CY7C344-15PC/PI [CYPRESS]

32-Macrocell MAX EPLD; 32宏单元MAX EPLD
CY7C344-15PC/PI
型号: CY7C344-15PC/PI
厂家: CYPRESS    CYPRESS
描述:

32-Macrocell MAX EPLD
32宏单元MAX EPLD

文件: 总16页 (文件大小:242K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C344B  
32-Macrocell MAX® EPLD  
densest EPLD of this size. Eight dedicated inputs and 16  
bidirectional I/O pins communicate to one logic array block. In  
the CY7C344 LAB there are 32 macrocells and 64 expander  
product terms. When an I/O macrocell is used as an input, two  
expanders are used to create an input path. Even if all of the  
I/O pins are driven by macrocell registers, there are still 16  
“buried” registers available. All inputs, macrocells, and I/O pins  
are interconnected within the LAB.  
Features  
• High-performance, high-density replacement for TTL,  
74HC, and custom logic  
• 32 macrocells, 64 expander product terms in one LAB  
• 8 dedicated inputs, 16 I/O pins  
• 0.8-micron double-metal CMOS EPROM technology  
The speed and density of the CY7C344 makes it a natural for  
all types of applications. With just this one device, the designer  
can implement complex state machines, registered logic, and  
combinatorial “glue” logic, without using multiple chips. This  
architectural flexibility allows the CY7C344 to replace  
multichip TTL solutions, whether they are synchronous,  
asynchronous, combinatorial, or all three.  
• 28-pin, 300-mil DIP, cerDIP or 28-pin HLCC, PLCC  
package  
Functional Description  
Available in a 28-pin, 300-mil DIP or windowed J-leaded  
ceramic chip carrier (HLCC), the CY7C344 represents the  
Logic Block Diagram[1]  
Pin Configurations  
HLCC  
15(22) INPUT  
15(23) INPUT  
INPUT  
1(8)  
Top View  
INPUT/CLK 2(9)  
27(6)  
28(7)  
INPUT  
INPUT  
INPUT  
INPUT  
13(20)  
14(21)  
4
3
2
1
28 27 26  
25  
5
6
7
8
9
10  
11  
I/O  
I/O  
I/O  
INPUT  
INPUT  
INPUT  
INPUT/CLK  
I/O  
24  
23  
22  
21  
20  
19  
MACROCELL 2  
MACROCELL 1  
I/O 3(10)  
I/O 4(11)  
I/O 5(12)  
I/O 6(13)  
I/O 9(16)  
I/O 10(17)  
I/O 11(18)  
I/O 12(19)  
I/O 17(24)  
I/O 18(25)  
I/O 19(26)  
I/O 20(27)  
I/O 23(2)  
I/O 24(3)  
I/O 25(4)  
I/O 26(5)  
INPUT  
INPUT  
INPUT  
INPUT  
I/O  
MACROCELL 4  
MACROCELL 6  
MACROCELL 8  
MACROCELL 10  
MACROCELL 12  
MACROCELL 14  
MACROCELL 16  
MACROCELL 18  
MACROCELL 20  
MACROCELL 22  
MACROCELL 24  
MACROCELL 26  
MACROCELL 28  
MACROCELL 30  
MACROCELL 32  
MACROCELL 3  
MACROCELL 5  
MACROCELL 7  
MACROCELL 9  
MACROCELL 11  
MACROCELL 13  
MACROCELL 15  
MACROCELL 17  
MACROCELL 19  
MACROCELL 21  
MACROCELL 23  
MACROCELL 25  
MACROCELL 27  
MACROCELL 29  
MACROCELL 31  
G
L
I
O
O
B
A
L
I/O  
12 13 14 1516 1718  
C
O
N
T
CerDIP  
B
U
S
Top View  
R
O
L
INPUT  
INPUT  
INPUT  
I/O  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
INPUT/CLK  
I/O  
2
3
4
5
6
7
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
V
CC  
V
CC  
GND  
I/O  
GND  
I/O  
8
9
I/O  
I/O  
10  
11  
12  
13  
14  
32  
64 EXPANDER PRODUCT TERM ARRAY  
I/O  
I/O  
INPUT  
I/O  
I/O  
INPUT  
INPUT  
INPUT  
Cypress Semiconductor Corporation  
Document #: 38-03006 Rev. *A  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Revised April 19, 2004  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C344B  
Selection Guide  
7C344-15  
15  
7C344-20  
7C344-25  
25  
Unit  
ns  
Maximum Access Time  
20  
Maximum Operating Current  
Commercial  
Military  
200  
200  
220  
220  
150  
170  
170  
200  
mA  
220  
Industrial  
Commercial  
Military  
220  
150  
220  
Maximum Standby Current  
150  
mA  
170  
Industrial  
170  
170  
Note:  
1. Numbers in () refer to J-leaded packages.  
Document #: 38-03006 Rev. *A  
Page 2 of 16  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C344B  
Static Discharge Voltage  
Maximum Ratings  
(per MIL-STD-883, Method 3015) .............................>2001V  
DC Output Current, per Pin ......................–25 mA to +25 mA  
DC Input Voltage[2] .........................................–3.0V to +7.0V  
DC Program Voltage...................................................+13.0V  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Storage Temperature .................................–65°C to +150°C  
Ambient Temperature with  
Power Applied...................................................0°C to +70°C  
Operating Range  
Maximum Junction Temperature (Under Bias).............150°C  
Supply Voltage to Ground Potential............... –2.0V to +7.0V  
Maximum Power Dissipation...................................1500 mW  
DC VCC or GND Current............................................500 mA  
Ambient  
Range  
Commercial  
Industrial  
Military  
Temperature  
VCC  
0°C to +70°C  
–40°C to +85°C  
–55°C to +125°C (Case)  
5V ±5%  
5V ±10%  
5V ±10%  
Electrical Characteristics Over the Operating Range[3]  
Parameter  
VOH  
VOL  
Description  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Level  
Test Conditions  
Min.  
Max.  
Unit  
VCC = Min., IOH = –4.0 mA  
2.4  
V
V
VCC = Min., IOL = 8 mA  
0.45  
VCC+0.3  
0.8  
VIH  
2.2  
–0.3  
–10  
–40  
–30  
V
VIL  
Input LOW Level  
V
IIX  
Input Current  
GND VIN VCC  
+10  
µA  
µA  
mA  
mA  
mA  
mA  
mA  
ns  
IOZ  
Output Leakage Current  
Output Short Circuit Current  
VO = VCC or GND  
VCC = Max., VOUT = 0.5V[4, 5]  
+40  
IOS  
–90  
ICC1  
Power Supply  
Current (Standby)  
VI = VCC or GND (No  
Load)  
Commercial  
Military/Industrial  
150  
170  
ICC2  
Power Supply Current  
VI = VCC or GND (No  
Load) f = 1.0 MHz[4,6]  
Commercial  
200  
Military/Industrial  
220  
tR  
tF  
Recommended Input Rise Time  
Recommended Input Fall Time  
100  
100  
ns  
Capacitance  
Parameter  
Description  
Input Capacitance  
Output Capacitance  
Test Conditions  
Max.  
10  
Unit  
CIN  
VIN = 2V, f = 1.0 MHz  
pF  
pF  
COUT  
VOUT = 2.0V, f = 1.0 MHz  
10  
AC Test Loads and Waveforms[7]  
R1 464Ω  
R1 464Ω  
5V  
5V  
ALL INPUT PULSES  
OUTPUT  
OUTPUT  
3.0V  
90%  
10%  
90%  
10%  
R2  
250Ω  
R2  
250Ω  
50 pF  
5 pF  
GND  
6 ns  
t
f
6 ns  
INCLUDING  
JIG AND  
SCOPE  
tR  
tF  
(a)  
(b)  
Equivalent to:  
THÉVENIN EQUIVALENT (commercial/military)  
163Ω  
OUTPUT  
1.75V  
Notes:  
2. Minimum DC input is –0.3V. During transitions, the inputs may undershoot to –2.0V for periods less than 20 ns.  
3. Typical values are for T = 25°C and V = 5V.  
A
CC  
4. Guaranteed by design but not 100% tested.  
5. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. V  
test problems caused by tester ground degradation.  
= 0.5V has been chosen to avoid  
OUT  
6. Measured with device programmed as a 16-bit counter.  
7. Part (a) in AC Test Load and Waveforms is used for all parameters except t and t , which is used for part (b) in AC Test Load and Waveforms. All external timing  
ER  
XZ  
parameters are measured referenced to external pins of the device.  
Document #: 38-03006 Rev. *A  
Page 3 of 16  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C344B  
When expander logic is used in the data path, add the appro-  
priate maximum expander delay, tEXP to tS1. Determine which of  
1/(tWH + tWL), 1/tCO1, or 1/(tEXP + tS1) is the lowest frequency. The  
lowest of these frequencies is the maximum data-path frequency for  
the synchronous configuration.  
Timing Delays  
Timing delays within the CY7C344 may be easily determined  
using Warp®, Warp Professional™, or Warp Enterprise™  
software. The CY7C344 has fixed internal delays, allowing the  
user to determine the worst case timing delays for any design.  
When calculating external asynchronous frequencies, use  
t
AS1 if all inputs are on dedicated input pins. If any data is applied to  
an I/O pin, tAS2 must be used as the required set-up time. If (tAS2  
AH) is greater than tACO1, 1/(tAS2 + tAH) becomes the limiting  
Design Recommendations  
+
t
Operation of the devices described herein with conditions  
above those listed under “Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only  
and functional operation of the device at these or any other  
conditions above those indicated in the operational sections of  
this data sheet is not implied. Exposure to absolute maximum  
ratings conditions for extended periods of time may affect  
device reliability. The CY7C344 contains circuitry to protect  
device pins from high-static voltages or electric fields; however,  
normal precautions should be taken to avoid applying any  
voltage higher than maximum rated voltages.  
frequency in the data-path mode unless 1/(tAWH + tAWL) is less than  
1/(tAS2 + tAH).  
When expander logic is used in the data path, add the appro-  
priate maximum expander delay, tEXP to tAS1. Determine which  
of 1/(tAWH +tAWL), 1/tACO1, or 1/(tEXP +tAS1) isthelowest frequency.  
The lowest of these frequencies is the maximum data-path frequency  
for the asynchronous configuration.  
The parameter tOH indicates the system compatibility of this device  
when driving other synchronous logic with positive input hold times,  
which is controlled by the same synchronous clock. If tOH is greater  
than the minimum required input hold time of the subsequent  
synchronous logic, then the devices are guaranteed to function  
properly with a common synchronous clock under worst-case  
environmental and supply voltage conditions.  
For proper operation, input and output pins must be  
constrained to the range GND (VIN or VOUT) VCC. Unused  
inputs must always be tied to an appropriate logic level (either VCC or  
GND). Each set of VCC and GND pins must be connected together  
directly at the device. Power supply decoupling capacitors of at least  
0.2 µF must be connected between VCC and GND. For the most  
effective decoupling, each VCC pin should be separately decoupled.  
The parameter tAOH indicates the system compatibility of this  
device when driving subsequent registered logic with a positive hold  
timeandusingthesameclock as theCY7C344. In general, if tAOH  
is greater than the minimum required input hold time of the subse-  
quent logic (synchronous or asynchronous), then the devices are  
guaranteed to function properly under worst-case environmental and  
supply voltage conditions, provided the clock signal source is the  
same. This also applies if expander logic is used in the clock signal  
path of the driving device, but not for the driven device. This is due to  
the expander logic in the second device’s clock signal path adding an  
additional delay (tEXP), causing the output data from the preceding  
device to change prior to the arrival of the clock signal at the following  
device’s register.  
Timing Considerations  
Unless otherwise stated, propagation delays do not include  
expanders. When using expanders, add the maximum  
expander delay tEXP to the overall delay.  
When calculating synchronous frequencies, use tS1 if all inputs  
are on the input pins. tS2 should be used if data is applied at an I/O  
pin. If tS2 is greater than tCO1, 1/tS2 becomes the limiting frequency  
in the data-path mode unless 1/(tWH + tWL) is less than 1/tS2  
.
EXPANDER  
DELAY  
t
EXP  
REGISTER  
LOGIC ARRAY  
OUTPUT  
DELAY  
t
CONTROLDELAY  
CLR  
INPUT  
t
LAC  
t
PRE  
OUTPUT  
t
OD  
XZ  
ZX  
INPUT  
DELAY  
IN  
t
LOGIC ARRAY  
DELAY  
t
RSU  
RD  
t
t
t
COMB  
LATCH  
t
t
t
RH  
t
LAD  
SYSTEM CLOCK DELAYt  
ICS  
CLOCK  
DELAY  
I/O  
I/O DELAY  
I/O  
t
IC  
t
IO  
FEEDBACK  
DELAY  
t
C344–7  
FD  
Figure 1. CY7C344 Timing Model  
Document #: 38-03006 Rev. *A  
Page 4 of 16  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C344B  
[7]  
External Synchronous Switching CharacteristicsOver Operating Range  
7C344-15  
7C344-20  
7C344-25  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Unit  
tPD1  
Dedicated Input to Combinatorial Output Delay[8] Com’l/Ind  
15  
15  
15  
15  
30  
30  
30  
30  
20  
20  
20  
20  
10  
10  
20  
20  
20  
20  
20  
20  
30  
30  
30  
30  
20  
20  
20  
20  
12  
12  
22  
22  
25  
25  
25  
25  
40  
40  
40  
40  
25  
25  
25  
25  
15  
15  
29  
29  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Mil  
tPD2  
tPD3  
tPD4  
tEA  
I/O Input to Combinatorial Output Delay[9]  
Com’l/Ind  
Mil  
Dedicated Input to Combinatorial Output Delay Com’l/Ind  
with Expander Delay[10]  
Mil  
I/O Input to Combinatorial Output Delay with  
Expander Delay[4, 11]  
Com’l/Ind  
Mil  
Input to Output Enable Delay[4]  
Com’l/Ind  
Mil  
tER  
tCO1  
tCO2  
tS  
Input to Output Disable Delay[4]  
Com’l/Ind  
Mil  
Synchronous Clock Input to Output Delay  
Com’l/Ind  
Mil  
Synchronous Clock to Local Feedback to  
Combinatorial Output[4, 12]  
Com’l/Ind  
Mil  
Dedicated Input or Feedback Set-Up Time to  
Synchronous Clock Input  
Com’l/Ind  
Mil  
10  
10  
0
12  
12  
0
15  
15  
0
tH  
Input Hold Time from Synchronous Clock Input[7] Com’l/Ind  
Mil  
0
0
0
tWH  
tWL  
tRW  
tRR  
tRO  
tPW  
Synchronous Clock Input HIGH Time[4]  
Synchronous Clock Input LOW Time[4]  
Asynchronous Clear Width[4]  
Com’l/Ind  
Mil  
6
7
8
6
7
8
Com’l/Ind  
Mil  
6
7
8
6
7
8
Com’l/Ind  
Mil  
20  
20  
20  
20  
20  
20  
20  
20  
25  
25  
25  
25  
Asynchronous Clear Recovery Time[4]  
Com’l/Ind  
Mil  
Asynchronous Clear to Registered Output  
Delay[4]  
Com’l/Ind  
Mil  
15  
15  
20  
20  
25  
25  
Asynchronous Preset Width[4]  
Com’l /Ind  
Mil  
20  
20  
20  
20  
20  
20  
20  
20  
25  
25  
25  
25  
tPR  
Asynchronous Preset Recovery Time[4]  
Com’l /Ind  
Mil  
Notes:  
8. This parameter is the delay from an input signal applied to a dedicated input pin to a combinatorial output on any output pin. This delay assumes no expander  
terms are used to form the logic function.  
9. This parameter is the delay associated with an input signal applied to an I/O macrocell pin to any output. This delay assumes no expander terms are used to  
form the logic function.  
10. This parameter is the delay associated with an input signal applied to a dedicated input pin to combinatorial output on any output pin. This delay assumes  
expander terms are used to form the logic function and includes the worst-case expander logic delay for one pass through the expander logic. This parameter  
is tested periodically by sampling production material.  
11. This parameter is the delay associated with an input signal applied to an I/O macrocell pin to any output pin. This delay assumes expander terms are used to  
form the logic function and includes the worst-case expander logic delay for one pass through the expander logic. This parameter is tested periodically by  
sampling production material.  
12. This specification is a measure of the delay from synchronous register clock input to internal feedback of the register output signal to a combinatorial output for  
which the registered output signal is used as an input. This parameter assumes no expanders are used in the logic of the combinatorial output and the register  
is synchronously clocked. This parameter is tested periodically by sampling production material.  
Document #: 38-03006 Rev. *A  
Page 5 of 16  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C344B  
External Synchronous Switching CharacteristicsOver Operating Range (continued)[7]  
7C344-15  
7C344-20  
7C344-25  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Unit  
tPO  
Asynchronous Preset to Registered Output  
Delay[4]  
Com’l /Ind  
Mil  
15  
15  
4
20  
20  
4
25  
25  
7
ns  
tCF  
Synchronous Clock to Local Feedback Input[4, 13] Com’l /Ind  
ns  
Mil  
4
4
7
[4]  
tP  
External Synchronous Clock Period (1/fMAX3  
)
Com’l/Ind  
13  
13  
14  
14  
16  
16  
ns  
Mil  
fMAX1  
fMAX2  
fMAX3  
fMAX4  
External Maximum Frequency(1/(tCO1 + tS))[4, 14] Com’l/Ind  
Mil  
50.0  
50.0  
71.4  
71.4  
83.3  
83.3  
83.3  
83.3  
3
41.6  
41.6  
62.5  
62.5  
71.4  
71.4  
71.4  
71.4  
3
33.3  
33.3  
45.4  
45.4  
62.5  
62.5  
62.5  
62.5  
3
MHz  
MHz  
MHz  
MHz  
ns  
Maximum Frequency with Internal Only  
Feedback (1/(tCF + tS))[4, 15]  
Com’l/Ind  
Mil  
Data Path Maximum Frequency, least of  
Com’l/Ind  
Mil  
[4, 16]  
1/(tWL + tWH), 1/(tS + tH), or (1/tCO1  
)
Maximum Register Toggle Frequency  
Com’l/Ind  
Mil  
[4, 17]  
1/(tWL + tWH  
)
tOH  
Output Data Stable Time from Synchronous  
Clock Input[4, 18]  
Com’l/Ind  
Mil  
3
3
3
Notes:  
13. This specification is a measure of the delay associated with the internal register feedback path. This delay plus the register set-up time, t , is the minimum internal  
S
period for an internal state machine configuration. This parameter is tested periodically by sampling production material.  
14. This specification indicates the guaranteed maximum frequency at which a state machine configuration with external only feedback can operate.  
15. This specification indicates the guaranteed maximum frequency at which a state machine with internal-only feedback can operate. If register output states must  
also control external points, this frequency can still be observed as long as it is less than 1/t  
is tested periodically by sampling production material.  
. This specification assumes no expander logic is used. This parameter  
CO1  
16. This frequency indicates the maximum frequency at which the device may operate in data-path mode (dedicated input pin to output pin). This assumes that no  
expander logic is used.  
17. This specification indicates the guaranteed maximum frequency in synchronous mode, at which an individual output or buried register can be cycled by a clock  
signal applied to either a dedicated input pin or an I/O pin.  
18. This parameter indicates the minimum time after a synchronous register clock input that the previous register output data is maintained on the output pin.  
Document #: 38-03006 Rev. *A  
Page 6 of 16  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C344B  
External Asynchronous Switching Characteristics Over Operating Range[7]  
7C344-15  
7C344-20  
7C344-25  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Unit  
tACO1  
Asynchronous Clock Input to Output Delay  
Com’l/Ind  
Mil  
15  
15  
30  
30  
20  
20  
30  
30  
25  
25  
37  
37  
ns  
tACO2  
Asynchronous Clock Input to Local Feedback to  
Combinatorial Output[19]  
Com’l/Ind  
Mil  
ns  
tAS  
Dedicated Input or Feedback Set-Up Time to  
Asynchronous Clock Input  
Com’l/Ind  
Mil  
7
7
7
7
6
6
7
7
9
9
9
9
7
7
9
9
12  
12  
12  
12  
9
ns  
tAH  
Input Hold Time from Asynchronous Clock Input  
Asynchronous Clock Input HIGH Time[4, 20]  
Asynchronous Clock Input LOW Time[4]  
Com’l/Ind  
Mil  
ns  
tAWH  
Com’l/Ind  
Mil  
ns  
9
tAWL  
Com’l/Ind  
Mil  
11  
11  
ns  
tACF  
Asynchronous Clock to Local Feedback Input[4, 21] Com’l/Ind  
18  
18  
18  
18  
21  
21  
ns  
Mil  
[4]  
tAP  
External Asynchronous Clock Period (1/fMAX4  
)
Com’l/Ind  
Mil  
13  
13  
16  
16  
20  
20  
ns  
fMAXA1  
fMAXA2  
fMAXA3  
fMAXA4  
External Maximum Frequency in Asynchronous  
Com’l/Ind 45.4  
34.4  
34.4  
37  
27  
MHz  
MHz  
MHz  
MHz  
ns  
[4, 22]  
Mode 1/(tACO1 + tAS  
)
Mil  
45.4  
40  
27  
Maximum Internal Asynchronous Frequency  
Com’l/Ind  
Mil  
30.3  
30.3  
40  
[4, 23]  
1/(tACF + tAS) or 1/(tAWH + tAWL  
)
40  
37  
Data Path Maximum Frequency in Asynchronous  
Mode[4, 24]  
Com’l/Ind 66.6  
Mil 66.6  
Com’l/Ind 76.9  
50  
50  
40  
Maximum Asynchronous Register Toggle  
62.5  
62.5  
15  
50  
[4, 25]  
Frequency 1/(tAWH + tAWL  
)
Mil  
76.9  
15  
50  
tAOH  
Output Data Stable Time from Asynchronous Clock Com’l/Ind  
15  
Input[4, 26]  
Mil  
15  
15  
15  
Notes:  
19. This specification is a measure of the delay from an asynchronous register clock input to internal feedback of the registered output signal to a combinatorial  
output for which the registered output signal is used as an input. Assumes no expanders are used in logic of combinatorial output or the asynchronous clock  
input. This parameter is tested periodically by sampling production material.  
20. This parameter is measured with a positive-edge-triggered clock at the register. For negative edge triggering, the t  
and t  
parameters must be swapped. If a  
AWH  
.
AWL  
given input is used to clock multiple registers with both positive and negative polarity, t  
should be used for both t  
and t  
AWH  
AWH  
AWL  
21. This specification is a measure of the delay associated with the internal register feedback path for an asynchronously clocked register. This delay plus the  
asynchronous register set-up time, t , is the minimum internal period for an asynchronously clocked state machine configuration. This delay assumes no expander logic in  
AS  
the asynchronous clock path. This parameter is tested periodically by sampling production material.  
22. This parameter indicates the guaranteed maximum frequency at which an asynchronously clocked state machine configuration with external feedback can  
operate. It is assumed that no expander logic is employed in the clock signal path or data path.  
23. This specification indicates the guaranteed maximum frequency at which an asynchronously clocked state machine with internal-only feedback can operate. If  
register output states must also control external points, this frequency can still be observed as long as this frequency is less than 1/t  
no expander logic is utilized. This parameter is tested periodically by sampling production material.  
. Thisspecificationassumes  
ACO1  
24. This specification indicates the guaranteed maximum frequency at which an individual output or buried register can be cycled in asynchronously clocked mode.  
This frequency is least of 1/(t + t ), 1/(t + t ), or 1/t . It also indicates the maximum frequency at which the device may operate in the asynchronously clocked  
AWH AWL  
AS AH  
ACO1  
data-path mode. Assumes no expander logic is used.  
25. This specification indicates the guaranteed maximum frequency at which an individual output or buried register can be cycled in asynchronously clocked mode  
by a clock signal applied to an external dedicated input or an I/O pin.  
26. This parameter indicates the minimum time that the previous register output data is maintained on the output pin after an asynchronous register clock input to  
an external dedicated input or I/O pin.  
Document #: 38-03006 Rev. *A  
Page 7 of 16  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C344B  
Typical Internal Switching Characteristics Over Operating Range[7]  
7C344-15  
7C344-20  
7C344-25  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Unit  
tIN  
Dedicated Input Pad and Buffer Delay  
Com’l/Ind  
Mil  
4
4
4
4
8
8
7
7
5
5
4
4
7
7
7
7
5
5
7
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tIO  
I/O Input Pad and Buffer Delay  
Expander Array Delay  
Com’l/Ind  
Mil  
5
7
5
7
tEXP  
tLAD  
tLAC  
tOD  
tZX  
Com’l/Ind  
Mil  
10  
10  
9
15  
15  
10  
10  
7
Logic Array Data Delay  
Com’l/Ind  
Mil  
9
Logic Array Control Delay  
Output Buffer and Pad Delay  
Output Buffer Enable Delay[27]  
Output Buffer Disable Delay  
Com’l/Ind  
Mil  
7
7
7
Com’l/Ind  
Mil  
5
5
5
5
Com’l/Ind  
Mil  
8
11  
11  
11  
11  
8
tXZ  
Com’l/Ind  
Mil  
8
8
tRSU  
Register Set-Up Time Relative to Clock Signal Com’l/Ind  
at Register  
5
5
7
7
5
5
9
9
8
8
Mil  
tRH  
Register Hold Time Relative to Clock Signal at Com’l/Ind  
Register  
12  
12  
Mil  
tLATCH  
Flow-Through Latch Delay  
Register Delay  
Com’l/Ind  
Mil  
1
1
1
1
1
1
1
1
1
1
1
1
3
3
1
1
3
3
tRD  
Com’l/Ind  
Mil  
tCOMB  
Transparent Mode Delay[28]  
Clock HIGH Time  
Com’l/Ind  
Mil  
tCH  
Com’l/Ind  
Mil  
6
6
6
6
7
7
7
7
8
8
8
8
tCL  
Clock LOW Time  
Com’l/Ind  
Mil  
tIC  
Asynchronous Clock Logic Delay  
Synchronous Clock Delay  
Feedback Delay  
Com’l/Ind  
Mil  
7
7
1
1
1
1
5
5
8
8
2
2
1
1
6
6
10  
10  
3
tICS  
Com’l/Ind  
Mil  
3
tFD  
Com’l/Ind  
Mil  
1
1
tPRE  
Asynchronous Register Preset Time  
Com’l/Ind  
Mil  
9
9
Notes:  
27. Sample tested only for an output change of 500 mV.  
28. This specification guarantees the maximum combinatorial delay associated with the macrocell register bypass when the macrocell is configured for combinatorial  
operation.  
Document #: 38-03006 Rev. *A  
Page 8 of 16  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C344B  
Typical Internal Switching Characteristics Over Operating Range[7] (continued)  
7C344-15  
7C344-20  
7C344-25  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Unit  
tCLR  
Asynchronous Register Clear Time  
Com’l/Ind  
Mil  
5
5
6
6
9
9
ns  
ns  
ns  
tPCW  
Asynchronous Preset and Clear Pulse Width  
Com’l/Ind  
Mil  
5
5
5
5
5
5
5
5
7
7
7
7
tPCR  
Asynchronous Preset and Clear Recovery Time Com’l/Ind  
Mil  
Switching Waveforms  
External Combinatorial  
DEDICATED INPUT/  
I/O INPUT  
t
/t  
PD1 PD2  
COMBINATORIAL  
OUTPUT  
t
ER  
COMBINATORIAL OR  
REGISTERED OUTPUT  
HIGH-IMPEDANCE  
THREE-STATE  
t
EA  
HIGH-IMPEDANCE  
THREE-STATE  
VALID OUTPUT  
External Synchronous  
DEDICATED INPUTS OR  
REGISTERED FEEDBACK  
t
S
t
H
t
t
WL  
WH  
SYNCHRONOUS  
CLOCK  
t
t
/t  
t /t  
RR PR  
CO1  
RW PW  
ASYNCHRONOUS  
CLEAR/PRESET  
t
OH  
t
/t  
RO PO  
REGISTERED  
OUTPUTS  
t
CO2  
COMBINATORIAL OUTPUT FROM  
[12]  
REGISTERED FEEDBACK  
Document #: 38-03006 Rev. *A  
Page 9 of 16  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C344B  
Switching Waveforms (continued)  
External Asynchronous  
DEDICATED INPUTS OR  
REGISTERED FEEDBACK  
t
t
t
AWL  
t
AS  
AH  
AWH  
ASYNCHRONOUS  
CLOCK INPUT  
t
ACO1  
t
/t  
t
/t  
RW PW  
RR PR  
ASYNCHRONOUS  
CLEAR/PRESET  
t
AOH  
t
/t  
RO PO  
ACO2  
ASYNCHRONOUS REGISTERED  
OUTPUTS  
t
COMBINATORIAL OUTPUT FROM  
ASYNCH. REGISTERED  
[19]  
FEEDBACK  
Internal Combinatorial  
t
IN  
INPUT PIN  
t
PIA  
t
IO  
I/O PIN  
t
EXP  
EXPANDER  
ARRAY DELAY  
t
, t  
LAC LAD  
LOGIC ARRAY  
INPUT  
LOGIC ARRAY  
OUTPUT  
Document #: 38-03006 Rev. *A  
Page 10 of 16  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C344B  
Switching Waveforms (continued)  
Internal Asynchronous  
t
t
AWL  
AWH  
t  
R  
t
F
CLOCK PIN  
t
IN  
CLOCK INTO  
LOGIC ARRAY  
t
IC  
CLOCK FROM  
LOGIC ARRAY  
t
t
RH  
RSU  
DATA FROM  
LOGIC ARRAY  
t
,t  
t
FD  
t
,t  
t
FD  
RD LATCH  
CLR PRE  
REGISTER OUTPUT  
TO LOCAL LAB  
LOGIC ARRAY  
t
PIA  
REGISTER OUTPUT  
TO ANOTHER LAB  
Internal Synchronous (Input Path)  
t
t
CL  
CH  
SYSTEM CLOCK PIN  
t
IN  
t
ICS  
SYSTEM CLOCK  
AT REGISTER  
t
t
RH  
RSU  
DATA FROM  
LOGIC ARRAY  
Internal Synchronous (Output Path)  
CLOCK FROM  
LOGIC ARRAY  
t
t
OD  
RD  
DATA FROM  
LOGIC ARRAY  
t
XZ  
t
ZX  
HIGH Z  
OUTPUT PIN  
Document #: 38-03006 Rev. *A  
Page 11 of 16  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C344B  
Ordering Information  
Speed  
Package  
Operating  
Range  
(ns)  
Ordering Code  
Name  
H64  
J64  
Package Type  
15  
CY7C344-15HC/HI  
CY7C344-15JC/JI  
CY7C344-15PC/PI  
CY7C344-15WC/WI  
CY7C344-20HC/HI  
CY7C344-20JC/JI  
CY7C344-20PC/PI  
CY7C344-20WC/WI  
CY7C344-20HMB  
CY7C344-20WMB  
CY7C344-25HC/HI  
CY7C344-25JC/JI  
CY7C344-25PC/PI  
CY7C344-25WC/WI  
CY7C344-25HMB  
CY7C344-25WMB  
28-Lead Windowed Leaded Chip Carrier  
28-Lead Plastic Leaded Chip Carrier  
28-Lead (300-Mil) Molded DIP  
Commercial/Industrial  
P21  
W22  
H64  
J64  
28-Lead Windowed CerDIP  
20  
25  
28-Lead Windowed Leaded Chip Carrier  
28-Lead Plastic Leaded Chip Carrier  
28-Lead (300-Mil) Molded DIP  
Commercial/Industrial  
P21  
W22  
H64  
W22  
H64  
J64  
28-Lead Windowed CerDIP  
28-Lead Windowed Leaded Chip Carrier  
28-Lead Windowed CerDIP  
Military  
28-Lead Windowed Leaded Chip Carrier  
28-Lead Plastic Leaded Chip Carrier  
28-Lead (300-Mil) Molded DIP  
Commercial/Industrial  
P21  
W22  
H64  
W22  
28-Lead Windowed CerDIP  
28-Lead Windowed Leaded Chip Carrier  
28-Lead Windowed CerDIP  
Military  
MILITARY SPECIFICATIONS  
Group A Subgroup Testing  
Switching Characteristics  
Parameter  
Subgroups  
tPD1  
tPD2  
tPD3  
tCO1  
tS  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
7, 8, 9, 10, 11  
DC Characteristics  
Parameter  
Subgroups  
VOH  
VOL  
VIH  
VIL  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
tH  
tACO1  
tACO1  
tAS  
IIX  
IOZ  
ICC1  
tAH  
Document #: 38-03006 Rev. *A  
Page 12 of 16  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C344B  
Package Diagrams  
28-Pin Windowed Leaded Chip Carrier H64  
51-80077-**  
Document #: 38-03006 Rev. *A  
Page 13 of 16  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C344B  
Package Diagrams (continued)  
28-Lead Plastic Leaded Chip Carrier J64  
51-85001-*A  
28-Lead (300-Mil) PDIP P21  
14  
1
MIN.  
DIMENSIONS IN INCHES[MM]  
REFERENCE JEDEC MO-095  
PART #  
MAX.  
0.260[6.60]  
0.280[7.11]  
P28.3  
STANDARD PKG.  
LEAD FREE PKG.  
15  
28  
PZ28.3  
0.030[0.76]  
0.080[2.03]  
SEATING PLANE  
1.370[34.79]  
1.425[36.19]  
0.290[7.36]  
0.325[8.25]  
0.120[3.05]  
0.140[3.55]  
0.140[3.55]  
0.190[4.82]  
0.009[0.23]  
0.012[0.30]  
0.115[2.92]  
0.160[4.06]  
3° MIN.  
0.015[0.38]  
0.060[1.52]  
0.310[7.87]  
0.385[9.78]  
0.055[1.39]  
0.065[1.65]  
0.090[2.28]  
0.110[2.79]  
0.015[0.38]  
0.020[0.50]  
51-85014-*C  
Document #: 38-03006 Rev. *A  
Page 14 of 16  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C344B  
Package Diagrams (continued)  
(300-Mil)  
28-Lead  
Windowed CerDIP W22  
MIL-STD-1835 D-15 Config. A  
51-80087-**  
MAX and Warp are registered trademarks and Ultra37000, Warp Professional and Warp Enterprise are trademarks of Cypress  
SemiconductorCorporation.All productsand company names mentionedinthisdocumentmaybethetrademarksoftheirrespective  
holders.  
Document #: 38-03006 Rev. *A  
Page 15 of 16  
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
USE ULTRA37000TM FOR  
ALL NEW DESIGNS  
CY7C344B  
Document History Page  
Document Title: CY7C344 32-Macrocell MAX® EPLD  
Document Number: 38-03006  
Orig. of  
REV.  
**  
ECN NO.  
106271  
213375  
Issue Date  
04/19/01  
Change  
Description of Change  
SZV  
Change from Spec number: 38-00127 to 38-03006  
*A  
See ECN  
FSG  
Added note to title page: “Use Ultra37000 For All New Designs”  
Document #: 38-03006 Rev. *A  
Page 16 of 16  

相关型号:

CY7C344-15PI

OT PLD, 15ns, PAL-Type, CMOS, PDIP28, 0.300 INCH, PLASTIC, MO-095, DIP-28
CYPRESS

CY7C344-15WC

UV PLD, 15ns, PAL-Type, CMOS, CDIP28, 0.300 INCH, WINDOWED, CERDIP-28
CYPRESS

CY7C344-15WC/WI

32-Macrocell MAX EPLD
CYPRESS

CY7C344-15WI

UV-Erasable/OTP PLD
ETC

CY7C344-20DC

UV-Erasable/OTP PLD
ETC

CY7C344-20DI

OT PLD, 30ns, PAL-Type, CMOS, CDIP28, 0.300 INCH, CERDIP-28
CYPRESS

CY7C344-20HC/HI

32-Macrocell MAX EPLD
CYPRESS

CY7C344-20HI

UV-Erasable/OTP PLD
ETC

CY7C344-20HMB

32-Macrocell MAX EPLD
CYPRESS

CY7C344-20JC

UV-Erasable/OTP PLD
ETC

CY7C344-20JC/JI

32-Macrocell MAX EPLD
CYPRESS

CY7C344-20JCR

OT PLD, 30ns, CMOS, PQCC28, PLASTIC, LCC-28
CYPRESS