CY7C1463AV33-100BGXI [CYPRESS]

ZBT SRAM, 2MX18, 8.5ns, CMOS, PBGA209, 14 X 22 MM, 1.76 MM HEIGHT, LEAD FREE, FBGA-209;
CY7C1463AV33-100BGXI
型号: CY7C1463AV33-100BGXI
厂家: CYPRESS    CYPRESS
描述:

ZBT SRAM, 2MX18, 8.5ns, CMOS, PBGA209, 14 X 22 MM, 1.76 MM HEIGHT, LEAD FREE, FBGA-209

时钟 静态存储器 内存集成电路
文件: 总29页 (文件大小:1156K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1461AV33  
CY7C1463AV33  
CY7C1465AV33  
36-Mbit (1M x 36/2 M x 18/512K x 72)  
Flow-Through SRAM with NoBL™ Architecture  
Functional Description[1]  
Features  
• No Bus Latency™ (NoBL™) architecture eliminates  
dead cycles between write and read cycles.  
The CY7C1461AV33/CY7C1463AV33/CY7C1465AV33 is a  
3.3V, 1M x 36/2M x 18/512K x 72 Synchronous Flow -through  
Burst SRAM designed specifically to support unlimited true  
back-to-back Read/Write operations without the insertion of  
wait states. The CY7C1461AV33/CY7C1463AV33/ CY7C1465AV33  
is equipped with the advanced No Bus Latency (NoBL) logic  
required to enable consecutive Read/Write operations with  
data being transferred on every clock cycle. This feature  
dramatically improves the throughput of data through the  
SRAM, especially in systems that require frequent Write-Read  
transitions.  
• Can support up to 133-MHz bus operations with zero  
wait states  
— Data is transferred on every clock  
• Pin-compatible and functionally equivalent to ZBT™  
devices  
• Internally self-timed output buffer control to eliminate  
the need to use OE  
• Registered inputs for flow-through operation  
• Byte Write capability  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. The clock input is qualified by  
the Clock Enable (CEN) signal, which when deasserted  
suspends operation and extends the previous clock cycle.  
Maximum access delay from the clock rise is 6.5 ns (133-MHz  
device).  
• 3.3V/2.5V I/O power supply  
• Fast clock-to-output times  
— 6.5 ns (for 133-MHz device)  
— 8.5 ns (for 100-MHz device)  
Write operations are controlled by the two or four Byte Write  
Select (BWX) and a Write Enable (WE) input. All writes are  
conducted with on-chip synchronous self-timed write circuitry.  
• Clock Enable (CEN) pin to enable clock and suspend  
operation  
Three synchronous Chip Enables (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output tri-state control. In order to avoid bus  
contention, the output drivers are synchronously tri-stated  
during the data portion of a write sequence.  
• Synchronous self-timed writes  
• Asynchronous Output Enable  
• CY7C1461AV33, CY7C1463AV33 available in  
JEDEC-standard lead-free 100-pin TQFP package,  
lead-free and non-lead-free 165-ball FBGA package.  
CY7C1465AV33 available in lead-free and non-lead-free  
209-ball FBGA package  
• Three chip enables for simple depth expansion  
• Automatic Power-down feature available using ZZ  
mode or CE deselect  
• JTAG boundary scan for FBGA packages  
• Burst Capability—linear or interleaved burst order  
• Low standby power  
Selection Guide  
133 MHz  
6.5  
100 MHz  
8.5  
Unit  
ns  
Maximum Access Time  
Maximum Operating Current  
310  
290  
mA  
mA  
Maximum CMOS Standby Current  
120  
120  
Note:  
1. For best-practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.  
Cypress Semiconductor Corporation  
Document #: 38-05356 Rev. *D  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised December 22, 2005  
CY7C1461AV33  
CY7C1463AV33  
CY7C1465AV33  
Logic Block Diagram – CY7C1461AV33 (1M x 36)  
ADDRESS  
A0, A1, A  
A1  
A1'  
A0'  
REGISTER  
D1  
A0  
Q1  
Q0  
D0  
MODE  
BURST  
LOGIC  
CE  
ADV/LD  
C
CLK  
CEN  
C
WRITE ADDRESS  
REGISTER  
O
U
T
P
U
T
D
A
T
S
E
N
S
ADV/LD  
A
B
U
F
MEMORY  
ARRAY  
BWA  
BWB  
BWC  
BWD  
WRITE  
DRIVERS  
E
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
S
T
E
E
R
I
DQs  
DQP  
DQP  
DQP  
DQP  
A
B
C
D
A
M
P
F
E
R
S
S
WE  
E
N
G
INPUT  
REGISTER  
E
OE  
READ LOGIC  
CE1  
CE2  
CE3  
SLEEP  
CONTROL  
ZZ  
1
Logic Block Diagram – CY7C1463AV33 (2M x 18)  
ADDRESS  
A0, A1, A  
A1  
A1'  
A0'  
REGISTER  
D1  
A0  
Q1  
Q0  
D0  
MODE  
BURST  
LOGIC  
CE  
ADV/LD  
C
CLK  
CEN  
C
WRITE ADDRESS  
REGISTER  
O
U
T
P
U
T
D
A
T
S
E
N
S
ADV/LD  
A
B
U
F
MEMORY  
ARRAY  
BW  
A
B
WRITE  
DRIVERS  
E
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
S
T
E
E
R
I
DQs  
DQP  
DQP  
BW  
A
B
A
M
P
F
E
R
S
S
WE  
E
N
G
INPUT  
REGISTER  
E
OE  
READ LOGIC  
CE1  
CE2  
CE3  
SLEEP  
ZZ  
CONTROL  
Document #: 38-05356 Rev. *D  
Page 2 of 29  
CY7C1461AV33  
CY7C1463AV33  
CY7C1465AV33  
2
Logic Block Diagram – CY7C1465AV33 (512K x 72)  
ADDRESS  
REGISTER 0  
A0, A1, A  
A1  
A0  
A1'  
A0'  
D1  
D0  
Q1  
Q0  
BURST  
LOGIC  
MODE  
C
ADV/LD  
C
CLK  
CEN  
WRITE ADDRESS  
REGISTER 1  
WRITE ADDRESS  
REGISTER 2  
O
U
T
P
O
U
T
S
E
N
S
P
U
T
D
A
T
U
T
ADV/LD  
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
A
BW  
BW  
BW  
a
R
E
G
I
S
T
E
R
S
MEMORY  
ARRAY  
E
B
U
F
DQs  
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
WRITE  
DRIVERS  
b
S
T
E
E
R
I
A
M
P
a
b
c
d
e
f
c
F
BW  
d
E
R
S
S
BW  
e
BW  
BW  
f
N
G
g
E
E
BW  
h
g
h
WE  
INPUT  
REGISTER 1  
INPUT  
REGISTER 0  
E
E
OE  
READ LOGIC  
CE1  
CE2  
CE3  
Sleep  
Control  
ZZ  
Document #: 38-05356 Rev. *D  
Page 3 of 29  
CY7C1461AV33  
CY7C1463AV33  
CY7C1465AV33  
Pin Configurations  
100-pin TQFP Pinout  
DQPC  
DQC  
DQC  
VDDQ  
VSS  
80  
1
DQPB  
DQB  
DQB  
VDDQ  
VSS  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
2
3
4
5
DQC  
6
DQB  
DQB  
DQB  
DQB  
VSS  
BYTE C  
BYTE B  
DQC  
DQC  
DQC  
VSS  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VDDQ  
DQC  
DQC  
NC  
VDDQ  
DQB  
DQB  
VSS  
CY7C1461AV33  
VDD  
NC  
NC  
VDD  
ZZ  
VSS  
DQD  
DQD  
VDDQ  
VSS  
DQA  
DQA  
VDDQ  
VSS  
BYTE D  
DQD  
DQA  
DQA  
DQA  
DQA  
VSS  
DQD  
DQD  
DQD  
VSS  
BYTE A  
VDDQ  
DQD  
DQD  
DQPD  
VDDQ  
DQA  
DQA  
DQPA  
Document #: 38-05356 Rev. *D  
Page 4 of 29  
CY7C1461AV33  
CY7C1463AV33  
CY7C1465AV33  
Pin Configurations (continued)  
100-pin TQFP Pinout  
NC  
1
80  
A
NC  
2
NC  
3
VDDQ  
4
VSS  
5
NC  
6
NC  
7
DQB  
8
DQB  
9
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
VDDQ  
VSS  
NC  
DQPA  
DQA  
DQA  
VSS  
VDDQ  
DQA  
DQA  
VSS  
NC  
VSS  
VDDQ  
DQB  
DQB  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
BYTE A  
CY7C1463AV33  
VDD  
NC  
BYTE B  
VDD  
ZZ  
VSS  
DQB  
DQB  
VDDQ  
VSS  
DQA  
DQA  
VDDQ  
VSS  
DQA  
DQA  
NC  
DQB  
DQB  
DQPB  
NC  
NC  
VSS  
VSS  
VDDQ  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
Document #: 38-05356 Rev. *D  
Page 5 of 29  
CY7C1461AV33  
CY7C1463AV33  
CY7C1465AV33  
Pin Configurations (continued)  
165-ball FBGA (15 x 17 x 1.40 mm) Pinout  
CY7C1461AV33 (1M x 36)  
1
2
A
3
CE1  
4
BWC  
5
BWB  
6
CE3  
7
8
9
A
10  
A
11  
NC  
NC/576M  
NC/1G  
DQPC  
DQC  
CEN  
WE  
VSS  
VSS  
ADV/LD  
A
B
C
D
A
CE2  
VDDQ  
VDDQ  
BWD  
VSS  
BWA  
VSS  
VSS  
CLK  
VSS  
VSS  
OE  
VSS  
VDD  
A
A
NC  
NC  
DQC  
VDDQ  
VDDQ  
NC  
DQPB  
DQB  
VDD  
DQB  
DQC  
DQC  
DQC  
NC  
DQC  
DQC  
DQC  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
DQB  
DQB  
DQB  
NC  
DQB  
DQB  
DQB  
ZZ  
E
F
G
H
J
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
K
L
DQD  
DQD  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
NC  
A1  
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
DQA  
DQPA  
M
N
P
DQPD  
NC/144M NC/72M  
TDI  
TDO  
NC/288M  
A0  
MODE  
A
A
A
TMS  
TCK  
A
A
A
A
R
CY7C1463AV33 (2M x 18)  
1
NC/576M  
NC/1G  
NC  
2
3
CE1  
4
BWB  
5
NC  
6
CE3  
7
8
9
A
10  
A
11  
A
CEN  
WE  
VSS  
VSS  
ADV/LD  
A
B
C
D
A
A
CE2  
VDDQ  
VDDQ  
NC  
VSS  
VDD  
BWA  
VSS  
VSS  
CLK  
VSS  
VSS  
OE  
VSS  
VDD  
A
A
NC  
NC  
DQB  
VDDQ  
VDDQ  
NC  
NC  
DQPA  
DQA  
NC  
NC  
NC  
DQB  
DQB  
DQB  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQA  
DQA  
DQA  
ZZ  
E
F
NC  
NC  
G
H
J
NC  
NC  
DQB  
DQB  
DQB  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
NC  
NC  
NC  
K
L
NC  
NC  
DQB  
NC  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
NC  
A1  
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
NC  
NC  
M
N
P
DQPB  
NC/144M NC/72M  
MODE  
TDI  
TDO  
NC/288M  
A0  
A
A
TMS  
TCK  
A
A
A
A
A
R
Document #: 38-05356 Rev. *D  
Page 6 of 29  
CY7C1461AV33  
CY7C1463AV33  
CY7C1465AV33  
Pin Configurations (continued)  
209-ball FBGA (14 x 22 x 1.76 mm) Pinout  
CY7C1465AV33 (512K × 72)  
1
2
3
4
5
6
7
8
9
10  
DQb  
11  
A
B
C
D
E
F
DQg  
DQg  
DQg  
DQg  
CE3  
A
CE2  
A
ADV/LD  
WE  
A
A
A
DQb  
DQb  
BWSb  
DQb  
DQb  
NC  
BWSc  
BWSh  
VSS  
BWSf  
BWSa  
VSS  
BWSg  
BWSd  
DQg  
DQg  
DQg  
DQg  
DQPc  
DQc  
DQc  
NC/576M  
NC  
NC  
BWSe  
NC  
CE1  
DQb  
DQb  
DQPb  
DQf  
NC/1G OE  
NC  
DQb  
DQPg  
DQc  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VDD  
VDD  
VSS  
VDD  
DQPf  
DQf  
VSS  
VDDQ  
VSS  
NC  
NC  
NC  
NC  
CEN  
NC  
NC  
VSS  
G
H
J
DQc  
DQc  
VDDQ  
VSS  
VDDQ  
VSS  
DQf  
DQf  
DQf  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
NC  
A
DQc  
DQc  
NC  
DQf  
DQf  
NC  
VDDQ  
DQc  
NC  
VDDQ  
VDDQ  
CLK  
VDDQ  
VSS  
VDDQ  
NC  
DQf  
NC  
K
L
NC  
NC  
DQh  
DQh  
DQh  
VDDQ  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
DQa  
DQa  
DQa  
M
N
P
R
T
VSS  
VDDQ  
VSS  
VDDQ  
NC  
DQh  
DQh  
DQh  
VSS  
VDD  
VSS  
DQa  
DQa  
DQa  
VDDQ  
DQh  
DQh  
DQPd  
DQd  
DQd  
VDDQ  
VSS  
NC  
ZZ  
DQa  
DQa  
DQPa  
DQe  
DQe  
VSS  
VDDQ  
VDDQ  
VDD  
NC  
DQPh  
DQd  
DQd  
DQd  
DQd  
VDDQ  
VDD  
DQPe  
DQe  
DQe  
DQe  
DQe  
VSS  
VSS  
NC  
A
MODE  
A
U
V
W
NC/72M  
A
NC/288M  
NC/144M  
A
A
A1  
A
DQd  
DQd  
A
A
A
A
DQe  
DQe  
TDI  
TDO  
TCK  
A0  
A
TMS  
Document #: 38-05356 Rev. *D  
Page 7 of 29  
CY7C1461AV33  
CY7C1463AV33  
CY7C1465AV33  
Pin Definitions  
Name  
I/O  
Description  
A0, A1, A  
Input-  
Synchronous  
Address Inputs used to select one of the address locations. Sampled at the  
rising edge of the CLK. A[1:0] are fed to the two-bit burst counter.  
BWA, BWB  
BWC, BWD,  
BWE, BWF,  
BWG, BWH  
Input-  
Synchronous  
Byte Write Inputs, active LOW. Qualified with WE to conduct writes to the SRAM.  
Sampled on the rising edge of CLK.  
WE  
Input-  
Synchronous  
Write Enable Input, active LOW. Sampled on the rising edge of CLK if CEN is  
active LOW. This signal must be asserted LOW to initiate a write sequence.  
ADV/LD  
Input-  
Synchronous  
Advance/Load Input. Used to advance the on-chip address counter or load a new  
address. When HIGH (and CEN is asserted LOW) the internal burst counter is  
advanced. When LOW, a new address can be loaded into the device for an access.  
After being deselected, ADV/LD should be driven LOW in order to load a new  
address.  
CLK  
CE1  
CE2  
CE3  
OE  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. CLK is qualified  
with CEN. CLK is only recognized if CEN is active LOW.  
Input-  
Synchronous  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in  
conjunction with CE2 and CE3 to select/deselect the device.  
Input-  
Synchronous  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in  
conjunction with CE1 and CE3 to select/deselect the device.  
Input-  
Synchronous  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in  
conjunction with CE1 and CE2 to select/deselect the device.  
Input-  
Asynchronous  
Output Enable, asynchronous input, active LOW. Combined with the  
synchronous logic block inside the device to control the direction of the I/O pins.  
When LOW, the I/O pins are allowed to behave as outputs. When deasserted HIGH,  
I/O pins are tri-stated, and act as input data pins. OE is masked during the data  
portion of a write sequence, during the first clock when emerging from a deselected  
state, when the device has been deselected.  
CEN  
Input-  
Synchronous  
Clock Enable Input, active LOW. When asserted LOW the Clock signal is recog-  
nized by the SRAM. When deasserted HIGH the Clock signal is masked. Since  
deasserting CEN does not deselect the device, CEN can be used to extend the  
previous cycle when required.  
ZZ  
Input-  
Asynchronous  
ZZ “Sleep” Input. This active HIGH input places the device in a non-time critical  
“sleep” condition with data integrity preserved. During normal operation, this pin has  
to be LOW or left floating. ZZ pin has an internal pull-down.  
I/O-  
Synchronous  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that  
is triggered by the rising edge of CLK. As outputs, they deliver the data contained  
in the memory location specified by the addresses presented during the previous  
clock rise of the read cycle. The direction of the pins is controlled by OE. When OE  
is asserted LOW, the pins behave as outputs. When HIGH, DQs and DQP[A:D] are  
placed in a tri-state condition.The outputs are automatically tri-stated during the data  
portion of a write sequence, during the first clock when emerging from a deselected  
state, and when the device is deselected, regardless of the state of OE.  
DQs  
I/O-  
Synchronous  
Bidirectional Data Parity I/O Lines. Functionally, these signals are identical to  
DQs. During write sequences, DQPX is controlled by BWX correspondingly.  
DQPX  
MODE  
Input Strap Pin  
Mode Input. Selects the burst order of the device.  
When tied to Gnd selects linear burst sequence. When tied to VDD or left floating  
selects interleaved burst sequence.  
VDD  
Power Supply  
I/O Power Supply  
Ground  
Power supply inputs to the core of the device.  
Power supply for the I/O circuitry.  
Ground for the device.  
VDDQ  
VSS  
TDO  
JTAG serial output  
Synchronous  
Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK. If  
the JTAG feature is not being utilized, this pin should be left unconnected. This pin  
is not available on TQFP packages.  
Document #: 38-05356 Rev. *D  
Page 8 of 29  
CY7C1461AV33  
CY7C1463AV33  
CY7C1465AV33  
Pin Definitions (continued)  
Name  
I/O  
Description  
TDI  
JTAG serial  
input  
Synchronous  
Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG  
feature is not being utilized, this pin can be left floating or connected to VDD through  
a pull up resistor. This pin is not available on TQFP packages.  
TMS  
JTAG serial  
input  
Synchronous  
Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG  
feature is not being utilized, this pin can be disconnected or connected to VDD. This  
pin is not available on TQFP packages.  
TCK  
NC  
JTAG-Clock  
Clock input to the JTAG circuitry. If the JTAG feature is not being utilized, this pin  
must be connected to VSS. This pin is not available on TQFP packages.  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
No Connects. Not internally connected to the die.  
NC/72M  
NC/144M  
NC/288M  
NC/576M  
NC/1G  
Not connected to the die. Can be tied to any voltage level.  
Not connected to the die. Can be tied to any voltage level.  
Not connected to the die. Can be tied to any voltage level.  
Not connected to the die. Can be tied to any voltage level.  
Not connected to the die. Can be tied to any voltage level.  
OE and the internal control logic. OE must be driven LOW in  
order for the device to drive out the requested data. On the  
subsequent clock, another operation (Read/Write/Deselect)  
can be initiated. When the SRAM is deselected at clock rise  
by one of the chip enable signals, its output will be tri-stated  
immediately.  
Functional Overview  
The CY7C1461AV33/CY7C1463AV33/CY7C1465AV33 is a  
synchronous flow-through burst SRAM designed specifically  
to eliminate wait states during Write-Read transitions. All  
synchronous inputs pass through input registers controlled by  
the rising edge of the clock. The clock signal is qualified with  
the Clock Enable input signal (CEN). If CEN is HIGH, the clock  
signal is not recognized and all internal states are maintained.  
All synchronous operations are qualified with CEN. Maximum  
access delay from the clock rise (tCDV) is 6.5 ns (133-MHz  
device).  
Burst Read Accesses  
The CY7C1461AV33/CY7C1463AV33/CY7C1465AV33 has  
an on-chip burst counter that allows the user the ability to  
supply a single address and conduct up to four Reads without  
reasserting the address inputs. ADV/LD must be driven LOW  
in order to load a new address into the SRAM, as described in  
the Single Read Access section above. The sequence of the  
burst counter is determined by the MODE input signal. A LOW  
input on MODE selects a linear burst mode, a HIGH selects an  
interleaved burst sequence. Both burst counters use A0 and  
A1 in the burst sequence, and will wrap around when incre-  
mented sufficiently. A HIGH input on ADV/LD will increment  
the internal burst counter regardless of the state of chip enable  
inputs or WE. WE is latched at the beginning of a burst cycle.  
Therefore, the type of access (Read or Write) is maintained  
throughout the burst sequence.  
Accesses can be initiated by asserting all three Chip Enables  
(CE1, CE2, CE3) active at the rising edge of the clock. If Clock  
Enable (CEN) is active LOW and ADV/LD is asserted LOW,  
the address presented to the device will be latched. The  
access can either be a read or write operation, depending on  
the status of the Write Enable (WE). BWX can be used to  
conduct byte write operations.  
Write operations are qualified by the Write Enable (WE). All  
writes are simplified with on-chip synchronous self-timed write  
circuitry.  
Three synchronous Chip Enables (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) simplify depth expansion.  
All operations (Reads, Writes, and Deselects) are pipelined.  
ADV/LD should be driven LOW once the device has been  
deselected in order to load a new address for the next  
operation.  
Single Write Accesses  
Write access are initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are ALL asserted active, and (3) the write signal WE  
is asserted LOW. The address presented to the address bus  
is loaded into the Address Register. The write signals are  
latched into the Control Logic block. The data lines are  
automatically tri-stated regardless of the state of the OE input  
signal. This allows the external logic to present the data on  
DQs and DQPX.  
Single Read Accesses  
A read access is initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are ALL asserted active, (3) the Write Enable input  
signal WE is deasserted HIGH, and 4) ADV/LD is asserted  
LOW. The address presented to the address inputs is latched  
into the Address Register and presented to the memory array  
and control logic. The control logic determines that a read  
access is in progress and allows the requested data to  
propagate to the output buffers. The data is available within 6.5  
ns (133-MHz device) provided OE is active LOW. After the first  
clock of the read access, the output buffers are controlled by  
On the next clock rise the data presented to DQs and DQPX  
(or a subset for byte write operations, see truth table for  
details) inputs is latched into the device and the write is  
complete. Additional accesses (Read/Write/Deselect) can be  
initiated on this cycle.  
The data written during the Write operation is controlled by  
BWX signals. The CY7C1461AV33/CY7C1463AV33/CY7C1465AV33  
Document #: 38-05356 Rev. *D  
Page 9 of 29  
CY7C1461AV33  
CY7C1463AV33  
CY7C1465AV33  
.
provides byte write capability that is described in the truth  
table. Asserting the Write Enable input (WE) with the selected  
Byte Write Select input will selectively write to only the desired  
bytes. Bytes not selected during a byte write operation will  
remain unaltered. A synchronous self-timed write mechanism  
has been provided to simplify the write operations. Byte write  
capability has been included in order to greatly simplify  
Read/Modify/Write sequences, which can be reduced to  
simple byte write operations.  
Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
First  
Address  
A1: A0  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Because the CY7C1461AV33/CY7C1463AV33/CY7C1465AV33  
is a common I/O device, data should not be driven into the  
device while the outputs are active. The Output Enable (OE)  
can be deasserted HIGH before presenting data to the DQs  
and DQPX inputs. Doing so will tri-state the output drivers. As  
a safety precaution, DQs and DQPX are automatically  
tri-stated during the data portion of a write cycle, regardless of  
the state of OE.  
Linear Burst Address Table (MODE = GND)  
First  
Address  
A1: A0  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
Burst Write Accesses  
The CY7C1461AV33/CY7C1463AV33/CY7C1465AV33 has  
an on-chip burst counter that allows the user the ability to  
supply a single address and conduct up to four Write opera-  
tions without reasserting the address inputs. ADV/LD must be  
driven LOW in order to load the initial address, as described  
in the Single Write Access section above. When ADV/LD is  
driven HIGH on the subsequent clock rise, the Chip Enables  
(CE1, CE2, and CE3) and WE inputs are ignored and the burst  
counter is incremented. The correct BWX inputs must be  
driven in each cycle of the burst write, in order to write the  
correct bytes of data.  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the “sleep” mode. CE1, CE2, and CE3, must remain inactive  
for the duration of tZZREC after the ZZ input returns LOW.  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
Test Conditions  
ZZ > VDD – 0.2V  
Min.  
Max.  
100  
Unit  
mA  
ns  
tZZS  
ZZ > VDD – 0.2V  
2tCYC  
tZZREC  
tZZI  
ZZ recovery time  
ZZ < 0.2V  
2tCYC  
0
ns  
ZZ active to sleep current  
ZZ Inactive to exit sleep current  
This parameter is sampled  
This parameter is sampled  
2tCYC  
ns  
tRZZI  
ns  
Truth Table [2, 3, 4, 5, 6, 7, 8]  
Address  
Used  
Operation  
Deselect Cycle  
CE1 CE2  
ZZ ADV/LD WE BWX OE  
CEN CLK  
DQ  
CE3  
X
None  
None  
H
X
X
X
L
X
X
L
L
L
L
L
L
L
L
L
X
X
X
X
H
X
X
X
X
X
X
X
X
X
X
X
L
L
L
L
L
L
L
L->H Tri-State  
L->H Tri-State  
L->H Tri-State  
L->H Tri-State  
L->H Data Out (Q)  
L->H Data Out (Q)  
Deselect Cycle  
H
Deselect Cycle  
None  
X
L
Continue Deselect Cycle  
Read Cycle (Begin Burst)  
None  
X
H
X
X
H
L
External  
Next  
L
Read Cycle (Continue Burst)  
X
X
H
L
Notes:  
2. X = “Don't Care.” H = Logic HIGH, L = Logic LOW. BWx = L signifies at least one Byte Write Select is active, BWx = Valid signifies that the desired byte write  
selects are asserted, see truth table for details.  
3. Write is defined by BW , and WE. See truth table for Read/Write.  
X
4. When a write cycle is detected, all I/Os are tri-stated, even during byte writes.  
5. The DQs and DQP pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.  
X
6. CEN = H, inserts wait states.  
7. Device will power-up deselected and the I/Os in a tri-state condition, regardless of OE.  
8. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle DQs and DQP = Tri-state when OE  
X
is inactive or when the device is deselected, and DQs and DQP = data when OE is active.  
X
Document #: 38-05356 Rev. *D  
Page 10 of 29  
CY7C1461AV33  
CY7C1463AV33  
CY7C1465AV33  
Truth Table (continued)[2, 3, 4, 5, 6, 7, 8]  
Address  
Operation  
NOP/Dummy Read  
CE1 CE2  
ZZ ADV/LD WE BWX OE  
CEN CLK  
DQ  
Used  
CE3  
External  
L
H
L
L
L
H
X
H
L
L->H Tri-State  
(Begin Burst)  
Dummy Read (Continue Burst)  
Write Cycle (Begin Burst)  
Write Cycle (Continue Burst)  
NOP/Write Abort (Begin Burst)  
Write Abort (Continue Burst)  
Ignore Clock Edge (Stall)  
Sleep Mode  
Next  
External  
Next  
X
L
X
H
X
H
X
X
X
X
L
L
L
L
L
L
L
H
H
L
X
L
X
L
H
X
X
X
X
X
X
L
L
L
L
L
H
X
L->H Tri-State  
L->H Data In (D)  
L->H Data In (D)  
L->H Tri-State  
L->H Tri-State  
X
L
X
L
H
L
X
L
L
None  
H
H
X
X
Next  
X
X
X
X
X
X
H
X
X
X
X
X
Current  
None  
L->H  
X
Tri-State  
Truth Table for Read/Write[2, 3]  
Function (CY7C1461AV33)  
Read  
WE  
BWA  
X
BWB  
X
BWC  
X
BWD  
X
H
L
L
L
L
L
L
Write No bytes written  
H
H
H
H
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write Byte C – (DQC and DQPC)  
Write Byte D – (DQD and DQPD)  
Write All Bytes  
L
H
H
H
H
L
H
H
H
H
L
H
H
H
H
L
L
L
L
L
Truth Table for Read/Write[2, 3]  
Function (CY7C1463AV33)  
WE  
BWb  
BWa  
Read  
H
L
L
L
L
X
H
H
L
X
H
L
Write – No Bytes Written  
Write Byte a – (DQa and DQPa)  
Write Byte b – (DQb and DQPb)  
Write Both Bytes  
H
L
L
Truth Table for Read/Write[2,3, 9]  
Function (CY7C1465AV33)  
WE  
H
BWx  
X
Read  
Write – No Bytes Written  
Write Byte X (DQx and DQPx)  
Write All Bytes  
L
H
L
L
L
All BW = L  
Disabling the JTAG Feature  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are inter-  
nally pulled up and may be unconnected. They may alternately  
be connected to VDD through a pull-up resistor. TDO should be  
left unconnected. Upon power-up, the device will come up in  
a reset state which will not interfere with the operation of the  
device.  
The CY7C1461AV33/CY7C1463AV33/CY7C1465AV33 incor-  
porates a serial boundary scan test access port (TAP). This  
part is fully compliant with 1149.1. The TAP operates using  
JEDEC-standard 3.3V/2.5V I/O logic level.  
The CY7C1461AV33/CY7C1463AV33/CY7C1465AV33 contains  
a TAP controller, instruction register, boundary scan register,  
bypass register, and ID register.  
Note:  
9. Table only lists a partial listing of the byte write combinations. Any Combination of BW is valid Appropriate write will be done based on which byte write is active.  
X
Document #: 38-05356 Rev. *D  
Page 11 of 29  
CY7C1461AV33  
CY7C1463AV33  
CY7C1465AV33  
TAP Controller State Diagram  
TAP Controller Block Diagram  
TEST-LOGIC  
1
0
RESET  
0
Bypass Register  
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
2
1
0
0
0
Selection  
Circuitry  
Instruction Register  
31 30 29  
Identification Register  
Selection  
TDI  
TDO  
1
1
CAPTURE-DR  
CAPTURE-IR  
Circuitr  
y
.
.
.
2
1
0
0
0
SHIFT-DR  
0
SHIFT-IR  
0
x
.
.
.
.
. 2 1 0  
1
1
Boundary Scan Register  
TAP CONTROLLER  
1
1
EXIT1-DR  
EXIT1-IR  
0
0
PAUSE-DR  
0
PAUSE-IR  
0
TCK  
TMS  
1
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
Performing a TAP Reset  
1
0
1
0
A RESET is performed by forcing TMS HIGH (VDD) for five  
rising edges of TCK. This RESET does not affect the operation  
of the SRAM and may be performed while the SRAM is  
operating.  
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
At power-up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
Test Access Port (TAP)  
TAP Registers  
Test Clock (TCK)  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned into and out of the SRAM test  
circuitry. Only one register can be selected at a time through  
the instruction register. Data is serially loaded into the TDI ball  
on the rising edge of TCK. Data is output on the TDO ball on  
the falling edge of TCK.  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Test Mode Select (TMS)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this ball unconnected if the TAP is not used. The ball is  
pulled up internally, resulting in a logic HIGH level.  
Instruction Register  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO balls as shown in the Tap Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
Test Data-In (TDI)  
The TDI ball is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. TDI  
is internally pulled up and can be unconnected if the TAP is  
unused in an application. TDI is connected to the most signif-  
icant bit (MSB) of any register. (See Tap Controller Block  
Diagram.)  
When the TAP controller is in the Capture-IR state, the two  
least significant bits are loaded with a binary “01” pattern to  
allow for fault isolation of the board-level serial test data path.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
Test Data-Out (TDO)  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current  
state of the TAP state machine. The output changes on the  
falling edge of TCK. TDO is connected to the least significant  
bit (LSB) of any register. (See Tap Controller State Diagram.)  
Boundary Scan Register  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM. The length of the Boundary  
Scan Register for the SRAM in different packages is listed in  
the Scan Register Sizes table.  
Document #: 38-05356 Rev. *D  
Page 12 of 29  
CY7C1461AV33  
CY7C1463AV33  
CY7C1465AV33  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR  
state and is then placed between the TDI and TDO balls when  
the controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used  
to capture the contents of the I/O ring.  
possible that during the Capture-DR state, an input or output  
will undergo a transition. The TAP may then try to capture a  
signal while in transition (metastable state). This will not harm  
the device, but there is no guarantee as to the value that will  
be captured. Repeatable results may not be possible.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller's capture set-up plus  
hold times (tCS and tCH). The SRAM clock input might not be  
captured correctly if there is no way in a design to stop (or  
slow) the clock during a SAMPLE/PRELOAD instruction. If this  
is an issue, it is still possible to capture all other signals and  
simply ignore the value of the CK and CK captured in the  
boundary scan register.  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI, and the LSB is connected to TDO.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions table.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the  
boundary scan register between the TDI and TDO pins.  
PRELOAD allows an initial data pattern to be placed at the  
latched parallel outputs of the boundary scan register cells  
prior to the selection of another boundary scan test operation.  
TAP Instruction Set  
The shifting of data for the SAMPLE and PRELOAD phases  
can occur concurrently when required—that is, while data  
captured is shifted out, the preloaded data can be shifted in.  
Overview  
Eight different instructions are possible with the three bit  
instruction register. All combinations are listed in the  
Instruction Codes table. Three of these instructions are listed  
as RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
BYPASS  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO pins. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO balls.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
EXTEST  
The EXTEST instruction enables the preloaded data to be  
driven out through the system output pins. This instruction also  
selects the boundary scan register to be connected for serial  
access between the TDI and TDO in the shift-DR controller  
state.  
IDCODE  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
EXTEST OUTPUT BUS TRI-STATE  
IEEE Standard 1149.1 mandates that the TAP controller be  
able to put the output bus into a tri-state mode.  
The IDCODE instruction is loaded into the instruction register  
upon power-up or whenever the TAP controller is given a test  
logic reset state.  
The boundary scan register has a special bit located at bit #89  
(for 165-FBGA package) or bit #138 (for 209 FBGA package).  
When this scan cell, called the “extest output bus tri-state”, is  
latched into the preload register during the “Update-DR” state  
in the TAP controller, it will directly control the state of the  
output (Q-bus) pins, when the EXTEST is entered as the  
current instruction. When HIGH, it will enable the output  
buffers to drive the output bus. When LOW, this bit will place  
the output bus into a High-Z condition.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO pins when the TAP  
controller is in a Shift-DR state. The SAMPLE Z command puts  
the output bus into a High-Z state until the next command is  
given during the “Update IR” state.  
SAMPLE/PRELOAD  
This bit can be set by entering the SAMPLE/PRELOAD or  
EXTEST command, and then shifting the desired bit into that  
cell, during the “Shift-DR” state. During “Update-DR”, the value  
loaded into that shift-register cell will latch into the preload  
register. When the EXTEST instruction is entered, this bit will  
directly control the output Q-bus pins. Note that this bit is  
pre-set HIGH to enable the output when the device is  
powered-up, and also when the TAP controller is in the  
Test-Logic-Reset” state.  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When  
the SAMPLE/PRELOAD instructions are loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and output pins is  
captured in the boundary scan register.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is  
Document #: 38-05356 Rev. *D  
Page 13 of 29  
CY7C1461AV33  
CY7C1463AV33  
CY7C1465AV33  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
TAP AC Switching Characteristics Over the Operating Range[10, 11]  
Parameter  
Clock  
tTCYC  
tTF  
Description  
Min.  
Max.  
Unit  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH time  
TCK Clock LOW time  
50  
ns  
MHz  
ns  
20  
tTH  
25  
25  
tTL  
ns  
Output Times  
tTDOV TCK Clock LOW to TDO Valid  
tTDOX TCK Clock LOW to TDO Invalid  
Set-up Times  
tTMSS TMS Set-up to TCK Clock Rise  
tTDIS  
5
ns  
ns  
0
5
5
5
ns  
ns  
ns  
TDI Set-up to TCK Clock Rise  
Capture Set-up to TCK Rise  
tCS  
Hold Times  
tTMSH  
tTDIH  
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
tCH  
Capture Hold after Clock Rise  
Notes:  
10. t and t refer to the setup and hold time requirements of latching data from the boundary scan register.  
CS  
CH  
11. Test conditions are specified using the load in TAP AC test Conditions. t /t = 1 ns.  
R
F
Document #: 38-05356 Rev. *D  
Page 14 of 29  
CY7C1461AV33  
CY7C1463AV33  
CY7C1465AV33  
3.3V TAP AC Test Conditions  
2.5V TAP AC Test Conditions  
Input pulse levels ................................................ VSS to 3.3V  
Input rise and fall times................................................... 1 ns  
Input timing reference levels...........................................1.5V  
Output reference levels...................................................1.5V  
Test load termination supply voltage...............................1.5V  
Input pulse levels.................................................VSS to 2.5V  
Input rise and fall time .....................................................1 ns  
Input timing reference levels......................................... 1.25V  
Output reference levels ............................................... .1.25V  
Test load termination supply voltage ............................ 1.25V  
3.3V TAP AC Output Load Equivalent  
2.5V TAP AC Output Load Equivalent  
1.5V  
1.25V  
50  
50  
TDO  
TDO  
ZO= 50Ω  
ZO= 50Ω  
20pF  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
(0°C < TA < +70°C; VDD = 3.135 to 3.6V unless otherwise noted)[12]  
Parameter  
VOH1  
Description  
Output HIGH Voltage IOH = –4.0 mA, VDDQ = 3.3V  
OH = –1.0 mA, VDDQ = 2.5V  
Test Conditions  
Min.  
2.4  
2.0  
2.9  
2.1  
Max.  
Unit  
V
I
V
VOH2  
VOL1  
VOL2  
VIH  
Output HIGH Voltage IOH = –100 µA  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
V
V
Output LOW Voltage IOL = 8.0 mA  
0.4  
0.4  
V
IOL = 1.0 mA  
V
Output LOW Voltage IOL = 100 µA  
0.2  
V
VDDQ = 2.5V  
0.2  
V
Input HIGH Voltage  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
2.0  
1.7  
VDD + 0.3  
VDD + 0.3  
0.8  
V
V
VIL  
Input LOW Voltage  
–0.3  
–0.3  
–5  
V
VDDQ = 2.5V  
0.7  
V
IX  
Input Load Current  
GND < VIN < VDDQ  
5
µA  
Identification Register Definitions  
CY7C1461AV33 CY7C1463AV33 CY7C1465AV33  
Instruction Field  
Revision Number (31:29)  
Device Depth (28:24)[13]  
(1M x 36)  
(2M x 18)  
(512K x 72)  
Description  
000  
000  
000  
Describes the version number  
Reserved for internal use  
01011  
01011  
01011  
Architecture/Memory Type (23:18)  
001001  
001001  
001001  
Defines memory type and  
architecture  
Bus Width/Density(17:12)  
100111  
010111  
110111  
Defines width and density  
Cypress JEDEC ID Code (11:1)  
00000110100  
00000110100  
00000110100 AllowsuniqueidentificationofSRAM  
vendor  
ID Register Presence Indicator (0)  
1
1
1
Indicates the presence of an ID  
register  
Notes:  
12. All voltages referenced to V (GND).  
SS  
13. Bit #24 is “1” in the ID Register Definitions for both 2.5V and 3.3V versions of this device.  
Document #: 38-05356 Rev. *D  
Page 15 of 29  
CY7C1461AV33  
CY7C1463AV33  
CY7C1465AV33  
Scan Register Sizes  
Register Name  
Bit Size (x36)  
Bit Size (x18)  
Bit Size (x72)  
Instruction  
3
1
3
1
3
1
Bypass  
ID  
32  
89  
32  
89  
32  
Boundary Scan Order (165-ball FBGA package)  
Boundary Scan Order (209-ball FBGA package)  
138  
Identification Codes  
Instruction  
EXTEST  
Code  
Description  
000  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM outputs to High-Z state.  
IDCODE  
001  
010  
Loads the ID register with the vendor ID code and places the register between TDI and  
TDO. This operation does not affect SRAM operations.  
SAMPLE Z  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
RESERVED  
011  
100  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
Document #: 38-05356 Rev. *D  
Page 16 of 29  
CY7C1461AV33  
CY7C1463AV33  
CY7C1465AV33  
165-ball FBGA Boundary Scan Order [14]  
CY7C1461AV33 (1M x 36), CY7C1463AV33 (2M x 18)  
Bit#  
1
Ball ID  
N6  
Bit#  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
Ball ID  
E11  
D11  
G10  
F10  
E10  
D10  
C11  
A11  
B11  
A10  
B10  
A9  
Bit#  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
Ball ID  
A3  
A2  
B2  
C2  
B1  
A1  
C1  
D1  
E1  
F1  
Bit#  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
Ball ID  
N1  
2
N7  
N2  
3
N10  
P11  
P8  
P1  
4
R1  
5
R2  
6
R8  
P3  
7
R9  
R3  
8
P9  
P2  
9
P10  
R10  
R11  
H11  
N11  
M11  
L11  
K11  
J11  
M10  
L10  
K10  
J10  
H9  
R4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
P4  
G1  
D2  
E2  
F2  
N5  
P6  
B9  
R6  
C10  
A8  
Internal  
G2  
H1  
H3  
J1  
B8  
A7  
B7  
B6  
K1  
L1  
A6  
B5  
M1  
J2  
A5  
H10  
G11  
F11  
A4  
K2  
L2  
B4  
B3  
M2  
Note:  
14. Bit# 89 is preset HIGH.  
Document #: 38-05356 Rev. *D  
Page 17 of 29  
CY7C1461AV33  
CY7C1463AV33  
CY7C1465AV33  
209-ball FBGA Boundary Scan Order [14, 15]  
CY7C1463AV33(2M x 18), CY7C1465AV33 (512K x 72)  
Bit#  
1
Ball ID  
W6  
V6  
Bit#  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
Ball ID  
F6  
Bit#  
71  
Ball ID  
H6  
C6  
B6  
A6  
A5  
B5  
C5  
D5  
D4  
C4  
A4  
B4  
C3  
B3  
A3  
A2  
A1  
B2  
B1  
C2  
C1  
D2  
D1  
E1  
E2  
F2  
Bit#  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
Ball ID  
K3  
2
K8  
72  
K4  
3
U6  
K9  
73  
K6  
4
W7  
V7  
K10  
J11  
J10  
H11  
H10  
G11  
G10  
F11  
F10  
E10  
E11  
D11  
D10  
C11  
C10  
B11  
B10  
A11  
A10  
C9  
74  
K2  
5
75  
L2  
6
U7  
76  
L1  
7
T7  
77  
M2  
M1  
N2  
N1  
P2  
8
V8  
78  
9
U8  
79  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
T8  
80  
V9  
81  
U9  
82  
P1  
P6  
83  
R2  
R1  
T2  
W11  
W10  
V11  
V10  
U11  
U10  
T11  
T10  
R11  
R10  
P11  
P10  
N11  
N10  
M11  
M10  
L11  
L10  
K11  
M6  
84  
85  
86  
T1  
87  
U2  
U1  
V2  
88  
89  
90  
V1  
91  
W2  
W1  
T6  
92  
93  
B9  
94  
U3  
V3  
A9  
95  
D8  
96  
T4  
C8  
97  
F1  
T5  
B8  
98  
G1  
G2  
H2  
H1  
J2  
U4  
V4  
A8  
99  
D7  
100  
101  
102  
103  
104  
105  
W5  
V5  
C7  
B7  
U5  
Internal  
A7  
J1  
L6  
D6  
K1  
N6  
J6  
G6  
Note:  
15. Bit# 138 is preset HIGH.  
Document #: 38-05356 Rev. *D  
Page 18 of 29  
CY7C1461AV33  
CY7C1463AV33  
CY7C1465AV33  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
Static Discharge Voltage........................................... >2001V  
(per MIL-STD-883, Method 3015)  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-up Current..................................................... >200 mA  
Storage Temperature .................................65°C to +150°C  
Operating Range  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Ambient  
Range  
Temperature  
VDD  
VDDQ  
Supply Voltage on VDD Relative to GND........ –0.5V to +4.6V  
Commercial 0°C to +70°C  
Industrial –40°C to +85°C  
3.3V –5%/+10% 2.5V – 5%  
to VDD  
DC Voltage Applied to Outputs  
in Tri-State........................................... –0.5V to VDDQ + 0.5V  
DC Input Voltage....................................–0.5V to VDD + 0.5V  
Electrical Characteristics Over the Operating Range[16, 17]  
DC Electrical Characteristics Over the Operating Range  
Parameter  
VDD  
Description  
Power Supply Voltage  
I/O Supply Voltage  
Test Conditions  
Min.  
3.135  
3.135  
2.375  
2.4  
Max.  
3.6  
Unit  
V
VDDQ  
for 3.3V I/O  
for 2.5V I/O  
VDD  
V
2.625  
V
VOH  
VOL  
VIH  
VIL  
IX  
Output HIGH Voltage  
Output LOW Voltage  
for 3.3V I/O, IOH = –4.0 mA  
for 2.5V I/O, IOH = –1.0 mA  
for 3.3V I/O, IOL = 8.0 mA  
for 2.5V I/O, IOL = 1.0 mA  
V
2.0  
V
0.4  
0.4  
V
V
Input HIGH Voltage[16] for 3.3V I/O  
2.0  
1.7  
VDD + 0.3V  
VDD + 0.3V  
0.8  
V
for 2.5V I/O  
V
Input LOW Voltage[16]  
for 3.3V I/O  
for 2.5V I/O  
–0.3  
–0.3  
–5  
V
0.7  
V
Input Leakage Current GND VI VDDQ  
except ZZ and MODE  
5
µA  
Input Current of MODE Input = VSS  
Input = VDD  
–30  
–5  
µA  
µA  
5
Input Current of ZZ  
Input = VSS  
Input = VDD  
µA  
30  
5
µA  
IOZ  
IDD  
Output Leakage Current GND VI VDDQ, Output Disabled  
–5  
µA  
VDD Operating Supply VDD = Max., IOUT = 0 mA,  
7.5-ns cycle, 133 MHz  
10-ns cycle, 100 MHz  
310  
290  
180  
180  
mA  
mA  
mA  
mA  
Current  
f = fMAX = 1/tCYC  
ISB1  
ISB2  
ISB3  
Automatic CE  
Power-down  
Current—TTL Inputs  
VDD = Max, Device Deselected, 7.5-ns cycle, 133 MHz  
VIN VIH or VIN VIL  
f = fMAX, inputs switching  
10-ns cycle, 100 MHz  
Automatic CE  
Power-down  
Current—CMOS Inputs f = 0, inputs static  
VDD = Max, Device Deselected, All speeds  
VIN 0.3V or VIN > VDD – 0.3V,  
120  
mA  
Automatic CE  
Power-down  
Current—CMOS Inputs f = fMAX, inputs switching  
V
DD = Max, Device Deselected, 7.5-ns cycle, 133 MHz  
180  
180  
mA  
mA  
or VIN 0.3V or VIN > VDDQ – 0.3V  
10-ns cycle, 100 MHz  
ISB4  
Automatic CE  
Power-down  
Current—TTL Inputs  
V
DD = Max, Device Deselected, All Speeds  
135  
mA  
VIN VDD – 0.3V or VIN 0.3V,  
f = 0, inputs static  
Notes:  
16. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2), undershoot: V (AC) > –2V (Pulse width less than t  
/2).  
IH  
DD  
CYC  
IL  
CYC  
17. T  
: Assumes a linear ramp from 0V to V (min.) within 200 ms. During this time V < V and V  
< V  
.
Power-up  
DD  
IH  
DD  
DDQ  
DD  
Document #: 38-05356 Rev. *D  
Page 19 of 29  
CY7C1461AV33  
CY7C1463AV33  
CY7C1465AV33  
Capacitance[18]  
100 TQFP  
Max.  
165 FBGA 209 FBGA  
Parameter  
Description  
Input Capacitance  
Test Conditions  
Max.  
Max.  
Unit  
pF  
CIN  
TA = 25°C, f = 1 MHz,  
6.5  
3
7
7
6
5
5
7
VDD = 3.3V  
CCLK  
CI/O  
Clock Input Capacitance  
Input/Output Capacitance  
pF  
VDDQ = 2.5V  
5.5  
pF  
Thermal Resistance[18]  
100 TQFP  
Package  
165 FBGA 209 FBGA  
Unit  
Parameter  
ΘJA  
Description  
Test Conditions  
Package  
Package  
Thermal Resistance  
(Junction to Ambient)  
Test conditions follow standard  
test methods and procedures  
for measuring thermal  
25.21  
20.8  
25.31  
°C/W  
ΘJC  
Thermal Resistance  
(Junction to Case)  
2.28  
3.2  
4.48  
°C/W  
impedance, per EIA / JESD51.  
AC Test Loads and Waveforms  
3.3V I/O Test Load  
R = 317Ω  
3.3V  
OUTPUT  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
90%  
10%  
Z = 50Ω  
0
10%  
R = 50Ω  
L
GND  
5 pF  
R = 351Ω  
INCLUDING  
JIG AND  
SCOPE  
1ns  
1ns  
V = 1.5V  
T
(a)  
(b)  
(c)  
2.5V I/O Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
90%  
10%  
Z = 50Ω  
0
10%  
L
5 pF  
R = 1538Ω  
INCLUDING  
JIG AND  
SCOPE  
1ns  
1ns  
V = 1.25V  
T
(a)  
(b)  
(c)  
Note:  
18. Tested initially and after any design or process change that may affect these parameters  
Document #: 38-05356 Rev. *D  
Page 20 of 29  
CY7C1461AV33  
CY7C1463AV33  
CY7C1465AV33  
Switching Characteristics Over the Operating Range[23, 24]  
133 MHz  
100 MHz  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Unit  
[19]  
tPOWER  
1
1
ms  
Clock  
tCYC  
Clock Cycle Time  
Clock HIGH  
7.5  
2.5  
2.5  
10  
3.0  
3.0  
ns  
ns  
ns  
tCH  
tCL  
Clock LOW  
Output Times  
tCDV  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
Clock to Low-Z[20, 21, 22]  
6.5  
8.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDOH  
2.5  
2.5  
2.5  
2.5  
0
tCLZ  
tCHZ  
Clock to High-Z[20, 21, 22]  
3.8  
3.0  
4.5  
3.8  
tOEV  
OE LOW to Output Valid  
tOELZ  
tOEHZ  
Set-up Times  
tAS  
OE LOW to Output Low-Z[20, 21, 22]  
OE HIGH to Output High-Z[20, 21, 22]  
0
0
3.0  
4.0  
Address Set-up Before CLK Rise  
ADV/LD Set-up Before CLK Rise  
WE, BWX Set-up Before CLK Rise  
CEN Set-up Before CLK Rise  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tALS  
tWES  
tCENS  
tDS  
Data Input Set-up Before CLK Rise  
Chip Enable Set-Up Before CLK Rise  
tCES  
Hold Times  
tAH  
Address Hold After CLK Rise  
ADV/LD Hold After CLK Rise  
WE, BWX Hold After CLK Rise  
CEN Hold After CLK Rise  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tALH  
tWEH  
tCENH  
tDH  
Data Input Hold After CLK Rise  
Chip Enable Hold After CLK Rise  
tCEH  
Notes:  
19. This part has a voltage regulator internally; t  
is the time that the power needs to be supplied above V (minimum) initially, before a read or write operation  
DD  
POWER  
can be initiated.  
20. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
OEHZ  
CHZ CLZ OELZ  
21. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
OEHZ  
OELZ  
CHZ  
CLZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions  
22. This parameter is sampled and not 100% tested.  
23. Timing reference level is 1.5V when V  
= 3.3V and is 1.25V when V  
= 2.5V.  
DDQ  
DDQ  
24. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
Document #: 38-05356 Rev. *D  
Page 21 of 29  
CY7C1461AV33  
CY7C1463AV33  
CY7C1465AV33  
Switching Waveforms  
Read/Write Waveforms[25, 26, 27]  
t
1
2
3
4
5
6
7
8
9
10  
CYC  
t
CLK  
CEN  
t
t
t
t
t
CENS  
CES  
CENH  
CEH  
CL  
CH  
CE  
ADV/LD  
WE  
BW  
X
A1  
A2  
A4  
A3  
A5  
A6  
A7  
ADDRESS  
DQ  
t
CDV  
t
t
AS  
AH  
t
t
t
t
CHZ  
DOH  
OEV  
CLZ  
D(A1)  
t
D(A2)  
D(A2+1)  
Q(A3)  
Q(A4)  
Q(A4+1)  
D(A5)  
Q(A6)  
D(A7)  
t
OEHZ  
t
DS  
DH  
t
DOH  
t
OELZ  
OE  
COMMAND  
WRITE  
D(A1)  
WRITE  
D(A2)  
BURST  
WRITE  
READ  
Q(A3)  
READ  
Q(A4)  
BURST  
READ  
WRITE  
D(A5)  
READ  
Q(A6)  
WRITE  
D(A7)  
DESELECT  
D(A2+1)  
Q(A4+1)  
DON’T CARE  
UNDEFINED  
Notes:  
For this waveform ZZ is tied LOW.  
25.  
26. When CE is LOW, CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH, CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
27. Order of the Burst sequence is determined by the status of the MODE (0 = Linear, 1 = Interleaved). Burst operations are optional.  
Document #: 38-05356 Rev. *D  
Page 22 of 29  
CY7C1461AV33  
CY7C1463AV33  
CY7C1465AV33  
Switching Waveforms (continued)  
NOP, STALL and DESELECT Cycles[25, 26, 28]  
t
1
2
3
4
5
6
7
8
9
10  
CYC  
CLK  
CEN  
t
t
t
t
t
t
CENS  
CES  
CENH  
CEH  
CL  
CH  
CE  
ADV/LD  
WE  
BW  
X
A1  
A2  
A4  
A3  
A5  
A6  
A7  
ADDRESS  
DQ  
t
CDV  
t
t
AS  
AH  
t
t
t
t
CHZ  
DOH  
OEV  
CLZ  
D(A1)  
t
D(A2)  
D(A2+1)  
Q(A3)  
Q(A4)  
Q(A4+1)  
D(A5)  
Q(A6)  
D(A7)  
t
OEHZ  
t
DS  
DH  
t
DOH  
t
OELZ  
OE  
COMMAND  
WRITE  
D(A1)  
WRITE  
D(A2)  
BURST  
WRITE  
READ  
Q(A3)  
READ  
Q(A4)  
BURST  
READ  
WRITE  
D(A5)  
READ  
Q(A6)  
WRITE  
D(A7)  
DESELECT  
D(A2+1)  
Q(A4+1)  
DON’T CARE  
UNDEFINED  
Note:  
28. The IGNORE CLOCK EDGE or STALL cycle (Clock 3) illustrates CEN being used to create a pause. A write is not performed during this cycle.  
Document #: 38-05356 Rev. *D  
Page 23 of 29  
CY7C1461AV33  
CY7C1463AV33  
CY7C1465AV33  
Switching Waveforms (continued)  
ZZ Mode Timing[29, 30]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes:  
29. Device must be deselected when entering ZZ mode. See truth table for all possible signal conditions to deselect the device.  
30. DQs are in high-Z when exiting ZZ sleep mode.  
Document #: 38-05356 Rev. *D  
Page 24 of 29  
CY7C1461AV33  
CY7C1463AV33  
CY7C1465AV33  
Ordering Information  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Ordering Code  
Part and Package Type  
133 CY7C1461AV33-133AXC 51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
CY7C1463AV33-133AXC  
Commercial  
CY7C1461AV33-133BZC 51-85165 165-ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1463AV33-133BZC  
CY7C1461AV33-133BZXC  
CY7C1463AV33-133BZXC  
165-ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
51-85165 165-ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
165-ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free  
CY7C1461AV33-133AXI  
CY7C1463AV33-133AXI  
Industrial  
CY7C1461AV33-133BZI  
CY7C1463AV33-133BZI  
CY7C1461AV33-133BZXI  
CY7C1463AV33-133BZXI  
100 CY7C1461AV33-100AXC 51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
CY7C1463AV33-100AXC  
Commercial  
CY7C1461AV33-100BZC 51-85165 165-ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1461AV33-100BZXC  
165-ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free  
CY7C1463AV33-100BGC 51-85167 209-ball Fine Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
CY7C1463AV33-100BGXC  
209-ball Fine Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free  
CY7C1461AV33-100AXI  
CY7C1463AV33-100AXI  
Industrial  
CY7C1461AV33-100BZI  
CY7C1461AV33-100BZXI  
CY7C1463AV33-100BGI  
CY7C1463AV33-100BGXI  
51-85165 165-ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
165-ball Fine Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free  
51-85167 209-ball Fine Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
209-ball Fine Pitch Ball Grid Array (14 × 22 × 1.76 mm) Lead-Free  
Please contact your local Cypress sales representative for availability of other parts.  
Document #: 38-05356 Rev. *D  
Page 25 of 29  
CY7C1461AV33  
CY7C1463AV33  
CY7C1465AV33  
Package Diagrams  
100-pin TQFP (14 x 20 x 1.4 mm) (51-85050)  
16.00 0.20  
1.40 0.05  
14.00 0.10  
100  
81  
80  
1
0.30 0.08  
0.65  
TYP.  
12° 1°  
(8X)  
SEE DETAIL  
A
30  
51  
31  
50  
0.20 MAX.  
1.60 MAX.  
R 0.08 MIN.  
0.20 MAX.  
0° MIN.  
SEATING PLANE  
STAND-OFF  
0.05 MIN.  
0.15 MAX.  
NOTE:  
0.25  
1. JEDEC STD REF MS-026  
GAUGE PLANE  
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH  
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH  
R 0.08 MIN.  
0.20 MAX.  
0°-7°  
3. DIMENSIONS IN MILLIMETERS  
0.60 0.15  
0.20 MIN.  
51-85050-*B  
1.00 REF.  
DETAIL  
A
Document #: 38-05356 Rev. *D  
Page 26 of 29  
CY7C1461AV33  
CY7C1463AV33  
CY7C1465AV33  
Package Diagrams (continued)  
165-ball FBGA (15 x 17 x 1.40 mm) (51-85165)  
PIN 1 CORNER  
BOTTOM VIEW  
TOP VIEW  
Ø0.05 M C  
PIN 1 CORNER  
Ø0.25 M C A B  
Ø0.45 0.05(165X)  
1
2
3
4
5
6
7
8
9
10  
11  
11 10  
9
8
7
6
5
4
3
2
1
A
B
A
B
C
D
C
D
E
E
F
F
G
G
H
J
H
J
K
K
L
L
M
M
N
P
R
N
P
R
A
1.00  
5.00  
10.00  
B
15.00 0.10  
0.15(4X)  
51-85165-*A  
SEATING PLANE  
C
Document #: 38-05356 Rev. *D  
Page 27 of 29  
CY7C1461AV33  
CY7C1463AV33  
CY7C1465AV33  
Package Diagrams (continued)  
209-ball FBGA (14 x 22 x 1.76 mm) (51-85167)  
51-85167-**  
NoBL and No Bus Latency are trademarks of Cypress Semiconductor Corporation. ZBT is a trademark of Integrated Device  
Technology, Inc. All product and company names mentioned in this document are the trademarks of their respective holders.  
Document #: 38-05356 Rev. *D  
Page 28 of 29  
© Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
CY7C1461AV33  
CY7C1463AV33  
CY7C1465AV33  
Document History Page  
Document Title: CY7C1461AV33/CY7C1463AV33/CY7C1465AV33 36-Mbit (1M x 36/2 M x 18/512K x 72) Flow-Through  
SRAM with NoBL™ Architecture  
Document Number: 38-05356  
Orig. of  
REV.  
ECN NO. Issue Date Change  
Description of Change  
**  
254911  
See ECN  
SYT New data sheet  
Part number changed from previous revision. New and old part number differ by the  
letter “A”  
*A  
*B  
300131  
See ECN  
SYT Removed 150- and 117-MHz Speed Bins  
Changed ΘJA and ΘJC from TBD to 25.21 and 2.58 °C/W, respectively, for TQFP  
package  
Added lead-free information for 100-pin TQFP, 165 FBGA and 209 FBGA packages  
Added “Lead-free BG and BZ packages availability” below the Ordering Information  
320813  
331551  
417547  
See ECN  
See ECN  
See ECN  
SYT Changed H9 pin from VSSQ to VSS on the Pin Configuration table for 209 FBGA  
Changed the test condition from VDD = Min. to VDD = Max for VOL in the Electrical  
Characteristics table.  
Replaced the TBD’s for IDD, ISB1, ISB2, ISB3 and ISB4 to their respective values.  
Replaced TBD’s for ΘJA and ΘJC to their respective values on the Thermal Resis-  
tance table for 165 FBGA and 209 FBGA Packages.  
Changed CIN, CCLK and CI/O to 6.5, 3 and 5.5 pF from 5, 5 and 7 pF for TQFP  
Package.  
Removed “Lead-free BG packages availability” comment below the Ordering Infor-  
mation  
*C  
SYT Modified Address Expansion balls in the pinouts for 165 FBGA and 209 FBGA  
Packages as per JEDEC standards and updated the Pin Definitions accordingly  
Modified VOL, VOH test conditions  
Replaced TBD to 100 mA for IDDZZ  
Changed CIN, CCLK and CI/O to 7, 7and 6 pF from 5, 5 and 7 pF for 165 FBGA  
Package.  
Added Industrial Temperature Grade  
Changed ISB2 and ISB4 from 100 and 110 mA to 120 and 135 mA respectively  
Updated the Ordering Information by shading and unshading MPNs as per avail-  
ability  
*D  
RXU Converted from Preliminary to Final.  
Changed address of Cypress Semiconductor Corporation on Page# 1 from “3901  
North First Street” to “198 Champion Court”.  
Changed IX current value in MODE from –5 & 30 µA to –30 & 5 µA respectively and  
also Changed IX current value in ZZ from –30 & 5 µA to –5 & 30 µA respectively on  
page# 20.  
Modified test condition from VIH < VDD to VIH < VDD.  
Modified “Input Load” to “Input Leakage Current except ZZ and MODE” in the  
Electrical Characteristics Table.  
Replaced Package Name column with Package Diagram in the Ordering  
Information table.  
Replaced Package Diagram of 51-85050 from *A to *B  
Updated the Ordering Information.  
Document #: 38-05356 Rev. *D  
Page 29 of 29  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY