CY7C63412-PC [CYPRESS]

Low-speed USB Peripheral Controller; 低速USB外设控制器
CY7C63412-PC
型号: CY7C63412-PC
厂家: CYPRESS    CYPRESS
描述:

Low-speed USB Peripheral Controller
低速USB外设控制器

控制器
文件: 总36页 (文件大小:298K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
Low-speed USB Peripheral Controller  
Cypress Semiconductor Corporation  
Document #: 38-08027 Rev. **  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
Revised June 4, 2002  
FOR  
FOR  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
TABLE OF CONTENTS  
1.0 FEATURES .....................................................................................................................................5  
2.0 FUNCTIONAL OVERVIEW .............................................................................................................6  
3.0 PIN ASSIGNMENTS .......................................................................................................................8  
4.0 PROGRAMMING MODEL ...............................................................................................................8  
4.1 14-bit Program Counter (PC) ...........................................................................................................8  
4.2 8-bit Accumulator (A) .......................................................................................................................8  
4.3 8-bit Index Register (X) ....................................................................................................................8  
4.4 8-bit Program Stack Pointer (PSP) ..................................................................................................9  
4.5 8-bit Data Stack Pointer (DSP) ........................................................................................................9  
4.6 Address Modes ................................................................................................................................9  
4.6.1 Data ........................................................................................................................................................9  
4.6.2 Direct ......................................................................................................................................................9  
4.6.3 Indexed ...................................................................................................................................................9  
5.0 INSTRUCTION SET SUMMARY ...................................................................................................11  
6.0 MEMORY ORGANIZATION ..........................................................................................................12  
6.1 Program Memory Organization ......................................................................................................12  
6.2 Data Memory Organization ............................................................................................................13  
6.3 I/O Register Summary ...................................................................................................................14  
7.0 CLOCKING ....................................................................................................................................15  
8.0 RESET ...........................................................................................................................................15  
8.1 Power-On Reset (POR) .................................................................................................................15  
8.2 Watch Dog Reset (WDR) ...............................................................................................................16  
9.0 GENERAL PURPOSE I/O PORTS ...............................................................................................16  
9.1 GPIO Interrupt Enable Ports ..........................................................................................................17  
9.2 GPIO Configuration Port ................................................................................................................18  
10.0 DAC PORT ..................................................................................................................................19  
10.1 DAC Port Interrupts .....................................................................................................................19  
10.2 DAC Isink Registers .....................................................................................................................20  
11.0 USB SERIAL INTERFACE ENGINE (SIE) .................................................................................20  
11.1 USB Enumeration ........................................................................................................................20  
11.2 PS/2 Operation ............................................................................................................................20  
11.3 USB Port Status and Control .......................................................................................................21  
12.0 USB DEVICE ...............................................................................................................................21  
12.1 USB Ports ....................................................................................................................................21  
12.2 Device Endpoints (3) ...................................................................................................................21  
13.0 12-BIT FREE-RUNNING TIMER .................................................................................................22  
13.1 Timer (LSB) .................................................................................................................................22  
13.2 Timer (MSB) ................................................................................................................................22  
14.0 PROCESSOR STATUS AND CONTROL REGISTER ...............................................................23  
15.0 INTERRUPTS ..............................................................................................................................24  
15.1 Interrupt Vectors ..........................................................................................................................24  
Document #: 38-08027 Rev. **  
Page 2 of 36  
FOR  
FOR  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
15.2 Interrupt Latency ..........................................................................................................................25  
15.2.1 USB Bus Reset Interrupt ....................................................................................................................25  
15.2.2 Timer Interrupt ....................................................................................................................................25  
15.2.3 USB Endpoint Interrupts .....................................................................................................................25  
15.2.4 DAC Interrupt ......................................................................................................................................25  
15.2.5 GPIO Interrupt ....................................................................................................................................25  
16.0 TRUTH TABLES .........................................................................................................................26  
17.0 ABSOLUTE MAXIMUM RATINGS .............................................................................................29  
18.0 DC CHARACTERISTICS ............................................................................................................30  
19.0 SWITCHING CHARACTERISTICS .............................................................................................31  
20.0 ORDERING INFORMATION .......................................................................................................33  
21.0 PACKAGE DIAGRAMS ..............................................................................................................34  
Document #: 38-08027 Rev. **  
Page 3 of 36  
FOR  
FOR  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
LIST OF FIGURES  
Figure 6-1. Program Memory Space with Interrupt Vector Table ......................................................... 12  
Figure 7-1. Clock Oscillator On-chip Circuit .......................................................................................... 15  
Figure 8-1. Watch Dog Reset (WDR) ................................................................................................... 16  
Figure 9-1. Block Diagram of a GPIO Line ........................................................................................... 16  
Figure 9-2. Port 1 Data 0x01h (read/write) ........................................................................................... 17  
Figure 9-3. Port 2 Data 0x02h (read/write) ........................................................................................... 17  
Figure 9-4. Port 3 Data 0x03h (read/write) ........................................................................................... 17  
Figure 9-5. DAC Port Data 0x30h (read/write) ...................................................................................... 17  
Figure 9-6. Port 0 Interrupt Enable 0x04h (write only) .......................................................................... 17  
Figure 9-7. Port 1 Interrupt Enable 0x05h (write only) .......................................................................... 17  
Figure 9-8. Port 2 Interrupt Enable 0x06h (write only) .......................................................................... 17  
Figure 9-9. Port 3 Interrupt Enable 0x07h (write only) .......................................................................... 17  
Figure 10-1. Block Diagram of DAC Port .............................................................................................. 19  
Figure 10-2. DAC Port Data 0x30h (read/write) .................................................................................... 19  
Figure 10-3. DAC Port Interrupt Enable 0x31h (write only) .................................................................. 19  
Figure 10-4. DAC Port Interrupt Polarity 0x32h (write only) ................................................................. 19  
Figure 10-5. DAC Port Isink 0x38h to 0x3Fh (write only) ..................................................................... 20  
Figure 11-1. USB Status and Control Register 0x1Fh .......................................................................... 21  
Figure 12-1. USB Device Address Register 0x10h (read/write) ........................................................... 21  
Figure 12-2. USB Device Counter Registers 0x11h, 0x13h, 0x15h (read/write) .................................. 22  
Figure 13-1. Timer Block Diagram ........................................................................................................ 23  
Figure 15-1. USB End Point Interrupt Enable Register 0x21h (read/write) .......................................... 24  
Figure 19-1. Clock Timing ..................................................................................................................... 32  
Figure 19-2. USB Data Signal Timing ................................................................................................... 32  
Figure 19-3. Receiver Jitter Tolerance ................................................................................................. 32  
Figure 19-4. Differential to EOP Transition Skew and EOP Width ....................................................... 33  
Figure 19-5. Differential Data Jitter ....................................................................................................... 33  
LIST OF TABLES  
Table 6-1. I/O Register Summary ........................................................................................................14  
Table 15-1. Interrupt Vector Assignments ...........................................................................................24  
Table 16-1. USB Register Mode Encoding ..........................................................................................26  
Table 16-2. Decode table forTable 16-3: Details of Modes for Differing Traffic Conditions..............27  
Table 16-3. Details of Modes for Differing Traffic Conditions ..............................................................28  
Document #: 38-08027 Rev. **  
Page 4 of 36  
FOR  
FOR  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
1.0  
Features  
• Low-cost solution for low-speed applications such as mice, gamepads, keyboards, joystick and others  
• USB Specification Compliance  
— Conforms to USB Specification, Versions 1.1 and 2.0  
— Conforms to USB HID Specification, Version 1.1  
— Supports 1 device address and 3 data endpoints  
— Integrated USB transceiver  
• 8-bit RISC microcontroller  
— Harvard architecture  
— 6-MHz external ceramic resonator  
— 12-MHz internal CPU clock  
• Internal memory  
— 256 bytes of RAM  
— 4 Kbytes of EPROM (CY7C63411, CY7C63511)  
— 6 Kbytes of EPROM (CY7C63412, CY7C63512, CY7C63612)  
— 8 Kbytes of EPROM (CY7C63413, CY7C63513, CY7C63613)  
• Interface can auto-configure to operate as PS2 or USB  
• I/O port  
— The CY7634XX/5XX have 24 General Purpose I/O (GPIO) pins (Port 0 to 2) capable of sinking 7 mA per pin (typical)  
— The CY7C636XX have 12 General-Purpose I/O (GPIO) pins (Port 0 to 2) capable of sinking 7 mA per pin (typical)  
— The CY7C634XX/5XX have eight GPIO pins (Port 3) capable of sinking 12 mA per pin (typical) which can drive LEDs  
— The CY7C636XX have four GPIO pins (Port 3) capable of sinking 12 mA per pin (typical) which can drive LEDs  
— Higher current drive is available by connecting multiple GPIO pins together to drive a common output  
— EachGPIOportcanbeconfiguredasinputswithinternalpull-upsor opendrainoutputsortraditionalCMOSoutputs  
— The CY7C635XX has an additional eight I/O pins on a DAC port which has programmable current sink outputs  
— Maskable interrupts on all I/O pins  
• 12-bit free-running timer with one microsecond clock ticks  
• Watch Dog Timer (WDT)  
• Internal Power-On Reset (POR)  
• Improved output drivers to reduce EMI  
• Operating voltage from 4.0V to 5.5V DC  
• Operating temperature from 0 to 70 degrees Celsius  
• CY7C634XX available in 40-pin PDIP, 48-pin SSOP for production  
• CY7C635XX available in 48-pin SSOP packages for production  
• CY7C636XX available in 24-pin SOIC packages for production  
• Industry-standard programmer support  
Document #: 38-08027 Rev. **  
Page 5 of 36  
FOR  
FOR  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
2.0  
Functional Overview  
The CY7C634XX/5XX/6XX are 8-bit RISC One Time Programmable (OTP) microcontrollers. The instruction set has been opti-  
mized specifically for USB operations although, the microcontrollers can be used for a variety of non-USB embedded applications.  
The CY7C634XX/5XX feature 32 General-Purpose I/O (GPIO) pins and the CY7C636XX features 16 General-Purpose I/O  
(GPIO) pins to support USB and other applications. The I/O pins are grouped into four ports (Port 0, 1, 2, and 3) where each port  
can be configured as inputs with internal pull-ups, open drain outputs, or traditional CMOS outputs. The CYC634XX/5XX have  
24 GPIO pins (Ports 0, 1, and 2) and the CY7C636XX has 12 GPIO pins (Ports 0 and 1) that are rated at 7 mA typical sink current.  
The CYC634XX/5XX has 8 GPIO pins (Port 3) and the CY7C636XX has 4 GPIO pins (Port 3) which are rated at 12 mA typical  
sink current, which allows these pins to drive LEDs. Multiple GPIO pins can be connected together to drive a single output for  
more drive current capacity. Additionally, each I/O pin can be used to generate a GPIO interrupt to the microcontroller. Note the  
GPIO interrupts all share the same GPIOinterrupt vector.  
The CY7C635XX features an additional 8 I/O pins in the DAC port. Every DAC pin includes an integrated 14-Kohm pull-up resistor.  
When a 1is written to a DAC I/O pin, the output current sink is disabled and the output pin is driven high by the internal pull-up  
resistor. When a 0is written to a DAC I/O pin, the internal pull-up is disabled and the output pin provides the programmed amount  
of sink current. A DAC I/O pin can be used as an input with an internal pull-up by writing a 1to the pin.  
The sink current for each DAC I/O pin can be individually programmed to one of sixteen values using dedicated Isink registers.  
DAC bits [1:0] can be used as high current outputs with a programmable sink current range of 3.2 to 16 mA (typical). DAC bits  
[7:2] have a programmable current sink range of 0.2 to 1.0 mA (typical). Again, multiple DAC pins can be connected together to  
drive a single output that requires more sink current capacity. Each I/O pin can be used to generate a DAC interrupt to the  
microcontroller and the interrupt polarity for each DAC I/O pin is individually programmable. The DAC port interrupts share a  
separate DACinterrupt vector.  
The Cypress microcontrollers use an external 6-MHz ceramic resonator to provide a reference to an internal clock generator. This  
clock generator reduces the clock-related noise emissions (EMI). The clock generator provides the 6- and 12-MHz clocks that  
remain internal to the microcontroller.  
The CY7C64XX/5XX/6XX are offered with multiple EPROM options to maximize flexibility and minimize cost. The CY7C63411  
and the CY7C63511 have 4 Kilobytes of EPROM. The CY7C63412, CY7C63512, and CY7C63612 have 6 Kbytes of EPROM.  
The CY7C63413, CY7C63513, and CY7C63613 have 8 Kbytes of EPROM.  
These parts include Power-on Reset logic, a Watch Dog Timer, a vectored interrupt controller, and a 12-bit free-running timer.  
The Power-On Reset (POR) logic detects when power is applied to the device, resets the logic to a known state, and begins  
executing instructions at EPROM address 0x0000h. The Watch Dog Timer can be used to ensure the firmware never gets stalled  
for more than approximately 8 ms. The firmware can get stalled for a variety of reasons, including errors in the code or a hardware  
failure such as waiting for an interrupt that never occurs. The firmware should clear the Watch Dog Timer periodically. If the Watch  
Dog Timer is not cleared for approximately 8 ms, the microcontroller will generate a hardware watch dog reset.  
The microcontroller supports eight maskable interrupts in the vectored interrupt controller. Interrupt sources include the USB Bus-  
Reset, the 128-µs and 1.024-ms outputs from the free-running timer, three USB endpoints, the DAC port, and the GPIO ports.  
The timer bits cause an interrupt (if enabled) when the bit toggles from LOW 0to HIGH 1.The USB endpoints interrupt after  
either the USB host or the USB controller sends a packet to the USB. The DAC ports have an additional level of masking that  
allows the user to select which DAC inputs can cause a DAC interrupt. The GPIO ports also have a level of masking to select  
which GPIO inputs can cause a GPIO interrupt. For additional flexibility, the input transition polarity that causes an interrupt is  
programmable for each pin of the DAC port. Input transition polarity can be programmed for each GPIO port as part of the port  
configuration. The interrupt polarity can be either rising edge (0to 1) or falling edge (1to 0).  
The free-running 12-bit timer clocked at 1 MHz provides two interrupt sources as noted above (128-µs and 1.024-ms). The timer  
can be used to measure the duration of an event under firmware control by reading the timer twice: once at the start of the event,  
and once after the event is complete. The difference between the two readings indicates the duration of the event measured in  
microseconds. The upper four bits of the timer are latched into an internal register when the firmware reads the lower eight bits.  
A read from the upper four bits actually reads data from the internal register, instead of the timer. This feature eliminates the need  
for firmware to attempt to compensate if the upper four bits happened to increment right after the lower 8 bits are read.  
The CY7C634XX/5XX/6XX include an integrated USB serial interface engine (SIE) that supports the integrated peripherals. The  
hardware supports one USB device address with three endpoints. The SIE allows the USB host to communicate with the function  
integrated into the microcontroller.  
Finally, the CY7C634XX/5XX/6XX support PS/2 operation. With appropriate firmware the D+ and DUSB pins can also be used  
as PS/2 clock and data signals. Products utilizing these devices can be used for USB and/or PS/2 operation with appropriate  
firmware.  
Document #: 38-08027 Rev. **  
Page 6 of 36  
FOR  
FOR  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
.
Logic Block Diagram  
Pin Configuration  
6-MHz ceramic resonator  
48-pin SSOP  
48-pin SideBraze  
48-pin SSOP  
48-pin SideBraze  
D+  
1
2
3
4
48  
47  
46  
VCC  
Vss  
D+  
1
2
3
4
48  
47  
46  
VCC  
Vss  
OSC  
D–  
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
DAC[7]  
DAC[5]  
P0[7]  
P0[5]  
P0[3]  
P0[1]  
DAC[3]  
DAC[1]  
VPP  
D–  
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
NC  
P3[6]  
P3[4]  
P3[2]  
P3[0]  
P2[6]  
P2[4]  
P3[6]  
P3[4]  
P3[2]  
P3[0]  
P2[6]  
P2[4]  
12 MHz 6 MHz  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
5
6
7
8
5
6
7
8
12-MHz  
8-bit  
CPU  
USB  
PS/2  
PORT  
USB  
Transceiver  
D+  
D–  
9
P2[2]  
P2[0]  
P1[6]  
P1[4]  
P1[2]  
P1[0]  
DAC[6]  
DAC[4]  
P0[6]  
P0[4]  
P0[2]  
P0[0]  
DAC[2]  
DAC[0]  
XTALOUT  
XTALIN  
9
P2[2]  
P2[0]  
P1[6]  
P1[4]  
P1[2]  
P1[0]  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
USB  
SIE  
EPROM  
4/6/8 Kbyte  
NC  
NC  
P0[7]  
P0[5]  
P0[3]  
P0[1]  
NC  
NC  
VPP  
Vss  
P0[6]  
P0[4]  
P0[2]  
P0[0]  
NC  
NC  
XTALOUT  
XTALIN  
RAM  
256 byte  
Interrupt  
Controller  
Vss  
See Note 1  
TOP VIEW  
P0[0]  
12-bit  
Timer  
GPIO  
PORT 0  
CY7C63411/12/13  
40-pin PDIP  
40-pin CerDIP  
P0[7]  
CY7C63612/13  
24-pin SOIC  
D+  
1
40 VCC  
P1[0]  
P1[7]  
GPIO  
PORT 1  
D–  
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
P0[7]  
P0[5]  
P0[3]  
P0[1]  
VPP  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
39 VSS  
38 P3[6]  
37 P3[4]  
36 P3[2]  
35 P3[0]  
34 P2[6]  
33 P2[4]  
32 P2[2]  
31 P2[0]  
30 P1[6]  
29 P1[4]  
D+  
1
24  
VCC  
D–  
P3[7]  
P3[5]  
P1[3]  
P1[1]  
P0[7]  
P0[5]  
P0[3]  
P0[1]  
VPP  
2
3
4
5
6
7
8
9
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VSS  
P3[6]  
P3[4]  
P1[2]  
P1[0]  
P0[6]  
P0[4]  
P0[2]  
P0[0]  
XTALOUT  
XTALIN  
P2[0]  
P2[7]  
GPIO  
PORT 2  
Watch Dog  
Timer  
28  
27  
26  
25  
24  
23  
22  
21  
P1[2]  
P1[0]  
P0[6]  
P0[4]  
P0[2]  
P0[0]  
XTALOUT  
XTALIN  
P3[0]  
10  
11  
12  
GPIO  
PORT 3  
High Current  
Outputs  
Vss  
P3[7]  
TOP VIEW  
DAC[0]  
DAC[7]  
Power-on  
Reset  
DAC  
PORT  
Vss  
TOP VIEW  
Note:  
1. CY7C63612/13 is not bonded out for all GPIO pins shown in Logic Block Diagram. Refer to pin configuration diagram for bonded out pins. See note on page 17  
for firmware code needed for unused GPIO pins.  
Document #: 38-08027 Rev. **  
Page 7 of 36  
FOR  
FOR  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
3.0  
Pin Assignments  
CY7C635 CY7C636  
CY7C63411/12/13  
11/12/13  
48-Pin  
1,2  
12/13  
24-Pin  
1,2  
Name  
I/O  
40-Pin  
48-Pin  
Description  
D+, D–  
I/O  
1,2  
1,2  
USB differential data; PS/2 clock and data signals  
GPIO port 0 capable of sinking 7 mA (typical)  
P0[7:0]  
15,26,16, 17,32,18, 17,32,18,  
25,17,24, 31,19,30, 31,19,30,  
7,18,8,  
17,9,16,  
10,15  
I/O  
I/O  
I/O  
I/O  
18,23  
20,29  
20,29  
P1[3:0]  
P2  
11,30,12, 11,38,12, 11,38,12,  
29,13,28, 37,13,36, 37,13,36,  
5,20,6,  
19  
GPIO Port 1 capable of sinking 7 mA (typical). P1[7:4] not  
bonded out on CY7C63612/13. See note on page 17  
for firmware code needed for unused pins.  
14,27  
14,35  
14,35  
7,34,8,  
33,9,32,  
10,31  
7,42,8,  
41,9,40,  
10,39  
7,42,8,  
41,9,40,  
10,39  
n/a  
GPIO Port 2 not bonded out on CY7C63612/13. See  
note on page 17 for firmware code needed for unused  
pins.  
P3[7:4]  
DAC  
3,38,4,  
37,5,36,  
6,35  
3,46,4,  
45,5,44,  
6,43  
3,46,4,  
45,5,44,  
6,43  
3,22,4,  
21  
GPIO Port 3 capable of sinking 12 mA (typical). P3[3:0]  
not bonded out on CY7C63612/13. See note on  
page 17 for firmware code needed for unused pins.  
I/O  
n/a  
n/a  
15,34,16,  
33,21,28,  
22,27  
n/a  
DAC I/O Port with programmable current sink outputs.  
DAC[1:0] offer a programmable range of 3.2 to 16 mA  
typical. DAC[7:2] have a programmable sink current  
range of 0.2 to 1.0 mA typical. DAC I/O Port not bonded  
out on CY7C63612/13. See note on page 17 for firmware  
code needed for unused pins.  
XTALIN  
IN  
21  
22  
25  
26  
25  
26  
13  
14  
6-MHz ceramic resonator or external clock input  
6-MHz ceramic resonator  
XTALOUT OUT  
VPP  
VCC  
Vss  
19  
23  
23  
11  
Programming voltage supply, ground during operation  
Voltage supply  
40  
48  
48  
24  
20,39  
24,47  
24,47  
12,23  
Ground  
4.0  
4.1  
Programming Model  
14-bit Program Counter (PC)  
The 14-bit Program Counter (PC) allows access for up to 8 kilobytes of EPROM using the CY7C634XX/5XX/6XX architecture.  
The program counter is cleared during reset, such that the first instruction executed after a reset is at address 0x0000h. This is  
typically a jump instruction to a reset handler that initializes the application.  
The lower eight bits of the program counter are incremented as instructions are loaded and executed. The upper six bits of the  
program counter are incremented by executing an XPAGE instruction. As a result, the last instruction executed within a 256-byte  
pageof sequential code should be an XPAGE instruction. The assembler directive XPAGEONwill cause the assembler to  
insert XPAGE instructions automatically. As instructions can be either one or two bytes long, the assembler may occasionally  
need to insert a NOP followed by an XPAGE for correct execution.  
The program counter of the next instruction to be executed, carry flag, and zero flag are saved as two bytes on the program stack  
during an interrupt acknowledge or a CALL instruction. The program counter, carry flag, and zero flag are restored from the  
program stack only during a RETI instruction.  
Please note the program counter cannot be accessed directly by the firmware. The program stack can be examined by reading  
SRAM from location 0x00 and up.  
4.2  
8-bit Accumulator (A)  
The accumulator is the general purpose, do everything register in the architecture where results are usually calculated.  
4.3  
8-bit Index Register (X)  
The index register Xis available to the firmware as an auxiliary accumulator. The X register also allows the processor to perform  
indexed operations by loading an index value into X.  
Document #: 38-08027 Rev. **  
Page 8 of 36  
FOR  
FOR  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
4.4  
8-bit Program Stack Pointer (PSP)  
During a reset, the Program Stack Pointer (PSP) is set to zero. This means the program stackstarts at RAM address 0x00 and  
growsupward from there. Note the program stack pointer is directly addressable under firmware control, using the MOV PSP,A  
instruction. The PSP supports interrupt service under hardware control and CALL, RET, and RETI instructions under firmware  
control.  
During an interrupt acknowledge, interrupts are disabled and the 14-bit program counter, carry flag, and zero flag are written as  
two bytes of data memory. The first byte is stored in the memory addressed by the program stack pointer, then the PSP is  
incremented. The second byte is stored in memory addressed by the program stack pointer and the PSP is incremented again.  
The net effect is to store the program counter and flags on the program stackand increment the program stack pointer by two.  
The Return From Interrupt (RETI) instruction decrements the program stack pointer, then restores the second byte from memory  
addressed by the PSP. The program stack pointer is decremented again and the first byte is restored from memory addressed  
by the PSP. After the program counter and flags have been restored from stack, the interrupts are enabled. The effect is to restore  
the program counter and flags from the program stack, decrement the program stack pointer by two, and re-enable interrupts.  
The Call Subroutine (CALL) instruction stores the program counter and flags on the program stack and increments the PSP by two.  
The Return From Subroutine (RET) instruction restores the program counter, but not the flags, from program stack and decre-  
ments the PSP by two.  
4.5  
8-bit Data Stack Pointer (DSP)  
The Data Stack Pointer (DSP) supports PUSH and POP instructions that use the data stack for temporary storage. A PUSH  
instruction will pre-decrement the DSP, then write data to the memory location addressed by the DSP. A POP instruction will read  
data from the memory location addressed by the DSP, then post-increment the DSP.  
During a reset, the Data Stack Pointer will be set to zero. A PUSH instruction when DSP equal zero will write data at the top of  
the data RAM (address 0xFF). This would write data to the memory area reserved for a FIFO for USB endpoint 0. In non-USB  
applications, this works fine and is not a problem. For USB applications, it is strongly recommended that the DSP is loaded after  
reset just below the USB DMA buffers.  
4.6  
Address Modes  
The CY7C63612/13 microcontrollers support three addressing modes for instructions that require data operands: data, direct,  
and indexed.  
4.6.1  
Data  
The Dataaddress mode refers to a data operand that is actually a constant encoded in the instruction. As an example, consider  
the instruction that loads A with the constant 0xE8h:  
MOV A,0E8h  
This instruction will require two bytes of code where the first byte identifies the MOV Ainstruction with a data operand as the  
second byte. The second byte of the instruction will be the constant 0xE8h. A constant may be referred to by name if a prior  
EQUstatement assigns the constant value to the name. For example, the following code is equivalent to the example shown  
above:  
DSPINIT: EQU 0E8h  
MOV A,DSPINIT  
4.6.2  
Direct  
Directaddress mode is used when the data operand is a variable stored in SRAM. In that case, the one byte address of the  
variable is encoded in the instruction. As an example, consider an instruction that loads A with the contents of memory address  
location 0x10h:  
MOV A, [10h]  
In normal usage, variable names are assigned to variable addresses using EQUstatements to improve the readability of the  
assembler source code. As an example, the following code is equivalent to the example shown above:  
buttons: EQU 10h  
MOV A,[buttons]  
4.6.3  
Indexed  
Indexedaddress mode allows the firmware to manipulate arrays of data stored in SRAM. The address of the data operand is  
the sum of a constant encoded in the instruction and the contents of the Xregister. In normal usage, the constant will be the  
baseaddress of an array of data and the X register will contain an index that indicates which element of the array is actually  
addressed:  
Document #: 38-08027 Rev. **  
Page 9 of 36  
FOR  
FOR  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
array: EQU 10h  
MOV X,3  
MOV A,[x+array]  
This would have the effect of loading A with the fourth element of the SRAM arraythat begins at address 0x10h. The fourth  
element would be at address 0x13h.  
Document #: 38-08027 Rev. **  
Page 10 of 36  
FOR  
FOR  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
5.0  
Instruction Set Summary  
MNEMONIC  
operand  
opcode  
cycles  
MNEMONIC  
operand  
opcode  
20  
cycles  
HALT  
00  
7
4
6
7
4
6
7
4
6
7
4
6
7
4
6
7
4
6
7
4
6
7
5
7
8
4
5
6
4
5
NOP  
4
4
4
7
8
4
4
7
8
5
5
4
4
5
5
5
5
5
6
7
8
7
8
7
8
6
4
4
4
4
4
8
4
4
8
ADD A,expr  
ADD A,[expr]  
ADD A,[X+expr]  
ADC A,expr  
ADC A,[expr]  
ADC A,[X+expr]  
SUB A,expr  
SUB A,[expr]  
SUB A,[X+expr]  
SBB A,expr  
SBB A,[expr]  
SBB A,[X+expr]  
OR A,expr  
data  
direct  
index  
data  
01  
INC A  
acc  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
70  
72  
73  
02  
INC X  
x
03  
INC [expr]  
INC [X+expr]  
DEC A  
direct  
index  
acc  
04  
direct  
index  
data  
05  
06  
DEC X  
x
07  
DEC [expr]  
DEC [X+expr]  
IORD expr  
IOWR expr  
POP A  
direct  
index  
address  
address  
direct  
index  
data  
08  
09  
0A  
direct  
index  
data  
0B  
0C  
0D  
0E  
POP X  
PUSH A  
OR A,[expr]  
OR A,[X+expr]  
AND A,expr  
AND A,[expr]  
AND A,[X+expr]  
XOR A,expr  
XOR A,[expr]  
XOR A,[X+expr]  
CMP A,expr  
CMP A,[expr]  
CMP A,[X+expr]  
MOV A,expr  
MOV A,[expr]  
MOV A,[X+expr]  
MOV X,expr  
MOV X,[expr]  
reserved  
direct  
index  
data  
PUSH X  
0F  
SWAP A,X  
SWAP A,DSP  
MOV [expr],A  
MOV [X+expr],A  
OR [expr],A  
OR [X+expr],A  
AND [expr],A  
AND [X+expr],A  
XOR [expr],A  
XOR [X+expr],A  
IOWX [X+expr]  
CPL  
10  
direct  
index  
data  
11  
direct  
index  
direct  
index  
direct  
index  
direct  
index  
index  
12  
13  
direct  
index  
data  
14  
15  
16  
direct  
index  
data  
17  
18  
19  
direct  
index  
data  
1A  
1B  
ASL  
1C  
1D  
1E  
ASR  
direct  
RLC  
RRC  
XPAGE  
1F  
4
4
4
4
RET  
MOV A,X  
40  
DI  
MOV X,A  
41  
EI  
MOV PSP,A  
CALL  
60  
RETI  
addr  
addr  
addr  
addr  
addr  
50-5F  
80-8F  
90-9F  
A0-AF  
B0-BF  
10  
5
JMP  
JC  
addr  
addr  
addr  
addr  
C0-CF  
D0-DF  
E0-EF  
F0-FF  
5
5
7
CALL  
10  
5
JNC  
JZ  
JACC  
INDEX  
JNZ  
5
14  
Document #: 38-08027 Rev. **  
Page 11 of 36  
FOR  
FOR  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
6.0  
6.1  
Memory Organization  
Program Memory Organization  
after reset  
14-bit PC  
Address  
0x0000  
0x0002  
0x0004  
0x0006  
0x0008  
0x000A  
0x000C  
0x000E  
0x0010  
0x0012  
0x0014  
0x0016  
0x0018  
0x001A  
Program execution begins here after a reset  
USB Bus Reset interrupt vector  
128-µs timer interrupt vector  
1.024-ms timer interrupt vector  
USB address A endpoint 0 interrupt vector  
USB address A endpoint 1 interrupt vector  
USB address A endpoint 2 interrupt vector  
Reserved  
Reserved  
Reserved  
DAC interrupt vector  
GPIO interrupt vector  
Reserved  
Program Memory begins here  
0x0FFF  
0x17FF  
0x1FDF  
6-KB PROM ends here (CY7C63612)  
(8K - 32 bytes)  
8-KB PROM ends here (CY7C63613)  
Figure 6-1. Program Memory Space with Interrupt Vector Table  
Document #: 38-08027 Rev. **  
Page 12 of 36  
FOR  
FOR  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
6.2  
Data Memory Organization  
The CY7C63612/13 microcontrollers provide 256 bytes of data RAM. In normal usage, the SRAM is partitioned into four areas:  
program stack, data stack, user variables and USB endpoint FIFOs as shown below:  
after reset  
8-bit PSP  
Address  
0x00  
Program Stack begins here and grows upward  
8-bit DSP  
user  
Data Stack begins here and grows downward  
The user determines the amount of memory required  
User Variables  
0xE8  
0xF0  
USB FIFO for Address A endpoint 2  
USB FIFO for Address A endpoint 1  
USB FIFO for Address A endpoint 0  
0xF8  
0xFF  
Top of RAM Memory  
Document #: 38-08027 Rev. **  
Page 13 of 36  
FOR  
FOR  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
6.3  
I/O Register Summary  
I/O registers are accessed via the I/O Read (IORD) and I/O Write (IOWR, IOWX) instructions. IORD reads the selected port into  
the accumulator. IOWR writes data from the accumulator to the selected port. Indexed I/O Write (IOWX) adds the contents of X  
to the address in the instruction to form the port address and writes data from the accumulator to the specified port. Note that  
specifying address 0 (e.g., IOWX 0h) means the I/O port is selected solely by the contents of X.  
Table 6-1. I/O Register Summary  
Register Name  
Port 0 Data  
I/O Address  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x10  
0x11  
Read/Write  
R/W  
R/W  
R/W  
R/W  
W
Function  
GPIO Port 0  
GPIO Port 1  
GPIO Port 2  
GPIO Port 3  
Port 1 Data  
Port 2 Data  
Port 3 Data  
Port 0 Interrupt Enable  
Port 1 Interrupt Enable  
Port 2 Interrupt Enable  
Port 3 Interrupt Enable  
GPIO Configuration  
USB Device Address A  
EP A0 Counter Register  
EP A0 Mode Register  
EP A1 Counter Register  
EP A1 Mode Register  
EP A2 Counter Register  
EP A2 Mode Register  
USB Status & Control  
Global Interrupt Enable  
Endpoint Interrupt Enable  
Timer (LSB)  
Interrupt enable for pins in Port 0  
W
Interrupt enable for pins in Port 1  
W
Interrupt enable for pins in Port 2  
W
Interrupt enable for pins in Port 3  
R/W  
R/W  
R/W  
R/W  
R/W  
R/C  
R/W  
R/C  
R/W  
R/W  
R/W  
R
GPIO Ports Configurations  
USB Device Address A  
USB Address A, Endpoint 0 counter register  
USB Address A, Endpoint 0 configuration register  
USB Address A, Endpoint 1 counter register  
USB Address A, Endpoint 1 configuration register  
USB Address A, Endpoint 2 counter register  
USB Address A, Endpoint 2 configuration register  
USB upstream port traffic status and control register  
Global interrupt enable register  
0x12  
0x13  
0x14  
0x15  
0x16  
0x1F  
0x20  
0x21  
0x24  
0x25  
USB endpoint interrupt enables  
Lower eight bits of free-running timer (1 MHz)  
Timer (MSB)  
R
Upper four bits of free-running timer that are latched  
when the lower eight bits are read.  
WDR Clear  
0x26  
0x30  
W
R/W  
W
Watch Dog Reset clear  
DAC I/O[2]  
Interrupt enable for each DAC pin[2]  
Interrupt polarity for each DAC pin[2]  
One four bit sink current register for each DAC pin[2]  
Microprocessor status and control  
DAC Data  
DAC Interrupt Enable  
DAC Interrupt Polarity  
DAC Isink  
0x31  
0x32  
W
0x38-0x3F  
0xFF  
W
Processor Status & Control  
R/W  
Note:  
2. DAC I/O Port not bonded out on CY7C63612/13. See note on page 17 for firmware code needed for unused GPIO pins.  
Document #: 38-08027 Rev. **  
Page 14 of 36  
FOR  
FOR  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
7.0  
Clocking  
Clock Distribution  
XTALOUT  
XTALIN  
clk1x  
(to USB SIE)  
Clock  
Doubler  
clk2x  
(to Microcontroller)  
30 pF  
30 pF  
Figure 7-1. Clock Oscillator On-chip Circuit  
The XTALIN and XTALOUT are the clock pins to the microcontroller. The user can connect a low-cost ceramic resonator or an  
external oscillator can be connected to these pins to provide a reference frequency for the internal clock distribution and clock  
doubler.  
An external 6 MHz clock can be applied to the XTALIN pin if the XTALOUT pin is left open. Please note that grounding the XTALOUT  
pin is not permissible as the internal clock is effectively shorted to ground.  
8.0  
Reset  
The USB Controller supports three types of resets. All registers are restored to their default states during a reset. The USB Device  
Addresses are set to 0 and all interrupts are disabled. In addition, the Program Stack Pointer (PSP) and Data Stack Pointer (DSP)  
are set to 0x00. For USB applications, the firmware should set the DSP below 0xE8h to avoid a memory conflict with RAM  
dedicated to USB FIFOs. The assembly instructions to do this are shown below:  
Mov A, E8h  
; Move 0xE8 hex into Accumulator  
Swap A,dsp ; Swap accumulator value into dsp register  
The three reset types are:  
1. Power-On Reset (POR)  
2. Watch Dog Reset (WDR)  
3. USB Bus Reset (non hardware reset)  
The occurrence of a reset is recorded in the Processor Status and Control Register located at I/O address 0xFF. Bits 4, 5, and 6  
are used to record the occurrence of POR, USB Reset, and WDR respectively. The firmware can interrogate these bits to  
determine the cause of a reset.  
The microcontroller begins execution from ROM address 0x0000h after a POR or WDR reset. Although this looks like interrupt  
vector 0, there is an important difference. Reset processing does NOT push the program counter, carry flag, and zero flag onto  
program stack. That means the reset handler in firmware should initialize the hardware and begin executing the mainloop of  
code. Attempting to execute either a RET or RETI in the reset handler will cause unpredictable execution results.  
8.1  
Power-On Reset (POR)  
Power-On Reset (POR) occurs every time the VCC voltage to the device ramps from 0V to an internally defined trip voltage (Vrst)  
of approximately 1/2 full supply voltage. In addition to the normal reset initialization noted under Reset,bit 4 (PORS) of the  
Processor Status and Control Register is set to 1to indicate to the firmware that a Power-On Reset occurred. The POR event  
forces the GPIO ports into input mode (high impedance), and the state of Port 3 bit 7 is used to control how the part will respond  
after the POR releases.  
If Port 3 bit 7 is HIGH (pulled to VCC) and the USB IO are at the idle state (DM HIGH and DP LOW) the part will go into a semi-  
permanent power down/suspend mode, waiting for the USB IO to go to one of Bus Reset, K (resume) or SE0. If Port 3 bit 7 is  
still HIGH when the part comes out of suspend, then a 128-µs timer starts, delaying CPU operation until the ceramic resonator  
has stabilized.  
If Port 3 bit 7 was LOW (pulled to VSS) the part will start a 96-ms timer, delaying CPU operation until VCC has stabilized, then  
continuing to run as reset.  
Firmware should clear the POR Status (PORS) bit in register FFh before going into suspend as this status bit selects the 128-µs  
or 96-ms start-up timer value as follows: IF Port 3 bit 7 is HIGH then 128-µs is always used; ELSE if PORS is HIGH then 128-ms  
is used; ELSE 128-µs is used.  
Document #: 38-08027 Rev. **  
Page 15 of 36  
FOR  
FOR  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
8.2  
Watch Dog Reset (WDR)  
The Watch Dog Timer Reset (WDR) occurs when the Most Significant Bit (MSB) of the 2-bit Watch Dog Timer Register transitions  
from LOW to HIGH. In addition to the normal reset initialization noted under Reset,bit 6 of the Processor Status and Control  
Register is set to 1to indicate to the firmware that a Watch Dog Reset occurred.  
8.192 ms  
to 14.336 ms  
2.048 ms  
At least 8.192 ms  
WDR goes high  
for 2.048 ms  
Execution begins at  
Reset Vector 0X00  
since last write to WDT  
Figure 8-1. Watch Dog Reset (WDR)  
The Watch Dog Timer is a 2-bit timer clocked by a 4.096-ms clock (bit 11) from the free-running timer. Writing any value to the  
write-only Watch Dog Clear I/O port (0x26h) will clear the Watch Dog Timer.  
In some applications, the Watch Dog Timer may be cleared in the 1.024-ms timer interrupt service routine. If the 1.024-ms timer  
interrupt service routine does not get executed for 8.192 ms or more, a Watch Dog Timer Reset will occur. A Watch Dog Timer  
Reset lasts for 2.048 ms after which the microcontroller begins execution at ROM address 0x0000h. The USB transmitter is  
disabled by a Watch Dog Reset because the USB Device Address Register is cleared. Otherwise, the USB Controller would  
respond to all address 0 transactions. The USB transmitter remains disabled until the MSB of the USB address register is set.  
9.0  
General Purpose I/O Ports  
VCC  
GPIO  
CFG  
mode  
2 bits  
Q3  
Q1  
Data  
Out  
Latch  
Internal  
Data Bus  
7 kΩ  
Port Write  
GPIO  
Pin  
Q2  
ESD  
Internal  
Buffer  
Port Read  
to Interrupt  
Controller  
Interrupt  
Enable  
Figure 9-1. Block Diagram of a GPIO Line  
Ports 0 to 2 provide 24 GPIO pins that can be read or written. Each port (8 bits) can be configured as inputs with internal pull-  
ups, open drain outputs, or traditional CMOS outputs. Please note an open drain output is also a high-impedance (no pull-up)  
input. All of the I/O pins within a given port have the same configuration. Ports 0 to 2 are considered low current drive with typical  
current sink capability of 7 mA.  
The internal pull-up resistors are typically 7 k. Two factors govern the enabling and disabling of the internal pull-up resistors: the  
port configuration selected in the GPIO Configuration register and the state of the output data bit. If the GPIO Configuration  
selected is Resistiveand the output data bit is 1,then the internal pull-up resistor is enabled for that GPIO pin. Otherwise, Q1  
is turned off and the 7-kpull-up is disabled. Q2 is ONto sink current whenever the output data bit is written as a 0.Q3  
Document #: 38-08027 Rev. **  
Page 16 of 36  
FOR  
FOR  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
provides HIGHsource current when the GPIO port is configured for CMOS outputs and the output data bit is written as a 1.  
Q2 and Q3 are sized to sink and source, respectively, roughly the same amount of current to support traditional CMOS outputs  
with symmetric drive.  
P0[7]  
P1[7]  
P0[6]  
P1[6]  
P0[5]  
P0[4]  
P0[3]  
P0[2]  
P0[1]  
P1[1]  
P0[0]  
P1[0]  
P1[5]  
P1[4]  
P1[3]  
P1[2]  
Figure 9-2. Port 1 Data 0x01h (read/write)  
P2[7]  
P3[7]  
P2[6]  
P3[6]  
P2[5]  
P2[4]  
P2[3]  
P2[2]  
P2[1]  
P3[1]  
P2[0]  
P3[0]  
Figure 9-3. Port 2 Data 0x02h (read/write)  
P3[5]  
P3[4]  
P3[3]  
P3[2]  
Figure 9-4. Port 3 Data 0x03h (read/write)  
Low current outputs  
High current outputs  
0.2 mA to 1.0 mA typical  
3.2 mA to 16 mA typical  
DAC[7]  
DAC[6]  
DAC[5]  
DAC[4]  
DAC[3]  
DAC[2]  
DAC[1]  
DAC[0]  
Figure 9-5. DAC Port Data 0x30h (read/write)  
Port 3 has eight GPIO pins. Port 3 (8 bits) can be configured as inputs with internal pull-ups, open drain outputs, or traditional  
CMOS outputs. An open drain output is also a high-impedance input. Port 3 offers high current drive with a typical current sink  
capability of 12 mA. The internal pull-up resistors are typically 7 k.  
Note: Special care should be exercised with any unused GPIO data bits. An unused GPIO data bit, either a pin on the chip or a  
port bit that is not bonded on a particular package, must not be left floating when the device enters the suspend state. If a GPIO  
data bit is left floating, the leakage current caused by the floating bit may violate the suspend current limitation specified by the  
USB Specification. If a 1is written to the unused data bit and the port is configured with open drain outputs, the unused data bit  
will be in an indeterminate state. Therefore, if an unused port bit is programmed in open-drain mode, it must be written with a 0.’  
Notice that the CY7C63612/13 will always require that data bits P1[7:4], P2[7:0], P3[3:0] and DAC[7:0] be written with a 0.’  
During reset, all of the GPIO pins are set to output 1(input) with the internal pull-up enabled. In this state, a 1will always be  
read on that GPIO pin unless an external current sink drives the output to a 0state. Writing a 0to a GPIO pin enables the  
output current sink to ground (LOW) and disables the internal pull-up for that pin.  
9.1  
GPIO Interrupt Enable Ports  
During a reset, GPIO interrupts are disabled by clearing all of the GPIO interrupt enable ports. Writing a 1to a GPIO Interrupt  
Enable bit enables GPIO interrupts from the corresponding input pin.  
P0[7]  
P1[7]  
P2[7]  
P3[7]  
P0[6]  
P1[6]  
P2[6]  
P3[6]  
P0[5]  
P0[4]  
P0[3]  
P0[2]  
P0[1]  
P1[1]  
P2[1]  
P3[1]  
P0[0]  
P1[0]  
P2[0]  
P3[0]  
Figure 9-6. Port 0 Interrupt Enable 0x04h (write only)  
P1[5]  
P1[4]  
P1[3]  
P1[2]  
Figure 9-7. Port 1 Interrupt Enable 0x05h (write only)  
P2[5]  
P2[4]  
P2[3]  
P2[2]  
Figure 9-8. Port 2 Interrupt Enable 0x06h (write only)  
P3[5]  
P3[4]  
P3[3]  
P3[2]  
Figure 9-9. Port 3 Interrupt Enable 0x07h (write only)  
Document #: 38-08027 Rev. **  
Page 17 of 36  
FOR  
FOR  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
9.2  
GPIO Configuration Port  
Every GPIO port can be programmed as inputs with internal pull-ups, open drain outputs, and traditional CMOS outputs. In ad-  
dition, the interrupt polarity for each port can be programmed. With positive interrupt polarity, a rising edge (0to 1) on an input  
pin causes an interrupt. With negative polarity, a falling edge (1to 0) on an input pin causes an interrupt. As shown in the table  
below, when a GPIO port is configured with CMOS outputs, interrupts from that port are disabled. The GPIO Configuration Port  
register provides two bits per port to program these features. The possible port configurations are:  
Port Configuration bits  
Pin Interrupt Bit  
Driver Mode  
Resistive  
Interrupt Polarity  
11  
10  
10  
01  
00  
X
0
-
CMOS Output  
Open Drain  
Open Drain  
Open Drain  
disabled  
disabled  
-
1
X
X
+ (default)  
In Resistivemode, a 7-kpull-up resistor is conditionally enabled for all pins of a GPIO port. The resistor is enabled for any pin  
that has been written as a 1.The resistor is disabled on any pin that has been written as a 0.An I/O pin will be driven high  
through a 7-kpull-up resistor when a 1has been written to the pin. Or the output pin will be driven LOW, with the pull-up dis-  
abled, when a 0has been written to the pin. An I/O pin that has been written as a 1can be used as an input pin with an inte-  
grated 7-kpull-up resistor. Resistive mode selects a negative (falling edge) interrupt polarity on all pins that have the GPIO  
interrupt enabled.  
In CMOSmode, all pins of the GPIO port are outputs that are actively driven. The current source and sink capacity are roughly  
the same (symmetric output drive). A CMOS port is not a possible source for interrupts.  
A port configured in CMOS mode has interrupt generation disabled, yet the interrupt mask bits serve to control port direction. If  
a ports associated Interrupt Mask bits are cleared, those port bits are strictly outputs. If the Interrupt Mask bits are set then those  
bits will be open drain inputs. As open drain inputs, if their data output values are 1those port pins will be CMOS inputs (HIGH  
Z output).  
In Open Drainmode the internal pull-up resistor and CMOS driver (HIGH) are both disabled. An I/O pin that has been written  
as a 1can be used as either a high-impedance input or a three-state output. An I/O pin that has been written as a 0will drive  
the output LOW. The interrupt polarity for an open drain GPIO port can be selected as either positive (rising edge) or negative  
(falling edge).  
During reset, all of the bits in the GPIO Configuration Register are written with 0.This selects the default configuration: Open  
Drain output, positive interrupt polarity for all GPIO ports.  
7
6
5
4
3
2
1
0
Port 3  
Config Bit 1  
Port 3  
Config Bit 0  
Port 2  
Config Bit 1  
Port 2  
Config Bit 0  
Port 1  
Config Bit 1  
Port 1  
Config Bit 0  
Port 0  
Config Bit 1  
Port 0  
Config Bit 0  
Document #: 38-08027 Rev. **  
Page 18 of 36  
FOR  
FOR  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
10.0  
DAC Port  
VCC  
Q1  
Data  
Internal  
Data Bus  
Out  
Latch  
14 KΩ  
DAC Write  
DAC  
I/O Pin  
4 bits  
Isink  
DAC  
Isink  
Register  
ESD  
Internal  
Buffer  
DAC Read  
Interrupt  
Enable  
to Interrupt  
Controller  
Interrupt  
Polarity  
Figure 10-1. Block Diagram of DAC Port  
The DAC port provides the CY7C63511/12/13 with 8 programmable current sink I/O pins. Writing a 1to a DAC I/O pin disables  
the output current sink (Isink DAC) and drives the I/O pin HIGH through an integrated 14 Kohm resistor. When a 0is written to  
a DAC I/O pin, the Isink DAC is enabled and the pull-up resistor is disabled. A 0output will cause the Isink DAC to sink current  
to drive the output LOW. The amount of sink current for the DAC I/O pin is programmable over 16 values based on the contents  
of the DAC Isink Register for that output pin. DAC[1:0] are the two high current outputs that are programmable from a minimum  
of 3.2 mA to a maximum of 16 mA (typical). DAC[7:2] are low current outputs that are programmable from a minimum of 0.2 mA  
to a maximum of 1.0 mA (typical).  
When a DAC I/O bit is written as a 1,the I/O pin is either an output pulled high through the 14 Kohm resistor or an input with an  
internal 14 Kohm pull-up resistor. All DAC port data bits are set to 1during reset.  
Low current outputs  
0.2 mA to 1.0 mA typical  
High current outputs  
3.2 mA to 16 mA typical  
DAC[7]  
DAC[6]  
DAC[5]  
DAC[4]  
DAC[3]  
DAC[2]  
DAC[1]  
DAC[0]  
Figure 10-2. DAC Port Data 0x30h (read/write)  
10.1  
DAC Port Interrupts  
A DAC port interrupt can be enabled/disabled for each pin individually. The DAC Port Interrupt Enable register provides this feature  
with an interrupt mask bit for each DAC I/O pin. Writing a 1to a bit in this register enables interrupts from the corresponding bit  
position. Writing a 0to a bit in the DAC Port Interrupt Enable register disables interrupts from the corresponding bit position. All  
of the DAC Port Interrupt Enable register bits are cleared to 0during a reset.  
DAC[7]  
DAC[6]  
DAC[5]  
DAC[4]  
DAC[3]  
DAC[2]  
DAC[1]  
DAC[0]  
Figure 10-3. DAC Port Interrupt Enable 0x31h (write only)  
As an additional benefit, the interrupt polarity for each DAC pin is programmable with the DAC Port Interrupt Polarity register.  
Writing a 0to a bit selects negative polarity (falling edge) that will cause an interrupt (if enabled) if a falling edge transition occurs  
on the corresponding input pin. Writing a 1to a bit in this register selects positive polarity (rising edge) that will cause an interrupt  
(if enabled) if a rising edge transition occurs on the corresponding input pin. All of the DAC Port Interrupt Polarity register bits are  
cleared during a reset.  
DAC[7]  
DAC[6]  
DAC[5]  
DAC[4]  
DAC[3]  
DAC[2]  
DAC[1]  
DAC[0]  
Figure 10-4. DAC Port Interrupt Polarity 0x32h (write only)  
Document #: 38-08027 Rev. **  
Page 19 of 36  
FOR  
FOR  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
10.2  
DAC Isink Registers  
Each DAC I/O pin has an associated DAC Isink register to program the output sink current when the output is driven LOW. The  
first Isink register (0x38h) controls the current for DAC[0], the second (0x39h) for DAC[1], and so on until the Isink register at  
0x3Fh controls the current to DAC[7].  
Reserved  
Isink Value  
Isink[2] Isink[1]  
Figure 10-5. DAC Port Isink 0x38h to 0x3Fh (write only)  
Isink[3]  
Isink[0]  
11.0  
USB Serial Interface Engine (SIE)  
The SIE allows the microcontroller to communicate with the USB host. The SIE simplifies the interface between the microcontroller  
and USB by incorporating hardware that handles the following USB bus activity independently of the microcontroller:  
Bit stuffing/unstuffing  
Checksum generation/checking  
ACK/NAK  
Token type identification  
Address checking  
Firmware is required to handle the rest of the USB interface with the following tasks:  
Coordinate enumeration by responding to set-up packets  
Fill and empty the FIFOs  
Suspend/Resume coordination  
Verify and select Data toggle values  
11.1  
USB Enumeration  
The enumeration sequence is shown below:  
1. The host computer sends a Setup packet followed by a Data packet to USB address 0 requesting the Device descriptor.  
2. The USB Controller decodes the request and retrieves its Device descriptor from the program memory space.  
3. The host computer performs a control read sequence and the USB Controller responds by sending the Device descriptor over  
the USB bus.  
4. After receiving the descriptor, the host computer sends a Setup packet followed by a Data packet to address 0 assigning a  
new USB address to the device.  
5. The USB Controller stores the new address in its USB Device Address Register after the no-data control sequence is complete.  
6. The host sends a request for the Device descriptor using the new USB address.  
7. The USB Controller decodes the request and retrieves the Device descriptor from the program memory.  
8. The host performs acontrol read sequenceand theUSB Controllerrespondsbysending itsDevicedescriptor overtheUSBbus.  
9. The host generates control reads to the USB Controller to request the Configuration and Report descriptors.  
10.The USB Controller retrieves the descriptors from its program space and returns the data to the host over the USB.  
11.2  
PS/2 Operation  
PS/2 operation is possible with the CY7C634XX/5XX/6XX series through the use of firmware and several operating modes. The  
first enabling feature:  
1. USB Bus reset on D+ and Dis an interrupt that can be disabled;  
2. USB traffic can be disabled via bit 7 of the USB register;  
3. D+ and Dcan be monitored and driven via firmware as independent port bits.  
Bits 5 and 4 of the Upstream Status and Control register are directly connected to the D+ and DUSB pins of the CY7C634XX/  
5XX/6XX. These pins constantly monitor the levels of these signals with CMOS input thresholds. Firmware can poll and decode  
these signals as PS/2 clock and data.  
Bits [2:0] defaults to 000at reset which allows the USB SIE to control output on D+ and D. Firmware can override the SIE and  
directly control the state of these pins via these 3 control bits. Since PS/2 is an open drain signaling protocol, these modes allow  
all 4 PS/2 states to be generated on the D+ and Dpins  
Document #: 38-08027 Rev. **  
Page 20 of 36  
FOR  
FOR  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
11.3  
USB Port Status and Control  
USB status and control is regulated by the USB Status and Control Register located at I/O address 0x1Fh as shown in  
Figure 11-1. This is a read/write register. All reserved bits must be written to zero. All bits in the register are cleared during reset.  
7
6
5
R
4
R
3
2
1
0
R/W  
R/W  
R/W  
R/W  
Reserved  
Reserved  
D+  
D–  
Bus Activity  
Control  
Bit 2  
Control  
Bit 1  
Control  
Bit 0  
Figure 11-1. USB Status and Control Register 0x1Fh  
The Bus Activity bit is a stickybit that indicates if any non-idle USB event has occurred on the USB bus. The user firmware  
should check and clear this bit periodically to detect any loss of bus activity. Writing a 0to the Bus Activity bit clears it while  
writing a 1preserves the current value. In other words, the firmware can clear the Bus Activity bit, but only the SIE can set it.  
The 1.024-ms timer interrupt service routine is normally used to check and clear the Bus Activity bit. The following table shows  
how the control bits are encoded for this register.  
Control Bits  
000  
Control action  
Not forcing (SIE controls driver)  
Force K (D+ HIGH, DLOW)  
Force J (D+ LOW, DHIGH)  
Force SE0 (D+ LOW, DLOW)  
Force SE0 (DLOW, D+ LOW)  
Force DLOW, D+ HiZ  
001  
010  
011  
100  
101  
110  
Force DHiZ, D+ LOW  
111  
Force DHiZ, D+ HiZ  
12.0  
USB Device  
USB Device Address A includes three endpoints: EPA0, EPA1, and EPA2. End Point 0 (EPA0) allows the USB host to recognize,  
set up, and control the device. In particular, EPA0 is used to receive and transmit control (including set-up) packets.  
12.1  
USB Ports  
The USB Controller provides one USB device address with three endpoints. The USB Device Address Register contents are  
cleared during a reset, setting the USB device address to zero and marking this address as disabled. Figure 12-1 shows the  
format of the USB Address Register.  
Device  
Address  
Enable  
Device  
Address  
Bit 6  
Device  
Address  
Bit 5  
Device  
Address  
Bit 4  
Device  
Address  
Bit 3  
Device  
Address  
Bit 2  
Device  
Address  
Bit 1  
Device  
Address  
Bit 0  
Figure 12-1. USB Device Address Register 0x10h (read/write)  
Bit 7 (Device Address Enable) in the USB Device Address Register must be set by firmware before the serial interface engine  
(SIE) will respond to USB traffic to this address. The Device Address in bits [6:0] must be set by firmware during the USB enu-  
meration process to an address assigned by the USB host that does not equal zero. This register is cleared by a hardware reset  
or the USB bus reset.  
12.2  
Device Endpoints (3)  
The USB controller communicates with the host using dedicated FIFOs, one per endpoint. Each endpoint FIFO is implemented  
as 8 bytes of dedicated SRAM. There are three endpoints defined for Device Athat are labeled EPA0,” “EPA1,and EPA2.”  
All USB devices are required to have an endpoint number 0 (EPA0) that is used to initialize and control the USB device. End Point  
0 provides access to the device configuration information and allows generic USB status and control accesses. End Point 0 is  
bidirectional as the USB controller can both receive and transmit data.  
The endpoint mode registers are cleared during reset. The EPA0 endpoint mode register uses the format shown below:  
Document #: 38-08027 Rev. **  
Page 21 of 36  
FOR  
FOR  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
Endpoint 0  
Set-up  
Received  
Endpoint 0  
In  
Received  
Endpoint 0  
Out  
Received  
Acknowledge  
Mode  
Bit 3  
Mode  
Bit 2  
Mode  
Bit 1  
Mode  
Bit 0  
Bits[7:5] in the endpoint 0 mode registers (EPA0) are stickystatus bits that are set by the SIE to report the type of token that  
was most recently received. The sticky bits must be cleared by firmware as part of the USB processing.  
The endpoint mode registers for EPA1 and EPA2 do not use bits [7:5] as shown below:  
Reserved  
Reserved  
Reserved  
Acknowledge  
Mode  
Bit 3  
Mode  
Bit 2  
Mode  
Bit 1  
Mode  
Bit 0  
The Acknowledgebit is set whenever the SIE engages in a transaction that completes with an ACKpacket.  
The set-upPID status (bit[7]) is forced HIGH from the start of the data packet phase of the set-up transaction, until the start of  
the ACK packet returned by the SIE. The CPU is prevented from clearing this bit during this interval, and subsequently until the  
CPU first does an IORD to this endpoint 0 mode register.  
Bits[6:0] of the endpoint 0 mode register are locked from CPU IOWR operations only if the SIE has updated one of these bits,  
which the SIE does only at the end of a packet transaction (set-up ... Data ... ACK, or Out ... Data ... ACK, or In ... Data ... ACK).  
The CPU can unlock these bits by doing a subsequent I/O read of this register.  
Firmware must do an IORD after an IOWR to an endpoint 0 register to verify that the contents have changed and that the SIE  
has not updated these values.  
While the set-upbit is set, the CPU cannot write to the DMA buffers at memory locations 0xE0 through 0xE7 and 0xF8 through  
0xFF. This prevents an incoming set-up transaction from conflicting with a previous In data buffer filling operation by firmware.  
The mode bits (bits [3:0]) in an Endpoint Mode Register control how the endpoint responds to USB bus traffic. The mode bit  
encoding is shown in Section 16.0.  
The format of the endpoint Device counter registers is shown below:  
Data 0/1  
Toggle  
Data Valid  
Reserved  
Reserved  
Byte count  
Bit 3  
Byte count  
Bit 2  
Byte count  
Bit 1  
Byte count  
Bit 0  
Figure 12-2. USB Device Counter Registers 0x11h, 0x13h, 0x15h (read/write)  
Bits 0 to 3 indicate the number of data bytes to be transmitted during an IN packet, valid values are 0 to 8 inclusive. Data Valid  
bit 6 is used for OUT and set-up tokens only. Data 0/1 Toggle bit 7 selects the DATA packets toggle state: 0 for DATA0, 1 for DATA1.  
13.0  
12-bit Free-running Timer  
The 12-bit timer provides two interrupts (128 µs and 1.024 ms) and allows the firmware to directly time events that are up to  
4 ms in duration. The lower 8 bits of the timer can be read directly by the firmware. Reading the lower 8 bits latches the upper  
4 bits into a temporary register. When the firmware reads the upper 4 bits of the timer, it is actually reading the count stored in  
the temporary register. The effect of this logic is to ensure a stable 12-bit timer value can be read, even when the two reads are  
separated in time.  
13.1  
Timer (LSB)  
Timer  
Bit 7  
Timer  
Bit 6  
Timer  
Bit 5  
Timer  
Bit 4  
Timer  
Bit 3  
Timer  
Bit 2  
Timer  
Bit 1  
Timer  
Bit 0  
13.2  
Timer (MSB)  
Reserved  
Reserved  
Reserved  
Reserved  
Timer  
Bit 11  
Timer  
Bit 10  
Timer  
Bit 9  
Timer  
Bit 8  
Document #: 38-08027 Rev. **  
Page 22 of 36  
FOR  
FOR  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
1.024-ms interrupt  
128-µs interrupt  
11 10  
9
8
7
6
5
4
3
2
1
0
1-MHz clock  
L3 L2 L1 L0  
D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0  
To Timer Register  
8
Figure 13-1. Timer Block Diagram  
14.0  
Processor Status and Control Register  
7
R
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R
R/W  
R/W  
Run  
IRQ  
Pending  
Watch Dog  
Reset  
USB Bus  
Reset  
Power-on  
Reset  
Suspend,Wait  
for Interrupt  
Interrupt  
Mask  
Single Step  
The Run(bit 0) is manipulated by the HALT instruction. When Halt is executed, the processor clears the run bit and halts at the  
end of the current instruction. The processor remains halted until a reset (Power On or Watch Dog). Notice, when writing to the  
processor status and control register, the run bit should always be written as a 1.”  
The Single Step(bit 1) is provided to support a hardware debugger. When single step is set, the processor will execute one  
instruction and halt (clear the run bit). This bit must be cleared for normal operation.  
The Interrupt Mask(bit 2) shows whether interrupts are enabled or disabled. The firmware has no direct control over this bit as  
writing a zero or one to this bit position will have no effect on interrupts. Instructions DI, EI, and RETI manipulate the internal  
hardware that controls the state of the interrupt mask bit in the Processor Status and Control Register.  
Writing a 1to Suspend, Wait for Interrupts(bit 3) will halt the processor and cause the microcontroller to enter the suspend”  
mode that significantly reduces power consumption. A pending interrupt or bus activity will cause the device to come out of  
suspend. After coming out of suspend, the device will resume firmware execution at the instruction following the IOWR which put  
the part into suspend. An IOWR that attempts to put the part into suspend will be ignored if either bus activity or an interrupt is  
pending.  
The Power-on Reset(bit 4) is only set to 1during a power on reset. The firmware can check bits 4 and 6 in the reset handler  
to determine whether a reset was caused by a Power On condition or a Watch Dog Timeout. PORS is used to determine suspend  
start-up timer value of 128 µs or 128 ms.  
The USB Bus Reset(bit 5) will occur when a USB bus reset is received. The USB Bus Reset is a singled-ended zero (SE0) that  
lasts more than 8 microseconds. An SE0 is defined as the condition in which both the D+ line and the Dline are LOW at the  
same time. When the SIE detects this condition, the USB Bus Reset bit is set in the Processor Status and Control register and  
an USB Bus Reset interrupt is generated. Please note this is an interrupt to the microcontroller and does not actually reset the  
processor.  
The Watch Dog Reset(bit 6) is set during a reset initiated by the Watch Dog Timer. This indicates the Watch Dog Timer went  
for more than 8 ms between watch dog clears.  
The IRQ Pending(bit 7) indicates one or more of the interrupts has been recognized as active. The interrupt acknowledge  
sequence should clear this bit until the next interrupt is detected.  
During Power-on Reset, the Processor Status and Control Register is set to 00010001, which indicates a Power-on Reset (bit 4  
set) has occurred and no interrupts are pending (bit 7 clear) yet.  
During a Watch Dog Reset, the Processor Status and Control Register is set to 01000001, which indicates a Watch Dog Reset  
(bit 6 set) has occurred and no interrupts are pending (bit 7 clear) yet.  
Document #: 38-08027 Rev. **  
Page 23 of 36  
FOR  
FOR  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
15.0  
Interrupts  
All interrupts are maskable by the Global Interrupt Enable Register and the USB End Point Interrupt Enable Register. Writing a  
1to a bit position enables the interrupt associated with that bit position. During a reset, the contents the Global Interrupt Enable  
Register and USB End Point Interrupt Enable Register are cleared, effectively disabling all interrupts.  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
Reserved  
Reserved  
GPIO  
Interrupt  
Enable  
DAC  
Interrupt  
Enable  
Reserved  
1.024-ms  
Interrupt  
Enable  
128-µsec  
Interrupt  
Enable  
USB Bus RST  
Interrupt  
Enable  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
EPA2  
Interrupt  
Enable  
EPA1  
Interrupt  
Enable  
EPA0  
Interrupt  
Enable  
Figure 15-1. USB End Point Interrupt Enable Register 0x21h (read/write)  
Pending interrupt requests are recognized during the last clock cycle of the current instruction. When servicing an interrupt, the  
hardware will first disable all interrupts by clearing the Interrupt Enable bit in the Processor Status and Control Register. Next, the  
interrupt latch of the current interrupt is cleared. This is followed by a CALL instruction to the ROM address associated with the  
interrupt being serviced (i.e., the Interrupt Vector). The instruction in the interrupt table is typically a JMP instruction to the address  
of the Interrupt Service Routine (ISR). The user can re-enable interrupts in the interrupt service routine by executing an EI  
instruction. Interrupts can be nested to a level limited only by the available stack space.  
The Program Counter value as well as the Carry and Zero flags (CF, ZF) are automatically stored onto the Program Stack by the  
CALL instruction as part of the interrupt acknowledge process. The user firmware is responsible for insuring that the processor  
state is preserved and restored during an interrupt. The PUSH A instruction should be used as the first command in the ISR to  
save the accumulator value and the POP A instruction should be used just before the RETI instruction to restore the accumulator  
value. The program counter CF and ZF are restored and interrupts are enabled when the RETI instruction is executed.  
15.1  
Interrupt Vectors  
The Interrupt Vectors supported by the USB Controller are listed in Table 15-1. Although Reset is not an interrupt, per se, the first  
instruction executed after a reset is at PROM address 0x0000hwhich corresponds to the first entry in the Interrupt Vector Table.  
Because the JMP instruction is 2 bytes long, the interrupt vectors occupy 2 bytes.  
Table 15-1. Interrupt Vector Assignments  
Interrupt Vector Number  
ROM Address  
0x0000h  
0x0002h  
0x0004h  
0x0006h  
0x0008h  
0x000Ah  
0x000Ch  
0x000Eh  
0x0010h  
0x0012h  
0x0014h  
0x0016h  
0x0018h  
Function  
Execution after Reset begins here  
USB Bus Reset interrupt  
128-µs timer interrupt  
1.024-ms timer interrupt  
USB Address A Endpoint 0 interrupt  
USB Address A Endpoint 1 interrupt  
USB Address A Endpoint 2 interrupt  
Reserved  
not applicable  
1
2
3
4
5
6
7
8
Reserved  
9
Reserved  
10  
11  
12  
DAC interrupt  
GPIO interrupt  
Reserved  
Document #: 38-08027 Rev. **  
Page 24 of 36  
FOR  
FOR  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
15.2  
Interrupt Latency  
Interrupt latency can be calculated from the following equation:  
Interrupt Latency = (Number of clock cycles remaining in the current instruction) + (10 clock cycles for the CALL instruction) +  
(5 clock cycles for the JMP instruction)  
For example, if a 5 clock cycle instruction such as JC is being executed when an interrupt occurs, the first instruction of the  
Interrupt Service Routine will execute a min. of 16 clocks (1+10+5) or a max. of 20 clocks (5+10+5) after the interrupt is issued.  
Remember that the interrupt latches are sampled at the rising edge of the last clock cycle in the current instruction.  
15.2.1 USB Bus Reset Interrupt  
The USB Bus Reset interrupt is asserted when a USB bus reset condition is detected. A USB bus reset is indicated by a single  
ended zero (SE0) on the upstream port for more than 8 microseconds.  
15.2.2 Timer Interrupt  
There are two timer interrupts: the 128-µs interrupt and the 1.024-ms interrupt. The user should disable both timer interrupts  
before going into the suspend mode to avoid possible conflicts between servicing the interrupts first or the suspend request first.  
15.2.3 USB Endpoint Interrupts  
There are three USB endpoint interrupts, one per endpoint. The USB endpoints interrupt after the either the USB host or the USB  
controller sends a packet to the USB.  
15.2.4 DAC Interrupt  
Each DAC I/O pin can generate an interrupt, if enabled.The interrupt polarity for each DAC I/O pin is programmable. A positive  
polarity is a rising edge input while a negative polarity is a falling edge input. All of the DAC pins share a single interrupt vector,  
which means the firmware will need to read the DAC port to determine which pin or pins caused an interrupt.  
Please note that if one DAC pin triggered an interrupt, no other DAC pins can cause a DAC interrupt until that pin has returned  
to its inactive (non-trigger) state or the corresponding interrupt enable bit is cleared. The USB Controller does not assign interrupt  
priority to different DAC pins and the DAC Interrupt Enable Register is not cleared during the interrupt acknowledge process.  
15.2.5 GPIO Interrupt  
Each of the 32 GPIO pins can generate an interrupt, if enabled. The interrupt polarity can be programmed for each GPIO port as  
part of the GPIO configuration. All of the GPIO pins share a single interrupt vector, which means the firmware will need to read  
the GPIO ports with enabled interrupts to determine which pin or pins caused an interrupt.  
Please note that if one port pin triggered an interrupt, no other port pins can cause a GPIO interrupt until that port pin has returned  
to its inactive (non-trigger) state or its corresponding port interrupt enable bit is cleared. The USB Controller does not assign  
interrupt priority to different port pins and the Port Interrupt Enable Registers are not cleared during the interrupt acknowledge  
process.  
Document #: 38-08027 Rev. **  
Page 25 of 36  
FOR  
FOR  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
16.0  
Truth Tables  
Table 16-1. USB Register Mode Encoding  
Mode  
Encoding  
0000  
Setup  
ignore  
accept  
In  
Out  
Comments  
Disable  
Nak In/Out  
ignore  
NAK  
ignore Ignore all USB traffic to this endpoint  
NAK  
Forced from Set-up on Control endpoint, from modes other  
than 0000  
0001  
0010  
0011  
0100  
Status Out Only  
Stall In/Out  
accept  
accept  
accept  
ignore  
stall  
stall  
check For Control endpoints  
stall For Control endpoints  
Ignore In/Out  
Isochronous Out  
ignore  
ignore  
ignore For Control endpoints  
always Available to low speed devices, future USB spec  
enhancements  
0101  
0110  
Status In Only  
Isochronous In  
accept  
ignore  
TX 0  
stall  
For Control Endpoints  
TX cnt  
ignore Available to low speed devices, future USB spec  
enhancements  
0111  
1000  
1001  
Nak Out  
Ack Out  
ignore  
ignore  
accept  
ignore  
ignore  
TX 0  
NAK  
ACK  
NAK  
An ACK from mode 1001 --> 1000  
This mode is changed by SIE on issuance of ACK --> 1000  
An ACK from mode 1011 --> 1010  
Nak Out - Status  
In  
1010  
Ack Out - Status  
In  
accept  
TX 0  
ACK  
This mode is changed by SIE on issuance of ACK --> 1010  
1011  
1100  
1101  
Nak In  
Ack In  
ignore  
ignore  
accept  
NAK  
TX cnt  
NAK  
ignore An ACK from mode 1101 --> 1100  
ignore This mode is changed by SIE on issuance of ACK --> 1100  
check An ACK from mode 1111 --> 111 Ack In - Status Out  
Nak In - Status  
Out  
1110  
1111  
Ack In - Status  
Out  
accept  
TX cnt  
Check This mode is changed by SIE on issuance of ACK -->1110  
The Incolumn represents the SIEs response to the token type.  
A disabled endpoint will remain such until firmware changes it, and all endpoints reset to disabled.  
Any Setup packet to an enabled and accepting endpoint will be changed by the SIE to 0001 (NAKing). Any mode which indicates  
the acceptance of a Setup will acknowledge it.  
Most modes that control transactions involving an ending ACK will be changed by the SIE to a corresponding mode which NAKs  
follow on packets.  
A Control endpoint has three extra status bits for PID (Setup, In and Out), but must be placed in the correct mode to function as  
such. Also a non-Control endpoint can be made to act as a Control endpoint if it is placed in a non appropriate mode.  
A checkon an Out token during a Status transaction checks to see that the Out is of zero length and has a Data Toggle (DTOG)  
of 1.  
Document #: 38-08027 Rev. **  
Page 26 of 36  
FOR  
FOR  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
Table 16-2. Decode table forTable 16-3: Details of Modes for Differing Traffic Conditions”  
Properties of incoming packet  
Encoding  
Status bits  
What the SIE does to Mode bits  
PID Status bits Interrupt?  
End Point  
Mode  
End Point Mode  
3
2
1
0
Token  
Setup  
In  
count  
buffer  
dval  
DTOG  
DVAL  
COUNT  
Setup  
In  
Out  
ACK  
3
2
1
0
Response Int  
Out  
The validity of the received data  
The quality status of the DMA buffer  
The response of the SIE can be summarized as follows:  
1. the SIE will only respond to valid transactions, and will ignore non-valid ones;  
2. the SIE will generate IRQ when a valid transaction is completed or when the DMA buffer is corrupted  
3. an incoming Data packet is valid if the count is <= 10 (CRC inclusive) and passes all error checking;  
4. a Setup will be ignored by all non-Control endpoints (in appropriate modes);  
5. an In will be ignored by an Out configured endpoint and vice versa.  
The In and Out PID status is updated at the end of a transaction.  
The Setup PID status is updated at the beginning of the Data packet phase.  
The entire EndPoint 0 mode and the Count register are locked to CPU writes at the end of any transaction in which an ACK is  
transferred. These registers are only unlocked upon a CPU read of these registers, and only if that read happens after the  
transaction completes. This represents about a 1-µs window to which to the CPU is locked from register writes to these USB  
registers. Normally the firmware does a register read at the beginning of the ISR to unlock and get the mode register information.  
The interlock on the Mode and Count registers ensures that the firmware recognizes the changes that the SIE might have made  
during the previous transaction.  
Document #: 38-08027 Rev. **  
Page 27 of 36  
FOR  
FOR  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
Table 16-3. Details of Modes for Differing Traffic Conditions  
End Point Mode  
PID  
Set End Point Mode  
3
2
1
0
token  
count buffer  
dval  
DTOG  
DVAL  
COUNT Setup  
In  
Out  
ACK  
3
2
1
0
response  
int  
Setup Packet (if accepting)  
See Table 16-1  
See Table 16-1  
See Table 16-1  
Disabled  
Setup  
Setup  
Setup  
<= 10 data  
valid  
x
updates  
updates  
updates  
1
updates  
1
1
1
UC  
UC  
UC  
UC  
UC  
UC  
1
0
0
0
1
ACK  
yes  
yes  
yes  
> 10  
x
junk  
junk  
updates updates  
UC  
UC  
NoChange ignore  
NoChange ignore  
invalid  
0
updates  
UC  
0
0
0
0
x
x
UC  
x
UC  
UC  
UC  
UC  
UC  
UC  
NoChange ignore  
no  
Nak In/Out  
0
0
0
0
0
0
1
1
Out  
In  
x
x
UC  
UC  
x
x
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
1
1
UC  
UC  
NoChange NAK  
NoChange NAK  
yes  
yes  
UC  
Ignore In/Out  
0
0
1
1
0
0
0
0
Out  
In  
x
x
UC  
UC  
x
x
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
NoChange ignore  
NoChange ignore  
no  
no  
Stall In/Out  
0
0
0
0
1
1
1
1
Out  
In  
x
x
UC  
UC  
x
x
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
1
1
UC  
UC  
NoChange Stall  
NoChange Stall  
yes  
yes  
UC  
Control Write  
Normal Out/premature status In  
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
Out  
Out  
Out  
In  
<= 10 data  
valid  
updates  
updates  
updates  
UC  
1
updates UC  
UC  
UC  
UC  
1
1
1
1
0
1
0
ACK  
yes  
yes  
yes  
yes  
> 10  
junk  
junk  
UC  
x
updates updates UC  
1
UC  
UC  
1
NoChange ignore  
NoChange ignore  
NoChange TX 0  
x
x
invalid  
x
0
updates UC  
1
UC  
UC  
UC  
UC  
NAK Out/premature status In  
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
Out  
Out  
Out  
In  
<= 10 UC  
valid  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
1
1
UC  
UC  
UC  
1
NoChange NAK  
NoChange ignore  
NoChange ignore  
NoChange TX 0  
yes  
no  
> 10  
UC  
UC  
UC  
x
UC  
UC  
UC  
x
x
invalid  
x
no  
yes  
Status In/extra Out  
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
Out  
Out  
Out  
In  
<= 10 UC  
valid  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
1
1
UC  
UC  
UC  
1
0
0
1
1
Stall  
yes  
no  
> 10  
UC  
UC  
UC  
x
UC  
UC  
UC  
NoChange ignore  
NoChange ignore  
NoChange TX 0  
x
x
invalid  
x
no  
yes  
Control Read  
Normal In/premature status Out  
1
1
1
1
1
1
3
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
0
Out  
Out  
Out  
Out  
Out  
In  
2
UC  
valid  
valid  
valid  
x
1
1
updates UC  
updates UC  
updates UC  
UC  
UC  
UC  
UC  
UC  
1
1
1
NoChange ACK  
yes  
yes  
yes  
no  
2
UC  
0
1
1
UC  
UC  
UC  
UC  
1
0
0
0
0
1
1
1
1
Stall  
Stall  
!=2  
> 10  
x
UC  
updates  
UC  
1
1
UC  
UC  
UC  
UC  
DVAL  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
Out  
NoChange ignore  
NoChange ignore  
UC  
invalid  
x
UC  
no  
x
UC  
UC  
1
3
1
2
1
1
0
0
ACK (back)  
response  
yes  
int  
token  
count  
buffer  
dval  
DTOG  
COUNT Setup  
In  
ACK  
Nak In/premature status Out  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
Out  
Out  
Out  
Out  
Out  
In  
2
UC  
UC  
UC  
UC  
UC  
UC  
valid  
valid  
valid  
x
1
1
updates UC  
updates UC  
updates UC  
UC  
UC  
UC  
UC  
UC  
1
1
1
NoChange ACK  
yes  
yes  
yes  
no  
2
0
1
1
UC  
UC  
UC  
UC  
UC  
0
0
0
0
1
1
1
1
Stall  
Stall  
!=2  
> 10  
x
updates  
UC  
1
1
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
NoChange ignore  
NoChange ignore  
NoChange NAK  
invalid  
x
UC  
no  
x
UC  
yes  
Status Out/extra In  
0
0
0
0
1
1
0
0
Out  
Out  
2
2
UC  
UC  
valid  
valid  
1
0
1
1
updates UC  
updates UC  
UC  
UC  
1
1
1
NoChange ACK  
yes  
yes  
UC  
0
0 1 1 Stall  
Document #: 38-08027 Rev. **  
Page 28 of 36  
FOR  
FOR  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
Table 16-3. Details of Modes for Differing Traffic Conditions (continued)  
End Point Mode  
PID  
Set End Point Mode  
3
2
1
0
token  
count buffer  
dval  
DTOG  
DVAL  
COUNT Setup  
In  
Out  
ACK  
3
2
1
0
response  
int  
0
0
1
0
Out  
!=2  
UC  
valid  
updates  
1
updates UC  
UC  
1
UC  
0
0
1
1
Stall  
yes  
U
C
U
C
U
C
U
C
0
0
1
0
Out  
> 10  
UC  
x
UC  
UC  
UC  
UC  
UC  
UC  
UC  
ignore  
no  
U
C
U
C
U
C
U
C
0
0
0
0
1
1
0
0
Out  
In  
x
x
UC  
UC  
invalid  
x
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
1
UC  
UC  
UC  
UC  
ignore  
Stall  
no  
0
0
1
1
yes  
Out endpoint  
Normal Out/erroneous In  
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
Out  
Out  
Out  
In  
<= 10 data  
valid  
updates  
updates  
updates  
UC  
1
updates UC  
UC  
UC  
UC  
UC  
1
1
1
0
0
0
ACK  
yes  
yes  
yes  
no  
> 10  
junk  
junk  
UC  
x
updates updates UC  
1
UC  
UC  
UC  
NoChange ignore  
NoChange ignore  
NoChange ignore  
x
x
invalid  
x
0
updates UC  
1
UC  
UC  
UC  
UC  
NAK Out/erroneous In  
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
Out  
Out  
Out  
In  
<= 10 UC  
valid  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
1
UC  
UC  
UC  
UC  
NoChange NAK  
NoChange ignore  
NoChange ignore  
NoChange ignore  
yes  
no  
no  
> 10  
UC  
UC  
UC  
x
UC  
UC  
UC  
x
x
invalid  
x
no  
Isochronous endpoint (Out)  
0
0
1
1
0
0
1
1
Out  
In  
x
x
updates updates  
updates  
UC  
updates updates UC  
UC  
UC  
1
1
NoChange RX  
yes  
no  
UC  
x
UC  
UC  
UC  
UC  
UC  
NoChange ignore  
In endpoint  
Normal In/erroneous Out  
1
1
1
1
0
0
1
1
Out  
In  
x
x
UC  
UC  
x
x
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
1
UC  
UC  
UC  
1
NoChange ignore  
no  
1
1
0
0
ACK (back)  
yes  
NAK In/erroneous Out  
1
1
1
1
0
0
0
0
Out  
In  
x
x
UC  
UC  
x
x
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
1
UC  
UC  
UC  
UC  
NoChange ignore  
NoChange NAK  
no  
yes  
Isochronous endpoint (In)  
0
0
1
1
1
1
1
1
Out  
In  
x
x
UC  
UC  
x
x
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
UC  
1
UC  
UC  
UC  
UC  
NoChange ignore  
NoChange TX  
no  
yes  
17.0  
Absolute Maximum Ratings  
Storage Temperature ..........................................................................................................................................65°C to +150°C  
Ambient Temperature with Power Applied...............................................................................................................0°C to +70°C  
Supply Voltage on VCC relative to VSS....................................................................................................................0.5V to +7.0V  
DC Input Voltage........................................................................................................................................... 0.5V to +VCC+0.5V  
DC Voltage Applied to Outputs in High Z State ........................................................................................... 0.5V to + VCC+0.5V  
Max. Output Current into Port 0,1,2,3 and DAC[1:0] Pins ................................................................................................... 60 mA  
Max. Output Current into DAC[7:2] Pins............................................................................................................................. 10 mA  
Power Dissipation ..............................................................................................................................................................300 mW  
Static Discharge Voltage .................................................................................................................................................. >2000V  
Latch-up Current ........................................................................................................................................................... > 200 mA  
Document #: 38-08027 Rev. **  
Page 29 of 36  
FOR  
FOR  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
18.0  
DC Characteristics  
Fosc = 6 MHz; Operating Temperature = 0 to 70°C  
Parameter  
General  
Min.  
Max.  
Unit  
Conditions  
VCC (1)  
VCC (2)  
ICC1  
ICC2  
ISB1  
VPP  
Tstart  
tint1  
Operating Voltage  
4.0  
5.5  
5.25  
40  
V
V
Non USB activity (note 3)  
Operating Voltage  
4.35  
USB activity (note 4)  
VCC = 5.5V  
VCC Operating Supply Current  
VCC = 4.35V  
mA  
mA  
µA  
V
15  
Supply Current - Suspend Mode  
Programming Voltage (disabled)  
Resonator Start-up Interval  
Internal Timer #1 Interrupt Period  
Internal Timer #2 Interrupt Period  
Watch Dog Timer Period  
Input Leakage Current  
Max ISS IO Sink Current  
Power-On Reset  
30  
Oscillator off, D> Voh min  
0.4  
0.4  
256  
128  
µs  
µs  
ms  
ms  
µA  
mA  
Vcc = 5.0V, ceramic resonator  
128  
tint2  
1.024 1.024  
twatch  
Iil  
8.192 14.33  
1
Any pin  
Ism  
60  
Cumulative across all ports (note 10)  
tvccs  
VCC Reset Slew  
0.001  
2.8  
200  
ms  
Linear ramp: 0 to 4.35V (notes 6,7)  
15k ± 5% ohms to Gnd (note 4)  
USB Interface  
Voh  
Vol  
Static Output HIGH  
3.6  
0.3  
V
V
Static Output LOW  
Vdi  
Differential Input Sensitivity  
Differential Input Common Mode Range  
Single-Ended Receiver Threshold  
Transceiver Capacitance  
Hi-Z State Data Line Leakage  
Bus Pull-up Resistance (VCC option)  
Bus Pull-up Resistance (Ext. 3.3V option)  
Bus Pull-down Resistance  
General Purpose I/O Interface  
Pull-up Resistance  
0.2  
0.8  
0.8  
V
|(D+)(D)|  
Vcm  
Vse  
Cin  
Ilo  
2.5  
2.0  
20  
V
9-1  
V
pF  
µA  
kΩ  
kΩ  
kΩ  
10  
10  
0 V < Vin<3.3 V  
Rpu  
Rpu  
Rpd  
7.35K  
7.65  
7.5 k± 2% to VCC (note 13)  
1.5 k± 5% to 3.03.6V  
15 k± 5%  
1.425 1.575  
14.25 15.75  
Rup  
Vith  
VH  
Iol  
4.9K  
45%  
6%  
9.1K  
65%  
12%  
16.5  
10.6  
7.5  
Ohms  
VCC  
VCC  
mA  
Input Threshold Voltage  
Input Hysteresis Voltage  
Sink Current  
All ports, LOW to HIGH edge  
All ports, HIGH to LOW edge  
Port 3, Vout = 1.0V (note 3)  
7.2  
Iol  
Sink Current  
3.5  
mA  
Port 0,1,2, Vout = 2.0V (note 3)  
Voh = 2.4V (all ports 0,1,2,3) (note 3)  
Ioh  
Source Current  
1.4  
mA  
DAC Interface  
Rup  
Pull-up Resistance  
8.0K  
0.1  
0.5  
1.6  
8
20.0K  
0.3  
1.5  
4.8  
24  
Ohms (note 14)  
Isink0(0)  
Isink0(F)  
Isink1(0)  
Isink1(F)  
Irange  
DAC[7:2] Sink Current (0)  
DAC[7:2] Sink Current (F)  
DAC[1:0] Sink Current (0)  
DAC[1:0] Sink Current (F)  
Programmed Isink Ratio: max/min  
mA  
mA  
mA  
mA  
Vout = 2.0 V DC (note 4,14)  
Vout = 2.0 V DC (note 4,14)  
Vout = 2.0 V DC (note 4,14)  
Vout = 2.0 V DC (note 4,14)  
Vout = 2.0 V DC (notes 4,11,14)  
4
6
Document #: 38-08027 Rev. **  
Page 30 of 36  
FOR  
FOR  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
Parameter  
Min.  
Max.  
0.5  
0.8  
21  
Unit  
lsb  
Conditions  
Ilin  
Differential Nonlinearity  
Any pin (note 8,14)  
tsink  
Tratio  
Current Sink Response Time  
µs  
Full scale transition (note 14)  
Vout = 2.0V (note 9,14)  
Tracking Ratio DAC[1:0] to DAC[7:2]  
14  
19.0  
Switching Characteristics  
Parameter  
Description  
Clock  
Min.  
Max.  
Unit  
Conditions  
tCYC  
tCH  
tCL  
Input Clock Cycle Time  
Clock HIGH Time  
165.0  
168.3  
ns  
ns  
ns  
0.45 tCYC  
0.45 tCYC  
Clock LOW Time  
USB Driver Characteristics  
Transition Rise Time  
tr  
75  
75  
ns  
ns  
ns  
ns  
%
V
CLoad = 50 pF [4, 5]  
CLoad = 600 pF [4, 5]  
CLoad = 50 pF [4, 5]  
CLoad = 600 pF [4, 5]  
tr  
Transition Rise Time  
300  
tf  
Transition Fall Time  
tf  
Transition Fall Time  
300  
125  
2.0  
[4, 5]  
trfm  
Vcrs  
Rise/Fall Time Matching  
Output Signal Crossover Voltage  
USB Data Timing  
80  
tr/tf  
[4, 5]  
1.3  
tdrate  
tdjr1  
Low Speed Data Rate  
Receiver Data Jitter Tolerance  
Receiver Data Jitter Tolerance  
Differential toEOP Transition Skew  
EOP Width at Receiver  
EOP Width at Receiver  
Source EOP Width  
1.4775  
75  
1.5225  
75  
Mbs  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
Ave. Bit Rate (1.5 Mb/s ± 1.5%)  
To Next Transition [12]  
For Paired Transitions [12]  
tdjr2  
45  
45  
[10]  
tdeop  
teopr1  
teopr2  
teopt  
tudj1  
tudj2  
40  
100  
330  
Rejects as EOP [12]  
Accepts as EOP [12]  
675  
1.25  
95  
1.50  
95  
Differential Driver Jitter  
Differential Driver Jitter  
To next transition, Figure 19-5  
To paired transition, Figure 19-5  
150  
150  
Notes:  
3. Functionality is guaranteed of the VCC (1) range, except USB transmitter and DACs.  
4. USB transmitter functionality is guaranteed over the VCC (2) range, as well as DAC outputs.  
5. Per Table 7-7 of revision 1.1 of USB specification, for CLOAD of 50600 pF.  
6. Port 3 bit 7 controls whether the parts goes into suspend after a POR event or waits 128 ms to begin running.  
7. POR will re-occur whenever VCC drops to approximately 2.5V.  
8. Measured as largest step size vs. nominal according to measured full scale and zero programmed values.  
9.  
Tratio = Isink1[1:0](n)/Isink0[7:2](n) for the same n, programmed.  
10. Total current cumulative across all Port pins flowing to VSS is limited to minimize Ground-Drop noise effects.  
11. Irange: Isinkn(15)/ Isinkn(0) for the same pin.  
12. Measured at crossover point of differential data signals.  
13. Limits total bus capacitance loading (CLOAD) to 400 pF per section 7.1.5 of revision 1.1 of USB specification.  
14. DAC I/O Port not bonded out on CY7C63612/13. See note on page 17 for firmware code needed for unused pins.  
Document #: 38-08027 Rev. **  
Page 31 of 36  
FOR  
FOR  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
.
tCYC  
tCH  
CLOCK  
tCL  
Figure 19-1. Clock Timing  
tf  
tr  
D+  
Voh  
90%  
90%  
Vcrs  
10%  
10%  
Vol  
D−  
Figure 19-2. USB Data Signal Timing  
TPERIOD  
Differential  
Data Lines  
TJR  
TJR1  
TJR2  
Consecutive  
Transitions  
N * TPERIOD + TJR1  
Paired  
Transitions  
N * TPERIOD + TJR2  
Figure 19-3. Receiver Jitter Tolerance  
Document #: 38-08027 Rev. **  
Page 32 of 36  
FOR  
FOR  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
TPERIOD  
Crossover  
Point Extended  
Crossover  
Point  
Differential  
Data Lines  
Diff. Data to  
SE0 Skew  
N * TPERIOD + TDEOP  
Source EOP Width: TEOPT  
Receiver EOP Width: TEOPR1, TEOPR2  
Figure 19-4. Differential to EOP Transition Skew and EOP Width  
TPERIOD  
Crossover  
Points  
Differential  
Data Lines  
Consecutive  
Transitions  
N * TPERIOD + TxJR1  
Paired  
Transitions  
N * TPERIOD + TxJR2  
Figure 19-5. Differential Data Jitter  
20.0  
Ordering Information  
EPROM  
Package  
Name  
Operating  
Range  
Ordering Code  
Size  
4 KB  
4 KB  
6 KB  
6 KB  
8 KB  
8 KB  
4 KB  
6 KB  
8 KB  
6 KB  
8 KB  
Package Type  
40-Pin (600-Mil) PDIP  
CY7C63411-PC  
CY7C63411-PVC  
CY7C63412-PC  
CY7C63412-PVC  
CY7C63413-PC  
CY7C63413-PVC  
CY7C63511-PVC  
CY7C63512-PVC  
CY7C63513-PVC  
CY7C63612-SC  
CY7C63613-SC  
P17  
O48  
P17  
O48  
P17  
O48  
O48  
O48  
O48  
S13  
S13  
Commercial  
48-Lead Shrunk Small Outline Package Commercial  
40-Pin (600-Mil) PDIP Commercial  
48-Lead Shrunk Small Outline Package Commercial  
40-Pin (600-Mil) PDIP Commercial  
48-Lead Shrunk Small Outline Package Commercial  
48-Lead Shrunk Small Outline Package Commercial  
48-Lead Shrunk Small Outline Package Commercial  
48-Lead Shrunk Small Outline Package Commercial  
24-Pin (300-Mil) SOIC  
24-Pin (300-Mil) SOIC  
Commercial  
Commercial  
Document #: 38-08027 Rev. **  
Page 33 of 36  
FOR  
FOR  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
21.0  
Package Diagrams  
48-Lead Shrunk Small Outline Package O48  
51-85061-*C  
40-Lead (600-Mil) Molded DIP P17  
51-85019-A  
Document #: 38-08027 Rev. **  
Page 34 of 36  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
21.0  
Package Diagrams (continued)  
24-Lead (300-Mil) Molded SOIC S13  
51-85025-A  
Document #: 38-08027 Rev. **  
Page 35 of 36  
© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
FOR  
FOR  
CY7C63411/12/13  
CY7C63511/12/13  
CY7C63612/13  
Document Title: CY7C63411/12/13, CY7C63511/12/13, CY7C63612/13 Low-speed USB Peripheral Controller  
Document Number: 38-08027  
Issue  
Date  
Orig. of  
Change  
REV.  
ECN NO.  
Description of Change  
**  
116224  
06/12/02  
DSG  
Change from Spec number: 38-00754 to 38-08027  
Document #: 38-08027 Rev. **  
Page 36 of 36  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY