CY7C1480V33-250BZXI [CYPRESS]

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM; 72兆位( 2M ×36 / 4M ×18 / 1M X 72 ),流水线同步SRAM
CY7C1480V33-250BZXI
型号: CY7C1480V33-250BZXI
厂家: CYPRESS    CYPRESS
描述:

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM
72兆位( 2M ×36 / 4M ×18 / 1M X 72 ),流水线同步SRAM

存储 内存集成电路 静态存储器 时钟
文件: 总32页 (文件大小:1290K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
72-Mbit (2M x 36/4M x 18/1M x 72)  
Pipelined Sync SRAM  
Features  
Functional Description[1]  
• Supports bus operation up to 250 MHz  
• Available speed grades are 250, 200, and 167 MHz  
• Registered inputs and outputs for pipelined operation  
• 3.3V core power supply  
The CY7C1480V33/CY7C1482V33/CY7C1486V33 SRAM  
integrates 2M x 36/4M x 18/1M × 72 SRAM cells with  
advanced synchronous peripheral circuitry and a two-bit  
counter for internal burst operation. All synchronous inputs are  
gated by registers controlled by a positive-edge-triggered  
Clock Input (CLK). The synchronous inputs include all  
addresses, all data inputs, address-pipelining Chip Enable  
(CE1), depth-expansion Chip Enables (CE2 and CE3), Burst  
Control inputs (ADSC, ADSP, and ADV), Write Enables (BWX,  
and BWE), and Global Write (GW). Asynchronous inputs  
include the Output Enable (OE) and the ZZ pin.  
• 2.5V/3.3V I/O operation  
• Fast clock-to-output times  
— 3.0 ns (for 250 MHz device)  
• Provide high performance 3-1-1-1 access rate  
• User selectable burst counter supporting Intel®  
Pentium® interleaved or linear burst sequences  
Addresses and chip enables are registered at the rising edge  
of the clock when either Address Strobe Processor (ADSP) or  
Address Strobe Controller (ADSC) are active. Subsequent  
burst addresses can be internally generated as controlled by  
the Advance pin (ADV).  
• Separate processor and controller address strobes  
• Synchronous self timed writes  
• Asynchronous output enable  
• Single cycle chip deselect  
Address, data inputs, and write controls are registered on-chip  
to initiate a self timed write cycle.This part supports byte write  
operations (see “Pin Definitions” on page 7 and “Truth Table”  
on page 10 for further details). Write cycles can be one to two  
or four bytes wide as controlled by the byte write control inputs.  
GW when active LOW causes all bytes to be written.  
• CY7C1480V33, CY7C1482V33 available in  
JEDEC-standard Pb-free 100-pin TQFP, Pb-free and  
non-Pb-free 165-ball FBGA package. CY7C1486V33  
available in Pb-free and non-Pb-free 209-ball FBGA  
package  
The CY7C1480V33/CY7C1482V33/CY7C1486V33 operates  
from a +3.3V core power supply while all outputs may operate  
with either a +2.5 or +3.3V supply. All inputs and outputs are  
JEDEC standard JESD8-5 compatible.  
• IEEE 1149.1 JTAG-Compatible Boundary Scan  
• “ZZ” Sleep Mode option  
Selection Guide  
250 MHz  
3.0  
200 MHz  
3.0  
167 MHz  
3.4  
Unit  
ns  
Maximum Access Time  
Maximum Operating Current  
Maximum CMOS Standby Current  
500  
500  
450  
mA  
mA  
120  
120  
120  
Note  
1. For best practices recommendations, please refer to the Cypress application note AN1064, SRAM System Guidelines.  
Cypress Semiconductor Corporation  
Document #: 38-05283 Rev. *H  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised April 23, 2007  
[+] Feedback  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
Logic Block Diagram – CY7C1480V33 (2M x 36)  
A0, A1,  
A
ADDRESS  
REGISTER  
2
A
[1:0]  
MODE  
Q1  
Q0  
ADV  
CLK  
BURST  
COUNTER  
AND  
CLR  
LOGIC  
ADSC  
ADSP  
DQ D ,DQP D  
BYTE  
WRITE REGISTER  
DQ D ,DQP  
BYTE  
WRITE DRIVER  
D
BW  
BW  
D
DQ C ,DQP  
BYTE  
C
DQ C ,DQP  
BYTE  
C
C
OUTPUT  
BUFFERS  
WRITE DRIVER  
OUTPUT  
REGISTERS  
WRITE REGISTER  
MEMORY  
ARRAY  
DQs  
SENSE  
AMPS  
DQP  
DQP  
DQP  
DQP  
A
DQ B ,DQP  
BYTE  
WRITE DRIVER  
B
E
DQ B ,DQP  
BYTE  
WRITE REGISTER  
B
B
BW  
B
A
C
D
DQ A ,DQP  
BYTE  
WRITE DRIVER  
A
DQ A ,DQP  
BYTE  
WRITE REGISTER  
A
BW  
BWE  
INPUT  
REGISTERS  
GW  
ENABLE  
REGISTER  
PIPELINED  
ENABLE  
CE  
CE  
CE  
1
2
3
OE  
SLEEP  
CONTROL  
ZZ  
Logic Block Diagram – CY7C1482V33 (4M x 18)  
ADDRESS  
REGISTER  
A0, A1,  
A
A[1:0]  
2
MODE  
Q1  
ADV  
CLK  
BURST  
COUNTER AND  
LOGIC  
CLR  
Q0  
ADSC  
ADSP  
DQ B, DQP  
WRITE DRIVER  
B
DQ B, DQP  
WRITE REGISTER  
B
OUTPUT  
BUFFERS  
BW  
B
DQs  
DQP  
DQP  
OUTPUT  
REGISTERS  
SENSE  
AMPS  
MEMORY  
ARRAY  
A
B
DQ A, DQP  
WRITE DRIVER  
A
E
DQ A, DQP  
WRITE REGISTER  
A
BW  
A
BWE  
GW  
INPUT  
REGISTERS  
ENABLE  
REGISTER  
CE  
1
PIPELINED  
ENABLE  
CE2  
CE3  
OE  
SLEEP  
CONTROL  
ZZ  
Document #: 38-05283 Rev. *H  
Page 2 of 32  
[+] Feedback  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
Logic Block Diagram – CY7C1486V33 (1M x 72)  
ADDRESS  
REGISTER  
A0, A1,A  
A[1:0]  
MODE  
Q1  
Q0  
ADV  
CLK  
BINARY  
COUNTER  
CLR  
ADSC  
ADSP  
DQ  
H
, DQP  
H
DQ  
H, DQPH  
BW  
BW  
H
G
WRITE DRIVER  
WRITE DRIVER  
DQ  
G, DQPG  
DQ  
F, DQPF  
WRITE DRIVER  
WRITE DRIVER  
DQ  
F, DQPF  
DQ  
F, DQPF  
BW  
BW  
BW  
BW  
F
E
WRITE DRIVER  
WRITE DRIVER  
DQ E  
E
, DQP  
DQ  
E, DQPE  
WRITE DRIVER  
WRITE DRIVER  
MEMORY  
ARRAY  
DQ  
D, DQPD  
DQ  
D, DQPD  
D
WRITE DRIVER  
WRITE DRIVER  
DQ  
C, DQPC  
DQ  
C, DQPC  
C
WRITE DRIVER  
WRITE DRIVER  
OUTPUT  
BUFFERS  
OUTPUT  
REGISTERS  
SENSE  
AMPS  
DQs  
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
DQP  
A
B
C
D
E
E
DQ  
B, DQPB  
DQ  
B, DQPB  
WRITE DRIVER  
BW  
BW  
B
WRITE DRIVER  
DQ  
A, DQPA  
DQ  
A
, DQP  
A
F
WRITE DRIVER  
A
WRITE DRIVER  
G
H
BWE  
INPUT  
GW  
CE1  
CE2  
CE3  
OE  
REGISTERS  
ENABLE  
REGISTER  
PIPELINED  
ENABLE  
SLEEP  
CONTROL  
ZZ  
Document #: 38-05283 Rev. *H  
Page 3 of 32  
[+] Feedback  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
Pin Configurations  
100-Pin TQFP Pinout  
DQPC  
1
DQPB  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
VSS  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
NC  
VDDQ  
VSSQ  
NC  
A
NC  
NC  
VDDQ  
VSSQ  
NC  
DQPA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
VSS  
NC  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQC  
2
DQc  
VDDQ  
VSSQ  
DQC  
3
4
5
6
DQC  
7
NC  
DQC  
8
DQB  
DQB  
VSSQ  
VDDQ  
DQB  
DQB  
NC  
VDD  
NC  
VSS  
DQB  
DQB  
VDDQ  
VSSQ  
DQB  
DQB  
DQPB  
NC  
DQC  
9
10  
11  
9
VSSQ  
VDDQ  
DQC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
12  
DQC  
13  
NC  
14  
VDD  
15  
NC  
VDD  
ZZ  
CY7C1482V33  
(4M x 18)  
CY7C1480V33  
(2M x 36)  
NC  
16  
VDD  
ZZ  
VSS  
17  
DQD  
18  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
DQA  
DQA  
VSSQ  
VDDQ  
DQA  
DQA  
DQPA  
DQA  
DQA  
VDDQ  
VSSQ  
DQA  
DQA  
NC  
DQD  
19  
20  
21  
VDDQ  
VSSQ  
DQD  
22  
DQD  
23  
DQD  
24  
DQD  
25  
26  
27  
NC  
VSSQ  
VDDQ  
DQD  
DQD  
29  
VSSQ  
VDDQ  
NC  
NC  
NC  
VSSQ  
VDDQ  
NC  
NC  
NC  
28  
DQPD  
30  
Document #: 38-05283 Rev. *H  
Page 4 of 32  
[+] Feedback  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
Pin Configurations (continued)  
165-Ball FBGA (15 x 17 x 1.4 mm) Pinout  
CY7C1480V33 (2M x 36)  
1
2
3
4
5
6
7
8
9
10  
A
11  
NC  
NC/288M  
NC/144M  
DQPC  
A
B
C
D
CE1  
BWC  
BWD  
VSS  
VDD  
BWB  
BWA  
VSS  
VSS  
CE3  
CLK  
VSS  
VSS  
ADSC  
A
BWE  
GW  
VSS  
ADV  
ADSP  
VDDQ  
VDDQ  
A
CE2  
VDDQ  
VDDQ  
A
NC/576M  
DQPB  
DQB  
OE  
VSS  
VDD  
NC  
NC/1G  
DQB  
DQC  
DQC  
VSS  
DQC  
DQC  
DQC  
DQC  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
DQB  
DQB  
DQB  
NC  
DQB  
E
F
DQC  
DQC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQB  
DQB  
ZZ  
G
H
J
DQD  
DQD  
DQD  
DQD  
DQD  
DQD  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
DQA  
DQA  
DQA  
K
L
DQD  
DQPD  
NC  
DQD  
NC  
A
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
A
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
DQA  
DQPA  
A
M
N
P
TDI  
A1  
TDO  
A0  
MODE  
A
A
A
TMS  
TCK  
A
A
A
A
R
CY7C1482V33 (4M x 18)  
1
2
3
4
5
6
7
8
9
10  
11  
NC/288M  
NC/144M  
NC  
A
NC  
A
A
A
B
C
D
BWB  
NC  
CE  
CE1  
CE2  
BWE  
GW  
VSS  
ADSC  
OE  
ADV  
ADSP  
VDDQ  
VDDQ  
3
A
BWA  
VSS  
VSS  
CLK  
VSS  
VSS  
A
NC/576M  
DQPA  
DQA  
NC  
VDDQ  
VDDQ  
VSS  
VDD  
VSS  
NC/1G  
NC  
NC  
DQB  
VSS  
VDD  
NC  
DQB  
DQB  
DQB  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDQ  
VDDQ  
VDDQ  
NC  
NC  
NC  
DQA  
E
F
NC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQA  
DQA  
ZZ  
NC  
G
H
J
NC  
NC  
DQB  
DQB  
DQB  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQA  
DQA  
DQA  
NC  
NC  
NC  
K
L
NC  
NC  
DQB  
DQPB  
NC  
NC  
NC  
A
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
A
VSS  
NC  
VDD  
VSS  
A
VDDQ  
VDDQ  
A
DQA  
NC  
A
NC  
NC  
A
M
N
P
TDI  
A1  
TDO  
MODE  
A
A
A
TMS  
A0  
TCK  
A
A
A
A
R
Document #: 38-05283 Rev. *H  
Page 5 of 32  
[+] Feedback  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
Pin Configurations (continued)  
209-Ball FBGA (14 x 22 x 1.76 mm) Pinout  
CY7C1486V33 (1M × 72)  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
C
D
E
F
A
DQB  
DQB  
DQB  
DQB  
DQB  
CE3  
DQG  
DQG  
DQG  
DQG  
CE2  
ADSC  
DQG  
DQG  
ADSP  
ADV  
A
A
BWSB  
NC/288M  
NC/144M  
BWSC  
BWSH  
VSS  
BWE  
CE1  
OE  
BWSF  
BWSA  
VSS  
BWSG  
BWSD  
DQB  
DQB  
DQB  
DQG  
DQG  
NC/576M  
GW  
BWSE  
NC  
NC/1G  
NC  
DQPG DQPC  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VDD  
NC  
NC  
NC  
VDD  
VSS  
VDD  
DQPB  
DQF  
DQPF  
DQF  
DQC  
DQC  
DQC  
VSS  
VDDQ  
VSS  
VSS  
G
H
J
VDDQ  
VSS  
DQC  
DQC  
DQC  
NC  
VDDQ  
VSS  
DQF  
DQF  
DQF  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
NC  
A
DQC  
DQC  
NC  
DQ  
F
VDDQ  
VDDQ  
VDDQ  
CLK  
VDDQ  
NC  
NC  
DQF  
NC  
DQF  
NC  
K
L
VSS  
NC  
NC  
DQH  
DQH  
DQH  
VDDQ  
VSS  
VDDQ  
VSS  
VDDQ  
VSS  
NC  
NC  
VDDQ  
VDDQ  
VSS  
DQA  
DQA  
DQ  
A
M
N
P
R
T
VSS  
VDDQ  
VSS  
VDDQ  
NC  
DQH  
DQH  
DQH  
VSS  
VDD  
VSS  
DQA  
DQA  
DQA  
VDDQ  
DQH  
DQH  
DQPD  
DQD  
DQD  
VDDQ  
VSS  
NC  
ZZ  
DQA  
DQA  
DQPA  
DQE  
DQE  
VSS  
VDDQ  
VSS  
A
VDDQ  
VDD  
NC  
A
DQPH  
DQD  
DQD  
DQD  
DQD  
VDDQ  
VDD  
DQPE  
DQE  
DQE  
DQE  
DQE  
VSS  
NC  
A
MODE  
A
U
V
W
A
A
A
A
A1  
A
DQD  
DQD  
A
A
A
A
DQE  
DQE  
TDI  
TDO  
TCK  
A0  
A
TMS  
Document #: 38-05283 Rev. *H  
Page 6 of 32  
[+] Feedback  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
Pin Definitions  
Pin Name  
I/O  
Description  
Address Inputs Used to Select One of the Address Locations. Sampled at the  
A0, A1, A  
Input-  
Synchronous rising edge of the CLK if ADSP or ADSC is active LOW, and CE1, CE2, and CE3 are  
sampled active. A1: A0 are fed to the two-bit counter.  
Input-  
Byte Write Select Inputs, Active LOW. Qualified with BWE to conduct byte writes to  
BWA,BWB,BWC,BWD,  
BWE,BWF,BWG,BWH  
Synchronous the SRAM. Sampled on the rising edge of CLK.  
GW  
Input-  
Global Write Enable Input, active LOW. When asserted LOW on the rising edge of  
Synchronous CLK, a global write is conducted (ALL bytes are written, regardless of the values on  
BWX and BWE).  
BWE  
CLK  
CE1  
Input-  
Byte Write Enable Input, Active LOW. Sampled on the rising edge of CLK. This  
Synchronous signal must be asserted LOW to conduct a byte write.  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. Also used to  
increment the burst counter when ADV is asserted LOW during a burst operation.  
Input-  
Chip Enable 1 Input, Active LOW. Sampled on the rising edge of CLK. Used in  
Synchronous conjunction with CE2 and CE3 to select or deselect the device. ADSP is ignored if CE1  
is HIGH. CE1 is sampled only when a new external address is loaded.  
CE2  
Input-  
Chip Enable 2 Input, Active HIGH. Sampled on the rising edge of CLK. Used in  
Synchronous conjunction with CE1 and CE3 to select or deselect the device. CE2 is sampled only  
when a new external address is loaded.  
Input-  
Chip Enable 3 Input, Active LOW. Sampled on the rising edge of CLK. Used in  
CE3  
OE  
Synchronous conjunction with CE1 and CE2 to select or deselect the device. CE3 is sampled only  
when a new external address is loaded.  
Input-  
Output Enable, Asynchronous Input, Active LOW. Controls the direction of the IO  
Asynchronous pins. When LOW, the IO pins behave as outputs. When deasserted HIGH, IO pins are  
tri-stated, and act as input data pins. OE is masked during the first clock of a read  
cycle when emerging from a deselected state.  
ADV  
Input-  
Advance Input Signal, Sampled on the Rising Edge of CLK, Active LOW. When  
Synchronous asserted, it automatically increments the address in a burst cycle.  
ADSP  
Input- Address Strobe from Processor, Sampled on the Rising Edge of CLK, Active  
Synchronous LOW. When asserted LOW, addresses presented to the device are captured in the  
address registers. A1: A0 are also loaded into the burst counter. When ADSP and  
ADSC are both asserted, only ADSP is recognized. ASDP is ignored when CE1 is  
deasserted HIGH.  
ADSC  
Input-  
Address Strobe from Controller, Sampled on the Rising Edge of CLK, Active  
Synchronous LOW. When asserted LOW, addresses presented to the device are captured in the  
address registers. A1: A0 are also loaded into the burst counter. When ADSP and  
ADSC are both asserted, only ADSP is recognized.  
ZZ  
Input-  
ZZ “Sleep” Input, Active HIGH. When asserted HIGH places the device in a  
Asynchronous non-time-critical “sleep” condition with data integrity preserved. For normal operation,  
this pin has to be LOW or left floating. ZZ pin has an internal pull-down.  
I/O-  
Bidirectional Data I/O Lines. As inputs, they feed into an on-chip data register that  
DQs, DQPs  
Synchronous is triggered by the rising edge of CLK. As outputs, they deliver the data contained in  
the memory location specified by the addresses presented during the previous clock  
rise of the read cycle. The direction of the pins is controlled by OE. When OE is  
asserted LOW, the pins behave as outputs. When HIGH, DQs and DQPX are placed  
in a tri-state condition.  
VDD  
VSS  
Power Supply Power supply inputs to the core of the device.  
Ground  
Ground for the core of the device.  
Ground for the I/O circuitry.  
[2]  
VSSQ  
IO Ground  
VDDQ  
IO Power Supply Power supply for the I/O circuitry.  
Note  
2. Applicable for TQFP package. For BGA package V serves as ground for the core and the IO circuitry.  
SS  
Document #: 38-05283 Rev. *H  
Page 7 of 32  
[+] Feedback  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
Pin Definitions (continued)  
Pin Name  
I/O  
Description  
Selects Burst Order. When tied to GND selects linear burst sequence. When tied to  
DD or left floating selects interleaved burst sequence. This is a strap pin and must  
MODE  
Input Static  
V
remain static during device operation. Mode Pin has an internal pull up.  
TDO  
TDI  
JTAG Serial  
Output  
Synchronous on TQFP packages.  
Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK. If  
the JTAG feature is not used, this pin must be disconnected. This pin is not available  
JTAG Serial  
Input  
Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG  
feature is not used, this pin can be disconnected or connected to VDD. This pin is not  
Synchronous available on TQFP packages.  
TMS  
JTAG Serial  
Input  
Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG  
feature is not used, this pin can be disconnected or connected to VDD. This pin is not  
Synchronous available on TQFP packages.  
TCK  
NC  
JTAG Clock  
-
Clock input to the JTAG circuitry. If the JTAG feature is not used, this pin must be  
connected to VSS. This pin is not available on TQFP packages.  
No Connects. Not internally connected to the die. 144M, 288M, 576M, and 1G are  
address expansion pins and are not internally connected to the die.  
Output Registers. At the rising edge of the next clock the data  
is allowed to propagate through the output register and onto  
Functional Overview  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock.  
Maximum access delay from the clock rise (tCO) is 3.0 ns  
(250 MHz device).  
the data bus within 3.0 ns (250-MHz device) if OE is active  
LOW. The only exception occurs when the SRAM is emerging  
from a deselected state to a selected state, its outputs are  
always tri-stated during the first cycle of the access. After the  
first cycle of the access, the outputs are controlled by the OE  
signal. Consecutive single read cycles are supported. After the  
SRAM is deselected at clock rise by the chip select and either  
ADSP or ADSC signals, its output tri-states immediately.  
The CY7C1480V33/CY7C1482V33/CY7C1486V33 supports  
secondary cache in systems using either a linear or inter-  
leaved burst sequence. The interleaved burst order supports  
Pentium and i486processors. The linear burst sequence is  
suited for processors that use a linear burst sequence. The  
burst order is user selectable, and is determined by sampling  
the MODE input. Accesses can be initiated with either the  
Processor Address Strobe (ADSP) or the Controller Address  
Strobe (ADSC). Address advancement through the burst  
sequence is controlled by the ADV input. A two-bit on-chip  
wraparound burst counter captures the first address in a burst  
sequence and automatically increments the address for the  
rest of the burst access.  
Single Write Accesses Initiated by ADSP  
This access is initiated when both of the following conditions  
are satisfied at clock rise: (1) ADSP is asserted LOW, and  
(2) CE1, CE2, CE3 are all asserted active. The address  
presented to A is loaded into the address register and the  
address advancement logic while being delivered to the  
memory array. The write signals (GW, BWE, and BWX) and  
ADV inputs are ignored during this first cycle.  
ADSP triggered write accesses require two clock cycles to  
complete. If GW is asserted LOW on the second clock rise, the  
data presented to the DQs inputs is written into the corre-  
sponding address location in the memory array. If GW is HIGH,  
then the write operation is controlled by BWE and BWX  
signals.  
Byte Write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BWX) inputs. A Global Write  
Enable (GW) overrides all byte write inputs and writes data to  
all four bytes. All writes are simplified with on-chip  
synchronous self-timed write circuitry.  
Three synchronous Chip Selects (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide easy bank  
selection and output tri-state control. ADSP is ignored if CE1  
is HIGH.  
The CY7C1480V33/CY7C1482V33/CY7C1486V33 provides  
byte write capability that is described in the “Truth Table for  
Read/Write” on page 11. Asserting the Byte Write Enable input  
(BWE) with the selected Byte Write (BWX) input, will selec-  
tively write to only the desired bytes. Bytes not selected during  
a Byte Write operation will remain unaltered. A synchronous  
self-timed Write mechanism has been provided to simplify the  
Write operations.  
Single Read Accesses  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW, (2)  
CE1, CE2, CE3 are all asserted active, and (3) the write signals  
(GW, BWE) are all deasserted HIGH. ADSP is ignored if CE1  
is HIGH. The address presented to the address inputs (A) is  
stored into the address advancement logic and the Address  
Register while being presented to the memory array. The  
corresponding data is allowed to propagate to the input of the  
Because CY7C1480V33/CY7C1482V33/CY7C1486V33 is a  
common I/O device, the Output Enable (OE) must be  
deasserted HIGH before presenting data to the DQs inputs.  
Doing so will tri-state the output drivers. As a safety  
Document #: 38-05283 Rev. *H  
Page 8 of 32  
[+] Feedback  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
precaution, DQs are automatically tri-stated whenever a Write  
cycle is detected, regardless of the state of OE.  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected before entering  
the “sleep” mode. CE1, CE2, CE3, ADSP, and ADSC must  
remain inactive for the duration of tZZREC after the ZZ input  
returns LOW.  
Single Write Accesses Initiated by ADSC  
ADSC Write accesses are initiated when the following condi-  
tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is  
deasserted HIGH, (3) CE1, CE2, CE3 are all asserted active,  
and (4) the appropriate combination of the Write inputs (GW,  
BWE, and BWX) are asserted active to conduct a Write to the  
desired byte(s). ADSC-triggered Write accesses require a  
single clock cycle to complete. The address presented to A is  
loaded into the address register and the address  
advancement logic while being delivered to the memory array.  
The ADV input is ignored during this cycle. If a global Write is  
conducted, the data presented to the DQs is written into the  
corresponding address location in the memory core. If a Byte  
Write is conducted, only the selected bytes are written. Bytes  
not selected during a Byte Write operation will remain  
unaltered. A synchronous self-timed Write mechanism has  
been provided to simplify the Write operations.  
Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
First  
Address  
A1: A0  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Because CY7C1480V33/CY7C1482V33/CY7C1486V33 is a  
common I/O device, the Output Enable (OE) must be  
deasserted HIGH before presenting data to the DQs inputs.  
Doing so will tri-state the output drivers. As a safety  
precaution, DQs are automatically tri-stated whenever a Write  
cycle is detected, regardless of the state of OE.  
Linear Burst Address Table  
(MODE = GND)  
Burst Sequences  
First  
Second  
Address  
A1: A0  
Third  
Address  
A1: A0  
Fourth  
Address  
A1: A0  
Address  
A1: A0  
The CY7C1480V33/CY7C1482V33/CY7C1486V33 provides  
a two-bit wraparound counter, fed by A1: A0, that implements  
either an interleaved or linear burst sequence. The interleaved  
burst sequence is designed specifically to support Intel  
Pentium applications. The linear burst sequence is designed  
to support processors that follow a linear burst sequence. The  
burst sequence is user selectable through the MODE input.  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
Asserting ADV LOW at clock rise will automatically increment  
the burst counter to the next address in the burst sequence.  
Both Read and Write burst operations are supported.  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
Test Conditions  
ZZ > VDD – 0.2V  
Min.  
Max.  
Unit  
mA  
ns  
120  
tZZS  
ZZ > VDD – 0.2V  
2tCYC  
tZZREC  
tZZI  
ZZ recovery time  
ZZ < 0.2V  
2tCYC  
0
ns  
ZZ Active to Sleep current  
ZZ Inactive to exit Sleep current  
This parameter is sampled  
This parameter is sampled  
2tCYC  
ns  
tRZZI  
ns  
Document #: 38-05283 Rev. *H  
Page 9 of 32  
[+] Feedback  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
Truth Table  
The Truth Table for CY7C1480V33, CY7C1482V33, and CY7C1486V33 follows.[3, 4, 5, 6, 7]  
Operation  
Add. Used CE1 CE2 CE3 ZZ ADSP ADSC ADV WRITE OE CLK  
DQ  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Deselect Cycle, Power Down  
Sleep Mode, Power Down  
READ Cycle, Begin Burst  
None  
None  
H
L
X
L
X
X
H
X
H
X
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
L
L
X
X
L
X
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
L
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
L-H Tri-State  
None  
L
X
L
L
None  
L
H
H
X
L
None  
L
X
X
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
L
None  
X
L
X
X
X
L
X
Tri-State  
Q
External  
External  
External  
External  
External  
Next  
L-H  
READ Cycle, Begin Burst  
L
L
L
H
X
L
L-H Tri-State  
WRITE Cycle, Begin Burst  
READ Cycle, Begin Burst  
L
L
H
H
H
H
H
X
X
H
X
H
H
X
X
H
X
L-H  
L-H  
D
Q
L
L
L
H
H
H
H
H
H
L
READ Cycle, Begin Burst  
L
L
L
H
L
L-H Tri-State  
L-H  
L-H Tri-State  
L-H  
L-H Tri-State  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
WRITE Cycle, Continue Burst  
WRITE Cycle, Continue Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
WRITE Cycle,Suspend Burst  
WRITE Cycle,Suspend Burst  
X
X
H
H
X
H
X
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
Q
Next  
L
H
L
Next  
L
Q
Next  
L
H
X
X
L
Next  
L
L-H  
L-H  
L-H  
D
D
Q
Next  
L
L
Current  
Current  
Current  
Current  
Current  
Current  
H
H
H
H
H
H
H
H
H
H
L
H
L
L-H Tri-State  
L-H  
L-H Tri-State  
Q
H
X
X
L-H  
L-H  
D
D
L
Notes  
3. X = “Don't Care.” H = Logic HIGH, L = Logic LOW.  
4. WRITE = L when any one or more Byte Write enable signals and BWE = L or GW = L. WRITE = H when all Byte write enable signals, BWE, GW = H.  
5. The DQ pins are controlled by the current cycle and the signal. is asynchronous and is not sampled with the clock.  
OE  
OE  
6. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BW . Writes may occur only on subsequent clocks  
X
after the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH before the start of the write cycle to allow the outputs to tri-state. OE is a  
“don't care” for the remainder of the write cycle.  
7. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are Tri-State when OE is  
inactive or when the device is deselected, and all data bits behave as output when OE is active (LOW).  
Document #: 38-05283 Rev. *H  
Page 10 of 32  
[+] Feedback  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
Truth Table for Read/Write  
The following is a Truth Table for Read/Write for the CY7C1480V33.[5]  
Function  
GW  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
BWE  
H
L
BWD  
X
H
H
H
H
H
H
H
H
L
BWC  
X
H
H
H
H
L
BWB  
X
H
H
L
BWA  
X
H
L
Read  
Read  
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write Bytes B, A  
L
L
H
L
L
L
Write Byte C – (DQC and DQPC)  
Write Bytes C, A  
L
H
H
L
H
L
L
L
Write Bytes C, B  
L
L
H
L
Write Bytes C, B, A  
Write Byte D – (DQD and DQPD)  
Write Bytes D, A  
L
L
L
L
H
H
H
H
L
H
H
L
H
L
L
L
Write Bytes D, B  
L
L
H
L
Write Bytes D, B, A  
Write Bytes D, C  
L
L
L
L
L
H
H
L
H
L
Write Bytes D, C, A  
Write Bytes D, C, B  
Write All Bytes  
L
L
L
L
L
L
H
L
L
L
L
L
Write All Bytes  
X
X
X
X
X
Truth Table for Read/Write  
The following is a Truth Table for Read/Write for the CY7C1482V33.[5]  
Function  
GW  
BWE  
BWB  
BWA  
Read  
Read  
H
H
H
H
H
H
L
H
L
L
L
L
L
X
X
H
H
L
X
H
L
Write Byte A – (DQA and DQPA)  
Write Byte B – (DQB and DQPB)  
Write Bytes B, A  
H
L
L
Write All Bytes  
L
L
Write All Bytes  
X
X
Truth Table for Read/Write  
The following is a Truth Table for Read/Write for the CY7C1482V33.[8]  
Function  
GW  
BWE  
BWX  
Read  
H
H
H
H
L
H
L
L
L
X
X
Read  
All BW = H  
Write Byte x – (DQx and DQPx)  
Write All Bytes  
L
All BW = L  
X
Write All Bytes  
Note  
8. BWx represents any byte write signal BW[0..7].To enable any byte write BWx, a Logic LOW signal should be applied at clock rise. Any number of bye writes  
can be enabled at the same time for any given write.  
Document #: 38-05283 Rev. *H  
Page 11 of 32  
[+] Feedback  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
Test Mode Select (TMS)  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The TMS input gives commands to the TAP controller and is  
sampled on the rising edge of TCK. You can leave this ball  
unconnected if the TAP is not used. The ball is pulled up inter-  
nally, resulting in a logic HIGH level.  
The CY7C1480V33/CY7C1482V33/CY7C1486V33 incorpo-  
rates a serial boundary scan test access port (TAP). This port  
operates in accordance with IEEE Standard 1149.1-1990 but  
does not have the set of functions required for full 1149.1  
compliance. These functions from the IEEE specification are  
excluded because their inclusion places an added delay in the  
critical speed path of the SRAM. Note that the TAP controller  
functions in a manner that does not conflict with the operation  
of other devices using 1149.1 fully compliant TAPs. The TAP  
operates using JEDEC-standard 3.3V or 2.5V I/O logic levels.  
Test Data-In (TDI)  
The TDI ball serially inputs information into the registers and  
can be connected to the input of any of the registers. The  
register between TDI and TDO is chosen by the instruction  
that is loaded into the TAP instruction register. For information  
about loading the instruction register, see the TAP Controller  
State Diagram. TDI is internally pulled up and can be uncon-  
nected if the TAP is unused in an application. TDI is connected  
to the most significant bit (MSB) of any register. (See TAP  
Controller Block Diagram.)  
The CY7C1480V33/CY7C1482V33/CY7C1486V33 contains  
a TAP controller, instruction register, boundary scan register,  
bypass register, and ID register.  
Disabling the JTAG Feature  
Test Data-Out (TDO)  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, tie TCK LOW (VSS) to  
prevent device clocking. TDI and TMS are internally pulled up  
and may be unconnected. They may alternatively be  
connected to VDD through a pull up resistor. TDO must be left  
unconnected. At power up, the device comes up in a reset  
state, which will not interfere with the operation of the device.  
The TDO output ball serially clocks data-out from the registers.  
The output is active depending upon the current state of the  
TAP state machine. The output changes on the falling edge of  
TCK. TDO is connected to the least significant bit (LSB) of any  
register. (See TAP Controller State Diagram.)  
TAP Controller Block Diagram  
TAP Controller State Diagram  
0
TEST-LOGIC  
1
RESET  
0
Bypass Register  
2
1
0
0
0
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
Selection  
Circuitry  
Selection  
Circuitry  
Instruction Register  
31 30 29  
Identification Register  
0
0
TDI  
TDO  
1
1
.
.
. 2 1  
CAPTURE-DR  
CAPTURE-IR  
0
0
x
.
.
.
.
. 2 1  
SHIFT-DR  
0
SHIFT-IR  
0
Boundary Scan Register  
1
1
1
1
EXIT1-DR  
EXIT1-IR  
0
0
PAUSE-DR  
0
PAUSE-IR  
1
0
TCK  
TAP CONTROLLER  
TM S  
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
Performing a TAP Reset  
UPDATE-DR  
UPDATE-IR  
Perform a RESET by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This RESET does not affect the operation of  
the SRAM and may be performed while the SRAM is  
operating.  
1
0
1
0
At power up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
The 0/1 next to each state represents the value of TMS at the  
rising edge of TCK.  
TAP Registers  
Test Access Port (TAP)  
Registers are connected between the TDI and TDO balls and  
enable data to be scanned into and out of the SRAM test  
circuitry. Only one register can be selected at a time through  
the instruction register. Data is serially loaded into the TDI ball  
on the rising edge of TCK. Data is output on the TDO ball on  
the falling edge of TCK.  
Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Document #: 38-05283 Rev. *H  
Page 12 of 32  
[+] Feedback  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
Instruction Register  
SAMPLE/PRELOAD; rather, it performs a capture of the IO  
ring when these instructions are executed.  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO balls as shown in the “TAP Controller Block  
Diagram” on page 12. At power up, the instruction register is  
loaded with the IDCODE instruction. It is also loaded with the  
IDCODE instruction if the controller is placed in a reset state,  
as described in the previous section.  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO balls.  
To execute the instruction after it is shifted in, the TAP  
controller must be moved into the Update-IR state.  
When the TAP controller is in the Capture-IR state, the two  
least significant bits are loaded with a binary “01” pattern to  
enable fault isolation of the board-level serial test data path.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction, which is to be  
executed whenever the instruction register is loaded with all  
zeros. EXTEST is not implemented in this SRAM TAP  
controller, and therefore this device is not compliant to 1149.1.  
The TAP controller does recognize an all-zero instruction.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This enables data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
When an EXTEST instruction is loaded into the instruction  
register, the SRAM responds as if a SAMPLE/PRELOAD  
instruction has been loaded. There is one difference between  
the two instructions. Unlike the SAMPLE/PRELOAD  
instruction, EXTEST places the SRAM outputs in a High-Z  
state.  
Boundary Scan Register  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM. The x36 configuration has a  
IDCODE  
73-bit-long register, and the x18 configuration has  
54-bit-long register.  
a
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and  
enables the IDCODE to be shifted out of the device when the  
TAP controller enters the Shift-DR state.  
The boundary scan register is loaded with the contents of the  
RAM IO ring when the TAP controller is in the Capture-DR  
state and is then placed between the TDI and TDO balls when  
the controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD, and SAMPLE Z instructions can be used  
to capture the contents of the I/O ring.  
The IDCODE instruction is loaded into the instruction register  
at power up or whenever the TAP controller is in a test logic  
reset state.  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI and the LSB is connected to TDO.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO balls when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in “Identification Register Defini-  
tions” on page 15.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. The  
PRELOAD portion of this instruction is not implemented, so  
the device TAP controller is not fully 1149.1 compliant.  
When the SAMPLE/PRELOAD instruction is loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and bidirectional balls  
is captured in the boundary scan register.  
TAP Instruction Set  
Overview  
Be aware that the TAP controller clock can only operate at a  
frequency up to 10 MHz, while the SRAM clock operates more  
than an order of magnitude faster. Because there is a large  
difference in the clock frequencies, it is possible that during the  
Capture-DR state, an input or output may undergo a transition.  
The TAP may then try to capture a signal while in transition  
(metastable state). This does not harm the device, but there is  
no guarantee as to the value that may be captured.  
Repeatable results may not be possible.  
Eight different instructions are possible with the three-bit  
instruction register. All combinations are listed in “Identification  
Codes” on page 16. Three of these instructions are listed as  
RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
The TAP controller used in this SRAM is not fully compliant to  
the 1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller’s capture setup plus  
hold time (tCS plus tCH).  
The TAP controller cannot be used to load address data or  
control signals into the SRAM and cannot preload the IO  
buffers. The SRAM does not implement the 1149.1 commands  
EXTEST or INTEST or the PRELOAD portion of  
Document #: 38-05283 Rev. *H  
Page 13 of 32  
[+] Feedback  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
The SRAM clock input might not be captured correctly if there  
is no way in a design to stop (or slow) the clock during a  
SAMPLE/PRELOAD instruction. If this is an issue, it is still  
possible to capture all other signals and simply ignore the  
value of the CLK captured in the boundary scan register.  
BYPASS  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO balls. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
After the data is captured, the data can be shifted out by  
putting the TAP into the Shift-DR state. This places the  
boundary scan register between the TDI and TDO balls.  
Reserved  
Note that because the PRELOAD part of the command is not  
implemented, putting the TAP to the Update-DR state while  
performing a SAMPLE/PRELOAD instruction has the same  
effect as the Pause-DR command.  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TM SS  
TDIS  
TM SH  
Test M ode Select  
(TM S)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
TAP AC Switching Characteristics Over the Operating Range[9, 10]  
Parameter  
Clock  
tTCYC  
tTF  
Description  
Min.  
Max.  
Unit  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH Time  
TCK Clock LOW Time  
50  
ns  
MHz  
ns  
20  
tTH  
20  
20  
tTL  
ns  
Output Times  
tTDOV  
TCK Clock LOW to TDO Valid  
TCK Clock LOW to TDO Invalid  
10  
ns  
ns  
tTDOX  
0
Setup Times  
tTMSS  
TMS Setup to TCK Clock Rise  
TDI Setup to TCK Clock Rise  
Capture Setup to TCK Rise  
5
5
5
ns  
ns  
ns  
tTDIS  
tCS  
Hold Times  
tTMSH  
TMS Hold after TCK Clock Rise  
TDI Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
tTDIH  
tCH  
Capture Hold after Clock Rise  
Notes  
9.  
t
and t refer to the setup and hold time requirements of latching data from the boundary scan register.  
CS CH  
10. Test conditions are specified using the load in TAP AC Test Conditions. t /t = 1 ns.  
R
F
Document #: 38-05283 Rev. *H  
Page 14 of 32  
[+] Feedback  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
3.3V TAP AC Test Conditions  
2.5V TAP AC Test Conditions  
Input pulse levels ............................................... .VSS to 3.3V  
Input rise and fall times................................................... 1 ns  
Input timing reference levels...........................................1.5V  
Output reference levels...................................................1.5V  
Test load termination supply voltage...............................1.5V  
Input pulse levels.................................................VSS to 2.5V  
Input rise and fall time .....................................................1 ns  
Input timing reference levels......................................... 1.25V  
Output reference levels ................................................ 1.25V  
Test load termination supply voltage ............................ 1.25V  
3.3V TAP AC Output Load Equivalent  
2.5V TAP AC Output Load Equivalent  
1.5V  
1.25V  
50  
50  
TDO  
TDO  
ZO= 50Ω  
20pF  
ZO= 50Ω  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
(0°C < TA < +70°C; VDD = 3.135 to 3.6V unless otherwise noted)[11]  
Parameter  
VOH1  
Description  
Test Conditions  
Min.  
2.4  
2.0  
2.9  
2.1  
Max.  
Unit  
V
Output HIGH Voltage IOH = –4.0 mA, VDDQ = 3.3V  
IOH = –1.0 mA, VDDQ = 2.5V  
V
VOH2  
VOL1  
VOL2  
VIH  
Output HIGH Voltage IOH = –100 µA  
VDDQ = 3.3V  
DDQ = 2.5V  
V
V
V
Output LOW Voltage IOL = 8.0 mA  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
VDDQ = 2.5V  
VDDQ = 3.3V  
0.4  
0.4  
V
IOL = 1.0 mA  
V
Output LOW Voltage IOL = 100 µA  
0.2  
V
0.2  
V
Input HIGH Voltage  
2.0  
1.7  
VDD + 0.3  
VDD + 0.3  
0.8  
V
V
DDQ = 2.5V  
VDDQ = 3.3V  
DDQ = 2.5V  
V
VIL  
Input LOW Voltage  
–0.3  
–0.3  
–5  
V
V
0.7  
V
IX  
Input Load Current  
GND < VIN < VDDQ  
5
µA  
Identification Register Definitions  
CY7C1480V33 CY7C1482V33 CY7C1486V33  
Instruction Field  
Description  
(2M x36)  
(4M x 18)  
(1M x72)  
Revision Number (31:29)  
Device Depth (28:24)  
000  
000  
000  
Describes the version number  
Reserved for internal use  
01011  
01011  
01011  
Architecture/Memory Type(23:18)  
Bus Width/Density(17:12)  
Cypress JEDEC ID Code (11:1)  
000000  
100100  
000000  
010100  
000000  
110100  
Defines memory type and architecture  
Defines width and density  
00000110100 00000110100 00000110100 Enables unique identification of SRAM  
vendor  
ID Register Presence Indicator (0)  
1
1
1
Indicates the presence of an ID register  
Notes  
11. All voltages referenced to V (GND).  
SS  
Document #: 38-05283 Rev. *H  
Page 15 of 32  
[+] Feedback  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
Scan Register Sizes  
Register Name  
Bit Size (x36)  
Bit Size (x18)  
Bit Size (x72)  
Instruction  
3
1
3
1
3
1
Bypass  
ID  
32  
73  
-
32  
54  
-
32  
-
Boundary Scan Order – 165FBGA  
Boundary Scan Order – 209BGA  
112  
Identification Codes  
Instruction  
EXTEST  
Code  
000  
Description  
Captures the IO ring contents.  
IDCODE  
001  
Loads the ID register with the vendor ID code and places the register between TDI and  
TDO. This operation does not affect SRAM operations.  
SAMPLE Z  
010  
Captures IO ring contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
RESERVED  
011  
100  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures IO ring contents. Places the boundary scan register between TDI and TDO.  
Does not affect SRAM operation.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
Boundary Scan Exit Order (2M x 36)  
Bit #  
1
165-Ball ID  
C1  
Bit #  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
165-Ball ID  
R3  
Bit #  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
165-Ball ID  
L10  
K11  
J11  
Bit #  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
165-Ball ID  
B8  
A7  
B7  
B6  
A6  
B5  
A5  
A4  
B4  
B3  
A3  
A2  
B2  
2
D1  
P2  
3
E1  
R4  
4
D2  
P6  
K10  
J10  
5
E2  
R6  
6
F1  
N6  
H11  
G11  
F11  
7
G1  
F2  
P11  
R8  
8
9
G2  
J1  
P3  
E11  
D10  
D11  
C11  
G10  
F10  
E10  
A10  
B10  
A9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
P4  
K1  
P8  
L1  
P9  
J2  
P10  
R9  
M1  
N1  
R10  
R11  
N11  
M11  
L11  
M10  
K2  
L2  
M2  
R1  
B9  
R2  
A8  
Document #: 38-05283 Rev. *H  
Page 16 of 32  
[+] Feedback  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
Boundary Scan Exit Order (4M x 18)  
Bit #  
1
165-Ball ID  
D2  
Bit #  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
165-Ball ID  
R8  
Bit #  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
165-Ball ID  
C11  
A11  
A10  
B10  
A9  
2
E2  
P3  
3
F2  
P4  
4
G2  
P8  
5
J1  
P9  
6
K1  
P10  
R9  
B9  
7
L1  
A8  
8
M1  
N1  
R10  
R11  
M10  
L10  
K10  
J10  
H11  
G11  
F11  
E11  
D11  
B8  
9
A7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
R1  
B7  
R2  
B6  
R3  
A6  
P2  
B5  
R4  
A4  
P6  
B3  
R6  
A3  
N6  
A2  
P11  
B2  
Document #: 38-05283 Rev. *H  
Page 17 of 32  
[+] Feedback  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
Boundary Scan Exit Order (1M x 72)  
Bit #  
1
209-Ball ID  
A1  
Bit #  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
209-Ball ID  
T1  
Bit #  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
209-Ball ID  
V10  
U11  
U10  
T11  
Bit #  
85  
209-Ball ID  
C11  
C10  
B11  
B10  
A11  
A10  
A9  
2
A2  
T2  
86  
3
B1  
U1  
87  
4
B2  
U2  
88  
5
C1  
C2  
D1  
D2  
E1  
V1  
T10  
R11  
R10  
P11  
P10  
N11  
N10  
M11  
M10  
L11  
89  
6
V2  
90  
7
W1  
W2  
T6  
91  
8
92  
U8  
9
93  
A7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
E2  
V3  
94  
A5  
F1  
V4  
95  
A6  
F2  
U4  
96  
D6  
G1  
G2  
H1  
H2  
J1  
W5  
V6  
97  
B6  
98  
D7  
W6  
U3  
L10  
99  
K3  
P6  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
A8  
U9  
J11  
B4  
J2  
V5  
J10  
B3  
L1  
U5  
H11  
H10  
G11  
G10  
F11  
C3  
L2  
U6  
C4  
M1  
M2  
N1  
N2  
P1  
W7  
V7  
C8  
C9  
U7  
B9  
V8  
F10  
E10  
E11  
D11  
D10  
B8  
V9  
A4  
P2  
W11  
W10  
V11  
C6  
R2  
R1  
B7  
A3  
Document #: 38-05283 Rev. *H  
Page 18 of 32  
[+] Feedback  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
DC Input Voltage ................................... –0.5V to VDD + 0.5V  
Current into Outputs (LOW)......................................... 20mA  
Maximum Ratings  
Exceeding the maximum ratings may impair the useful life of  
the device. These user guidelines are not tested.  
Static Discharge Voltage........................................... >2001V  
(MIL-STD-883, Method 3015)  
Storage Temperature .................................65°C to +150°C  
Latch-up Current..................................................... >200 mA  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Operating Range  
Supply Voltage on VDD Relative to GND........ –0.3V to +4.6V  
Supply Voltage on VDDQ Relative to GND ......0.3V to +VDD  
Ambient  
Temperature  
Range  
VDD  
VDDQ  
Commercial 0°C to +70°C 3.3V –5%/+10% 2.5V – 5%  
to VDD  
DC Voltage Applied to Outputs  
in Tri-State........................................... –0.5V to VDDQ + 0.5V  
Industrial  
–40°C to +85°C  
Electrical Characteristics Over the Operating Range[12, 13]  
Parameter  
VDD  
Description  
Power Supply Voltage  
IO Supply Voltage  
Test Conditions  
Min.  
3.135  
3.135  
2.375  
2.4  
Max.  
3.6  
Unit  
V
VDDQ  
For 3.3V IO  
For 2.5V IO  
VDD  
V
2.625  
V
VOH  
VOL  
VIH  
VIL  
IX  
Output HIGH Voltage  
Output LOW Voltage  
For 3.3V IO, IOH = –4.0 mA  
For 2.5V IO, IOH = –1.0 mA  
For 3.3V IO, IOL = 8.0 mA  
For 2.5V IO, IOL = 1.0 mA  
V
2.0  
V
0.4  
0.4  
V
V
Input HIGH Voltage[12] For 3.3V IO  
2.0  
1.7  
VDD + 0.3V  
VDD + 0.3V  
0.8  
V
For 2.5V IO  
V
Input LOW Voltage[12]  
For 3.3V IO  
For 2.5V IO  
–0.3  
–0.3  
–5  
V
0.7  
V
Input Leakage Current GND VI VDDQ  
except ZZ and MODE  
5
µA  
Input Current of MODE Input = VSS  
Input = VDD  
–30  
–5  
µA  
µA  
5
Input Current of ZZ  
Input = VSS  
Input = VDD  
µA  
30  
5
µA  
IOZ  
IDD  
Output Leakage Current GND VI VDDQ, Output Disabled  
–5  
µA  
VDD Operating Supply VDD = Max., IOUT = 0 mA,  
4.0-ns cycle, 250 MHz  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
4.0-ns cycle, 250 MHz  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
500  
500  
450  
245  
245  
245  
120  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Current  
f = fMAX = 1/tCYC  
ISB1  
Automatic CE  
Power Down  
Current—TTL Inputs  
VDD = Max, Device Deselected,  
VIN VIH or VIN VIL  
f = fMAX = 1/tCYC  
ISB2  
Automatic CE  
Power Down  
VDD =Max, DeviceDeselected, VIN All speeds  
0.3V or VIN > VDDQ – 0.3V, f = 0  
Current—CMOS Inputs  
ISB3  
Automatic CE  
Power Down  
Current—CMOS Inputs f = fMAX = 1/tCYC  
VDD = Max, Device Deselected, or  
VIN 0.3V or VIN > VDDQ – 0.3V  
4.0-ns cycle, 250 MHz  
5.0-ns cycle, 200 MHz  
6.0-ns cycle, 167 MHz  
All speeds  
245  
245  
245  
135  
mA  
mA  
mA  
mA  
ISB4  
Automatic CE  
Power Down  
Current—TTL Inputs  
VDD = Max, Device Deselected,  
VIN VIH or VIN VIL, f = 0  
Notes  
12. Overshoot: V (AC) < V +1.5V (Pulse width less than t  
/2). Undershoot: V (AC) > –2V (Pulse width less than t  
/2).  
CYC  
IH  
DD  
CYC  
IL  
13. Power up: Assumes a linear ramp from 0V to V (min.) within 200 ms. During this time V < V and V  
< V  
.
DD  
IH  
DD  
DDQ  
DD  
Document #: 38-05283 Rev. *H  
Page 19 of 32  
[+] Feedback  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
Capacitance[14]  
100 TQFP 165 FBGA 209 FBGA  
Parameter  
Description  
Test Conditions  
Unit  
Max.  
Max.  
Max.  
CADDRESS  
CDATA  
CCTRL  
CCLK  
Address Input Capacitance  
Data Input Capacitance  
Control Input Capacitance  
Clock Input Capacitance  
Input/Output Capacitance  
TA = 25°C, f = 1 MHz,  
6
5
8
6
5
6
5
8
6
5
6
5
8
6
5
pF  
pF  
pF  
pF  
pF  
V
DD = 3.3V  
VDDQ = 2.5V  
CI/O  
Thermal Resistance[14]]  
100 TQFP  
Package  
165 FBGA 209 FBGA  
Parameter  
Description  
Test Conditions  
Unit  
Package  
Package  
ΘJA  
Thermal Resistance  
(Junction to Ambient)  
Test conditions follow  
24.63  
16.3  
15.2  
°C/W  
standard test methods and  
procedures for measuring  
thermal impedance,  
ΘJC  
Thermal Resistance  
(Junction to Case)  
2.28  
2.1  
1.7  
°C/W  
according to EIA/JESD51.  
AC Test Loads and Waveforms  
3.3V I/O Test Load  
R = 317Ω  
3.3V  
OUTPUT  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
90%  
10%  
Z = 50Ω  
0
10%  
R = 50Ω  
L
5 pF  
R = 351Ω  
1 ns  
1 ns  
V = 1.5V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
2.5V I/O Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
R = 50Ω  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
90%  
10%  
Z = 50Ω  
0
10%  
L
5 pF  
R = 1538Ω  
1 ns  
1 ns  
V = 1.25V  
L
INCLUDING  
JIG AND  
SCOPE  
(c)  
(a)  
(b)  
Note  
14. Tested initially and after any design or process change that may affect these parameters.  
Document #: 38-05283 Rev. *H  
Page 20 of 32  
[+] Feedback  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
Switching Characteristics Over the Operating Range[19, 20]  
250 MHz  
200 MHz  
167 MHz  
Unit  
Description  
Parameter  
Min. Max. Min. Max. Min. Max.  
tPOWER  
Clock  
tCYC  
VDD(Typical) to the First Access[15]  
1
1
1
ms  
Clock Cycle Time  
Clock HIGH  
4.0  
2.0  
2.0  
5.0  
2.0  
2.0  
6.0  
2.4  
2.4  
ns  
ns  
ns  
tCH  
tCL  
Clock LOW  
Output Times  
tCO  
Data Output Valid After CLK Rise  
Data Output Hold After CLK Rise  
Clock to Low-Z[16, 17, 18]  
3.0  
3.0  
3.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDOH  
1.3  
1.3  
1.3  
1.3  
1.5  
1.5  
tCLZ  
tCHZ  
Clock to High-Z[16, 17, 18]  
3.0  
3.0  
3.0  
3.0  
3.4  
3.4  
tOEV  
OE LOW to Output Valid  
tOELZ  
tOEHZ  
Setup Times  
tAS  
OE LOW to Output Low-Z[16, 17, 18]  
OE HIGH to Output High-Z[16, 17, 18]  
0
0
0
3.0  
3.0  
3.4  
Address Setup Before CLK Rise  
ADSC, ADSP Setup Before CLK Rise  
ADV Setup Before CLK Rise  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADS  
tADVS  
tWES  
GW, BWE, BWX Setup Before CLK Rise  
Data Input Setup Before CLK Rise  
Chip Enable Setup Before CLK Rise  
tDS  
tCES  
Hold Times  
tAH  
Address Hold After CLK Rise  
ADSP, ADSC Hold After CLK Rise  
ADV Hold After CLK Rise  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tADH  
tADVH  
tWEH  
GW, BWE, BWX Hold After CLK Rise  
Data Input Hold After CLK Rise  
Chip Enable Hold After CLK Rise  
tDH  
tCEH  
Notes  
15. This part has an internal voltage regulator; t  
is the time that the power needs to be supplied above V (minimum) initially before a read or write operation  
DD  
POWER  
can be initiated.  
16. t  
, t  
,t  
, and t  
are specified with AC test conditions shown in part (b) of “AC Test Loads and Waveforms” on page 20. Transition is measured  
CHZ CLZ OELZ  
OEHZ  
±200 mV from steady-state voltage.  
17. At any possible voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
CLZ  
OEHZ  
OELZ  
CHZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z before Low-Z under the same system conditions.  
18. This parameter is sampled and not 100% tested.  
19. Timing reference level is 1.5V when V  
= 3.3V and is 1.25V when V  
= 2.5V.  
DDQ  
DDQ  
20. Test conditions shown in (a) of AC Test Loads and Waveforms unless otherwise noted.  
Document #: 38-05283 Rev. *H  
Page 21 of 32  
[+] Feedback  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
Switching Waveforms  
Read Cycle Timing[21]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
ADH  
ADS  
t
t
AH  
AS  
A1  
A2  
A3  
ADDRESS  
Burst continued with  
new base address  
t
t
WEH  
WES  
GW, BWE,  
BWx  
Deselect  
cycle  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV  
suspends  
burst.  
t
t
OEV  
CO  
t
t
OEHZ  
t
OELZ  
t
CHZ  
DOH  
t
CLZ  
t
Q(A2)  
Q(A2  
+
1)  
Q(A2  
+
2)  
Q(A2  
+
3)  
Q(A2)  
Q(A2 + 1)  
Q(A1)  
Data Out (Q)  
High-Z  
CO  
Burst wraps around  
to its initial state  
Single READ  
BURST READ  
DON’T CARE  
UNDEFINED  
Note  
21. On this diagram, when CE is LOW: CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH: CE is HIGH, CE is LOW, or CE is HIGH.  
1
2
3
1
2
3
Document #: 38-05283 Rev. *H  
Page 22 of 32  
[+] Feedback  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
Switching Waveforms (continued)  
Write Cycle Timing[21, 22]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC extends burst  
t
t
ADH  
ADS  
t
t
ADH  
ADS  
ADSC  
ADDRESS  
BWE,  
t
t
AH  
AS  
A1  
A2  
A3  
Byte write signals are  
ignored for first cycle when  
ADSP initiates burst  
t
t
WEH  
WES  
BW  
X
t
t
WEH  
WES  
GW  
t
t
CEH  
CES  
CE  
t
t
ADVH  
ADVS  
ADV  
OE  
ADV suspends burst  
t
t
DH  
DS  
Data In (D)  
D(A2)  
D(A2  
+
1)  
D(A2  
+
1)  
D(A2  
+
2)  
D(A2  
+
3)  
D(A3)  
D(A3  
+
1)  
D(A3 + 2)  
D(A1)  
High-Z  
t
OEHZ  
Data Out (Q)  
BURST READ  
Single WRITE  
BURST WRITE  
Extended BURST WRITE  
DON’T CARE  
UNDEFINED  
Note  
22.  
Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW, and BW LOW.  
X
Document #: 38-05283 Rev. *H  
Page 23 of 32  
[+] Feedback  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
Switching Waveforms (continued)  
Read/Write Cycle Timing[21, 23, 24]  
t
CYC  
CLK  
t
t
CL  
CH  
t
t
ADH  
ADS  
ADSP  
ADSC  
t
t
AH  
AS  
A1  
A2  
A3  
A4  
A5  
A6  
ADDRESS  
BWE,  
t
t
WEH  
WES  
BW  
X
t
t
CEH  
CES  
CE  
ADV  
OE  
t
t
DH  
t
CO  
DS  
t
OELZ  
Data In (D)  
High-Z  
High-Z  
D(A3)  
D(A5)  
D(A6)  
t
t
OEHZ  
CLZ  
Data Out (Q)  
Q(A1)  
Q(A2)  
Q(A4)  
Q(A4+1)  
Q(A4+2)  
Q(A4+3)  
Back-to-Back READs  
Single WRITE  
BURST READ  
Back-to-Back  
WRITEs  
DON’T CARE  
UNDEFINED  
Notes  
23. The data bus (Q) remains in high-Z following a write cycle, unless a new read access is initiated by ADSP or ADSC.  
24. GW is HIGH.  
Document #: 38-05283 Rev. *H  
Page 24 of 32  
[+] Feedback  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
Switching Waveforms (continued)  
ZZ Mode Timing[25, 26]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes  
25. Device must be deselected when entering ZZ mode. See “Truth Table” on page 10 for all possible signal conditions to deselect the device.  
26. DQs are in high-Z when exiting ZZ sleep mode.  
Document #: 38-05283 Rev. *H  
Page 25 of 32  
[+] Feedback  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
Ordering Information  
Not all of the speed, package, and temperature ranges are available. Please contact your local sales representative or  
visit www.cypress.com for actual products offered.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Part and Package Type  
Ordering Code  
167 CY7C1480V33-167AXC 51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
CY7C1482V33-167AXC  
Commercial  
CY7C1480V33-167BZC  
CY7C1482V33-167BZC  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1480V33-167BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free  
CY7C1482V33-167BZXC  
CY7C1486V33-167BGC 51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
CY7C1486V33-167BGXC  
CY7C1480V33-167AXI  
CY7C1482V33-167AXI  
CY7C1480V33-167BZI  
CY7C1482V33-167BZI  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
lndustrial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1480V33-167BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free  
CY7C1482V33-167BZXI  
CY7C1486V33-167BGI  
CY7C1486V33-167BGXI  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free  
200 CY7C1480V33-200AXC 51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
CY7C1482V33-200AXC  
Commercial  
CY7C1480V33-200BZC  
CY7C1482V33-200BZC  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1480V33-200BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free  
CY7C1482V33-200BZXC  
CY7C1486V33-200BGC 51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
CY7C1486V33-200BGXC  
CY7C1480V33-200AXI  
CY7C1482V33-200AXI  
CY7C1480V33-200BZI  
CY7C1482V33-200BZI  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
lndustrial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1480V33-200BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free  
CY7C1482V33-200BZXI  
CY7C1486V33-200BGI  
CY7C1486V33-200BGXI  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free  
Document #: 38-05283 Rev. *H  
Page 26 of 32  
[+] Feedback  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
Ordering Information (continued)  
Not all of the speed, package, and temperature ranges are available. Please contact your local sales representative or  
visit www.cypress.com for actual products offered.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Part and Package Type  
Ordering Code  
250 CY7C1480V33-250AXC 51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
CY7C1482V33-250AXC  
Commercial  
CY7C1480V33-250BZC  
CY7C1482V33-250BZC  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1480V33-250BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free  
CY7C1482V33-250BZXC  
CY7C1486V33-250BGC 51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
CY7C1486V33-250BGXC  
CY7C1480V33-250AXI  
CY7C1482V33-250AXI  
CY7C1480V33-250BZI  
CY7C1482V33-250BZI  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free  
51-85050 100-pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Pb-Free  
Industrial  
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)  
CY7C1480V33-250BZXI 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Pb-Free  
CY7C1482V33-250BZXI  
CY7C1486V33-250BGI  
CY7C1486V33-250BGXI  
51-85167 209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm)  
209-ball Fine-Pitch Ball Grid Array (14 × 22 × 1.76 mm) Pb-Free  
Document #: 38-05283 Rev. *H  
Page 27 of 32  
[+] Feedback  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
Package Diagrams  
Figure 1. 100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm), 51-85050  
16.00 0.20  
14.00 0.10  
1.40 0.05  
100  
81  
80  
1
0.30 0.08  
0.65  
TYP.  
12° 1°  
(8X)  
SEE DETAIL  
A
30  
51  
31  
50  
0.20 MAX.  
1.60 MAX.  
R 0.08 MIN.  
0.20 MAX.  
0° MIN.  
SEATING PLANE  
STAND-OFF  
0.05 MIN.  
0.15 MAX.  
NOTE:  
1. JEDEC STD REF MS-026  
0.25  
GAUGE PLANE  
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH  
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE  
R 0.08 MIN.  
0.20 MAX.  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH  
3. DIMENSIONS IN MILLIMETERS  
0°-7°  
0.60 0.15  
0.20 MIN.  
1.00 REF.  
51-85050-*B  
DETAIL  
A
Document #: 38-05283 Rev. *H  
Page 28 of 32  
[+] Feedback  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
Package Diagrams (continued)  
Figure 2. 165-Ball FBGA (15 x 17 x 1.4 mm), 51-85165  
PIN 1 CORNER  
BOTTOM VIEW  
TOP VIEW  
Ø0.05 M C  
PIN 1 CORNER  
1
Ø0.25 M C A B  
Ø0.45 0.05(165X)  
2
3
4
5
6
7
8
9
10  
11  
11 10  
9
8
7
6
5
4
3
2
1
A
B
A
B
C
D
C
D
E
E
F
F
G
G
H
J
H
J
K
K
L
L
M
M
N
P
R
N
P
R
A
1.00  
5.00  
10.00  
B
15.00 0.10  
0.15(4X)  
SEATING PLANE  
C
51-85165-*A  
Document #: 38-05283 Rev. *H  
Page 29 of 32  
[+] Feedback  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
Package Diagrams (continued)  
Figure 3. 209-Ball FBGA (14 x 22 x 1.76 mm), 51-85167  
51-85167-**  
i486 is a trademark and Intel and Pentium are registered trademarks of Intel Corporation. All products and company names  
mentioned in this document may be the trademarks of their respective holders  
Document #: 38-05283 Rev. *H  
Page 30 of 32  
© Cypress Semiconductor Corporation, 2002-2207. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the  
use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to  
be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
[+] Feedback  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
.Document History Page  
Document Title: CY7C1480V33/CY7C1482V33/CY7C1486V33 72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM  
Document Number: 38-05283  
Orig. of  
Change  
REV.  
ECN NO. Issue Date  
Description of Change  
**  
114670  
118281  
08/06/02  
01/21/03  
PKS  
New Data Sheet  
*A  
HGK  
Changed tCO from 2.4 to 2.6 ns for 250 MHz  
Updated features on page 1 for package offering  
Removed 30-MHz offering  
Updated Ordering Information  
Changed Advanced Information to Preliminary  
*B  
233368  
See ECN  
NJY  
Changed timing diagrams  
Changed logic block diagrams  
Modified Functional Description  
Modified “Functional Overview” section  
Added boundary scan order for all packages  
Included thermal numbers and capacitance values for all packages  
Included IDD and ISB values  
Removed 250-MHz speed grade offering and included 225-MHz speed bin  
Changed package outline for 165FBGA package and 209-ball BGA package  
Removed 119-BGA package offering  
*C  
*D  
299452  
323080  
See ECN  
SYT  
Removed 225-MHz offering and included 250-MHz speed bin  
Changed tCYC from 4.4 ns to 4.0 ns for 250-MHz Speed Bin  
Changed ΘJA from 16.8 to 24.63 °C/W and ΘJC from 3.3 to 2.28 °C/W for 100  
TQFP Package on Page # 20  
Added lead-free information for 100-Pin TQFP, 165 FBGA and 209 BGA  
Packages  
Added comment of ‘Lead-free BG packages availability’ below the Ordering  
Information  
See ECN  
PCI  
Unshaded 200 and 167 MHz speed bin in the AC/DC Table and Selection  
Guide  
Address expansion pins/balls in the pinouts for all packages are modified as  
per JEDEC standard  
Added Address Expansion pins in the Pin Definitions Table  
Added Truth Table and Note# 7 for CY7C1486V33 on page# 11  
Added Industrial Operating Range  
Modified VOL, VOH test conditions  
Removed comment of ‘Lead-free BG packages availability’ below the  
Ordering Information  
Updated Ordering Information Table  
*E  
416193  
See ECN  
NXR  
Converted Preliminary to Final  
Changed address of Cypress Semiconductor Corporation on Page# 1 from  
“3901 North First Street” to “198 Champion Court”  
Changed the description of IX from Input Load Current to Input Leakage  
Current on page# 19  
Changed the IX current values of MODE on page # 19 from -5 µA and 30 µA  
to -30 µA and 5 µA  
Changed the IX current values of ZZ on page # 19 from -30 µA and 5 µA  
to -5 µA and 30 µA  
Changed VIH < VDD to VIH < VDD on page # 19  
Replaced Package Name column with Package Diagram in the Ordering  
Information table  
Updated the Ordering Information Table  
*F  
470723  
See ECN  
VKN  
Added the Maximum Rating for Supply Voltage on VDDQ Relative to GND  
Changed tTH,tTL from 25 ns to 20 ns and tTDOV from 5 ns to 10 ns in TAP AC  
Switching Characteristics table  
Updated the Ordering Information table  
Document #: 38-05283 Rev. *H  
Page 31 of 32  
[+] Feedback  
CY7C1480V33  
CY7C1482V33  
CY7C1486V33  
Document Title: CY7C1480V33/CY7C1482V33/CY7C1486V33 72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM  
Document Number: 38-05283  
Orig. of  
Change  
REV.  
ECN NO. Issue Date  
Description of Change  
*G  
486690  
See ECN  
See ECN  
VKN  
Corrected the typo in the 209-Ball FBGA pinout.  
(Corrected the ball name H9 to VSS from VSSQ).  
*H  
1026720  
VKN  
Added footnote #2 related to VSSQ  
Document #: 38-05283 Rev. *H  
Page 32 of 32  
[+] Feedback  

相关型号:

CY7C1480V33_06

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM
CYPRESS

CY7C1480V33_07

72-Mbit (2M x 36/4M x 18/1M x 72) Pipelined Sync SRAM
CYPRESS

CY7C1480V33_11

72-Mbit (2 M x 36/4 M x 18/1 M x 72) Pipelined Sync SRAM
CYPRESS

CY7C1480V33_13

72-Mbit (2 M x 36) Pipelined Sync SRAM
CYPRESS

CY7C1481BV25-133AXI

72-Mbit (2 M x 36) Flow-Through SRAM
CYPRESS

CY7C1481BV25_13

72-Mbit (2 M x 36) Flow-Through SRAM
CYPRESS

CY7C1481BV33

72-Mbit (2 M × 36) Flow-Through SRAM
CYPRESS

CY7C1481BV33-133AXI

Cache SRAM, 2MX36, 6.5ns, CMOS, PQFP100, TQFP-100
CYPRESS

CY7C1481BV33-133BZI

Cache SRAM, 2MX36, 6.5ns, CMOS, PBGA165, 15 X 17 MM, 1.40 MM HEIGHT, MO-216, FBGA-165
CYPRESS

CY7C1481V25

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM
CYPRESS

CY7C1481V25-100AXC

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM
CYPRESS

CY7C1481V25-100AXI

72-Mbit (2M x 36/4M x 18/1M x 72) Flow-Through SRAM
CYPRESS