CY7C1472V33-167AXIT [CYPRESS]

ZBT SRAM, 4MX18, 3.4ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, LEAD FREE, PLASTIC, MS-026, TQFP-100;
CY7C1472V33-167AXIT
型号: CY7C1472V33-167AXIT
厂家: CYPRESS    CYPRESS
描述:

ZBT SRAM, 4MX18, 3.4ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, LEAD FREE, PLASTIC, MS-026, TQFP-100

静态存储器 内存集成电路
文件: 总40页 (文件大小:738K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
72-Mbit (2M × 36/4M × 18/1M × 72)  
Pipelined SRAM with NoBL™ Architecture  
72-Mbit (2M  
× 36/4M × 18/1M × 72) Pipelined SRAM with NoBL™ Architecture  
Features  
Functional Description  
Pin compatible and functionally equivalent to ZBT  
The CY7C1470V33, CY7C1472V33, and CY7C1474V33 are  
3.3 V, 2M × 36/4M × 18/1M × 72 synchronous pipelined burst  
SRAMs with No Bus Latency™ (NoBL logic, respectively.  
They are designed to support unlimited true back-to-back  
read/write operations with no wait states. The CY7C1470V33,  
CY7C1472V33, and CY7C1474V33 are equipped with the  
advanced (NoBL) logic required to enable consecutive  
read/write operations with data being transferred on every clock  
cycle. This feature dramatically improves the throughput of data  
in systems that require frequent write/read transitions. The  
CY7C1470V33, CY7C1472V33, and CY7C1474V33 are pin  
compatible and functionally equivalent to ZBT devices.  
Supports 200 MHz Bus operations with zero wait states  
Available speed grades are 200 and 167 MHz  
Internally self timed output buffer control to eliminate the need  
to use asynchronous OE  
Fully registered (inputs and outputs) for pipelined operation  
Byte write capability  
Single 3.3 V power supply  
3.3 V/2.5 V I/O power supply  
All synchronous inputs pass through input registers controlled by  
the rising edge of the clock. All data outputs pass through output  
registers controlled by the rising edge of the clock. The clock  
input is qualified by the clock enable (CEN) signal, which when  
deasserted suspends operation and extends the previous clock  
cycle.  
Fast clock-to-output time  
3.0 ns (for 200 MHz device)  
Clock enable (CEN) pin to suspend operation  
Synchronous self timed writes  
Write operations are controlled by the byte write selects  
(BWa–BWh for CY7C1474V33, BWa–BWd for CY7C1470V33  
and BWa–BWb for CY7C1472V33) and a write enable (WE)  
input. All writes are conducted with on-chip synchronous self  
timed write circuitry.  
CY7C1470V33 available in JEDEC-standard Pb-free 100-pin  
TQFP, and non Pb-free 165-ball FBGA package.  
CY7C1472V33 available in JEDEC-standard Pb-free 100-pin  
TQFP. CY7C1474V33 available in non Pb-free 209-ball FBGA  
package  
Three synchronous chip enables (CE1, CE2, CE3) and an  
asynchronous output enable (OE) provide for easy bank  
selection and output tristate control. In order to avoid bus  
contention, the output drivers are synchronously tristated during  
the data portion of a write sequence.  
IEEE 1149.1 JTAG boundary scan compatible  
Burst capability – linear or interleaved burst order  
“ZZ” sleep mode option and stop clock option  
For a complete list of related documentation, click here.  
Selection Guide  
Description  
Maximum access time  
200 MHz  
3.0  
167 MHz Unit  
3.4  
450  
120  
ns  
Maximum operating current  
500  
mA  
mA  
Maximum CMOS standby current  
120  
Errata: For information on silicon errata, see Errata on page 35. Details include trigger conditions, devices affected, and proposed workaround.  
Cypress Semiconductor Corporation  
Document Number: 38-05289 Rev. *X  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised January 5, 2018  
 
 
 
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
Logic Block Diagram – CY7C1470V33  
ADDRESS  
REGISTER  
A0, A1,  
A
0
A1  
A0  
A1'  
A0'  
D1  
D0  
Q1  
Q0  
BURST  
LOGIC  
MODE  
ADV/LD  
CLK  
CEN  
C
C
WRITE ADDRESS  
REGISTER  
WRITE ADDRESS  
REGISTER 2  
1
O
U
T
O
U
T
S
E
D
A
T
P
U
T
N
S
P
U
T
ADV/LD  
A
E
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
R
E
G
I
MEMORY  
ARRAY  
B
U
F
F
E
R
S
S
T
E
E
R
I
DQ s  
WRITE  
DRIVERS  
BW  
a
DQ P  
DQ P  
DQ P  
DQ P  
a
b
c
A
M
P
BW  
BW  
BW  
b
c
S
T
E
R
S
d
d
S
WE  
E
E
N
G
INPUT  
REGISTER  
INPUT  
REGISTER 0  
E
E
1
OE  
READ LOGIC  
CE1  
CE2  
CE3  
SLEEP  
CONTROL  
ZZ  
Logic Block Diagram – CY7C1472V33  
ADDRESS  
REGISTER  
A0, A1,  
A
0
A1  
A0  
A1'  
Q1  
D1  
D0  
A0'  
Q0  
BURST  
LOGIC  
MODE  
ADV/LD  
CLK  
CEN  
C
C
WRITE ADDRESS  
REGISTER  
WRITE ADDRESS  
REGISTER 2  
1
O
O
U
T
U
T
P
U
T
S
E
P
U
T
D
A
T
ADV/LD  
N
S
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
A
R
E
G
I
MEMORY  
ARRAY  
E
B
U
F
F
E
R
S
DQ s  
DQ P  
DQ P  
WRITE  
DRIVERS  
BW  
BW  
a
S
T
E
E
R
I
A
M
P
a
b
S
T
E
R
S
b
S
N
G
WE  
E
E
INPUT  
REGISTER  
INPUT  
REGISTER 0  
E
E
1
OE  
CE1  
CE2  
CE3  
READ LOGIC  
Sleep  
Control  
ZZ  
Document Number: 38-05289 Rev. *X  
Page 2 of 40  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
Logic Block Diagram – CY7C1474V33  
ADDRESS  
REGISTER  
A0, A1,  
A
0
A1  
A0  
A1'  
A0'  
D1  
D0  
Q1  
Q0  
BURST  
LOGIC  
MODE  
ADV/LD  
CLK  
CEN  
C
C
WRITE ADDRESS  
REGISTER  
WRITE ADDRESS  
REGISTER 2  
1
O
U
T
O
U
T
P
U
T
S
E
P
U
T
D
A
T
ADV/LD  
N
S
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
A
BW  
BW  
BW  
BW  
BW  
a
R
E
G
I
MEMORY  
ARRAY  
E
B
U
F
F
E
R
S
DQ s  
DQ P  
DQ P  
DQ P  
DQ P  
DQ P  
DQ P  
DQ P  
DQ P  
WRITE  
DRIVERS  
b
S
T
E
E
R
I
A
M
P
a
c
d
e
S
T
E
R
S
b
c
S
d
e
f
BW  
f
N
G
BW  
g
E
E
BW  
h
g
h
WE  
INPUT  
REGISTER  
INPUT  
REGISTER 0  
E
E
1
OE  
CE1  
CE2  
CE3  
READ LOGIC  
Sleep  
Control  
ZZ  
Document Number: 38-05289 Rev. *X  
Page 3 of 40  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
Contents  
Pin Configurations ...........................................................5  
Pin Definitions ..................................................................8  
Functional Overview ......................................................10  
Single Read Accesses ..............................................10  
Burst Read Accesses ................................................10  
Single Write Accesses ...............................................10  
Burst Write Accesses ................................................11  
Sleep Mode ...............................................................11  
Interleaved Burst Address Table ...............................11  
Linear Burst Address Table .......................................11  
ZZ Mode Electrical Characteristics ............................11  
Truth Table ......................................................................12  
Partial Write Cycle Description .....................................13  
Partial Write Cycle Description .....................................13  
Partial Write Cycle Description .....................................14  
IEEE 1149.1 Serial Boundary Scan (JTAG) ..................15  
Disabling the JTAG Feature ......................................15  
Test Access Port (TAP) .............................................15  
PERFORMING A TAP RESET ..................................15  
TAP REGISTERS ......................................................15  
TAP Instruction Set ...................................................15  
TAP Controller State Diagram .......................................17  
TAP Controller Block Diagram ......................................18  
TAP Timing Diagram ......................................................18  
TAP AC Switching Characteristics ...............................19  
3.3 V TAP AC Test Conditions .......................................20  
3.3 V TAP AC Output Load Equivalent .........................20  
2.5 V TAP AC Test Conditions .......................................20  
2.5 V TAP AC Output Load Equivalent .........................20  
TAP DC Electrical Characteristics  
Scan Register Sizes .......................................................21  
Identification Codes .......................................................21  
Boundary Scan Exit Order .............................................22  
Boundary Scan Exit Order .............................................23  
Maximum Ratings ...........................................................24  
Operating Range .............................................................24  
Neutron Soft Error Immunity .........................................24  
Electrical Characteristics ...............................................24  
Capacitance ....................................................................25  
Thermal Resistance ........................................................25  
AC Test Loads and Waveforms .....................................26  
Switching Characteristics ..............................................27  
Switching Waveforms ....................................................28  
Ordering Information ......................................................30  
Ordering Code Definitions .........................................30  
Package Diagrams ..........................................................31  
Acronyms ........................................................................34  
Document Conventions .................................................34  
Units of Measure .......................................................34  
Errata ...............................................................................35  
Part Numbers Affected ..............................................35  
Product Status ...........................................................35  
Ram9 NoBL ZZ Pin Issues Errata Summary .............35  
Document History Page .................................................36  
Sales, Solutions, and Legal Information ......................40  
Worldwide Sales and Design Support .......................40  
Products ....................................................................40  
PSoC® Solutions ......................................................40  
Cypress Developer Community .................................40  
Technical Support .....................................................40  
and Operating Conditions .............................................20  
Identification Register Definitions ................................21  
Document Number: 38-05289 Rev. *X  
Page 4 of 40  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
Pin Configurations  
Figure 1. 100-pin TQFP (14 × 20 × 1.4 mm) pinout [1]  
DQPc  
DQc  
DQc  
1
2
3
4
5
6
7
8
NC  
NC  
NC  
DDQ  
1
2
3
4
5
6
7
8
A
NC  
NC  
78  
DQPb  
DQb  
DQb  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
80  
79  
V
V
DDQ  
V
V
V
NC  
DQPa  
DQa  
DQa  
DDQ  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DDQ  
SS  
V
V
V
SS  
SS  
SS  
DQc  
DQc  
NC  
NC  
DQb  
DQb  
DQb  
DQb  
DQb  
DQc  
DQc  
9
DQb  
9
V
V
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
SS  
SS  
V
V
DDQ  
DDQ  
V
V
DQa  
DQa  
V
NC  
DDQ  
DDQ  
DQc  
DQc  
NC  
DQb  
DQb  
DQb  
DQb  
NC  
V
SS  
SS  
V
V
DD  
NC  
DD  
CY7C1470V33  
(2M × 36)  
CY7C1472V33  
(4M × 18)  
NC  
NC  
V
V
ZZ  
DD  
DD  
V
V
SS  
SS  
ZZ  
DQa  
DQa  
DQd  
DQb  
DQa  
DQa  
DQd  
DQb  
DDQ  
V
V
DDQ  
V
V
V
DQa  
DQa  
NC  
NC  
V
V
DDQ  
DDQ  
V
V
SS  
V
SS  
SS  
SS  
DQd  
DQd  
DQd  
DQd  
DQa  
DQa  
DQb  
DQb  
DQa DQPb  
DQa  
NC  
V
SS  
V
V
SS  
SS  
SS  
V
V
DDQ  
DDQ  
V
DDQ  
DDQ  
DQd  
DQd  
DQPd  
DQa  
DQa  
DQPa  
NC  
NC  
NC  
NC  
NC  
NC  
Note  
1. Errata: The ZZ pin (Pin 64) needs to be externally connected to ground. For more information, see Errata on page 35.  
Document Number: 38-05289 Rev. *X  
Page 5 of 40  
 
 
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
Pin Configurations (continued)  
Figure 2. 165-ball FBGA (15 × 17 × 1.4 mm) pinout [2]  
CY7C1470V33 (2M × 36)  
1
2
A
3
4
5
6
7
8
9
A
10  
A
11  
NC  
NC/576M  
A
B
C
D
CE3  
CLK  
ADV/LD  
OE  
CE  
BW  
BW  
BW  
b
CEN  
WE  
1
c
NC/1G  
A
CE2  
A
A
NC  
DQ  
NC  
BW  
V
d
a
DQP  
NC  
DQ  
V
V
V
V
V
V
V
V
V
V
V
DQP  
DQ  
c
DDQ  
DDQ  
SS  
SS  
SS  
SS  
SS  
DDQ  
DDQ  
b
DQ  
V
V
V
V
V
V
V
V
c
c
DD  
DD  
SS  
SS  
SS  
DD  
b
b
DQ  
DQ  
DQ  
DQ  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
E
F
c
c
c
c
DDQ  
DDQ  
DDQ  
SS  
SS  
SS  
DD  
DDQ  
DDQ  
DDQ  
b
b
b
b
DQ  
V
V
V
c
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
b
b
DQ  
V
V
V
G
H
J
c
SS  
SS  
DD  
NC  
NC  
DQ  
NC  
V
V
V
NC  
NC  
DQ  
ZZ  
SS  
SS  
DD  
DQ  
V
V
V
V
V
DQ  
a
d
d
DDQ  
DDQ  
DDQ  
DDQ  
SS  
SS  
DD  
DDQ  
DDQ  
DDQ  
DDQ  
a
DQ  
DQ  
DQ  
DQ  
V
V
V
V
V
V
V
V
V
V
V
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
K
L
d
d
d
d
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
DD  
a
a
a
a
a
a
DQ  
V
V
V
d
SS  
SS  
DD  
DQ  
V
V
V
V
V
M
N
P
d
SS  
SS  
DD  
DQP  
NC  
A
V
NC  
NC  
A1  
NC  
V
NC  
A
DQP  
a
d
DDQ  
SS  
SS  
DDQ  
NC/144M  
MODE  
A
TDI  
TDO  
A
NC/288M  
A
A
A
A
A
A
A
TMS  
A0  
TCK  
A
A
R
Note  
2. Errata: The ZZ ball (H11) needs to be externally connected to ground. For more information, see Errata on page 35.  
Document Number: 38-05289 Rev. *X  
Page 6 of 40  
 
 
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
Pin Configurations (continued)  
Figure 3. 209-ball FBGA (14 × 22 × 1.76 mm) pinout [3]  
CY7C1474V33 (1M × 72)  
1
2
3
4
5
6
7
8
9
10  
11  
DQg  
DQg  
DQg  
DQg  
A
CE2  
A
ADV/LD  
WE  
A
A
CE3  
A
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
A
B
BWSc  
BWSg  
NC  
BWSb  
BWSf  
DQg  
DQg  
DQg  
DQg  
DQPc  
DQc  
BWSh  
VSS  
BWSd NC/576M CE1  
NC  
NC  
BWSe  
NC  
BWSa  
VSS  
C
D
NC/1G  
OE  
NC  
DQb  
DQPb  
DQf  
E
F
DQPg  
DQc  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VDD  
NC  
VDD  
VSS  
VDD  
DQPf  
DQf  
VSS  
VDDQ  
VSS  
VSS  
VDDQ  
VSS  
G
H
J
DQc  
DQc  
DQc  
NC  
VDDQ  
VSS  
DQf  
DQf  
DQf  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
NC  
A
DQc  
DQc  
NC  
NC  
DQf  
DQf  
NC  
VDDQ  
DQc  
NC  
VDDQ  
VDDQ  
CLK  
VDDQ  
NC  
NC  
DQf  
NC  
K
L
CEN  
NC  
NC  
NC  
DQh  
DQh  
DQh  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VDDQ  
VSS  
VDDQ  
VSS  
DQa  
DQa  
DQa  
M
N
P
R
T
NC  
VSS  
VDDQ  
VSS  
VDDQ  
NC  
DQh  
DQh  
DQh  
VSS  
VDD  
VSS  
DQa  
DQa  
DQa  
VDDQ  
DQh  
DQh  
DQPd  
DQd  
DQd  
VDDQ  
VSS  
NC  
ZZ  
DQa  
DQa  
DQPa  
DQe  
DQe  
VSS  
VDDQ  
VDDQ  
VDD  
NC  
A
DQPh  
DQd  
DQd  
DQd  
DQd  
VDDQ  
VDD  
DQPe  
DQe  
DQe  
DQe  
DQe  
VSS  
VSS  
NC  
A
MODE  
A
U
V
W
A
NC/288M  
NC/144M  
A
A
A1  
A
DQd  
DQd  
A
A
A
A
DQe  
DQe  
TDI  
TDO  
TCK  
A0  
A
TMS  
Note  
3. Errata: The ZZ ball (P6) needs to be externally connected to ground. For more information, see Errata on page 35.  
Document Number: 38-05289 Rev. *X  
Page 7 of 40  
 
 
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
Pin Definitions  
Pin Name  
I/O Type  
Pin Description  
A0, A1, A  
Input-  
synchronous  
Address inputs used to select one of the address locations. Sampled at the rising edge of the CLK.  
BWa, BWb,  
Input-  
Byte write select inputs, active LOW. Qualified with WE to conduct writes to the SRAM. Sampled on  
BWc, BWd, synchronous the rising edge of CLK. BWa controls DQa and DQPa, BWb controls DQb and DQPb, BWc controls DQc  
BWe, BWf,  
BWg, BWh  
and DQPc, BWd controls DQd and DQPd, BWe controls DQe and DQPe, BWf controls DQf and DQPf,  
BWg controls DQg and DQPg, BWh controls DQh and DQPh.  
WE  
Input-  
Write enable input, active LOW. Sampled on the rising edge of CLK if CEN is active LOW. This signal  
synchronous must be asserted LOW to initiate a write sequence.  
ADV/LD  
Input- Advance/load input used to advance the on-chip address counter or load a new address. When  
synchronous HIGH (and CEN is asserted LOW) the internal burst counter is advanced. When LOW, a new address  
can be loaded into the device for an access. After being deselected, ADV/LD should be driven LOW in  
order to load a new address.  
CLK  
CE1  
CE2  
CE3  
OE  
Input-  
clock  
Clock input. Used to capture all synchronous inputs to the device. CLK is qualified with CEN. CLK is  
only recognized if CEN is active LOW.  
Input-  
Chip enable 1 input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE2  
synchronous and CE3 to select/deselect the device.  
Input-  
Chip enable 2 input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction with CE1  
synchronous and CE3 to select/deselect the device.  
Input-  
Chip enable 3 input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE1  
synchronous and CE2 to select/deselect the device.  
Input-  
Output enable, active LOW. Combined with the synchronous logic block inside the device to control  
asynchronous the direction of the I/O pins. When LOW, the I/O pins are allowed to behave as outputs. When deasserted  
HIGH, I/O pins are tristated, and act as input data pins. OE is masked during the data portion of a write  
sequence, during the first clock when emerging from a deselected state and when the device has been  
deselected.  
CEN  
DQS  
Input-  
Clock enable input, active LOW. When asserted LOW the clock signal is recognized by the SRAM.  
synchronous When deasserted HIGH the clock signal is masked. Since deasserting CEN does not deselect the device,  
CEN can be used to extend the previous cycle when required.  
I/O-  
Bidirectional data I/O lines. As inputs, they feed into an on-chip data register that is triggered by the  
synchronous rising edge of CLK. As outputs, they deliver the data contained in the memory location specified by A[17:0]  
during the previous clock rise of the read cycle. The direction of the pins is controlled by OE and the  
internal control logic. When OE is asserted LOW, the pins can behave as outputs. When HIGH, DQa–DQd  
are placed in a tristate condition. The outputs are automatically tristated during the data portion of a write  
sequence, during the first clock when emerging from a deselected state, and when the device is  
deselected, regardless of the state of OE.  
DQPX  
I/O-  
Bidirectional data parity I/O lines. Functionally, these signals are identical to DQX. During write  
synchronous sequences, DQPa is controlled by BWa, DQPb is controlled by BWb, DQPc is controlled by BWc, and  
DQPd is controlled by BWd, DQPe is controlled by BWe, DQPf is controlled by BWf, DQPg is controlled  
by BWg, DQPh is controlled by BWh.  
MODE  
TDO  
TDI  
Input strap pin Mode input. Selects the burst order of the device. Tied HIGH selects the interleaved burst order. Pulled  
LOW selects the linear burst order. MODE should not change states during operation. When left floating  
MODE will default HIGH, to an interleaved burst order.  
JTAG serial Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK.  
output  
synchronous  
JTAG serial Serial data-in to the JTAG circuit. Sampled on the rising edge of TCK.  
input  
Synchronous  
Document Number: 38-05289 Rev. *X  
Page 8 of 40  
 
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
Pin Definitions (continued)  
Pin Name  
I/O Type  
Pin Description  
TMS  
Test mode This pin controls the test access port state machine. Sampled on the rising edge of TCK.  
select  
synchronous  
TCK  
VDD  
JTAG clock Clock input to the JTAG circuitry.  
Power supply Power supply inputs to the core of the device.  
VDDQ  
I/O power Power supply for the I/O circuitry.  
supply  
VSS  
NC  
Ground  
Ground for the device. Should be connected to ground of the system.  
No connects. This pin is not connected to the die.  
NC (144M,  
288M,  
These pins are not connected. They will be used for expansion to the 144M, 288M, 576M, and 1G  
densities.  
576M, 1G)  
ZZ[4]  
Input-  
ZZ “Sleep” input. This active HIGH input places the device in a non-time critical “sleep” condition with  
asynchronous data integrity preserved. During normal operation, this pin has to be LOW or left floating.  
ZZ pin has an internal pull-down.  
Note  
4. Errata: The ZZ pin needs to be externally connected to ground. For more information, see Errata on page 35.  
Document Number: 38-05289 Rev. *X  
Page 9 of 40  
 
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
counter is determined by the MODE input signal. A LOW input  
on MODE selects a linear burst mode, a HIGH selects an  
interleaved burst sequence. Both burst counters use A0 and A1  
in the burst sequence, and will wrap-around when incremented  
sufficiently. A HIGH input on ADV/LD will increment the internal  
burst counter regardless of the state of chip enables inputs or  
WE. WE is latched at the beginning of a burst cycle. Therefore,  
the type of access (read or write) is maintained throughout the  
burst sequence.  
Functional Overview  
The CY7C1470V33, CY7C1472V33, and CY7C1474V33 are  
synchronous-pipelined burst NoBL SRAMs designed specifically  
to eliminate wait states during write/read transitions. All  
synchronous inputs pass through input registers controlled by  
the rising edge of the clock. The clock signal is qualified with the  
clock enable input signal (CEN). If CEN is HIGH, the clock signal  
is not recognized and all internal states are maintained. All  
synchronous operations are qualified with CEN. All data outputs  
pass through output registers controlled by the rising edge of the  
clock. Maximum access delay from the clock rise (tCO) is 3.0 ns  
(200 MHz device).  
Single Write Accesses  
Write accesses are initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are all asserted active, and (3) the write signal WE is  
asserted LOW. The address presented to the address inputs is  
loaded into the address register. The write signals are latched  
into the control logic block.  
Accesses can be initiated by asserting all three chip enables  
(CE1, CE2, CE3) active at the rising edge of the clock. If clock  
enable (CEN) is active LOW and ADV/LD is asserted LOW, the  
address presented to the device will be latched. The access can  
either be a read or write operation, depending on the status of  
the write enable (WE). BW[x] can be used to conduct byte write  
operations.  
On the subsequent clock rise the data lines are automatically  
tristated regardless of the state of the OE input signal. This  
allows the external logic to present the data on DQ and DQP  
(DQa,b,c,d,e,f,g,h/DQPa,b,c,d,e,f,g,h  
for  
CY7C1474V33,  
Write operations are qualified by the write enable (WE). All writes  
are simplified with on-chip synchronous self timed write circuitry.  
DQa,b,c,d/DQPa,b,c,d for CY7C1470V33 and DQa,b/DQPa,b for  
CY7C1472V33). In addition, the address for the subsequent  
access (read/write/deselect) is latched into the address register  
(provided the appropriate control signals are asserted).  
Three synchronous chip enables (CE1, CE2, CE3) and an  
asynchronous output enable (OE) simplify depth expansion. All  
operations (reads, writes, and deselects) are pipelined. ADV/LD  
should be driven LOW after the device has been deselected in  
order to load a new address for the next operation.  
On the next clock rise the data presented to DQ and DQP  
(DQa,b,c,d,e,f,g,h/DQPa,b,c,d,e,f,g,h  
DQa,b,c,d/DQPa,b,c,d for CY7C1470V33 and DQa,b/DQPa,b for  
CY7C1472V33) (or a subset for byte write operations, see Write  
Cycle Description table for details) inputs is latched into the  
device and the write is complete.  
for  
CY7C1474V33,  
Single Read Accesses  
A read access is initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are all asserted active, (3) the write enable input signal  
WE is deasserted HIGH, and (4) ADV/LD is asserted LOW. The  
address presented to the address inputs is latched into the  
address register and presented to the memory core and control  
logic. The control logic determines that a read access is in  
progress and allows the requested data to propagate to the input  
of the output register. At the rising edge of the next clock the  
requested data is allowed to propagate through the output  
register and onto the data bus within 3.0 ns (200 MHz device)  
provided OE is active LOW. After the first clock of the read  
access the output buffers are controlled by OE and the internal  
control logic. OE must be driven LOW in order for the device to  
drive out the requested data. During the second clock, a  
subsequent operation (read/write/deselect) can be initiated.  
Deselecting the device is also pipelined. Therefore, when the  
SRAM is deselected at clock rise by one of the chip enable  
signals, its output will tristate following the next clock rise.  
The data written during the write operation is controlled by BW  
(BWa,b,c,d,e,f,g,h for CY7C1474V33, BWa,b,c,d for CY7C1470V33  
and BWa,b for CY7C1472V33) signals. The CY7C1470V33,  
CY7C1472V33, and CY7C1474V33 provides byte write  
capability that is described in the Write Cycle Description table.  
Asserting the write enable input (WE) with the selected byte write  
select (BW) input will selectively write to only the desired bytes.  
Bytes not selected during a byte write operation will remain  
unaltered. A synchronous self timed Write mechanism has been  
provided to simplify the write operations. Byte write capability  
has been included in order to greatly simplify read/modify/write  
sequences, which can be reduced to simple byte write  
operations.  
Because  
the  
CY7C1470V33,  
CY7C1472V33,  
and  
CY7C1474V33 are common I/O devices, data should not be  
driven into the device while the outputs are active. The output  
enable (OE) can be deasserted HIGH before presenting data to  
the DQ and DQP (DQa,b,c,d,e,f,g,h/DQPa,b,c,d,e,f,g,h for  
CY7C1474V33, DQa,b,c,d/DQPa,b,c,d for CY7C1470V33 and  
DQa,b/DQPa,b for CY7C1472V33) inputs. Doing so will tristate  
the output drivers. As a safety precaution, DQ and DQP  
Burst Read Accesses  
The CY7C1470V33, CY7C1472V33, and CY7C1474V33 have  
an on-chip burst counter that allows the user the ability to supply  
a single address and conduct up to four reads without  
reasserting the address inputs. ADV/LD must be driven LOW in  
order to load a new address into the SRAM, as described in the  
Single Read Accesses section above. The sequence of the burst  
(DQa,b,c,d,e,f,g,h/DQPa,b,c,d,e,f,g,h  
for  
CY7C1474V33,  
DQa,b,c,d/DQPa,b,c,d for CY7C1470V33 and DQa,b/DQPa,b for  
CY7C1472V33) are automatically tristated during the data  
portion of a write cycle, regardless of the state of OE.  
Document Number: 38-05289 Rev. *X  
Page 10 of 40  
 
 
 
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
Burst Write Accesses  
The CY7C1470V33, CY7C1472V33, and CY7C1474V33 has an  
on-chip burst counter that allows the user the ability to supply a  
single address and conduct up to four write operations without  
reasserting the address inputs. ADV/LD must be driven LOW in  
order to load the initial address, as described in the Single Write  
Accesses section above. When ADV/LD is driven HIGH on the  
subsequent clock rise, the chip enables (CE1, CE2, and CE3)  
and WE inputs are ignored and the burst counter is incremented.  
The correct BW (BWa,b,c,d,e,f,g,h for CY7C1474V33, BWa,b,c,d for  
CY7C1470V33 and BWa,b for CY7C1472V33) inputs must be  
driven in each cycle of the burst write in order to write the correct  
bytes of data.  
Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
First  
Address  
A1:A0  
Second  
Address  
A1:A0  
Third  
Address  
A1:A0  
Fourth  
Address  
A1:A0  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ places  
the SRAM in a power conservation “sleep” mode. Two clock  
cycles are required to enter into or exit from this “sleep” mode.  
While in this mode, data integrity is guaranteed. Accesses  
pending when entering the “sleep” mode are not considered valid  
nor is the completion of the operation guaranteed. The device  
must be deselected prior to entering the “sleep” mode. CE1, CE2,  
and CE3, must remain inactive for the duration of tZZREC after the  
ZZ input returns LOW.  
Linear Burst Address Table  
(MODE = GND)  
First  
Address  
A1:A0  
Second  
Address  
A1:A0  
Third  
Address  
A1:A0  
Fourth  
Address  
A1:A0  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
ZZ recovery time  
Test Conditions  
Min  
Max  
120  
2tCYC  
Unit  
mA  
ns  
ZZ VDD 0.2 V  
tZZS  
ZZ VDD 0.2 V  
ZZ 0.2 V  
2tCYC  
tZZREC  
tZZI  
ns  
ZZ active to sleep current  
This parameter is sampled  
2tCYC  
ns  
tRZZI  
ZZ Inactive to exit sleep current This parameter is sampled  
0
ns  
Document Number: 38-05289 Rev. *X  
Page 11 of 40  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
Truth Table  
The Truth Table for parts CY7C1470V33/CY7C1472V33/CY7C1474V33 is as follows. [5, 6, 7, 8, 9, 10, 11]  
Operation  
Address Used CE ZZ ADV/LD WE BWx OE CEN CLK  
DQ  
Deselect cycle  
None  
None  
H
X
L
L
L
L
L
L
L
L
L
L
L
L
H
L
H
L
X
X
H
X
H
X
L
X
X
X
X
X
X
L
X
X
L
L
L
L
L
L
L
L
L
L
L
H
X
L–H  
L–H  
Tri-state  
Tri-state  
Continue deselect cycle  
Read cycle (begin burst)  
Read cycle (continue burst)  
NOP/dummy read (begin burst)  
Dummy read (continue burst)  
Write cycle (begin burst)  
Write cycle (continue burst)  
NOP/write abort (begin burst)  
Write abort (continue burst)  
Ignore clock edge (stall)  
Sleep mode  
External  
Next  
L–H Data out (Q)  
L–H Data out (Q)  
X
L
H
L
L
External  
Next  
H
H
X
X
X
X
X
X
L–H  
L–H  
Tri-state  
Tri-state  
X
L
H
L
External  
Next  
L–H Data in (D)  
L–H Data in (D)  
X
L
H
L
X
L
L
None  
H
H
X
X
L–H  
L–H  
L–H  
X
Tri-state  
Tri-state  
Next  
X
X
X
H
X
X
X
X
X
Current  
None  
Tri-state  
Notes  
5. X = “Don't Care”, H = Logic HIGH, L = Logic LOW, CE stands for all chip enables active. BWx = 0 signifies at least one byte write select is active, BWx = valid signifies  
that the desired byte write selects are asserted, see Write Cycle Description table for details.  
6. Write is defined by WE and BW  
. See Write Cycle Description table for details.  
[a:d]  
7. When a write cycle is detected, all I/Os are tristated, even during byte writes.  
8. The DQ and DQP pins are controlled by the current cycle and the OE signal.  
9. CEN = H inserts wait states.  
10. Device will power-up deselected and the I/Os in a tristate condition, regardless of OE.  
11. OE is asynchronous and is not sampled with the clock rise. It is masked internally during Write cycles. During a Read cycle DQ and DQP  
= tristate when OE is  
s
[a:d]  
inactive or when the device is deselected, and DQ = data when OE is active.  
s
Document Number: 38-05289 Rev. *X  
Page 12 of 40  
 
 
 
 
 
 
 
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
Partial Write Cycle Description  
The partial write cycle description for part CY7C1470V33 is as follows. [12, 13, 14, 15]  
Function (CY7C1470V33)  
WE  
H
L
BWd  
X
H
H
H
H
H
H
H
H
L
BWc  
X
H
H
H
H
L
BWb  
X
H
H
L
BWa  
X
H
L
Read  
Write – no bytes written  
Write byte a – (DQa and DQPa)  
Write byte b – (DQb and DQPb)  
Write bytes b, a  
L
L
H
L
L
L
Write byte c – (DQc and DQPc)  
Write bytes c, a  
L
H
H
L
H
L
L
L
Write bytes c, b  
L
L
H
L
Write bytes c, b, a  
L
L
L
Write byte d – (DQd and DQPd)  
Write bytes d, a  
L
H
H
H
H
L
H
H
L
H
L
L
L
Write bytes d, b  
L
L
H
L
Write bytes d, b, a  
L
L
L
Write bytes d, c  
L
L
H
H
L
H
L
Write bytes d, c, a  
L
L
L
Write bytes d, c, b  
L
L
L
H
L
Write all bytes  
L
L
L
L
Partial Write Cycle Description  
The partial write cycle description for part CY7C1472V33 is as follows. [12, 13, 14, 15]  
Function (CY7C1472V33)  
WE  
H
L
BWb  
BWa  
x
Read  
x
H
H
L
Write – no bytes written  
Write byte a – (DQa and DQPa)  
Write byte b – (DQb and DQPb)  
Write both bytes  
H
L
L
L
H
L
L
L
Notes  
12. X = “Don't Care”, H = Logic HIGH, L = Logic LOW, CE stands for all chip enables active. BWx = 0 signifies at least one byte write select is active, BWx = valid signifies  
that the desired byte write selects are asserted, see Write Cycle Description table for details.  
13. Write is defined by WE and BW  
. See Write Cycle Description table for details.  
[a:d]  
14. When a write cycle is detected, all I/Os are tristated, even during byte writes.  
15. Table only lists a partial listing of the Byte Write combinations. Any combination of BW  
is valid. Appropriate write will be done based on which Byte Write is active.  
[a:d]  
Document Number: 38-05289 Rev. *X  
Page 13 of 40  
 
 
 
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
Partial Write Cycle Description  
The partial write cycle description for part CY7C1474V33 is as follows. [16, 17, 18, 19]  
Function (CY7C1474V33)  
WE  
H
BWx  
Read  
x
Write – no bytes written  
Write byte X(DQx and DQPx)  
Write all bytes  
L
H
L
L
L
All BW = L  
Notes  
16. X = “Don't Care”, H = Logic HIGH, L = Logic LOW, CE stands for all chip enables active. BWx = 0 signifies at least one byte write select is active, BWx = valid signifies  
that the desired byte write selects are asserted, see Write Cycle Description table for details.  
17. Write is defined by WE and BW  
. See Write Cycle Description table for details.  
[a:d]  
18. When a write cycle is detected, all I/Os are tristated, even during byte writes.  
19. Table only lists a partial listing of the Byte Write combinations. Any combination of BW  
is valid. Appropriate write will be done based on which Byte Write is active.  
[a:d]  
Document Number: 38-05289 Rev. *X  
Page 14 of 40  
 
 
 
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
At power-up, the TAP is reset internally to ensure that TDO  
comes up in a high Z state.  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The CY7C1470V33, and CY7C1474V33 incorporates a serial  
boundary scan test access port (TAP). This port operates in  
accordance with IEEE Standard 1149.1-1990 but does not have  
the set of functions required for full 1149.1 compliance. These  
functions from the IEEE specification are excluded because their  
inclusion places an added delay in the critical speed path of the  
SRAM. Note that the TAP controller functions in a manner that  
does not conflict with the operation of other devices using 1149.1  
fully compliant TAPs. The TAP operates using JEDEC-standard  
3.3 V or 2.5 V I/O logic levels.  
TAP Registers  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned into and out of the SRAM test circuitry.  
Only one register can be selected at a time through the  
instruction register. Data is serially loaded into the TDI ball on the  
rising edge of TCK. Data is output on the TDO ball on the falling  
edge of TCK.  
Instruction Register  
The CY7C1470V33, and CY7C1474V33 contains a TAP  
controller, instruction register, boundary scan register, bypass  
register, and ID register.  
Three bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the TDI  
and TDO balls as shown in the TAP Controller Block Diagram on  
page 18. Upon power-up, the instruction register is loaded with  
the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as described  
in the previous section.  
Disabling the JTAG Feature  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are  
internally pulled up and may be unconnected. They may  
alternately be connected to VDD through a pull up resistor. TDO  
should be left unconnected. Upon power-up, the device will  
come up in a reset state which will not interfere with the operation  
of the device.  
When the TAP controller is in the Capture-IR state, the two least  
significant bits are loaded with a binary “01” pattern to allow for  
fault isolation of the board-level serial test data path.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
Test Access Port (TAP)  
Test Clock (TCK)  
SRAM with minimal delay. The bypass register is set LOW (VSS  
)
The test clock is used only with the TAP controller. All inputs are  
captured on the rising edge of TCK. All outputs are driven from  
the falling edge of TCK.  
when the BYPASS instruction is executed.  
Boundary Scan Register  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
Test Mode Select (TMS)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to leave  
this ball unconnected if the TAP is not used. The ball is pulled up  
internally, resulting in a logic HIGH level.  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR state  
and is then placed between the TDI and TDO balls when the  
controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used to  
capture the contents of the I/O ring.  
Test Data-In (TDI)  
The TDI ball is used to serially input information into the registers  
and can be connected to the input of any of the registers. The  
register between TDI and TDO is chosen by the instruction that  
is loaded into the TAP instruction register. For information on  
loading the instruction register, see the TAP Controller State  
Diagram on page 17. TDI is internally pulled up and can be  
unconnected if the TAP is unused in an application. TDI is  
connected to the most significant bit (MSB) of any register.  
The Boundary Scan Exit Order on page 22 and Boundary Scan  
Exit Order on page 23 show the order in which the bits are  
connected. Each bit corresponds to one of the bumps on the  
SRAM package. The MSB of the register is connected to TDI and  
the LSB is connected to TDO.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired into  
the SRAM and can be shifted out when the TAP controller is in  
the Shift-DR state. The ID register has a vendor code and other  
information described in the Identification Register Definitions  
table.  
Test Data-Out (TDO)  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current state  
of the TAP state machine (see Identification Codes on page 21).  
The output changes on the falling edge of TCK. TDO is  
connected to the least significant bit (LSB) of any register.  
TAP Instruction Set  
Performing a TAP Reset  
A RESET is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This RESET does not affect the operation of the  
SRAM and may be performed while the SRAM is operating.  
Overview  
Eight different instructions are possible with the three bit  
instruction register. All combinations are listed in Identification  
Document Number: 38-05289 Rev. *X  
Page 15 of 40  
 
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
Codes on page 21. Three of these instructions are listed as  
RESERVED and should not be used. The other five instructions  
are described in detail below.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. The  
PRELOAD portion of this instruction is not implemented, so the  
device TAP controller is not fully 1149.1 compliant.  
The TAP controller used in this SRAM is not fully compliant to the  
1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented.  
When the SAMPLE/PRELOAD instruction is loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and bidirectional balls is  
captured in the boundary scan register.  
The TAP controller cannot be used to load address data or  
control signals into the SRAM and cannot preload the I/O buffers.  
The SRAM does not implement the 1149.1 commands EXTEST  
or INTEST or the PRELOAD portion of SAMPLE/PRELOAD;  
rather, it performs a capture of the I/O ring when these  
instructions are executed.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because there  
is a large difference in the clock frequencies, it is possible that  
during the Capture-DR state, an input or output will undergo a  
transition. The TAP may then try to capture a signal while in  
transition (metastable state). This will not harm the device, but  
there is no guarantee as to the value that will be captured.  
Repeatable results may not be possible.  
Instructions are loaded into the TAP controller during the Shift-IR  
state when the instruction register is placed between TDI and  
TDO. During this state, instructions are shifted through the  
instruction register through the TDI and TDO balls. To execute  
the instruction after it is shifted in, the TAP controller needs to be  
moved into the Update-IR state.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller’s capture setup plus hold  
time (tCS plus tCH).  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is to be  
executed whenever the instruction register is loaded with all 0s.  
EXTEST is not implemented in this SRAM TAP controller, and  
therefore this device is not compliant to 1149.1. The TAP  
controller does recognize an all-0 instruction.  
The SRAM clock input might not be captured correctly if there is  
no way in a design to stop (or slow) the clock during a  
SAMPLE/PRELOAD instruction. If this is an issue, it is still  
possible to capture all other signals and simply ignore the value  
of the CLK captured in the boundary scan register.  
When an EXTEST instruction is loaded into the instruction  
register, the SRAM responds as if a SAMPLE/PRELOAD  
instruction has been loaded. There is one difference between the  
two instructions. Unlike the SAMPLE/PRELOAD instruction,  
EXTEST places the SRAM outputs in a high Z state.  
After the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the boundary  
scan register between the TDI and TDO balls.  
Note that since the PRELOAD part of the command is not  
implemented, putting the TAP to the Update-DR state while  
performing a SAMPLE/PRELOAD instruction will have the same  
effect as the Pause-DR command.  
IDCODE  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
BYPASS  
When the BYPASS instruction is loaded in the instruction register  
and the TAP is placed in a Shift-DR state, the bypass register is  
placed between the TDI and TDO balls. The advantage of the  
BYPASS instruction is that it shortens the boundary scan path  
when multiple devices are connected together on a board.  
The IDCODE instruction is loaded into the instruction register  
upon power up or whenever the TAP controller is given a test  
logic reset state.  
SAMPLE Z  
Reserved  
The SAMPLE Z instruction causes the boundary scan register to  
be connected between the TDI and TDO balls when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a high Z state.  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
Document Number: 38-05289 Rev. *X  
Page 16 of 40  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
TAP Controller State Diagram  
TEST-LOGIC  
1
RESET  
0
1
1
1
RUN-TEST/  
0
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
IDLE  
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
1
1
EXIT1-DR  
EXIT1-IR  
0
0
PAUSE-DR  
0
PAUSE-IR  
1
0
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
0
1
0
The 0/1 next to each state represents the value of TMS at the rising edge of TCK.  
Document Number: 38-05289 Rev. *X  
Page 17 of 40  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
TAP Controller Block Diagram  
0
0
Bypass Register  
2
1
Selection  
Circuitry  
Selection  
Circuitry  
Instruction Register  
31 30 29 .  
Identification Register  
TDI  
TDO  
.
.
2
1
0
x
.
.
.
.
. 2 1  
0
Boundary Scan Register  
TCK  
TAP CONTROLLER  
TM S  
TAP Timing Diagram  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TM SS  
TDIS  
TM SH  
Test M ode Select  
(TM S)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
Document Number: 38-05289 Rev. *X  
Page 18 of 40  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
TAP AC Switching Characteristics  
Over the Operating Range  
Parameter [20, 21]  
Clock  
Description  
Min  
Max  
Unit  
tTCYC  
TCK clock cycle time  
TCK clock frequency  
TCK clock HIGH time  
TCK clock LOW time  
50  
20  
ns  
MHz  
ns  
tTF  
tTH  
20  
20  
tTL  
ns  
Output Times  
tTDOV  
tTDOX  
Setup Times  
tTMSS  
tTDIS  
TCK clock LOW to TDO valid  
TCK clock LOW to TDO invalid  
0
10  
ns  
ns  
TMS setup to TCK clock rise  
TDI setup to TCK clock rise  
Capture setup to TCK rise  
5
5
5
ns  
ns  
ns  
tCS  
Hold Times  
tTMSH  
tTDIH  
TMS hold after TCK clock rise  
TDI hold after clock rise  
5
5
5
ns  
ns  
ns  
tCH  
Capture hold after clock rise  
Notes  
20. t and t refer to the setup and hold time requirements of latching data from the boundary scan register.  
CS  
CH  
21. Test conditions are specified using the load in TAP AC Test Conditions. t /t = 1 ns.  
R
F
Document Number: 38-05289 Rev. *X  
Page 19 of 40  
 
 
 
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
3.3 V TAP AC Test Conditions  
2.5 V TAP AC Test Conditions  
Input pulse levels ...............................................VSS to 3.3 V  
Input rise and fall times ...................................................1 ns  
Input timing reference levels ......................................... 1.5 V  
Output reference levels ................................................ 1.5 V  
Test load termination supply voltage ............................ 1.5 V  
Input pulse levels ...............................................VSS to 2.5 V  
Input rise and fall time ....................................................1 ns  
Input timing reference levels ....................................... 1.25 V  
Output reference levels .............................................. 1.25 V  
Test load termination supply voltage .......................... 1.25 V  
3.3 V TAP AC Output Load Equivalent  
2.5 V TAP AC Output Load Equivalent  
1.5V  
1.25V  
50Ω  
50Ω  
TDO  
TDO  
ZO= 50Ω  
20pF  
ZO= 50Ω  
20pF  
TAP DC Electrical Characteristics and Operating Conditions  
(0 °C < TA < +70 °C; VDD = 3.135 V to 3.6 V unless otherwise noted)  
Parameter [22]  
Description  
Test Conditions  
IOH = –4.0 mA,VDDQ = 3.3 V  
IOH = –1.0 mA,VDDQ = 2.5 V  
Min  
2.4  
2.0  
2.9  
2.1  
Max  
Unit  
V
VOH1  
Output HIGH voltage  
V
VOH2  
VOL1  
VOL2  
VIH  
Output HIGH voltage  
Output LOW voltage  
Output LOW voltage  
Input HIGH voltage  
Input LOW voltage  
Input load current  
IOH = –100 µA  
VDDQ = 3.3 V  
V
VDDQ = 2.5 V  
VDDQ = 3.3 V  
VDDQ = 2.5 V  
VDDQ = 3.3 V  
VDDQ = 2.5 V  
VDDQ = 3.3 V  
VDDQ = 2.5 V  
VDDQ = 3.3 V  
VDDQ = 2.5 V  
0.4  
V
IOL = 8.0 mA  
IOL = 1.0 mA  
IOL = 100 µA  
V
0.4  
V
0.2  
V
0.2  
V
2.0  
1.7  
–0.3  
–0.3  
–5  
VDD + 0.3  
VDD + 0.3  
0.8  
V
V
VIL  
V
0.7  
V
IX  
GND < VIN < VDDQ  
5
µA  
Note  
22. All voltages referenced to V (GND).  
SS  
Document Number: 38-05289 Rev. *X  
Page 20 of 40  
 
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
Identification Register Definitions  
CY7C1470V33  
CY7C1474V33  
(1M × 72)  
Instruction Field  
Description  
(2M × 36)  
Revision number (31:29)  
Device depth (28:24) [23]  
000  
000  
01011  
Describes the version number  
01011  
Reserved for internal use  
Architecture/memory type (23:18)  
Bus width/density (17:12)  
Cypress JEDEC ID code (11:1)  
001000  
001000  
Defines memory type and architecture  
Defines width and density  
100100  
110100  
00000110100  
00000110100  
Allows unique identification of SRAM  
vendor  
ID register presence indicator (0)  
1
1
Indicates the presence of an ID register  
Scan Register Sizes  
Register Name  
Bit Size (× 36)  
Bit Size (× 72)  
Instruction  
3
1
3
1
Bypass  
ID  
32  
71  
32  
Boundary scan order – 165-ball FBGA  
Boundary scan order – 209-ball FBGA  
110  
Identification Codes  
Instruction  
EXTEST  
Code  
Description  
000  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces  
all SRAM outputs to high Z state. This instruction is not 1149.1 compliant.  
IDCODE  
001  
010  
Loads the ID register with the vendor ID code and places the register between TDI and TDO.  
This operation does not affect SRAM operations.  
SAMPLE Z  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces  
all SRAM output drivers to a high Z state.  
RESERVED  
011  
100  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Does  
not affect SRAM operation. This instruction does not implement 1149.1 preload function and  
is therefore not 1149.1 compliant.  
RESERVED  
101  
Do Not Use: This instruction is reserved for future use.  
Note  
23. Bit #24 is “1” in the ID Register Definitions for both 2.5 V and 3.3 V versions of this device.  
Document Number: 38-05289 Rev. *X  
Page 21 of 40  
 
 
 
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
Boundary Scan Exit Order  
(2M × 36)  
Bit #  
1
165-ball ID  
C1  
Bit #  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
165-ball ID  
R3  
Bit #  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
165-ball ID  
J11  
Bit #  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
165-ball ID  
B7  
B6  
A6  
B5  
A5  
A4  
B4  
B3  
A3  
A2  
B2  
2
D1  
P2  
K10  
J10  
H11  
G11  
F11  
E11  
D10  
D11  
C11  
G10  
F10  
E10  
A9  
3
E1  
R4  
4
D2  
P6  
5
E2  
R6  
6
F1  
R8  
7
G1  
F2  
P3  
8
P4  
9
G2  
J1  
P8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
P9  
K1  
P10  
R9  
L1  
J2  
R10  
R11  
N11  
M11  
L11  
M10  
L10  
K11  
M1  
N1  
B9  
K2  
A10  
B10  
A8  
L2  
M2  
R1  
B8  
R2  
A7  
Document Number: 38-05289 Rev. *X  
Page 22 of 40  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
Boundary Scan Exit Order  
(1M × 72)  
Bit #  
1
209-ball ID  
A1  
Bit #  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
209-ball ID  
T1  
Bit #  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
209-ball ID  
U10  
T11  
Bit #  
85  
209-ball ID  
B11  
B10  
A11  
A10  
A7  
2
A2  
T2  
86  
3
B1  
U1  
T10  
R11  
R10  
P11  
P10  
N11  
N10  
M11  
M10  
L11  
87  
4
B2  
U2  
88  
5
C1  
C2  
D1  
D2  
E1  
V1  
89  
6
V2  
90  
A5  
7
W1  
W2  
T6  
91  
A9  
8
92  
U8  
9
93  
A6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
E2  
V3  
94  
D6  
F1  
V4  
95  
K6  
F2  
U4  
96  
B6  
G1  
G2  
H1  
H2  
J1  
W5  
V6  
L10  
97  
K3  
P6  
98  
A8  
W6  
V5  
J11  
99  
B4  
J10  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
B3  
U5  
H11  
H10  
G11  
G10  
F11  
C3  
J2  
U6  
C4  
L1  
W7  
V7  
C8  
L2  
C9  
M1  
M2  
N1  
N2  
P1  
U7  
B9  
V8  
F10  
E10  
E11  
D11  
D10  
C11  
C10  
B8  
V9  
A4  
W11  
W10  
V11  
V10  
U11  
C6  
B7  
P2  
A3  
R2  
R1  
Document Number: 38-05289 Rev. *X  
Page 23 of 40  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
Maximum Ratings  
Operating Range  
Ambient  
Temperature  
Exceeding maximum ratings may shorten the useful life of the  
device. User guidelines are not tested.  
Range  
VDD  
VDDQ  
Commercial 0 °C to +70 °C  
Industrial –40 °C to +85 °C  
3.3 V– 5% / 2.5 V – 5% to  
Storage temperature ................................ –65 °C to +150 °C  
+ 10%  
VDD  
Ambient temperature  
with power applied ................................... –55 °C to +125 °C  
Supply voltage on VDD relative to GND .......–0.5 V to +4.6 V  
Supply voltage on VDDQ relative to GND ...... –0.5 V to +VDD  
DC to outputs in tri-state ...................–0.5 V to VDDQ + 0.5 V  
DC input voltage .................................0.5 V to VDD + 0.5 V  
Current into outputs (LOW) ........................................ 20 mA  
Neutron Soft Error Immunity  
Test  
Parameter Description  
Conditions  
Typ Max* Unit  
LSBU  
LMBU  
SEL  
Logical single  
bit upsets  
25 °C  
25 °C  
85 °C  
361 394  
FIT/  
Mb  
Static discharge voltage  
(per MIL-STD-883, method 3015) ..........................> 2001 V  
Logical multi  
bit upsets  
0
0
0.01 FIT/  
Mb  
Latch-up current ....................................................> 200 mA  
Single event  
latch-up  
0.1  
FIT/  
Dev  
* No LMBU or SEL events occurred during testing; this column represents a  
2
statistical , 95% confidence limit calculation. For more details refer to Application  
Note AN54908 “Accelerated Neutron SER Testing and Calculation of Terrestrial  
Failure Rates”.  
Electrical Characteristics  
Over the Operating Range  
Parameter[24, 25]  
Description  
Power supply voltage  
I/O supply voltage  
Test Conditions  
Min  
3.135  
3.135  
2.375  
2.4  
Max  
Unit  
V
VDD  
3.6  
VDDQ  
for 3.3 V I/O  
for 2.5 V I/O  
VDD  
V
2.625  
V
VOH  
VOL  
VIH  
VIL  
IX  
Output HIGH voltage  
Output LOW voltage  
Input HIGH voltage [24]  
Input LOW voltage [24]  
for 3.3 V I/O, IOH =4.0 mA  
for 2.5 V I/O, IOH=1.0 mA  
for 3.3 V I/O, IOL=8.0 mA  
for 2.5 V I/O, IOL=1.0 mA  
for 3.3 V I/O  
V
2.0  
0.4  
V
V
0.4  
V
2.0  
VDD + 0.3  
VDD + 0.3  
0.8  
V
for 2.5 V I/O  
1.7  
V
for 3.3 V I/O  
–0.3  
–0.3  
–5  
V
for 2.5 V I/O  
0.7  
V
Input leakage current except ZZ GND VI VDDQ  
and MODE  
5
A  
Input current of MODE  
Input = VSS  
–30  
5
A  
A  
A  
A  
A  
Input = VDD  
Input current of ZZ  
Input = VSS  
–5  
Input = VDD  
30  
5
IOZ  
Output leakage current  
GND VI VDDQ, output disabled  
–5  
Notes  
24. Overshoot: V  
< V +1.5 V (Pulse width less than t  
/2), undershoot: V  
> –2 V (Pulse width less than t  
/2).  
IH(AC)  
DD  
CYC  
IL(AC)  
CYC  
25. T  
: Assumes a linear ramp from 0 V to V  
within 200 ms. During this time V < V and V  
< V  
.
power up  
DD(Min)  
IH  
DD  
DDQ  
DD  
Document Number: 38-05289 Rev. *X  
Page 24 of 40  
 
 
 
 
 
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
Electrical Characteristics (continued)  
Over the Operating Range  
Parameter[24, 25]  
Description  
Test Conditions  
VDD = Max, IOUT = 0 mA,  
f = fMAX = 1/tCYC  
Min  
Max  
Unit  
IDD  
VDD operating supply  
5.0nscycle,  
200 MHz  
500  
mA  
6.0nscycle,  
167 MHz  
450  
245  
245  
120  
mA  
mA  
mA  
mA  
ISB1  
Automatic CE power-down  
current – TTL inputs  
Max VDD, device deselected,  
VIN VIH or VIN VIL,  
f = fMAX = 1/tCYC  
5.0nscycle,  
200 MHz  
6.0nscycle,  
167 MHz  
ISB2  
Automatic CE power-down  
current – CMOS inputs  
Max VDD, device deselected,  
VIN 0.3 V or VIN > VDDQ 0.3 V, grades  
f = 0  
All speed  
ISB3  
Automatic CE power-down  
current – CMOS inputs  
Max VDD, device deselected,  
VIN 0.3 V or VIN > VDDQ 0.3 V, 200 MHz  
f = fMAX = 1/tCYC  
5.0nscycle,  
245  
245  
135  
mA  
mA  
mA  
6.0nscycle,  
167 MHz  
ISB4  
Automatic CE power-down  
current – TTL inputs  
Max VDD, device deselected,  
VIN VIH or VIN VIL,  
f = 0  
All speed  
grades  
Capacitance  
100-pin TQFP 165-ballFBGA 209-ballFBGA  
Parameter [26]  
Description  
Test Conditions  
Unit  
Max  
Max  
Max  
CADDRESS  
CDATA  
CCTRL  
CCLK  
Address input capacitance TA = 25 C, f = 1 MHz,  
6
5
8
6
5
6
5
8
6
5
6
5
8
6
5
pF  
pF  
pF  
pF  
pF  
V
DD = 3.3 V, VDDQ = 2.5 V  
Data input capacitance  
Control input capacitance  
Clock input capacitance  
Input/output capacitance  
CI/O  
Thermal Resistance  
100-pin TQFP 165-ballFBGA 209-ballFBGA  
Parameter [26]  
Description  
Test Conditions  
Unit  
Package  
Package  
Package  
JA  
Thermal resistance  
(junction to ambient)  
Test  
conditions  
follow  
24.63  
16.3  
15.2  
C/W  
standard test methods and  
procedures for measuring  
thermal impedance, per  
EIA/JESD51.  
JC  
Thermal resistance  
(junction to case)  
2.28  
2.1  
1.7  
C/W  
Note  
26. Tested initially and after any design or process changes that may affect these parameters.  
Document Number: 38-05289 Rev. *X  
Page 25 of 40  
 
 
 
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
AC Test Loads and Waveforms  
Figure 4. AC Test Loads and Waveforms  
3.3 V I/O Test Load  
R = 317  
3.3 V  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
OUTPUT  
90%  
10%  
Z = 50   
0
R = 50   
10%  
L
GND  
5 pF  
R = 351   
1 ns  
1 ns  
V = 1.5 V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
2.5 V I/O Test Load  
R = 1667   
2.5 V  
OUTPUT  
R = 50   
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
90%  
10%  
Z = 50   
0
10%  
L
5 pF  
R = 1538   
1 ns  
1 ns  
V = 1.25 V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Document Number: 38-05289 Rev. *X  
Page 26 of 40  
 
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
Switching Characteristics  
Over the Operating Range  
-200  
-167  
Unit  
Max  
Parameter [27, 28]  
Description  
Min  
Max  
Min  
[29]  
tPower  
Clock  
tCYC  
VCC(typical) to the first access read or write  
1
1
ms  
Clock cycle time  
Maximum operating frequency  
Clock HIGH  
5.0  
200  
6.0  
167  
ns  
MHz  
ns  
FMAX  
tCH  
2.0  
2.0  
2.2  
2.2  
tCL  
Clock LOW  
ns  
Output Times  
tCO  
Data output valid after CLK rise  
OE LOW to output valid  
3.0  
3.0  
3.4  
3.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tOEV  
tDOH  
Data output hold after CLK rise  
Clock to high Z [30, 31, 32]  
Clock to low Z [30, 31, 32]  
OE HIGH to output high Z [30, 31, 32]  
OE LOW to output low Z [30, 31, 32]  
1.3  
1.5  
tCHZ  
3.0  
3.4  
tCLZ  
1.3  
1.5  
tEOHZ  
tEOLZ  
Setup Times  
tAS  
3.0  
3.4  
0
0
Address setup before CLK rise  
Data input setup before CLK rise  
CEN setup before CLK rise  
WE, BWx setup before CLK rise  
ADV/LD setup before CLK rise  
Chip select setup  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tDS  
tCENS  
tWES  
tALS  
tCES  
Hold Times  
tAH  
Address hold after CLK rise  
Data input hold after CLK rise  
CEN hold after CLK rise  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tDH  
tCENH  
tWEH  
WE, BWx hold after CLK rise  
ADV/LD hold after CLK rise  
Chip select hold after CLK rise  
tALH  
tCEH  
Notes  
27. Timing reference is 1.5 V when V  
= 3.3 V and is 1.25 V when V  
= 2.5 V.  
DDQ  
DDQ  
28. Test conditions shown in (a) of Figure 4 on page 26 unless otherwise noted.  
29. This part has a voltage regulator internally; t is the time power needs to be supplied above V  
initially, before a read or write operation can be initiated.  
power  
DD(minimum)  
30. t  
, t  
, t  
, and t  
are specified with AC test conditions shown in (b) of Figure 4 on page 26. Transition is measured ±200 mV from steady-state voltage.  
CHZ CLZ EOLZ  
EOHZ  
31. At any voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same data bus.  
EOHZ  
EOLZ  
CHZ  
CLZ  
These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to achieve high Z  
prior to low Z under the same system conditions.  
32. This parameter is sampled and not 100% tested.  
Document Number: 38-05289 Rev. *X  
Page 27 of 40  
 
 
 
 
 
 
 
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
Switching Waveforms  
Figure 5. Read/Write/Timing [33, 34, 35]  
1
2
3
4
5
6
7
8
9
10  
t
CYC  
t
CLK  
t
t
t
CENS  
CENH  
CL  
CH  
CEN  
t
t
CES  
CEH  
CE  
ADV/LD  
WE  
BW  
x
A1  
A2  
A4  
CO  
A3  
A5  
A6  
A7  
ADDRESS  
t
t
t
t
DS  
DH  
t
t
t
DOH  
OEV  
CLZ  
CHZ  
t
t
AS  
AH  
Data  
D(A1)  
D(A2)  
D(A2+1)  
Q(A3)  
Q(A4)  
Q(A4+1)  
D(A5)  
Q(A6)  
In-Out (DQ)  
t
OEHZ  
t
DOH  
t
OELZ  
OE  
WRITE  
D(A1)  
WRITE  
D(A2)  
BURST  
WRITE  
READ  
Q(A3)  
READ  
Q(A4)  
BURST  
READ  
WRITE  
D(A5)  
READ  
Q(A6)  
WRITE  
D(A7)  
DESELECT  
D(A2+1)  
Q(A4+1)  
DON’T CARE  
UNDEFINED  
Notes  
33. For this waveform ZZ is tied LOW.  
34. When CE is LOW, CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH, CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
35. Order of the burst sequence is determined by the status of the MODE (0 = Linear, 1= Interleaved). Burst operations are optional.  
Document Number: 38-05289 Rev. *X  
Page 28 of 40  
 
 
 
 
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
Switching Waveforms (continued)  
Figure 6. NOP, STALL and DESELECT Cycles [36, 37, 38]  
1
2
3
4
5
6
7
8
9
10  
CLK  
CEN  
CE  
ADV/LD  
WE  
BWx  
A1  
A2  
A3  
A4  
A5  
ADDRESS  
t
CHZ  
D(A4)  
D(A1)  
Q(A2)  
Q(A3)  
Q(A5)  
Data  
In-Out (DQ)  
WRITE  
D(A1)  
READ  
Q(A2)  
STALL  
READ  
Q(A3)  
WRITE  
D(A4)  
STALL  
NOP  
READ  
Q(A5)  
DESELECT  
CONTINUE  
DESELECT  
DON’T CARE  
UNDEFINED  
Figure 7. ZZ Mode Timing [39, 40]  
CLK  
ZZ  
t
t
ZZ  
ZZREC  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes  
36. For this waveform ZZ is tied LOW.  
37. When CE is LOW, CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH, CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
38. The IGNORE CLOCK EDGE or STALL cycle (Clock 3) illustrated CEN being used to create a pause. A write is not performed during this cycle.  
39. Device must be deselected when entering ZZ mode. See cycle description table for all possible signal conditions to deselect the device.  
40. I/Os are in high Z when exiting ZZ sleep mode.  
Document Number: 38-05289 Rev. *X  
Page 29 of 40  
 
 
 
 
 
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
Ordering Information  
The table below contains only the parts that are currently available. If you don’t see what you are looking for, please contact your local  
sales representative. For more information, visit the Cypress website at www.cypress.com and refer to the product summary page at  
http://www.cypress.com/products  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives and distributors. To find the office  
closest to you, visit us at http://www.cypress.com/go/datasheet/offices  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Part and Package Type  
Ordering Code  
167 CY7C1470V33-167AXC  
CY7C1470V33-167BZC  
CY7C1474V33-167BGC  
CY7C1470V33-167AXI  
CY7C1470V33-167BZI  
51-85050 100-pin TQFP (14 × 20 × 1.4 mm) Pb-free  
51-85165 165-ball FBGA (15 × 17 × 1.4mm)  
51-85167 209-ball FBGA (14 × 22 × 1.76 mm)  
51-85050 100-pin TQFP (14 × 20 × 1.4 mm) Pb-free  
51-85165 165-ball FBGA (15 × 17 × 1.4mm)  
51-85050 100-pin TQFP (14 × 20 × 1.4 mm) Pb-free  
Commercial  
lndustrial  
200 CY7C1470V33-200AXC  
CY7C1472V33-200AXC  
CY7C1474V33-200BGC  
CY7C1470V33-200BZI  
Commercial  
51-85167 209-ball FBGA (14 × 22 × 1.76 mm)  
51-85165 165-ball FBGA (15 × 17 × 1.4mm)  
lndustrial  
Ordering Code Definitions  
CY  
7
C 147X V33  
XXX XX X X  
-
Temperature Range: X = C or I  
C = Commercial; I = Industrial  
Pb-free  
Package Type: XX = A or BZ or BG  
A = 100-pin TQFP  
BZ = 165-ball FBGA  
BG = 209-ball FBGA  
Speed Grade: XXX = 167 MHz or 200 MHz  
V33 = 3.3 V  
147X = 1470 or 1472 or 1474  
1470 = PL, 2Mb × 36 (72Mb)  
1472 = PL, 4Mb × 18 (72Mb)  
1474 = PL, 1Mb × 72 (72Mb)  
Technology Code: C = CMOS  
Marketing Code: 7 = SRAM  
Company ID: CY = Cypress  
Document Number: 38-05289 Rev. *X  
Page 30 of 40  
 
 
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
Package Diagrams  
Figure 8. 100-pin TQFP (16 × 22 × 1.6 mm) A100RA Package Outline, 51-85050  
ș 2  
ș
1
ș
DIMENSIONS  
MIN. NOM. MAX.  
1.60  
NOTE:  
SYMBOL  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2. BODY LENGTH DIMENSION DOES NOT  
INCLUDE MOLD PROTRUSION/END FLASH.  
MOLD PROTRUSION/END FLASH SHALL  
A
0.05  
0.15  
A1  
A2  
D
1.35 1.40 1.45  
15.80 16.00 16.20  
13.90 14.00 14.10  
21.80 22.00 22.20  
19.90 20.00 20.10  
NOT EXCEED 0.0098 in (0.25 mm) PER SIDE.  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC  
D1  
E
E1  
BODY SIZE INCLUDING MOLD MISMATCH.  
3. JEDEC SPECIFICATION NO. REF: MS-026.  
0.08  
0.08  
0°  
R
R
ș
0.20  
0.20  
7°  
1
2
ș 1  
ș 2  
c
0°  
11° 12° 13°  
0.20  
0.22 0.30 0.38  
0.45 0.60 0.75  
1.00 REF  
b
L
L1  
L 2  
L 3  
e
0.25 BSC  
0.20  
0.65 TYP  
51-85050 *G  
Document Number: 38-05289 Rev. *X  
Page 31 of 40  
 
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
Package Diagrams (continued)  
Figure 9. 165-ball FBGA (15 × 17 × 1.40 mm) (0.45 Ball Diameter) Package Outline, 51-85165  
51-85165 *E  
Document Number: 38-05289 Rev. *X  
Page 32 of 40  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
Package Diagrams (continued)  
Figure 10. 209-ball FBGA (14 × 22 × 1.76 mm) BB209A Package Outline, 51-85167  
51-85167 *C  
Document Number: 38-05289 Rev. *X  
Page 33 of 40  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
Acronyms  
Document Conventions  
Units of Measure  
Acronym  
Description  
BGA  
CMOS  
CE  
Ball Grid Array  
Symbol  
°C  
Unit of Measure  
Complementary Metal Oxide Semiconductor  
Chip Enable  
degree Celsius  
megahertz  
microampere  
milliampere  
millimeter  
millisecond  
nanosecond  
picofarad  
volt  
MHz  
µA  
mA  
mm  
ms  
ns  
CEN  
FBGA  
I/O  
Clock Enable  
Fine-Pitch Ball Grid Array  
Input/Output  
JTAG  
NoBL  
OE  
Joint Test Action Group  
No Bus Latency  
pF  
Output Enable  
V
SRAM  
TCK  
TDI  
Static Random Access Memory  
Test Clock  
W
watt  
Test Data Input  
TMS  
TDO  
TQFP  
WE  
Test Mode Select  
Test Data Output  
Thin Quad Flat Pack  
Write Enable  
Document Number: 38-05289 Rev. *X  
Page 34 of 40  
 
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
Errata  
This section describes the Ram9 NoBL ZZ pin issues. Details include trigger conditions, the devices affected, proposed workaround  
and silicon revision applicability. Please contact your local Cypress sales representative if you have further questions.  
Part Numbers Affected  
Density & Revision  
Package Type  
100-pin TQFP  
165-ball FBGA  
209-ball FBGA  
Operating Range  
72Mb-Ram9 NoBL SRAMs: CY7C147*V33  
Commercial/  
Industrial  
Commercial  
Product Status  
All of the devices in the Ram9 72Mb NoBL family are qualified and available in production quantities.  
Ram9 NoBL ZZ Pin Issues Errata Summary  
The following table defines the errata applicable to available Ram9 72Mb NoBL family devices.  
Item  
Issues  
Description  
Device  
Fix Status  
1. ZZ Pin  
When asserted HIGH, the ZZ pin places  
deviceinasleepconditionwith dataintegrity  
preserved.The ZZ pin currently does not have  
an internal pull-down resistor and hence  
cannot be left floating externally by the user  
during normal mode of operation.  
72M-Ram9 (90 nm)  
For the 72M Ram9 (90 nm)  
devices, this issue was fixed in  
the new revision. Please  
contact your local sales rep for  
availability.  
1. ZZ Pin Issue  
PROBLEM DEFINITION  
The problem occurs only when the device is operated in the normal mode with ZZ pin left floating. The ZZ pin on the SRAM  
device does not have an internal pull-down resistor. Switching noise in the system may cause the SRAM to recognize a HIGH  
on the ZZ input, which may cause the SRAM to enter sleep mode. This could result in incorrect or undesirable operation of the  
SRAM.  
TRIGGER CONDITIONS  
Device operated with ZZ pin left floating.  
SCOPE OF IMPACT  
When the ZZ pin is left floating, the device delivers incorrect data.  
WORKAROUND  
Tie the ZZ pin externally to ground.  
FIX STATUS  
Fix was done for the 72M RAM9 NoBL SRAMs devices. Fixed devices have a new revision. The following table lists the devices  
affected and the new revision after the fix.  
Table 1. List of Affected Devices and the new revision  
Revision before the Fix  
New Revision after the Fix  
CY7C147*V33  
CY7C147*BV33  
Document Number: 38-05289 Rev. *X  
Page 35 of 40  
 
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
Document History Page  
Document Title: CY7C1470V33/CY7C1472V33/CY7C1474V33, 72-Mbit (2M × 36/4M × 18/1M × 72) Pipelined SRAM with  
NoBL™ Architecture  
Document Number: 38-05289  
Orig. of  
Change  
Submission  
Date  
Rev.  
ECN  
Description of Change  
**  
114676  
121520  
PKS  
CJM  
08/06/2002 New data sheet.  
*A  
01/27/2003 Changed status from Advanced Information to Preliminary.  
Updated Features (For package offering, removed 300 MHz frequency related  
information).  
Updated Selection Guide (Removed 300 MHz frequency related information).  
Updated Functional Overview (Removed 300 MHz frequency related  
information).  
Updated Electrical Characteristics (Removed 300 MHz frequency related  
information).  
Updated Switching Characteristics (Removed 300 MHz frequency related  
information, changed maximum value of tCO, tEOV, tCHZ, tEOHZ parameters from  
2.4 ns to 2.6 ns for 250 MHz frequency, changed minimum value of tDOH, tCLZ  
parameters from 0.8 ns to 1.0 ns for 250 MHz frequency, changed minimum  
value of tDOH, tCLZ parameters from 1.0 ns to 1.3 ns for 200 MHz frequency).  
Updated Ordering Information (Updated part numbers).  
*B  
223721  
NJY  
05/14/2004 Updated Features (Removed 250 MHz frequency related information and  
included 225 MHz frequency related information).  
Updated Functional Description (description).  
Updated Logic Block Diagram (Splitted Logic Block Diagram into three Logic  
Block Diagrams).  
Updated Functional Overview (description).  
Updated Boundary Scan Exit Order (Replaced TBD with values for all  
packages).  
Updated Electrical Characteristics (Removed 250 MHz frequency related  
information and included 225 MHz frequency related information, replaced  
TBD with values for maximum values of IDD, ISB1, ISB2, ISB3, ISB4 parameters).  
Updated Capacitance (Replaced TBD with values for all packages).  
Updated Thermal Resistance (Replaced TBD with values for all packages).  
Updated Switching Characteristics (Removed 250 MHz frequency related  
information and included 225 MHz frequency related information).  
Updated Switching Waveforms.  
Updated Package Diagrams (spec 51-85165 (Changed revision from ** to *A)  
for 165-ball FBGA package, removed 119-ball BGA package (spec 51-85115),  
removed spec 51-85143 and included spec 51-85167 for 209-ball BGA  
package).  
*C  
*D  
235012  
243572  
RYQ  
NJY  
06/17/2004 Minor Change (To match on the spec system and external web).  
07/20/2004 Updated Pin Configurations (Updated Figure 2 (Changed ball C11, D11, E11,  
F11, G11 from DQPb, DQb, DQb, DQb, DQb to DQPa, DQa, DQa, DQa, DQa  
(corresponding to CY7C1472V33))).  
Updated Capacitance (Splitted CIN parameter into CADDRESS, CDATA, CCLK  
parameters and also updated the values).  
Document Number: 38-05289 Rev. *X  
Page 36 of 40  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
Document History Page (continued)  
Document Title: CY7C1470V33/CY7C1472V33/CY7C1474V33, 72-Mbit (2M × 36/4M × 18/1M × 72) Pipelined SRAM with  
NoBL™ Architecture  
Document Number: 38-05289  
Orig. of  
Change  
Submission  
Date  
Rev.  
ECN  
Description of Change  
*E  
299511  
SYT / VBL 12/14/2004 Updated Features (Removed 225 MHz frequency related information and  
included 250 MHz frequency related information).  
Updated Selection Guide (Removed 225 MHz frequency related information  
and included 250 MHz frequency related information).  
Updated Electrical Characteristics (Removed 225 MHz frequency related  
information and included 250 MHz frequency related information).  
Updated Thermal Resistance (Changed value of JA from 16.8 C/W to  
24.63 C/W, and changed value of JC from 3.3 C/W to 2.28 C/W for 100-pin  
TQFP Package).  
Updated Switching Characteristics (Removed 225 MHz frequency related  
information and included 250 MHz frequency related information, changed  
minimum value of tCYC from 4.4 ns to 4.0 ns for 250 MHz frequency).  
Updated Ordering Information (Updated part numbers (Removed 225 MHz  
frequency related information and included 250 MHz frequency related  
information, added Pb-free information for 100-pin TQFP Package and  
165-ball FBGA Package, added Industrial Temperature Range part numbers),  
added comment of ‘Pb-free BG packages availability’ below the Ordering  
Information).  
*F  
323039  
PCI  
02/23/2005 Changed status from Preliminary to Final.  
Updated Selection Guide (Unshaded 250 MHz frequency related information).  
Updated Pin Configurations (Address expansion pins/balls in the pinouts for  
all packages are modified as per JEDEC standard, updated Figure 3 (Changed  
package name from 209-ball PBGA to 209-ball FBGA)).  
Updated Pin Definitions (Added Address Expansion pins).  
Updated Electrical Characteristics (Updated Test Conditions of VOL, VOH  
parameters, unshaded 250 MHz frequency related information).  
Updated Switching Characteristics (Unshaded 250 MHz frequency related  
information).  
Updated Ordering Information (Updated part numbers, unshaded all shaded  
areas, removed comment of ‘Pb-free BG packages availability’ below the  
Ordering Information).  
*G  
*H  
351937  
416221  
PCI  
04/19/2005 Updated Ordering Information (Updated part numbers).  
RXU  
12/22/2005 Changed address of Cypress Semiconductor Corporation from “3901 North  
First Street” to “198 Champion Court”.  
Updated Electrical Characteristics (Updated Note 25 (Changed VDDQ < VDD  
to VDDQ < VDD), changed description of IX parameter from Input Load Current  
except ZZ and MODE to Input Leakage Current except ZZ and MODE,  
changed minimum value of IX parameter (corresponding to Input Current of  
MODE (Input = VSS)) from –5 µA to –30 µA, changed maximum value of IX  
parameter (corresponding to Input Current of MODE (Input = VDD)) from 30 µA  
to 5 µA, changed minimum value of IX parameter (corresponding to Input  
Current of ZZ (Input = VSS)) from –30 µA to –5 µA, changed maximum value  
of IX parameter (corresponding to Input Current of ZZ (Input = VDD)) from 5 µA  
to 30 µA).  
Updated Ordering Information (Updated part numbers, replaced Package  
Name column with Package Diagram in the Ordering Information table).  
Replaced Three-state with Tri-state in all instances across the document.  
Document Number: 38-05289 Rev. *X  
Page 37 of 40  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
Document History Page (continued)  
Document Title: CY7C1470V33/CY7C1472V33/CY7C1474V33, 72-Mbit (2M × 36/4M × 18/1M × 72) Pipelined SRAM with  
NoBL™ Architecture  
Document Number: 38-05289  
Orig. of  
Change  
Submission  
Date  
Rev.  
ECN  
Description of Change  
*I  
472335  
VKN  
06/27/2006 Updated Pin Configurations (Updated Figure 3 (Corrected the ball name for  
H9 from VSSQ to VSS).  
Updated TAP AC Switching Characteristics (Changed minimum value of tTH  
,
tTL parameters from 25 ns to 20 ns, changed maximum value of tTDOV  
parameter from 5 ns to 10 ns).  
Updated Maximum Ratings (Added Maximum Rating for Supply Voltage on  
VDDQ Relative to GND).  
Updated Ordering Information (Updated part numbers).  
*J  
2756998  
VKN  
08/28/2009 Added Neutron Soft Error Immunity.  
Updated Ordering Information (Updated part numbers (Including parts that are  
available), and modified the disclaimer for the Ordering information).  
Updated Package Diagrams (spec 51-85165 (Changed revision from *A to  
*B)).  
*K  
*L  
2903057  
3033272  
NJY  
NJY  
04/01/2010 Updated Ordering Information (Updated part numbers).  
Updated Package Diagrams:  
spec 51-85050 – Changed revision from *B to *C.  
spec 51-85167 – Changed revision from ** to *A.  
09/19/2010 Updated Ordering Information:  
No change in part numbers.  
Added Ordering Code Definitions.  
Added Acronyms and Units of Measure.  
Minor edits.  
Updated to new template.  
*M  
*N  
3052882  
3357114  
NJY  
10/08/2010 Updated Ordering Information (Updated part numbers).  
PRIT  
08/29/2011 Updated Package Diagrams:  
spec 51-85050 – Changed revision from *C to *D.  
spec 51-85165 – Changed revision from *B to *C.  
spec 51-85167 – Changed revision from *A to *B.  
*O  
*P  
3403584  
3638614  
PRIT  
PRIT  
10/12/2011 Updated Ordering Information (Updated part numbers).  
Updated Package Diagrams:  
spec 51-85165 – Changed revision from *C to *D.  
06/06/2012 Updated Features(Removed250MHzfrequencyrelatedinformation, removed  
165-ball FBGA package related information (corresponding to  
CY7C1472V33)).  
Updated Selection Guide (Removed 250 MHz frequency related information).  
Updated Pin Configurations (Updated Figure 2 (Removed CY7C1472V33  
related information)).  
Updated Functional Overview (Removed 250 MHz frequency related  
information).  
UpdatedIEEE1149.1SerialBoundaryScan (JTAG)(Removed CY7C1472V33  
related information).  
Updated Identification Register Definitions (Removed CY7C1472V33 related  
information).  
Updated Scan Register Sizes (Removed “Bit Size (× 18)” column).  
Removed Boundary Scan Exit Order (Corresponding to CY7C1472V33).  
Updated Electrical Characteristics (Removed 250 MHz frequency related  
information).  
Updated Switching Characteristics (Removed 250 MHz frequency related  
information).  
Updated Ordering Information (Updated part numbers).  
*Q  
3755966  
PRIT  
09/26/2012 Updated Package Diagrams (spec 51-85167 (Changed revision from *B to  
*C)).  
Document Number: 38-05289 Rev. *X  
Page 38 of 40  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
Document History Page (continued)  
Document Title: CY7C1470V33/CY7C1472V33/CY7C1474V33, 72-Mbit (2M × 36/4M × 18/1M × 72) Pipelined SRAM with  
NoBL™ Architecture  
Document Number: 38-05289  
Orig. of  
Change  
Submission  
Date  
Rev.  
ECN  
Description of Change  
*R  
3971410  
PRIT  
04/18/2013 Updated Ordering Information (Updated part numbers).  
Added Errata.  
*S  
4042037  
PRIT  
06/27/2013 Added Errata Footnotes.  
Updated to new template.  
*T  
4146627  
4539205  
PRIT  
PRIT  
10/04/2013 Updated Errata.  
*U  
10/15/2014 Updated Package Diagrams:  
spec 51-85050 – Changed revision from *D to *E.  
Completing Sunset Review.  
*V  
*W  
*X  
4571917  
5513955  
6015296  
PRIT  
PRIT  
12/29/2014 Updated Functional Description:  
Added “For a complete list of related documentation, click here.” at the end.  
Updated Package Diagrams:  
spec 51-85165 – Changed revision from *D to *E.  
11/08/2016 Updated Package Diagrams:  
spec 51-85050 – Changed revision from *E to *F.  
Updated to new template.  
Completing Sunset Review.  
RMES  
01/05/2018 Updated Package Diagrams:  
spec 51-85050 – Changed revision from *F to *G.  
Updated to new template.  
Completing Sunset Review.  
Document Number: 38-05289 Rev. *X  
Page 39 of 40  
CY7C1470V33  
CY7C1472V33  
CY7C1474V33  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
Arm® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Community | Projects | Video | Blogs | Training | Components  
Technical Support  
Internet of Things  
Memory  
cypress.com/support  
cypress.com/memory  
cypress.com/mcu  
Microcontrollers  
PSoC  
cypress.com/psoc  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless Connectivity  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
cypress.com/wireless  
© Cypress Semiconductor Corporation, 2002-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document,  
including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to  
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users  
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation  
of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent  
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any  
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is  
the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products  
are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or  
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the  
device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably  
expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,  
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other  
liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 38-05289 Rev. *X  
Revised January 5, 2018  
Page 40 of 40  
NoBL™ and No Bus Latency™ are trademarks of Cypress Semiconductor Corporation.  

相关型号:

CY7C1472V33-167BGC

ZBT SRAM, 4MX18, 3.4ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, PLASTIC, BGA-119
CYPRESS

CY7C1472V33-167BZC

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL Architecture
CYPRESS

CY7C1472V33-167BZI

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL Architecture
CYPRESS

CY7C1472V33-167BZXC

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL Architecture
CYPRESS

CY7C1472V33-167BZXI

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL Architecture
CYPRESS

CY7C1472V33-200AXC

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL Architecture
CYPRESS

CY7C1472V33-200AXCT

ZBT SRAM, 4MX18, 3ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, LEAD FREE, PLASTIC, MS-026, TQFP-100
CYPRESS

CY7C1472V33-200AXI

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1472V33-200BZC

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL Architecture
CYPRESS

CY7C1472V33-200BZI

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1472V33-200BZXC

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL Architecture
CYPRESS

CY7C1472V33-200BZXI

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS