are  
loaded into the address register and the burst inputs (GW, BWE,  
and BWX)are ignored during this first clock cycle. If the write  
inputs are asserted active (see Write Cycle Descriptions table for  
appropriate states that indicate a write) on the next clock rise, the  
appropriate data is latched and written into the device. Byte  
writes are allowed. All I/Os are tristated during a byte write.Since  
this is a common I/O device, the asynchronous OE input signal  
must be deasserted and the I/Os must be tristated prior to the  
presentation of data to DQs. As a safety precaution, the data  
Byte write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BWx) inputs. A Global Write  
Enable (GW) overrides all byte write inputs and writes data to all  
four bytes. All writes are simplified with on-chip synchronous  
self-timed write circuitry.  
Three synchronous Chip Selects (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output tristate control. ADSP is ignored if CE1 is  
HIGH.  
Document Number: 001-66677 Rev. *I  
Page 8 of 32  
CY7C1441KV33  
CY7C1443KV33  
CY7C1441KVE33  
lines are tristated once a write cycle is detected, regardless of  
the state of OE.  
On-Chip ECC  
CY7C1441KVE33 SRAMs include an on-chip ECC algorithm  
that detects and corrects all single-bit memory errors, including  
Soft Error Upset (SEU) events induced by cosmic rays, alpha  
particles etc. The resulting Soft Error Rate (SER) of these  
Single Write Accesses Initiated by ADSC  
This write access is initiated when the following conditions are  
satisfied at clock rise: (1) CE1, CE2, and CE3 are all asserted  
active, (2) ADSC is asserted LOW, (3) ADSP is deasserted  
HIGH, and (4) the write input signals (GW, BWE, and BWX)  
indicate a write access. ADSC is ignored if ADSP is active LOW.  
devices is anticipated to be  
<0.01  
FITs/Mb  
a
4-order-of-magnitude improvement over comparable SRAMs  
with no On-Chip ECC, which typically have an SER of 200  
FITs/Mb or more. To protect the internal data, ECC parity bits  
(invisible to the user) are used.  
The addresses presented are loaded into the address register  
and the burst counter/control logic and delivered to the memory  
core. The information presented to DQS is written into the  
specified address location. Byte writes are allowed. All I/Os are  
tristated when a write is detected, even a byte write. Since this  
is a common I/O device, the asynchronous OE input signal must  
be deasserted and the I/Os must be tristated prior to the  
presentation of data to DQs. As a safety precaution, the data  
lines are tristated once a write cycle is detected, regardless of  
the state of OE.  
The ECC algorithm does not correct multi-bit errors. However,  
Cypress SRAMs are designed in such a way that a single SER  
event has a very low probability of causing a multi-bit error  
across any data word. The extreme rarity of multi-bit errors  
results in a SER of <0.01 FITs/Mb.  
Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
First  
Address  
A1: A0  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Burst Sequences  
The  
CY7C1441KV33/CY7C1443KV33/CY7C1441KVE33  
provide an on-chip two-bit wraparound burst counter inside the  
SRAM. The burst counter is fed by A[1:0], and can follow either a  
linear or interleaved burst order. The burst order is determined  
by the state of the MODE input. A LOW on MODE selects a linear  
burst sequence. A HIGH on MODE selects an interleaved burst  
order. Leaving MODE unconnected causes the device to default  
to a interleaved burst sequence.  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Sleep Mode  
Linear Burst Address Table  
The ZZ input pin is an asynchronous input. Asserting ZZ places  
the SRAM in a power conservation “sleep” mode. Two clock  
cycles are required to enter into or exit from this “sleep” mode.  
While in this mode, data integrity is guaranteed. Accesses  
pending when entering the “sleep” mode are not considered valid  
nor is the completion of the operation guaranteed. The device  
must be deselected prior to entering the “sleep” mode. CE1,  
CE2,CE3, ADSP, and ADSC must remain inactive for the  
duration of tZZREC after the ZZ input returns LOW.  
(MODE = GND)  
First  
Address  
A1: A0  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
ZZ recovery time  
Test Conditions  
Min  
Max  
Unit  
mA  
ns  
ZZ > VDD– 0.2 V  
75  
2tCYC  
tZZS  
ZZ > VDD – 0.2 V  
ZZ < 0.2 V  
2tCYC  
tZZREC  
tZZI  
ns  
2tCYC  
ZZ active to sleep current  
This parameter is sampled  
ns  
tRZZI  
ZZ Inactive to exit sleep current This parameter is sampled  
0
ns  
Document Number: 001-66677 Rev. *I  
Page 9 of 32  
CY7C1441KV33  
CY7C1443KV33  
CY7C1441KVE33  
Truth Table  
The truth table for CY7C1441KV33/CY7C1443KV33/CY7C1441KVE33 is as follows. [1, 2, 3, 4, 5]  
Cycle Description  
Address Used CE1 CE2 CE3 ZZ ADSP ADSC ADV WRITE OE CLK  
DQ  
Deselected Cycle, Power down  
Deselected Cycle, Power down  
Deselected Cycle, Power down  
Deselected Cycle, Power down  
Deselected Cycle, Power down  
Sleep Mode, Power down  
Read Cycle, Begin Burst  
None  
None  
H
L
X
L
X
X
H
X
H
X
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
L
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
L
L–H Tristate  
L–H Tristate  
L–H Tristate  
L–H Tristate  
L–H Tristate  
None  
L
X
L
L
None  
L
H
H
X
L
None  
X
X
L
X
X
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
L
None  
X
X
X
L
X
Tristate  
Q
External  
External  
External  
External  
External  
Next  
L–H  
L–H  
L–H  
L–H  
L–H  
L–H  
L–H  
L–H  
Tristate  
Read Cycle, Begin Burst  
L
L
L
H
X
L
Write Cycle, Begin Burst  
L
L
H
H
H
H
H
X
X
H
X
H
H
X
X
H
X
D
Q
Read Cycle, Begin Burst  
L
L
L
H
H
H
H
H
H
L
Tristate  
Read Cycle, Begin Burst  
L
L
L
H
L
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Read Cycle, Continue Burst  
Write Cycle, Continue Burst  
Write Cycle, Continue Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Read Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
Write Cycle, Suspend Burst  
X
X
H
H
X
H
X
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
Q
Tristate  
Next  
L
H
L
Next  
L
Q
Next  
L
H
X
X
L
L–H Tristate  
Next  
L
L–H  
L–H  
L–H  
D
D
Q
Next  
L
L
Current  
Current  
Current  
Current  
Current  
Current  
H
H
H
H
H
H
H
H
H
H
L
H
L
L–H Tristate  
L–H  
L–H Tristate  
Q
H
X
X
L–H  
L–H  
D
D
L
Notes  
1. X = “Don't Care.” H = Logic HIGH, L = Logic LOW.  
2. WRITE = L when any one or more Byte Write enable signals and BWE = L or GW = L. WRITE = H when all Byte write enable signals, BWE, GW = H.  
3. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.  
4. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks after  
X
the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the write cycle to allow the outputs to tristate. OE is a don't care  
for the remainder of the write cycle.  
5. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are tristate when OE is inactive  
or when the device is deselected, and all data bits behave as output when OE is active (LOW).  
Document Number: 001-66677 Rev. *I  
Page 10 of 32  
CY7C1441KV33  
CY7C1443KV33  
CY7C1441KVE33  
Partial Truth Table for Read/Write  
The partial truth table for read/write for CY7C1441KV33/CY7C1441KVE33 is as follows. [6, 7, 8]  
Function (CY7C1441KV33/CY7C1441KVE33)  
Read  
GW  
H
BWE  
BWD  
X
BWC  
X
BWB  
X
BWA  
X
H
L
L
L
L
L
L
L
L
Read  
H
H
H
H
H
Write Byte A (DQA, DQPA)  
H
H
H
H
L
Write Byte B (DQB, DQPB)  
H
H
H
L
H
Write Bytes A, B (DQA, DQB, DQPA, DQPB)  
Write Byte C (DQC, DQPC)  
H
H
H
L
L
H
H
L
H
H
Write Bytes C, A (DQC, DQA, DQPC, DQPA)  
Write Bytes C, B (DQC, DQB, DQPC, DQPB)  
H
H
L
H
L
H
H
L
L
H
Write Bytes C, B, A (DQC, DQB, DQA, DQPC, DQPB,  
DQPA)  
H
H
L
L
L
Write Byte D (DQD, DQPD)  
H
H
H
H
L
L
L
L
L
L
L
L
H
H
H
H
H
H
L
H
L
Write Bytes D, A (DQD, DQA, DQPD, DQPA)  
Write Bytes D, B (DQD, DQA, DQPD, DQPA)  
H
L
Write Bytes D, B, A (DQD, DQB, DQA, DQPD, DQPB,  
DQPA)  
L
Write Bytes D, B (DQD, DQB, DQPD, DQPB)  
H
H
L
L
L
L
L
L
H
H
H
L
Write Bytes D, B, A (DQD, DQC, DQA, DQPD, DQPC,  
DQPA)  
Write Bytes D, C, A (DQD, DQB, DQA, DQPD, DQPB,  
DQPA)  
H
L
L
L
L
H
Write All Bytes  
Write All Bytes  
H
L
L
L
L
L
L
X
X
X
X
X
Partial Truth Table for Read/Write  
The partial truth table for read/write for CY7C1443KV33 is as follows. [6, 7, 8]  
Function (CY7C1443KV33)  
GW  
H
BWE  
BWB  
X
BWA  
X
Read  
Read  
H
L
L
L
L
X
H
H
H
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write All Bytes  
H
H
L
H
L
H
H
L
L
Write All Bytes  
L
X
X
Notes  
6. X = “Don't Care.” H = Logic HIGH, L = Logic LOW.  
7. Table only lists a partial listing of the byte write combinations. Any Combination of BW is valid Appropriate write is done based on which byte write is active.  
X
8. BWx represents any byte write signal BW  
.To enable any byte write BW a Logic LOW signal should be applied at clock rise.Any number of bye writes can be  
[A..H]  
x,  
enabled at the same time for any given write.  
Document Number: 001-66677 Rev. *I  
Page 11 of 32  
CY7C1441KV33  
CY7C1443KV33  
CY7C1441KVE33  
TAP Registers  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
Registers are connected between the TDI and TDO balls and  
scan data into and out of the SRAM test circuitry. Only one  
register can be selected at a time through the instruction register.  
Data is serially loaded into the TDI ball on the rising edge of TCK.  
Data is output on the TDO ball on the falling edge of TCK.  
The CY7C1441KV33 incorporates a serial boundary scan test  
access port (TAP). This part is fully compliant with 1149.1. The  
TAP operates using JEDEC-standard 3.3 V or 2.5 V I/O logic  
levels.  
The CY7C1441KV33 contains a TAP controller, instruction  
register, boundary scan register, bypass register, and ID register.  
Instruction Register  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the TDI  
and TDO balls as shown in the TAP Controller Block Diagram on  
page 14. Upon power up, the instruction register is loaded with  
the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as described  
in the previous section.  
Disabling the JTAG Feature  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are  
internally pulled up and may be unconnected. They may  
alternately be connected to VDD through a pull up resistor. TDO  
should be left unconnected. Upon power up, the device comes  
up in a reset state which does not interfere with the operation of  
the device.  
When the TAP controller is in the Capture-IR state, the two least  
significant bits are loaded with a binary “01” pattern to allow for  
fault isolation of the board-level serial test data path.  
Test Access Port (TAP)  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This shifts data through the SRAM with  
minimal delay. The bypass register is set LOW (VSS) when the  
BYPASS instruction is executed.  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs are  
captured on the rising edge of TCK. All outputs are driven from  
the falling edge of TCK.  
Test MODE SELECT (TMS)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to leave  
this ball unconnected if the TAP is not used. The ball is pulled up  
internally, resulting in a logic HIGH level.  
Boundary Scan Register  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR state  
and is then placed between the TDI and TDO balls when the  
controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used to  
capture the contents of the I/O ring.  
Test Data-In (TDI)  
The TDI ball is used to serially input information into the registers  
and can be connected to the input of any of the registers. The  
register between TDI and TDO is chosen by the instruction that  
is loaded into the TAP instruction register. TDI is internally pulled  
up and can be unconnected if the TAP is unused in an  
application. TDI is connected to the most significant bit (MSB) of  
any register (see TAP Controller Block Diagram on page 14).  
The Boundary Scan Order on page 18 show the order in which  
the bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected to  
TDI, and the LSB is connected to TDO.  
Test Data-Out (TDO)  
Identification (ID) Register  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current state  
of the TAP state machine. The output changes on the falling edge  
of TCK. TDO is connected to the least significant bit (LSB) of any  
register (see TAP Controller State Diagram on page 14).  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired into  
the SRAM and can be shifted out when the TAP controller is in  
the Shift-DR state. The ID register has a vendor code and other  
information described in the Identification Register Definitions on  
page 17.  
Performing a TAP Reset  
A RESET is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This RESET does not affect the operation of the  
SRAM and may be performed while the SRAM is operating.  
At power up, the TAP is reset internally to ensure that TDO  
comes up in a High Z state.  
Document Number: 001-66677 Rev. *I  
Page 12 of 32  
CY7C1441KV33  
CY7C1443KV33  
CY7C1441KVE33  
during a SAMPLE/PRELOAD instruction. If this is an issue, it is  
still possible to capture all other signals and simply ignore the  
value of the clock captured in the boundary scan register.  
TAP Instruction Set  
Overview  
Eight different instructions are possible with the three bit  
instruction register. All combinations are listed in the Instruction  
Codes table. Three of these instructions are listed as  
RESERVED and should not be used. The other five instructions  
are described in this section in detail.  
After the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the boundary  
scan register between the TDI and TDO pins.  
PRELOAD places an initial data pattern at the latched parallel  
outputs of the boundary scan register cells prior to the selection  
of another boundary scan test operation.  
Instructions are loaded into the TAP controller during the Shift-IR  
state when the instruction register is placed between TDI and  
TDO. During this state, instructions are shifted through the  
instruction register through the TDI and TDO balls. To execute  
the instruction once it is shifted in, the TAP controller must be  
moved into the Update-IR state.  
The shifting of data for the SAMPLE and PRELOAD phases can  
occur concurrently when required – that is, while data captured  
is shifted out, the preloaded data can be shifted in.  
BYPASS  
When the BYPASS instruction is loaded in the instruction register  
and the TAP is placed in a Shift-DR state, the bypass register is  
placed between the TDI and TDO pins. The advantage of the  
BYPASS instruction is that it shortens the boundary scan path  
when multiple devices are connected together on a board.  
IDCODE  
The IDCODE instruction loads a vendor-specific, 32-bit code into  
the instruction register. It also places the instruction register  
between the TDI and TDO balls and shifts the IDCODE out of the  
device when the TAP controller enters the Shift-DR state.  
EXTEST  
The IDCODE instruction is loaded into the instruction register  
upon power up or whenever the TAP controller is given a test  
logic reset state.  
The EXTEST instruction drives the preloaded data out through  
the system output pins. This instruction also connects the  
boundary scan register for serial access between the TDI and  
TDO in the shift-DR controller state.  
SAMPLE Z  
The SAMPLE Z instruction connects the boundary scan register  
between the TDI and TDO pins when the TAP controller is in a  
Shift-DR state. The SAMPLE Z command puts the output bus  
into a High Z state until the next command is given during the  
“Update IR” state.  
EXTEST OUTPUT BUS TRISTATE  
IEEE Standard 1149.1 mandates that the TAP controller be able  
to put the output bus into a tristate mode.  
The boundary scan register has a special bit located at bit #89  
(for 165-FBGA package). When this scan cell, called the “extest  
output bus tristate”, is latched into the preload register during the  
“Update-DR” state in the TAP controller, it directly controls the  
state of the output (Q-bus) pins, when the EXTEST is entered as  
the current instruction. When HIGH, it enables the output buffers  
to drive the output bus. When LOW, this bit places the output bus  
into a High-Z condition.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When  
the SAMPLE/PRELOAD instructions are loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and output pins is  
captured in the boundary scan register.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because there  
is a large difference in the clock frequencies, it is possible that  
during the Capture-DR state, an input or output undergoes a  
transition. The TAP may then try to capture a signal while in  
transition (metastable state). This does not harm the device, but  
there is no guarantee as to the value that is captured.  
Repeatable results may not be possible.  
This bit can be set by entering the SAMPLE/PRELOAD or  
EXTEST command, and then shifting the desired bit into that cell,  
during the “Shift-DR” state. During “Update-DR”, the value  
loaded into that shift-register cell latches into the preload  
register. When the EXTEST instruction is entered, this bit directly  
controls the output Q-bus pins. Note that this bit is pre-set HIGH  
to enable the output when the device is powered-up, and also  
when the TAP controller is in the “Test-Logic-Reset” state.  
Reserved  
To guarantee that the boundary scan register captures the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller's capture setup plus hold  
times (tCS and tCH). The SRAM clock input might not be captured  
correctly if there is no way in a design to stop (or slow) the clock  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
Document Number: 001-66677 Rev. *I  
Page 13 of 32  
CY7C1441KV33  
CY7C1443KV33  
CY7C1441KVE33  
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
TAP Controller State Diagram  
TAP Controller Block Diagram  
TEST-LOGIC  
1
RESET  
0
0
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
Bypass Register  
0
0
2
1
0
0
0
1
1
Selection  
Circuitry  
CAPTURE-DR  
CAPTURE-IR  
Instruction Register  
31 30 29  
Identification Register  
Selection  
TDI  
TDO  
Circuitr  
y
0
0
.
.
. 2 1  
SHIFT-DR  
0
SHIFT-IR  
0
x
.
.
.
.
. 2 1  
1
1
Boundary Scan Register  
1
1
EXIT1-DR  
EXIT1-IR  
0
0
TCK  
TMS  
PAUSE-DR  
1
0
PAUSE-IR  
1
0
TAP CONTROLLER  
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
0
1
0
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
Document Number: 001-66677 Rev. *I  
Page 14 of 32  
CY7C1441KV33  
CY7C1443KV33  
CY7C1441KVE33  
TAP AC Switching Characteristics  
Over the Operating Range  
Parameter [9, 10]  
Clock  
Description  
Min  
Max  
Unit  
tTCYC  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH time  
TCK Clock LOW time  
50  
20  
ns  
MHz  
ns  
tTF  
tTH  
20  
20  
tTL  
ns  
Output Times  
tTDOV  
tTDOX  
Setup Times  
tTMSS  
tTDIS  
TCK Clock LOW to TDO Valid  
TCK Clock LOW to TDO Invalid  
0
10  
ns  
ns  
TMS Setup to TCK Clock Rise  
TDI Setup to TCK Clock Rise  
Capture Setup to TCK Rise  
5
5
5
ns  
ns  
ns  
tCS  
Hold Times  
tTMSH  
tTDIH  
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
tCH  
Capture Hold after Clock Rise  
3.3 V TAP AC Test Conditions  
2.5 V TAP AC Test Conditions  
Input pulse levels ...............................................VSS to 3.3 V  
Input rise and fall times (Slew Rate) ........................... 2 V/ns  
Input timing reference levels ......................................... 1.5 V  
Output reference levels ................................................ 1.5 V  
Test load termination supply voltage ............................ 1.5 V  
Input pulse levels ...............................................VSS to 2.5 V  
Input rise and fall times (Slew Rate) ........................... 2 V/ns  
Input timing reference levels ................. ......................1.25 V  
Output reference levels ................ ..............................1.25 V  
Test load termination supply voltage .................. ........1.25 V  
3.3 V TAP AC Output Load Equivalent  
2.5 V TAP AC Output Load Equivalent  
1.5V  
1.25V  
50Ω  
50Ω  
TDO  
TDO  
ZO = 50Ω  
ZO= 50Ω  
20p F  
20pF  
Notes  
9.  
t
and t refer to the set-up and hold time requirements of latching data from the boundary scan register.  
CS CH  
10. Test conditions are specified using the load in TAP AC test Conditions. t /t = 2 V/ns (Slew Rate).  
R
F
Document Number: 001-66677 Rev. *I  
Page 15 of 32  
CY7C1441KV33  
CY7C1443KV33  
CY7C1441KVE33  
TAP DC Electrical Characteristics and Operating Conditions  
(0 °C < TA < +70 °C; VDD = 3.135 V to 3.6 V unless otherwise noted)  
Parameter [11]  
Description  
Description  
IOH = –4.0 mA  
Conditions  
VDDQ = 3.3 V  
Min  
2.4  
2.0  
2.9  
2.1  
Max  
Unit  
V
VOH1  
Output HIGH Voltage  
IOH = –1.0 mA  
IOH = –100 µA  
VDDQ = 2.5 V  
VDDQ = 3.3 V  
VDDQ = 2.5 V  
VDDQ = 3.3 V  
VDDQ = 2.5 V  
VDDQ = 3.3 V  
VDDQ = 2.5 V  
VDDQ = 3.3 V  
VDDQ = 2.5 V  
VDDQ = 3.3 V  
VDDQ = 2.5 V  
V
VOH2  
VOL1  
VOL2  
VIH  
Output HIGH Voltage  
Output LOW Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Load Current  
V
0.4  
V
IOL = 8.0 mA  
IOL = 1.0 mA  
IOL = 100 µA  
V
0.4  
V
0.2  
V
0.2  
V
2.0  
1.7  
–0.3  
–0.3  
–5  
VDD + 0.3  
VDD + 0.3  
0.8  
V
V
VIL  
V
0.7  
V
IX  
GND < VIN < VDDQ  
5
µA  
Note  
11. All voltages referenced to V (GND).  
SS  
Document Number: 001-66677 Rev. *I  
Page 16 of 32  
CY7C1441KV33  
CY7C1443KV33  
CY7C1441KVE33  
Identification Register Definitions  
CY7C1441KV33  
(1M × 36)  
Instruction Field  
Description  
Revision Number (31:29)  
000  
01011  
Describes the version number.  
Device Depth (28:24)  
Reserved for Internal Use  
Architecture/Memory Type(23:18)[12]  
000001  
100111  
00000110100  
1
Defines memory type and architecture  
Defines width and density  
Bus Width/Density(17:12)  
Cypress JEDEC ID Code (11:1)  
ID Register Presence Indicator (0)  
Allows unique identification of SRAM vendor.  
Indicates the presence of an ID register.  
Scan Register Sizes  
Register Name  
Bit Size (× 36)  
Instruction Bypass  
3
1
Bypass  
ID  
32  
89  
Boundary Scan Order (165-ball FBGA package)  
Identification Codes  
Instruction  
EXTEST  
Code  
Description  
000  
Captures I/O ring contents.  
Loads the ID register with the vendor ID code and places the register between TDI and TDO.  
This operation does not affect SRAM operations.  
IDCODE  
001  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces  
all SRAM output drivers to a High Z state.  
SAMPLE Z  
010  
011  
100  
RESERVED  
Do Not Use: This instruction is reserved for future use.  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Does  
not affect SRAM operation.  
SAMPLE/PRELOAD  
RESERVED  
RESERVED  
101  
110  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
BYPASS  
111  
Note  
12. Bit #24 is “1” in the ID Register Definitions for both 2.5 V and 3.3 V versions of this device.  
Document Number: 001-66677 Rev. *I  
Page 17 of 32  
CY7C1441KV33  
CY7C1443KV33  
CY7C1441KVE33  
Boundary Scan Order  
165-ball FBGA [13, 14]  
CY7C1441KV33 (1M × 36)  
Bit #  
1
Ball ID  
Bit #  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
Ball ID  
E11  
D11  
G10  
F10  
E10  
D10  
C11  
A11  
B11  
A10  
B10  
A9  
Bit #  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
Ball ID  
A3  
A2  
B2  
C2  
B1  
A1  
C1  
D1  
E1  
F1  
Bit #  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
Ball ID  
N1  
N6  
N7  
2
N2  
3
N10  
P11  
P8  
P1  
4
R1  
5
R2  
6
R8  
P3  
7
R9  
R3  
8
P9  
P2  
9
P10  
R10  
R11  
H11  
N11  
M11  
L11  
K11  
J11  
M10  
L10  
K10  
J10  
H9  
R4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
P4  
G1  
D2  
E2  
F2  
N5  
P6  
B9  
R6  
C10  
A8  
Internal  
G2  
H1  
H3  
J1  
B8  
A7  
B7  
B6  
K1  
L1  
A6  
M1  
J2  
B5  
A5  
A4  
B4  
B3  
H10  
G11  
F11  
K2  
L2  
M2  
Notes  
13. Balls which are NC (No Connect) are preset LOW.  
14. Bit# 89 is preset HIGH.  
Document Number: 001-66677 Rev. *I  
Page 18 of 32  
CY7C1441KV33  
CY7C1443KV33  
CY7C1441KVE33  
Maximum Ratings  
Operating Range  
Exceeding maximum ratings may shorten the useful life of the  
device. User guidelines are not tested.  
Ambient  
Range  
VDD  
VDDQ  
Temperature  
0 °C to +70 °C  
–40 °C to +85 °C  
Commercial  
Industrial  
3.3 V– 5% / 2.5 V – 5% to  
Storage Temperature ............................... –65 C to +150C  
+ 10%  
VDD  
Ambient Temperature  
with Power Applied .................................. –55C to +125 C  
Supply Voltage on VDD Relative to GND .....–0.3 V to +4.6 V  
Supply Voltage on VDDQ Relative to GND .... –0.3 V to +VDD  
Neutron Soft Error Immunity  
DC Voltage Applied to Outputs  
in Tristate ..........................................–0.5 V to VDDQ + 0.5 V  
Test  
Parameter Description  
Conditions  
Typ Max* Unit  
DC Input Voltage ................................0.5 V to VDD + 0.5 V  
Current into Outputs (LOW) ........................................ 20 mA  
LSBU  
Logical  
Single-Bit  
Upsets  
25 °C  
<5  
5
FIT/  
Mb  
(Device  
without  
ECC)  
Static Discharge Voltage  
(per MIL-STD-883, Method 3015) ......................... > 2001 V  
LSBU  
(Device with  
ECC)  
0
0
0
0.01  
0.01  
0.1  
FIT/  
Mb  
Latch-up Current ................................................... > 200 mA  
DC Input Voltage ................................0.5 V to VDD + 0.5 V  
Current into Outputs (LOW) ........................................ 20 mA  
LMBU (All  
Devices)  
Logical  
Multi-Bit  
Upsets  
25 °C  
85 °C  
FIT/  
Mb  
Static Discharge Voltage  
(per MIL-STD-883, Method 3015) ......................... > 2001 V  
SEL (All  
Devices)  
Single Event  
Latch up  
FIT/  
Dev  
Latch-up Current ................................................... > 200 mA  
* No LMBU or SEL events occurred during testing; this column represents a  
2
statistical , 95% confidence limit calculation. For more details refer to Application  
Note AN54908 “Accelerated Neutron SER Testing and Calculation of Terrestrial  
Failure Rates”.  
Electrical Characteristics  
Over the Operating Range  
DC Characteristics  
Over the Operating Range  
Parameter  
VDD  
Description  
Power supply voltage  
I/O supply voltage  
Test Conditions  
Min  
3.135  
3.135  
2.375  
2.4  
Max  
Units  
V
3.6  
VDDQ  
VOH  
VOL  
VIH  
for 3.3 V I/O  
for 2.5 V I/O  
VDD  
V
2.625  
V
Output HIGH voltage  
Output LOW voltage  
Input HIGH voltage[15]  
Input LOW voltage[15]  
for 3.3 V I/O, IOH = -4.0 mA  
for 2.5 V I/O, IOH = -1.0 mA  
for 3.3 V I/O, IOL = 8.0 mA  
for 2.5 V I/O, IOL = 1.0 mA  
for 3.3 V I/O  
V
2.0  
0.4  
V
V
0.4  
V
2.0  
VDD + 0.3 V  
VDD + 0.3 V  
0.8  
V
for 2.5 V I/O  
1.7  
V
VIL  
for 3.3 V I/O  
-0.3  
-0.3  
V
for 2.5 V I/O  
0.7  
V
Notes  
15. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2), undershoot: V (AC) > –2V (Pulse width less than t  
/2).  
CYC  
IH  
DD  
CYC  
IL  
16. T  
: Assumes a linear ramp from 0V to V (min.) within 200 ms. During this time V < V and V  
< V  
Power-up  
DD  
IH  
DD  
DDQ DD.  
Document Number: 001-66677 Rev. *I  
Page 19 of 32  
CY7C1441KV33  
CY7C1443KV33  
CY7C1441KVE33  
Electrical Characteristics (continued)  
Over the Operating Range  
DC Characteristics (continued)  
Over the Operating Range  
Parameter  
Description  
Test Conditions  
Min  
Max  
Units  
IX  
Input leakage current except ZZ GND VI VDDQ  
and MODE  
–5  
5
A  
Input current of MODE  
Input = VSS  
–30  
5
A  
A  
A  
A  
Input = VDD  
Input current of ZZ  
Input = VSS  
–5  
Input = VDD  
30  
5
IOZ  
IDD  
Output leakage current  
GND VI VDDQ, Output Disabled  
VDD = Max., IOUT = 0 mA, 7.5-nscycle, × 18  
f = fMAX = 1/tCYC  
–5  
VDD operating supply current  
150  
170  
85  
90  
mA  
mA  
133 MHz  
× 36  
ISB1  
ISB2  
ISB3  
ISB4  
Automatic CE power down  
current – TTL inputs  
Max. VDD, Device  
Deselected,  
7.5-nscycle, × 18  
133 MHz  
× 36  
VIN VIH or VIN VIL,  
f = fMAX,  
inputs switching  
Automatic CE power down  
current – CMOS inputs  
Max. VDD  
,
7.5-nscycle, × 18  
75  
80  
mA  
mA  
mA  
Device Deselected,  
VIN VDD – 0.3 V or  
VIN 0.3 V,  
133 MHz  
× 36  
f = 0, inputs static  
Automatic CE power down  
current – CMOS inputs  
Max. VDD  
,
7.5-nscycle, × 18  
85  
90  
Device Deselected,  
VIN VDDQ – 0.3 V or  
VIN 0.3 V,  
133 MHz  
× 36  
f = fMAX, inputs switching  
Automatic CE power down  
current – TTL inputs  
Max. VDD, Device  
Deselected,  
7.5-nscycle, × 18  
75  
80  
133 MHz  
× 36  
VIN VDD – 0.3 V or  
VIN 0.3 V,  
f = 0, inputs static  
Document Number: 001-66677 Rev. *I  
Page 20 of 32  
CY7C1441KV33  
CY7C1443KV33  
CY7C1441KVE33  
Capacitance  
100-pin TQFP 165-ballFBGA  
Parameter [17]  
Description  
Input capacitance  
Test Conditions  
Unit  
Max.  
Max.  
CIN  
TA = 25C, f = 1 MHz,  
VDD = 3.3V, VDDQ = 2.5 V  
5
5
5
5
5
5
pF  
pF  
pF  
CCLK  
CIO  
Clock input capacitance  
Input/output capacitance  
Thermal Resistance  
100-pinTQFP 165-ball FBGA  
Parameter [17]  
Description  
Test Conditions  
Unit  
Package  
35.36  
31.30  
28.86  
7.52  
Package  
14.24  
12.47  
11.40  
JA  
Thermal resistance Test conditions follow  
(junction to ambient) standard test methods and  
With Still Air (0 m/s)  
With Air Flow (1 m/s)  
With Air Flow (3 m/s)  
°C/W  
°C/W  
°C/W  
°C/W  
procedures for measuring  
thermal impedance, per  
EIA/JESD51.  
JC  
JB  
Thermal resistance  
(junction to case)  
3.92  
Thermal resistance  
(junction to board)  
28.89  
7.19  
°C/W  
AC Test Loads and Waveforms  
Figure 3. AC Test Loads and Waveforms  
3.3V I/O Test Load  
R = 317  
3.3V  
OUTPUT  
OUTPUT  
ALL INPUT PULSES  
90%  
V
DDQ  
90%  
10%  
Z = 50  
0
R = 50  
10%  
L
GND  
5 pF  
R = 351  
1 ns  
2 V/ns  
V = 1.5V  
T
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
2.5V I/O Test Load  
R = 1667  
2.5V  
OUTPUT  
OUTPUT  
ALL INPUT PULSES  
90%  
V
DDQ  
90%  
Z = 50  
0
10%  
2 V/ns  
R = 50  
10%  
L
GND  
5 pF  
R = 1538  
1 ns  
V = 1.25V  
T
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Note  
17. Tested initially and after any design or process change that may affect these parameters.  
Document Number: 001-66677 Rev. *I  
Page 21 of 32  
CY7C1441KV33  
CY7C1443KV33  
CY7C1441KVE33  
Switching Characteristics  
Over the Operating Range  
–133  
Unit  
Parameter [18, 19]  
Description  
VDD (Typical) to the first Access[20]  
Min  
Max  
tPOWER  
Clock  
tCYC  
1
ms  
Clock cycle time  
Clock HIGH  
7.5  
2.5  
2.5  
ns  
ns  
ns  
tCH  
tCL  
Clock LOW  
Output Times  
tCDV  
Data Output Valid after CLK Rise  
Data Output Hold after CLK Rise  
Clock to Low Z[21, 22, 23]  
2.5  
2.5  
6.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDOH  
tCLZ  
tCHZ  
Clock to High Z[21, 22, 23]  
3.8  
3.0  
tOEV  
OE LOW to Output Valid  
tOELZ  
tOEHZ  
Setup Times  
tAS  
OE LOW to Output Low Z[21, 22, 23]  
OE HIGH to Output High Z[21, 22, 23]  
0
3.0  
Address setup before CLK Rise  
ADSP, ADSC setup before CLK Rise  
ADV setup before CLK Rise  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADS  
tADVS  
tWES  
GW, BWE, BWX setup before CLK Rise  
Data input setup before CLK Rise  
Chip Enable setup  
tDS  
tCES  
Hold Times  
tAH  
Address Hold after CLK Rise  
ADSP, ADSC Hold after CLK Rise  
GW, BWE, BWX Hold after CLK Rise  
ADV Hold after CLK Rise  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADH  
tWEH  
tADVH  
tDH  
Data Input Hold after CLK Rise  
Chip Enable Hold after CLK Rise  
tCEH  
Notes  
18. Timing reference level is 1.5V when V  
= 3.3V and is 1.25V when V  
= 2.5V.  
DDQ  
DDQ  
19. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
20. This part has a voltage regulator internally; t  
is the time that the power must be supplied above V (minimum) initially, before a read or write operation can be  
POWER  
DD  
initiated.  
21. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of Figure 3 on page 21. Transition is measured ± 200 mV from steady-state voltage.  
CHZ CLZ OELZ  
OEHZ  
22. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same data  
CLZ  
OEHZ  
OELZ  
CHZ  
bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to achieve  
High Z prior to Low Z under the same system conditions.  
23. This parameter is sampled and not 100% tested.  
Document Number: 001-66677 Rev. *I  
Page 22 of 32  
CY7C1441KV33  
CY7C1443KV33  
CY7C1441KVE33  
Timing Diagrams  
Figure 4. Read Cycle Timing [24]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
ADDRESS  
t
t
WES  
WEH  
GW, BWE,BW  
X
Deselect Cycle  
t
t
CES  
CEH  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
t
CDV  
OEV  
OELZ  
t
t
OEHZ  
CHZ  
t
DOH  
t
CLZ  
Q(A2)  
Q(A2 + 1)  
Q(A2 + 2)  
Q(A2  
+
3)  
Q(A2)  
Q(A2  
+
1)  
Q(A2  
+
2)  
Q(A1)  
Data Out (Q)  
High-Z  
t
CDV  
Burst wraps around  
to its initial state  
Single READ  
BURST  
READ  
DON’T CARE  
UNDEFINED  
.
Note  
24. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
Document Number: 001-66677 Rev. *I  
Page 23 of 32  
CY7C1441KV33  
CY7C1443KV33  
CY7C1441KVE33  
Timing Diagrams (continued)  
Figure 5. Write Cycle Timing [25, 26]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Byte write signals are ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BWE,  
BWX  
t
t
WEH  
WES  
GW  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
ADV suspends burst  
OE  
t
t
DH  
DS  
Data in (D)  
High-Z  
D(A2)  
D(A2  
+
1)  
D(A2  
+
1)  
D(A2  
+
2)  
D(A2  
+
3)  
D(A3)  
D(A3  
+
1)  
D(A3 + 2)  
D(A1)  
t
OEHZ  
Data Out (Q)  
BURST READ  
BURST WRITE  
Extended BURST WRITE  
Single WRITE  
DON’T CARE  
UNDEFINED  
.
Notes  
25. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
26.  
Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BW LOW.  
X
Document Number: 001-66677 Rev. *I  
Page 24 of 32  
CY7C1441KV33  
CY7C1443KV33  
CY7C1441KVE33  
Timing Diagrams (continued)  
Figure 6. Read/Write Cycle Timing [27, 28, 29]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
t
t
WEH  
WES  
BWE, BW  
X
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
DS  
t
OELZ  
t
High-Z  
D(A3)  
D(A5)  
D(A6)  
Data In (D)  
t
OEHZ  
CDV  
Data Out (Q)  
Q(A1)  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
Back-to-Back  
WRITEs  
Back-to-Back READs  
Single WRITE  
BURST READ  
DON’T CARE  
UNDEFINED  
.
Notes  
27. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
28. The data bus (Q) remains in high Z following a Write cycle, unless a new read access is initiated by ADSP or ADSC.  
29. GW is HIGH.  
Document Number: 001-66677 Rev. *I  
Page 25 of 32  
CY7C1441KV33  
CY7C1443KV33  
CY7C1441KVE33  
Timing Diagrams (continued)  
Figure 7. ZZ Mode Timing [30, 31]  
CLK  
ZZ  
t
t
ZZ  
ZZREC  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes  
30. Device must be deselected when entering ZZ mode. See the Cycle Descriptions table for all possible signal conditions to deselect the device.  
31. DQs are in high Z when exiting ZZ sleep mode.  
Document Number: 001-66677 Rev. *I  
Page 26 of 32  
CY7C1441KV33  
CY7C1443KV33  
CY7C1441KVE33  
Ordering Information  
Table 1 lists the ordering codes. The table contains only the parts that are currently available. If you do not see what you are looking  
for, contact your local sales representative. For more information, visit the Cypress website at www.cypress.com and refer to the  
product summary page at http://www.cypress.com/products.  
Table 1. Ordering Information  
Speed (MHz)  
Ordering Code  
Package Diagram  
Part and Package Type  
Operating Range  
133  
CY7C1441KV33-133AXC  
CY7C1441KVE33-133AXC  
CY7C1441KV33-133AXI  
CY7C1443KV33-133AXI  
CY7C1441KV33-133BZXI  
51-85050  
100-pin TQFP (14 × 20 × 1.4 mm) Pb-free  
Commercial  
Industrial  
51-85195  
165-ball FBGA (15 × 17 × 1.4 mm) Pb-free  
Ordering Code Definitions  
-
XXX XX  
X X  
33  
E
CY  
7
C
14XX  
KV  
Temperature range: X = C or I  
C = Commercial = 0 °C to +70 °C; I = Industrial = –40 °C to +85 °C  
X = Pb-free; X Absent = Leaded  
Package Type: XX = A or BZ  
A = 100-pin TQFP  
BZ = 165-ball FBGA  
Speed Grade: XXX = 133 MHz  
33 = 3.3 V VDD  
E = Device with ECC; E Absent = Device without ECC  
Process Technology: KV 65 nm  
Part Identifier: 14XX = 1441 or 1443  
1441 = FT, 1M × 36 (36-Mbit)  
1443 = FT, 2M × 18 (36-Mbit)  
Technology Code: C = CMOS  
Marketing Code: 7 = SRAM  
Company ID: CY = Cypress  
Document Number: 001-66677 Rev. *I  
Page 27 of 32  
CY7C1441KV33  
CY7C1443KV33  
CY7C1441KVE33  
Package Diagrams  
Figure 8. 100-pin TQFP (14 × 20 × 1.4 mm) A100RA Package Outline, 51-85050  
ș 2  
ș
1
ș
DIMENSIONS  
MIN. NOM. MAX.  
1.60  
NOTE:  
SYMBOL  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2. BODY LENGTH DIMENSION DOES NOT  
INCLUDE MOLD PROTRUSION/END FLASH.  
MOLD PROTRUSION/END FLASH SHALL  
A
0.05  
0.15  
A1  
A2  
D
1.35 1.40 1.45  
15.80 16.00 16.20  
13.90 14.00 14.10  
21.80 22.00 22.20  
19.90 20.00 20.10  
NOT EXCEED 0.0098 in (0.25 mm) PER SIDE.  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC  
D1  
E
E1  
BODY SIZE INCLUDING MOLD MISMATCH.  
3. JEDEC SPECIFICATION NO. REF: MS-026.  
0.08  
0.08  
0°  
R
R
ș
0.20  
0.20  
7°  
1
2
ș 1  
ș 2  
c
0°  
11° 12° 13°  
0.20  
0.22 0.30 0.38  
0.45 0.60 0.75  
1.00 REF  
b
L
L1  
L 2  
L 3  
e
0.25 BSC  
0.20  
0.65 TYP  
51-85050 *G  
Document Number: 001-66677 Rev. *I  
Page 28 of 32  
CY7C1441KV33  
CY7C1443KV33  
CY7C1441KVE33  
Package Diagrams (continued)  
Figure 9. 165-ball FBGA (15 × 17 × 1.4 mm (0.5 Ball Diameter)) Package Outline, 51-85195  
51-85195 *D  
Document Number: 001-66677 Rev. *I  
Page 29 of 32  
CY7C1441KV33  
CY7C1443KV33  
CY7C1441KVE33  
Acronyms  
Document Conventions  
Table 2. Acronyms Used in this Document  
Units of Measure  
Acronym  
CE  
Description  
Table 3. Units of Measure  
Chip Enable  
Symbol  
°C  
Unit of Measure  
CMOS  
FBGA  
I/O  
Complementary Metal Oxide Semiconductor  
Fine-Pitch Ball Grid Array  
Input/Output  
degree Celsius  
megahertz  
microampere  
milliampere  
millisecond  
millimeter  
nanosecond  
picofarad  
volt  
MHz  
µA  
mA  
ms  
mm  
ns  
JTAG  
NoBL  
OE  
Joint Test Action Group  
No Bus Latency  
Output Enable  
SRAM  
TCK  
TDI  
Static Random Access Memory  
Test Clock  
pF  
V
Test Data-In  
W
watt  
TDO  
TMS  
TQFP  
WE  
Test Data-Out  
Test Mode Select  
Thin Quad Flat Pack  
Write Enable  
ECC  
Error Correcting Code  
Document Number: 001-66677 Rev. *I  
Page 30 of 32  
CY7C1441KV33  
CY7C1443KV33  
CY7C1441KVE33  
Document History Page  
Document Title: CY7C1441KV33/CY7C1443KV33/CY7C1441KVE33, 36-Mbit (1M × 36/2M × 18) Flow-Through SRAM (With  
ECC)  
Document Number: 001-66677  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
*E  
4680535  
PRIT  
04/10/2015 Changed status from Preliminary to Final.  
*F  
4757974  
DEVM  
05/07/2015 Added Logic Block Diagram – CY7C1441KVE33.  
Updated Functional Overview:  
Updated ZZ Mode Electrical Characteristics:  
Changed maximum value of IDDZZ parameter from 89 mA to 75 mA.  
*G  
*H  
4965199  
5338013  
PRIT  
PRIT  
10/15/2015 Updated Selection Guide:  
Updated value of “Maximum Operating Current”.  
07/05/2016 Updated Truth Table:  
Updated details in “CE3” column corresponding to fifth row of “Deselected  
Cycle, Power Down”.  
Updated Neutron Soft Error Immunity:  
Updated values in “Typ” and “Max” columns corresponding to LSBU (Device  
without ECC) parameter.  
Updated to new template.  
*I  
6072311  
CNX  
02/15/2018 Updated Package Diagrams:  
spec 51-85050 – Changed revision from *E to *G.  
Updated to new template.  
Document Number: 001-66677 Rev. *I  
Page 31 of 32  
CY7C1441KV33  
CY7C1443KV33  
CY7C1441KVE33  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
Arm® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Community | Projects | Video | Blogs | Training | Components  
Technical Support  
Internet of Things  
Memory  
cypress.com/support  
cypress.com/memory  
cypress.com/mcu  
Microcontrollers  
PSoC  
cypress.com/psoc  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless Connectivity  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
cypress.com/wireless  
© Cypress Semiconductor Corporation, 2011-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document,  
including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to  
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users  
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation  
of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent  
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any  
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is  
the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products  
are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or  
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the  
device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably  
expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,  
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other  
liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 001-66677 Rev. *I  
Revised February 15, 2018  
Page 32 of 32  
i486 is a trademark, and Intel and Pentium are registered trademarks of Intel Corporation. PowerPC is a trademark of IBM Corporation.  

相关型号:

CY7C1443KV33-133AXI

36-Mbit (1M × 36/2M × 18) Flow-Through SRAM (With ECC)
CYPRESS

CY7C1443V25-117AC

Standard SRAM, 2MX18, 7.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1443V25-117BZC

Standard SRAM, 2MX18, 7.5ns, CMOS, PBGA165, 15 X 17 MM, FBGA-165
CYPRESS

CY7C1443V25-133AC

Standard SRAM, 2MX18, 6.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1443V25-133BZC

Standard SRAM, 2MX18, 6.5ns, CMOS, PBGA165, 15 X 17 MM, FBGA-165
CYPRESS

CY7C1443V25-150BGC

Standard SRAM, 2MX18, 5.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, PLASTIC, BGA-119
CYPRESS

CY7C1443V25-150BZC

Standard SRAM, 2MX18, 5.5ns, CMOS, PBGA165, 15 X 17 MM, FBGA-165
CYPRESS

CY7C1443V33-117AC

Standard SRAM, 2MX18, 7.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1443V33-150AC

Standard SRAM, 2MX18, 5.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

CY7C1444AV25

36-Mbit (1M x 36/2M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1444AV25-167AXC

36-Mbit (1M x 36/2M x 18) Pipelined DCD Sync SRAM
CYPRESS

CY7C1444AV25-167AXI

36-Mbit (1M x 36/2M x 18) Pipelined DCD Sync SRAM
CYPRESS