CY7C64714-100AXC [CYPRESS]

EZ-USB FX1⑩ USB Microcontroller Full-speed USB Peripheral Controller; EZ- USB FX1⑩ USB微控制器全速USB外设控制器
CY7C64714-100AXC
型号: CY7C64714-100AXC
厂家: CYPRESS    CYPRESS
描述:

EZ-USB FX1⑩ USB Microcontroller Full-speed USB Peripheral Controller
EZ- USB FX1⑩ USB微控制器全速USB外设控制器

微控制器和处理器 外围集成电路 时钟
文件: 总50页 (文件大小:758K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C64713/14  
EZ-USB FX1™ USB Microcontroller  
Full-speed USB Peripheral Controller  
Supports multiple Ready (RDY) inputs and Control  
(CTL) outputs  
• Integrated, industry standard 8051 with enhanced  
features  
1.0  
Features  
• Single-chip integrated USB transceiver, SIE, and  
enhanced 8051 microprocessor  
• Fit, form and function upgradable to the FX2LP  
(CY7C68013A)  
Up to 48-MHz clock rate  
Four clocks per instruction cycle  
Two USARTS  
Three counter/timers  
Expanded interrupt system  
Two data pointers  
— Pin-compatible  
— Object-code-compatible  
— Functionally-compatible (FX1 functionality is a  
Subset of the FX2LP)  
• Draws no morethan65 mA in any mode making theFX1  
suitable for bus powered applications  
• 3.3V operation with 5V tolerant inputs  
• Smart SIE  
• Software: 8051 runs from internal RAM, which is:  
— Downloaded via USB  
— Loaded from EEPROM  
— Externalmemorydevice(128-pinconfigurationonly)  
• 16 KBytes of on-chip Code/Data RAM  
• Vectored USB interrupts  
Separate data buffers for the Setup and DATA portions  
of a CONTROL transfer  
Integrated I2C controller, runs at 100 or 400 KHz  
48-MHz, 24-MHz, or 12-MHz 8051 operation  
Four integrated FIFOs  
• Four programmable BULK/INTERRUPT/ISOCH-  
RONOUS endpoints  
Brings glue and FIFOs inside for lower system cost  
Automatic conversion to and from 16-bit buses  
Master or slave operation  
— Buffering options: double, triple, and quad  
• Additional programmable (BULK/INTERRUPT) 64-byte  
endpoint  
• 8- or 16-bit external data interface  
• Smart Media Standard ECC generation  
• GPIF  
FIFOs can use externally supplied clock or  
asynchronous strobes  
Easy interface to ASIC and DSP ICs  
Vectored for FIFO and GPIF interrupts  
Up to 40 general purpose I/Os  
— Allowsdirect connection to most parallel interfaces;  
8- and 16-bit  
Three package options128-pin TQFP, 100-pin TQFP,  
and 56-pin QFN Lead-free  
— Programmable waveform descriptors and configu-  
ration registers to define waveforms  
High-performance micro  
using standard tools  
24 MHz  
Ext. XTAL  
with lower-power options  
FX1  
I2C  
/0.5  
/1.0  
/2.0  
8051 Core  
x20  
Master  
VCC  
12/24/48 MHz,  
four clocks/cycle  
PLL  
Abundant I/O  
Additional I/Os (24)  
1.5k  
connected for  
enumeration  
including two USARTS  
General  
ADDR (9)  
programmable I/F  
to ASIC/DSP or bus  
standards such as  
D+  
GPIF  
USB  
CY  
16 KB  
RAM  
RDY (6)  
CTL (6)  
ATAPI, EPP, etc.  
D–  
ECC  
Smart  
XCVR  
USB  
Engine  
Integrated  
full-speed XCVR  
Up to 96 MBytes/s  
burst rate  
4 kB  
FIFO  
8/16  
Enhanced USB core  
Simplifies 8051 code  
Soft Configuration”  
Easy firmware changes  
FIFO and endpoint memory  
(master or slave operation)  
Figure 1-1. Block Diagram  
Cypress Semiconductor Corporation  
Document #: 38-08039 Rev. *B  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Revised February 14, 2005  
CY7C64713/14  
4.2  
8051 Microprocessor  
2.0  
Functional Description  
The 8051 microprocessor embedded in the FX1 family has  
256 bytes of register RAM, an expanded interrupt system,  
three timer/counters, and two USARTs.  
EZ-USB FX1(CY7C64713/4) is  
a full-speed highly  
integrated, USB microcontroller. By integrating the USB trans-  
ceiver, serial interface engine (SIE), enhanced 8051 microcon-  
troller, and a programmable peripheral interface in a single  
chip, Cypress has created a very cost-effective solution that  
provides superior time-to-market advantages.  
4.2.1  
8051 Clock Frequency  
FX1 has an on-chip oscillator circuit that uses an external 24-  
MHz (±100 ppm) crystal with the following characteristics:  
Because it incorporates the USB transceiver, the EZ-USB FX1  
is more economical, providing a smaller footprint solution than  
USB SIE or external transceiver implementations. With  
EZ-USB FX1, the Cypress Smart SIE handles most of the USB  
protocol in hardware, freeing the embedded microcontroller for  
application-specific functions and decreasing development  
time to ensure USB compatibility.  
Parallel resonant  
Fundamental mode  
500-µW drive level  
12-pF (5% tolerance) load capacitors.  
An on-chip PLL multiplies the 24-MHz oscillator up to 480  
MHz, as required by the transceiver/PHY, and internal  
counters divide it down for use as the 8051 clock. The default  
8051 clock frequency is 12 MHz. The clock frequency of the  
8051 can be changed by the 8051 through the CPUCS  
register, dynamically.  
The General Programmable Interface (GPIF) and Master/  
Slave Endpoint FIFO (8- or 16-bit data bus) provides an easy  
and glueless interface to popular interfaces such as ATA,  
UTOPIA, EPP, PCMCIA, and most DSP/processors.  
Three lead-free packages are defined for the family: 56 QFN,  
100 TQFP, and 128 TQFP.  
The CLKOUT pin, which can be three-stated and inverted  
using internal control bits, outputs the 50% duty cycle 8051  
clock, at the selected 8051 clock frequency48, 24, or 12  
MHz.  
3.0  
Applications  
DSL modems  
4.2.2  
USARTS  
ATA interface  
FX1 contains two standard 8051 USARTs, addressed via  
Special Function Register (SFR) bits. The USART interface  
pins are available on separate I/O pins, and are not multi-  
plexed with port pins.  
Memory card readers  
Legacy conversion devices  
Home PNA  
Wireless LAN  
UART0 and UART1 can operate using an internal clock at 230  
KBaud with no more than 1% baud rate error. 230-KBaud  
operation is achieved by an internally derived clock source that  
generates overflow pulses at the appropriate time. The  
internal clock adjusts for the 8051 clock rate (48, 24, 12 MHz)  
such that it always presents the correct frequency for 230-  
KBaud operation.[1]  
MP3 players  
Networking  
The Reference Designssection of the cypress website  
provides additional tools for typical USB applications. Each  
reference design comes complete with firmware source and  
object code, schematics, and documentation. Please visit  
http://www.cypress.com for more information.  
4.2.3  
Special Function Registers  
Certain 8051 SFR addresses are populated to provide fast  
access to critical FX1 functions. These SFR additions are  
shown in Table 4-1. Bold type indicates non-standard,  
enhanced 8051 registers. The two SFR rows that end with 0”  
and 8contain bit-addressable registers. The four I/O ports  
AD use the SFR addresses used in the standard 8051 for  
ports 03, which are not implemented in FX1. Because of the  
faster and more efficient SFR addressing, the FX1 I/O ports  
are not addressable in external RAM space (using the MOVX  
instruction).  
4.0  
4.1  
Functional Overview  
USB Signaling Speed  
FX1 operates at one of the three rates defined in the USB  
Specification Revision 2.0, dated April 27, 2000:  
Full speed, with a signaling bit rate of 12 Mbps.  
FX1 does not support the low-speed signaling mode of 1.5  
Mbps or the high-speed mode of 480 Mbps.  
24 MHz  
C1  
C2  
12 pf  
12 pf  
20 × PLL  
12-pF capacitor values assumes a trace  
capacitance of 3 pF per side on a four-layer FR4 PCA  
Figure 4-1. Crystal Configuration  
Note:  
1. 115-KBaud operation is also possible by programming the 8051 SMOD0 or SMOD1 bits to a 1for UART0 and/or UART1, respectively.  
Document #: 38-08039 Rev. *B  
Page 2 of 50  
CY7C64713/14  
4.3  
I2C Bus  
4.4  
Buses  
FX1 supports the I2C bus as a master only at 100/400 KHz.  
SCL and SDA pins have open-drain outputs and hysteresis  
inputs. These signals must be pulled up to 3.3V, even if no I2C  
device is connected.  
All packages: 8- or 16-bit FIFObidirectional data bus, multi-  
plexed on I/O ports B and D. 128-pin package: adds 16-bit  
output-only 8051 address bus, 8-bit bidirectional data bus.  
Table 4-1. Special Function Registers  
x
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
8x  
IOA  
9x  
IOB  
Ax  
Bx  
Cx  
Dx  
Ex  
Fx  
IOC  
IOD  
SCON1  
SBUF1  
PSW  
ACC  
B
SP  
EXIF  
INT2CLR  
INT4CLR  
IOE  
DPL0  
DPH0  
DPL1  
DPH1  
DPS  
MPAGE  
OEA  
OEB  
OEC  
OED  
OEE  
PCON  
TCON  
TMOD  
TL0  
SCON0  
SBUF0  
IE  
IP  
T2CON  
EICON  
EIE  
EIP  
AUTOPTRH1  
AUTOPTRL1  
reserved  
EP2468STAT  
EP24FIFOFLGS  
EP68FIFOFLGS  
EP01STAT  
GPIFTRIG  
RCAP2L  
RCAP2H  
TL2  
TL1  
TH0  
TH1  
AUTOPTRH2  
AUTOPTRL2  
reserved  
GPIFSGLDATH  
GPIFSGLDATLX  
TH2  
CKCON  
AUTOPTRSETUP GPIFSGLDATLNOX  
a device defined by the downloaded information. This  
patented two-step process, called ReNumeration, happens  
instantly when the device is plugged in, with no hint that the  
initial download step has occurred.  
4.5  
USB Boot Methods  
During the power-up sequence, internal logic checks the I2C  
port for the connection of an EEPROM whose first byte is  
either 0xC0 or 0xC2. If found, it uses the VID/PID/DID values  
in the EEPROM in place of the internally stored values (0xC0),  
or it boot-loads the EEPROM contents into internal RAM  
(0xC2). If no EEPROM is detected, FX1 enumerates using  
internally stored descriptors. The default ID values for FX1 are  
VID/PID/DID (0x04B4, 0x6473, 0xAxxx where xxx=Chip  
revision).[2]  
Two control bits in the USBCS (USB Control and Status)  
register control the ReNumeration process: DISCON and  
RENUM. To simulate a USB disconnect, the firmware sets  
DISCON to 1. To reconnect, the firmware clears DISCON to 0.  
Before reconnecting, the firmware sets or clears the RENUM  
bit to indicate whether the firmware or the Default USB Device  
will handle device requests over endpoint zero: if RENUM = 0,  
the Default USB Device will handle device requests; if RENUM  
= 1, the firmware will.  
Table 4-2. Default ID Values for FX1  
Default VID/PID/DID  
Vendor ID 0x04B4 Cypress Semiconductor  
Product ID 0x6473 EZ-USB FX1  
4.7  
Bus-powered Applications  
The FX1 fully supports bus-powered designs by enumerating  
with less than 100 mA as required by the USB specification.  
Device  
release  
0xAnnn Depends chip revision (nnn = chip  
revision where first silicon = 001)  
4.8  
Interrupt System  
4.6  
ReNumeration™  
4.8.1  
INT2 Interrupt Request and Enable Registers  
Because the FX1s configuration is soft, one chip can take on  
the identities of multiple distinct USB devices.  
FX1 implements an autovector feature for INT2 and INT4.  
There are 27 INT2 (USB) vectors, and 14 INT4 (FIFO/GPIF)  
vectors. See EZ-USB Technical Reference Manual (TRM) for  
more details.  
When first plugged into USB, the FX1 enumerates automati-  
cally and downloads firmware and USB descriptor tables over  
the USB cable. Next, the FX1 enumerates again, this time as  
Note:  
2. The I2C bus SCL and SDA pins must be pulled up, even if an EEPROM is not connected. Otherwise this detection method does not work properly.  
Document #: 38-08039 Rev. *B  
Page 3 of 50  
CY7C64713/14  
4.8.2  
USB-Interrupt Autovectors  
the high byte (page) of a jump-table address is preloaded at  
location 0x0044, the automatically-inserted INT2VEC byte at  
0x0045 will direct the jump to the correct address out of the 27  
addresses within the page.  
The main USB interrupt is shared by 27 interrupt sources. To  
save the code and processing time that normally would be  
required to identify the individual USB interrupt source, the  
FX1 provides a second level of interrupt vectoring, called  
Autovectoring. When a USB interrupt is asserted, the FX1  
pushes the program counter onto its stack then jumps to  
address 0x0043, where it expects to find a jumpinstruction  
to the USB Interrupt service routine.  
4.8.3  
FIFO/GPIF Interrupt (INT4)  
Just as the USB Interrupt is shared among 27 individual USB-  
interrupt sources, the FIFO/GPIF interrupt is shared among 14  
individual FIFO/GPIF sources. The FIFO/GPIF Interrupt, like  
the USB Interrupt, can employ autovectoring. Table 4-4 shows  
the priority and INT4VEC values for the 14 FIFO/GPIF  
interrupt sources.  
The FX1 jump instruction is encoded as shown in Table 4-3.  
If Autovectoring is enabled (AV2EN = 1 in the INTSETUP  
register), the FX1 substitutes its INT2VEC byte. Therefore, if  
Table 4-3. INT2 USB Interrupts  
USB INTERRUPT TABLE FOR INT2  
Source  
Priority  
1
INT2VEC Value  
Notes  
00  
04  
08  
0C  
10  
14  
18  
1C  
20  
24  
28  
2C  
30  
34  
38  
3C  
40  
44  
48  
4C  
50  
54  
58  
5C  
60  
64  
68  
6C  
70  
74  
78  
7C  
SUDAV  
SOF  
Setup Data Available  
Start of Frame  
2
3
SUTOK  
Setup Token Received  
USB Suspend request  
Bus reset  
4
SUSPEND  
5
USB RESET  
6
reserved  
7
EP0ACK  
FX1 ACKd the CONTROL Handshake  
reserved  
8
9
EP0-IN  
EP0-OUT  
EP1-IN  
EP1-OUT  
EP2  
EP0-IN ready to be loaded with data  
EP0-OUT has USB data  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
EP1-IN ready to be loaded with data  
EP1-OUT has USB data  
IN: buffer available. OUT: buffer has data  
IN: buffer available. OUT: buffer has data  
IN: buffer available. OUT: buffer has data  
IN: buffer available. OUT: buffer has data  
IN-Bulk-NAK (any IN endpoint)  
reserved  
EP4  
EP6  
EP8  
IBN  
EP0PING  
EP1PING  
EP2PING  
EP4PING  
EP6PING  
EP8PING  
ERRLIMIT  
EP0 OUT was Pinged and it NAKd  
EP1 OUT was Pinged and it NAKd  
EP2 OUT was Pinged and it NAKd  
EP4 OUT was Pinged and it NAKd  
EP6 OUT was Pinged and it NAKd  
EP8 OUT was Pinged and it NAKd  
Bus errors exceeded the programmed limit  
reserved  
reserved  
EP2ISOERR  
EP4ISOERR  
EP6ISOERR  
EP8ISOERR  
ISO EP2 OUT PID sequence error  
ISO EP4 OUT PID sequence error  
ISO EP6 OUT PID sequence error  
ISO EP8 OUT PID sequence error  
Document #: 38-08039 Rev. *B  
Page 4 of 50  
CY7C64713/14  
Table 4-4. Individual FIFO/GPIF Interrupt Sources  
Priority  
INT4VEC Value  
Source  
EP2PF  
EP4PF  
EP6PF  
EP8PF  
EP2EF  
EP4EF  
EP6EF  
EP8EF  
EP2FF  
EP4FF  
EP6FF  
Notes  
1
2
80  
84  
88  
8C  
90  
94  
98  
9C  
A0  
A4  
A8  
AC  
B0  
B4  
Endpoint 2 Programmable Flag  
Endpoint 4 Programmable Flag  
Endpoint 6 Programmable Flag  
Endpoint 8 Programmable Flag  
Endpoint 2 Empty Flag  
Endpoint 4 Empty Flag  
Endpoint 6 Empty Flag  
Endpoint 8 Empty Flag  
Endpoint 2 Full Flag  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
Endpoint 4 Full Flag  
Endpoint 6 Full Flag  
EP8FF  
GPIFDONE  
GPIFWF  
Endpoint 8 Full Flag  
GPIF Operation Complete  
GPIF Waveform  
If Autovectoring is enabled (AV4EN = 1 in the INTSETUP  
register), the FX1 substitutes its INT4VEC byte. Therefore, if  
the high byte (page) of a jump-table address is preloaded at  
location 0x0054, the automatically-inserted INT4VEC byte at  
0x0055 will direct the jump to the correct address out of the 14  
addresses within the page. When the ISR occurs, the FX1  
pushes the program counter onto its stack then jumps to  
address 0x0053, where it expects to find a jumpinstruction  
to the ISR Interrupt service routine.  
4.9  
Reset and Wakeup  
4.9.1  
Reset Pin  
The input pin, RESET#, will reset the FX1 when asserted. This  
pin has hysteresis and is active LOW. When a crystal is used  
with the CY7C64713/4 the reset period must allow for the  
stabilization of the crystal and the PLL. This reset period  
should be approximately 5 ms after VCC has reached 3.0  
Volts. If the crystal input pin is driven by a clock signal the  
internal PLL stabilizes in 200 µs after VCC has reached  
3.0V[3]. Figure 4-2 shows a power on reset condition and a  
reset applied during operation. A power on reset is defined as  
the time reset is asserted while power is being applied to the  
circuit. A powered reset is defined to be when the FX1 has  
previously been powered on and operating and the RESET#  
pin is asserted.  
Cypress provides an application note which describes and  
recommends power on reset implementation and can be found  
on the Cypress web site. While the application note discusses  
the FX2, the information provided applies also to the FX1. For  
more information on reset implementation for the FX2 family  
of products visit the http://www.cypress.com.  
Note:  
3. If the external clock is powered at the same time as the CY7C64713/4 and has a stabilization wait period, it must be added to the 200 µs.  
Document #: 38-08039 Rev. *B  
Page 5 of 50  
CY7C64713/14  
RESET#  
RESET#  
VIL  
VIL  
3.3V  
3.0V  
3.3V  
VCC  
VCC  
0V  
0V  
TRESET  
TRESET  
Power on Reset  
Powered Reset  
Figure 4-2. Reset Timing Plots  
Table 4-5. Reset Timing Values  
access it as both program and data memory. No USB control  
registers appear in this space.  
Condition  
TRESET  
Two memory maps are shown in the following diagrams:  
Figure 4-3 Internal Code Memory, EA = 0  
Power-On Reset with crystal  
5 ms  
Power-On Reset with external 200 µs + Clock stability time  
clock  
Figure 4-4 External Code Memory, EA = 1.  
Powered Reset  
200 µs  
4.10.2 Internal Code Memory, EA = 0  
This mode implements the internal 16-KByte block of RAM  
(starting at 0) as combined code and data memory. When  
external RAM or ROM is added, the external read and write  
strobes are suppressed for memory spaces that exist inside  
the chip. This allows the user to connect a 64-KByte memory  
without requiring address decodes to keep clear of internal  
memory spaces.  
4.9.2 Wakeup Pins  
The 8051 puts itself and the rest of the chip into a power-down  
mode by setting PCON.0 = 1. This stops the oscillator and  
PLL. When WAKEUP is asserted by external logic, the oscil-  
lator restarts, after the PLL stabilizes, and then the 8051  
receives a wakeup interrupt. This applies whether or not FX1  
is connected to the USB.  
Only the internal 16 KBytes and scratch pad 0.5 KBytes RAM  
spaces have the following access:  
The FX1 exits the power-down (USB suspend) state using one  
of the following methods:  
USB download  
USB bus activity (if D+/Dlines are left floating, noise on  
these lines may indicate activity to the FX1 and initiate a  
wakeup).  
USB upload  
Setup data pointer  
I2C interface boot load.  
External logic asserts the WAKEUP pin  
External logic asserts the PA3/WU2 pin.  
4.10.3 External Code Memory, EA = 1  
The second wakeup pin, WU2, can also be configured as a  
general purpose I/O pin. This allows a simple external R-C  
network to be used as a periodic wakeup source. Note that  
WAKEUP is by default active low.  
The bottom 16 KBytes of program memory is external, and  
therefore the bottom 16 KBytes of internal RAM is accessible  
only as data memory.  
4.10  
Program/Data RAM  
4.10.1 Size  
The FX1 has 16 KBytes of internal program/data RAM, where  
PSEN#/RD# signals are internally ORed to allow the 8051 to  
Document #: 38-08039 Rev. *B  
Page 6 of 50  
CY7C64713/14  
Inside FX1  
Outside FX1  
FFFF  
7.5 KBytes  
USB regs and  
4K FIFO buffers  
(OK to populate  
data memory  
hereRD#/WR#  
strobes are not  
active)  
(RD#,WR#)  
E200  
E1FF  
0.5 KBytes RAM  
Data (RD#,WR#)*  
E000  
48 KBytes  
External  
Code  
Memory  
(PSEN#)  
40 KBytes  
External  
Data  
Memory  
(RD#,WR#)  
3FFF  
(Ok to populate  
data memory  
hereRD#/WR#  
strobes are not  
active)  
(OK to populate  
program  
memory here—  
PSEN# strobe  
is not active)  
16 KBytes RAM  
Code and Data  
(PSEN#,RD#,WR#)*  
0000  
Data  
Code  
*SUDPTR, USB upload/download, I2C interface boot access  
Figure 4-3. Internal Code Memory, EA = 0  
Inside FX1  
Outside FX1  
FFFF  
7.5 KBytes  
(OK to populate  
USB regs and  
4K FIFO buffers  
(RD#,WR#)  
data memory  
hereRD#/WR#  
strobes are not  
active)  
E200  
E1FF  
0.5 KBytes RAM  
Data (RD#,WR#)*  
E000  
40 KBytes  
External  
Data  
Memory  
(RD#,WR#)  
64 KBytes  
External  
Code  
Memory  
(PSEN#)  
3FFF  
(Ok to populate  
data memory  
hereRD#/WR#  
strobes are not  
active)  
16 KBytes  
RAM  
Data  
(RD#,WR#)*  
0000  
Data  
Code  
*SUDPTR, USB upload/download, I2C interface boot access  
Figure 4-4. External Code Memory, EA = 1  
Document #: 38-08039 Rev. *B  
Page 7 of 50  
CY7C64713/14  
4.11  
Register Addresses  
FFFF  
4 KBytes EP2-EP8  
buffers  
(8 x 512)  
Not all Space is available  
for all transfer types  
F000  
EFFF  
2 KBytes RESERVED  
E800  
E7FF  
E7C0  
64 Bytes EP1IN  
E7BF  
E780  
E77F  
E740  
E73F  
E700  
E6FF  
64 Bytes EP1OUT  
64 Bytes EP0 IN/OUT  
64 Bytes RESERVED  
8051 Addressable Registers  
(512)  
E500  
E4FF  
E480  
E47F  
Reserved (128)  
128 bytes GPIF Waveforms  
Reserved (512)  
E400  
E3FF  
E200  
E1FF  
512 bytes  
8051 xdata RAM  
E000  
be either double, triple, or quad buffered. Regardless of the  
physical size of the buffer, each endpoint buffer accommo-  
dates only one full-speed packet. For bulk endpoints the  
maximum number of bytes it can accommodate is 64, even  
though the physical buffer size is 512 or 1024. For an  
ISOCHRONOUS endpoint the maximum number of bytes  
it can accommodate is 1023. For endpoint configuration  
options, see Figure 4-5.  
4.12  
Endpoint RAM  
4.12.1 Size  
3 × 64 bytes (Endpoints 0 and 1)  
8 × 512 bytes (Endpoints 2, 4, 6, 8)  
4.12.2 Organization  
EP0Bidirectional endpoint zero, 64-byte buffer  
4.12.3 Setup Data Buffer  
EP1IN, EP1OUT64-byte buffers, bulk or interrupt  
A separate 8-byte buffer at 0xE6B8-0xE6BF holds the Setup  
data from a CONTROL transfer.  
EP2,4,6,8Eight 512-byte buffers, bulk, interrupt, or isoch-  
ronous, of which only the transfer size is available.  
EP4 and EP8 can be double buffered, while EP2 and 6 can  
Document #: 38-08039 Rev. *B  
Page 8 of 50  
CY7C64713/14  
4.12.4 Endpoint Configurations  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
EP0 IN&OUT  
EP1 IN  
64  
64  
EP1 OUT  
EP2  
64  
EP2  
EP2  
EP2 EP2  
EP2 EP2  
EP2  
64  
EP2  
EP2  
EP2  
64  
EP2  
64  
64  
64  
64  
64  
64  
64  
1023  
1023  
1023  
1023  
64  
64  
64  
64  
64  
1023  
EP4  
64  
EP4 EP4  
64  
64  
64  
64  
64  
64  
64  
64  
EP6  
1023  
1023  
1023  
1023  
1023  
64  
64  
64  
64  
EP6  
64  
EP6  
64  
EP6  
EP6 EP6  
EP6  
EP6  
EP6 EP6  
64  
64  
1023  
1023  
64  
64  
64  
64  
64  
64  
1023  
1023  
1023  
64  
64  
64  
64  
EP8  
64  
EP8  
64  
EP8  
64  
EP8  
64  
EP8  
64  
1023  
64  
64  
64  
64  
64  
64  
1023  
1023  
1023  
64  
64  
64  
64  
64  
10  
12  
9
11  
4
5
8
1
2
3
6
7
Figure 4-5. Endpoint Configuration  
Endpoints 0 and 1 are the same for every configuration.  
Endpoint 0 is the only CONTROL endpoint, and endpoint 1 can  
be either BULK or INTERRUPT. The endpoint buffers can be  
configured in any 1 of the 12 configurations shown in the  
vertical columns. In full-speed, BULK mode uses only the first  
64 bytes of each buffer, even though memory exists for the  
allocation of the isochronous transfers in BULK mode the  
unused endpoint buffer space is not available for other opera-  
tions. An example endpoint configuration would be:  
are controlled by FIFO control signals (such as IFCLK, SLCS#,  
SLRD, SLWR, SLOE, PKTEND, and flags). The usable size of  
these buffers depend on the USB transfer mode as described  
in Section 4.12.2.  
In operation, some of the eight RAM blocks fill or empty from  
the SIE, while the others are connected to the I/O transfer  
logic. The transfer logic takes two forms, the GPIF for internally  
generated control signals, or the slave FIFO interface for  
externally controlled transfers.  
EP21023 double buffered; EP664 quad buffered (column  
8).  
4.13.2 Master/Slave Control Signals  
The FX1 endpoint FIFOS are implemented as eight physically  
distinct 256x16 RAM blocks. The 8051/SIE can switch any of  
the RAM blocks between two domains, the USB (SIE) domain  
and the 8051-I/O Unit domain. This switching is done virtually  
instantaneously, giving essentially zero transfer time between  
USB FIFOSand Slave FIFOS.Since they are physically the  
same memory, no bytes are actually transferred between  
buffers.  
4.12.5 Default Alternate Settings  
Table 4-6. Default Alternate Settings[4, 5]  
Alternate  
Setting  
0
1
2
3
ep0  
64 64  
64  
64  
ep1out  
ep1in  
ep2  
0 64 bulk  
0 64 bulk  
64 int  
64 int  
64 int  
64 int  
0 64 bulk out (2×) 64 int out (2×) 64 iso out (2×)  
0 64 bulk out (2×) 64 bulk out (2×) 64 bulk out (2×)  
0 64 bulk in (2×) 64 int in (2×) 64 iso in (2×)  
0 64 bulk in (2×) 64 bulk in (2×) 64 bulk in (2×)  
ep4  
ep6  
ep8  
4.13  
External FIFO Interface  
4.13.1 Architecture  
The FX1 slave FIFO architecture has eight 512-byte blocks in  
the endpoint RAM that directly serve as FIFO memories, and  
Notes:  
4. 0means not implemented.”  
5. 2×” means double buffered.”  
Document #: 38-08039 Rev. *B  
Page 9 of 50  
CY7C64713/14  
At any given time, some RAM blocks are filling/emptying with  
USB data under SIE control, while other RAM blocks are  
available to the 8051 and/or the I/O control unit. The RAM  
blocks operate as single-port in the USB domain, and dual-  
port in the 8051-I/O domain. The blocks can be configured as  
single, double, triple, or quad buffered as previously shown.  
4.14.1 Six Control OUT Signals  
The 100- and 128-pin packages bring out all six Control Output  
pins (CTL0-CTL5). The 8051 programs the GPIF unit to define  
the CTL waveforms. The 56-pin package brings out three of  
these signals, CTL0CTL2. CTLx waveform edges can be  
programmed to make transitions as fast as once per clock  
(20.8 ns using a 48-MHz clock).  
The I/O control unit implements either an internal-master (M  
for master) or external-master (S for Slave) interface.  
4.14.2 Six Ready IN Signals  
In Master (M) mode, the GPIF internally controls  
FIFOADR[1..0] to select a FIFO. The RDY pins (two in the 56-  
pin package, six in the 100-pin and 128-pin packages) can be  
used as flag inputs from an external FIFO or other logic if  
desired. The GPIF can be run from either an internally derived  
clock or externally supplied clock (IFCLK), at a rate that  
transfers data up to 96 Megabytes/s (48-MHz IFCLK with 16-  
bit interface).  
The 100- and 128-pin packages bring out all six Ready inputs  
(RDY0RDY5). The 8051 programs the GPIF unit to test the  
RDY pins for GPIF branching. The 56-pin package brings out  
two of these signals, RDY01.  
4.14.3 Nine GPIF Address OUT Signals  
Nine GPIF address lines are available in the 100- and 128-pin  
packages, GPIFADR[8..0]. The GPIF address lines allow  
indexing through up to a 512-byte block of RAM. If more  
address lines are needed, I/O port pins can be used.  
In Slave (S) mode, the FX1 accepts either an internally derived  
clock or externally supplied clock (IFCLK, max. frequency 48  
MHz) and SLCS#, SLRD, SLWR, SLOE, PKTEND signals  
from external logic. When using an external IFCLK, the  
external clock must be present before switching to the external  
clock with the IFCLKSRC bit. Each endpoint can individually  
be selected for byte or word operation by an internal configu-  
ration bit, and a Slave FIFO Output Enable signal SLOE  
enables data of the selected width. External logic must insure  
that the output enable signal is inactive when writing data to a  
slave FIFO. The slave interface can also operate asynchro-  
nously, where the SLRD and SLWR signals act directly as  
strobes, rather than a clock qualifier as in synchronous mode.  
The signals SLRD, SLWR, SLOE and PKTEND are gated by  
the signal SLCS#.  
4.14.4 Long Transfer Mode  
In master mode, the 8051 appropriately sets GPIF transaction  
count registers (GPIFTCB3, GPIFTCB2, GPIFTCB1, or  
GPIFTCB0) for unattended transfers of up to 232 transactions.  
The GPIF automatically throttles data flow to prevent under or  
overflow until the full number of requested transactions  
complete. The GPIF decrements the value in these registers  
to represent the current status of the transaction.  
4.15  
ECC Generation  
The EZ-USB FX1 can calculate ECCs (Error-Correcting  
Codes) on data that passes across its GPIF or Slave FIFO  
interfaces. There are two ECC configurations: Two ECCs,  
each calculated over 256 bytes (SmartMediaStandard); and  
one ECC calculated over 512 bytes.  
4.13.3 GPIF and FIFO Clock Rates  
An 8051 register bit selects one of two frequencies for the  
internally supplied interface clock: 30 MHz and 48 MHz. Alter-  
natively, an externally supplied clock of 5 MHz48 MHz  
feeding the IFCLK pin can be used as the interface clock.  
IFCLK can be configured to function as an output clock when  
the GPIF and FIFOs are internally clocked. An output enable  
bit in the IFCONFIG register turns this clock output off, if  
desired. Another bit within the IFCONFIG register will invert  
the IFCLK signal whether internally or externally sourced.  
The ECC can correct any one-bit error or detect any two-bit  
error.  
Note: To use the ECC logic, the GPIF or Slave FIFO interface  
must be configured for byte-wide operation.  
4.15.1 ECC Implementation  
The two ECC configurations are selected by the ECCM bit:  
4.14  
GPIF  
The GPIF is a flexible 8- or 16-bit parallel interface driven by a  
user-programmable finite state machine. It allows the  
CY7C64713/4 to perform local bus mastering, and can  
implement a wide variety of protocols such as ATA interface,  
printer parallel port, and Utopia.  
4.15.1.1 ECCM = 0  
Two 3-byte ECCs, each calculated over a 256-byte block of  
data. This configuration conforms to the SmartMedia  
Standard.  
Write any value to ECCRESET, then pass data across the  
GPIF or Slave FIFO interface. The ECC for the first 256 bytes  
of data will be calculated and stored in ECC1. The ECC for the  
next 256 bytes will be stored in ECC2. After the second ECC  
is calculated, the values in the ECCx registers will not change  
until ECCRESET is written again, even if more data is subse-  
quently passed across the interface.  
The GPIF has six programmable control outputs (CTL), nine  
address outputs (GPIFADRx), and six general-purpose ready  
inputs (RDY). The data bus width can be 8 or 16 bits. Each  
GPIF vector defines the state of the control outputs, and deter-  
mines what state a ready input (or multiple inputs) must be  
before proceeding. The GPIF vector can be programmed to  
advance a FIFO to the next data value, advance an address,  
etc. A sequence of the GPIF vectors make up a single  
waveform that will be executed to perform the desired data  
move between the FX1 and the external device.  
4.15.1.2 ECCM=1  
One 3-byte ECC calculated over a 512-byte block of data.  
Write any value to ECCRESET then pass data across the  
GPIF or Slave FIFO interface. The ECC for the first 512 bytes  
of data will be calculated and stored in ECC1; ECC2 is unused.  
After the ECC is calculated, the value in ECC1 will not change  
Document #: 38-08039 Rev. *B  
Page 10 of 50  
CY7C64713/14  
until ECCRESET is written again, even if more data is subse-  
quently passed across the interface  
4.18.2 I2C Interface Boot Load Access  
At power-on reset the I2C interface boot loader will load the  
VID/PID/DID configuration bytes and up to 16 KBytes of  
program/data. The available RAM spaces are 16 KBytes from  
0x00000x3FFF and 512 bytes from 0xE0000xE1FF. The  
8051 will be in reset. I2C interface boot loads only occur after  
power-on reset.  
4.16  
USB Uploads and Downloads  
The core has the ability to directly edit the data contents of the  
internal 16 KByte RAM and of the internal 512-byte scratch  
pad RAM via a vendor-specific command. This capability is  
normally used when softdownloading user code and is  
available only to and from internal RAM, only when the 8051  
is held in reset. The available RAM spaces are 16 KBytes from  
0x00000x3FFF (code/data) and 512 bytes from  
0xE0000xE1FF (scratch pad data RAM).[6]  
4.18.3 I2C Interface General Purpose Access  
The 8051 can control peripherals connected to the I2C bus  
using the I2CTL and I2DAT registers. FX1 provides I2C master  
control only, it is never an I2C slave.  
4.17  
Autopointer Access  
4.19  
Compatible with Previous Generation  
EZ-USB FX2  
FX1 provides two identical autopointers. They are similar to  
the internal 8051 data pointers, but with an additional feature:  
they can optionally increment after every memory access. This  
capability is available to and from both internal and external  
RAM. The autopointers are available in external FX1 registers,  
under control of a mode bit (AUTOPTRSETUP.0). Using the  
external FX1 autopointer access (at 0xE67B 0xE67C) allows  
the autopointer to access all RAM, internal and external to the  
part. Also, the autopointers can point to any FX1 register or  
endpoint buffer space. When autopointer access to external  
memory is enabled, location 0xE67B and 0xE67C in XDATA  
and code space cannot be used.  
The EZ-USB FX1 is fit/form/function-upgradable to the EZ-  
USB FX2LP. This makes for a easy transition for designers  
wanting to upgrade their systems from full-speed to the high-  
speed designs. The pinout and package selection are  
identical, and all of the firmware developed for the FX1 will  
function in the FX2LP with proper addition of High Speed  
descriptors and speed switching code.  
5.0  
Pin Assignments  
Figure 5-1 identifies all signals for the three package types.  
The following pages illustrate the individual pin diagrams, plus  
a combination diagram showing which of the full set of signals  
are available in the 128-, 100-, and 56-pin packages.  
4.18  
I2C Controller  
FX1 has one I2C port that is driven by two internal controllers,  
one that automatically operates at boot time to load  
VID/PID/DID and configuration information, and another that  
the 8051, once running, uses to control external I2C devices.  
The I2C port operates in master mode only.  
The signals on the left edge of the 56-pin package in Figure 5-  
1 are common to all versions in the FX1 family. Three modes  
are available in all package versions: Port, GPIF master, and  
Slave FIFO. These modes define the signals on the right edge  
of the diagram. The 8051 selects the interface mode using the  
IFCONFIG[1:0] register bits. Port mode is the power-on default  
configuration.  
4.18.1 I2C Port Pins  
The I2C- pins SCL and SDA must have external 2.2-kpull-  
up resistors even if no EEPROM is connected to the FX1.  
External EEPROM device address pins must be configured  
properly. See Table 4-7 for configuring the device address  
pins.  
The 100-pin package adds functionality to the 56-pin package  
by adding these pins:  
PORTC or alternate GPIFADR[7:0] address signals  
PORTE or alternate GPIFADR[8] address signal and seven  
additional 8051 signals  
Table 4-7. Strap Boot EEPROM Address Lines to These  
Values  
Three GPIF Control signals  
Four GPIF Ready signals  
Bytes  
16  
Example EEPROM  
24LC00[7]  
24LC01  
A2  
N/A  
0
A1  
N/A  
0
A0  
N/A  
0
Nine 8051 signals (two USARTs, three timer inputs,  
INT4,and INT5#)  
128  
256  
4K  
BKPT, RD#, WR#.  
24LC02  
0
0
0
The 128-pin package adds the 8051 address and data buses  
plus control signals. Note that two of the required signals, RD#  
and WR#, are present in the 100-pin version. In the 100-pin  
and 128-pin versions, an 8051 control bit can be set to pulse  
the RD# and WR# pins when the 8051 reads from/writes to  
PORTC.  
24LC32  
0
0
1
8K  
24LC64  
0
0
1
16K  
24LC128  
0
0
1
Notes:  
6. After the data has been downloaded from the host, a loadercan execute from internal RAM in order to transfer downloaded data to external memory.  
7. This EEPROM does not have address pins.  
Document #: 38-08039 Rev. *B  
Page 11 of 50  
CY7C64713/14  
Port  
GPIF Master  
Slave FIFO  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
PB7  
PB6  
PB5  
PB4  
PB3  
PB2  
PB1  
PB0  
FD[15]  
FD[14]  
FD[13]  
FD[12]  
FD[11]  
FD[10]  
FD[9]  
FD[8]  
FD[7]  
FD[6]  
FD[5]  
FD[4]  
FD[3]  
FD[2]  
FD[1]  
FD[0]  
FD[15]  
FD[14]  
FD[13]  
FD[12]  
FD[11]  
FD[10]  
FD[9]  
FD[8]  
FD[7]  
FD[6]  
FD[5]  
FD[4]  
FD[3]  
FD[2]  
FD[1]  
FD[0]  
XTALIN  
XTALOUT  
RESET#  
WAKEUP#  
SCL  
SDA  
56  
SLRD  
SLWR  
RDY0  
RDY1  
FLAGA  
FLAGB  
FLAGC  
CTL0  
CTL1  
CTL2  
T0OUT  
T1OUT  
INT0#/PA0  
INT1#/PA1  
PA2  
WU2/PA3  
PA4  
INT0#/ PA0  
INT1#/ PA1  
SLOE  
INT0#/PA0  
INT1#/PA1  
PA2  
WU2/PA3  
PA4  
PA5  
PA6  
IFCLK  
CLKOUT  
WU2/PA3  
FIFOADR0  
FIFOADR1  
PKTEND  
DPLUS  
DMINUS  
PA5  
PA6  
PA7  
PA7/FLAGD/SLCS#  
PA7  
CTL3  
CTL4  
CTL5  
RDY2  
RDY3  
RDY4  
RDY5  
100  
BKPT  
PORTC7/GPIFADR7  
PORTC6/GPIFADR6  
PORTC5/GPIFADR5  
PORTC4/GPIFADR4  
PORTC3/GPIFADR3  
PORTC2/GPIFADR2  
PORTC1/GPIFADR1  
PORTC0/GPIFADR0  
RxD0  
TxD0  
RxD1  
TxD1  
INT4  
INT5#  
T2  
PE7/GPIFADR8  
PE6/T2EX  
PE5/INT6  
PE4/RxD1OUT  
PE3/RxD0OUT  
PE2/T2OUT  
PE1/T1OUT  
PE0/T0OUT  
T1  
T0  
RD#  
WR#  
CS#  
OE#  
PSEN#  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
128  
A8  
A7  
A6  
A5  
A4  
A3  
EA  
A2  
A1  
A0  
Figure 5-1. Signals  
Document #: 38-08039 Rev. *B  
Page 12 of 50  
CY7C64713/14  
1
102  
CLKOUT  
VCC  
GND  
PD0/FD8  
*WAKEUP  
VCC  
RESET#  
2
101  
3
100  
4
99  
RDY0/*SLRD  
RDY1/*SLWR  
RDY2  
RDY3  
RDY4  
RDY5  
AVCC  
XTALOUT  
XTALIN  
AGND  
NC  
5
98  
CTL5  
6
97  
A3  
A2  
A1  
A0  
7
96  
8
95  
9
94  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
93  
GND  
92  
PA7/*FLAGD/SLCS#  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
PA6/*PKTEND  
PA5/FIFOADR1  
PA4/FIFOADR0  
D7  
NC  
NC  
D6  
D5  
AVCC  
DPLUS  
DMINUS  
AGND  
A11  
A12  
A13  
A14  
A15  
VCC  
GND  
INT4  
T0  
T1  
T2  
CY7C64713/4  
128-pin TQFP  
PA3/*WU2  
PA2/*SLOE  
PA1/INT1#  
PA0/INT0#  
VCC  
GND  
PC7/GPIFADR7  
PC6/GPIFADR6  
PC5/GPIFADR5  
PC4/GPIFADR4  
PC3/GPIFADR3  
PC2/GPIFADR2  
PC1/GPIFADR1  
PC0/GPIFADR0  
CTL2/*FLAGC  
CTL1/*FLAGB  
CTL0/*FLAGA  
VCC  
*IFCLK  
RESERVED  
BKPT  
EA  
SCL  
SDA  
CTL4  
CTL3  
GND  
OE#  
Figure 5-2. CY7C64713/4 128-pin TQFP Pin Assignment  
* denotes programmable polarity  
Document #: 38-08039 Rev. *B  
Page 13 of 50  
CY7C64713/14  
1
80  
VCC  
PD0/FD8  
2
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
GND  
*WAKEUP  
VCC  
RESET#  
3
RDY0/*SLRD  
RDY1/*SLWR  
RDY2  
RDY3  
RDY4  
RDY5  
AVCC  
XTALOUT  
XTALIN  
AGND  
NC  
4
5
CTL5  
GND  
6
7
PA7/*FLAGD/SLCS#  
PA6/*PKTEND  
PA5/FIFOADR1  
PA4/FIFOADR0  
PA3/*WU2  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
PA2/*SLOE  
PA1/INT1#  
PA0/INT0#  
NC  
NC  
CY7C64713/4  
100-pin TQFP  
VCC  
GND  
AVCC  
DPLUS  
DMINUS  
AGND  
VCC  
GND  
INT4  
T0  
T1  
PC7/GPIFADR7  
PC6/GPIFADR6  
PC5/GPIFADR5  
PC4/GPIFADR4  
PC3/GPIFADR3  
PC2/GPIFADR2  
PC1/GPIFADR1  
PC0/GPIFADR0  
CTL2/*FLAGC  
CTL1/*FLAGB  
CTL0/*FLAGA  
VCC  
T2  
*IFCLK  
RESERVED  
BKPT  
SCL  
CTL4  
CTL3  
SDA  
Figure 5-3. CY7C64713/4 100-pin TQFP Pin Assignment  
* denotes programmable polarity  
Document #: 38-08039 Rev. *B  
Page 14 of 50  
CY7C64713/14  
RESET#  
RDY0/*SLRD  
RDY1/*SLWR  
AVCC  
1
2
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
GND  
PA7/*FLAGD/SLCS#  
PA6/*PKTEND  
PA5/FIFOADR1  
PA4/FIFOADR0  
PA3/*WU2  
3
XTALOUT  
XTALIN  
4
5
AGND  
6
CY7C64713/4  
56-pin QFN  
AVCC  
7
PA2/*SLOE  
PA1/INT1#  
DPLUS  
8
DMINUS  
9
PA0/INT0#  
AGND  
10  
11  
12  
13  
14  
VCC  
VCC  
CTL2/*FLAGC  
CTL1/*FLAGB  
CTL0/*FLAGA  
GND  
*IFCLK/**PE0/T0OUT  
RESERVED  
Figure 5-4. CY7C64713/4 56-pin QFN Pin Assignment  
* denotes programmable polarity  
Document #: 38-08039 Rev. *B  
Page 15 of 50  
CY7C64713/14  
5.1  
CY7C64713/4 Pin Definitions  
[8]  
Table 5-1. FX1 Pin Definitions  
128 100 56  
TQFP TQFP QFN  
Name  
Type  
Description  
Default  
10  
17  
9
3
7
6
AVCC  
Power  
N/A Analog VCC. Connect this pin to 3.3V power source. This signal provides  
power to the analog section of the chip.  
16  
AVCC  
AGND  
Power  
N/A Analog VCC. Connect this pin to 3.3V power source. This signal provides  
power to the analog section of the chip.  
13  
20  
12  
19  
18  
17  
Ground  
Ground  
I/O/Z  
N/A Analog Ground. Connect to ground with as short a path as possible.  
N/A Analog Ground. Connect to ground with as short a path as possible.  
10 AGND  
19  
9
8
DMINUS  
Z
Z
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
Z
Z
Z
Z
Z
Z
Z
Z
H
USB DSignal. Connect to the USB Dsignal.  
USB D+ Signal. Connect to the USB D+ signal.  
18  
DPLUS  
A0  
I/O/Z  
94  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
I/O/Z  
8051 Address Bus. This bus is driven at all times. When the 8051 is  
addressing internal RAM it reflects the internal address.  
95  
A1  
96  
A2  
97  
A3  
117  
118  
119  
120  
126  
127  
128  
21  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
D0  
22  
23  
24  
25  
59  
8051 Data Bus. This bidirectional bus is high-impedance when inactive,  
input for bus reads, and output for bus writes. The data bus is used for  
external 8051 program and data memory. The data bus is active only for  
external bus accesses, and is driven LOW in suspend.  
60  
D1  
I/O/Z  
61  
D2  
I/O/Z  
62  
D3  
I/O/Z  
63  
D4  
I/O/Z  
86  
D5  
I/O/Z  
87  
D6  
I/O/Z  
88  
D7  
I/O/Z  
39  
PSEN#  
Output  
Program Store Enable. This active-LOW signal indicates an 8051 code  
fetch from external memory. It is active for program memory fetches from  
0x40000xFFFF when the EA pin is LOW, or from 0x00000xFFFF when  
the EA pin is HIGH.  
34  
28  
BKPT  
Output  
L
Breakpoint. This pin goes active (HIGH) when the 8051 address bus  
matches the BPADDRH/L registers and breakpoints are enabled in the  
BREAKPT register (BPEN = 1). If the BPPULSE bit in the BREAKPT  
register is HIGH, this signal pulses HIGH for eight 12-/24-/48-MHz clocks.  
If the BPPULSE bit is LOW, the signal remains HIGH until the 8051 clears  
the BREAK bit (by writing 1 to it) in the BREAKPT register.  
Note:  
8. Unused inputs should not be left floating. Tie either HIGH or LOW as appropriate. Outputs should only be pulled up or down to ensure signals at power-up  
and in standby. Note also that no pins should be driven while the device is powered down.  
Document #: 38-08039 Rev. *B  
Page 16 of 50  
CY7C64713/14  
Table 5-1. FX1 Pin Definitions (continued)[8]  
128 100  
56  
TQFP TQFP QFN  
Name  
Type  
Description  
Default  
99  
35  
77  
42 RESET#  
EA  
Input  
N/A Active LOW Reset. Resets the entire chip. See section 4.9 Reset and  
Wakeupon page 5 for more details.  
Input  
Input  
N/A External Access. This pin determines where the 8051 fetches code  
between addresses 0x0000 and 0x3FFF. If EA = 0 the 8051 fetches this  
code from its internal RAM. IF EA = 1 the 8051 fetches this code from  
external memory.  
12  
11  
5
4
XTALIN  
N/A Crystal Input. Connect this signal to a 24-MHz parallel-resonant, funda-  
mental mode crystal and load capacitor to GND.  
It is also correct to drive XTALIN with an external 24 MHz square wave  
derived from another clock source. When driving from an external source,  
the driving signal should be a 3.3V square wave.  
11  
1
10  
XTALOUT Output  
N/A Crystal Output. Connect this signal to a 24-MHz parallel-resonant, funda-  
mental mode crystal and load capacitor to GND.  
If an external clock is used to drive XTALIN, leave this pin open.  
100  
54 CLKOUT O/Z  
12 CLKOUT: 12-, 24- or 48-MHz clock, phase locked to the 24-MHz input  
MHz clock. The 8051 defaults to 12-MHz operation. The 8051 may three-state  
this output by setting CPUCS.1 = 1.  
Port A  
82  
67  
68  
33 PA0 or  
INT0#  
I/O/Z  
I
Multiplexed pin whose function is selected by PORTACFG.0  
(PA0) PA0 is a bidirectional IO port pin.  
INT0# is the active-LOW 8051 INT0 interrupt input signal, which is either  
edge triggered (IT0 = 1) or level triggered (IT0 = 0).  
83  
84  
85  
34 PA1 or  
INT1#  
I/O/Z  
I/O/Z  
I/O/Z  
I
Multiplexed pin whose function is selected by:  
(PA1) PORTACFG.1  
PA1 is a bidirectional IO port pin.  
INT1# is the active-LOW 8051 INT1 interrupt input signal, which is either  
edge triggered (IT1 = 1) or level triggered (IT1 = 0).  
69  
70  
35 PA2 or  
SLOE  
I
Multiplexed pin whose function is selected by two bits:  
(PA2) IFCONFIG[1:0].  
PA2 is a bidirectional IO port pin.  
SLOE is an input-only output enable with programmable polarity (FIFOPIN-  
POLAR.4) for the slave FIFOs connected to FD[7..0] or FD[15..0].  
36 PA3 or  
WU2  
I
Multiplexed pin whose function is selected by:  
(PA3) WAKEUP.7 and OEA.3  
PA3 is a bidirectional I/O port pin.  
WU2 is an alternate source for USB Wakeup, enabled by WU2EN bit  
(WAKEUP.1) and polarity set by WU2POL (WAKEUP.4). If the 8051 is in  
suspend and WU2EN = 1, a transition on this pin starts up the oscillator  
and interrupts the 8051 to allow it to exit the suspend mode. Asserting this  
pin inhibits the chip from suspending, if WU2EN=1.  
89  
90  
91  
71  
72  
73  
37 PA4 or  
I/O/Z  
I/O/Z  
I/O/Z  
I
Multiplexed pin whose function is selected by:  
(PA4) IFCONFIG[1..0].  
PA4 is a bidirectional I/O port pin.  
FIFOADR0  
FIFOADR0 is an input-only address select for the slave FIFOs connected  
to FD[7..0] or FD[15..0].  
38 PA5 or  
FIFOADR1  
I
Multiplexed pin whose function is selected by:  
(PA5) IFCONFIG[1..0].  
PA5 is a bidirectional I/O port pin.  
FIFOADR1 is an input-only address select for the slave FIFOs connected  
to FD[7..0] or FD[15..0].  
39 PA6 or  
PKTEND  
I
Multiplexed pin whose function is selected by the IFCONFIG[1:0] bits.  
(PA6) PA6 is a bidirectional I/O port pin.  
PKTEND is an input used to commit the FIFO packet data to the endpoint  
and whose polarity is programmable via FIFOPINPOLAR.5.  
Document #: 38-08039 Rev. *B  
Page 17 of 50  
CY7C64713/14  
Table 5-1. FX1 Pin Definitions (continued)[8]  
128 100  
56  
TQFP TQFP QFN  
Name  
Type  
Description  
Multiplexed pin whose function is selected by the IFCONFIG[1:0] and  
Default  
92  
74  
40 PA7 or  
I/O/Z  
I
FLAGD or  
SLCS#  
(PA7) PORTACFG.7 bits.  
PA7 is a bidirectional I/O port pin.  
FLAGD is a programmable slave-FIFO output status flag signal.  
SLCS# gates all other slave FIFO enable/strobes  
Port B  
44  
34  
35  
36  
37  
44  
45  
46  
47  
18 PB0 or  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I
Multiplexed pin whose function is selected by the following bits:  
FD[0]  
(PB0) IFCONFIG[1..0].  
PB0 is a bidirectional I/O port pin.  
FD[0] is the bidirectional FIFO/GPIF data bus.  
45  
46  
47  
54  
55  
56  
57  
19 PB1 or  
FD[1]  
I
Multiplexed pin whose function is selected by the following bits:  
(PB1) IFCONFIG[1..0].  
PB1 is a bidirectional I/O port pin.  
FD[1] is the bidirectional FIFO/GPIF data bus.  
20 PB2 or  
FD[2]  
I
Multiplexed pin whose function is selected by the following bits:  
(PB2) IFCONFIG[1..0].  
PB2 is a bidirectional I/O port pin.  
FD[2] is the bidirectional FIFO/GPIF data bus.  
21 PB3 or  
FD[3]  
I
Multiplexed pin whose function is selected by the following bits:  
(PB3) IFCONFIG[1..0].  
PB3 is a bidirectional I/O port pin.  
FD[3] is the bidirectional FIFO/GPIF data bus.  
22 PB4 or  
FD[4]  
I
Multiplexed pin whose function is selected by the following bits:  
(PB4) IFCONFIG[1..0].  
PB4 is a bidirectional I/O port pin.  
FD[4] is the bidirectional FIFO/GPIF data bus.  
23 PB5 or  
FD[5]  
I
Multiplexed pin whose function is selected by the following bits:  
(PB5) IFCONFIG[1..0].  
PB5 is a bidirectional I/O port pin.  
FD[5] is the bidirectional FIFO/GPIF data bus.  
24 PB6 or  
FD[6]  
I
Multiplexed pin whose function is selected by the following bits:  
(PB6) IFCONFIG[1..0].  
PB6 is a bidirectional I/O port pin.  
FD[6] is the bidirectional FIFO/GPIF data bus.  
25 PB7 or  
FD[7]  
I
Multiplexed pin whose function is selected by the following bits:  
(PB7) IFCONFIG[1..0].  
PB7 is a bidirectional I/O port pin.  
FD[7] is the bidirectional FIFO/GPIF data bus.  
PORT C  
72  
57  
58  
59  
60  
61  
PC0 or  
GPIFADR0  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I
Multiplexed pin whose function is selected by PORTCCFG.0  
(PC0) PC0 is a bidirectional I/O port pin.  
GPIFADR0 is a GPIF address output pin.  
73  
74  
75  
76  
PC1 or  
GPIFADR1  
I
Multiplexed pin whose function is selected by PORTCCFG.1  
(PC1) PC1 is a bidirectional I/O port pin.  
GPIFADR1 is a GPIF address output pin.  
PC2 or  
GPIFADR2  
I
Multiplexed pin whose function is selected by PORTCCFG.2  
(PC2) PC2 is a bidirectional I/O port pin.  
GPIFADR2 is a GPIF address output pin.  
PC3 or  
GPIFADR3  
I
Multiplexed pin whose function is selected by PORTCCFG.3  
(PC3) PC3 is a bidirectional I/O port pin.  
GPIFADR3 is a GPIF address output pin.  
PC4 or  
I
Multiplexed pin whose function is selected by PORTCCFG.4  
GPIFADR4  
(PC4) PC4 is a bidirectional I/O port pin.  
GPIFADR4 is a GPIF address output pin.  
Document #: 38-08039 Rev. *B  
Page 18 of 50  
CY7C64713/14  
Table 5-1. FX1 Pin Definitions (continued)[8]  
128 100  
56  
TQFP TQFP QFN  
Name  
PC5 or  
GPIFADR5  
Type  
Description  
Multiplexed pin whose function is selected by PORTCCFG.5  
(PC5) PC5 is a bidirectional I/O port pin.  
GPIFADR5 is a GPIF address output pin.  
Default  
77  
78  
79  
62  
63  
64  
I/O/Z  
I
PC6 or  
GPIFADR6  
I/O/Z  
I/O/Z  
I
Multiplexed pin whose function is selected by PORTCCFG.6  
(PC6) PC6 is a bidirectional I/O port pin.  
GPIFADR6 is a GPIF address output pin.  
PC7 or  
I
Multiplexed pin whose function is selected by PORTCCFG.7  
GPIFADR7  
(PC7) PC7 is a bidirectional I/O port pin.  
GPIFADR7 is a GPIF address output pin.  
PORT D  
102  
80  
81  
82  
83  
95  
96  
97  
98  
45 PD0 or  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I
Multiplexed pin whose function is selected by the IFCONFIG[1..0] and  
FD[8]  
(PD0) EPxFIFOCFG.0 (wordwide) bits.  
FD[8] is the bidirectional FIFO/GPIF data bus.  
103  
104  
105  
121  
122  
123  
124  
46 PD1 or  
FD[9]  
I
Multiplexed pin whose function is selected by the IFCONFIG[1..0] and  
(PD1) EPxFIFOCFG.0 (wordwide) bits.  
FD[9] is the bidirectional FIFO/GPIF data bus.  
47 PD2 or  
FD[10]  
I
Multiplexed pin whose function is selected by the IFCONFIG[1..0] and  
(PD2) EPxFIFOCFG.0 (wordwide) bits.  
FD[10] is the bidirectional FIFO/GPIF data bus.  
48 PD3 or  
FD[11]  
I
Multiplexed pin whose function is selected by the IFCONFIG[1..0] and  
(PD3) EPxFIFOCFG.0 (wordwide) bits.  
FD[11] is the bidirectional FIFO/GPIF data bus.  
49 PD4 or  
FD[12]  
I
Multiplexed pin whose function is selected by the IFCONFIG[1..0] and  
(PD4) EPxFIFOCFG.0 (wordwide) bits.  
FD[12] is the bidirectional FIFO/GPIF data bus.  
50 PD5 or  
FD[13]  
I
Multiplexed pin whose function is selected by the IFCONFIG[1..0] and  
(PD5) EPxFIFOCFG.0 (wordwide) bits.  
FD[13] is the bidirectional FIFO/GPIF data bus.  
51 PD6 or  
FD[14]  
I
Multiplexed pin whose function is selected by the IFCONFIG[1..0] and  
(PD6) EPxFIFOCFG.0 (wordwide) bits.  
FD[14] is the bidirectional FIFO/GPIF data bus.  
52 PD7 or  
FD[15]  
I
Multiplexed pin whose function is selected by the IFCONFIG[1..0] and  
(PD7) EPxFIFOCFG.0 (wordwide) bits.  
FD[15] is the bidirectional FIFO/GPIF data bus.  
Port E  
108  
86  
87  
88  
PE0 or  
T0OUT  
I/O/Z  
I/O/Z  
I/O/Z  
I
Multiplexed pin whose function is selected by the PORTECFG.0 bit.  
(PE0) PE0 is a bidirectional I/O port pin.  
T0OUT is an active-HIGH signal from 8051 Timer-counter0. T0OUT  
outputs a high level for one CLKOUT clock cycle when Timer0 overflows.  
If Timer0 is operated in Mode 3 (two separate timer/counters), T0OUT is  
active when the low byte timer/counter overflows.  
109  
110  
PE1 or  
T1OUT  
I
Multiplexed pin whose function is selected by the PORTECFG.1 bit.  
(PE1) PE1 is a bidirectional I/O port pin.  
T1OUT is an active-HIGH signal from 8051 Timer-counter1. T1OUT  
outputs a high level for one CLKOUT clock cycle when Timer1 overflows.  
If Timer1 is operated in Mode 3 (two separate timer/counters), T1OUT is  
active when the low byte timer/counter overflows.  
PE2 or  
T2OUT  
I
Multiplexed pin whose function is selected by the PORTECFG.2 bit.  
(PE2) PE2 is a bidirectional I/O port pin.  
T2OUT is the active-HIGH output signalfrom 8051 Timer2. T2OUT isactive  
(HIGH) for one clock cycle when Timer/Counter 2 overflows.  
Document #: 38-08039 Rev. *B  
Page 19 of 50  
CY7C64713/14  
Table 5-1. FX1 Pin Definitions (continued)[8]  
128 100  
56  
TQFP TQFP QFN  
Name  
PE3 or  
RXD0OUT  
Type  
Description  
Multiplexed pin whose function is selected by the PORTECFG.3 bit.  
(PE3) PE3 is a bidirectional I/O port pin.  
Default  
111  
112  
89  
90  
I/O/Z  
I
RXD0OUT is an active-HIGH signal from 8051 UART0. If RXD0OUT is  
selected and UART0 is in Mode 0, this pin provides the output data for  
UART0 only when it is in sync mode. Otherwise it is a 1.  
PE4 or  
I/O/Z  
I
Multiplexed pin whose function is selected by the PORTECFG.4 bit.  
RXD1OUT  
(PE4) PE4 is a bidirectional I/O port pin.  
RXD1OUT is an active-HIGH output from 8051 UART1. When RXD1OUT  
is selected and UART1 is in Mode 0, this pin provides the output data for  
UART1 only when it is in sync mode. In Modes 1, 2, and 3, this pin is HIGH.  
113  
114  
91  
92  
PE5 or  
INT6  
I/O/Z  
I/O/Z  
I
Multiplexed pin whose function is selected by the PORTECFG.5 bit.  
(PE5) PE5 is a bidirectional I/O port pin.  
INT6 is the 8051 INT6 interrupt request input signal. The INT6 pin is edge-  
sensitive, active HIGH.  
PE6 or  
T2EX  
I
Multiplexed pin whose function is selected by the PORTECFG.6 bit.  
(PE6) PE6 is a bidirectional I/O port pin.  
T2EX is an active-high input signal to the 8051 Timer2. T2EX reloads timer  
2 on its falling edge. T2EX is active only if the EXEN2 bit is set in T2CON.  
115  
4
93  
3
PE7 or  
GPIFADR8  
I/O/Z  
Input  
I
Multiplexed pin whose function is selected by the PORTECFG.7 bit.  
(PE7) PE7 is a bidirectional I/O port pin.  
GPIFADR8 is a GPIF address output pin.  
1
2
RDY0 or  
SLRD  
N/A Multiplexed pin whose function is selected by the following bits:  
IFCONFIG[1..0].  
RDY0 is a GPIF input signal.  
SLRD is the input-only read strobe with programmable polarity (FIFOPIN-  
POLAR.3) for the slave FIFOs connected to FD[7..0] or FD[15..0].  
5
4
RDY1 or  
SLWR  
Input  
N/A Multiplexed pin whose function is selected by the following bits:  
IFCONFIG[1..0].  
RDY1 is a GPIF input signal.  
SLWR is the input-only write strobe with programmable polarity (FIFOPIN-  
POLAR.2) for the slave FIFOs connected to FD[7..0] or FD[15..0].  
6
7
5
6
RDY2  
RDY3  
RDY4  
RDY5  
Input  
Input  
Input  
Input  
O/Z  
N/A RDY2 is a GPIF input signal.  
N/A RDY3 is a GPIF input signal.  
N/A RDY4 is a GPIF input signal.  
N/A RDY5 is a GPIF input signal.  
8
7
9
8
69  
54  
29 CTL0 or  
FLAGA  
H
H
H
Multiplexed pin whose function is selected by the following bits:  
IFCONFIG[1..0].  
CTL0 is a GPIF control output.  
FLAGA is a programmable slave-FIFO output status flag signal.  
Defaults to programmable for the FIFO selected by the FIFOADR[1:0] pins.  
70  
71  
55  
56  
30 CTL1 or  
FLAGB  
O/Z  
O/Z  
Multiplexed pin whose function is selected by the following bits:  
IFCONFIG[1..0].  
CTL1 is a GPIF control output.  
FLAGB is a programmable slave-FIFO output status flag signal.  
Defaults to FULL for the FIFO selected by the FIFOADR[1:0] pins.  
31 CTL2 or  
FLAGC  
Multiplexed pin whose function is selected by the following bits:  
IFCONFIG[1..0].  
CTL2 is a GPIF control output.  
FLAGC is a programmable slave-FIFO output status flag signal.  
Defaults to EMPTY for the FIFO selected by the FIFOADR[1:0] pins.  
66  
67  
98  
51  
52  
76  
CTL3  
CTL4  
CTL5  
O/Z  
H
H
H
CTL3 is a GPIF control output.  
CTL4 is a GPIF control output.  
CTL5 is a GPIF control output.  
Output  
Output  
Document #: 38-08039 Rev. *B  
Page 20 of 50  
CY7C64713/14  
Table 5-1. FX1 Pin Definitions (continued)[8]  
128 100  
56  
TQFP TQFP QFN  
Name  
Type  
Description  
Default  
32  
26  
13 IFCLK  
I/O/Z  
Z
Interface Clock, used for synchronously clocking data into or out of the  
slave FIFOs. IFCLK also serves as a timing reference for all slave FIFO  
control signals and GPIF. When internal clocking is used (IFCONFIG.7 = 1)  
the IFCLK pin can be configured to output 30/48 MHz by bits IFCONFIG.5  
and IFCONFIG.6. IFCLK may be inverted, whether internally or externally  
sourced, by setting the bit IFCONFIG.4 =1.  
28  
106  
31  
22  
84  
25  
INT4  
INT5#  
T2  
Input  
Input  
Input  
N/A INT4 is the 8051 INT4 interrupt request input signal. The INT4 pin is edge-  
sensitive, active HIGH.  
N/A INT5# is the 8051 INT5 interrupt request input signal. The INT5 pin is edge-  
sensitive, active LOW.  
N/A T2 is the active-HIGH T2 input signal to 8051 Timer2, which provides the  
input to Timer2 when C/T2 = 1. When C/T2 = 0, Timer2 does not use this  
pin.  
30  
29  
53  
52  
51  
50  
24  
23  
43  
42  
41  
40  
T1  
Input  
N/A T1 is the active-HIGH T1 signal for 8051 Timer1, which provides the input  
to Timer1 when C/T1 is 1. When C/T1 is 0, Timer1 does not use this bit.  
T0  
Input  
N/A T0 is the active-HIGH T0 signal for 8051 Timer0, which provides the input  
to Timer0 when C/T0 is 1. When C/T0 is 0, Timer0 does not use this bit.  
RXD1  
TXD1  
RXD0  
TXD0  
Input  
N/A RXD1is an active-HIGH input signal for 8051 UART1, which provides data  
to the UART in all modes.  
Output  
Input  
H
TXD1is an active-HIGH output pin from 8051 UART1, which provides the  
output clock in sync mode, and the output data in async mode.  
N/A RXD0 is the active-HIGH RXD0 input to 8051 UART0, which provides data  
to the UART in all modes.  
Output  
H
TXD0 is the active-HIGH TXD0 output from 8051 UART0, which provides  
the output clock in sync mode, and the output data in async mode.  
42  
41  
40  
38  
33  
CS#  
WR#  
RD#  
OE#  
Output  
Output  
Output  
Output  
H
H
H
H
CS# is the active-LOW chip select for external memory.  
WR# is the active-LOW write strobe output for external memory.  
RD# is the active-LOW read strobe output for external memory.  
OE# is the active-LOW output enable for external memory.  
32  
31  
27  
79  
14 Reserved Input  
N/A Reserved. Connect to ground.  
101  
44 WAKEUP Input  
N/A USB Wakeup. If the 8051 is in suspend, asserting this pin starts up the  
oscillator and interrupts the 8051 to allow it to exit the suspend mode.  
Holding WAKEUP asserted inhibits the EZ-USBFX1 chip from suspending.  
This pin has programmable polarity (WAKEUP.4).  
36  
37  
29  
30  
15 SCL  
16 SDA  
OD  
OD  
Z
Clock for the I2C interface. Connect to VCC with a 2.2K resistor, even if no  
I2C peripheral is attached.  
Z
Data for I2C interface. Connect to VCC with a 2.2K resistor, even if no I2C  
peripheral is attached.  
2
1
55 VCC  
11 VCC  
17 VCC  
VCC  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
N/A VCC. Connect to 3.3V power source.  
N/A VCC. Connect to 3.3V power source.  
N/A VCC. Connect to 3.3V power source.  
N/A VCC. Connect to 3.3V power source.  
N/A VCC. Connect to 3.3V power source.  
N/A VCC. Connect to 3.3V power source.  
N/A VCC. Connect to 3.3V power source.  
N/A VCC. Connect to 3.3V power source.  
N/A VCC. Connect to 3.3V power source.  
26  
20  
33  
38  
49  
53  
66  
78  
85  
43  
48  
64  
27 VCC  
VCC  
68  
81  
32 VCC  
43 VCC  
VCC  
100  
107  
Document #: 38-08039 Rev. *B  
Page 21 of 50  
CY7C64713/14  
Table 5-1. FX1 Pin Definitions (continued)[8]  
128 100  
56  
TQFP TQFP QFN  
Name  
Type  
Description  
Default  
3
27  
2
56 GND  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
N/A Ground.  
N/A Ground.  
N/A Ground.  
N/A Ground.  
N/A Ground.  
N/A Ground.  
N/A Ground.  
N/A Ground.  
N/A Ground.  
21  
39  
48  
50  
65  
75  
94  
99  
12 GND  
GND  
49  
58  
26 GND  
28 GND  
GND  
65  
80  
93  
41 GND  
GND  
116  
125  
53 GND  
14  
15  
16  
13  
14  
15  
NC  
NC  
NC  
N/A  
N/A  
N/A  
N/A No Connect. This pin must be left open.  
N/A No Connect. This pin must be left open.  
N/A No-connect. This pin must be left open.  
Document #: 38-08039 Rev. *B  
Page 22 of 50  
CY7C64713/14  
6.0  
Register Summary  
FX1 register bit definitions are described in the EZ-USB TRM  
in greater detail.  
Table 6-1. FX1 Register Summary  
Hex Size Name  
Description  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Default  
Access  
GPIF Waveform Memories  
E400 128 WAVEDATA  
GPIF Waveform  
Descriptor 0, 1, 2, 3 data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
xxxxxxxx RW  
E480 128 reserved  
GENERAL CONFIGURATION  
E600  
E601  
1
1
CPUCS  
CPU Control & Status  
0
0
PORTCSTB CLKSPD1 CLKSPD0 CLKINV  
CLKOE  
IFCFG1  
8051RES  
IFCFG0  
00000010 rrbbbbbr  
10000000 RW  
IFCONFIG  
Interface Configuration  
(Ports, GPIF, slave FIFOs)  
IFCLKSRC 3048MHZ  
IFCLKOE  
FLAGB1  
FLAGD1  
0
IFCLKPOL ASYNC  
GSTATE  
FLAGA2  
FLAGC2  
EP2  
[9]  
[9]  
E602  
E603  
E604  
1
1
1
PINFLAGSAB  
Slave FIFO FLAGA and FLAGB3  
FLAGB Pin Configuration  
FLAGB2  
FLAGD2  
0
FLAGB0  
FLAGD0  
0
FLAGA3  
FLAGC3  
EP3  
FLAGA1  
FLAGC1  
EP1  
FLAGA0  
FLAGC0  
EP0  
00000000 RW  
00000000 RW  
PINFLAGSCD  
Slave FIFO FLAGC and FLAGD3  
FLAGD Pin Configuration  
[9]  
FIFORESET  
Restore FIFOS to default NAKALL  
state  
xxxxxxxx  
W
E605  
E606  
E607  
E608  
1
1
1
1
BREAKPT  
BPADDRH  
BPADDRL  
UART230  
Breakpoint Control  
0
0
0
0
BREAK  
A11  
A3  
BPPULSE BPEN  
0
00000000 rrrrbbbr  
xxxxxxxx RW  
xxxxxxxx RW  
Breakpoint Address H  
Breakpoint Address L  
A15  
A7  
0
A14  
A6  
0
A13  
A5  
0
A12  
A4  
0
A10  
A2  
0
A9  
A1  
A8  
A0  
230 Kbaud internally  
generated ref. clock  
0
230UART1 230UART0 00000000 rrrrrrbb  
[9]  
E609  
1
FIFOPINPOLAR  
REVID  
Slave FIFO Interface pins 0  
polarity  
0
PKTEND  
SLOE  
rv4  
SLRD  
rv3  
SLWR  
rv2  
EF  
FF  
00000000 rrbbbbbb  
E60A 1  
E60B 1  
Chip Revision  
rv7  
rv6  
0
rv5  
0
rv1  
rv0  
RevA  
00000001  
R
[9]  
REVCTL  
Chip Revision Control  
0
0
0
0
0
dyn_out  
enh_pkt  
00000000 rrrrrrbb  
UDMA  
E60C 1  
3
GPIFHOLDAMOUNT MSTB Hold Time  
(for UDMA)  
0
0
0
0
0
HOLDTIME1 HOLDTIME0 00000000 rrrrrrbb  
reserved  
ENDPOINT CONFIGURATION  
E610  
E611  
1
1
EP1OUTCFG  
Endpoint 1-OUT  
Configuration  
VALID  
VALID  
0
0
TYPE1  
TYPE1  
TYPE0  
TYPE0  
0
0
0
0
0
0
0
0
10100000 brbbrrrr  
10100000 brbbrrrr  
EP1INCFG  
Endpoint 1-IN  
Configuration  
E612  
E613  
E614  
E615  
1
1
1
1
2
1
EP2CFG  
EP4CFG  
EP6CFG  
EP8CFG  
reserved  
Endpoint 2 Configuration VALID  
Endpoint 4 Configuration VALID  
Endpoint 6 Configuration VALID  
Endpoint 8 Configuration VALID  
DIR  
DIR  
DIR  
DIR  
TYPE1  
TYPE1  
TYPE1  
TYPE1  
TYPE0  
TYPE0  
TYPE0  
TYPE0  
SIZE  
0
0
0
0
0
BUF1  
0
BUF0  
0
10100010 bbbbbrbb  
10100000 bbbbrrrr  
11100010 bbbbbrbb  
11100000 bbbbrrrr  
SIZE  
0
BUF1  
0
BUF0  
0
[9]  
[9]  
[9]  
[9]  
E618  
E619  
EP2FIFOCFG  
Endpoint 2 / slave FIFO  
configuration  
0
0
0
0
INFM1  
INFM1  
INFM1  
INFM1  
OEP1  
OEP1  
OEP1  
OEP1  
AUTOOUT AUTOIN  
AUTOOUT AUTOIN  
AUTOOUT AUTOIN  
AUTOOUT AUTOIN  
ZEROLENIN 0  
ZEROLENIN 0  
ZEROLENIN 0  
ZEROLENIN 0  
WORDWIDE 00000101 rbbbbbrb  
WORDWIDE 00000101 rbbbbbrb  
WORDWIDE 00000101 rbbbbbrb  
WORDWIDE 00000101 rbbbbbrb  
1
EP4FIFOCFG  
EP6FIFOCFG  
EP8FIFOCFG  
reserved  
Endpoint 4 / slave FIFO  
configuration  
E61A 1  
E61B 1  
E61C 4  
Endpoint 6 / slave FIFO  
configuration  
Endpoint 8 / slave FIFO  
configuration  
[9]  
E620  
E621  
E622  
E623  
E624  
E625  
E626  
E627  
1
1
1
1
1
1
1
1
EP2AUTOINLENH Endpoint 2 AUTOIN  
0
0
0
0
0
PL10  
PL2  
0
PL9  
PL8  
PL0  
PL8  
PL0  
PL8  
PL0  
PL8  
PL0  
00000010 rrrrrbbb  
00000000 RW  
Packet Length H  
[9]  
EP2AUTOINLENL  
Endpoint 2 AUTOIN  
Packet Length L  
PL7  
0
PL6  
0
PL5  
0
PL4  
0
PL3  
0
PL1  
PL9  
PL1  
PL9  
PL1  
PL9  
PL1  
[9]  
EP4AUTOINLENH Endpoint 4 AUTOIN  
00000010 rrrrrrbb  
00000000 RW  
Packet Length H  
[9]  
EP4AUTOINLENL  
Endpoint 4 AUTOIN  
Packet Length L  
PL7  
0
PL6  
0
PL5  
0
PL4  
0
PL3  
0
PL2  
PL10  
PL2  
0
[9]  
EP6AUTOINLENH Endpoint 6 AUTOIN  
00000010 rrrrrbbb  
00000000 RW  
Packet Length H  
[9]  
EP6AUTOINLENL  
Endpoint 6 AUTOIN  
Packet Length L  
PL7  
0
PL6  
0
PL5  
0
PL4  
0
PL3  
0
[9]  
EP8AUTOINLENH Endpoint 8 AUTOIN  
00000010 rrrrrrbb  
00000000 RW  
Packet Length H  
[9]  
EP8AUTOINLENL  
Endpoint 8 AUTOIN  
Packet Length L  
PL7  
PL6  
PL5  
PL4  
PL3  
PL2  
E628  
E629  
1
1
ECCCFG  
ECCRESET  
ECC1B0  
ECC1B1  
ECC1B2  
ECC2B0  
ECC2B1  
ECC Configuration  
ECC Reset  
0
0
0
0
0
0
0
ECCM  
x
00000000 rrrrrrrb  
x
x
x
x
x
x
x
00000000  
11111111  
11111111  
11111111  
11111111  
11111111  
W
R
R
R
R
R
E62A 1  
E62B 1  
E62C 1  
E62D 1  
E62E 1  
Note:  
ECC1 Byte 0 Address  
ECC1 Byte 1 Address  
ECC1 Byte 2 Address  
ECC2 Byte 0 Address  
ECC2 Byte 1 Address  
LINE15  
LINE7  
COL5  
LINE15  
LINE7  
LINE14  
LINE6  
COL4  
LINE14  
LINE6  
LINE13  
LINE5  
COL3  
LINE13  
LINE5  
LINE12  
LINE4  
COL2  
LINE12  
LINE4  
LINE11  
LINE3  
COL1  
LINE11  
LINE3  
LINE10  
LINE2  
COL0  
LINE10  
LINE2  
LINE9  
LINE1  
LINE17  
LINE9  
LINE1  
LINE8  
LINE0  
LINE16  
LINE8  
LINE0  
9. Read and writes to these register may require synchronization delay, see Technical Reference Manual for Synchronization Delay.”  
Document #: 38-08039 Rev. *B  
Page 23 of 50  
CY7C64713/14  
Table 6-1. FX1 Register Summary (continued)  
Hex Size Name  
E62F 1 ECC2B2  
Description  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
0
b0  
0
Default  
Access  
R
ECC2 Byte 2 Address  
COL5  
COL4  
COL3  
COL2  
COL1  
COL0  
11111111  
[9]  
[9]  
E630  
E630  
1
1
EP2FIFOPFH  
Endpoint 2 / slave FIFO DECIS  
ProgrammableFlagHISO  
Mode  
PKTSTAT  
PKTSTAT  
IN: PKTS[2] IN: PKTS[1] IN: PKTS[0] 0  
OUT:PFC12 OUT:PFC11 OUT:PFC10  
PFC9  
PFC9  
PFC8  
10001000 bbbbbrbb  
EP2FIFOPFH  
Endpoint 2 / slave FIFO DECIS  
Programmable Flag H  
Non-ISO Mode  
OUT:PFC12 OUT:PFC11 OUT:PFC10 0  
IN:PKTS[2] 10001000 bbbbbrbb  
OUT:PFC8  
[9]  
[9]  
E631  
1
EP2FIFOPFL  
Endpoint 2 / slave FIFO IN:PKTS[1] IN:PKTS[0] PFC5  
Programmable Flag L OUT:PFC7 OUT:PFC6  
PFC4  
PFC3  
PFC2  
PFC1  
PFC0  
00000000 RW  
E632  
E632  
1
1
EP4FIFOPFH  
Endpoint 4 / slave FIFO DECIS  
ProgrammableFlagHISO  
Mode  
PKTSTAT  
PKTSTAT  
0
0
IN: PKTS[1] IN: PKTS[0] 0  
OUT:PFC10 OUT:PFC9  
0
0
PFC8  
PFC8  
10001000 bbrbbrrb  
10001000 bbrbbrrb  
[9]  
EP4FIFOPFH  
Endpoint 4 / slave FIFO DECIS  
Programmable Flag H  
Non-ISO Mode  
OUT:PFC10 OUT:PFC9  
0
[9]  
[9]  
E633  
1
EP4FIFOPFL  
Endpoint 4 / slave FIFO IN: PKTS[1] IN: PKTS[0] PFC5  
Programmable Flag L OUT:PFC7 OUT:PFC6  
PFC4  
PFC3  
PFC2  
PFC1  
PFC0  
PFC8  
00000000 RW  
E634  
E634  
1
1
EP6FIFOPFH  
Endpoint 6 / slave FIFO DECIS  
ProgrammableFlagHISO  
Mode  
PKTSTAT  
PKTSTAT  
INPKTS[2] IN: PKTS[1] IN: PKTS[0] 0  
OUT:PFC12 OUT:PFC11 OUT:PFC10  
PFC9  
PFC9  
00001000 bbbbbrbb  
[9]  
EP6FIFOPFH  
Endpoint 6 / slave FIFO DECIS  
Programmable Flag H  
Non-ISO Mode  
OUT:PFC12 OUT:PFC11 OUT:PFC10 0  
IN:PKTS[2] 00001000 bbbbbrbb  
OUT:PFC8  
[9]  
[9]  
E635  
1
EP6FIFOPFL  
Endpoint 6 / slave FIFO IN:PKTS[1] IN:PKTS[0] PFC5  
Programmable Flag L OUT:PFC7 OUT:PFC6  
PFC4  
PFC3  
PFC2  
PFC1  
PFC0  
00000000 RW  
E636  
E636  
1
1
EP8FIFOPFH  
Endpoint 8 / slave FIFO DECIS  
ProgrammableFlagHISO  
Mode  
PKTSTAT  
PKTSTAT  
0
0
IN: PKTS[1] IN: PKTS[0] 0  
OUT:PFC10 OUT:PFC9  
0
0
PFC8  
PFC8  
00001000 bbrbbrrb  
00001000 bbrbbrrb  
[9]  
EP8FIFOPFH  
Endpoint 8 / slave FIFO DECIS  
Programmable Flag H  
Non-ISO Mode  
OUT:PFC10 OUT:PFC9  
0
[9]  
[9]  
E637  
E637  
1
1
EP8FIFOPFL  
ISO Mode  
Endpoint 8 / slave FIFO PFC7  
Programmable Flag L  
PFC6  
PFC5  
PFC4  
PFC4  
PFC3  
PFC3  
PFC2  
PFC2  
PFC1  
PFC1  
PFC0  
PFC0  
00000000 RW  
00000000 RW  
EP8FIFOPFL  
Endpoint 8 / slave FIFO IN: PKTS[1] IN: PKTS[0] PFC5  
Programmable Flag L OUT:PFC7 OUT:PFC6  
Non-ISO Mode  
8
1
1
1
1
4
1
7
reserved  
E640  
E641  
E642  
E643  
E644  
E648  
E649  
reserved  
reserved  
reserved  
reserved  
reserved  
[9]  
INPKTEND  
Force IN Packet End  
Skip  
0
0
0
0
0
0
EP3  
EP3  
EP2  
EP2  
EP1  
EP1  
EP0  
EP0  
xxxxxxxx  
xxxxxxxx  
W
W
[9]  
OUTPKTEND  
INTERRUPTS  
Force OUT Packet End Skip  
[9]  
E650  
E651  
E652  
E653  
E654  
E655  
E656  
E657  
E658  
1
1
1
1
1
1
1
1
1
EP2FIFOIE  
Endpoint 2 slave FIFO  
Flag Interrupt Enable  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
EDGEPF  
PF  
PF  
PF  
PF  
PF  
PF  
PF  
PF  
EP2  
EF  
EF  
EF  
EF  
EF  
EF  
EF  
EF  
EP1  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
EP0  
00000000 RW  
[9,10]  
EP2FIFOIRQ  
Endpoint 2 slave FIFO  
Flag Interrupt Request  
0
0
0
00000111 rrrrrbbb  
00000000 RW  
[9]  
EP4FIFOIE  
Endpoint 4 slave FIFO  
Flag Interrupt Enable  
0
0
EDGEPF  
[9,10]  
[9,10]  
[9,10]  
EP4FIFOIRQ  
Endpoint 4 slave FIFO  
Flag Interrupt Request  
0
0
0
00000111 rrrrrbbb  
00000000 RW  
[9]  
EP6FIFOIE  
Endpoint 6 slave FIFO  
Flag Interrupt Enable  
0
0
EDGEPF  
EP6FIFOIRQ  
Endpoint 6 slave FIFO  
Flag Interrupt Request  
0
0
0
00000110 rrrrrbbb  
00000000 RW  
[9]  
EP8FIFOIE  
Endpoint 8 slave FIFO  
Flag Interrupt Enable  
0
0
EDGEPF  
EP8FIFOIRQ  
IBNIE  
Endpoint 8 slave FIFO  
Flag Interrupt Request  
0
0
0
00000110 rrrrrbbb  
00000000 RW  
IN-BULK-NAK Interrupt  
Enable  
EP8  
EP6  
EP4  
Note:  
10. SFRs not part of the standard 8051 architecture.  
The register can only be reset, it cannot be set.  
Document #: 38-08039 Rev. *B  
Page 24 of 50  
CY7C64713/14  
Table 6-1. FX1 Register Summary (continued)  
Hex Size Name  
Description  
b7  
0
b6  
0
b5  
b4  
b3  
b2  
b1  
b0  
Default  
Access  
[10]  
E659  
1
IBNIRQ  
IN-BULK-NAK interrupt  
Request  
EP8  
EP6  
EP4  
EP2  
EP1  
EP0  
00xxxxxx rrbbbbbb  
E65A 1  
E65B 1  
NAKIE  
Endpoint Ping-NAK / IBN EP8  
Interrupt Enable  
EP6  
EP6  
EP4  
EP4  
EP2  
EP2  
EP1  
EP1  
EP0  
EP0  
0
0
IBN  
IBN  
00000000 RW  
[10]  
[10]  
NAKIRQ  
Endpoint Ping-NAK / IBN EP8  
Interrupt Request  
xxxxxx0x bbbbbbrb  
E65C 1  
E65D 1  
E65E 1  
USBIE  
USBIRQ  
EPIE  
USB Int Enables  
0
EP0ACK  
EP0ACK  
EP6  
0
URES  
URES  
EP2  
SUSP  
SUTOK  
SUTOK  
EP1IN  
SOF  
SUDAV  
SUDAV  
EP0IN  
00000000 RW  
USB Interrupt Requests  
0
0
SUSP  
SOF  
0xxxxxxx rbbbbbbb  
00000000 RW  
Endpoint Interrupt  
Enables  
EP8  
EP4  
EP1OUT  
EP0OUT  
[10]  
E65F 1  
EPIRQ  
Endpoint Interrupt  
Requests  
EP8  
EP6  
EP4  
EP2  
EP1OUT  
EP1IN  
EP0OUT  
EP0IN  
0
RW  
[9]  
E660  
E661  
E662  
1
1
1
GPIFIE  
GPIF Interrupt Enable  
GPIF Interrupt Request  
0
0
0
0
0
0
0
0
0
0
GPIFWF  
GPIFWF  
0
GPIFDONE 00000000 RW  
GPIFDONE 000000xx RW  
[9]  
GPIFIRQ  
0
0
0
0
USBERRIE  
USB Error Interrupt  
Enables  
ISOEP8  
ISOEP6  
ISOEP4  
ISOEP2  
ERRLIMIT  
ERRLIMIT  
LIMIT0  
00000000 RW  
E663  
E664  
1
1
USBERRIRQ[10]  
ERRCNTLIM  
USB Error Interrupt  
Requests  
ISOEP8  
EC3  
ISOEP6  
EC2  
ISOEP4  
EC1  
ISOEP2  
EC0  
0
0
0
0000000x bbbbrrrb  
xxxx0100 rrrrbbbb  
USB Error counter and  
limit  
LIMIT3  
LIMIT2  
LIMIT1  
E665  
E666  
1
1
CLRERRCNT  
INT2IVEC  
Clear Error Counter EC3:0x  
x
x
x
x
x
x
x
xxxxxxxx  
W
R
Interrupt 2 (USB)  
Autovector  
0
1
0
I2V4  
I2V3  
I2V2  
I2V1  
I2V0  
0
0
00000000  
E667  
1
INT4IVEC  
Interrupt 4 (slave FIFO &  
GPIF) Autovector  
0
0
I4V3  
0
I4V2  
0
I4V1  
I4V0  
0
0
0
10000000  
R
E668  
E669  
1
7
INTSETUP  
Interrupt 2&4 setup  
AV2EN  
INT4SRC  
AV4EN  
00000000 RW  
reserved  
INPUT / OUTPUT  
PORTACFG  
E670  
E671  
E672  
1
1
1
I/O PORTA Alternate  
Configuration  
FLAGD  
GPIFA7  
GPIFA8  
0
SLCS  
GPIFA6  
T2EX  
0
0
0
0
0
INT1  
GPIFA1  
T1OUT  
0
INT0  
00000000 RW  
00000000 RW  
00000000 RW  
00000000 rrrrrrrb  
PORTCCFG  
PORTECFG  
I/O PORTC Alternate  
Configuration  
GPIFA5  
INT6  
0
GPIFA4  
GPIFA3  
GPIFA2  
GPIFA0  
T0OUT  
EXTCLK  
I/O PORTE Alternate  
Configuration  
RXD1OUT RXD0OUT T2OUT  
E673  
E677  
E678  
4
1
1
XTALINSRC  
reserved  
I2CS  
XTALIN Clock Source  
0
0
0
I²C Bus  
Control & Status  
START  
STOP  
d6  
LASTRD  
ID1  
d4  
0
ID0  
d3  
0
BERR  
d2  
ACK  
d1  
DONE  
d0  
000xx000 bbbrrrrr  
xxxxxxxx RW  
00000000 RW  
xxxxxxxx RW  
xxxxxxxx RW  
E679  
1
I2DAT  
I²C Bus  
Data  
d7  
0
d5  
0
E67A 1  
E67B 1  
E67C 1  
I2CTL  
I²C Bus  
Control  
0
0
STOPIE  
D1  
400KHZ  
D0  
XAUTODAT1  
XAUTODAT2  
UDMA CRC  
Autoptr1 MOVX access, D7  
when APTREN=1  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
Autoptr2 MOVX access, D7  
when APTREN=1  
D1  
D0  
[9]  
E67D 1  
E67E 1  
E67F 1  
UDMACRCH  
UDMA CRC MSB  
UDMA CRC LSB  
UDMA CRC Qualifier  
CRC15  
CRC14  
CRC6  
0
CRC13  
CRC5  
0
CRC12  
CRC4  
0
CRC11  
CRC3  
CRC10  
CRC2  
CRC9  
CRC1  
CRC8  
CRC0  
01001010 RW  
10111010 RW  
[9]  
UDMACRCL  
CRC7  
UDMACRC-  
QUALIFIER  
QENABLE  
QSTATE  
QSIGNAL2 QSIGNAL1 QSIGNAL0 00000000 brrrbbbb  
USB CONTROL  
USBCS  
E680  
E681  
E682  
E683  
E684  
E685  
E686  
E687  
E688  
1
1
1
1
1
1
1
1
2
USB Control & Status  
Put chip into suspend  
0
x
0
0
0
DISCON  
NOSYNSOF RENUM  
SIGRSUME x0000000 rrrrbbbb  
SUSPEND  
WAKEUPCS  
TOGCTL  
x
x
x
x
x
x
x
xxxxxxxx  
W
Wakeup Control & Status WU2  
WU  
S
WU2POL  
WUPOL  
0
DPEN  
EP2  
FC10  
FC2  
WU2EN  
EP1  
FC9  
FC1  
WUEN  
EP0  
FC8  
FC0  
xx000101 bbbbrbbb  
x0000000 rrrbbbbb  
Toggle Control  
Q
R
IO  
EP3  
0
USBFRAMEH  
USBFRAMEL  
reserved  
USB Frame count H  
USB Frame count L  
0
0
0
0
00000xxx  
xxxxxxxx  
R
R
FC7  
FC6  
FC5  
FC4  
FC3  
FNADDR  
USB Function address  
0
FA6  
FA5  
FA4  
FA3  
FA2  
FA1  
FA0  
0xxxxxxx  
R
reserved  
ENDPOINTS  
[9]  
E68A 1  
E68B 1  
E68C 1  
E68D 1  
EP0BCH  
Endpoint 0 Byte Count H (BC15)  
Endpoint 0 Byte Count L (BC7)  
(BC14)  
BC6  
(BC13)  
BC5  
(BC12)  
BC4  
(BC11)  
BC3  
(BC10)  
BC2  
(BC9)  
BC1  
(BC8)  
BC0  
xxxxxxxx RW  
xxxxxxxx RW  
[9]  
EP0BCL  
reserved  
EP1OUTBC  
Endpoint 1 OUT Byte  
Count  
0
BC6  
BC5  
BC4  
BC3  
BC2  
BC1  
BC0  
xxxxxxxx RW  
E68E 1  
E68F 1  
reserved  
EP1INBC  
Endpoint 1 IN Byte Count 0  
Endpoint 2 Byte Count H  
Endpoint 2 Byte Count L BC7/SKIP  
BC6  
0
BC5  
0
BC4  
0
BC3  
0
BC2  
BC10  
BC2  
BC1  
BC9  
BC1  
BC0  
BC8  
BC0  
xxxxxxxx RW  
xxxxxxxx RW  
xxxxxxxx RW  
[9]  
E690  
E691  
E692  
E694  
E695  
E696  
1
1
2
1
1
2
EP2BCH  
0
[9]  
EP2BCL  
BC6  
BC5  
BC4  
BC3  
reserved  
[9]  
EP4BCH  
Endpoint 4 Byte Count H  
0
0
0
0
0
0
BC9  
BC1  
BC8  
BC0  
xxxxxxxx RW  
xxxxxxxx RW  
[9]  
EP4BCL  
Endpoint 4 Byte Count L BC7/SKIP  
BC6  
BC5  
BC4  
BC3  
BC2  
reserved  
Document #: 38-08039 Rev. *B  
Page 25 of 50  
CY7C64713/14  
Table 6-1. FX1 Register Summary (continued)  
Hex Size Name  
Description  
b7  
0
b6  
0
b5  
0
b4  
0
b3  
0
b2  
b1  
b0  
Default  
Access  
[9]  
E698  
E699  
1
1
EP6BCH  
Endpoint 6 Byte Count H  
BC10  
BC2  
BC9  
BC1  
BC8  
BC0  
xxxxxxxx RW  
xxxxxxxx RW  
[9]  
EP6BCL  
reserved  
Endpoint 6 Byte Count L BC7/SKIP  
BC6  
BC5  
BC4  
BC3  
E69A 2  
E69C 1  
E69D 1  
E69E 2  
E6A0 1  
[9]  
EP8BCH  
Endpoint 8 Byte Count H  
0
0
0
0
0
0
BC9  
BC1  
BC8  
BC0  
xxxxxxxx RW  
xxxxxxxx RW  
[9]  
EP8BCL  
reserved  
EP0CS  
Endpoint 8 Byte Count L BC7/SKIP  
BC6  
BC5  
BC4  
BC3  
BC2  
Endpoint 0 Control and HSNAK  
Status  
0
0
0
0
0
BUSY  
BUSY  
BUSY  
0
STALL  
STALL  
STALL  
STALL  
STALL  
STALL  
STALL  
FF  
10000000 bbbbbbrb  
00000000 bbbbbbrb  
00000000 bbbbbbrb  
00101000 rrrrrrrb  
00101000 rrrrrrrb  
00000100 rrrrrrrb  
00000100 rrrrrrrb  
E6A1 1  
E6A2 1  
E6A3 1  
E6A4 1  
E6A5 1  
E6A6 1  
E6A7 1  
E6A8 1  
E6A9 1  
E6AA 1  
E6AB 1  
E6AC 1  
E6AD 1  
E6AE 1  
E6AF 1  
E6B0 1  
E6B1 1  
E6B2 1  
E6B3 1  
E6B4 1  
E6B5 1  
EP1OUTCS  
EP1INCS  
Endpoint 1 OUT Control  
and Status  
0
0
0
0
0
0
Endpoint 1 IN Control and 0  
Status  
0
0
0
0
0
EP2CS  
Endpoint 2 Control and  
Status  
0
NPAK2  
NPAK1  
NPAK0  
NPAK0  
NPAK0  
NPAK0  
0
FULL  
FULL  
FULL  
FULL  
0
EMPTY  
EMPTY  
EMPTY  
EMPTY  
PF  
EP4CS  
Endpoint 4 Control and  
Status  
0
0
NPAK1  
0
EP6CS  
Endpoint 6 Control and  
Status  
0
NPAK2  
NPAK1  
0
EP8CS  
Endpoint 8 Control and  
Status  
0
0
NPAK1  
0
EP2FIFOFLGS  
EP4FIFOFLGS  
EP6FIFOFLGS  
EP8FIFOFLGS  
EP2FIFOBCH  
EP2FIFOBCL  
EP4FIFOBCH  
EP4FIFOBCL  
EP6FIFOBCH  
EP6FIFOBCL  
EP8FIFOBCH  
EP8FIFOBCL  
SUDPTRH  
Endpoint 2 slave FIFO  
Flags  
0
0
0
EF  
00000010  
00000010  
00000110  
00000110  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
R
R
R
R
R
R
R
R
R
R
R
R
Endpoint 4 slave FIFO  
Flags  
0
0
0
0
0
PF  
EF  
FF  
Endpoint 6 slave FIFO  
Flags  
0
0
0
0
0
PF  
EF  
FF  
Endpoint 8 slave FIFO  
Flags  
0
0
0
0
0
PF  
EF  
FF  
Endpoint 2 slave FIFO  
total byte count H  
0
0
0
BC12  
BC4  
0
BC11  
BC3  
0
BC10  
BC2  
BC10  
BC2  
BC10  
BC2  
BC10  
BC2  
A10  
A2  
BC9  
BC1  
BC9  
BC1  
BC9  
BC1  
BC9  
BC1  
A9  
BC8  
BC0  
BC8  
BC0  
BC8  
BC0  
BC8  
BC0  
A8  
Endpoint 2 slave FIFO  
total byte count L  
BC7  
0
BC6  
0
BC5  
0
Endpoint 4 slave FIFO  
total byte count H  
Endpoint 4 slave FIFO  
total byte count L  
BC7  
0
BC6  
0
BC5  
0
BC4  
0
BC3  
BC11  
BC3  
0
Endpoint 6 slave FIFO  
total byte count H  
Endpoint 6 slave FIFO  
total byte count L  
BC7  
0
BC6  
0
BC5  
0
BC4  
0
Endpoint 8 slave FIFO  
total byte count H  
Endpoint 8 slave FIFO  
total byte count L  
BC7  
BC6  
A14  
A6  
0
BC5  
A13  
A5  
0
BC4  
A12  
A4  
BC3  
A11  
A3  
Setup Data Pointer high A15  
address byte  
xxxxxxxx RW  
SUDPTRL  
Setup Data Pointer low ad- A7  
dress byte  
A1  
0
xxxxxxx0 bbbbbbbr  
SUDPTRCTL  
Setup Data Pointer Auto  
Mode  
0
0
0
0
0
SDPAUTO 00000001 RW  
2
reserved  
E6B8 8  
SETUPDAT  
8 bytes of setup data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
xxxxxxxx  
R
SETUPDAT[0] =  
bmRequestType  
SETUPDAT[1] =  
bmRequest  
SETUPDAT[2:3] = wValue  
SETUPDAT[4:5] = wIndex  
SETUPDAT[6:7] =  
wLength  
GPIF  
E6C0 1  
E6C1 1  
GPIFWFSELECT  
GPIFIDLECS  
Waveform Selector  
SINGLEWR1 SINGLEWR0 SINGLERD1 SINGLERD0 FIFOWR1 FIFOWR0  
FIFORD1  
0
FIFORD0  
IDLEDRV  
11100100 RW  
10000000 RW  
GPIF Done, GPIF IDLE DONE  
drive mode  
0
0
0
0
0
E6C2 1  
E6C3 1  
E6C4 1  
E6C5 1  
GPIFIDLECTL  
GPIFCTLCFG  
Inactive Bus, CTL states  
CTL Drive Type  
0
0
CTL5  
CTL5  
0
CTL4  
CTL4  
0
CTL3  
CTL3  
0
CTL2  
CTL2  
0
CTL1  
CTL1  
0
CTL0  
11111111 RW  
00000000 RW  
00000000 RW  
00000000 RW  
TRICTL  
0
0
CTL0  
[9]  
GPIFADRH  
GPIF Address H  
0
GPIFA8  
GPIFA0  
[9]  
GPIFADRL  
GPIF Address L  
GPIFA7  
GPIFA6  
GPIFA5  
GPIFA4  
GPIFA3  
GPIFA2  
GPIFA1  
FLOWSTATE  
FLOWSTATE  
E6C6 1  
Flowstate Enable and  
Selector  
FSE  
0
0
0
0
FS2  
FS1  
FS0  
00000000 brrrrbbb  
E6C7 1  
E6C8 1  
FLOWLOGIC  
Flowstate Logic  
LFUNC1  
CTL0E3  
LFUNC0  
CTL0E2  
TERMA2  
TERMA1  
TERMA0  
CTL3  
TERMB2  
CTL2  
TERMB1  
CTL1  
TERMB0  
CTL0  
00000000 RW  
00000000 RW  
FLOWEQ0CTL  
CTL-Pin States in  
Flowstate  
(when Logic = 0)  
CTL0E1/  
CTL5  
CTL0E0/  
CTL4  
E6C9 1  
E6CA 1  
FLOWEQ1CTL  
CTL-Pin States in Flow- CTL0E3  
state (when Logic = 1)  
CTL0E2  
CTL0E1/  
CTL5  
CTL0E0/  
CTL4  
CTL3  
CTL2  
CTL1  
CTL0  
00000000 RW  
00000000 RW  
FLOWHOLDOFF  
Holdoff Configuration  
HOPERIOD3 HOPERIOD2 HOPERIOD1 HOPERIOD HOSTATE HOCTL2  
0
HOCTL1  
HOCTL0  
Document #: 38-08039 Rev. *B  
Page 26 of 50  
CY7C64713/14  
Table 6-1. FX1 Register Summary (continued)  
Hex Size Name  
Description  
b7  
b6  
b5  
b4  
b3  
0
b2  
b1  
b0  
Default  
Access  
E6CB 1  
FLOWSTB  
Flowstate Strobe  
Configuration  
SLAVE  
RDYASYNC CTLTOGL  
SUSTAIN  
MSTB2  
MSTB1  
MSTB0  
00100000 RW  
E6CC 1  
FLOWSTBEDGE  
Flowstate Rising/Falling  
Edge Configuration  
0
0
0
0
0
0
FALLING  
RISING  
00000001 rrrrrrbb  
E6CD 1  
E6CE 1  
FLOWSTBPERIOD Master-Strobe Half-Period D7  
[9]  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
00000010 RW  
00000000 RW  
GPIFTCB3  
GPIFTCB2  
GPIFTCB1  
GPIFTCB0  
GPIF Transaction Count TC31  
Byte 3  
TC30  
TC29  
TC28  
TC27  
TC26  
TC25  
TC24  
[9]  
[9]  
[9]  
E6CF 1  
E6D0 1  
E6D1 1  
2
GPIF Transaction Count TC23  
Byte 2  
TC22  
TC14  
TC6  
TC21  
TC13  
TC5  
TC20  
TC12  
TC4  
TC19  
TC11  
TC3  
TC18  
TC10  
TC2  
TC17  
TC9  
TC1  
TC16  
TC8  
TC0  
00000000 RW  
00000000 RW  
00000001 RW  
00000000 RW  
GPIF Transaction Count TC15  
Byte 1  
GPIF Transaction Count TC7  
Byte 0  
reserved  
reserved  
reserved  
[9]  
E6D2 1  
E6D3 1  
EP2GPIFFLGSEL  
Endpoint 2 GPIF Flag  
select  
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
FS1  
0
FS0  
00000000 RW  
EP2GPIFPFSTOP Endpoint 2 GPIF stop  
FIFO2FLAG 00000000 RW  
transaction on prog. flag  
[9]  
E6D4 1  
3
EP2GPIFTRIG  
reserved  
Endpoint 2 GPIF Trigger  
x
x
xxxxxxxx  
W
reserved  
reserved  
[9]  
E6DA 1  
E6DB 1  
EP4GPIFFLGSEL  
Endpoint 4 GPIF Flag  
select  
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
FS1  
0
FS0  
00000000 RW  
EP4GPIFPFSTOP Endpoint 4 GPIF stop  
FIFO4FLAG 00000000 RW  
transaction on GPIF Flag  
[9]  
E6DC 1  
3
EP4GPIFTRIG  
reserved  
Endpoint 4 GPIF Trigger  
x
x
xxxxxxxx  
W
reserved  
reserved  
[9]  
E6E2 1  
E6E3 1  
EP6GPIFFLGSEL  
Endpoint 6 GPIF Flag  
select  
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
FS1  
0
FS0  
00000000 RW  
EP6GPIFPFSTOP Endpoint 6 GPIF stop  
FIFO6FLAG 00000000 RW  
transaction on prog. flag  
[9]  
E6E4 1  
3
EP6GPIFTRIG  
reserved  
Endpoint 6 GPIF Trigger  
x
x
xxxxxxxx  
W
reserved  
reserved  
[9]  
E6EA 1  
E6EB 1  
EP8GPIFFLGSEL  
Endpoint 8 GPIF Flag  
select  
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
FS1  
0
FS0  
00000000 RW  
EP8GPIFPFSTOP Endpoint 8 GPIF stop  
FIFO8FLAG 00000000 RW  
transaction on prog. flag  
[9]  
E6EC 1  
3
EP8GPIFTRIG  
reserved  
Endpoint 8 GPIF Trigger  
x
x
xxxxxxxx  
W
E6F0 1  
XGPIFSGLDATH  
GPIF Data H  
D15  
D14  
D6  
D13  
D12  
D4  
D4  
0
D11  
D3  
D3  
0
D10  
D2  
D2  
0
D9  
D1  
D1  
0
D8  
D0  
D0  
0
xxxxxxxx RW  
xxxxxxxx RW  
(16-bit mode only)  
E6F1 1  
E6F2 1  
E6F3 1  
XGPIFSGLDATLX  
Read/WriteGPIF Data L & D7  
trigger transaction  
D5  
XGPIFSGLDATL-  
NOX  
Read GPIF Data L, no  
transaction trigger  
D7  
D6  
D5  
xxxxxxxx  
R
GPIFREADYCFG  
InternalRDY, Sync/Async, INTRDY  
RDY pin states  
SAS  
TCXRDY5  
00000000 bbbrrrrr  
E6F4 1  
E6F5 1  
E6F6 2  
GPIFREADYSTAT  
GPIFABORT  
GPIF Ready Status  
0
x
0
x
RDY5  
x
RDY4  
x
RDY3  
x
RDY2  
x
RDY1  
x
RDY0  
x
00xxxxxx  
xxxxxxxx  
R
Abort GPIF Waveforms  
W
reserved  
ENDPOINT BUFFERS  
E740 64 EP0BUF  
E780 64 EP10UTBUF  
E7C0 64 EP1INBUF  
2048 reserved  
EP0-IN/-OUT buffer  
EP1-OUT buffer  
EP1-IN buffer  
D7  
D7  
D7  
D6  
D6  
D6  
D5  
D5  
D5  
D4  
D4  
D4  
D3  
D3  
D3  
D2  
D2  
D2  
D1  
D1  
D1  
D0  
D0  
D0  
xxxxxxxx RW  
xxxxxxxx RW  
xxxxxxxx RW  
RW  
F000 1023 EP2FIFOBUF  
64/1023-byte EP 2 / slave D7  
FIFO buffer (IN or OUT)  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
xxxxxxxx RW  
F400 64 EP4FIFOBUF  
64 byte EP 4 / slave FIFO D7  
buffer (IN or OUT)  
xxxxxxxx RW  
F600 64 reserved  
F800 1023 EP6FIFOBUF  
64/1023-byte EP 6 / slave D7  
FIFO buffer (IN or OUT)  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
xxxxxxxx RW  
xxxxxxxx RW  
FC00 64 EP8FIFOBUF  
FE00 64 reserved  
64 byte EP 8 / slave FIFO D7  
buffer (IN or OUT)  
xxxx  
I²C Configuration Byte  
0
DISCON  
D6  
0
0
0
0
0
400KHZ  
D0  
xxxxxxxx n/a  
[[11]]  
Special Function Registers (SFRs)  
[10]  
80  
1
IOA  
Port A (bit addressable) D7  
D5  
D4  
D3  
D2  
D1  
xxxxxxxx RW  
Document #: 38-08039 Rev. *B  
Page 27 of 50  
CY7C64713/14  
Table 6-1. FX1 Register Summary (continued)  
Hex Size Name  
Description  
b7  
b6  
b5  
b4  
b3  
D3  
A3  
A11  
A3  
A11  
0
b2  
D2  
A2  
A10  
A2  
A10  
0
b1  
D1  
A1  
A9  
A1  
A9  
0
b0  
Default  
Access  
81  
82  
83  
84  
85  
86  
87  
88  
1
1
1
1
1
1
1
1
SP  
Stack Pointer  
D7  
D6  
A6  
A14  
A6  
A14  
0
D5  
A5  
A13  
A5  
A13  
0
D4  
A4  
A12  
A4  
A12  
0
D0  
00000111 RW  
00000000 RW  
00000000 RW  
00000000 RW  
00000000 RW  
00000000 RW  
00110000 RW  
00000000 RW  
DPL0  
DPH0  
Data Pointer 0 L  
Data Pointer 0 H  
Data Pointer 1 L  
Data Pointer 1 H  
Data Pointer 0/1 select  
Power Control  
A7  
A0  
A15  
A7  
A8  
[10]  
DPL1  
DPH1  
A0  
[10]  
A15  
0
A8  
[10]  
DPS  
SEL  
IDLE  
IT0  
PCON  
TCON  
SMOD0  
TF1  
x
1
1
x
x
x
Timer/Counter Control  
(bit addressable)  
TR1  
TF0  
TR0  
IE1  
IT1  
IE0  
89  
1
TMOD  
Timer/Counter Mode  
Control  
GATE  
CT  
M1  
M0  
GATE  
CT  
M1  
M0  
00000000 RW  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
1
1
1
1
1
1
1
1
1
TL0  
Timer 0 reload L  
Timer 1 reload L  
Timer 0 reload H  
Timer 1 reload H  
Clock Control  
D7  
D7  
D15  
D15  
x
D6  
D6  
D14  
D14  
x
D5  
D4  
D3  
D2  
D1  
D0  
00000000 RW  
00000000 RW  
00000000 RW  
00000000 RW  
00000001 RW  
TL1  
D5  
D4  
D3  
D2  
D1  
D0  
TH0  
D13  
D13  
T2M  
D12  
D12  
T1M  
D11  
D11  
T0M  
D10  
D10  
MD2  
D9  
D8  
TH1  
D9  
D8  
[10]  
CKCON  
MD1  
MD0  
reserved  
[10]  
IOB  
Port B (bit addressable) D7  
External Interrupt Flag(s) IE5  
D6  
D5  
D4  
D3  
1
D2  
0
D1  
0
D0  
0
xxxxxxxx RW  
00001000 RW  
00000000 RW  
[10]  
EXIF  
IE4  
A14  
I²CINT  
A13  
USBNT  
A12  
[10]  
MPAGE  
Upper Addr Byte of MOVX A15  
using @R0 / @R1  
A11  
A10  
A9  
A8  
93  
98  
5
1
reserved  
SCON0  
Serial Port 0 Control  
(bit addressable)  
SM0_0  
SM1_0  
SM2_0  
REN_0  
TB8_0  
RB8_0  
TI_0  
RI_0  
00000000 RW  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A8  
1
1
1
1
1
1
1
1
1
1
5
1
SBUF0  
Serial Port 0 Data Buffer D7  
Autopointer 1 Address H A15  
Autopointer 1 Address L A7  
D6  
D5  
D4  
D3  
D2  
D1  
A9  
A1  
D0  
A8  
A0  
00000000 RW  
00000000 RW  
00000000 RW  
[10]  
AUTOPTRH1  
A14  
A6  
A13  
A5  
A12  
A4  
A11  
A3  
A10  
A2  
[10]  
AUTOPTRL1  
reserved  
[10]  
AUTOPTRH2  
Autopointer 2 Address H A15  
Autopointer 2 Address L A7  
A14  
A6  
A13  
A5  
A12  
A4  
A11  
A3  
A10  
A2  
A9  
A1  
A8  
A0  
00000000 RW  
00000000 RW  
[10]  
AUTOPTRL2  
reserved  
[10]  
IOC  
Port C (bit addressable) D7  
D6  
x
D5  
x
D4  
x
D3  
x
D2  
x
D1  
x
D0  
x
xxxxxxxx RW  
[10]  
INT2CLR  
Interrupt 2 clear  
Interrupt 4 clear  
x
x
xxxxxxxx  
xxxxxxxx  
W
W
[10]  
INT4CLR  
x
x
x
x
x
x
x
reserved  
IE  
Interrupt Enable  
(bit addressable)  
EA  
ES1  
ET2  
ES0  
ET1  
EX1  
ET0  
EX0  
00000000 RW  
A9  
AA  
1
1
reserved  
[10]  
EP2468STAT  
Endpoint 2,4,6,8 status  
flags  
EP8F  
EP8E  
EP6F  
EP6E  
EP4F  
EP4E  
EP2F  
EP2E  
01011010  
00100010  
01100110  
R
R
R
AB  
AC  
1
1
EP24FIFOFLGS  
[10]  
Endpoint 2,4 slave FIFO  
status flags  
0
0
EP4PF  
EP8PF  
EP4EF  
EP8EF  
EP4FF  
EP8FF  
0
0
EP2PF  
EP6PF  
EP2EF  
EP6EF  
EP2FF  
EP6FF  
EP68FIFOFLGS  
[10]  
Endpoint 6,8 slave FIFO  
status flags  
AD  
AF  
B0  
B1  
2
1
1
1
reserved  
[10]  
AUTOPTRSETUP  
Autopointer 1&2 setup  
0
0
0
0
0
APTR2INC APTR1INC APTREN  
00000110 RW  
xxxxxxxx RW  
xxxxxxxx RW  
[10]  
IOD  
Port D (bit addressable) D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
[10]  
IOE  
Port E  
(NOT bit addressable)  
D7  
[10]  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
1
1
1
1
1
1
1
OEA  
Port A Output Enable  
Port B Output Enable  
Port C Output Enable  
Port D Output Enable  
Port E Output Enable  
D7  
D7  
D7  
D7  
D7  
D6  
D6  
D6  
D6  
D6  
D5  
D5  
D5  
D5  
D5  
D4  
D4  
D4  
D4  
D4  
D3  
D3  
D3  
D3  
D3  
D2  
D2  
D2  
D2  
D2  
D1  
D1  
D1  
D1  
D1  
D0  
D0  
D0  
D0  
D0  
00000000 RW  
00000000 RW  
00000000 RW  
00000000 RW  
00000000 RW  
[10]  
OEB  
[10]  
OEC  
[10]  
OED  
[10]  
OEE  
reserved  
IP  
Interrupt Priority (bit ad-  
dressable)  
1
PS1  
PT2  
PS0  
PT1  
PX1  
PT0  
PX0  
10000000 RW  
B9  
BA  
1
1
reserved  
[10]  
EP01STAT  
Endpoint 0&1 Status  
0
0
0
0
0
0
0
0
0
EP1INBSY EP1OUTBS EP0BSY  
Y
00000000 R  
[10] [9]  
BB  
1
GPIFTRIG  
Endpoint 2,4,6,8 GPIF  
slave FIFO Trigger  
DONE  
RW  
EP1  
EP0  
10000xxx brrrrbbb  
BC  
BD  
1
1
reserved  
[10]  
GPIFSGLDATH  
GPIF Data H (16-bit mode D15  
only)  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
xxxxxxxx RW  
xxxxxxxx RW  
[10]  
BE  
BF  
1
1
GPIFSGLDATLX  
GPIFSGLDAT  
GPIF Data L w/ Trigger D7  
GPIF Data L w/ No TriggerD7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
xxxxxxxx  
R
[10]  
LNOX  
[10]  
C0  
1
SCON1  
Serial Port 1 Control (bit SM0_1  
addressable)  
SM1_1  
D6  
SM2_1  
D5  
REN_1  
D4  
TB8_1  
D3  
RB8_1  
D2  
TI_1  
D1  
RI_1  
D0  
00000000 RW  
00000000 RW  
[10]  
C1  
C2  
1
6
SBUF1  
Serial Port 1 Data Buffer D7  
reserved  
Notes:  
11. If no EEPROM is detected by the SIE then the default is 00000000.  
Document #: 38-08039 Rev. *B  
Page 28 of 50  
CY7C64713/14  
Table 6-1. FX1 Register Summary (continued)  
Hex Size Name  
Description  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Default  
Access  
C8  
1
T2CON  
Timer/Counter 2 Control TF2  
(bit addressable)  
EXF2  
RCLK  
TCLK  
EXEN2  
TR2  
CT2  
CPRL2  
00000000 RW  
C9  
CA  
1
1
reserved  
RCAP2L  
Capture for Timer 2, auto- D7  
reload, up-counter  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
00000000 RW  
00000000 RW  
CB  
1
RCAP2H  
Capture for Timer 2, auto- D7  
reload, up-counter  
CC  
CD  
CE  
D0  
1
1
2
1
TL2  
Timer 2 reload L  
Timer 2 reload H  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D9  
D0  
D8  
00000000 RW  
00000000 RW  
TH2  
D15  
D14  
D13  
D12  
D11  
D10  
reserved  
PSW  
Program Status Word (bit CY  
addressable)  
AC  
F0  
RS1  
RS0  
OV  
F1  
P
00000000 RW  
D1  
D8  
D9  
E0  
7
1
7
1
reserved  
[10]  
EICON  
reserved  
ACC  
External Interrupt Control SMOD1  
1
ERESI  
D5  
RESI  
D4  
INT6  
D3  
0
0
0
01000000 RW  
00000000 RW  
Accumulator (bit address- D7  
able)  
D6  
D2  
D1  
D0  
E1  
E8  
7
1
reserved  
[10]  
EIE  
External Interrupt En-  
able(s)  
1
1
1
EX6  
EX5  
EX4  
EI²C  
EUSB  
11100000 RW  
E9  
F0  
F1  
F8  
7
1
7
1
reserved  
B
B (bit addressable)  
D7  
1
D6  
1
D5  
1
D4  
D3  
D2  
D1  
D0  
00000000 RW  
11100000 RW  
reserved  
[10]  
EIP  
External Interrupt Priority  
Control  
PX6  
PX5  
PX4  
PI²C  
PUSB  
F9  
7
reserved  
R = all bits read-only  
W = all bits write-only  
r = read-only bit  
w = write-only bit  
b = both read/write bit  
Document #: 38-08039 Rev. *B  
Page 29 of 50  
CY7C64713/14  
Max Output Current, per I/O port................................ 10 mA  
7.0  
Absolute Maximum Ratings  
Max Output Current, all five I/O ports  
(128- and 100-pin packages) ..................................... 50 mA  
Storage Temperature ..................................65°C to +150°C  
Ambient Temperature with Power Supplied......0°C to +70°C  
Supply Voltage to Ground Potential............... 0.5V to +4.0V  
DC Input Voltage to Any Input Pin .......................... 5.25V[12]  
8.0  
Operating Conditions  
TA (Ambient Temperature Under Bias)............. 0°C to +70°C  
Supply Voltage ...........................................+3.15V to +3.45V  
Ground Voltage ................................................................. 0V  
FOSC (Oscillator or Crystal Frequency) ... 24 MHz ± 100 ppm  
.................................................................. Parallel Resonant  
DC Voltage Applied to Outputs  
in High-Z State ..................................... 0.5V to VCC + 0.5V  
Power Dissipation .................................................... 235 mW  
Static Discharge Voltage.......................................... > 2000V  
9.0  
DC Characteristics  
Table 9-1. DC Characteristics  
Parameter Description  
VCC Supply Voltage  
VCC Ramp Up 0 to 3.3V  
Conditions  
Min.  
3.15  
200  
2
Typ.  
Max.  
Unit  
V
3.3  
3.45  
µs  
V
VIH  
VIL  
Input HIGH Voltage  
5.25  
0.8  
Input LOW Voltage  
0.5  
2
V
VIH_X  
VIL_X  
II  
Crystal input HIGH Voltage  
Crystal input LOW Voltage  
Input Leakage Current  
Output Voltage HIGH  
Output LOW Voltage  
Output Current HIGH  
Output Current LOW  
Input Pin Capacitance  
5.25  
0.8  
V
0.05  
V
0< VIN < VCC  
±10  
µA  
V
VOH  
VOL  
IOH  
IOL  
IOUT = 4 mA  
2.4  
IOUT = 4 mA  
0.4  
4
V
mA  
mA  
pF  
pF  
µA  
µA  
mA  
mA  
mA  
ms  
µs  
4
CIN  
Except D+/D–  
D+/D–  
3.29  
12.96  
300  
100  
.5  
10  
15  
ISUSP  
Suspend Current  
CY7C64714  
Connected  
380[13]  
150[13]  
1.2  
Disconnected  
Connected  
Suspend Current  
CY7C64713  
Disconnected  
8051 running, connected to USB  
VCC min = 3.0V  
.3  
1.0  
ICC  
Supply Current  
35  
65  
TRESET  
Reset Time after Valid Power  
Pin Reset after powered on  
5.0  
200  
9.1  
USB Transceiver  
USB 2.0-compliant in full-speed mode.  
Note:  
12. It is recommended to not power I/O when chip power is off.  
13. Measured at Max VCC, 25ºC.  
Document #: 38-08039 Rev. *B  
Page 30 of 50  
CY7C64713/14  
10.0  
10.1  
AC Electrical Characteristics  
USB Transceiver  
USB 2.0-compliant in full-speed mode.  
10.2  
Program Memory Read  
tCL  
CLKOUT[14]  
tAV  
tAV  
A[15..0]  
tSTBH  
tSTBL  
PSEN#  
D[7..0]  
[15]  
tACC1  
tDH  
data in  
tSOEL  
OE#  
CS#  
tSCSL  
Figure 10-1. Program Memory Read Timing Diagram  
Table 10-1. Program Memory Read Parameters  
Parameter Description  
tCL 1/CLKOUT Frequency  
Min.  
Typ.  
20.83  
41.66  
83.2  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
48 MHz  
24 MHz  
12 MHz  
tAV  
Delay from Clock to Valid Address  
Clock to PSEN Low  
Clock to PSEN High  
Clock to OE Low  
0
0
0
10.7  
8
tSTBL  
tSTBH  
tSOEL  
tSCSL  
tDSU  
tDH  
8
11.1  
13  
Clock to CS Low  
Data Setup to Clock  
Data Hold Time  
9.6  
0
Notes:  
14. CLKOUT is shown with positive polarity.  
15. ACC1 is computed from the above parameters as follows:  
t
tACC1(24 MHz) = 3*tCL tAV tDSU = 106 ns  
tACC1(48 MHz) = 3*tCL tAV tDSU = 43 ns.  
Document #: 38-08039 Rev. *B  
Page 31 of 50  
CY7C64713/14  
10.3  
Data Memory Read  
tCL  
Stretch = 0  
CLKOUT[14]  
tAV  
tAV  
A[15..0]  
tSTBH  
tSTBL  
RD#  
tSCSL  
CS#  
OE#  
tSOEL  
tDSU  
[16  
tDH  
tACC1  
D[7..0]  
data in  
Stretch = 1  
tCL  
CLKOUT[14]  
tAV  
A[15..0]  
RD#  
CS#  
tDSU  
tDH  
[16]  
tACC1  
D[7..0]  
data in  
Figure 10-2. Data Memory Read Timing Diagram  
Table 10-2. Data Memory Read Parameters  
Parameter Description  
tCL 1/CLKOUT Frequency  
Min.  
Typ.  
20.83  
41.66  
83.2  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
48 MHz  
24 MHz  
12 MHz  
tAV  
Delay from Clock to Valid Address  
Clock to RD LOW  
10.7  
11  
tSTBL  
tSTBH  
tSCSL  
tSOEL  
tDSU  
Clock to RD HIGH  
11  
Clock to CS LOW  
13  
Clock to OE LOW  
11.1  
Data Setup to Clock  
Data Hold Time  
9.6  
0
tDH  
Note:  
16.  
tACC2 and tACC3 are computed from the above parameters as follows:  
tACC2(24 MHz) = 3*tCL tAV tDSU = 106 ns  
tACC2(48 MHz) = 3*tCL tAV tDSU = 43 ns  
tACC3(24 MHz) = 5*tCL tAV tDSU = 190 ns  
tACC3(48 MHz) = 5*tCL tAV tDSU = 86 ns.  
Document #: 38-08039 Rev. *B  
Page 32 of 50  
CY7C64713/14  
10.4  
Data Memory Write  
tCL  
CLKOUT  
tAV  
tSTBL  
tSTBH  
tAV  
A[15..0]  
WR#  
CS#  
tSCSL  
tON1  
tOFF1  
data out  
D[7..0]  
Stretch = 1  
tCL  
CLKOUT  
A[15..0]  
tAV  
WR#  
CS#  
tON1  
tOFF1  
data out  
D[7..0]  
Figure 10-3. Data Memory Write Timing Diagram  
Table 10-3. Data Memory Write Parameters  
Parameter Description  
Min.  
Max.  
10.7  
11.2  
11.2  
13.0  
13.1  
13.1  
Unit  
ns  
Notes  
tAV  
Delay from Clock to Valid Address  
Clock to WR Pulse LOW  
Clock to WR Pulse HIGH  
Clock to CS Pulse LOW  
Clock to Data Turn-on  
0
0
0
tSTBL  
tSTBH  
tSCSL  
tON1  
ns  
ns  
ns  
0
0
ns  
tOFF1  
Clock to Data Hold Time  
ns  
Document #: 38-08039 Rev. *B  
Page 33 of 50  
CY7C64713/14  
10.5  
GPIF Synchronous Signals  
tIFCLK  
IFCLK  
tSGA  
GPIFADR[8:0]  
RDYX  
tSRY  
tRYH  
DATA(input)  
valid  
tSGD  
tDAH  
CTLX  
tXCTL  
DATA(output)  
N
N+1  
tXGD  
Figure 10-4. GPIF Synchronous Signals Timing Diagram[17]  
Table 10-4. GPIF Synchronous Signals Parameters with Internally Sourced IFCLK[18, 19]  
Parameter  
tIFCLK  
Description  
Min.  
20.83  
8.9  
0
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IFCLK Period  
tSRY  
tRYH  
tSGD  
tDAH  
tSGA  
tXGD  
tXCTL  
RDYX to Clock Setup Time  
Clock to RDYX  
GPIF Data to Clock Setup Time  
GPIF Data Hold Time  
9.2  
0
Clock to GPIF Address Propagation Delay  
Clock to GPIF Data Output Propagation Delay  
Clock to CTLX Output Propagation Delay  
7.5  
11  
6.7  
Table 10-5. GPIF Synchronous Signals Parameters with Externally Sourced IFCLK[19]  
Parameter  
tIFCLK  
Description  
Min.  
20.83  
2.9  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IFCLK Period  
200  
tSRY  
tRYH  
tSGD  
tDAH  
tSGA  
tXGD  
tXCTL  
RDYX to Clock Setup Time  
Clock to RDYX  
3.7  
GPIF Data to Clock Setup Time  
GPIF Data Hold Time  
3.2  
4.5  
Clock to GPIF Address Propagation Delay  
Clock to GPIF Data Output Propagation Delay  
Clock to CTLX Output Propagation Delay  
11.5  
15  
10.7  
Notes:  
17. Dashed lines denote signals with programmable polarity.  
18. GPIF asynchronous RDYx signals have a minimum Setup time of 50 ns when using internal 48-MHz IFCLK.  
19. IFCLK must not exceed 48 MHz.  
Document #: 38-08039 Rev. *B  
Page 34 of 50  
CY7C64713/14  
10.6  
Slave FIFO Synchronous Read  
tIFCLK  
IFCLK  
SLRD  
tRDH  
tSRD  
tXFLG  
FLAGS  
DATA  
N+1  
tXFD  
N
tOEon  
tOEoff  
SLOE  
Figure 10-5. Slave FIFO Synchronous Read Timing Diagram[17]  
Table 10-6. Slave FIFO Synchronous Read Parameters with Internally Sourced IFCLK[19]  
Parameter  
tIFCLK  
Description  
Min.  
20.83  
18.7  
0
Max.  
Unit  
ns  
IFCLK Period  
tSRD  
tRDH  
tOEon  
tOEoff  
tXFLG  
tXFD  
SLRD to Clock Setup Time  
ns  
Clock to SLRD Hold Time  
ns  
SLOE Turn-on to FIFO Data Valid  
SLOE Turn-off to FIFO Data Hold  
Clock to FLAGS Output Propagation Delay  
Clock to FIFO Data Output Propagation Delay  
10.5  
10.5  
9.5  
ns  
ns  
ns  
TBD  
11  
ns  
Table 10-7. Slave FIFO Synchronous Read Parameters with Externally Sourced IFCLK[19]  
Parameter  
tIFCLK  
Description  
Min.  
20.83  
12.7  
3.7  
Max.  
Unit  
ns  
IFCLK Period  
200  
tSRD  
tRDH  
tOEon  
tOEoff  
tXFLG  
tXFD  
SLRD to Clock Setup Time  
ns  
Clock to SLRD Hold Time  
ns  
SLOE Turn-on to FIFO Data Valid  
SLOE Turn-off to FIFO Data Hold  
Clock to FLAGS Output Propagation Delay  
Clock to FIFO Data Output Propagation Delay  
10.5  
10.5  
13.5  
15  
ns  
ns  
ns  
TBD  
ns  
Document #: 38-08039 Rev. *B  
Page 35 of 50  
CY7C64713/14  
10.7  
Slave FIFO Asynchronous Read  
tRDpwh  
SLRD  
tRDpwl  
tXFLG  
tXFD  
FLAGS  
DATA  
SLOE  
N
N+1  
tOEon  
tOEoff  
Figure 10-6. Slave FIFO Asynchronous Read Timing Diagram[17]  
Table 10-8. Slave FIFO Asynchronous Read Parameters[20]  
Parameter Description  
tRDpwl SLRD Pulse Width LOW  
Min.  
50  
Max.  
Unit  
ns  
tRDpwh  
tXFLG  
tXFD  
SLRD Pulse Width HIGH  
50  
ns  
SLRD to FLAGS Output Propagation Delay  
SLRD to FIFO Data Output Propagation Delay  
SLOE Turn-on to FIFO Data Valid  
SLOE Turn-off to FIFO Data Hold  
70  
15  
ns  
ns  
tOEon  
tOEoff  
10.5  
10.5  
ns  
ns  
Document #: 38-08039 Rev. *B  
Page 36 of 50  
CY7C64713/14  
10.8  
Slave FIFO Synchronous Write  
tIFCLK  
IFCLK  
SLWR  
tWRH  
tSWR  
DATA  
Z
N
Z
tSFD tFDH  
FLAGS  
tXFLG  
Figure 10-7. Slave FIFO Synchronous Write Timing Diagram[17]  
Table 10-9. Slave FIFO Synchronous Write Parameters with Internally Sourced IFCLK [19]  
Parameter  
tIFCLK  
Description  
Min.  
20.83  
18.1  
0
Max.  
Unit  
ns  
IFCLK Period  
tSWR  
tWRH  
tSFD  
SLWR to Clock Setup Time  
ns  
Clock to SLWR Hold Time  
ns  
FIFO Data to Clock Setup Time  
Clock to FIFO Data Hold Time  
Clock to FLAGS Output Propagation Time  
9.2  
ns  
tFDH  
tXFLG  
0
ns  
9.5  
ns  
Table 10-10. Slave FIFO Synchronous Write Parameters with Externally Sourced IFCLK [19]  
Parameter  
tIFCLK  
Description  
Min.  
20.83  
12.1  
3.6  
Max.  
Unit  
ns  
IFCLK Period  
200  
tSWR  
tWRH  
tSFD  
tFDH  
SLWR to Clock Setup Time  
ns  
Clock to SLWR Hold Time  
ns  
FIFO Data to Clock Setup Time  
Clock to FIFO Data Hold Time  
Clock to FLAGS Output Propagation Time  
3.2  
ns  
4.5  
ns  
tXFLG  
13.5  
ns  
Note:  
20. Slave FIFO asynchronous parameter values use internal IFCLK setting at 48 MHz.  
Document #: 38-08039 Rev. *B  
Page 37 of 50  
CY7C64713/14  
10.9  
Slave FIFO Asynchronous Write  
tWRpwh  
SLWR/SLCS#  
tWRpwl  
tFDH  
tSFD  
DATA  
tXFD  
FLAGS  
Figure 10-8. Slave FIFO Asynchronous Write Timing Diagram[17]  
Table 10-11. Slave FIFO Asynchronous Write Parameters with Internally Sourced IFCLK [20]  
Parameter  
tWRpwl  
tWRpwh  
tSFD  
Description  
Min.  
50  
Max.  
Unit  
ns  
SLWR Pulse LOW  
SLWR Pulse HIGH  
70  
ns  
SLWR to FIFO DATA Setup Time  
FIFO DATA to SLWR Hold Time  
10  
ns  
tFDH  
10  
ns  
tXFD  
SLWR to FLAGS Output Propagation Delay  
70  
ns  
10.10 Slave FIFO Synchronous Packet End Strobe  
IFCLK  
tPEH  
PKTEND  
FLAGS  
tSPE  
tXFLG  
Figure 10-9. Slave FIFO Synchronous Packet End Strobe Timing Diagram[17]  
Table 10-12. Slave FIFO Synchronous Packet End Strobe Parameters with Internally Sourced IFCLK [19]  
Parameter  
tIFCLK  
Description  
Min.  
20.83  
14.6  
0
Max.  
Unit  
ns  
IFCLK Period  
tSPE  
tPEH  
tXFLG  
PKTEND to Clock Setup Time  
ns  
Clock to PKTEND Hold Time  
ns  
Clock to FLAGS Output Propagation Delay  
9.5  
ns  
Table 10-13. Slave FIFO Synchronous Packet End Strobe Parameters with Externally Sourced IFCLK [19]  
Parameter  
tIFCLK  
Description  
Min.  
20.83  
8.6  
Max.  
Unit  
ns  
IFCLK Period  
200  
tSPE  
tPEH  
tXFLG  
PKTEND to Clock Setup Time  
ns  
Clock to PKTEND Hold Time  
2.5  
ns  
Clock to FLAGS Output Propagation Delay  
13.5  
ns  
There is no specific timing requirement that needs to be met  
for asserting PKTEND pin with regards to asserting SLWR.  
PKTEND can be asserted with the last data value clocked into  
the FIFOs or thereafter. The only consideration is that the set-  
up time tSPE and the hold time tPEH for PKTEND must be met.  
Although typically there are no specific timing requirements for  
asserting PKTEND in relation to SLWR, there exists a specific  
Document #: 38-08039 Rev. *B  
Page 38 of 50  
CY7C64713/14  
corner case condition that needs attention. While using the  
PKTEND to commit a one byte/word packet, an additional  
timing requirement needs to be met when the FIFO is  
configured to operate in auto mode and it is desired to send  
two packets back to back:  
scenario. X is the value the AUTOINLEN register is set to  
when the IN endpoint is configured to be in auto mode.  
Figure 10-10 shows a scenario where two packets are being  
committed. The first packet gets comitted automatically when  
the number of bytes in the FIFO reaches X (value set in  
AUTOINLEN register) and the second one byte/word short  
packet being committed manually using PKTEND. Note that  
there is atleast one IFCLK cycle timing between asserting  
PKTEND and clocking of the last byte of the previous packet  
(causing the packet to be committed automatically). Failing to  
adhere to this timing, will result in the FX2 failing to send the  
one byte/word short packet.  
A full packet (full defined as the number of bytes in the FIFO  
meeting the level set in AUTOINLEN register) committed  
automatically followed by  
Ashortonebyte/wordpacketcommittedmanuallyusingthe  
PKTEND pin.  
In this particular scenario, the developer must make sure to  
assert PKTEND at least one clock cycle after the rising edge  
that caused the last byte/word to be clocked into the previous  
auto committed packet. Figure 10-10 below shows this  
t
IFCLK  
IFCLK  
t
t
SFA  
FAH  
FIFOADR  
>= t  
WRH  
>= t  
SWR  
SLWR  
DATA  
t
t
t
FDH  
t
t
t
FDH  
t
t
t
SFD  
t
SFD  
FDH  
t
SFD  
t
SFD  
FDH  
SFD  
SFD  
FDH  
FDH  
X-4  
X-2  
X-1  
1
X-3  
X
Atleast one IFCLK cycle  
t
SPE  
t
PEH  
PKTEND  
Figure 10-10. Slave FIFO Synchronous Write Sequence and Timing Diagram  
10.11 Slave FIFO Asynchronous Packet End Strobe  
tPEpwh  
PKTEND  
tPEpwl  
FLAGS  
tXFLG  
Figure 10-11. Slave FIFO Asynchronous Packet End Strobe Timing Diagram[17]  
Table 10-14. Slave FIFO Asynchronous Packet End Strobe Parameters[20]  
Parameter Description  
Min.  
50  
Max.  
Unit  
ns  
tPEpwl PKTEND Pulse Width LOW  
tPWpwh  
tXFLG  
PKTEND Pulse Width HIGH  
50  
ns  
PKTEND to FLAGS Output Propagation Delay  
115  
ns  
Document #: 38-08039 Rev. *B  
Page 39 of 50  
CY7C64713/14  
10.12 Slave FIFO Output Enable  
SLOE  
tOEoff  
tOEon  
DATA  
Figure 10-12. Slave FIFO Output Enable Timing Diagram[17]  
Table 10-15. Slave FIFO Output Enable Parameters  
Parameter  
tOEon  
tOEoff  
Description  
SLOE Assert to FIFO DATA Output  
SLOE Deassert to FIFO DATA Hold  
Min.  
Max.  
Unit  
ns  
10.5  
10.5  
ns  
10.13 Slave FIFO Address to Flags/Data  
FIFOADR [1.0]  
FLAGS  
tXFLG  
tXFD  
DATA  
N
N+1  
Figure 10-13. Slave FIFO Address to Flags/Data Timing Diagram[17]  
Table 10-16. Slave FIFO Address to Flags/Data Parameters  
Parameter  
tXFLG  
tXFD  
Description  
Min.  
Max.  
10.7  
14.3  
Unit  
ns  
FIFOADR[1:0] to FLAGS Output Propagation Delay  
FIFOADR[1:0] to FIFODATA Output Propagation Delay  
ns  
Document #: 38-08039 Rev. *B  
Page 40 of 50  
CY7C64713/14  
10.14 Slave FIFO Synchronous Address  
IFCLK  
SLCS/FIFOADR [1:0]  
tSFA  
tFAH  
Figure 10-14. Slave FIFO Synchronous Address Timing Diagram  
Table 10-17. Slave FIFO Synchronous Address Parameters [19]  
Parameter Description  
tIFCLK Interface Clock Period  
tSFA  
tFAH  
Min.  
20.83  
25  
Max.  
200  
Unit  
ns  
FIFOADR[1:0] to Clock Setup Time  
Clock to FIFOADR[1:0] Hold Time  
ns  
10  
ns  
10.15 Slave FIFO Asynchronous Address  
SLCS/FIFOADR [1:0]  
tFAH  
tSFA  
RD/WR/PKTEND  
Figure 10-15. Slave FIFO Asynchronous Address Timing Diagram[17]  
Table 10-18. Slave FIFO Asynchronous Address Parameters[20]  
Parameter  
Description  
Min.  
10  
Max.  
Unit  
ns  
tSFA  
tFAH  
FIFOADR[1:0] to RD/WR/PKTEND Setup Time  
RD/WR/PKTEND to FIFOADR[1:0] Hold Time  
10  
ns  
Document #: 38-08039 Rev. *B  
Page 41 of 50  
CY7C64713/14  
10.16 Sequence Diagram  
10.16.1 Single and Burst Synchronous Read Example  
tIFCLK  
IFCLK  
tSFA  
tSFA  
tFAH  
tFAH  
FIFOADR  
t=0  
T=0  
tSRD  
tRDH  
>= tSRD  
>= tRDH  
SLRD  
SLCS  
t=3  
t=2  
T=3  
T=2  
tXFLG  
FLAGS  
DATA  
SLOE  
tXFD  
N+1  
tXFD  
tXFD  
tXFD  
N+4  
Data Driven: N  
tOEon  
N+2  
N+3  
N+1  
tOEon  
tOEoff  
tOEoff  
t=4  
T=4  
T=1  
t=1  
Figure 10-16. Slave FIFO Synchronous Read Sequence and Timing Diagram  
IFCLK  
N
IFCLK  
N
IFCLK  
N+1  
IFCLK  
N+1  
IFCLK  
N+1  
IFCLK  
N+2  
IFCLK  
N+3  
IFCLK  
N+4  
IFCLK  
N+4  
IFCLK  
N+4  
FIFO POINTER  
SLOE  
SLRD  
SLOE  
SLRD  
SLOE  
Not Driven  
SLRD  
SLRD  
N+4  
SLOE  
FIFO DATA BUS Not Driven  
Driven: N  
N+1  
N+1  
N+2  
N+3  
N+4  
Not Driven  
Figure 10-17. Slave FIFO Synchronous Sequence of Events Diagram  
Figure 10-16 shows the timing relationship of the SLAVE FIFO  
signals during a synchronous FIFO read using IFCLK as the  
synchronizing clock. The diagram illustrates a single read  
followed by a burst read.  
with SLRD, or before SLRD is asserted (i.e. the SLCS and  
SLRD signals must both be asserted to start a valid read  
condition).  
TheFIFOpointerisupdatedontherisingedgeoftheIFCLK,  
while SLRD is asserted. This starts the propagation of data  
from the newly addressed location to the data bus. After a  
propagation delay of tXFD (measured from the rising edge  
of IFCLK) the new data value is present. N is the first data  
value read from the FIFO. In order to have data on the FIFO  
data bus, SLOE MUST also be asserted.  
At t = 0 the FIFO address is stable and the signal SLCS is  
asserted (SLCS may be tied low in some applications).  
Note: tSFA has a minimum of 25 nsec. This means when  
IFCLK is running at 48 MHz, the FIFO address setup time  
is more than one IFCLK cycle.  
At = 1, SLOE is asserted. SLOE is an output enable only,  
whose sole function is to drive the data bus. The data that  
is driven on the bus is the data that the internal FIFO pointer  
is currently pointing to. In this example it is the first data  
valueintheFIFO. Note: thedataispre-fetchedandisdriven  
on the bus when SLOE is asserted.  
The same sequence of events are shown for a burst read and  
are marked with the time indicators of T=0 through 5. Note:  
For the burst mode, the SLRD and SLOE are left asserted  
during the entire duration of the read. In the burst read mode,  
when SLOE is asserted, data indexed by the FIFO pointer is  
on the data bus. During the first read cycle, on the rising edge  
of the clock the FIFO pointer is updated and increments to  
point to address N+1. For each subsequent rising edge of  
IFCLK, while the SLRD is asserted, the FIFO pointer is incre-  
mented and the next data value is placed on the data bus.  
At t = 2, SLRD is asserted. SLRD must meet the setup time  
of tSRD (time from asserting the SLRD signal to the rising  
edge of the IFCLK) and maintain a minimum hold time of  
t
RDH (time from the IFCLK edge to the de-assertion of the  
SLRDsignal).IftheSLCSsignalisused,itmustbeasserted  
Document #: 38-08039 Rev. *B  
Page 42 of 50  
CY7C64713/14  
10.16.2 Single and Burst Synchronous Write  
tIFCLK  
IFCLK  
tSFA  
tSFA  
tFAH  
tFAH  
FIFOADR  
>= tWRH  
t=0  
tSWR  
tWRH  
>= tSWR  
T=0  
SLWR  
SLCS  
T=2  
T=5  
tXFLG  
tFDH  
t=2  
t=3  
tXFLG  
FLAGS  
DATA  
tSFD  
tFDH  
tFDH  
tSFD  
N+2  
tSFD  
N+1  
tFDH  
tSFD  
N+3  
N
T=4  
T=3  
t=1  
T=1  
tSPE  
tPEH  
PKTEND  
Figure 10-18. Slave FIFO Synchronous Write Sequence and Timing Diagram[17]  
The Figure 10-18 shows the timing relationship of the SLAVE  
FIFO signals during a synchronous write using IFCLK as the  
synchronizing clock. The diagram illustrates a single write  
followed by burst write of 3 bytes and committing all 4 bytes as  
a short packet using the PKTEND pin.  
of IFCLK. The FIFO pointer is updated on each rising edge of  
IFCLK. In Figure 10-18, once the four bytes are written to the  
FIFO, SLWR is de-asserted. The short 4-byte packet can be  
committed to the host by asserting the PKTEND signal.  
There is no specific timing requirement that needs to be met  
for asserting PKTEND signal with regards to asserting the  
SLWR signal. PKTEND can be asserted with the last data  
value or thereafter. The only consideration is the setup time  
tSPE and the hold time tPEH must be met. In the scenario of  
Figure 10-18, the number of data values committed includes  
the last value written to the FIFO. In this example, both the  
data value and the PKTEND signal are clocked on the same  
rising edge of IFCLK. PKTEND can be asserted in subsequent  
clock cycles. The FIFOADDR lines should be held constant  
during the PKTEND assertion.  
At t = 0 the FIFO address is stable and the signal SLCS is  
asserted. (SLCS may be tied low in some applications)  
Note:tSFAhasaminimumof25ns. This meanswhenIFCLK  
is running at 48 MHz, the FIFO address setup time is more  
than one IFCLK cycle.  
At t = 1, the external master/peripheral must outputs the  
data value onto the data bus with a minimum set up time of  
t
SFD before the rising edge of IFCLK.  
At t = 2, SLWR is asserted. The SLWR must meet the setup  
time of tSWR (time from asserting the SLWR signal to the  
rising edge of IFCLK) and maintain a minimum hold time of  
tWRH (time from the IFCLK edge to the de-assertion of the  
SLWR signal). If SLCS signal is used, it must be asserted  
with SLWR or before SLWR is asserted. (i.e. the SLCS and  
SLWR signals must both be asserted to start a valid write  
condition).  
Although there are no specific timing requirement for asserting  
PKTEND, there is a specific corner case condition that needs  
attention while using the PKTEND to commit a one byte/word  
packet. Additional timing requirements exists when the FIFO  
is configured to operate in auto mode and it is desired to send  
two packets: a full packet (full defined as the number of bytes  
in the FIFO meeting the level set in AUTOINLEN register)  
committed automatically followed by a short one byte/word  
packet committed manually using the PKTEND pin. In this  
case, the external master must make sure to assert the  
PKTEND pin atleast one clock cycle after the rising edge that  
caused the last byte/word to be clocked into the previous auto  
committed packet ( the packet with the number of bytes equal  
to what is set in the AUTOINLEN register). Refer to section 10-  
10 for further details on this timing.  
While the SLWR is asserted, data is written to the FIFO and  
on the rising edge of the IFCLK, the FIFO pointer is incre-  
mented. The FIFO flag will also be updated after a delay of  
t
XFLG from the rising edge of the clock.  
The same sequence of events are also shown for a burst write  
and are marked with the time indicators of T=0 through 5.  
Note: For the burst mode, SLWR and SLCS are left asserted  
for the entire duration of writing all the required data values. In  
this burst write mode, once the SLWR is asserted, the data on  
the FIFO data bus is written to the FIFO on every rising edge  
Document #: 38-08039 Rev. *B  
Page 43 of 50  
CY7C64713/14  
10.16.3 Sequence Diagram of a Single and Burst Asynchronous Read  
tFAH  
tSFA  
tSFA  
tFAH  
FIFOADR  
t=0  
tRDpwl tRDpwh  
tRDpwl  
tRDpwl  
tRDpwl tRDpwh  
tRDpwh  
tRDpwh  
T=0  
SLRD  
SLCS  
t=3  
t=2  
T=2  
T=3  
T=5  
T=4  
T=6  
tXFLG  
tXFLG  
FLAGS  
DATA  
SLOE  
tXFD  
tXFD  
tXFD  
tXFD  
N+3  
Data (X)  
Driven  
N
N+1  
N+2  
N
tOEon  
tOEoff  
tOEoff  
tOEon  
t=4  
T=1  
T=7  
t=1  
Figure 10-19. Slave FIFO Asynchronous Read Sequence and Timing Diagram  
SLOE  
SLRD  
SLRD  
SLOE  
SLOE  
SLRD  
N+1  
SLRD  
N+1  
SLRD  
N+2  
SLRD  
SLOE  
FIFO POINTER  
N
N
N
N
N+1  
N
N+1  
N+2  
N+3  
N+2  
N+3  
FIFO DATA BUS Not Driven  
Driven: X  
Not Driven  
N
N+1  
N+1  
N+2  
Not Driven  
Figure 10-20. Slave FIFO Asynchronous Read Sequence of Events Diagram  
Figure 10-19 diagrams the timing relationship of the SLAVE  
FIFO signals during an asynchronous FIFO read. It shows a  
single read followed by a burst read.  
The data that will be driven, after asserting SLRD, is the  
updated data from the FIFO. This data is valid after a propa-  
gation delay of tXFD from the activating edge of SLRD. In  
Figure 10-19, data N is the first valid data read from the  
FIFO. For data to appear on the data bus during the read  
cycle(i.e.SLRDisasserted),SLOEMUSTbeinanasserted  
state. SLRD and SLOE can also be tied together.  
At t = 0 the FIFO address is stable and the SLCS signal is  
asserted.  
At t = 1, SLOE is asserted. This results in the data bus being  
driven. The data that is driven onto the bus is previous data,  
it data that was in the FIFO from a prior read cycle.  
The same sequence of events is also shown for a burst read  
marked with T = 0 through 5. Note: In burst read mode, during  
SLOE is assertion, the data bus is in a driven state and outputs  
the previous data. Once SLRD is asserted, the data from the  
FIFO is driven on the data bus (SLOE must also be asserted)  
and then the FIFO pointer is incremented.  
At t = 2, SLRD is asserted. The SLRD must meet the  
minimum active pulse of tRDpwl and minimum de-active  
pulse width of tRDpwh. If SLCS is used then, SLCS must be  
in asserted with SLRD or before SLRD is asserted. (i.e. the  
SLCS and SLRD signals must both be asserted to start a  
valid read condition.)  
Document #: 38-08039 Rev. *B  
Page 44 of 50  
CY7C64713/14  
10.16.4 Sequence Diagram of a Single and Burst Asynchronous Write  
tSFA  
tSFA  
tFAH  
tFAH  
FIFOADR  
t=0  
T=0  
tWRpwl tWRpwh  
tWRpwl  
tWRpwl  
tWRpwl  
tWRpwh  
tWRpwh  
tWRpwh  
SLWR  
SLCS  
t =1  
t=3  
T=1  
T=4  
T=3  
T=7  
T=6  
T=9  
tXFLG  
tXFLG  
FLAGS  
DATA  
tSFD tFDH  
N
tSFD tFDH  
N+1  
tSFD tFDH  
N+2  
tSFD  
tFDH  
N+3  
t=2  
T=8  
T=2  
T=5  
tPEpwl  
tPEpwh  
PKTEND  
Figure 10-21. Slave FIFO Asynchronous Write Sequence and Timing Diagram[17]  
Figure 10-21 diagrams the timing relationship of the SLAVE FIFO write in an asynchronous mode. The diagram shows a single  
write followed by a burst write of 3 bytes and committing the 4-byte-short packet using PKTEND.  
·At t = 0 the FIFO address is applied, insuring that it meets the setup time of tSFA. If SLCS is used, it must also be asserted (SLCS  
may be tied low in some applications).  
·At t = 1 SLWR is asserted. SLWR must meet the minimum active pulse of tWRpwl and minimum de-active pulse width of tWRpwh  
.
If the SLCS is used, it must be in asserted with SLWR or before SLWR is asserted.  
·At t = 2, data must be present on the bus tSFD before the de-asserting edge of SLWR.  
·At t = 3, deasserting SLWR will cause the data to be written from the data bus to the FIFO and then increments the FIFO pointer.  
The FIFO flag is also updated after tXFLG from the de-asserting edge of SLWR.  
The same sequence of events are shown for a burst write and is indicated by the timing marks of T = 0 through 5. Note: In the  
burst write mode, once SLWR is deasserted, the data is written to the FIFO and then the FIFO pointer is incremented to the next  
byte in the FIFO. The FIFO pointer is post incremented.  
In Figure 10-21 once the four bytes are written to the FIFO and SLWR is deasserted, the short 4-byte packet can be committed  
to the host using the PKTEND. The external device should be designed to not assert SLWR and the PKTEND signal at the same  
time. It should be designed to assert the PKTEND after SLWR is deasserted and met the minimum deasserted pulse width. The  
FIFOADDR lines are to be held constant during the PKTEND assertion.  
11.0  
Ordering Information  
Table 11-1. Ordering Information  
8051  
Address  
/Data Busses  
Ordering Code  
Package Type  
RAM Size  
# Prog I/Os  
Ideal for battery powered applications  
CY7C64714-128AXC  
CY7C64714-100AXC  
CY7C64714-56LFXC  
128 TQFP Lead-Free  
100 TQFP Lead-Free  
56 QFN Lead-Free  
16K  
16K  
16K  
40  
40  
24  
16/8 bit  
Ideal for non-battery powered applications  
CY7C64713-128AXC  
CY7C64713-100AXC  
CY7C64713-56LFXC  
CY3674  
128 TQFP - Lead-Free  
16K  
16K  
16K  
40  
40  
24  
16/8 bit  
100 TQFP - Lead-Free  
56 QFN - Lead-Free  
-
-
EZ-USB FX1 Development Kit  
Document #: 38-08039 Rev. *B  
Page 45 of 50  
CY7C64713/14  
12.0  
Package Diagrams  
The FX1 is available in three packages:  
56-pin QFN  
100-pin TQFP  
128-pin TQFP  
Package Diagrams  
TOP VIEW  
BOTTOM VIEW  
SIDE VIEW  
0.08[0.003]  
C
1.00[0.039] MAX.  
7.90[0.311]  
A
8.10[0.319]  
0.05[0.002] MAX.  
0.80[0.031] MAX.  
0.18[0.007]  
0.28[0.011]  
7.70[0.303]  
7.80[0.307]  
0.20[0.008] REF.  
PIN1 ID  
N
N
0.20[0.008] R.  
1
1
2
2
0.45[0.018]  
0.80[0.031]  
DIA.  
E-PAD  
(PAD SIZE VARY  
BY DEVICE TYPE)  
0.30[0.012]  
0.50[0.020]  
0.24[0.009]  
(4X)  
0.60[0.024]  
0°-12°  
0.50[0.020]  
6.45[0.254]  
6.55[0.258]  
C
SEATING  
PLANE  
51-85144-*D  
Figure 12-1. 56-Lead QFN 8 x 8 mm LF56A  
Document #: 38-08039 Rev. *B  
Page 46 of 50  
CY7C64713/14  
Package Diagrams (continued)  
51-85050-*A  
Figure 12-2. 100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
Document #: 38-08039 Rev. *B  
Page 47 of 50  
CY7C64713/14  
Package Diagrams (continued)  
51-85101-*B  
Figure 12-3. 128-Lead Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A128  
For further information on this package design please refer to  
the application note Surface Mount Assembly of AMKOR’s  
MicroLeadFrame (MLF) Technology. This application note can  
be downloaded from AMKORs website from the following  
URL  
http://www.amkor.com/products/notes_papers/MLF_AppNote  
_0902.pdf. The application note provides detailed information  
on board mounting guidelines, soldering flow, rework process,  
etc.  
13.0  
Quad Flat Package No Leads (QFN)  
Package Design Notes  
Electrical contact of the part to the Printed Circuit Board (PCB)  
is made by soldering the leads on the bottom surface of the  
package to the PCB. Hence, special attention is required to the  
heat transfer area below the package to provide a good  
thermal bond to the circuit board. A Copper (Cu) fill is to be  
designed into the PCB as a thermal pad under the package.  
Heat is transferred from the FX1 through the devices metal  
paddle on the bottom side of the package. Heat from here, is  
conducted to the PCB at the thermal pad. It is then conducted  
from the thermal pad to the PCB inner ground plane by a 5 x 5  
array of via. A via is a plated through hole in the PCB with a  
finished diameter of 13 mil. The QFNs metal die paddle must  
be soldered to the PCBs thermal pad. Solder mask is placed  
on the board top side over each via to resist solder flow into  
the via. The mask on the top side also minimizes outgassing  
during the solder reflow process.  
Figure 13-1 below displays a cross-sectional area underneath  
the package. The cross section is of only one via. The solder  
paste template needs to be designed to allow at least 50%  
solder coverage. The thickness of the solder paste template  
should be 5 mil. It is recommended that No Cleantype 3  
solder paste is used for mounting the part. Nitrogen purge is  
recommended during reflow.  
Document #: 38-08039 Rev. *B  
Page 48 of 50  
CY7C64713/14  
Figure 13-2 is a plot of the solder mask pattern and Figure 13-3 displays an X-Ray image of the assembly (darker areas indicate  
solder).  
0.017dia  
Solder Mask  
Cu Fill  
Cu Fill  
0.013dia  
PCB Material  
PCB Material  
Via hole for thermally connecting the  
This figure only shows the top three layers of the  
circuit board: Top Solder, PCB Dielectric, and  
the Ground Plane  
QFN to the circuit board ground plane.  
Figure 13-1. Cross-section of the Area Underneath the QFN Package  
Figure 13-2. Plot of the Solder Mask (White Area)  
Figure 13-3. X-ray Image of the Assembly  
Purchase of I2C components from Cypress, or one of its sublicensed Associated Companies, conveys a license under the Philips  
I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification  
as defined by Philips. EZ-USB FX1, EZ-USB FX2LP, EZ-USB FX2, andReNumerationare trademarks, andEZ-USB is a registered  
trademark, of Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their  
respective holders.  
Document #: 38-08039 Rev. *B  
Page 49 of 50  
© Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
CY7C64713/14  
Document History Page  
Document Title: CY7C64713/4 EZ-USB FX1USB Microcontroller Full-Speed USB Peripheral Controller  
Document Number: 38-08039  
Orig. of  
REV.  
**  
ECN NO. Issue Date Change  
Description of Change  
132091  
230709  
02/10/04  
KKU  
KKU  
New Data Sheet  
*A  
SEE ECN  
Changed Lead free Marketing part numbers in Table 11-1 according to spec  
change in 28-00054.  
*B  
307474  
SEE ECN  
BHA  
Changed default PID in Table 4-2.  
Updated register table.  
Removed word compatible where associated with I2C.  
Changed Set-up to Setup.  
Added Power Dissipation.  
Changed Vcc from ± 10% to ± 5%  
Added values for VIH_X, VIL_X  
Added values for ICC  
Added values for ISUSP  
Removed IUNCONFIGURED from table 9-1  
Changed PKTEND to FLAGS output propagation delay (asynchronous  
interface) in Table 10-14 from a maximum value of 70 ns to 115 ns.  
Removed 56 SSOP and added 56 QFN package  
Provided additional timing restrictions and requirement regarding the use of  
PKTEND pintocommitashortonebyte/wordpacketsubsequent tocommitting  
a packet automatically (when in auto mode).  
Added part number CY7C64714 ideal for battery powered applications.  
Changed Supply Voltage in section 8 to read +3.15V to +3.45V  
Added Min Vcc Ramp Up time (0 to 3.3v)  
Removed Preliminary  
Document #: 38-08039 Rev. *B  
Page 50 of 50  
© Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY