CY7C1463AV25-133BZXC [CYPRESS]

36-Mbit (1M x 36/2M x 18/512K x 72) Flow-Through SRAM with NoBL⑩ Architecture; 36兆位( 1M ×36 / 2M ×18 / 512K X 72 )流通型SRAM与NoBL⑩架构
CY7C1463AV25-133BZXC
型号: CY7C1463AV25-133BZXC
厂家: CYPRESS    CYPRESS
描述:

36-Mbit (1M x 36/2M x 18/512K x 72) Flow-Through SRAM with NoBL⑩ Architecture
36兆位( 1M ×36 / 2M ×18 / 512K X 72 )流通型SRAM与NoBL⑩架构

静态存储器
文件: 总29页 (文件大小:460K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1461AV25  
CY7C1463AV25  
CY7C1465AV25  
36-Mbit (1M x 36/2M x 18/512K x 72)  
Flow-Through SRAM with NoBL™ Architecture  
Functional Description[1]  
Features  
• No Bus Latency™ (NoBL™) architecture eliminates  
dead cycles between write and read cycles  
The CY7C1461AV25/CY7C1463AV25/CY7C1465AV25 are  
2.5V, 1M × 36/2M × 18/512K × 72 Synchronous Flow-through  
Burst SRAMs designed specifically to support unlimited true  
back-to-back Read/Write operations without the insertion of  
• Can support up to 133-MHz bus operations with zero  
wait states  
wait  
states.  
The  
CY7C1461AV25/CY7C1463AV25/  
— Data is transferred on every clock  
CY7C1465AV25 is equipped with the advanced No Bus  
Latency (NoBL) logic required to enable consecutive  
Read/Write operations with data being transferred on every  
clock cycle. This feature dramatically improves the throughput  
of data through the SRAM, especially in systems that require  
frequent Write-Read transitions.  
• Pin-compatible and functionally equivalent to ZBT™  
devices  
• Internally self-timed output buffer control to eliminate  
the need to use OE  
• Registered inputs for flow-through operation  
• Byte Write capability  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. The clock input is qualified by  
the Clock Enable (CEN) signal, which when deasserted  
suspends operation and extends the previous clock cycle.  
Maximum access delay from the clock rise is 6.5 ns (133-MHz  
device).  
• 2.5V/1.8V I/O power supply  
• Fast clock-to-output times  
— 6.5 ns (for 133-MHz device)  
Write operations are controlled by the two or four Byte Write  
Select (BWX) and a Write Enable (WE) input. All writes are  
conducted with on-chip synchronous self-timed write circuitry.  
• Clock Enable (CEN) pin to enable clock and suspend  
operation  
• Synchronous self-timed writes  
• Asynchronous Output Enable  
Three synchronous Chip Enables (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output tri-state control. In order to avoid bus  
contention, the output drivers are synchronously tri-stated  
during the data portion of a write sequence.  
• CY7C1461AV25, CY7C1463AV25 available in  
JEDEC-standard lead-free 100-pin TQFP package,  
lead-free and non-lead-free 165-ball FBGA package.  
CY7C1465AV25 available in lead-free and non-lead-free  
209-ball FBGA package.  
• Three chip enables for simple depth expansion  
• Automatic Power-down feature available using ZZ  
mode or CE deselect  
• IEEE 1149.1 JTAG-Compatible Boundary Scan  
• Burst Capability—linear or interleaved burst order  
• Low standby power  
Selection Guide  
133 MHz  
6.5  
100 MHz  
8.5  
Unit  
ns  
Maximum Access Time  
Maximum Operating Current  
Maximum CMOS Standby Current  
270  
250  
mA  
mA  
120  
120  
Note:  
1. For best-practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.  
Cypress Semiconductor Corporation  
Document #: 38-05355 Rev. *E  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised June 22, 2006  
CY7C1461AV25  
CY7C1463AV25  
CY7C1465AV25  
Logic Block Diagram – CY7C1461AV25 (1M × 36)  
ADDRESS  
A0, A1, A  
A1  
A1'  
A0'  
REGISTER  
D1  
A0  
Q1  
Q0  
D0  
MODE  
BURST  
LOGIC  
CE  
ADV/LD  
C
CLK  
CEN  
C
WRITE ADDRESS  
REGISTER  
O
U
T
P
U
T
D
A
T
S
E
N
S
ADV/LD  
A
B
U
F
MEMORY  
ARRAY  
BWA  
BWB  
BWC  
BWD  
WRITE  
DRIVERS  
E
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
S
T
E
E
R
I
DQs  
DQP  
DQP  
DQP  
DQP  
A
B
C
D
A
M
P
F
E
R
S
S
WE  
E
N
G
INPUT  
REGISTER  
E
OE  
READ LOGIC  
CE1  
CE2  
CE3  
SLEEP  
CONTROL  
ZZ  
1
Logic Block Diagram – CY7C1463AV25 (2M × 18)  
ADDRESS  
A0, A1, A  
A1  
A1'  
A0'  
REGISTER  
D1  
A0  
Q1  
Q0  
D0  
MODE  
BURST  
LOGIC  
CE  
ADV/LD  
C
CLK  
CEN  
C
WRITE ADDRESS  
REGISTER  
O
U
T
P
U
T
D
A
T
S
E
N
S
ADV/LD  
A
B
U
F
MEMORY  
ARRAY  
BW  
A
B
WRITE  
DRIVERS  
E
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
S
T
E
E
R
I
DQs  
DQP  
DQP  
BW  
A
B
A
M
P
F
E
R
S
S
WE  
E
N
G
INPUT  
REGISTER  
E
OE  
READ LOGIC  
CE1  
CE2  
CE3  
SLEEP  
ZZ  
CONTROL  
Document #: 38-05355 Rev. *E  
Page 2 of 29  
CY7C1461AV25  
CY7C1463AV25  
CY7C1465AV25  
2
Logic Block Diagram – CY7C1465AV25 (512K × 72)  
ADDRESS  
REGISTER 0  
A0, A1, A  
A1  
A0  
A1'  
A0'  
D1  
D0  
Q1  
Q0  
BURST  
LOGIC  
MODE  
C
ADV/LD  
C
CLK  
CEN  
WRITE ADDRESS  
REGISTER 1  
WRITE ADDRESS  
REGISTER 2  
O
U
T
P
O
U
T
S
E
N
S
P
U
T
D
A
T
U
T
ADV/LD  
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
A
BW  
BW  
BW  
a
R
E
G
I
MEMORY  
ARRAY  
E
B
U
F
DQs  
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
WRITE  
DRIVERS  
b
S
T
E
E
R
I
A
M
P
a
b
c
d
e
f
c
F
S
T
E
R
S
BW  
d
E
R
S
S
BW  
e
BW  
BW  
f
N
G
g
E
E
BW  
h
g
h
WE  
INPUT  
REGISTER 1  
INPUT  
REGISTER 0  
E
E
OE  
READ LOGIC  
CE1  
CE2  
CE3  
Sleep  
Control  
ZZ  
Document #: 38-05355 Rev. *E  
Page 3 of 29  
CY7C1461AV25  
CY7C1463AV25  
CY7C1465AV25  
Pin Configurations  
100-pin TQFP Pinout  
DQPC  
DQC  
DQC  
VDDQ  
VSS  
80  
1
DQPB  
DQB  
DQB  
VDDQ  
VSS  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
2
3
4
5
DQC  
6
DQB  
DQB  
DQB  
DQB  
VSS  
BYTE C  
BYTE B  
DQC  
DQC  
DQC  
VSS  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDDQ  
DQC  
DQC  
NC  
VDDQ  
DQB  
DQB  
VSS  
CY7C1461AV25  
VDD  
NC  
NC  
VDD  
ZZ  
VSS  
DQD  
DQD  
VDDQ  
VSS  
DQA  
DQA  
VDDQ  
VSS  
DQD  
DQA  
DQA  
DQA  
DQA  
VSS  
DQD  
BYTE D  
BYTE A  
DQD  
DQD  
VSS  
VDDQ  
DQD  
DQD  
DQPD  
VDDQ  
DQA  
DQA  
DQPA  
Document #: 38-05355 Rev. *E  
Page 4 of 29  
CY7C1461AV25  
CY7C1463AV25  
CY7C1465AV25  
Pin Configurations (continued)  
100-pin TQFP Pinout  
NC  
1
80  
A
NC  
2
NC  
3
VDDQ  
4
VSS  
5
NC  
6
NC  
7
DQB  
8
DQB  
9
VSS  
10  
VDDQ  
11  
DQB  
12  
DQB  
13  
NC  
14  
VDD  
15  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
VDDQ  
VSS  
NC  
DQPA  
DQA  
DQA  
VSS  
VDDQ  
DQA  
DQA  
VSS  
NC  
CY7C1463AV25  
BYTE A  
BYTE B  
NC  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDD  
ZZ  
VSS  
DQB  
DQB  
VDDQ  
VSS  
DQA  
DQA  
VDDQ  
VSS  
DQA  
DQA  
NC  
DQB  
DQB  
DQPB  
NC  
NC  
VSS  
VSS  
VDDQ  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
Document #: 38-05355 Rev. *E  
Page 5 of 29  
CY7C1461AV25  
CY7C1463AV25  
CY7C1465AV25  
Pin Configurations (continued)  
165-ball FBGA (15 x 17 x 1.4 mm) Pinout  
CY7C1461AV25 (1M × 36)  
1
2
A
3
4
5
6
7
8
ADV/LD  
OE  
9
A
10  
A
11  
NC  
NC/576M  
NC/1G  
DQPc  
A
B
C
D
CE1  
CE2  
BWc  
BWb  
CE3  
CLK  
VSS  
VSS  
CEN  
WE  
A
A
A
NC  
BWd  
VSS  
VDD  
BWa  
VSS  
VSS  
NC  
DQc  
VDDQ  
VDDQ  
VSS  
VSS  
VSS  
VDDQ  
VDDQ  
NC  
DQb  
DQPb  
DQb  
DQc  
VDD  
DQc  
DQc  
DQc  
NC  
DQc  
DQc  
DQc  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
DQb  
DQb  
DQb  
NC  
DQb  
DQb  
DQb  
ZZ  
E
F
G
H
J
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
K
L
DQd  
DQd  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
NC  
A1  
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQa  
NC  
A
DQa  
DQPa  
M
N
P
DQPd  
NC/144M NC/72M  
TDI  
TDO  
NC/288M  
A
MODE  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
CY7C1463AV25 (2M × 18)  
1
NC/576M  
NC/1G  
NC  
2
A
3
4
5
NC  
6
7
8
9
A
10  
A
11  
A
A
B
C
D
CE3  
CLK  
VSS  
VSS  
CE1  
CE2  
BWb  
NC  
CEN  
ADV/LD  
NC  
A
A
A
BWa  
VSS  
VSS  
WE  
VSS  
VSS  
OE  
VSS  
VDD  
NC  
DQb  
VDDQ  
VDDQ  
VSS  
VDD  
VDDQ  
VDDQ  
NC  
NC  
DQPa  
DQa  
NC  
NC  
NC  
DQb  
DQb  
DQb  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQa  
DQa  
DQa  
ZZ  
E
F
NC  
NC  
G
H
J
NC  
NC  
DQb  
DQb  
DQb  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQa  
DQa  
DQa  
NC  
NC  
NC  
K
L
NC  
NC  
DQb  
NC  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
NC  
A1  
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQa  
NC  
A
NC  
NC  
M
N
P
DQPb  
NC/144M NC/72M  
TDI  
TDO  
NC/288M  
A
MODE  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
Document #: 38-05355 Rev. *E  
Page 6 of 29  
CY7C1461AV25  
CY7C1463AV25  
CY7C1465AV25  
Pin Configurations (continued)  
209-ball FBGA (14 x 22 x 1.76 mm) Pinout  
CY7C1465AV25 (512K × 72)  
1
2
3
4
5
6
7
8
9
10  
DQb  
DQb  
11  
A
B
C
D
E
F
DQg  
DQg  
A
A
A
CE3  
A
DQb  
DQb  
DQb  
DQb  
DQPb  
DQf  
DQg  
DQg  
CE2  
ADV/LD  
WE  
A
BWSb  
NC  
BWSc  
BWSh  
VSS  
BWSf  
BWSg  
BWSd  
DQg  
DQg  
DQg  
DQg  
DQPc  
DQc  
DQc  
NC/576M  
NC  
NC  
BWSe  
NC  
CE1  
BWSa DQb  
NC/1G  
OE  
VSS  
NC  
DQb  
DQPg  
DQc  
VDDQ  
VDDQ  
VDDQ  
DQPf  
VDDQ  
VSS  
VDDQ  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VDD  
NC  
VDD  
VSS  
VDD  
VSS  
DQf  
VSS  
VDDQ  
VSS  
VSS  
G
H
J
DQc  
DQc  
VDDQ  
VSS  
NC  
VDDQ  
VSS  
DQf  
DQf  
DQf  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
NC  
A
DQc  
DQc  
NC  
NC  
DQf  
DQf  
NC  
VDDQ  
DQc  
NC  
VDDQ  
VDDQ  
CLK  
VDDQ  
NC  
NC  
DQf  
NC  
K
L
CEN  
NC  
NC  
NC  
DQh  
DQh  
DQh  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
DQa  
DQa  
DQa  
M
N
P
R
T
NC  
VSS  
VDDQ  
VSS  
VDDQ  
NC  
DQh  
DQh  
DQh  
VSS  
VDD  
VSS  
DQa  
DQa  
DQa  
VDDQ  
DQh  
DQh  
DQPd  
DQd  
DQd  
NC  
ZZ  
DQa  
DQa  
DQPa  
DQe  
DQe  
VSS  
VDDQ  
VDDQ  
VDD  
NC  
DQPh  
DQd  
DQd  
DQd  
DQd  
VDDQ  
VDD  
DQPe  
DQe  
DQe  
DQe  
DQe  
VSS  
VSS  
NC  
A
MODE  
A
U
V
W
NC/72M  
A
NC/288M  
NC/144M  
A
A
A1  
A
DQd  
DQd  
A
A
A
A
DQe  
DQe  
TDI  
TDO  
TCK  
A0  
A
TMS  
Pin Definitions  
Pin Name  
I/O Type  
Pin Description  
A0  
A1  
A
Input-  
Synchronous  
Address Inputs used to select one of the address locations. Sampled at the rising edge of  
the CLK.  
BWa  
BWb  
BWc  
BWd  
BWe  
BWf  
Input-  
Synchronous  
Byte Write Select Inputs, active LOW. Qualified with WE to conduct writes to the SRAM.  
Sampled on the rising edge of CLK. BWa controls DQa and DQPa, BWb controls DQb and DQPb,  
BWc controls DQc and DQPc, BWd controls DQd and DQPd, BWe controls DQe and DQPe, BWf  
controls DQf and DQPf, BWg controls DQg and DQPg, BWh controls DQh and DQPh.  
BWg  
BWh  
WE  
Input-  
Synchronous  
Write Enable Input, active LOW. Sampled on the rising edge of CLK if CEN is active LOW. This  
signal must be asserted LOW to initiate a write sequence.  
ADV/LD  
Input-  
Synchronous  
Advance/Load Input used to advance the on-chip address counter or load a new address.  
When HIGH (and CEN is asserted LOW) the internal burst counter is advanced. When LOW, a  
new address can be loaded into the device for an access. After being deselected, ADV/LD should  
be driven LOW in order to load a new address.  
CLK  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. CLK is qualified with CEN.  
CLK is only recognized if CEN is active LOW.  
Document #: 38-05355 Rev. *E  
Page 7 of 29  
CY7C1461AV25  
CY7C1463AV25  
CY7C1465AV25  
Pin Definitions (continued)  
Pin Name  
I/O Type  
Pin Description  
CE1  
Input-  
Synchronous  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
CE2 and CE3 to select/deselect the device.  
CE2  
CE3  
OE  
Input-  
Synchronous  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction with  
CE1 and CE3 to select/deselect the device.  
Input-  
Synchronous  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
CE1 and CE2 to select/deselect the device.  
Input-  
Output Enable, active LOW. Combined with the synchronous logic block inside the device to  
Asynchronous control the direction of the I/O pins. When LOW, the I/O pins are allowed to behave as outputs.  
When deasserted HIGH, I/O pins are tri-stated, and act as input data pins. OE is masked during  
the data portion of a write sequence, during the first clock when emerging from a deselected state  
and when the device has been deselected.  
CEN  
Input-  
Synchronous  
Clock Enable Input, active LOW. When asserted LOW the clock signal is recognized by the  
SRAM. When deasserted HIGH the clock signal is masked. Since deasserting CEN does not  
deselect the device, CEN can be used to extend the previous cycle when required.  
DQa  
DQb  
DQc  
DQd  
DQe  
DQf  
I/O-  
Synchronous  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is triggered  
by the rising edge of CLK. As outputs, they deliver the data contained in the memory location  
specified by AX during the previous clock rise of the read cycle. The direction of the pins is  
controlled by OE and the internal control logic. When OE is asserted LOW, the pins can behave  
as outputs. When HIGH, DQa–DQd are placed in a tri-state condition. The outputs are automat-  
ically tri-stated during the data portion of a write sequence, during the first clock when emerging  
from a deselected state, and when the device is deselected, regardless of the state of OE.  
DQg  
DQh  
DQPa  
DQPb  
DQPc  
DQPd  
DQPe  
DQPf  
DQPg  
DQPh  
I/O-  
Synchronous  
Bidirectional Data Parity I/O lines. Functionally, these signals are identical to DQ[31:0]. During  
write sequences, DQPa is controlled by BWa, DQPb is controlled by BWb, DQPc is controlled by  
BWc, and DQPd is controlled by BWd, DQPe is controlled by BWe, DQPf is controlled by BWf,  
DQPg is controlled by BWg, DQPh is controlled by BWh.  
MODE  
Input Strap Pin Mode Input. Selects the burst order of the device. Tied HIGH selects the interleaved burst order.  
Pulled LOW selects the linear burst order. MODE should not change states during operation.  
When left floating MODE will default HIGH, to an interleaved burst order.  
TDO  
TDI  
JTAG serial output Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK.  
Synchronous  
JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK.  
Synchronous  
TMS  
Test Mode Select This pin controls the Test Access Port state machine. Sampled on the rising edge of TCK.  
Synchronous  
TCK  
VDD  
JTAG-Clock  
Clock input to the JTAG circuitry.  
Power Supply Power supply inputs to the core of the device.  
I/O Power Supply Power supply for the I/O circuitry.  
VDDQ  
VSS  
Ground  
N/A  
Ground for the device. Should be connected to ground of the system.  
NC  
No connects. This pin is not connected to the die.  
NC/72M  
N/A  
Not connected to the die. Can be tied to any voltage level.  
NC/144M  
NC/288M  
NC/576M  
NC/1G  
N/A  
N/A  
Not connected to the die. Can be tied to any voltage level.  
Not connected to the die. Can be tied to any voltage level.  
N/A  
Not connected to the die. Can be tied to any voltage level.  
N/A  
Not connected to the die. Can be tied to any voltage level.  
ZZ  
Input-  
ZZ “sleep” Input. This active HIGH input places the device in a non-time critical “sleep” condition  
Asynchronous with data integrity preserved. During normal operation, this pin has to be LOW or left floating.  
ZZ pin has an internal pull-down.  
Document #: 38-05355 Rev. *E  
Page 8 of 29  
CY7C1461AV25  
CY7C1463AV25  
CY7C1465AV25  
Therefore, the type of access (Read or Write) is maintained  
throughout the burst sequence.  
Functional Overview  
The CY7C1461AV25/CY7C1463AV25/CY7C1465AV25 is a  
synchronous flow-through burst SRAM designed specifically  
to eliminate wait states during Write-Read transitions. All  
synchronous inputs pass through input registers controlled by  
the rising edge of the clock. The clock signal is qualified with  
the Clock Enable input signal (CEN). If CEN is HIGH, the clock  
signal is not recognized and all internal states are maintained.  
All synchronous operations are qualified with CEN. Maximum  
access delay from the clock rise (tCDV) is 6.5 ns (133-MHz  
device).  
Single Write Accesses  
Write access are initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are ALL asserted active, and (3) the write signal WE  
is asserted LOW. The address presented to the address bus  
is loaded into the Address Register. The write signals are  
latched into the Control Logic block. The data lines are  
automatically tri-stated regardless of the state of the OE input  
signal. This allows the external logic to present the data on  
DQs and DQPX.  
Accesses can be initiated by asserting all three Chip Enables  
(CE1, CE2, CE3) active at the rising edge of the clock. If Clock  
Enable (CEN) is active LOW and ADV/LD is asserted LOW,  
the address presented to the device will be latched. The  
access can either be a read or write operation, depending on  
the status of the Write Enable (WE). BWX can be used to  
conduct byte write operations.  
On the next clock rise the data presented to DQs and DQPX  
(or a subset for byte write operations, see truth table for  
details) inputs is latched into the device and the write is  
complete. Additional accesses (Read/Write/Deselect) can be  
initiated on this cycle.  
The data written during the Write operation is controlled by BWX  
signals. The CY7C1461AV25/CY7C1463AV25/CY7C1465AV25  
providesbyte write capability that is described in the truth table.  
Asserting the Write Enable input (WE) with the selected Byte  
Write Select input will selectively write to only the desired  
bytes. Bytes not selected during a byte write operation will  
remain unaltered. A synchronous self-timed write mechanism  
has been provided to simplify the write operations. Byte write  
capability has been included in order to greatly simplify  
Read/Modify/Write sequences, which can be reduced to  
simple byte write operations.  
Write operations are qualified by the Write Enable (WE). All  
writes are simplified with on-chip synchronous self-timed write  
circuitry.  
Three synchronous Chip Enables (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) simplify depth expansion.  
All operations (Reads, Writes, and Deselects) are pipelined.  
ADV/LD should be driven LOW once the device has been  
deselected in order to load a new address for the next  
operation.  
Single Read Accesses  
Because the CY7C1461AV25/CY7C1463AV25/CY7C1465AV25  
is a common I/O device, data should not be driven into the  
device while the outputs are active. The Output Enable (OE)  
can be deasserted HIGH before presenting data to the DQs  
and DQPX inputs. Doing so will tri-state the output drivers. As  
a safety precaution, DQs and DQPX are automatically  
tri-stated during the data portion of a write cycle, regardless of  
the state of OE.  
A read access is initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are ALL asserted active, (3) the Write Enable input  
signal WE is deasserted HIGH, and (4) ADV/LD is asserted  
LOW. The address presented to the address inputs is latched  
into the Address Register and presented to the memory array  
and control logic. The control logic determines that a read  
access is in progress and allows the requested data to  
propagate to the output buffers. The data is available within 6.5  
ns (133-MHz device) provided OE is active LOW. After the first  
clock of the read access, the output buffers are controlled by  
OE and the internal control logic. OE must be driven LOW in  
order for the device to drive out the requested data. On the  
subsequent clock, another operation (Read/Write/Deselect)  
can be initiated. When the SRAM is deselected at clock rise  
by one of the chip enable signals, its output will be tri-stated  
immediately.  
Burst Write Accesses  
The CY7C1461AV25/CY7C1463AV25/CY7C1465AV25 has  
an on-chip burst counter that allows the user the ability to  
supply a single address and conduct up to four Write opera-  
tions without reasserting the address inputs. ADV/LD must be  
driven LOW in order to load the initial address, as described  
in the Single Write Access section above. When ADV/LD is  
driven HIGH on the subsequent clock rise, the Chip Enables  
(CE1, CE2, and CE3) and WE inputs are ignored and the burst  
counter is incremented. The correct BWX inputs must be  
driven in each cycle of the burst write, in order to write the  
correct bytes of data.  
Burst Read Accesses  
The CY7C1461AV25/CY7C1463AV25/CY7C1465AV25 has  
an on-chip burst counter that allows the user the ability to  
supply a single address and conduct up to four Reads without  
reasserting the address inputs. ADV/LD must be driven LOW  
in order to load a new address into the SRAM, as described in  
the Single Read Access section above. The sequence of the  
burst counter is determined by the MODE input signal. A LOW  
input on MODE selects a linear burst mode, a HIGH selects an  
interleaved burst sequence. Both burst counters use A0 and  
A1 in the burst sequence, and will wrap around when incre-  
mented sufficiently. A HIGH input on ADV/LD will increment  
the internal burst counter regardless of the state of chip enable  
inputs or WE. WE is latched at the beginning of a burst cycle.  
Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
First  
Address  
A1: A0  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Document #: 38-05355 Rev. *E  
Page 9 of 29  
CY7C1461AV25  
CY7C1463AV25  
CY7C1465AV25  
Sleep Mode  
Linear Burst Address Table (MODE = GND)  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the “sleep” mode. CE1, CE2, and CE3, must remain inactive  
for the duration of tZZREC after the ZZ input returns LOW.  
First  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Address  
A1: A0  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
ZZ recovery time  
Test Conditions  
ZZ > VDD – 0.2V  
Min.  
Max.  
100  
Unit  
mA  
ns  
tZZS  
ZZ > VDD – 0.2V  
2tCYC  
tZZREC  
tZZI  
ZZ < 0.2V  
2tCYC  
0
ns  
ZZ active to sleep current  
This parameter is sampled  
This parameter is sampled  
2tCYC  
ns  
tRZZI  
ZZ Inactive to exit sleep current  
ns  
Truth Table[2, 3, 4, 5, 6, 7, 8]  
Address  
Used  
Operation  
Deselect Cycle  
CE1 CE2 CE3 ZZ ADV/LD WE BWX OE CEN CLK  
DQ  
None  
None  
H
X
X
X
L
X
X
L
X
H
X
X
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
L
X
X
X
X
H
X
H
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
L
L
L
L
L
L
L
L
L
L
L
L
L
H
X
L->H  
L->H  
L->H  
L->H  
Tri-State  
Tri-State  
Tri-State  
Tri-State  
Deselect Cycle  
Deselect Cycle  
None  
L
Continue Deselect Cycle  
Read Cycle (Begin Burst)  
Read Cycle (Continue Burst)  
NOP/Dummy Read (Begin Burst)  
Dummy Read (Continue Burst)  
Write Cycle (Begin Burst)  
Write Cycle (Continue Burst)  
NOP/Write Abort (Begin Burst)  
Write Abort (Continue Burst)  
Ignore Clock Edge (Stall)  
Sleep Mode  
None  
X
H
X
H
X
H
X
H
X
X
X
H
L
External  
Next  
L->H Data Out (Q)  
L->H Data Out (Q)  
X
L
X
L
H
L
L
External  
Next  
H
H
X
X
X
X
X
X
L->H  
L->H  
Tri-State  
Tri-State  
X
L
X
L
H
L
External  
Next  
L->H Data In (D)  
L->H Data In (D)  
X
L
X
L
H
L
X
L
L
None  
H
H
X
X
L->H  
L->H  
L->H  
X
Tri-State  
Tri-State  
Next  
X
X
X
X
X
X
H
X
X
X
X
X
Current  
None  
Tri-State  
Notes:  
2. X = “Don't Care.” H = Logic HIGH, L = Logic LOW. BW = L signifies at least one Byte Write Select is active, BW = Valid signifies that the desired byte write  
X
X
selects are asserted, see truth table for details.  
3. Write is defined by BW , and WE. See truth table for Read/Write.  
X
4. When a write cycle is detected, all I/Os are tri-stated, even during byte writes.  
5. The DQs and DQP pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.  
X
6. CEN = H, inserts wait states.  
7. Device will power-up deselected and the I/Os in a tri-state condition, regardless of OE.  
8. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle DQs and DQP = Tri-state when OE  
X
is inactive or when the device is deselected, and DQs and DQP = data when OE is active.  
X
Document #: 38-05355 Rev. *E  
Page 10 of 29  
CY7C1461AV25  
CY7C1463AV25  
CY7C1465AV25  
Truth Table for Read/Write[2, 3, 9]  
Function (CY7C1461AV25)  
Read  
WE  
H
L
BWA  
X
BWB  
X
BWC  
X
BWD  
X
Write No bytes written  
H
H
H
H
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write Byte C – (DQC and DQPC)  
Write Byte D – (DQD and DQPD)  
Write All Bytes  
L
L
H
H
H
L
H
L
H
H
L
H
H
L
H
L
H
H
H
L
L
L
L
L
L
Truth Table for Read/Write[2, 3, 9]  
Function (CY7C1463AV25)  
WE  
BWB  
BWA  
Read  
H
L
L
L
L
X
H
H
L
X
H
L
Write – No Bytes Written  
Write Byte a – (DQa and DQPa)  
Write Byte b – (DQb and DQPb)  
Write Both Bytes  
H
L
L
Truth Table for Read/Write[2, 3, 9]  
WE  
H
BWX  
Function (CY7C1465AV25)  
Read  
X
Write – No Bytes Written  
Write Byte X (DQx and DQPx)  
Write All Bytes  
L
H
L
L
L
All BW = L  
Note:  
9. Table only lists a partial listing of the byte write combinations. Any Combination of BW is valid Appropriate write will be done based on which byte write is active.  
X
Document #: 38-05355 Rev. *E  
Page 11 of 29  
CY7C1461AV25  
CY7C1463AV25  
CY7C1465AV25  
Test Data-In (TDI)  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The TDI ball is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. TDI  
is internally pulled up and can be unconnected if the TAP is  
unused in an application. TDI is connected to the most signif-  
icant bit (MSB) of any register. (See Tap Controller Block  
Diagram.)  
The CY7C1461AV25/CY7C1463AV25/CY7C1465AV25 incor-  
porates a serial boundary scan test access port (TAP). This  
part is fully compliant with 1149.1. The TAP operates using  
JEDEC-standard 2.5V/1.8V I/O logic level.  
The CY7C1461AV25/CY7C1463AV25/CY7C1465AV25 contains  
a TAP controller, instruction register, boundary scan register,  
bypass register, and ID register.  
Disabling the JTAG Feature  
Test Data-Out (TDO)  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are inter-  
nally pulled up and may be unconnected. They may alternately  
be connected to VDD through a pull-up resistor. TDO should be  
left unconnected. Upon power-up, the device will come up in  
a reset state which will not interfere with the operation of the  
device.  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current  
state of the TAP state machine. The output changes on the  
falling edge of TCK. TDO is connected to the least significant  
bit (LSB) of any register. (See Tap Controller State Diagram.)  
TAP Controller Block Diagram  
0
Bypass Register  
TAP Controller State Diagram  
2
1
0
0
0
Selection  
Circuitry  
TEST-LOGIC  
1
Instruction Register  
31 30 29  
Identification Register  
Selection  
RESET  
0
TDI  
TDO  
Circuitr  
y
.
.
. 2 1  
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
0
0
x
.
.
.
.
. 2 1  
1
1
CAPTURE-DR  
CAPTURE-IR  
Boundary Scan Register  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
TCK  
TMS  
1
1
TAP CONTROLLER  
EXIT1-DR  
EXIT1-IR  
0
0
PAUSE-DR  
0
PAUSE-IR  
0
1
1
Performing a TAP Reset  
0
0
EXIT2-DR  
1
EXIT2-IR  
1
A RESET is performed by forcing TMS HIGH (VDD) for five  
rising edges of TCK. This RESET does not affect the operation  
of the SRAM and may be performed while the SRAM is  
operating.  
UPDATE-DR  
UPDATE-IR  
1
0
1
0
At power-up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
TAP Registers  
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned into and out of the SRAM test  
circuitry. Only one register can be selected at a time through  
the instruction register. Data is serially loaded into the TDI ball  
on the rising edge of TCK. Data is output on the TDO ball on  
the falling edge of TCK.  
Test Access Port (TAP)  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Instruction Register  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO balls as shown in the Tap Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
Test Mode Select (TMS)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this ball unconnected if the TAP is not used. The ball is  
pulled up internally, resulting in a logic HIGH level.  
Document #: 38-05355 Rev. *E  
Page 12 of 29  
CY7C1461AV25  
CY7C1463AV25  
CY7C1465AV25  
When the TAP controller is in the Capture-IR state, the two  
least significant bits are loaded with a binary “01” pattern to  
allow for fault isolation of the board-level serial test data path.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO pins when the TAP  
controller is in a Shift-DR state. The SAMPLE Z command puts  
the output bus into a High-Z state until the next command is  
given during the “Update IR” state.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When  
the SAMPLE/PRELOAD instructions are loaded into the in-  
struction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and output pins is cap-  
tured in the boundary scan register.  
Boundary Scan Register  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM. The length of the Boundary  
Scan Register for the SRAM in different packages is listed in  
the Scan Register Sizes table.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is possi-  
ble that during the Capture-DR state, an input or output will  
undergo a transition. The TAP may then try to capture a signal  
while in transition (metastable state). This will not harm the  
device, but there is no guarantee as to the value that will be  
captured. Repeatable results may not be possible.  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR  
state and is then placed between the TDI and TDO balls when  
the controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used  
to capture the contents of the I/O ring.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller's capture set-up plus  
hold times (tCS and tCH). The SRAM clock input might not be  
captured correctly if there is no way in a design to stop (or  
slow) the clock during a SAMPLE/PRELOAD instruction. If this  
is an issue, it is still possible to capture all other signals and  
simply ignore the value of the CK and CK captured in the  
boundary scan register.  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI, and the LSB is connected to TDO.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions table.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the  
boundary scan register between the TDI and TDO pins.  
PRELOAD allows an initial data pattern to be placed at the  
latched parallel outputs of the boundary scan register cells  
prior to the selection of another boundary scan test operation.  
TAP Instruction Set  
The shifting of data for the SAMPLE and PRELOAD phases  
can occur concurrently when required—that is, while data  
captured is shifted out, the preloaded data can be shifted in.  
Overview  
Eight different instructions are possible with the three bit  
instruction register. All combinations are listed in the  
Instruction Codes table. Three of these instructions are listed  
as RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
BYPASS  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO pins. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO balls.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
EXTEST  
The EXTEST instruction enables the preloaded data to be  
driven out through the system output pins. This instruction also  
selects the boundary scan register to be connected for serial  
access between the TDI and TDO in the shift-DR controller  
state.  
IDCODE  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
EXTEST OUTPUT BUS TRI-STATE  
IEEE Standard 1149.1 mandates that the TAP controller be  
able to put the output bus into a tri-state mode.  
The IDCODE instruction is loaded into the instruction register  
upon power-up or whenever the TAP controller is given a test  
logic reset state.  
The boundary scan register has a special bit located at bit #89  
(for 165-FBGA package) or bit #138 (for 209 FBGA package).  
Document #: 38-05355 Rev. *E  
Page 13 of 29  
CY7C1461AV25  
CY7C1463AV25  
CY7C1465AV25  
When this scan cell, called the “extest output bus tri-state”, is  
latched into the preload register during the “Update-DR” state  
in the TAP controller, it will directly control the state of the  
output (Q-bus) pins, when the EXTEST is entered as the  
current instruction. When HIGH, it will enable the output  
buffers to drive the output bus. When LOW, this bit will place  
the output bus into a High-Z condition.  
loaded into that shift-register cell will latch into the preload  
register. When the EXTEST instruction is entered, this bit will  
directly control the output Q-bus pins. Note that this bit is  
pre-set HIGH to enable the output when the device is  
powered-up, and also when the TAP controller is in the  
Test-Logic-Reset” state.  
Reserved  
This bit can be set by entering the SAMPLE/PRELOAD or  
EXTEST command, and then shifting the desired bit into that  
cell, during the “Shift-DR” state. During “Update-DR”, the value  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
TAP AC Switching Characteristics Over the Operating Range[10, 11]  
Parameter  
Clock  
tTCYC  
tTF  
Description  
Min.  
Max.  
Unit  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH time  
TCK Clock LOW time  
50  
ns  
MHz  
ns  
20  
tTH  
20  
20  
tTL  
ns  
Output Times  
tTDOV TCK Clock LOW to TDO Valid  
tTDOX TCK Clock LOW to TDO Invalid  
Set-up Times  
tTMSS TMS Set-up to TCK Clock Rise  
tTDIS  
10  
ns  
ns  
0
5
5
5
ns  
ns  
ns  
TDI Set-up to TCK Clock Rise  
Capture Set-up to TCK Rise  
tCS  
Hold Times  
tTMSH  
tTDIH  
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
tCH  
Capture Hold after Clock Rise  
Notes:  
10. .t and t refer to the set-up and hold time requirements of latching data from the boundary scan register.  
CS  
CH  
11. Test conditions are specified using the load in TAP AC test Conditions. t /t = 1 ns.  
R
F
Document #: 38-05355 Rev. *E  
Page 14 of 29  
CY7C1461AV25  
CY7C1463AV25  
CY7C1465AV25  
1.8V TAP AC Test Conditions  
2.5V TAP AC Test Conditions  
Input pulse levels .................................... 0.2V to VDDQ – 0.2  
Input rise and fall time..................................................... 1 ns  
Input timing reference levels...........................................0.9V  
Output reference levels...................................................0.9V  
Test load termination supply voltage...............................0.9V  
Input pulse levels.................................................VSS to 2.5V  
Input rise and fall time .....................................................1 ns  
Input timing reference levels......................................... 1.25V  
Output reference levels ................................................ 1.25V  
Test load termination supply voltage ............................ 1.25V  
2.5V TAP AC Output Load Equivalent  
1.8V TAP AC Output Load Equivalent  
1.25V  
0.9V  
50  
50  
TDO  
TDO  
ZO= 50Ω  
ZO= 50Ω  
20pF  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
(0°C < TA < +70°C; VDD = 2.375 to 2.625 unless otherwise noted)[12]  
Parameter  
VOH1  
Description  
Test Conditions  
Min.  
2.0  
Max.  
Unit  
V
Output HIGH Voltage IOH = –1.0 mA, VDDQ = 2.5V  
VOH2  
Output HIGH Voltage IOH = –100 µA  
VDDQ = 2.5V  
DDQ = 1.8V  
2.1  
V
V
1.6  
V
VOL1  
VOL2  
Output LOW Voltage IOL = 1.0 mA  
Output LOW Voltage IOL = 100 µA  
VDDQ = 2.5V  
VDDQ = 2.5V  
0.4  
0.2  
V
V
V
DDQ = 1.8V  
VDDQ = 2.5V  
DDQ = 1.8V  
0.2  
V
VIH  
VIL  
IX  
Input HIGH Voltage  
Input LOW Voltage  
1.7  
1.26  
–0.3  
–0.3  
–5  
VDD + 0.3  
VDD + 0.3  
0.7  
V
V
V
VDDQ = 2.5V  
VDDQ = 1.8V  
V
0.36  
V
Input Load Current  
GND < VIN < VDDQ  
5
µA  
Identification Register Definitions  
CY7C1461AV25 CY7C1463AV25 CY7C1465AV25  
Instruction Field  
Revision Number (31:29)  
Device Depth (28:24)  
(1M × 36)  
(2M × 18)  
(512K × 72)  
Description  
000  
000  
000  
Describes the version number  
Reserved for internal use  
01011  
01011  
01011  
Architecture/Memory Type (23:18)  
001001  
001001  
001001  
Defines memory type and archi-  
tecture  
Bus Width/Density(17:12)  
100111  
010111  
110111  
Defines width and density  
Cypress JEDEC ID Code (11:1)  
00000110100  
00000110100  
00000110100 Allows unique identification of  
SRAM vendor  
ID Register Presence Indicator (0)  
1
1
1
Indicates the presence of an ID  
register  
Note:  
12. All voltages referenced to V (GND).  
SS  
Document #: 38-05355 Rev. *E  
Page 15 of 29  
CY7C1461AV25  
CY7C1463AV25  
CY7C1465AV25  
Scan Register Sizes  
Register Name  
Bit Size (×36)  
Bit Size (×18)  
Bit Size (×72)  
Instruction  
3
1
3
1
3
1
Bypass  
ID  
32  
89  
32  
89  
32  
Boundary Scan Order (165-ball FBGA package)  
Boundary Scan Order (209-ball FBGA package)  
138  
Identification Codes  
Instruction  
EXTEST  
Code  
Description  
000  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to High-Z state.  
IDCODE  
001  
010  
Loads the ID register with the vendor ID code and places the register between TDI and  
TDO. This operation does not affect SRAM operations.  
SAMPLE Z  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
RESERVED  
011  
100  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
Document #: 38-05355 Rev. *E  
Page 16 of 29  
CY7C1461AV25  
CY7C1463AV25  
CY7C1465AV25  
165-ball FBGA Boundary Scan Order [13]  
CY7C1461AV25 (1M × 36), CY7C1463AV25 (2M × 18)  
Bit#  
1
Ball ID  
N6  
Bit#  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
Ball ID  
E11  
D11  
G10  
F10  
E10  
D10  
C11  
A11  
B11  
A10  
B10  
A9  
Bit#  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
Ball ID  
A3  
A2  
B2  
C2  
B1  
A1  
C1  
D1  
E1  
F1  
Bit#  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
Ball ID  
N1  
2
N7  
N2  
3
N10  
P11  
P8  
P1  
4
R1  
5
R2  
6
R8  
P3  
7
R9  
R3  
8
P9  
P2  
9
P10  
R10  
R11  
H11  
N11  
M11  
L11  
K11  
J11  
M10  
L10  
K10  
J10  
H9  
R4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
P4  
G1  
D2  
E2  
F2  
N5  
P6  
B9  
R6  
C10  
A8  
Internal  
G2  
H1  
H3  
J1  
B8  
A7  
B7  
B6  
K1  
L1  
A6  
B5  
M1  
J2  
A5  
H10  
G11  
F11  
A4  
K2  
L2  
B4  
B3  
M2  
Note:  
13. Bit# 89 is preset HIGH.  
Document #: 38-05355 Rev. *E  
Page 17 of 29  
CY7C1461AV25  
CY7C1463AV25  
CY7C1465AV25  
209-ball BGA Boundary Scan Order [13, 14]  
CY7C1465V25 (512K x 72)  
Bit#  
1
Ball ID  
W6  
V6  
Bit#  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
Ball ID  
F6  
Bit#  
71  
Ball ID  
H6  
C6  
B6  
A6  
A5  
B5  
C5  
D5  
D4  
C4  
A4  
B4  
C3  
B3  
A3  
A2  
A1  
B2  
B1  
C2  
C1  
D2  
D1  
E1  
E2  
F2  
Bit#  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
Ball ID  
K3  
2
K8  
72  
K4  
3
U6  
K9  
73  
K6  
4
W7  
V7  
K10  
J11  
J10  
H11  
H10  
G11  
G10  
F11  
F10  
E10  
E11  
D11  
D10  
C11  
C10  
B11  
B10  
A11  
A10  
C9  
74  
K2  
5
75  
L2  
6
U7  
76  
L1  
7
T7  
77  
M2  
M1  
N2  
N1  
P2  
8
V8  
78  
9
U8  
79  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
T8  
80  
V9  
81  
U9  
82  
P1  
P6  
83  
R2  
R1  
T2  
W11  
W10  
V11  
V10  
U11  
U10  
T11  
T10  
R11  
R10  
P11  
P10  
N11  
N10  
M11  
M10  
L11  
L10  
K11  
M6  
84  
85  
86  
T1  
87  
U2  
U1  
V2  
88  
89  
90  
V1  
91  
W2  
W1  
T6  
92  
93  
B9  
94  
U3  
V3  
A9  
95  
D8  
96  
T4  
C8  
97  
F1  
T5  
B8  
98  
G1  
G2  
H2  
H1  
J2  
U4  
V4  
A8  
99  
D7  
100  
101  
102  
103  
104  
105  
W5  
V5  
C7  
B7  
U5  
Internal  
A7  
J1  
L6  
D6  
K1  
N6  
J6  
G6  
Note:  
14. Bit# 138 is preset HIGH.  
Document #: 38-05355 Rev. *E  
Page 18 of 29  
CY7C1461AV25  
CY7C1463AV25  
CY7C1465AV25  
DC Input Voltage ................................... –0.5V to VDD + 0.5V  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Static Discharge Voltage........................................... >2001V  
(per MIL-STD-883, Method 3015)  
Storage Temperature .................................65°C to +150°C  
Latch-up Current..................................................... >200 mA  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Operating Range  
Supply Voltage on VDD Relative to GND........ –0.5V to +3.6V  
Supply Voltage on VDDQ Relative to GND ......0.5V to +VDD  
Ambient  
Temperature  
Range  
VDD  
VDDQ  
Commercial 0°C to +70°C 2.5V –5%/+5% 1.7V to VDD  
DC Voltage Applied to Outputs  
in Tri-State........................................... –0.5V to VDDQ + 0.5V  
Industrial  
–40°C to +85°C  
Electrical Characteristics Over the Operating Range[15, 16]  
DC Electrical Characteristics Over the Operating Range  
Parameter  
VDD  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Test Conditions  
Min.  
2.375  
2.375  
1.7  
Max.  
2.625  
VDD  
Unit  
V
VDDQ  
for 2.5V I/O  
for 1.8V I/O  
V
1.9  
V
VOH  
VOL  
VIH  
VIL  
IX  
Output HIGH Voltage  
Output LOW Voltage  
for 2.5V I/O, IOH = 1.0 mA  
for 1.8V I/O, IOH = –100 µA  
for 2.5V I/O, IOL = 1.0 mA  
for 1.8V I/O, IOL = 100 µA  
2.0  
V
1.6  
V
0.4  
0.2  
V
V
Input HIGH Voltage[15] for 2.5V I/O  
1.7  
1.26  
–0.3  
–0.3  
–5  
VDD + 0.3V  
VDD + 0.3V  
0.7  
V
for 1.8V I/O  
V
Input LOW Voltage[15]  
for 2.5V I/O  
for 1.8V I/O  
V
0.36  
V
Input Leakage Current GND VI VDDQ  
except ZZ and MODE  
5
µA  
Input Current of MODE Input = VSS  
Input = VDD  
–30  
–5  
µA  
µA  
µA  
µA  
µA  
mA  
mA  
mA  
5
Input Current of ZZ  
Input = VSS  
Input = VDD  
30  
5
IOZ  
IDD  
Output Leakage Current GND VI VDDQ, Output Disabled  
–5  
VDD Operating Supply VDD = Max., IOUT = 0 mA,  
7.5-ns cycle, 133 MHz  
10-ns cycle, 100 MHz  
270  
250  
150  
Current  
f = fMAX = 1/tCYC  
ISB1  
ISB2  
ISB3  
Automatic CE  
Power-down  
Current—TTL Inputs  
VDD = Max, Device Deselected, All speeds  
VIN VIH or VIN VIL  
f = fMAX, inputs switching  
Automatic CE  
Power-down  
Current—CMOS Inputs f = 0, inputs static  
VDD = Max, Device Deselected, All speeds  
VIN 0.3V or VIN > VDD – 0.3V,  
120  
150  
135  
mA  
mA  
mA  
Automatic CE  
Power-down  
Current—CMOS Inputs f = fMAX, inputs switching  
VDD = Max, Device Deselected, or All speeds  
VIN 0.3V or VIN > VDDQ – 0.3V  
ISB4  
Automatic CE  
VDD = Max, Device Deselected, All Speeds  
Power-down  
Current—TTL Inputs  
VIN VDD – 0.3V or VIN 0.3V,  
f = 0, inputs static  
Notes:  
15. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2), undershoot: V (AC) > –2V (Pulse widthless than t  
/2)  
CYC  
IH  
DD  
CYC  
IL  
16. T  
: Assumes a linear ramp from 0V to V (min.) within 200 ms. During this time V < V and V  
< V  
.
Power-up  
DD  
IH  
DD  
DDQ  
DD  
Document #: 38-05355 Rev. *E  
Page 19 of 29  
CY7C1461AV25  
CY7C1463AV25  
CY7C1465AV25  
Capacitance[17]  
100 TQFP 165 FBGA 209 FBGA  
Parameter  
Description  
Input Capacitance  
Test Conditions  
Max.  
6.5  
3
Max.  
Max.  
Unit  
pF  
CIN  
TA = 25°C, f = 1 MHz,  
7
7
6
5
5
7
VDD = 2.5V  
CCLK  
CI/O  
Clock Input Capacitance  
Input/Output Capacitance  
pF  
VDDQ = 2.5V  
5.5  
pF  
Thermal Resistance[17]  
100 TQFP  
Package  
165 FBGA 209 FBGA  
Parameter  
Description  
Test Conditions  
Package  
Package  
Unit  
ΘJA  
Thermal Resistance  
(Junction to Ambient)  
Test conditions follow standard  
test methods and procedures  
for measuring thermal  
25.21  
20.8  
25.31  
°C/W  
ΘJC  
Thermal Resistance  
(Junction to Case)  
2.28  
3.2  
4.48  
°C/W  
impedance, per EIA/JESD51.  
AC Test Loads and Waveforms  
2.5V I/O Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
90%  
10%  
Z = 50Ω  
0
R = 50Ω  
10%  
L
GND  
5 pF  
INCLUDING  
R = 1538Ω  
1ns  
1ns  
V = 1.25V  
T
JIG AND  
SCOPE  
(a)  
(b)  
(c)  
1.8V I/O Test Load  
R = 14 KΩ  
1.8V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ - 0.2  
0.2  
90%  
10%  
Z = 50Ω  
0
10%  
L
5 pF  
R = 14 KΩ  
1ns  
1ns  
INCLUDING  
V = 0.9V  
T
JIG AND  
SCOPE  
(a)  
(b)  
(c)  
Note:  
17. Tested initially and after any design or process change that may affect these parameters.  
Document #: 38-05355 Rev. *E  
Page 20 of 29  
CY7C1461AV25  
CY7C1463AV25  
CY7C1465AV25  
Switching Characteristics Over the Operating Range [22, 23]  
–133  
–100  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Unit  
[18]  
tPOWER  
1
1
ms  
Clock  
tCYC  
Clock Cycle Time  
Clock HIGH  
7.5  
2.5  
2.5  
10  
3.0  
3.0  
ns  
ns  
ns  
tCH  
tCL  
Clock LOW  
Output Times  
tCDV  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
Clock to Low-Z[19, 20, 21]  
6.5  
8.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDOH  
2.5  
2.5  
2.5  
2.5  
0
tCLZ  
tCHZ  
Clock to High-Z[19, 20, 21]  
3.8  
3.0  
4.5  
3.8  
tOEV  
OE LOW to Output Valid  
tOELZ  
tOEHZ  
Set-up Times  
tAS  
OE LOW to Output Low-Z[19, 20, 21]  
OE HIGH to Output High-Z[19, 20, 21]  
0
0
3.0  
4.0  
Address Set-up Before CLK Rise  
ADV/LD Set-up Before CLK Rise  
WE, BWX Set-up Before CLK Rise  
CEN Set-up Before CLK Rise  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tALS  
tWES  
tCENS  
tDS  
Data Input Set-up Before CLK Rise  
Chip Enable Set-up Before CLK Rise  
tCES  
Hold Times  
tAH  
Address Hold After CLK Rise  
ADV/LD Hold After CLK Rise  
WE, BWX Hold After CLK Rise  
CEN Hold After CLK Rise  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tALH  
tWEH  
tCENH  
tDH  
Data Input Hold After CLK Rise  
Chip Enable Hold After CLK Rise  
tCEH  
Notes:  
18. This part has a voltage regulator internally; t  
is the time that the power needs to be supplied above V (minimum) initially, before a read or write operation  
DD  
POWER  
can be initiated.  
19. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
CHZ CLZ OELZ  
OEHZ  
20. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
CLZ  
OEHZ  
OELZ  
CHZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions.  
21. This parameter is sampled and not 100% tested.  
22. Timing reference level is 1.25V when V  
= 2.5V and is 0.9V when V  
= 1.8V.  
DDQ  
DDQ  
23. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
Document #: 38-05355 Rev. *E  
Page 21 of 29  
CY7C1461AV25  
CY7C1463AV25  
CY7C1465AV25  
Switching Waveforms  
Read/Write Waveforms[24, 25, 26]  
t
1
2
3
4
5
6
7
8
9
10  
CYC  
t
CLK  
CEN  
t
t
t
t
t
CENS  
CES  
CENH  
CEH  
CL  
CH  
CE  
ADV/LD  
WE  
BW  
X
A1  
A2  
A4  
A3  
A5  
A6  
A7  
ADDRESS  
DQ  
t
CDV  
t
t
AS  
AH  
t
t
t
t
CHZ  
DOH  
OEV  
CLZ  
D(A1)  
t
D(A2)  
D(A2+1)  
Q(A3)  
Q(A4)  
Q(A4+1)  
D(A5)  
Q(A6)  
D(A7)  
t
OEHZ  
t
DS  
DH  
t
DOH  
t
OELZ  
OE  
COMMAND  
WRITE  
D(A1)  
WRITE  
D(A2)  
BURST  
WRITE  
READ  
Q(A3)  
READ  
Q(A4)  
BURST  
READ  
WRITE  
D(A5)  
READ  
Q(A6)  
WRITE  
D(A7)  
DESELECT  
D(A2+1)  
Q(A4+1)  
DON’T CARE  
UNDEFINED  
Notes:  
For this waveform ZZ is tied LOW.  
24.  
25. When CE is LOW, CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH, CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
26. Order of the Burst sequence is determined by the status of the MODE (0 = Linear, 1 = Interleaved). Burst operations are optional.  
Document #: 38-05355 Rev. *E  
Page 22 of 29  
CY7C1461AV25  
CY7C1463AV25  
CY7C1465AV25  
Switching Waveforms (continued)  
NOP, STALL and DESELECT Cycles[24, 25, 27]  
t
1
2
3
4
5
6
7
8
9
10  
CYC  
CLK  
CEN  
t
t
t
t
t
t
CENS  
CES  
CENH  
CEH  
CL  
CH  
CE  
ADV/LD  
WE  
BW  
X
A1  
A2  
A4  
A3  
A5  
A6  
A7  
ADDRESS  
DQ  
t
CDV  
t
t
AS  
AH  
t
t
t
t
CHZ  
DOH  
OEV  
CLZ  
D(A1)  
t
D(A2)  
D(A2+1)  
Q(A3)  
Q(A4)  
Q(A4+1)  
D(A5)  
Q(A6)  
D(A7)  
t
OEHZ  
t
DS  
DH  
t
DOH  
t
OELZ  
OE  
COMMAND  
WRITE  
D(A1)  
WRITE  
D(A2)  
BURST  
WRITE  
READ  
Q(A3)  
READ  
Q(A4)  
BURST  
READ  
WRITE  
D(A5)  
READ  
Q(A6)  
WRITE  
D(A7)  
DESELECT  
D(A2+1)  
Q(A4+1)  
DON’T CARE  
UNDEFINED  
Note:  
27. The IGNORE CLOCK EDGE or STALL cycle (Clock 3) illustrates CEN being used to create a pause. A write is not performed during this cycle.  
Document #: 38-05355 Rev. *E  
Page 23 of 29  
CY7C1461AV25  
CY7C1463AV25  
CY7C1465AV25  
Switching Waveforms (continued)  
ZZ Mode Timing[28, 29]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes:  
28. Device must be deselected when entering ZZ mode. See truth table for all possible signal conditions to deselect the device.  
29. DQs are in high-Z when exiting ZZ sleep mode.  
Document #: 38-05355 Rev. *E  
Page 24 of 29  
CY7C1461AV25  
CY7C1463AV25  
CY7C1465AV25  
Ordering Information  
Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or  
visit www.cypress.com for actual products offered.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Ordering Code  
Part and Package Type  
133 CY7C1461AV25-133AXC 51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
CY7C1463AV25-133AXC  
Commercial  
CY7C1461AV25-133BZC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1463AV25-133BZC  
CY7C1461AV25-133BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free  
CY7C1463AV25-133BZXC  
CY7C1465AV25-133BGC 51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
CY7C1465AV25-133BGXC  
CY7C1461AV25-133AXI  
CY7C1463AV25-133AXI  
CY7C1461AV25-133BZI  
CY7C1463AV25-133BZI  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
lndustrial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1461AV25-133BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free  
CY7C1463AV25-133BZXI  
CY7C1465AV25-133BGI  
CY7C1465AV25-133BGXI  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free  
100 CY7C1461AV25-100AXC 51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
CY7C1463AV25-100AXC  
Commercial  
CY7C1461AV25-100BZC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1463AV25-100BZC  
CY7C1461AV25-100BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free  
CY7C1463AV25-100BZXC  
CY7C1465AV25-100BGC 51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
CY7C1465AV25-100BGXC  
CY7C1461AV25-100AXI  
CY7C1463AV25-100AXI  
CY7C1461AV25-100BZI  
CY7C1463AV25-100BZI  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free  
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
lndustrial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1461AV25-100BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free  
CY7C1463AV25-100BZXI  
CY7C1465AV25-100BGI  
CY7C1465AV25-100BGXI  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free  
Document #: 38-05355 Rev. *E  
Page 25 of 29  
CY7C1461AV25  
CY7C1463AV25  
CY7C1465AV25  
Package Diagrams  
100-pin TQFP (14 x 20 x 1.4 mm) (51-85050)  
16.00 0.20  
1.40 0.05  
14.00 0.10  
100  
81  
80  
1
0.30 0.08  
0.65  
TYP.  
12° 1°  
(8X)  
SEE DETAIL  
A
30  
51  
31  
50  
0.20 MAX.  
1.60 MAX.  
R 0.08 MIN.  
0.20 MAX.  
0° MIN.  
SEATING PLANE  
STAND-OFF  
0.05 MIN.  
0.15 MAX.  
NOTE:  
0.25  
1. JEDEC STD REF MS-026  
GAUGE PLANE  
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH  
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE  
R 0.08 MIN.  
0.20 MAX.  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH  
3. DIMENSIONS IN MILLIMETERS  
0°-7°  
0.60 0.15  
0.20 MIN.  
51-85050-*B  
1.00 REF.  
DETAIL  
A
Document #: 38-05355 Rev. *E  
Page 26 of 29  
CY7C1461AV25  
CY7C1463AV25  
CY7C1465AV25  
Package Diagrams (continued)  
165-ball FBGA (15 x 17 x 1.4 mm) (51-85165)  
PIN 1 CORNER  
BOTTOM VIEW  
TOP VIEW  
Ø0.05 M C  
PIN 1 CORNER  
Ø0.25 M C A B  
Ø0.45 0.05(165X)  
1
2
3
4
5
6
7
8
9
10  
11  
11 10  
9
8
7
6
5
4
3
2
1
A
B
A
B
C
D
C
D
E
E
F
F
G
G
H
J
H
J
K
K
L
L
M
M
N
P
R
N
P
R
A
1.00  
5.00  
10.00  
B
15.00 0.10  
0.15(4X)  
SEATING PLANE  
C
51-85165-*A  
Document #: 38-05355 Rev. *E  
Page 27 of 29  
CY7C1461AV25  
CY7C1463AV25  
CY7C1465AV25  
Package Diagrams (continued)  
209-ball FBGA (14 x 22 x 1.76 mm) (51-85167)  
51-85167-**  
NoBL and No Bus Latency are trademarks of Cypress Semiconductor Corporation. ZBT is a trademark of Integrated Device  
Technology, Inc. All product and company names mentioned in this document are the trademarks of their respective holders.  
Document #: 38-05355 Rev. *E  
Page 28 of 29  
© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
CY7C1461AV25  
CY7C1463AV25  
CY7C1465AV25  
Document History Page  
Document Title: CY7C1461AV25/CY7C1463AV25/CY7C1465AV25 36-Mbit (1M x 36/2M x 18/512K x 72) Flow-Through  
SRAM with NoBL™ Architecture  
Document Number: 38-05355  
Orig. of  
REV.  
ECN NO. Issue Date Change  
Description of Change  
**  
254911  
See ECN  
SYT  
New data sheet  
Changed part number from previous revision. New and old part number differ  
by the letter “A”  
*A  
*B  
300131  
See ECN  
SYT  
Removed 150- and 177-MHz speed bins  
Changed ΘJA and ΘJC from TBD to 25.21 and 2.58 °C/W, respectively, for  
TQFP Package  
Added lead-free information for 100-pin TQFP, 165 FBGA and 209 BGA  
packages  
Added “Lead-free BG and BZ packages availability” below the Ordering Infor-  
mation  
320813  
See ECN  
SYT  
Changed H9 pin from VSSQ to VSS on the Pin Configuration table for 209  
FBGA  
Changed the test condition from VDD = Min. to VDD = Max for VOL in the  
Electrical Characteristics table  
Replaced the TBD’s for IDD, ISB1, ISB2, ISB3 and ISB4 to their respective values  
Replaced TBD’s for ΘJA and ΘJC to their respective values for 165 FBGA  
and 209 FBGA packages on the Thermal Resistance table  
Changed CIN, CCLK and CI/O to 6.5, 3 and 5.5 pF from 5, 5 and 7 pF for TQFP  
Package  
Removed “Lead-free BG and BZ packages availability” comment below the  
Ordering Information  
*C  
*D  
*E  
331551  
See ECN  
SYT  
Modified Address Expansion balls in the pinouts for 165 FBGA and 209 BGA  
Packages as per JEDEC standards and updated the Pin Definitions accord-  
ingly  
Changed typo from (-0.5V+4.6V) to (-0.5V+3.6V) for Supply Voltage on VDD  
Relative to GND under the Maximum Ratings Section  
Modified VOL, VOH test conditions  
Replaced TBD to 100 mA for IDDZZ  
Changed CIN, CCLK and CI/O to 7, 7and 6 pF from 5, 5 and 7 pF for 165 FBGA  
Package  
Added Industrial Temperature Grade  
Changed ISB2 and ISB4 from 100 and 110 mA to 120 and 135 mA respectively  
Updated the Ordering Information by shading and unshading MPNs as per  
availability  
417547  
See ECN  
RXU  
Converted from Preliminary to Final  
Changed address of Cypress Semiconductor Corporation on Page# 1 from  
“3901 North First Street” to “198 Champion Court”  
Changed IX current value in MODE from –5 & 30 µA to –30 & 5 µA respec-  
tively and also Changed IX current value in ZZ from –30 & 5 µA to –5 & 30  
µA respectively on page# 20  
Modified test condition from VIH < VDD to VIH < VDD  
Modified “Input Load” to “Input Leakage Current except ZZ and MODE” in the  
Electrical Characteristics Table  
Replaced Package Name column with Package Diagram in the Ordering  
Information table  
Replaced Package Diagram of 51-85050 from *A to *B  
Updated the Ordering Information Table  
473650  
See ECN  
VKN  
Added the Maximum Rating for Supply Voltage on VDDQ Relative to GND.  
Changed tTH, tTL from 25 ns to 20 ns and tTDOV from 5 ns to 10 ns in TAP  
AC Switching Characteristics table.  
Updated the Ordering Information table.  
Document #: 38-05355 Rev. *E  
Page 29 of 29  

相关型号:

CY7C1463AV25-133BZXI

36-Mbit (1M x 36/2M x 18/512K x 72) Flow-Through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1463AV33

36-Mbit (1M x 36/2 M x 18/512K x 72) Flow-Through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1463AV33-100AXC

36-Mbit (1M x 36/2 M x 18/512K x 72) Flow-Through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1463AV33-100AXI

36-Mbit (1M x 36/2 M x 18/512K x 72) Flow-Through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1463AV33-100BGC

ZBT SRAM, 2MX18, 8.5ns, CMOS, PBGA209, 14 X 22 MM, 1.76 MM HEIGHT, FBGA-209
CYPRESS
CYPRESS

CY7C1463AV33-100BGXI

ZBT SRAM, 2MX18, 8.5ns, CMOS, PBGA209, 14 X 22 MM, 1.76 MM HEIGHT, LEAD FREE, FBGA-209
CYPRESS

CY7C1463AV33-100BZC

36-Mbit (1M x 36/2 M x 18/512K x 72) Flow-Through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1463AV33-100BZI

36-Mbit (1M x 36/2 M x 18/512K x 72) Flow-Through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1463AV33-100BZXC

36-Mbit (1M x 36/2 M x 18/512K x 72) Flow-Through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1463AV33-100BZXI

36-Mbit (1M x 36/2 M x 18/512K x 72) Flow-Through SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1463AV33-133AXC

36-Mbit (1M x 36/2 M x 18/512K x 72) Flow-Through SRAM with NoBL⑩ Architecture
CYPRESS