CY7C1484V33-250AC [CYPRESS]

2M x 36/4M x 18 Pipelined DCD SRAM; 2M ×36 / 4M x 18位流水线DCD SRAM
CY7C1484V33-250AC
型号: CY7C1484V33-250AC
厂家: CYPRESS    CYPRESS
描述:

2M x 36/4M x 18 Pipelined DCD SRAM
2M ×36 / 4M x 18位流水线DCD SRAM

静态存储器 CD
文件: 总29页 (文件大小:508K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1484V33  
CY7C1485V33  
PRELIMINARY  
2M x 36/4M x 18 Pipelined DCD SRAM  
internal burst operation. All synchronous inputs are gated by  
registers controlled by a positive-edge-triggered Clock Input  
(CLK). The synchronous inputs include all addresses, all data  
inputs, address-pipelining Chip Enable (CE), burst control  
inputs (ADSC, ADSP, and ADV), write enables (BWa, BWb,  
BWc, BWd, and BWE), and Global Write (GW).  
Features  
• Fast clock speed: 250, 200, and 167 MHz  
• Provide high-performance 3-1-1-1 access rate  
• Fast access time: 2.6, 3.0, and 3.4 ns  
• Optimal for depth expansion  
• Single 3.3V –5% and +5% power supply VDD  
• Separate VDDQ for 3.3V or 2.5V  
• Common data inputs and data outputs  
• Byte Write Enable and Global Write control  
• Chip enable for address pipeline  
• Address, data, and control registers  
• Internally self-timed Write Cycle  
Asynchronous inputs include the Output Enable (OE) and  
burst mode control (MODE). The data (DQx) and the data  
parity (DPx) outputs, enabled by OE, are also asynchronous.  
DQa,b,c,d and DPa,b,c,d apply to CY7C1484V33 and DQa,b  
and DPa,b apply to CY7C1485V33. a, b, c, and d each are  
eight bits wide in the case of DQ and one bit wide in the case  
of DP.  
Addresses and chip enables are registered with either  
Address Status Processor (ADSP) or Address Status  
Controller (ADSC) input pins. Subsequent burst addresses  
can be internally generated as controlled by the Burst Advance  
Pin (ADV).  
• Burst control pins (interleaved or linear burst  
sequence)  
• Automatic power-down for portable applications  
• High-density, high-speed packages  
Address, data inputs, and write controls are registered on-chip  
to initiate self-timed Write cycle. Write cycles can be one to  
four bytes wide as controlled by the write control inputs.  
Individual byte write allows individual byte to be written. BWa  
• JTAG boundary scan for BGA packaging version  
• Available in 119-ball bump BGA and 100-pin TQFP  
packages (CY7C1484V33 and CY7C1485V33).  
• 165-ball FBGA will be offered on an opportunity basis.  
(Please contact Cypress sales or marketing)  
controls DQa and DPa. BWb controls DQ and DP . BW  
b
b
controls DQc and DPd. BWd controls DQ and DPd. BWa, BWbc,  
BWc, BWd can be active only with BWE being LOW. GW being  
LOW causes all bytes to be written. Write pass-through  
capability allows written data available at the output for the  
immediately next Read cycle. This device also incorporates  
pipelined enable circuit for easy depth expansion without  
penalizing system performance.  
Functional Description  
The Cypress Synchronous Burst SRAM family employs  
high-speed, low-power CMOS designs using advanced  
single-layer polysilicon, triple-layer metal technology. Each  
memory cell consists of six transistors.  
The CY7C1484V33 and CY7C1485V33 SRAMs integrate  
2,097,152 × 36/4,194,304 × 18 SRAM cells with advanced  
synchronous peripheral circuitry and a two-bit counter for  
The CY7C1484V33/CY7C1485V33 are both double-cycle  
deselect parts.All inputs and outputs of the CY7C1484V33,  
CY7C1485V33 are JEDEC standard JESD8-5-compatible.  
Selection Guide  
CY7C1484V33-  
250  
CY7C1485V33-  
250  
CY7C1484V33-  
200  
CY7C1485V33-  
200  
CY7C1484V33-  
167  
CY7C1485V33-  
167  
Unit  
ns  
Maximum Access Time  
2.6  
3.0  
3.4  
Maximum Operating Current  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
mA  
mA  
Maximum CMOS Standby Current  
Shaded areas contain advance information.  
Cypress Semiconductor Corporation  
Document #: 38-05285 Rev. *A  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Revised January 18, 2003  
CY7C1484V33  
CY7C1485V33  
PRELIMINARY  
Logic Block Diagram  
CY7C1484V332M × 36  
MODE  
2
(A  
)
[1;0]  
Q
Q
CLK  
ADV  
ADSC  
0
BURST  
COUNTER  
CE  
CLR  
1
ADSP  
Q
19  
21  
ADDRESS  
REGISTER  
CE  
D
2M × 36  
MEMORY  
ARRAY  
A
[20:0]  
21  
19  
GW  
DQ , DP  
BYTEWRITE  
REGISTERS  
D
Q
d
d
BWE  
BW  
d
DQ , DP  
BYTEWRITE  
REGISTERS  
D
D
D
Q
Q
Q
c
c
BW  
c
DQ , DP  
b
b
BYTEWRITE  
REGISTERS  
BW  
b
DQ , DP  
a
a
BYTEWRITE  
REGISTERS  
BW  
a
36  
36  
CE  
1
2
CE  
D
D
Q
ENABLE CE  
REGISTER  
CE  
3
Q
OUTPUT  
REGISTERS  
INPUT  
REGISTERS  
CLK  
ENABLE DELAY  
REGISTER  
CLK  
OE  
ZZ  
SLEEP  
CONTROL  
DQ  
DP  
a,b,c,d  
a,b,c,d  
CY7C1485V334M × 18  
MODE  
2
(A  
)
[1;0]  
Q
Q
CLK  
ADV  
ADSC  
0
BURST  
COUNTER  
CE  
CLR  
1
ADSP  
Q
20  
22  
ADDRESS  
REGISTER  
CE  
D
4M × 18  
A
[21:0]  
22  
20  
MEMORY  
ARRAY  
GW  
DQ , DP  
BYTEWRITE  
REGISTERS  
D
Q
b
b
BWE  
BW  
b
DQ , DP  
BYTEWRITE  
REGISTERS  
D
Q
a
a
BW  
a
18  
18  
CE  
2
1
CE  
D
CE  
Q
ENABLE CE  
REGISTER  
CE  
3
D
Q
OUTPUT  
INPUT  
REGISTERS  
CLK  
ENABLE DELAY  
REGISTER  
REGISTERS  
CLK  
OE  
ZZ  
SLEEP  
CONTROL  
DQ  
a,b  
a,b  
DP  
Document #: 38-05285 Rev. *A  
Page 2 of 29  
CY7C1484V33  
CY7C1485V33  
PRELIMINARY  
Pin Configurations  
100-Pin TQFP  
(Top View)  
DQPc  
1
NC  
NC  
NC  
VDDQ  
VSSQ  
NC  
DQPb  
DQb  
DQb  
VDDQ  
VSSQ  
DQb  
DQb  
DQb  
DQb  
VSSQ  
VDDQ  
DQb  
DQb  
VSS  
A
NC  
NC  
VDDQ  
VSSQ  
NC  
DPa  
DQa  
DQa  
VSSQ  
VDDQ  
DQa  
DQa  
VSS  
NC  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQc  
2
DQc  
VDDQ  
VSSQ  
DQc  
3
4
5
6
DQc  
7
NC  
DQc  
8
DQb  
DQb  
VSSQ  
VDDQ  
DQb  
DQb  
NC  
VDD  
NC  
VSS  
DQb  
DQb  
VDDQ  
VSSQ  
DQb  
DQb  
DPb  
NC  
DQc  
9
10  
11  
9
VSSQ  
VDDQ  
DQc  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
12  
DQc  
13  
NC  
14  
CY7C1485V33  
CY7C1484V33  
VDD  
15  
NC  
VDD  
ZZ  
(4M × 18)  
NC  
16  
(2M × 36)  
VDD  
ZZ  
VSS  
17  
DQd  
18  
DQa  
DQa  
VDDQ  
VSSQ  
DQa  
DQa  
DQa  
DQa  
VSSQ  
VDDQ  
DQa  
DQa  
DQa  
DQa  
VDDQ  
VSSQ  
DQa  
DQa  
NC  
DQd  
19  
20  
21  
VDDQ  
VSSQ  
DQd  
22  
DQd  
23  
DQd  
24  
DQd  
25  
26  
27  
NC  
VSSQ  
VDDQ  
DQd  
DQd  
29  
VSSQ  
VDDQ  
NC  
VSSQ  
VDDQ  
NC  
NC  
NC  
28  
NC  
DQPa NC  
DQPd  
30  
Document #: 38-05285 Rev. *A  
Page 3 of 29  
CY7C1484V33  
CY7C1485V33  
PRELIMINARY  
Pin Configurations (continued)  
119-ball Bump BGA  
CY7C1484V33 (2M × 36)  
1
2
3
4
5
6
7
A
A
A
VDDQ  
NC  
A
A
A
A
VDDQ  
A
A
ADSP  
ADSC  
VDD  
B
C
D
E
F
NC  
NC  
NC  
A
A
A
A
VSS  
VSS  
VSS  
VSS  
DQPb  
DQb  
DQb  
DQPc  
DQc  
NC  
DQb  
DQb  
DQc  
DQc  
CE1  
OE  
VSS  
VDDQ  
DQc  
VDDQ  
DQb  
DQb  
VDDQ  
DQa  
VSS  
BWb  
VSS  
NC  
DQb  
ADV  
GW  
VDD  
G
H
J
DQc  
DQc  
VDD  
DQd  
DQd  
BWc  
VSS  
NC  
DQc  
DQc  
DQb  
VDD  
VDDQ  
DQd  
DQd  
VDDQ  
DQd  
DQd  
NC  
K
L
VSS  
DQa  
DQa  
DQa  
DQa  
DQPa  
A
VSS  
CLK  
NC  
BWd  
BWa  
VSS  
VSS  
DQa  
VDDQ  
DQa  
M
DQd  
DQd  
BWE  
A1  
VSS  
VSS  
N
P
R
T
DQPd  
DQa  
VSS  
MODE  
A
A0  
VSS  
NC  
A
A
A
VDD  
A
NC  
ZZ  
A
NC  
U
VDDQ  
TMS  
TDI  
TCK  
TDO  
NC  
VDDQ  
CY7C1485V33 (4M × 18)  
1
2
3
4
5
6
7
A
B
C
D
E
F
A
A
VDDQ  
NC  
A
A
VDDQ  
NC  
A
A
ADSP  
ADSC  
VDD  
A
A
NC  
NC  
A
A
A
A
VSS  
VSS  
VSS  
VSS  
DQb  
NC  
NC  
NC  
DQPa  
NC  
NC  
DQb  
DQa  
CE1  
OE  
VSS  
DQa  
VDDQ  
NC  
VDDQ  
DQa  
NC  
VSS  
VSS  
VSS  
NC  
NC  
ADV  
GW  
VDD  
G
H
J
NC  
DQb  
DQb  
NC  
BWb  
VSS  
NC  
DQa  
VDD  
VDDQ  
DQa  
VDDQ  
NC  
VDD  
DQb  
NC  
K
L
VSS  
NC  
DQa  
NC  
DQa  
NC  
A
VSS  
VSS  
CLK  
NC  
DQb  
VDDQ  
DQb  
NC  
BWa  
VSS  
VSS  
NC  
VDDQ  
NC  
M
DQb  
NC  
BWE  
A1  
VSS  
VSS  
N
P
R
T
DQPb  
DQa  
VSS  
MODE  
A
A0  
VDD  
A
VSS  
NC  
A
NC  
A
A
NC  
ZZ  
A
A
U
VDDQ  
TMS  
TDI  
TCK  
TDO  
NC  
VDDQ  
Document #: 38-05285 Rev. *A  
Page 4 of 29  
CY7C1484V33  
CY7C1485V33  
PRELIMINARY  
Pin Configurations (continued)  
165-ball Bump FBGA (This package is offered on an opportunity basis)  
CY7C1484V33 (2M × 36)11 × 15 FBGA  
1
2
3
4
5
6
7
8
9
10  
11  
NC  
A
CE  
BW  
BW  
CE  
3
BWE  
A
ADSC  
ADV  
A
NC  
1
2
c
b
NC  
DPc  
DQc  
A
CE  
BW  
V
BW  
V
CLK  
GW  
B
C
D
OE  
ADSP  
A
144M  
DPb  
d
a
NC  
V
V
V
V
V
V
V
V
V
NC  
DDQ  
DDQ  
SS  
SS  
SS  
SS  
SS  
DDQ  
DQc  
DQc  
DQc  
DQc  
V
V
V
V
V
V
V
V
V
DQb  
DQb  
DD  
SS  
SS  
SS  
DD  
DDQ  
DQc  
DQc  
DQc  
NC  
V
V
V
V
V
V
V
V
V
V
E
F
V
V
DQb  
DQb  
DQb  
NC  
DQb  
DQb  
DQb  
ZZ  
DDQ  
DDQ  
DDQ  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
SS  
SS  
DD  
DDQ  
V
V
G
H
J
V
V
SS  
SS  
DD  
DDQ  
V
NC  
V
V
V
V
V
NC  
SS  
SS  
SS  
SS  
SS  
DD  
DQd  
DQd  
DQd  
DQd  
DPd  
NC  
DQd  
DQd  
DQd  
DQd  
NC  
V
V
V
V
V
DQa  
DQa  
DQa  
DQa  
NC  
DQa  
DQa  
DQa  
DQa  
DPa  
A
DDQ  
DDQ  
DDQ  
SS  
SS  
DD  
DDQ  
V
V
V
V
V
V
V
V
V
K
L
V
V
SS  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
SS  
SS  
DD  
DDQ  
V
V
M
N
P
V
V
DDQ  
DD  
SS  
SS  
SS  
DD  
DDQ  
V
NC  
TDI  
A
V
V
V
DDQ  
SS  
SS  
SS  
DDQ  
A
A
A
A
A1  
A0  
TDO  
TCK  
A
A
A
A
A
MODE  
A
A
TMS  
R
A
A
CY7C1485V33 (4M × 18)11 × 15 FBGA  
1
2
3
4
5
6
7
8
9
10  
11  
NC  
A
CE  
BW  
NC  
CE  
3
BWE  
A
ADSC  
ADV  
A
A
1
2
b
NC  
NC  
NC  
A
CE  
NC  
BW  
CLK  
GW  
B
C
D
E
F
OE  
ADSP  
A
144M  
DPa  
a
NC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
NC  
NC  
DDQ  
DDQ  
SS  
SS  
SS  
SS  
SS  
SS  
DDQ  
DQb  
V
V
V
V
V
DQa  
DD  
SS  
SS  
DD  
DDQ  
NC  
NC  
DQb  
DQb  
DQb  
V
V
V
V
V
NC  
NC  
DQa  
DQa  
DQa  
ZZ  
DDQ  
DDQ  
DDQ  
DD  
SS  
SS  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
V
DD  
SS  
SS  
DD  
DDQ  
NC  
V
V
V
G
H
J
V
V
NC  
DD  
SS  
SS  
DD  
DDQ  
NC  
V
NC  
V
V
V
V
V
V
NC  
NC  
SS  
DD  
SS  
SS  
SS  
SS  
DD  
DQb  
DQb  
DQb  
DQb  
DPb  
NC  
NC  
NC  
NC  
NC  
NC  
A
V
V
V
V
V
V
DQa  
DQa  
DQa  
DQa  
NC  
NC  
NC  
NC  
NC  
NC  
A
DDQ  
DDQ  
DDQ  
DD  
SS  
SS  
DD  
DDQ  
V
V
V
V
V
V
V
V
V
V
K
L
V
V
DD  
SS  
SS  
SS  
SS  
DD  
DDQ  
V
V
V
V
V
DD  
SS  
SS  
DD  
DDQ  
V
V
V
M
N
P
V
V
DDQ  
DD  
SS  
SS  
SS  
DD  
DDQ  
V
NC  
TDI  
A
V
V
V
DDQ  
SS  
SS  
SS  
DDQ  
A
A
A
A1  
A0  
TDO  
TCK  
A
A
A
A
A
MODE  
A
A
TMS  
R
A
A
Pin Definitions  
Pin Name  
I/O  
Input-  
Synchronous  
Pin Description  
A0  
A1  
A
Address Inputs used to select one of the address locations. Sampled at the rising edge  
of the CLK if ADSP or ADSC is active LOW, and CE1, CE2, and CE3 are sampled active. A[1:0]  
feed the two-bit counter.  
BWa  
BWb  
BWc  
BWd  
Input-  
Synchronous  
Byte Write Select Inputs, active LOW. Qualified with BWE to conduct byte writes to the  
SRAM. Sampled on the rising edge of CLK.  
GW  
Input-  
Synchronous  
Global Write Enable Input, active LOW. When asserted LOW on the rising edge of CLK, a  
global write is conducted (ALL bytes are written, regardless of the values on BWa,b,c,d and  
BWE).  
Document #: 38-05285 Rev. *A  
Page 5 of 29  
CY7C1484V33  
CY7C1485V33  
PRELIMINARY  
Pin Definitions (continued)  
Pin Name  
I/O  
Pin Description  
BWE  
Input-  
Synchronous  
Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This signal must  
be asserted LOW to conduct a byte write.  
CLK  
CE1  
CE2  
CE3  
OE  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. Also used to increment the  
burst counter when ADV is asserted LOW, during a burst operation.  
Input-  
Synchronous  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction  
with CE2 and CE3 to select/deselect the device. ADSP is ignored if CE1 is HIGH.  
Input-  
Synchronous  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction  
with CE1 and CE3 to select/deselect the device. (TQFP Only)  
Input-  
Synchronous  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction  
with CE1 and CE2 to select/deselect the device. (TQFP Only)  
Input-  
Asynchronous  
Output Enable, asynchronous input, active LOW. Controls the direction of the I/O pins.  
When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are three-stated,  
and act as input data pins. OE is masked during the first clock of a read cycle when emerging  
from a deselected state.  
ADV  
Input-  
Advance Input signal, sampled on the rising edge of CLK. When asserted, it automatically  
Synchronous  
increments the address in a burst cycle.  
ADSP  
Input-  
Synchronous  
Address Strobefrom Processor, sampled ontherising edgeof CLK. When asserted LOW,  
A is captured in the address registers. A[1:0] are also loaded into the burst counter. When ADSP  
and ADSC are both asserted, only ADSP is recognized. ASDP is ignored when CE1 is  
deasserted HIGH.  
ADSC  
MODE  
ZZ  
Input-  
Synchronous  
Address Strobe fromController, sampled on the rising edge of CLK. When asserted LOW,  
A[x:0] is captured in the address registers. A[1:0] are also loaded into the burst counter. When  
ADSP and ADSC are both asserted, only ADSP is recognized.  
Input-  
Static  
Selects Burst Order. When tied to GND selects linear burst sequence. When tied to VDDQ or  
left floating selects interleaved burst sequence. This is a strap pin and should remain static  
during device operation.  
Input-  
Asynchronous  
ZZ sleepInput. This active HIGH input places the device in a non-time critical sleep”  
condition with data integrity preserved.  
DQa, DPa  
DQb, DPb  
DQc, DPc  
DQd, DPd  
DQe, DPe  
DQf, DPf  
I/O-  
Synchronous  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is triggered  
by the rising edge of CLK. As outputs, they deliver the data contained in the memory location  
specified by A during the previous clock rise of the read cycle. The direction of the pins is  
controlled by OE. When OE is asserted LOW, the pins behave as outputs. When HIGH, DQx  
and DPx are placed in a three-state condition.DQ a,b,c,d and h are eight bits wide. DP a,b,c,d  
are one bit wide.  
DQg, DPg  
DQh, DPh  
TDO  
JTAG serial output Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK. (BGA Only)  
Synchronous  
TDI  
JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. (BGA Only)  
Synchronous  
TMS  
Test Mode Select This pin controls the Test Access Port state machine. Sampled on the rising edge of TCK.  
Synchronous  
(BGA Only)  
TCK  
VDD  
JTAG serial clock Serial clock to the JTAG circuit. (BGA Only)  
Power Supply  
Ground  
Power supply inputs to the core of the device. Should be connected to  
3.3 5%/+5% power supply.  
VSS  
Ground for the core of the device. Should be connected to ground of the system.  
VDDQ  
VSSQ  
144M  
NC  
I/O Power Supply Power supply for the I/O circuitry. Should be connected to a 2.375V(min.) to VDD(max.)  
I/O Ground  
Ground for the I/O circuitry. Should be connected to ground of the system.  
NC. This pin is reserved for expansion to 144 Mb.  
No Connects.  
Document #: 38-05285 Rev. *A  
Page 6 of 29  
CY7C1484V33  
CY7C1485V33  
PRELIMINARY  
write signals (GW, BWE, and BWx) and ADV inputs are  
ignored during this first cycle.  
Introduction  
Functional Overview  
ADSP triggered write accesses require two clock cycles to  
complete. If GW is asserted LOW on the second clock rise, the  
data presented to the DQx inputs is written into the corre-  
sponding address location in the RAM core. If GW is HIGH,  
then the write operation is controlled by BWE and BWx  
signals. The CY7C1484V33/CY7C1485V33 provides byte  
write capability that is described in the Write Cycle Description  
table. Asserting the Byte Write Enable input (BWE) with the  
selected Byte Write (BWa,b,c,d for CY7C1484V33 and BWa,b  
for CY7C1485V33) input will selectively write to only the  
desired bytes. Bytes not selected during a byte write operation  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock.  
Maximum access delay from the clock rise (tCO) is 2.6 ns  
(250-MHz device).  
The CY7C1484V33/CY7C1485V33 supports secondary  
cache in systems utilizing either a linear or interleaved burst  
sequence. The interleaved burst order supports Pentium® and  
i486 processors. The linear burst sequence is suited for  
processors that utilize a linear burst sequence. The burst order  
is user selectable, and is determined by sampling the MODE  
input. Accesses can be initiated with either the Processor  
Address Strobe (ADSP) or the Controller Address Strobe  
(ADSC). Address advancement through the burst sequence is  
controlled by the ADV input. A two-bit on-chip wraparound  
burst counter captures the first address in a burst sequence  
and automatically increments the address for the rest of the  
burst access.  
will remain unaltered.  
A synchronous self-timed write  
mechanism has been provided to simplify the write operations.  
Because the CY7C1484V33/CY7C1485V33 is a common I/O  
device, the Output Enable (OE) must be deasserted HIGH  
before presenting data to the DQ inputs. Doing so will  
three-state the output drivers. As a safety precaution, DQ are  
automatically three-stated whenever a write cycle is detected,  
regardless of the state of OE.  
Byte write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BWa,b,c,d for CY7C1484V33  
and BWa,b for CY7C1485V33) inputs. A Global Write Enable  
(GW) overrides all byte write inputs and writes data to all four  
bytes. All writes are simplified with on-chip synchronous  
self-timed write circuitry.  
Single Write Accesses Initiated by ADSC  
ADSC write accesses are initiated when the following condi-  
tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is  
deasserted HIGH, (3) chip select is asserted active, and  
(4) the appropriate combination of the write inputs (GW, BWE,  
and BWx) are asserted active to conduct a write to the desired  
byte(s). ADSC triggered write accesses require a single clock  
cycle to complete. The address presented to A[x:0] is loaded  
into the address register and the address advancement logic  
while being delivered to the RAM core. The ADV input is  
ignored during this cycle. If a global write is conducted, the  
data presented to the DQ[x:0] is written into the corresponding  
address location in the RAM core. If a byte write is conducted,  
only the selected bytes are written. Bytes not selected during  
a byte write operation will remain unaltered. A synchronous  
self-timed write mechanism has been provided to simplify the  
write operations.  
Synchronous Chip Selects (CE1, CE2, CE3 for TQFP/CE1 for  
BGA) and an asynchronous Output Enable (OE) provide for  
easy bank selection and output three-state control. ADSP is  
ignored if CE1 is HIGH.  
Single Read Accesses  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW,  
(2) chip selects are all asserted active, and (3) the write signals  
(GW, BWE) are all deasserted HIGH. ADSP is ignored if CE1  
is HIGH. The address presented to the address inputs is  
stored into the address advancement logic and the Address  
Register while being presented to the memory core. The corre-  
sponding data is allowed to propagate to the input of the  
Output Registers. At the rising edge of the next clock the data  
is allowed to propagate through the output register and onto  
the data bus within 2.6 ns (250-MHz device) if OE is active  
LOW. The only exception occurs when the SRAM is emerging  
from a deselected state to a selected state, its outputs are  
always three-stated during the first cycle of the access. After  
the first cycle of the access, the outputs are controlled by the  
OE signal. Consecutive single read cycles are supported.  
Because the CY7C1484V33/CY7C1485V33 is a common I/O  
device, the Output Enable (OE) must be deasserted HIGH  
before presenting data to the DQ[x:0] inputs. Doing so will  
three-state the output drivers. As a safety precaution, DQ[x:0]  
are automatically three-stated whenever a write cycle is  
detected, regardless of the state of OE.  
Burst Sequences  
The CY7C1484V33/CY7C1485V33 provides  
a
two-bit  
wraparound counter, fed by A[1:0], that implements either an  
interleaved or linear burst sequence. The interleaved burst  
sequence is designed specifically to support Intel Pentium  
applications. The linear burst sequence is designed to support  
processors that follow a linear burst sequence. The burst  
sequence is user selectable through the MODE input.  
The CY7C1484V33/CY7C1485V33 are double-cycle deselect  
parts. Once the SRAM is deselected at clock rise by the chip  
select and either ADSP or ADSC signals, its output will  
three-state immediately after the next clock rise.  
Single Write Accesses Initiated by ADSP  
Asserting ADV LOW at clock rise will automatically increment  
the burst counter to the next address in the burst sequence.  
Both read and write burst operations are supported. Asserting  
ADV LOW at clock rise will automatically increment the burst  
counter to the next address in the burst sequence. Both read  
and write burst operations are supported.  
This access is initiated when both of the following conditions  
are satisfied at clock rise: (1) ADSP is asserted LOW, and  
(2) chip select is asserted active. The address presented is  
loaded into the address register and the address  
advancement logic while being delivered to the RAM core. The  
Document #: 38-05285 Rev. *A  
Page 7 of 29  
CY7C1484V33  
CY7C1485V33  
PRELIMINARY  
Sleep Mode  
Interleaved Burst Sequence  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation sleepmode. Two  
clock cycles are required to enter into or exit from this sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the sleepmode are not  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the sleepmode. CEs, ADSP, and ADSC must remain  
inactive for the duration of tZZREC after the ZZ input returns  
LOW.  
First  
Second  
Third  
Fourth  
Address  
Address  
Address  
Address  
A[1:0]]  
00  
A[1:0]  
01  
A[1:0]  
10  
A[1:0]  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Linear Burst Sequence  
First  
Address  
Second  
Address  
Third  
Address  
Fourth  
Address  
A[1:0]  
00  
A[1:0]  
01  
A[1:0]  
10  
A[1:0]  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
Parameter  
Description  
Test Conditions  
ZZ > VDD 0.2V  
ZZ > VDD 0.2V  
ZZ < 0.2V  
Min.  
Max.  
TBD  
Unit  
mA  
ns  
IDDZZ  
Snooze mode standby current  
Device operation to ZZ  
ZZ recovery time  
tZZS  
2tCYC  
tZZREC  
2tCYC  
ns  
[1, 2, 3, 4]  
Cycle Descriptions  
Next Cycle  
Unselected  
Add. Used  
ZZ  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CE3  
X
1
CE2  
X
X
0
CE1  
ADSP  
ADSC  
ADV  
OE  
X
X
X
X
X
X
X
1
DQ  
Write  
X
None  
1
0
0
0
0
0
0
X
X
1
1
X
X
1
1
X
1
0
X
0
0
1
1
0
1
1
1
X
X
1
1
X
X
1
X
1
0
X
X
0
0
X
0
1
1
1
1
1
1
1
1
1
1
0
X
X
X
X
X
X
X
0
0
0
0
1
1
1
1
1
1
X
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
DQ  
Unselected  
None  
X
Unselected  
None  
X
1
X
Unselected  
None  
X
0
X
Unselected  
None  
X
0
X
Begin Read  
External  
External  
Next  
1
X
Begin Read  
0
1
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Write  
Write  
Write  
Continue Read  
Continue Read  
Continue Read  
Continue Read  
Suspend Read  
Suspend Read  
Suspend Read  
Suspend Read  
Begin Write  
X
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
X
1
Next  
0
Next  
1
Hi-Z  
DQ  
Next  
0
Current  
Current  
Current  
Current  
Current  
Current  
External  
1
Hi-Z  
DQ  
0
1
Hi-Z  
DQ  
0
X
X
X
Hi-Z  
Hi-Z  
Hi-Z  
Begin Write  
Begin Write  
Notes:  
1. X = Dont Care.1 = HIGH, 0 = LOW.  
2. Write is defined by BWE, BWx, and GW. See Write Cycle Descriptions table.  
3. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.  
4. CE1, CE2, and CE3 are available only in the TQFP package. BGA package has a single chip select CE1.  
Document #: 38-05285 Rev. *A  
Page 8 of 29  
CY7C1484V33  
CY7C1485V33  
PRELIMINARY  
Cycle Descriptions (continued)[1, 2, 3, 4]  
Next Cycle  
Continue Write  
Continue Write  
Suspend Write  
Suspend Write  
ZZ sleep”  
Add. Used  
Next  
ZZ  
0
CE3  
X
CE2  
X
CE1  
X
ADSP  
ADSC  
ADV  
OE  
X
DQ  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Write  
Write  
Write  
Write  
Write  
X
1
X
1
1
1
1
1
X
0
0
1
1
X
Next  
0
X
X
1
X
Current  
Current  
None  
0
X
X
X
X
0
X
X
1
X
X
X
1
X
X
X
X
Write Cycle Descriptions[1, 2]  
Function (CY7C1484V33)  
GW  
BWE  
BWd  
BWc  
X
1
BWb  
BWa  
Read  
Read  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
X
X
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
X
X
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
X
X
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
X
Write Byte 0 DQa  
Write Byte 1 DQb  
Write Bytes 1, 0  
Write Byte 2 DQc  
Write Bytes 2, 0  
Write Bytes 2, 1  
Write Bytes 2, 1, 0  
Write Byte 3 DQd  
Write Bytes 3, 0  
Write Bytes 3, 1  
Write Bytes 3, 1, 0  
Write Bytes 3, 2  
Write Bytes 3, 2, 0  
Write Bytes 3, 2, 1  
Write All Bytes  
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
Write All Bytes  
X
Function (CY7C1485V33)  
GW  
1
BWE  
BWb  
BWa  
Read  
1
0
0
0
0
X
X
1
1
0
0
X
X
1
0
1
0
X
Read  
1
Write Byte 0DQ[7:0] and DP0  
Write Byte 1DQ[15:8] and DP1  
Write All Bytes  
1
1
1
Write All Bytes  
0
Document #: 38-05285 Rev. *A  
Page 9 of 29  
CY7C1484V33  
CY7C1485V33  
PRELIMINARY  
circuitry. Only one register can be selected at a time through  
the instruction registers. Data is serially loaded into the TDI pin  
on the rising edge of TCK. Data is output on the TDO pin on  
the falling edge of TCK.  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The CY7C1484V33/CY7C1485V33 incorporates a serial  
boundary scan Test Access Port (TAP) in the FBGA package  
only. The TQFP package does not offer this functionality. This  
port operates in accordance with IEEE Standard 1149.11900,  
but does not have the set of functions required for full 1149.1  
compliance. These functions from the IEEE specification are  
excluded because their inclusion places an added delay in the  
critical speed path of the SRAM. Note that the TAP controller  
functions in a manner that does not conflict with the operation  
of other devices using 1149.1 fully compliant TAPs. The TAP  
operates using JEDEC standard 3.3V I/O logic levels.  
Instruction Register  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO pins as shown in the TAP Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
When the TAP controller is in the CaptureIR state, the two least  
significant bits are loaded with a binary 01pattern to allow for  
fault isolation of the board level serial test path.  
Disabling the JTAG Feature  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are inter-  
nally pulled up and may be unconnected. They may alternately  
be connected to VDD through a pull-up resistor. TDO should  
be left unconnected. Upon power-up, the device will come up  
in a reset state which will not interfere with the operation of the  
device.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain states. The bypass  
register is a single-bit register that can be placed between TDI  
and TDO pins. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
Test Access PortTest Clock  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Boundary Scan Register  
The boundary scan register is connected to all the input and  
output pins on the SRAM. Several no connect (NC) pins are  
also included in the scan register to reserve pins for higher  
density devices. The ×36 configuration has a 70-bit-long  
register, and the ×18 configuration has a 51-bit-long register.  
Test Mode Select  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this pin unconnected if the TAP is not used. The pin is  
pulled up internally, resulting in a logic HIGH level.  
The boundary scan register is loaded with the contents of the  
RAM Input and Output ring when the TAP controller is in the  
Capture-DR state and is then placed between the TDI and  
TDO pins when the controller is moved to the Shift-DR state.  
The EXTEST, SAMPLE/PRELOAD and SAMPLE Z instruc-  
tions can be used to capture the contents of the Input and  
Output ring.  
Test Data-in (TDI)  
The TDI pin is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. For  
information on loading the instruction register, see the TAP  
Controller State Diagram. TDI is internally pulled up and can  
be unconnected if the TAP is unused in an application. TDI is  
connected to the Most Significant Bit (MSB) on any register.  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI, and the LSB is connected to TDO.  
Identification (ID) Register  
Test Data-out (TDO)  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions table.  
The TDO output pin is used to serially clock data-out from the  
registers. The e output is active depending upon the current  
state of the TAP state machine (see TAP Controller State  
Diagram). The output changes on the falling edge of TCK.  
TDO is connected to the Least Significant Bit (LSB) of any  
register.  
Performing a TAP Reset  
TAP Instruction Set  
A Reset is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This RESET does not affect the operation of  
the SRAM and may be performed while the SRAM is  
operating. At power-up, the TAP is reset internally to ensure  
that TDO comes up in a high-Z state.  
Eight different instructions are possible with the three-bit  
instruction register. All combinations are listed in the  
Instruction Code table. Three of these instructions are listed  
as RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
The TAP controller used in this SRAM is not fully compliant to  
the 1149.1 convention because some of the mandatory 1149.1  
instructions are not fully implemented. The TAP controller  
cannot be used to load address, data or control signals into the  
TAP Registers  
Registers are connected between the TDI and TDO pins and  
allow data to be scanned into and out of the SRAM test  
Document #: 38-05285 Rev. *A  
Page 10 of 29  
CY7C1484V33  
CY7C1485V33  
PRELIMINARY  
SRAM and cannot preload the Input or Output buffers. The  
SRAM does not implement the 1149.1 commands EXTEST or  
INTEST or the PRELOAD portion of SAMPLE/PRELOAD;  
rather it performs a capture of the Inputs and Output ring when  
these instructions are executed.  
When the SAMPLE/PRELOAD instructions loaded into the  
instruction register and the TAP controller in the Capture-DR  
state, a snapshot of data on the inputs and output pins is  
captured in the boundary scan register.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 10 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is  
possible that during the Capture-DR state, an input or output  
will undergo a transition. The TAP may then try to capture a  
signal while in transition (metastable state). This will not harm  
the device, but there is no guarantee as to the value that will  
be captured. Repeatable results may not be possible.  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO pins.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is to be  
executed whenever the instruction register is loaded with all  
0s. EXTEST is not implemented in the TAP controller, and  
therefore this device is not compliant to the 1149.1 standard.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controllers capture set-up plus  
hold times (TCS and TCH). The SRAM clock input might not  
be captured correctly if there is no way in a design to stop (or  
slow) the clock during a SAMPLE/PRELOAD instruction. If this  
is an issue, it is still possible to capture all other signals and  
simply ignore the value of the CK and CK captured in the  
boundary scan register.  
The TAP controller does recognize an all-0 instruction. When  
an EXTEST instruction is loaded into the instruction register,  
the SRAM responds as if a SAMPLE/PRELOAD instruction  
has been loaded. There is one difference between the two  
instructions. Unlike the SAMPLE/PRELOAD instruction,  
EXTEST places the SRAM outputs in a High-Z state.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the  
boundary scan register between the TDI and TDO pins.  
IDCODE  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO pins and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state. The IDCODE instruction  
is loaded into the instruction register upon power-up or  
whenever the TAP controller is given a test logic reset state.  
Note that since the PRELOAD part of the command is not  
implemented, putting the TAP into the Update to the  
Update-DR state while performing a SAMPLE/PRELOAD  
instruction will have the same effect as the Pause-DR  
command.  
Bypass  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO pins. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO pins when the TAP  
controller is in a Shift-DR state. It also places all SRAM outputs  
into a High-Z state.  
SAMPLE/PRELOAD  
Reserved  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. The  
PRELOAD portion of this instruction is not implemented, so  
the TAP controller is not fully 1149.1-compliant.  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
Document #: 38-05285 Rev. *A  
Page 11 of 29  
CY7C1484V33  
CY7C1485V33  
PRELIMINARY  
TAP Controller State Diagram  
TEST-LOGIC  
RESET  
1[5]  
1
1
1
TEST-LOGIC/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
0
0
1
1
CAPTURE-DR  
CAPTURE-DR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
EXIT1-DR  
0
1
EXIT1-IR  
0
1
0
0
PAUSE-DR  
1
PAUSE-IR  
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
1
0
0
Note:  
5. The 0/1 next to each state represents the value at TMS at the rising edge of TCK.  
Document #: 38-05285 Rev. *A  
Page 12 of 29  
CY7C1484V33  
CY7C1485V33  
PRELIMINARY  
TAP Controller Block Diagram  
0
Bypass Register  
Selection  
Circuitry  
Selection  
Circuitry  
2
1
1
0
TDO  
TDI  
Instruction Register  
29  
31 30  
.
.
2
0
Identification Register  
.
.
.
.
.
2
1
0
Boundary Scan Register  
TCK  
TMS  
TAP Controller  
TAP Electrical Characteristics Over the Operating Range[6, 7]  
Parameter  
VOH1  
Description  
Output HIGH Voltage  
Output HIGH Voltage  
Output LOW Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Input Load Current  
Test Conditions  
IOH = 4.0 mA  
Min.  
2.4  
Max.  
Unit  
V
V
VOH2  
VOL1  
VOL2  
VIH  
IOH = 100 µA  
IOL = 8.0 mA  
IOL = 100 µA  
3.0  
0.4  
0.2  
V
V
1.8  
0.5  
5  
VDD + 0.3  
0.8  
V
VIL  
V
IX  
GND VI VDDQ  
5
µA  
[8, 9]  
TAP AC Switching Characteristics Over the Operating Range  
Parameters  
Description  
Min.  
Max.  
Unit  
ns  
tTCYC  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH  
100  
tTF  
10  
MHz  
ns  
tTH  
40  
40  
tTL  
TCK Clock LOW  
ns  
Set-up Times  
tTMSS  
TMS Set-up to TCK Clock Rise  
TDI Set-up to TCK Clock Rise  
Capture Set-up to TCK Rise  
10  
10  
10  
ns  
ns  
ns  
tTDIS  
tCS  
Hold Times  
tTMSH  
TMS Hold after TCK Clock Rise  
10  
ns  
Notes:  
6. All voltage referenced to ground.  
7. Overshoot: VIH(AC) < VDD + 1.5V for t < tTCYC/2; undershoot: VIL(AC) < 0.5V for t < tTCYC/2; power-up: VIH < 2.6V and VDD < 2.4V and VDDQ < 1.4V for t <  
200 ms.  
8. tCS and tCH refer to the set-up and hold time requirements of latching data from the boundary scan register.  
9. Test conditions are specified using the load in TAP AC test conditions. tR/tF = 1 ns.  
Document #: 38-05285 Rev. *A  
Page 13 of 29  
CY7C1484V33  
CY7C1485V33  
PRELIMINARY  
TAP AC Switching Characteristics Over the Operating Range (continued)[8, 9]  
Parameters  
tTDIH  
Description  
Min.  
10  
Max.  
Unit  
ns  
TDI Hold after Clock Rise  
tCH  
Capture Hold after Clock Rise  
10  
ns  
Output Times  
tTDOV  
TCK Clock LOW to TDO Valid  
TCK Clock LOW to TDO Invalid  
20  
ns  
ns  
tTDOX  
0
TAP Timing and Test Conditions  
1.25V  
ALL INPUT PULSES  
V
IH  
50Ω  
0V  
TDO  
Z = 50Ω  
0
C = 20 pF  
L
tTL  
tTH  
(a)  
GND  
Test Clock  
TCK  
tTCYC  
tTMSS  
tTMSH  
Test Mode Select  
TMS  
tTDIS  
tTDIH  
Test Data-In  
TDI  
Test Data-Out  
TDO  
tTDOV  
tTDOX  
Identification Register Definitions  
Instruction Field  
Revision Number (31:29)  
Department Number (27:25)  
Voltage (28&24)  
×18  
×36  
000  
101  
00  
Description  
000  
Reserved for version number  
Department number  
101  
00  
Architecture (23:21)  
000  
000  
110  
100  
100  
Architecture type  
Memory type (20:18)  
Device Width (17:15)  
Device Density (14:12)  
Cypress JEDEC ID (11:1)  
ID Register Presence (0)  
110  
Defines type of memory  
010  
Defines width of the SRAM. ×36 or ×18  
Defines the density of the SRAM  
100  
00000110100  
1
00000110100  
1
Allows unique identification of SRAM vendor  
Indicates the presence of an ID register  
Document #: 38-05285 Rev. *A  
Page 14 of 29  
CY7C1484V33  
CY7C1485V33  
PRELIMINARY  
Scan Register Sizes  
Register Name  
Bit Size (×18)  
Bit Size (×36)  
Instruction  
Bypass  
3
1
3
1
ID  
32  
32  
Boundary Scan  
TBD  
TBD  
Identification Codes  
Instruction  
EXTEST  
Code  
Description  
000  
001  
010  
011  
Captures the Input/Output ring contents. Places the boundary scan register between the TDI  
and TDO. Forces all SRAM outputs to High-Z state. This instruction is not 1149.1-compliant.  
IDCODE  
Loads the ID register with the vendor ID code and places the register between TDI and TDO.  
This operation does not affect SRAM operation.  
SAMPLE Z  
Captures the Input/Output contents. Places the boundary scan register between TDI and  
TDO. Forces all SRAM output drivers to a High-Z state.  
RESERVED  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD 100  
Captures the Input/Output ring contents. Places the boundary scan register between TDI and  
TDO. Does not affect the SRAM operation. This instruction does not implement 1149.1  
preload function and is therefore not 1149.1-compliant.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operation.  
Document #: 38-05285 Rev. *A  
Page 15 of 29  
CY7C1484V33  
CY7C1485V33  
PRELIMINARY  
Boundary Scan Order (4M × 18)  
Boundary Scan Order (2M × 36)  
Signal  
Name  
Bump  
ID  
Signal  
Name  
Bump  
ID  
Signal  
Name  
Bump  
ID  
Signal  
Name  
Bump  
Bit #  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Bit #  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Bit #  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Bit #  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ID  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Document #: 38-05285 Rev. *A  
Page 16 of 29  
CY7C1484V33  
CY7C1485V33  
PRELIMINARY  
Current into Outputs (LOW)......................................... 20 mA  
Static Discharge Voltage.......................................... > 2001V  
(per MIL-STD-883, Method 3015)  
Maximum Ratings  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Storage Temperature .................................55°C to +150°C  
Latch-up Current.................................................... > 200 mA  
Operating Range  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Ambient  
Supply Voltage on VDD Relative to GND........ 0.3V to +4.6V  
Range Temp.[11]  
VDD  
VDDQ  
DC Voltage Applied to Outputs  
in High-Z State[10] ............................... 0.5V to VDDQ + 0.5V  
Coml  
0°C70°C 3.3V +5% /5%  
2.375V(min.)  
VDD(max.)  
DC Input Voltage[10] ............................ 0.5V to VDDQ + 0.5V  
Electrical Characteristics Over the Operating Range  
Parameter  
VDD  
Description  
Test Conditions  
Min.  
3.135  
2.375  
2.4  
Max.  
3.465  
VDD  
Unit  
Power Supply Voltage  
I/O Supply Voltage  
Output HIGH Voltage  
V
V
VDDQ  
VOH  
VDD = Min., IOH = 4.0 mA  
3.3V  
V
VDD = Min., IOH = 1.0 mA  
VDD = Min., IOL = 8.0 mA  
VDD = Min., IOL = 1.0 mA  
2.5V  
3.3V  
2.5V  
3.3V  
2.5V  
3.3V  
2.5V  
2.0  
V
VOL  
VIH  
VIL  
IX  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage[10]  
0.4  
0.4  
V
V
2.0  
1.7  
V
V
0.3  
0.3  
0.8  
0.7  
5
V
V
Input Load Current  
Input Current of MODE  
Input Current of ZZ  
GND < VI < VDDQ  
Input = VSS  
µA  
µA  
µA  
µA  
30  
30  
5
IOZ  
IDD  
Output Leakage  
Current  
GND < VI < VDDQ, Output Disabled  
VDD Operating Supply  
VDD = Max., IOUT = 0 mA,  
f = fMAX = 1/tCYC  
250 MHz  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
mA  
mA  
mA  
mA  
mA  
mA  
200 MHz  
167 MHz  
250 MHz  
200 MHz  
167 MHz  
ISB1  
Automatic CE  
Power-down  
CurrentTTL Inputs  
Max. VDD, Device  
Deselected,  
VIN > VIH or VIN < VIL  
f = fMAX = 1/tCYC  
ISB2  
Automatic CE  
Power-down  
Max. VDD, Device  
Deselected, VIN < 0.3V or VIN  
All speed grades  
TBD  
mA  
CurrentCMOS Inputs > VDDQ 0.3V, f = 0  
ISB3  
Automatic CE  
Power-down  
CurrentCMOS Inputs VIN > VDDQ 0.3V  
Max. VDD, Device  
Deselected, or VIN < 0.3V or  
250 MHz  
200 MHz  
167 MHz  
TBD  
TBD  
TBD  
mA  
mA  
mA  
f = fMAX = 1/tCYC  
ISB4  
Automatic CE  
Power-down  
CurrentTTL Inputs  
Max. VDD, Device  
Deselected, VIN > VIH or VIN  
VIL, f = 0  
All speed grades  
TBD  
mA  
<
Shaded areas contain advance information.  
Notes:  
10. Minimum voltage equals 2.0V for pulse durations of less than 20 ns.  
11. A is the temperature.  
T
Document #: 38-05285 Rev. *A  
Page 17 of 29  
CY7C1484V33  
CY7C1485V33  
PRELIMINARY  
Capacitance[12]  
Parameter  
Description  
Input Capacitance  
Test Conditions  
TA = 25°C, f = 1 MHz,  
Max.  
Unit  
pF  
CIN  
TBD  
TBD  
TBD  
VDD = 3.3V, VDDQ = 2.5V  
CCLK  
CI/O  
Clock Input Capacitance  
Input/Output Capacitance  
pF  
pF  
Thermal Resistance[12]  
Parameter  
Description  
Test Conditions  
BGA Typ.  
QJA  
Thermal Resistance (Junction to Still Air, soldered on a 4.25 ×  
TBD  
Ambient)  
1.125 inch, four-layer printed  
circuit board  
QJC  
Thermal Resistance (Junction to  
Case)  
TBD  
AC Test Loads and Waveforms[13]  
R = 317Ω  
V
[10]  
DDQ  
OUTPUT  
ALL INPUT PULSES  
90%  
OUTPUT  
Vdd  
90%  
10%  
Z = 50Ω  
0
R = 50Ω  
10%  
2 V/ns  
L
5 pF  
GND  
R = 351Ω  
INCLUDING  
JIG AND  
SCOPE  
2 V/ns  
= 1.5V for 3.3V V  
VTH  
(a)  
DDQ  
= 1.25V for 2.5V V  
DDQ  
(c)  
(b)  
Switching Characteristics Over the Operating Range  
-250  
-200  
-167  
Parameter  
Clock  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
tCYC  
Clock Cycle Time  
4.0  
5
6
ns  
MHz  
ns  
FMAX  
tCH  
Maximum Operating Frequency  
Clock HIGH  
250  
200  
167  
1.7  
1.7  
2.0  
2.0  
2.4  
2.4  
tCL  
Clock LOW  
ns  
Output Times  
tCO  
Data Output Valid After CLK Rise  
OE LOW to Output Valid[ 15, 17]  
Data Output Hold After CLK Rise  
Clock to High-Z[14, 15, 16, 17]  
Clock to Low-Z[14, 15, 16, 17]  
OE HIGH to Output High-Z[14, 15, 17]  
OE LOW to Output Low-Z[14, 15, 17]  
2.6  
2.6  
3.0  
3.0  
3.4  
3.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tEOV  
tDOH  
1.0  
1.0  
0
1.3  
1.3  
0
1.5  
1.5  
0
tCHZ  
2.6  
2.6  
3.0  
3.0  
3.4  
3.4  
tCLZ  
tEOHZ  
tEOLZ  
Set-up Times  
tAS  
Address Set-up Before CLK Rise  
1.2  
1.4  
1.5  
ns  
Shaded areas contain advance information.  
Notes:  
12. Tested initially and after any design or process changes that may affect these parameters.  
13. Input waveform should have a slew rate of 2 V/ns.  
14. Unless otherwise noted, test conditions assume signal transition time of 1.5 ns, timing reference levels of 1.5V, input pulse levels of 0 to 3.3V, and output  
loading of the specified IOL/IOH and load capacitance. Shown in (a), (b) and (c) of AC Test Loads.  
15.  
tCHZ, tCLZ, tOEV, tEOLZ, and tEOHZ are specified with AC test conditions shown in (a) of AC Test Loads. Transition is measured ± 200 mV from steady-state  
voltage.  
16. At any given voltage and temperature, tEOHZ is less than tEOLZ and tCHZ is less than tCLZ to eliminate bus contention between SRAMs when sharing the same  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions.  
17. This parameter is sampled and not 100% tested.  
Document #: 38-05285 Rev. *A  
Page 18 of 29  
CY7C1484V33  
CY7C1485V33  
PRELIMINARY  
Switching Characteristics Over the Operating Range (continued)  
-250  
-200  
Max.  
-167  
Parameter  
tDS  
Description  
Min.  
1.2  
1.2  
1.2  
1.2  
1.2  
Max.  
Min.  
1.4  
1.4  
1.4  
1.4  
1.4  
Min.  
1.5  
1.5  
1.5  
1.5  
1.5  
Max.  
Unit  
ns  
Data Input Set-up Before CLK Rise  
ADSP, ADSC Set-up Before CLK Rise  
BWE, GW, BWx Set-up Before CLK Rise  
ADV Set-up Before CLK Rise  
Chip Select Set-up  
tADS  
ns  
tWES  
tADVS  
tCES  
ns  
ns  
ns  
Hold Times  
tAH  
Address Hold After CLK Rise  
Data Input Hold After CLK Rise  
ADSP, ADSC Hold After CLK Rise  
BWE, GW, BWx Hold After CLK Rise  
ADV Hold after CLK Rise  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tDH  
tADH  
tWEH  
tADVH  
tCEH  
Chip Select Hold After CLK Rise  
Document #: 38-05285 Rev. *A  
Page 19 of 29  
CY7C1484V33  
CY7C1485V33  
PRELIMINARY  
Switching Waveforms  
Write Cycle Timing[4, 18, 19]  
Single Write  
tCYC  
tADH  
Burst Write  
Pipelined Write  
tCH  
Unselected  
CLK  
tADS  
tCL  
ADSP ignored with CE1 inactive  
ADSP  
ADSC  
ADV  
tADH  
tADS  
ADSC initiated write  
tADVH  
tADVS  
tAS  
ADV Must Be Inactive for ADSP Write  
WD3  
ADD  
GW  
WE  
WD1  
WD2  
tAH  
tWH  
tWH  
tWS  
tWS  
tCES  
tCEH  
CE1 masks ADSP  
CE1  
tCEH  
tCES  
Unselected with CE2  
CE2  
CE3  
OE  
tCES  
tCEH  
tDH  
tDS  
High-Z  
High-Z  
Data In  
3a  
2a  
1a  
2b  
2c  
2d  
= DONT CARE  
= UNDEFINED  
Notes:  
18. WE is the combination of BWE, BWx, and GW to define a write cycle (see Write Cycle Descriptions table).  
19. WDx stands for Write Data to Address X.  
Document #: 38-05285 Rev. *A  
Page 20 of 29  
CY7C1484V33  
CY7C1485V33  
PRELIMINARY  
Switching Waveforms (continued)  
Read Cycle Timing[4, 18, 20]  
Burst Read  
Single Read  
tCYC  
Unselected  
tCH  
Pipelined Read  
CLK  
tADH  
tADS  
tCL  
ADSP ignored with CE1 inactive  
ADSP  
tADS  
ADSC initiated read  
ADSC  
ADV  
tADVS  
tADH  
Suspend Burst  
tADVH  
tAS  
ADD  
GW  
RD3  
RD1  
RD2  
tAH  
tWS  
tWS  
tWH  
WE  
tCES  
tCEH  
tWH  
CE1 masks ADSP  
CE1  
Unselected with CE2  
CE2  
tCES  
tCEH  
CE3  
OE  
tCES  
tEOV  
tCEH  
tOEHZ  
tDOH  
Double-Cycle  
Deselect  
tCO  
Data Out  
2c  
1a  
3a  
2d  
2a  
2b  
tCLZ  
tCHZ  
= DONT CARE  
= UNDEFINED  
Note:  
20. RDx stands for Read Data from Address X.  
Document #: 38-05285 Rev. *A  
Page 21 of 29  
CY7C1484V33  
CY7C1485V33  
PRELIMINARY  
Switching Waveforms (continued)  
Read/Write Cycle Timing[4, 18, 19, 20, 21, 22]  
Single Write  
Single Read  
tCYC  
Single Write  
tCH  
Burst Read  
Pipelined Read  
CLK  
tADS  
tADH  
tCL  
ADSP  
ADSC  
ADV  
tADVS  
tAS  
tADVH  
WD2  
ADD  
RD1  
RD4  
WD3  
RD5  
tAH  
GW  
WE  
tWS  
tWS  
tWH  
tCES  
tWH  
tCEH  
Deselect cycle  
CE1  
CE2  
CE3  
tCES  
tCEH  
tEOV  
tCES  
tCEH  
OE  
tEOHZ  
tDS  
tDH  
tDOH  
tEOLZ  
tCO  
4b  
Out  
4c  
Out  
4a  
Out  
4d  
Data In/Out  
5a  
Out  
1a  
2a  
In  
3a  
In  
Out  
Out  
tCHZ  
= UNDEFINED  
= DONT CARE  
Notes:  
21. Device originally deselected.  
22. CE is the combination of CE2 and CE3. All chip selects need to be active in order to select the device.  
Document #: 38-05285 Rev. *A  
Page 22 of 29  
CY7C1484V33  
CY7C1485V33  
PRELIMINARY  
Switching Waveforms (continued)  
Pipelined Read/Write Timing[4, 18, 19, 20]  
ADSC read  
ADSP read  
Unselected  
ADSC write  
ADSP write  
CLK  
ADSP  
ADSC  
ADV  
ADD  
GW  
RD1  
RD2  
RD3  
RD4  
WD6  
WD8  
WD5  
WD7  
WE  
CE1  
Deselect cycle  
CE2  
CE3  
OE  
4a  
Out  
6a  
In  
3a  
Out  
5a  
In  
7a  
In  
Data In/Out  
1a  
2a  
Out  
Out  
= UNDEFINED  
= DONT CARE  
Document #: 38-05285 Rev. *A  
Page 23 of 29  
CY7C1484V33  
CY7C1485V33  
PRELIMINARY  
Switching Waveforms (continued)  
OE Switching Waveforms  
OE  
tEOV  
tEOHZ  
Three-State  
I/Os  
tEOLZ  
ZZ Mode Timing [4, 23, 24]  
CLK  
ADSP  
HIGH  
ADSC  
CE1  
LOW  
HIGH  
CE2  
CE3  
ZZ  
tZZS  
IDD(active)  
IDD  
IDDZZ  
tZZREC  
I/Os  
Three-state  
Notes:  
23. Device must be deselected when entering ZZ mode. See Cycle Descriptions Table for all possible signal conditions to deselect the device.  
24. I/Os are in three-state when exiting ZZ sleep mode.  
Document #: 38-05285 Rev. *A  
Page 24 of 29  
CY7C1484V33  
CY7C1485V33  
PRELIMINARY  
Ordering Information  
Speed  
(MHz)  
Package  
Name  
Operating  
Range  
Ordering Code  
Package Type  
250  
CY7C1484V33-250AC  
CY7C1485V33-250AC  
A101  
BG119  
BB165C  
A101  
100-lead 14 × 20 × 1.4 mm Thin Quad Flat Pack Commercial  
CY7C1484V33-250BGC  
CY7C1485V33-250BGC  
119-ball BGA (14 × 22 × 2.4 mm)  
CY7C1484V33-250BZC  
CY7C1485V33-250BZC  
165-ball BGA (15 × 17 mm)  
200  
167  
CY7C1484V33-200AC  
CY7C1485V33-200AC  
100-lead 14 × 20 × 1.4 mm Thin Quad Flat Pack  
119-ball BGA (14 × 22 × 2.4 mm)  
CY7C1484V33-200BGC  
CY7C1485V33-200BGC  
BG119  
BB165C  
A101  
CY7C1484V33-200BZC  
CY7C1485V33-200BZC  
165-ball BGA (15 × 17 mm)  
CY7C1484V33-167AC  
CY7C1485V33-167AC  
100-lead 14 × 20 × 1.4 mm Thin Quad Flat Pack  
119-ball BGA (14 × 22 × 2.4 mm)  
CY7C1484V33-167BGC  
CY7C1485V33-167BGC  
BG119  
BB165C  
CY7C1484V33-167BZC  
CY7C1485V33-167BZC  
165-ball BGA (15 × 17 mm)  
Shaded areas contain advance information.  
Document #: 38-05285 Rev. *A  
Page 25 of 29  
CY7C1484V33  
CY7C1485V33  
PRELIMINARY  
Package Diagrams  
100-lead Thin Plastic Quad Flatpack (14 × 20 × 1.4 mm) A101  
51-85050-A  
Document #: 38-05285 Rev. *A  
Page 26 of 29  
CY7C1484V33  
CY7C1485V33  
PRELIMINARY  
Package Diagrams (continued)  
165-ball FBGA (15 × 17 × 1.20 mm) BB165C  
51-85165-**  
Document #: 38-05285 Rev. *A  
Page 27 of 29  
CY7C1484V33  
CY7C1485V33  
PRELIMINARY  
Package Diagrams (continued)  
119-Lead PBGA (14 x 22 x 2.4 mm) BG119  
51-85115-*B  
Pentium is a registered trademark, and i486 is a trademark, of Intel Corporation. All product and company names mentioned in  
this document are the trademarks of their respective holders.  
Document #: 38-05285 Rev. *A  
Page 28 of 29  
© Cypress Semiconductor Corporation, 2003. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
CY7C1484V33  
CY7C1485V33  
PRELIMINARY  
Document History Page  
Document Title: CY7C1484V33/CY7C1485V33 2M x 36/4M x 18 Pipelined DCD SRAM  
Document Number: 38-05285  
Orig. of  
REV.  
**  
ECN NO. Issue Date Change  
Description of Change  
114672  
118285  
08/21/02  
01/20/03  
PKS  
HGK  
New Data Sheet  
*A  
Changed tCO from 2.4 to 2.6 ns for 250 MHz  
Updated Features on package offering  
Updated Ordering Information  
Changed Advanced Information to Preliminary  
Document #: 38-05285 Rev. *A  
Page 29 of 29  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY