CY7C4265V-15ASCT [CYPRESS]

FIFO, 16KX18, 10ns, Synchronous, CMOS, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, PLASTIC, STQFP-64;
CY7C4265V-15ASCT
型号: CY7C4265V-15ASCT
厂家: CYPRESS    CYPRESS
描述:

FIFO, 16KX18, 10ns, Synchronous, CMOS, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, PLASTIC, STQFP-64

时钟 先进先出芯片 内存集成电路
文件: 总21页 (文件大小:337K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C4255V, CY7C4265V  
CY7C4275V, CY7C4285V  
32K/64Kx18 Low Voltage Deep Sync FIFOs  
Features  
Functional Description  
3.3Voperationforlowpowerconsumptionandeasyintegration  
into low voltage systems  
The CY7C4255/65/75/85V are high speed, low power, first-in  
first-out (FIFO) memories with clocked read and write interfaces.  
All are 18 bits wide and are pin and functionally compatible to the  
High speed, low power, first-in first-out (FIFO) memories  
8K x 18 (CY7C4255V)  
CY7C42X5V  
Synchronous  
FIFO  
family.  
The  
CY7C4255/65/75/85V can be cascaded to increase FIFO depth.  
Programmable features include Almost Full/Almost Empty flags.  
These FIFOs provide solutions for a wide variety of data  
buffering needs, including high speed data acquisition,  
multiprocessor interfaces, and communications buffering.  
16K x 18 (CY7C4265V)  
32K x 18 (CY7C4275V)  
64K x 18 (CY7C4285V)  
These FIFOs have 18-bit input and output ports that are  
controlled by separate clock and enable signals. The input port  
is controlled by a free-running clock (WCLK) and a write enable  
pin (WEN).  
0.35 micron CMOS for optimum speed and power  
High speed 100 MHz operation (10 ns read/write cycle times)  
Low power  
ICC = 30 mA  
ISB = 4 mA  
When WEN is asserted, data is written into the FIFO on the rising  
edge of the WCLK signal. While WEN is held active, data is  
continually written into the FIFO on each cycle. The output port  
is controlled in a similar manner by a free-running read clock  
(RCLK) and a read enable pin (REN). In addition, the  
CY7C4255/65/75/85V have an output enable pin (OE). The read  
and write clocks may be tied together for single-clock operation  
or the two clocks may be run independently for asynchronous  
read or write applications. Clock frequencies up to 67 MHz are  
achievable.  
Fully asynchronous and simultaneous read and write operation  
Empty, Full, Half Full, and programmable Almost Empty and  
Almost Full status flags  
Retransmit function  
Output Enable (OE) pin  
Retransmit and Synchronous Almost Full/Almost Empty flag  
features are available on these devices.  
Independent read and write enable pins  
Supports free running 50% duty cycle clock inputs  
Width Expansion Capability  
Depth expansion is possible using the cascade input (WXI, RXI),  
cascade output (WXO, RXO), and First Load (FL) pins. The  
WXO and RXO pins are connected to the WXI and RXI pins of  
the next device, and the WXO and RXO pins of the last device  
must be connected to the WXI and RXI pins of the first device.  
The FL pin of the first device is tied to VSS and the FL pin of all  
the remaining devices must be tied to VCC .  
Depth Expansion Capability  
64-pin 10x10 STQFP  
Pin compatible density upgrade to CY7C42X5V-ASC families  
Pin compatible 3.3V solutions for CY7C4255/65/75/85  
Selection Guide  
Parameter  
7C4255/65/75/85V-10  
7C4255/65/75/85V-15  
7C4255/65/75/85V-25  
Maximum Frequency (MHz)  
Maximum Access Time (ns)  
Minimum Cycle Time (ns)  
100  
8
66.7  
10  
15  
4
40  
15  
25  
6
10  
3.5  
0
Minimum Data or Enable Setup (ns)  
Minimum Data or Enable Hold (ns)  
Maximum Flag Delay (ns)  
0
1
8
10  
30  
35  
15  
30  
Active Power Supply Commercial  
30  
Current (ICC1) (mA)  
Industrial  
Parameter  
Density  
Package  
CY7C4255V  
CY7C4265V  
CY7C4275V  
CY7C4285V  
64K x 18  
8K x 18  
16K x 18  
32K x 18  
64-pin 10x10 TQFP  
64-pin 10x10 TQFP  
64-pin 10x10 TQFP  
64-pin 10x10 TQFP  
Cypress Semiconductor Corporation  
Document #: 38-06012 Rev. *B  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised August 22, 2008  
[+] Feedback  
CY7C4255V, CY7C4265V  
CY7C4275V, CY7C4285V  
Logic Block Diagram  
D
0 – 17  
INPUT  
REGISTER  
WCLK  
WEN  
FLAG  
PROGRAM  
REGISTER  
WRITE  
CONTROL  
High  
FF  
EF  
Density  
Dual-Port  
RAM Array  
FLAG  
LOGIC  
PAE  
PAF  
SMODE  
8Kx9  
16Kx9  
32Kx9  
64Kx9  
WRITE  
POINTER  
READ  
POINTER  
RS  
RESET  
LOGIC  
FL/RT  
THREE-STATE  
OUTPUTREGISTER  
READ  
CONTROL  
WXI  
WXO/HF  
RXI  
EXPANSION  
LOGIC  
OE  
Q
0 – 17  
RXO  
4275V–1  
RCLK  
REN  
Pinouts  
Figure 1. Pin Diagram - 64-Pin STQFP  
Top View  
Q
48  
D
15  
D
14  
D
13  
D
12  
1
14  
Q
13  
47  
2
GND  
46  
45  
3
4
Q
12  
Q
V
44  
43  
42  
41  
11  
D
D
5
6
7
8
11  
10  
CC  
CY7C4255V  
CY7C4265V  
CY7C4275V  
CY7C4285V  
Q
10  
D
9
Q
9
D
D
8
7
6
GND  
40  
39  
9
10  
Q
8
D
D
D
D
D
D
38  
37  
36  
11  
12  
13  
Q
7
5
Q
6
4
Q
5
3
35  
34  
14  
15  
GND  
2
Q
4
1
D
0
33  
V
CC  
16  
4275V–3  
Document #: 38-06012 Rev. *B  
Page 2 of 21  
[+] Feedback  
CY7C4255V, CY7C4265V  
CY7C4275V, CY7C4285V  
Table 1. Pin Definitions - CY7C4255V/65V/75V/85V 64-Pin STQFP  
Signal Name  
D0–17  
Description  
Data Inputs  
IO  
I
Function  
Data inputs for an 18-bit bus.  
Data outputs for an 18-bit bus.  
Enables the WCLK input.  
Enables the RCLK input.  
Data Outputs  
Write Enable  
Read Enable  
Write Clock  
O
I
Q0–17  
WEN  
I
I
REN  
WCLK  
The rising edge clocks data into the FIFO when WEN is LOW and the FIFO is not Full.  
When LD is asserted, WCLK writes data into the programmable flag-offset register.  
Read Clock  
I
RCLK  
The rising edge clocks data out of the FIFO when REN is LOW and the FIFO is not  
Empty. When LD is asserted, RCLK reads data out of the programmable flag-offset  
register.  
Write Expansion  
Out/Half Full Flag  
O
Dual Mode Pin:  
WXO/HF  
Single device or width expansion – Half Full status flag  
Cascaded – Write Expansion Out signal, connected to WXI of next device  
Empty Flag  
Full Flag  
O
O
O
EF  
When EF is LOW, the FIFO is empty. EF is synchronized to RCLK.  
When FF is LOW, the FIFO is full. FF is synchronized to WCLK.  
FF  
Programmable  
Almost Empty  
PAE  
When PAE is LOW, the FIFO is almost empty based on the almost empty offset value  
programmed into the FIFO. PAE is asynchronous when VCC/SMODE is tied to VCC  
It is synchronized to RCLK when VCC/SMODE is tied to VSS  
.
.
Programmable  
Almost Full  
O
PAF  
When PAF is LOW, the FIFO is almost full based on the almost full offset value  
programmed into the FIFO. PAF is asynchronous when VCC/SMODE is tied to VCC  
.
It is synchronized to WCLK when VCC/SMODE is tied to VSS  
.
Load  
I
I
LD  
When LD is LOW, D0–17 (Q0–17) are written (read) into (from) the  
programmable-flag-offset register.  
First Load/  
Retransmit  
Dual Mode Pin:  
FL/RT  
Cascaded – The first device in the daisy chain has FL tied to VSS; all other devices have  
FL tied to VCC. In standard mode or width expansion, FL is tied to VSS on all devices.  
Not Cascaded – Tied to VSS . Retransmit function is also available in standalone mode  
by strobing RT.  
Write Expansion  
Input  
I
I
WXI  
RXI  
Cascaded – Connected to WXO of previous device  
Not Cascaded – Tied to VSS  
Read Expansion  
Input  
Cascaded – Connected to RXO of previous device  
Not Cascaded – Tied to VSS  
Read Expansion  
Output  
O
RXO  
Cascaded – Connected to RXI of next device  
Reset  
I
I
Resets device to empty condition. A reset is required before an initial read or write  
operation after power up.  
RS  
OE  
Output Enable  
When OE is LOW, the FIFO’s data outputs drive the bus to which they are connected. If  
OE is HIGH, the FIFO’s outputs are in High Z (high-impedance) state.  
Synchronous  
Almost Empty/  
Almost Full Flags  
I
Dual Mode Pin:  
VCC/SMODE  
Asynchronous Almost Empty/Almost Full flags – tied to VCC  
Synchronous Almost Empty/Almost Full flags – tied to VSS  
(Almost Empty synchronized to RCLK, Almost Full synchronized to WCLK.)  
Document #: 38-06012 Rev. *B  
Page 3 of 21  
[+] Feedback  
CY7C4255V, CY7C4265V  
CY7C4275V, CY7C4285V  
Functional Description  
Programming  
The CY7C4255/65/75/85V provides five status pins. These pins  
are decoded to determine one of five states: Empty, Almost  
Empty, Half Full, Almost Full, and Full (see Table 3 on page 5).  
The Half Full flag shares the WXO pin. This flag is valid in the  
standalone and width expansion configurations. In the depth  
expansion, this pin provides the expansion out (WXO)  
information that is used to signal the next FIFO when it is to be  
activated.  
The CY7C4255/65/75/85V devices contain two 16-bit offset  
registers. Data present on D0–15 during a program write  
determine the distance from Empty (Full) that the Almost Empty  
(Almost Full) flags become active. If the user elects not to  
program the FIFO’s flags, the default offset values are used (see  
Table 3 on page 5). When the Load LD pin is set LOW and WEN  
is set LOW, data on the inputs D0–15 is written into the Empty  
offset register on the first LOW-to-HIGH transition of the write  
clock (WCLK). When the LD pin and WEN are held LOW then  
data is written into the Full offset register on the second  
LOW-to-HIGH transition of the write clock (WCLK). The third  
transition of the write clock (WCLK) again writes to the Empty  
offset register (see Table 2). All offset registers do not have to be  
written at one time. One or two offset registers can be written and  
then, by bringing the LD pin HIGH, the FIFO is returned to normal  
read/write operation. When the LD pin is set LOW, and WEN is  
LOW, the next offset register in sequence is written.  
The Empty and Full flags are synchronous, that is, they change  
state relative to either the read clock (RCLK) or the write clock  
(WCLK). When entering or exiting the Empty states, the flag is  
updated exclusively by the RCLK. The flag denoting Full states  
is updated exclusively by WCLK. The synchronous flag  
architecture guarantees that the flags remain valid from one  
clock cycle to the next. The Almost Empty/Almost Full flags  
become synchronous if the VCC/SMODE is tied to VSS. All  
configurations are fabricated using an advanced 0.35μ  
CMOS technology. Input ESD protection is greater than  
2001V, and latch-up is prevented by the use of guard rings.  
The contents of the offset registers can be read on the output  
lines when the LD pin is set LOW and REN is set LOW. Then,  
data can be read on the LOW-to-HIGH transition of the read  
clock (RCLK).  
Architecture  
Table 2. Write Offset Register  
The CY7C4255/65/75/85V consists of an array of  
8K/16K/32K/64K words of 18 bits each (implemented by a dual  
port array of SRAM cells), a read pointer, a write pointer, control  
signals (RCLK, WCLK, REN, WEN, RS), and flags (EF, PAE, HF,  
PAF, FF). The CY7C4255/65/75/85V also includes the control  
signals WXI, RXI, WXO, RXO for depth expansion.  
LD WEN  
WCLK[1]  
Selection  
0
0
Writing to offset registers:  
Empty Offset  
Full Offset  
0
1
1
1
0
1
No Operation  
Write Into FIFO  
No Operation  
Resetting the FIFO  
Upon power up, the FIFO must be reset with a Reset (RS) cycle.  
This causes the FIFO to enter the Empty condition signified by  
EF being LOW. All data outputs go LOW after the falling edge of  
RS only if OE is asserted. For the FIFO to reset to its default  
state, the user must not read or write while RS is LOW.  
FIFO Operation  
Flag Operation  
When the WEN signal is active (LOW), data present on the D0–17  
pins is written into the FIFO on each rising edge of the WCLK  
signal. Similarly, when the REN signal is active LOW, data in the  
FIFO memory is presented on the Q0–17 outputs. New data is  
presented on each rising edge of RCLK while REN is active LOW  
and OE is LOW. REN must set up tENS before RCLK for it to be  
a valid read function. WEN must occur tENS before WCLK for it  
to be a valid write function.  
The CY7C4255/65/75/85V devices provide five flag pins to  
indicate the condition of the FIFO contents. Empty and Full are  
synchronous. PAE and PAF are synchronous if VCC/SMODE is  
tied to VSS  
.
Full Flag  
The Full Flag (FF) goes LOW when device is Full. Write  
operations are inhibited whenever FF is LOW regardless of the  
state of WEN. FF is synchronized to WCLK, that is, it is  
exclusively updated by each rising edge of WCLK.  
An output enable (OE) pin is provided to three-state the Q0–17  
outputs when OE is deasserted. When OE is enabled (LOW),  
data in the output register is available to the Q0–17 outputs after  
t
OE. If devices are cascaded, the OE function only outputs data  
on the FIFO that is read enabled.  
Empty Flag  
The FIFO contains overflow circuitry to disallow additional writes  
when the FIFO is full, and under flow circuitry to disallow  
additional reads when the FIFO is empty. An empty FIFO  
maintains the data of the last valid read on its Q0–17 outputs even  
after additional reads occur.  
The Empty Flag (EF) goes LOW when the device is empty. Read  
operations are inhibited whenever EF is LOW, regardless of the  
state of REN. EF is synchronized to RCLK, that is, it is  
exclusively updated by each rising edge of RCLK.  
Note  
1. The same selection sequence applies to reading from the registers. REN is enabled and read is performed on the LOW-to-HIGH transition of RCLK.  
Document #: 38-06012 Rev. *B  
Page 4 of 21  
[+] Feedback  
 
 
 
CY7C4255V, CY7C4265V  
CY7C4275V, CY7C4285V  
the flags have been programmed, the PAF or PAE is asserted,  
signifying that the FIFO is either Almost Full or Almost Empty.  
See Table 3 for a description of programmable flags.  
Programmable Almost Empty/Almost Full Flag  
The CY7C4255/65/75/85V features programmable Almost  
Empty and Almost Full Flags. Each flag can be programmed  
(described in section Programming on page 4) a specific  
distance from the corresponding boundary flags (Empty or Full).  
When the FIFO contains the number of words or fewer for which  
When the SMODE pin is tied LOW, the PAF flag signal transition  
is caused by the rising edge of the write clock and the PAE flag  
transition is caused by the rising edge of the read clock.  
Table 3. Flag Truth Table  
Number of Words in FIFO  
FF PAF HF PAE EF  
7C4255V – 8K x 18  
7C4265V – 16K x 18  
7C4275V – 32K x 18  
7C4285V – 64K x 18  
0
0
0
0
H
H
H
H
H
H
L
L
L
1 to n[2]  
1 to n[2]  
1 to n[2]  
1 to n[2]  
H
(n+1) to 4096  
(n+1) to 8192  
(n+1) to 16384  
(n+1) to 32768  
H
H
H
H
H
L
H
L
L
H
H
H
H
H
H
4097 to (8192–(m+1)) 8193 to (16384 –(m+1)) 16385 to (32768–(m+1)) 32769 to (65536 –(m+1))  
(8192–m)[3] to 8192  
8192  
(16384–m)[3] to 16384  
16384  
(32768–m)[3] to 32767  
32768  
(65536–m)[3] to 65535  
65536  
L
L
L
H
H
Retransmit  
Width Expansion Configuration  
The retransmit feature is beneficial when transferring packets of  
data. It enables the receipt of data to be acknowledged by the  
receiver and retransmitted if necessary.  
The CY7C4255/65/75/85V can be expanded in width to provide  
word widths greater than 18 in increments of 18. During width  
expansion mode, all control line inputs are common and all flags  
are available. Empty (Full) flags must be created by ANDing the  
Empty (Full) flags of every FIFO. The PAE and PAF flags can be  
detected from any one device. This technique avoids reading  
data from, or writing data to the FIFO that is “staggered” by one  
clock cycle due to the variations in skew between RCLK and  
WCLK. Figure 2 on page 6 demonstrates a 36-word width by  
using two CY7C4255/65/75/85Vs.  
The Retransmit (RT) input is active in the standalone and width  
expansion modes. The retransmit feature is intended for use  
when a number of writes equal to or less than the depth of the  
FIFO have occurred and at least one word has been read since  
the last RS cycle. A HIGH pulse on RT resets the internal read  
pointer to the first physical location of the FIFO. WCLK and  
RCLK may be free running but must be disabled during and tRTR  
after the retransmit pulse. With every valid read cycle after  
retransmit, previously accessed data is read and the read pointer  
is incremented until it is equal to the write pointer. Flags are  
governed by the relative locations of the read and write pointers  
and are updated during a retransmit cycle. Data written to the  
FIFO after activation of RT are transmitted also. The full depth of  
the FIFO can be repeatedly retransmitted.  
Notes  
2. n = Empty Offset (Default Values: CY7C4255/65/75/85V n = 127).  
3. m = Full Offset (Default Values: CY7C4255/65/75/85V n = 127).  
Document #: 38-06012 Rev. *B  
Page 5 of 21  
[+] Feedback  
 
 
 
CY7C4255V, CY7C4265V  
CY7C4275V, CY7C4285V  
Figure 2. Block Diagram of 8K/16K/32K/64K x 18 Low Voltage Synchronous FIFO Memory in Width Expansion Configuration  
RESET(RS)  
RESET(RS)  
DATA IN (D)  
36  
18  
18  
READ CLOCK (RCLK)  
READ ENABLE (REN)  
OUTPUT ENABLE (OE)  
PROGRAMMABLE (PAF)  
WRITE CLOCK(WCLK)  
WRITE ENABLE(WEN)  
LOAD (LD)  
PROGRAMMABLE(PAE)  
HALF FULL FLAG (HF)  
7C4255V  
7C4265V  
7C4275V  
7C4285V  
7C4255V  
7C4265V  
7C4275V  
7C4285V  
EMPTY FLAG (EF)  
EF  
FF  
FF  
EF  
DATA OUT (Q)  
18  
36  
FULL FLAG (FF)  
18  
FIRST LOAD (FL)  
WRITE EXPANSION IN (WXI)  
READ EXPANSION IN (RXI)  
4275V–24  
Depth Expansion Configuration (with Programmable Flags)  
The CY7C4255/65/75/85V can easily be adapted to applications requiring more than 8K/16K/32K/64K words of buffering. Figure 3  
on page 7 shows Depth Expansion using three CY7C4255/65/ 75/85Vs. Maximum depth is limited only by signal loading. Follow these  
steps:  
1. The first device must be designated by grounding the First Load (FL) control input.  
2. All other devices must have FL in the HIGH state.  
3. The Write Expansion Out (WXO) pin of each device must be tied to the Write Expansion In (WXI) pin of the next device.  
4. The Read Expansion Out (RXO) pin of each device must be tied to the Read Expansion In (RXI) pin of the next device.  
5. All Load (LD) pins are tied together.  
6. The Half Full Flag (HF) is not available in the Depth Expansion Configuration.  
7. EF, FF, PAE, and PAF are created with composite flags by ORing together these respective flags for monitoring. The composite  
PAE and PAF flags are not precise.  
Document #: 38-06012 Rev. *B  
Page 6 of 21  
[+] Feedback  
CY7C4255V, CY7C4265V  
CY7C4275V, CY7C4285V  
Figure 3. Block Diagram of 8K/16K/32K/64K x 18 Low Voltage Synchronous FIFO Memory with Programmable Flags in Depth  
Expansion Configuration  
WXO RXO  
7C4255V  
7C4265V  
7C4275V  
7C4285V  
VCC  
FL  
FF  
PAF  
EF  
PAE  
WXI RXI  
WXO RXO  
7C4255V  
7C4265V  
7C4275V  
7C4285V  
DATAIN (D)  
DATA OUT (Q)  
VCC  
FL  
FF  
PAF  
EF  
PAE  
WXI RXI  
WRITE CLOCK(WCLK)  
WRITE ENABLE(WEN)  
READCLOCK(RCLK)  
READENABLE(REN)  
WXO RXO  
7C4255V  
7C4265V  
7C4275V  
7C4285V  
RESET(RS)  
OUTPUTENABLE (OE)  
LOAD (LD)  
FF  
EF  
FF  
EF  
PAE  
PAE  
PAF  
PAF  
WXI RXI  
FIRST LOAD (FL)  
4275V–25  
Document #: 38-06012 Rev. *B  
Page 7 of 21  
[+] Feedback  
CY7C4255V, CY7C4265V  
CY7C4275V, CY7C4285V  
Output Current into Outputs (LOW)............................. 20 mA  
Maximum Ratings  
Exceeding maximum ratings[4] may impair the useful life of the  
device. These user guidelines are not tested.  
Static Discharge Voltage............................................>2001V  
(per MIL–STD–883, Method 3015)  
Latch-Up Current.....................................................>200mA  
Storage Temperature ................................ –65°C to +150°C  
Operating Range  
Ambient Temperature with  
Power Applied ........................................... –55°C to +125°C  
[6]  
Range  
AmbientTemperature  
0°C to +70°C  
VCC  
Supply Voltage to Ground Potential.........0.5V to VCC+0.5V  
Commercial  
3.3V ±300 mV  
3.3V ±300 mV  
DC Voltage Applied to Outputs  
in High Z State.........................................0.5V to VCC+0.5V  
Industrial[5]  
–40°C to +85°C  
DC Input Voltage ......................................... −0.5V to VCC+0.5V  
Electrical Characteristics  
[7]  
Over the Operating Range  
7C4255/65/75/  
85V-10  
7C4255/65/75/  
85V-15  
7C4255/65/75/  
85V-25  
Parameter  
Description  
Test Conditions  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
VOH  
VOL  
Output HIGH  
Voltage  
VCC = Min, IOH = –1.0 mA  
VCC = 3.0V. IOH = –2.0 mA  
2.4  
2.4  
2.4  
V
V
Output LOW  
Voltage  
VCC = Min.,IOL = 4.0 mA  
0.4  
0.4  
0.4  
VCC = 3.0V.,IOL = 8.0 mA  
[8]  
VIH  
Input HIGH Voltage  
Input LOW Voltage  
2.0  
–0.5  
–10  
VCC  
0.8  
2.0  
–0.5  
–10  
VCC  
0.8  
2.0  
–0.5  
–10  
VCC  
0.8  
V
V
[8]  
VIL  
IIX  
Input Leakage  
Current  
VCC = Max.  
+10  
+10  
+10  
μA  
IOZL  
IOZH  
Output OFF, High Z OE > VIH,  
–10  
+10  
30  
–10  
+10  
–10  
+10  
30  
μA  
Current  
VSS < VO < VCC  
[9]  
ICC1  
Active Power  
Supply Current  
Com’l  
Ind  
30  
35  
4
mA  
mA  
mA  
mA  
[10]  
ISB  
Average Standby  
Current  
Com’l  
Ind  
4
4
4
Capacitance  
Parameter[11]  
Description  
Test Conditions  
TA = 25°C, f = 1 MHz,  
CC = 3.3V  
Max  
5
Unit  
pF  
CIN  
Input Capacitance  
Output Capacitance  
V
COUT  
7
pF  
Notes  
4. The Voltage on any input or IO pin cannot exceed the power pin during power up.  
5.  
6.  
T is the “instant on” case temperature.  
A
V
range for commercial -10 ns is 3.3V ±150mV.  
CC  
7. See the last page of this specification for Group A subgroup testing information.  
8. The V and V specifications apply for all inputs except WXI, RXI. The WXI, RXI pin is not a TTL input. It is connected to either RXO, WXO of the previous  
IH  
IL  
.
device or V  
SS  
9. Input signals switch from 0V to 3V with a rise/fall time of less than 3 ns, clocks and clock enables switch at 20 MHz, while data inputs switch at 10 MHz. Outputs  
are unloaded.  
10. All inputs = V – 0.2V, except RCLK and WCLK (which are at frequency = 0 MHz), and FL/RT which is at V . All outputs are unloaded.  
CC  
SS  
11. Tested initially and after any design changes that may affect these parameters.  
Document #: 38-06012 Rev. *B  
Page 8 of 21  
[+] Feedback  
 
 
 
 
 
 
 
 
CY7C4255V, CY7C4265V  
CY7C4275V, CY7C4285V  
Figure 4. AC Test Loads and Waveforms (-15 -25) [12, 13]  
R1=330Ω  
3.3V  
ALL INPUT PULSES  
OUTPUT  
3.0V  
GND  
90%  
10%  
90%  
10%  
R2=510Ω  
C
L
3 ns  
3 ns  
INCLUDING  
JIG AND  
SCOPE  
4275V–4  
4287V–5  
Equivalentto:  
THÉVENIN EQUIVALENT  
200  
Ω
OUTPUT  
2.0V  
Figure 5. AC Test Loads and Waveforms (-10)  
ALL INPUT PULSES  
V
CC/2  
3.0V  
GND  
90%  
10%  
90%  
10%  
50Ω  
3 ns  
3 ns  
I/O  
Z0=50  
Ω
4275V–6  
4275V–7  
Switching Characteristics  
Over the Operating Range  
7C4255/65/75/85V-10 7C4255/65/75/85V-15 7C4255/65/75/85V-25  
Parameter  
tS  
Description  
Unit  
Min  
Max  
100  
8
Min  
Max  
66.7  
10  
Min  
Max  
40  
Clock Cycle Frequency  
Data Access Time  
Clock Cycle Time  
Clock HIGH Time  
Clock LOW Time  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tA  
2
10  
4.5  
4.5  
3.5  
0
2
15  
6
2
25  
10  
10  
6
15  
tCLK  
tCLKH  
tCLKL  
tDS  
6
Data Setup Time  
4
tDH  
Data Hold Time  
0
1
tENS  
tENH  
tRS  
Enable Setup Time  
Enable Hold Time  
Reset Pulse Width[14]  
Reset Recovery Time  
3.5  
0
4
6
0
1
10  
8
15  
10  
25  
15  
tRSR  
tRSF  
tPRT  
tRTR  
tOLZ  
Reset to Flag and Output Time  
Retransmit Pulse Width  
10  
7
15  
10  
25  
12  
60  
90  
0
60  
90  
0
60  
90  
0
Retransmit Recovery Time  
Output Enable to Output in Low Z [15]  
Output Enable to Output Valid  
tOE  
3
3
3
ns  
Notes  
12. C = 30 pF for all AC parameters except for t  
.
OHZ  
L
13. C = 5 pF for t  
.
L
OHZ  
14. Pulse widths less than minimum values are not allowed.  
15. Values guaranteed by design, not currently tested.  
Document #: 38-06012 Rev. *B  
Page 9 of 21  
[+] Feedback  
 
 
 
 
 
CY7C4255V, CY7C4265V  
CY7C4275V, CY7C4285V  
Switching Characteristics (continued)  
Over the Operating Range  
7C4255/65/75/85V-10 7C4255/65/75/85V-15 7C4255/65/75/85V-25  
Unit  
Parameter  
Description  
Min  
Max  
Min  
Max  
Min  
Max  
Output Enable to Output in High Z[15]  
Write Clock to Full Flag  
tOHZ  
3
7
3
8
3
12  
ns  
tWFF  
8
8
10  
10  
16  
15  
15  
20  
ns  
ns  
ns  
tREF  
Read Clock to Empty Flag  
tPAFasynch  
Clock to Programmable Almost Full  
Flag[16] (Asynchronous mode,  
15  
VCC/SMODE tied to VCC)  
tPAFsynch  
Clock to Programmable Almost Full  
Flag  
8
10  
15  
ns  
(Synchronous mode, VCC/SMODE  
tied to VSS  
)
tPAEasynch  
Clock to Programmable Almost Empty  
Flag[16] (Asynchronous mode,  
15  
8
16  
10  
20  
15  
ns  
ns  
VCC/SMODE tied to VCC)  
tPAEsynch  
Clock to Programmable Almost Full  
Flag (Synchronous mode,  
VCC/SMODE tied to VSS)  
tHF  
Clock to Half Full Flag  
Clock to Expansion Out  
12  
6
16  
10  
20  
15  
ns  
ns  
ns  
ns  
ns  
tXO  
tXI  
Expansion in Pulse Width  
Expansion in Setup Time  
4.5  
4
6.5  
5
10  
10  
10  
tXIS  
tSKEW1  
Skew Time between Read Clock and  
Write Clock for Full Flag  
5
6
tSKEW2  
tSKEW3  
Skew Time between Read Clock and  
Write Clock for Empty Flag  
5
6
10  
18  
ns  
ns  
Skew Time between Read Clock and  
Write Clock for Programmable Almost  
Empty and Programmable Almost Full  
Flags (Synchronous Mode only)  
10  
15  
Note  
16. t  
, t  
, after program register write are valid until 5 ns + t  
.
PAFasynch PAEasynch  
PAF(E)  
Document #: 38-06012 Rev. *B  
Page 10 of 21  
[+] Feedback  
 
 
CY7C4255V, CY7C4265V  
CY7C4275V, CY7C4285V  
Switching Waveforms  
Figure 6. Write Cycle Timing  
t
CLK  
t
t
CLKL  
CLKH  
WCLK  
t
t
DH  
DS  
D –D  
0
17  
t
ENH  
t
ENS  
WEN  
FF  
NO OPERATION  
t
t
WFF  
WFF  
[17]  
t
SKEW1  
RCLK  
REN  
Figure 7. Read Cycle Timing  
t
CLK  
t
t
CLKL  
CLKH  
RCLK  
REN  
t
t
ENH  
ENS  
NO OPERATION  
t
REF  
t
REF  
EF  
t
A
VALID DATA  
Q –Q  
0
17  
t
OLZ  
t
OHZ  
t
OE  
OE  
[18]  
SKEW2  
t
WCLK  
WEN  
Notes  
17. t  
is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that FF goes HIGH during the current clock cycle. If the time between  
SKEW1  
the rising edge of RCLK and the rising edge of WCLK is less than t  
, then FF may not change state until the next WCLK rising edge.  
SKEW1  
18. t  
is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that EF goes HIGH during the current clock cycle. If the time between  
SKEW2  
the rising edge of WCLK and the rising edge of RCLK is less than t  
, then EF may not change state until the next RCLK rising edge.  
SKEW2  
Document #: 38-06012 Rev. *B  
Page 11 of 21  
[+] Feedback  
 
 
CY7C4255V, CY7C4265V  
CY7C4275V, CY7C4285V  
Switching Waveforms (continued)  
Figure 8. Reset Timing [19]  
t
RS  
RS  
t
RSR  
REN,WEN,  
LD  
t
RSF  
EF,PAE  
t
RSF  
FF,PAF,  
HF  
t
RSF  
[20]  
OE=1  
Q
Q
0 – 17  
OE=0  
Figure 9. First Data Word Latency after Reset with Simultaneous Read and Write  
WCLK  
t
DS  
D –D  
D
0
(FIRSTVALIDWRITE)  
D
1
D
2
D
3
D
4
0
17  
t
ENS  
[21]  
FRL  
t
WEN  
t
SKEW2  
RCLK  
t
REF  
EF  
REN  
[22]  
t
A
t
A
Q –Q  
D
0
D
1
0
17  
t
OLZ  
t
OE  
OE  
Notes  
19. The clocks (RCLK, WCLK) can be free-running during reset.  
20. After reset, the outputs are LOW if OE = 0 and three-state if OE = 1.  
21. When t > minimum specification, t (maximum) = t + t  
. When t  
< minimum specification, t  
(maximum) = either 2*t  
+ t  
or t  
+
SKEW2  
FRL  
CLK  
SKEW2  
SKEW2  
FRL  
CLK  
SKEW2  
CLK  
t
. The Latency Timing applies only at the Empty Boundary (EF = LOW).  
SKEW2  
22. The first word is always available the cycle after EF goes HIGH.  
Document #: 38-06012 Rev. *B  
Page 12 of 21  
[+] Feedback  
 
 
 
 
CY7C4255V, CY7C4265V  
CY7C4275V, CY7C4285V  
Switching Waveforms (continued)  
Figure 10. Empty Flag Timing  
WCLK  
t
t
DS  
DS  
D0  
D1  
D –D  
0
17  
t
t
ENH  
ENH  
t
t
ENS  
ENS  
WEN  
[21]  
FRL  
[21]  
FRL  
t
t
RCLK  
t
t
t
REF  
t
REF  
t
SKEW2  
REF  
SKEW2  
EF  
REN  
OE  
t
A
D0  
Q –Q  
0
17  
Figure 11. Full Flag Timing  
NO WRITE  
NO WRITE  
WCLK  
[17]  
[17]  
t
t
DATA WRITE  
t
SKEW1  
DS  
SKEW1  
DATA WRITE  
D –D  
0
17  
t
t
t
WFF  
WFF  
WFF  
FF  
WEN  
RCLK  
REN  
t
t
ENH  
ENH  
t
t
ENS  
ENS  
LOW  
OE  
t
A
t
A
DATA READ  
NEXT DATA READ  
DATA IN OUTPUT REGISTER  
Q –Q  
0
17  
Document #: 38-06012 Rev. *B  
Page 13 of 21  
[+] Feedback  
CY7C4255V, CY7C4265V  
CY7C4275V, CY7C4285V  
Switching Waveforms (continued)  
Figure 12. Half Full Timing  
t
t
CLKL  
CLKH  
WCLK  
WEN  
t
t
ENH  
ENS  
t
HF  
HALF FULL + 1  
OR MORE  
HALF  
HALF FULL OR LESS  
FULL OR LESS  
HF  
t
HF  
RCLK  
REN  
t
ENS  
Figure 13. Programmable Almost Empty Flag Timing  
t
t
CLKL  
CLKH  
WCLK  
WEN  
t
t
ENH  
ENS  
t
PAE  
[23]  
N + 1 WORDS  
IN FIFO  
PAE  
n WORDS IN FIFO  
t
PAE  
RCLK  
REN  
t
ENS  
Note  
23. PAE is offset = n. Number of data words into FIFO already = n.  
Document #: 38-06012 Rev. *B  
Page 14 of 21  
[+] Feedback  
 
CY7C4255V, CY7C4265V  
CY7C4275V, CY7C4285V  
Switching Waveforms (continued)  
Figure 14. Programmable Almost Empty Flag Timing (applies only in SMODE (SMODE is LOW))  
t
t
CLKL  
CLKH  
WCLK  
WEN  
PAE  
t
t
ENH  
ENS  
27  
Note  
N + 1 WORDS  
IN FIFO  
Note  
26  
[25]  
t
PAE synch  
t
t
SKEW3  
PAE synch  
RCLK  
REN  
t
ENS  
t
t
ENH  
ENS  
Figure 15. Programmable Almost Full Flag Timing  
t
t
CLKL  
CLKH  
Note 27  
WCLK  
WEN  
t
t
ENH  
ENS  
t
PAF  
FULL– M WORDS  
[28]  
[29]  
PAF  
IN FIFO  
FULL– (M+1) WORDS  
[30]  
IN FIFO  
t
PAF  
RCLK  
REN  
t
ENS  
Notes  
24. PAE offset n.  
25. t is the minimum time between a rising WCLK and a rising RCLK edge for PAE to change state during that clock cycle. If the time between the edge of WCLK  
SKEW3  
and the rising RCLK is less than tSKEW3, then PAE may not change state until the next RCLK.  
26. If a read is performed on this rising edge of the read clock, there are Empty + (n1) words in the FIFO when PAE goes LOW.  
27. PAF offset = m. Number of data words written into FIFO already = 8192 (m + 1) for the CY7C4255V, 16384 (m + 1) for the CY7C4265V, 32768 (m + 1) for the  
CY7C4275V, and 65536 (m + 1) for the CY7C4285V.  
28. PAF is offset = m.  
29. 8192 m words in CY7C4255V, 16384 m words in CY7C4265V, 32768 m words in CY7C4275V, and 65536 m words in CY7C4285V.  
30. 8192 (m + 1) words in CY7C4255V, 16384 (m + 1) words in CY7C4265V, 32768 (m + 1) words in CY7C4275V, and 65536 (m + 1) words in CY7C4285V.  
Document #: 38-06012 Rev. *B  
Page 15 of 21  
[+] Feedback  
 
 
 
 
 
 
CY7C4255V, CY7C4265V  
CY7C4275V, CY7C4285V  
Switching Waveforms (continued)  
Figure 16. Programmable Almost Full Flag Timing (applies only in SMODE (SMODE is LOW))  
31  
Note  
t
t
CLKL  
CLKH  
WCLK  
t
t
ENH  
ENS  
WEN  
PAF  
t
PAF  
FULL– M WORDS  
IN FIFO  
[29]  
FULL – M + 1 WORDS  
IN FIFO  
[32]  
SKEW3  
t
PAF synch  
t
RCLK  
REN  
t
ENS  
t
t
ENH  
ENS  
Figure 17. Write Programmable Registers  
t
CLK  
t
t
CLKL  
CLKH  
WCLK  
LD  
t
t
ENS  
ENH  
t
ENS  
WEN  
t
t
DH  
DS  
PAE OFFSET  
D –D  
0
17  
D
D –  
0
PAE OFFSET  
PAF OFFSET  
11  
Notes  
31. If a write is performed on this rising edge of the write clock, there are Full (m1) words of the FIFO when PAF goes LOW.  
32. t is the minimum time between a rising RCLK and a rising WCLK edge for PAF to change state during that clock cycle. If the time between the edge of RCLK  
SKEW3  
and the rising edge of WCLK is less than t  
, then PAF may not change state until the next WCLK rising edge.  
SKEW3  
Document #: 38-06012 Rev. *B  
Page 16 of 21  
[+] Feedback  
 
 
CY7C4255V, CY7C4265V  
CY7C4275V, CY7C4285V  
Switching Waveforms (continued)  
Figure 18. Read Programmable Registers  
t
CLK  
t
t
CLKL  
CLKH  
RCLK  
LD  
t
t
ENS  
ENH  
t
ENS  
WEN  
t
A
UNKNOWN  
PAE OFFSET  
PAF OFFSET  
PAE OFFSET  
Q –Q  
0
17  
Figure 19. Write Expansion Out Timing  
t
CLKH  
WCLK  
34  
t
XO  
33  
WXO  
WEN  
t
XO  
t
ENS  
Figure 20. Read Expansion Out Timing  
t
CLKH  
WCLK  
34  
t
XO  
RXO  
REN  
t
XO  
t
ENS  
Figure 21. Write Expansion In Timing  
t
XI  
WXI  
t
XIS  
WCLK  
Notes  
33. Write to Last Physical Location.  
34. Read from Last Physical Location.  
Document #: 38-06012 Rev. *B  
Page 17 of 21  
[+] Feedback  
 
 
CY7C4255V, CY7C4265V  
CY7C4275V, CY7C4285V  
Switching Waveforms (continued)  
Figure 22. Read Expansion In Timing  
t
XI  
RXI  
t
XIS  
RCLK  
Figure 23. Retransmit Timing [35, 36, 37]  
FL/RT  
t
PRT  
t
RTR  
REN/WEN  
EF/FF  
and all  
async flags  
HF/PAE/PAF  
Notes  
35. Clocks are free-running in this case.  
36. The flags may change state during Retransmit as a result of the offset of the read and write pointers, but flags are valid at t  
.
RTR  
37. For the synchronous PAE and PAF flags (SMODE), an appropriate clock cycle is necessary after t  
to update these flags.  
RTR  
Document #: 38-06012 Rev. *B  
Page 18 of 21  
[+] Feedback  
 
CY7C4255V, CY7C4265V  
CY7C4275V, CY7C4285V  
Ordering Information  
8Kx18 Low-Voltage Deep Sync FIFO  
Speed (ns)  
Ordering Code  
Package Diagram  
Package Type  
Operating Range  
10  
CY7C4255V–10ASC  
CY7C4255V–10ASXC  
CY7C4255V–15ASC  
CY7C4255V–15ASXC  
CY7C4255V–15ASXI  
CY7C4255V–25ASC  
64-Pin Thin Quad Flat Pack (10 x 10 x 1.4 mm)  
64-Pin Thin Quad Flat Pack (10 x 10 x 1.4 mm) (Pb-Free)  
64-Pin Thin Quad Flat Pack (10 x 10 x 1.4 mm)  
64-Pin Thin Quad Flat Pack (10 x 10 x 1.4 mm) (Pb-Free)  
64-Pin Thin Quad Flat Pack (10 x 10 x 1.4 mm) (Pb-Free)  
64-Pin Thin Quad Flat Pack (10 x 10 x 1.4 mm)  
51-85051  
Commercial  
15  
51-85051  
Commercial  
51-85051  
51-85051  
Industrial  
25  
Commercial  
16Kx18 Low-Voltage Deep Sync FIFO  
Speed (ns)  
Ordering Code  
CY7C4265V–10ASC  
CY7C4265V–15ASC  
CY7C4265V–25ASC  
Package Diagram  
51-85051  
Package Type  
Operating Range  
Commercial  
10  
15  
25  
64-Pin Thin Quad Flat Pack (10 x 10 x 1.4 mm)  
64-Pin Thin Quad Flat Pack (10 x 10 x 1.4 mm)  
64-Pin Thin Quad Flat Pack (10 x 10 x 1.4 mm)  
51-85051  
Commercial  
51-85051  
Commercial  
32Kx18 Low-Voltage Deep Sync FIFO  
Speed (ns)  
Ordering Code  
CY7C4275V–10ASC  
CY7C4275V–15ASC  
CY7C4275V–15ASXC  
Package Diagram  
Package Type  
Operating Range  
10  
15  
51-85051  
64-Pin Thin Quad Flat Pack (10 x 10 x 1.4 mm)  
64-Pin Thin Quad Flat Pack (10 x 10 x 1.4 mm)  
64-Pin Thin Quad Flat Pack (10 x 10 x 1.4 mm) (Pb-Free)  
Commercial  
51-85051  
Commercial  
64Kx18 Low-Voltage Deep Sync FIFO  
Speed (ns)  
Ordering Code  
CY7C4285V–10ASC  
CY7C4285V–10ASXC  
CY7C4285V–15ASXC  
CY7C4285V–15ASI  
CY7C4285V–15ASXI  
CY7C4285V–25ASC  
Package Diagram  
Package Type  
Operating Range  
10  
64-Pin Thin Quad Flat Pack (10 x 10 x 1.4 mm)  
64-Pin Thin Quad Flat Pack (10 x 10 x 1.4 mm) (Pb-Free)  
64-Pin Thin Quad Flat Pack (10 x 10 x 1.4 mm) (Pb-Free)  
64-Pin Thin Quad Flat Pack (10 x 10 x 1.4 mm)  
64-Pin Thin Quad Flat Pack (10 x 10 x 1.4 mm) (Pb-Free)  
64-Pin Thin Quad Flat Pack (10 x 10 x 1.4 mm)  
Commercial  
51-85051  
15  
25  
51-85051  
Commercial  
Industrial  
51-85051  
51-85051  
Commercial  
Document #: 38-06012 Rev. *B  
Page 19 of 21  
[+] Feedback  
CY7C4255V, CY7C4265V  
CY7C4275V, CY7C4285V  
Package Diagrams  
Figure 24. 64-Pin Thin Plastic Quad Flat Pack (10 x 10 x 1.4 mm)  
51-85051 *A  
Document #: 38-06012 Rev. *B  
Page 20 of 21  
[+] Feedback  
CY7C4255V, CY7C4265V  
CY7C4275V, CY7C4285V  
Document History Page  
Document Title: CY7C4255V/CY7C4265V/CY7C4275V/CY7C4285V 32K/64Kx18 Low Voltage Deep Sync FIFOs  
Document Number: 38-06012  
Orig. of  
Change  
Submission  
Date  
REV.  
ECN  
Description of Change  
**  
106473  
122264  
SZV  
RBI  
09/10/01  
12/26/02  
Change from Spec number: 38-00654 to 38-06012  
*A  
*B  
Power up requirements added to Maximum Ratings Information  
2556036 VKN/AESA 08/22/2008 Updated ordering information and data sheet template.  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at cypress.com/sales.  
Products  
PSoC  
PSoC Solutions  
General  
psoc.cypress.com  
clocks.cypress.com  
wireless.cypress.com  
memory.cypress.com  
image.cypress.com  
psoc.cypress.com/solutions  
psoc.cypress.com/low-power  
psoc.cypress.com/precision-analog  
psoc.cypress.com/lcd-drive  
psoc.cypress.com/can  
Clocks & Buffers  
Wireless  
Low Power/Low Voltage  
Precision Analog  
LCD Drive  
Memories  
Image Sensors  
CAN 2.0b  
USB  
psoc.cypress.com/usb  
© Cypress Semiconductor Corporation, 2001-2008. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document #: 38-06012 Rev. *B  
Revised August 22, 2008  
Page 21 of 21  
All products and company names mentioned in this document may be the trademarks of their respective holders.  
[+] Feedback  

相关型号:

CY7C4265V-15ASI

x18 Synchronous FIFO
ETC

CY7C4265V-15JI

FIFO, 16KX18, 10ns, Synchronous, CMOS, PQCC68, PLASTIC, LCC-68
CYPRESS

CY7C4265V-25ASC

32K/64Kx18 Low Voltage Deep Sync FIFOs
CYPRESS

CY7C4265V-25JCT

FIFO, 16KX18, 15ns, Synchronous, CMOS, PQCC68, PLASTIC, LCC-68
CYPRESS

CY7C4271

16K/32K x 9 Deep Sync FIFOs
CYPRESS

CY7C4271-10AC

16K/32K x 9 Deep Sync FIFOs
CYPRESS

CY7C4271-10AI

16K/32K x 9 Deep Sync FIFOs
CYPRESS

CY7C4271-10JC

16K/32K x 9 Deep Sync FIFOs
CYPRESS

CY7C4271-10JCR

FIFO, 32KX9, Synchronous, CMOS, PQCC32, PLASTIC, LCC-32
CYPRESS

CY7C4271-10JCT

FIFO, 32KX9, 8ns, Synchronous, CMOS, PQCC32, PLASTIC, LCC-32
CYPRESS

CY7C4271-10JI

16K/32K x 9 Deep Sync FIFOs
CYPRESS

CY7C4271-10JIR

FIFO, 32KX9, Synchronous, CMOS, PQCC32, PLASTIC, LCC-32
CYPRESS