CY8C20324 [CYPRESS]

CapSense PSoC Programmable System-on-Chip; 的CapSense的PSoC可编程系统级芯片
CY8C20324
型号: CY8C20324
厂家: CYPRESS    CYPRESS
描述:

CapSense PSoC Programmable System-on-Chip
的CapSense的PSoC可编程系统级芯片

文件: 总34页 (文件大小:1048K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY8C20224, CY8C20324  
CY8C20424, CY8C20524  
®
CapSense™ PSoC Programmable  
System-on-Chip™  
High Performance CapSense  
Features  
Ultra fast scan speed—1 kHz (nominal)  
Reliable finger detection through 5 mm thick acrylic  
Excellent EMI and AC noise immunity  
Low Power, Configurable CapSense™  
Configurable capacitive sensing elements  
2.4V to 5.25V operating voltage  
Low operating current  
• Active 1.5 mA (at 3.0V, 12 MHz)  
• Sleep 2.8 μA (at 3.3V)  
Supports up to 25 capacitive buttons  
Supports one slider  
Up to 10 cm proximity sensing  
Supports up to 28 General Purpose IO (GPIO) pins  
• Drive LEDs and other outputs  
Configurable LED behavior (fading, strobing)  
LED color mixing (RBG LEDs)  
Pull Up, High Z, Open Drain, and CMOS drive modes on all  
GPIO  
Internal ±5.0% 6 or12 MHz main oscillator  
Internal low speed oscillator at 32 kHz  
Low external component count  
• No external crystal or oscillator components  
• No external voltage regulator required  
Industry Best Flexibility  
8K Flash program storage 50,000 Erase and Write cycles  
512 bytes SRAM data storage  
Bootloader for ease of field reprogramming  
Partial Flash updates  
Flexible Flash protection modes  
Interrupt controller  
In-System Serial Programming (ISSP)  
Free complete development tool (PSoC Designer™)  
Full Featured, In-Circuit Emulator and Programmer  
• Full speed emulation  
• Complex breakpoint structure  
• 128K trace memory  
Additional System Resources  
Configurable communication speeds  
I2C Slave  
SPI Master and SPI Slave  
Watchdog and Sleep timers  
Internal voltage reference  
Integrated supervisory circuit  
Logic Block Diagram  
Port 3 Port 2 Port 1 Port 0  
3V LDO  
PSoC  
CORE  
System Bus  
Global Analog Interconnect  
SRAM  
512 Bytes  
SROM  
Flash 8K  
CPU Core  
(M8C)  
Sleep and  
Watchdog  
Interrupt  
Controller  
6/12 MHz Internal Main Oscillator  
Analog  
Ref.  
CapSense  
Basic  
Block  
ANALOG  
SYSTEM  
POR and LVD  
System Resets  
I2C Slave/SPI  
Master-Slave  
Analog  
Mux  
SYSTEM RESOURCES  
Cypress Semiconductor Corporation  
Document Number: 001-41947 Rev. *D  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised April 15, 2009  
[+] Feedback  
CY8C20224, CY8C20324  
CY8C20424, CY8C20524  
®
Figure 1. Analog System Block Diagram  
PSoC Functional Overview  
The PSoC family consists of many mixed-signal arrays with  
on-chip controller devices. These devices are designed to  
replace multiple traditional MCU based system components with  
one, low cost single chip programmable component. A PSoC  
device includes configurable analog and digital blocks, and  
programmable interconnect. This architecture allows the user to  
create customized peripheral configurations, to match the  
requirements of each individual application. Additionally, a fast  
CPU, Flash program memory, SRAM data memory, and config-  
urable IO are included in a range of convenient pinouts.  
IDAC  
Vr  
The PSoC architecture for this device family is comprised of  
three main areas: Core, System Resources, and CapSense  
Analog System. A common, versatile bus allows connection  
between IO and the analog system. Each PSoC device includes  
a dedicated CapSense block that provides sensing and scanning  
control circuitry for capacitive sensing applications. Depending  
on the PSoC package, up to 28 general purpose IO (GPIO) are  
also included. The GPIO provide access to the MCU and analog  
mux.  
Reference  
Buffer  
Cinternal  
Comparator  
Mux  
Mux  
Refs  
PSoC Core  
The PSoC Core is a powerful engine that supports a rich  
instruction set. It encompasses SRAM for data storage, an  
interrupt controller, sleep and watchdog timers, and IMO  
(internal main oscillator) and ILO (internal low speed oscillator).  
The CPU core, called the M8C, is a powerful processor with  
speeds up to 12 MHz. The M8C is a 2-MIPS, 8-bit Harvard  
architecture microprocessor.  
Cap Sense Counters  
CSCLK  
Relaxation  
CapSense  
Clock Select  
IMO  
Oscillator  
(RO)  
System Resources provide additional capability, such as a  
configurable I2C slave or SPI master-slave communication  
interface and various system resets supported by the M8C.  
The Analog System is composed of the CapSense PSoC block  
and an internal 1.8V analog reference. Together, they support  
capacitive sensing of up to 28 inputs.  
Analog Multiplexer System  
The Analog Mux Bus connects to every GPIO pin. Pins are  
connected to the bus individually or in any combination. The bus  
also connects to the analog system for analysis with the  
CapSense block comparator.  
CapSense Analog System  
The Analog System contains the capacitive sensing hardware.  
Several hardware algorithms are supported. This hardware  
performs capacitive sensing and scanning without requiring  
external components. Capacitive sensing is configurable on  
each GPIO pin. Scanning of enabled CapSense pins are  
completed quickly and easily across multiple ports.  
Switch control logic enables selected pins to precharge  
continuously under hardware control. This enables capacitive  
measurement for applications such as touch sensing. The  
Analog Multiplexer System in the device family is optimized for  
basic CapSense functionality. It supports sensing of CapSense  
buttons, proximity sensors, and a single slider. Other multiplexer  
applications include:  
Capacitive slider interface.  
Chip-wide mux that allows analog input from any IO pin.  
Crosspoint connection between any IO pin combinations.  
When designing capacitive sensing applications, refer to the  
latest signal to noise signal level requirements application notes,  
which are found in http://www.cypress.com  
> DESIGN  
RESOURCES > Application Notes. In general, and unless  
otherwise noted in the relevant application notes, the minimum  
signal-to-noise ratio (SNR) requirement for CapSense  
applications is 5:1.  
Document Number: 001-41947 Rev. *D  
Page 2 of 34  
[+] Feedback  
CY8C20224, CY8C20324  
CY8C20424, CY8C20524  
Typical Application  
Getting Started  
Figure 2 illustrates a typical application: CapSense multimedia  
keys for a notebook computer with a slider, four buttons, and four  
LEDs.  
The quickest way to understand PSoC silicon is to read this data  
sheet and then use the PSoC Designer Integrated Development  
Environment (IDE). This data sheet is an overview of the PSoC  
integrated circuit and presents specific pin, register, and  
electrical specifications.  
Figure 2. CapSense Multimedia Button-Board Application  
For in depth information, along with detailed programming infor-  
mation, see the PSoC® Programmable System-on-Chip  
Technical Reference Manual for CY8C28xxx PSoC devices.  
For up-to-date ordering, packaging, and electrical specification  
information, see the latest PSoC device data sheets on the web  
at www.cypress.com/psoc.  
Application Notes  
Application notes are an excellent introduction to the wide variety  
of possible PSoC designs. They are located here:  
www.cypress.com/psoc. Select Application Notes under the  
Documentation tab.  
Additional System Resources  
System Resources, some of which are previously listed, provide  
additional capability useful to complete systems. Additional  
resources include low voltage detection and power on reset.  
Brief statements describing the merits of each system resource  
follow.  
Development Kits  
PSoC Development Kits are available online from Cypress at  
www.cypress.com/shop and through a growing number of  
regional and global distributors, which include Arrow, Avnet,  
Digi-Key, Farnell, Future Electronics, and Newark.  
The I2C slave and SPI master-slave module provides 50, 100,  
or 400 kHz communication over two wires. SPI communication  
over three or four wires runs at speeds of 46.9 kHz to 3 MHz  
(lower for a slower system clock).  
Training  
Free PSoC technical training (on demand, webinars, and  
workshops) is available online at www.cypress.com/training. The  
training covers a wide variety of topics and skill levels to assist  
you in your designs.  
Low Voltage Detection (LVD) interrupts signal the application  
of falling voltage levels, while the advanced POR (Power On  
Reset) circuit eliminates the need for a system supervisor.  
An internal 1.8V reference provides an absolute reference for  
capacitive sensing.  
Cypros Consultants  
Certified PSoC Consultants offer everything from technical  
assistance to completed PSoC designs. To contact or become a  
PSoC Consultant go to www.cypress.com/cypros.  
The 5V maximum input, 3V fixed output, low dropout regulator  
(LDO) provides regulation for IOs. A register controlled bypass  
mode allows the user to disable the LDO.  
Solutions Library  
Visit our growing library of solution focused designs at  
www.cypress.com/solutions. Here you can find various appli-  
cation designs that include firmware and hardware design files  
that enable you to complete your designs quickly.  
Technical Support  
For assistance with technical issues, search KnowledgeBase  
articles and forums at www.cypress.com/support. If you cannot  
find an answer to your question, call technical support at  
1-800-541-4736.  
Document Number: 001-41947 Rev. *D  
Page 3 of 34  
[+] Feedback  
CY8C20224, CY8C20324  
CY8C20424, CY8C20524  
Code Generation Tools  
Development Tools  
PSoC Designer supports multiple third party C compilers and  
assemblers. The code generation tools work seamlessly within  
the PSoC Designer interface and have been tested with a full  
range of debugging tools. The choice is yours.  
PSoC Designer is a Microsoft® Windows-based, integrated  
development  
environment  
for  
the  
Programmable  
System-on-Chip (PSoC) devices. The PSoC Designer IDE runs  
on Windows XP or Windows Vista.  
This system provides design database management by project,  
an integrated debugger with In-Circuit Emulator, in-system  
programming support, and built-in support for third-party  
assemblers and C compilers.  
Assemblers. The assemblers allow assembly code to merge  
seamlessly with C code. Link libraries automatically use absolute  
addressing or are compiled in relative mode, and linked with  
other software modules to get absolute addressing.  
PSoC Designer also supports C language compilers developed  
specifically for the devices in the PSoC family.  
C Language Compilers. C language compilers are available  
that support the PSoC family of devices. The products allow you  
to create complete C programs for the PSoC family devices.  
PSoC Designer Software Subsystems  
The optimizing C compilers provide all the features of C tailored  
to the PSoC architecture. They come complete with embedded  
libraries providing port and bus operations, standard keypad and  
display support, and extended math functionality.  
System-Level View  
A drag-and-drop visual embedded system design environment  
based on PSoC Express. In the system level view you create a  
model of your system inputs, outputs, and communication inter-  
faces. You define when and how an output device changes state  
based upon any or all other system devices. Based upon the  
design, PSoC Designer automatically selects one or more PSoC  
Mixed-Signal Controllers that match your system requirements.  
Debugger  
The PSoC Designer Debugger subsystem provides hardware  
in-circuit emulation, allowing you to test the program in a physical  
system while providing an internal view of the PSoC device.  
Debugger commands allow the designer to read and program  
and read and write data memory, read and write IO registers,  
read and write CPU registers, set and clear breakpoints, and  
provide program run, halt, and step control. The debugger also  
allows the designer to create a trace buffer of registers and  
memory locations of interest.  
PSoC Designer generates all embedded code, then compiles  
and links it into a programming file for a specific PSoC device.  
Chip-Level View  
The chip-level view is a more traditional integrated development  
environment (IDE) based on PSoC Designer 4.4. Choose a base  
device to work with and then select different onboard analog and  
digital components called user modules that use the PSoC  
blocks. Examples of user modules are ADCs, DACs, Amplifiers,  
and Filters. Configure the user modules for your chosen  
application and connect them to each other and to the proper  
pins. Then generate your project. This prepopulates your project  
with APIs and libraries that you can use to program your  
application.  
Online Help System  
The online help system displays online, context-sensitive help  
for the user. Designed for procedural and quick reference, each  
functional subsystem has its own context-sensitive help. This  
system also provides tutorials and links to FAQs and an Online  
Support Forum to aid the designer in getting started.  
In-Circuit Emulator  
The device editor also supports easy development of multiple  
configurations and dynamic reconfiguration. Dynamic  
configuration allows for changing configurations at run time.  
A low cost, high functionality In-Circuit Emulator (ICE) is  
available for development support. This hardware has the  
capability to program single devices.  
Hybrid Designs  
The emulator consists of a base unit that connects to the PC by  
way of a USB port. The base unit is universal and operates with  
all PSoC devices. Emulation pods for each device family are  
available separately. The emulation pod takes the place of the  
PSoC device in the target board and performs full speed  
(24 MHz) operation.  
You can begin in the system-level view, allow it to choose and  
configure your user modules, routing, and generate code, then  
switch to the chip-level view to gain complete control over  
on-chip resources. All views of the project share a common code  
editor, builder, and common debug, emulation, and programming  
tools.  
Document Number: 001-41947 Rev. *D  
Page 4 of 34  
[+] Feedback  
CY8C20224, CY8C20324  
CY8C20424, CY8C20524  
property, and other information you may need to successfully  
implement your design.  
Designing with PSoC Designer  
The development process for the PSoC device differs from that  
of a traditional fixed function microprocessor. The configurable  
analog and digital hardware blocks give the PSoC architecture a  
unique flexibility that pays dividends in managing specification  
change during development and by lowering inventory costs.  
These configurable resources, called PSoC Blocks, have the  
ability to implement a wide variety of user-selectable functions.  
Organize and Connect  
You can build signal chains at the chip level by interconnecting  
user modules to each other and the IO pins, or connect system  
level inputs, outputs, and communication interfaces to each  
other with valuator functions.  
In the system-level view, selecting a potentiometer driver to  
control a variable speed fan driver and setting up the valuators  
to control the fan speed based on input from the pot selects,  
places, routes, and configures a programmable gain amplifier  
(PGA) to buffer the input from the potentiometer, an analog to  
digital converter (ADC) to convert the potentiometer’s output to  
a digital signal, and a PWM to control the fan.  
The PSoC development process can be summarized in the  
following four steps:  
1. Select components  
2. Configure components  
3. Organize and Connect  
4. Generate, Verify, and Debug  
In the chip-level view, perform the selection, configuration, and  
routing so that you have complete control over the use of all  
on-chip resources.  
Select Components  
Both the system-level and chip-level views provide a library of  
prebuilt, pretested hardware peripheral components. In the  
system-level view, these components are called “drivers” and  
correspond to inputs (a thermistor, for example), outputs (a  
brushless DC fan, for example), communication interfaces  
(I2C-bus, for example), and the logic to control how they interact  
with one another (called valuators).  
Generate, Verify, and Debug  
When you are ready to test the hardware configuration or move  
on to developing code for the project, perform the “Generate  
Application” step. This causes PSoC Designer to generate  
source code that automatically configures the device to your  
specification and provides the software for the system.  
In the chip-level view, the components are called “user modules”.  
User modules make selecting and implementing peripheral  
devices simple, and come in analog, digital, and mixed signal  
varieties.  
Both system-level and chip-level designs generate software  
based on your design. The chip-level design provides application  
programming interfaces (APIs) with high level functions to  
control and respond to hardware events at run-time and interrupt  
service routines that you can adapt as needed. The system-level  
design also generates a C main() program that completely  
controls the chosen application and contains placeholders for  
custom code at strategic positions allowing you to further refine  
the software without disrupting the generated code.  
Configure Components  
Each of the components you select establishes the basic register  
settings that implement the selected function. They also provide  
parameters and properties that allow you to tailor their precise  
configuration to your particular application. For example, a Pulse  
Width Modulator (PWM) User Module configures one or more  
digital PSoC blocks, one for each 8 bits of resolution. The user  
module parameters permit you to establish the pulse width and  
duty cycle. Configure the parameters and properties to  
correspond to your chosen application. Enter values directly or  
by selecting values from drop-down menus.  
A complete code development environment allows you to  
develop and customize your applications in C, assembly  
language, or both.  
The last step in the development process takes place inside  
PSoC Designer’s Debugger subsystem. The Debugger  
downloads the and HEX image to the ICE where it runs at full  
speed. Debugger capabilities rival those of systems costing  
many times more. In addition to traditional single-step,  
run-to-breakpoint and watch-variable features, the Debugger  
provides a large trace buffer and allows you define complex  
breakpoint events that include monitoring address and data bus  
values, memory locations and external signals.  
Both the system-level drivers and chip-level user modules are  
documented in data sheets that are viewed directly in PSoC  
Designer. These data sheets explain the internal operation of the  
component and provide performance specifications. Each data  
sheet describes the use of each user module parameter or driver  
Document Number: 001-41947 Rev. *D  
Page 5 of 34  
[+] Feedback  
CY8C20224, CY8C20324  
CY8C20424, CY8C20524  
Units of Measure  
Document Conventions  
A units of measure table is located in the Electrical Specifications  
section. Table 7 on page 13 lists all the abbreviations used to  
measure the PSoC devices.  
Acronyms Used  
The following table lists the acronyms that are used in this  
document.  
Numeric Naming  
Table 1. List of Acronyms  
Hexadecimal numbers are represented with all letters in  
uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or  
‘3Ah’). Hexadecimal numbers may also be represented by a ‘0x’  
prefix, the C coding convention. Binary numbers have an  
appended lowercase ‘b’ (for example, 01010100b’ or  
‘01000011b’). Numbers not indicated by an ‘h’, ‘b’, or 0x are  
decimal.  
Acronym  
AC  
Description  
Alternating Current  
API  
Application Programming Interface  
Central Processing Unit  
Direct Current  
CPU  
DC  
GPIO  
GUI  
General Purpose IO  
Graphical User Interface  
In-Circuit Emulator  
ICE  
ILO  
Internal Low Speed Oscillator  
Internal Main Oscillator  
Input And Output  
IMO  
IO  
LSb  
Least Significant Bit  
LVD  
Low Voltage Detect  
MSb  
POR  
PPOR  
PSoC®  
SLIMO  
SRAM  
Most Significant Bit  
Power On Reset  
Precision Power On Reset  
Programmable System-on-Chip®  
Slow IMO  
Static Random Access Memory  
Document Number: 001-41947 Rev. *D  
Page 6 of 34  
[+] Feedback  
CY8C20224, CY8C20324  
CY8C20424, CY8C20524  
Pinouts  
This section describes, lists, and illustrates the CY8C20224, CY8C20324, CY8C20424, and CY8C20524 PSoC device pins and pinout  
configurations.  
The PSoC device is available in a variety of packages which are listed and illustrated in the following tables. Every port pin (labeled  
with a “P”) is capable of Digital IO and connection to the common analog bus. However, Vss, Vdd, and XRES are not capable of Digital  
IO.  
16-Pin Part Pinout  
Figure 3. CY8C20224 16-Pin PSoC Device  
AI, P2[5]  
AI, P2[1]  
1
2
P0[4], AI  
XRES  
P1[4], AI, EXTCLK  
P1[2], AI  
12  
11  
QFN  
(Top  
3
4
View )10  
AI, I2C SCL, SPI SS, P1[7]  
AI, I2C SDA, SPI M ISO , P1[5]  
9
Table 2. 16-Pin Part Pinout (COL)  
Pin No.  
Digital  
IO  
Analog  
Name  
P2[5]  
P2[1]  
P1[7]  
Description  
1
2
3
I
I
I
IO  
I2C SCL, SPI SS  
IOH  
I2C SDA, SPI MISO  
4
IOH  
I
P1[5]  
5
6
IOH  
IOH  
I
I
P1[3]  
P1[1]  
SPI CLK  
CLK[1], I2C SCL, SPI MOSI  
Ground connection  
DATA[1], I2C SDA  
7
8
Power  
Vss  
IOH  
I
P1[0]  
9
IOH  
IOH  
I
I
P1[2]  
P1[4]  
10  
11  
12  
13  
14  
15  
16  
Optional external clock input (EXTCLK)  
Input  
Power  
XRES Active high external reset with internal pull down  
P0[4]  
IO  
I
Vdd  
Supply voltage  
IO  
IO  
IO  
I
I
I
P0[7]  
P0[3]  
P0[1]  
Integrating input  
Integrating input  
A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive  
Note  
1. These are the ISSP pins, that are not High Z at POR (Power On Reset). Refer the PSoC Programmable System-on-Chip Technical Reference Manual for details.  
Document Number: 001-41947 Rev. *D  
Page 7 of 34  
[+] Feedback  
CY8C20224, CY8C20324  
CY8C20424, CY8C20524  
24-Pin Part Pinout  
Figure 4. CY8C20324 24-Pin PSoC Device  
AI, P2[5]  
P0[4], AI  
18  
1
2
3
4
5
6
17 P0[2], AI  
16  
AI, P2[3]  
AI, P2[1]  
AI, I2C SCL, SPI SS, P1[7]  
AI, I2C SDA, SPI MISO, P1[5]  
AI, SPI CLK, P1[3]  
P0[0], AI  
QFN  
(Top View)  
15  
14  
13  
P2[0], AI  
XRES  
P1[6], AI  
Table 3. 24-Pin Part Pinout (QFN [2]  
)
Pin No.  
Digital  
IO  
Analog  
Name  
P2[5]  
P2[3]  
P2[1]  
P1[7]  
Description  
1
2
3
4
I
I
I
I
IO  
IO  
I2C SCL, SPI SS  
IOH  
I2C SDA, SPI MISO  
5
IOH  
I
P1[5]  
6
7
IOH  
IOH  
I
I
P1[3]  
P1[1]  
SPI CLK  
CLK[1], I2C SCL, SPI MOSI  
No connection  
8
9
NC  
Vss  
Power  
Ground connection  
DATA[1], I2C SDA  
10  
IOH  
I
P1[0]  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
CP  
IOH  
IOH  
IOH  
I
I
I
P1[2]  
P1[4]  
P1[6]  
XRES  
P2[0]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Vdd  
Optional external clock input (EXTCLK)  
Input  
Active high external reset with internal pull down  
IO  
IO  
IO  
IO  
IO  
I
I
I
I
I
Power  
Power  
Supply voltage  
IO  
IO  
IO  
IO  
I
I
I
I
P0[7]  
P0[5]  
P0[3]  
P0[1]  
Vss  
Integrating input  
Integrating input  
Center pad is connected to ground  
A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive  
Note  
2. The center pad on the QFN package is connected to ground (Vss) for best mechanical, thermal, and electrical performance. If not connected to ground, it is  
electrically floated and not connected to any other signal.  
Document Number: 001-41947 Rev. *D  
Page 8 of 34  
[+] Feedback  
CY8C20224, CY8C20324  
CY8C20424, CY8C20524  
28-Pin Part Pinout  
Figure 5. CY8C20524 28-Pin PSoC Device  
Table 4. 28-Pin Part Pinout (SSOP)  
Pin No.  
Digital  
IO  
Analog  
Name  
P0[7]  
P0[5]  
P0[3]  
P0[1]  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
Vss  
Description  
1
2
I
I
I
I
I
I
I
I
IO  
3
IO  
Integrating Input  
Integrating Input  
4
IO  
5
IO  
6
IO  
7
IO  
8
IO  
9
Power  
Ground connection  
I2C SCL, SPI SS  
I2C SDA, SPI MISO  
10  
IOH  
IOH  
I
I
P1[7]  
11  
P1[5]  
12  
13  
IOH  
IOH  
I
I
P1[3]  
P1[1]  
SPI CLK  
CLK[1], I2C SCL, SPL MOSI  
Ground connection  
Data[1], I2C SDA  
14  
15  
Power  
Vss  
IOH  
I
P1[0]  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
IOH  
IOH  
IOH  
I
I
I
P1[2]  
P1[4]  
P1[6]  
XRES  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Vdd  
Optional External Clock Input (EXTCLK)  
Input  
Active high external reset with internal pull down  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
I
I
I
I
I
I
I
Power  
Supply voltage  
A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive  
Document Number: 001-41947 Rev. *D  
Page 9 of 34  
[+] Feedback  
CY8C20224, CY8C20324  
CY8C20424, CY8C20524  
32-Pin Part Pinout  
Figure 6. CY8C20424 32-Pin PSoC Device  
AI, P0[1]  
AI, P2[7]  
AI, P2[5]  
AI, P2[3]  
AI, P2[1]  
AI, P3[3]  
1
2
3
4
5
6
7
8
P0[0], AI  
P2[6], AI  
P2[4], AI  
P2[2], AI  
P2[0], AI  
P3[2], AI  
P3[0], AI  
XRES  
24  
23  
22  
21  
20  
19  
18  
17  
QFN  
(Top View)  
AI, P3[1]  
SPI SS, P1[7]  
AI, I2C SCL  
Table 5. 32-Pin Part Pinout (QFN [2]  
)
Pin No.  
Digital  
IO  
Analog  
Name  
P0[1]  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
P3[3]  
P3[1]  
P1[7]  
Description  
1
2
3
4
5
6
7
8
I
I
I
I
I
I
I
I
Integrating Input  
IO  
IO  
IO  
IO  
IO  
IO  
I2C SCL, SPI SS  
IOH  
I2C SDA, SPI MISO  
SPI CLK  
9
IOH  
I
P1[5]  
10  
11  
IOH  
IOH  
I
I
P1[3]  
P1[1]  
CLK[1], I2C SCL, SPI MOSI  
Ground connection  
12  
13  
Power  
Vss  
DATA[1], I2C SDA  
IOH  
I
P1[0]  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
IOH  
IOH  
IOH  
I
I
I
P1[2]  
P1[4]  
P1[6]  
Optional external clock input (EXTCLK)  
Input  
XRES Active high external reset with internal pull down  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
I
I
I
I
I
I
I
P3[0]  
P3[2]  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
Document Number: 001-41947 Rev. *D  
Page 10 of 34  
[+] Feedback  
CY8C20224, CY8C20324  
CY8C20424, CY8C20524  
Table 5. 32-Pin Part Pinout (QFN [2]) (continued)  
Pin No.  
26  
Digital  
IO  
Analog  
Name  
P0[4]  
P0[6]  
Vdd  
Description  
I
I
27  
IO  
28  
Power  
Supply voltage  
29  
IO  
IO  
IO  
I
I
I
P0[7]  
P0[5]  
P0[3]  
Vss  
30  
31  
Integrating input  
32  
Power  
Power  
Ground connection  
CP  
Vss  
Center pad is connected to ground  
A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive  
48-Pin OCD Part Pinout  
The 48-Pin QFN part table and pin diagram is for the CY8C20024 On-Chip Debug (OCD) PSoC device. This part is only used for  
in-circuit debugging. It is NOT available for production.  
Figure 7. CY8C20024 OCD PSoC Device  
NC  
AI, P0[1]  
36  
35  
34  
33  
32  
31  
30  
P0[4], AI  
1
2
P0[2], AI  
P0[0], AI  
P2[6], AI  
P2[4], AI  
P2[2], AI  
AI, P2[7]  
3
4
5
6
AI, P2[5]  
OCD  
QFN  
AI, P2[3]  
AI, P2[1]  
AI, P3[3]  
AI, P3[1]  
AI, I2C SCL, SPI SS, P1[7]  
P2[0], AI  
P3[2], AI  
P3[0], AI  
XRES  
7
8
9
10  
11  
12  
(Top View)  
29  
28  
27  
AI, I2C SDA, SPI MISO, P1[5]  
NC  
26  
25  
P1[6], AI  
P1[4], EXTCLK, AI  
NC  
Table 6. 48-Pin OCD Part Pinout (QFN [2]  
)
Pin No.  
Digital  
Analog  
Name  
NC  
Description  
1
2
3
4
5
6
7
8
9
No connection  
IO  
IO  
I
I
I
I
I
I
I
I
P0[1]  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
P3[3]  
P3[1]  
P1[7]  
Integrating Input  
IO  
IO  
IO  
IO  
IO  
I2C SCL, SPI SS  
IOH  
Document Number: 001-41947 Rev. *D  
Page 11 of 34  
[+] Feedback  
CY8C20224, CY8C20324  
CY8C20424, CY8C20524  
Table 6. 48-Pin OCD Part Pinout (QFN [2]) (continued)  
Pin No.  
Digital  
Analog  
Name  
Description  
I2C SDA, SPI MISO  
No connection  
No connection  
No connection  
No connection  
SPI CLK  
10  
IOH  
I
P1[5]  
11  
12  
13  
14  
15  
16  
NC  
NC  
NC  
NC  
IOH  
IOH  
I
I
P1[3]  
P1[1]  
CLK[1], I2C SCL, SPI MOSI  
Ground connection  
17  
18  
19  
20  
Power  
Vss  
CCLK OCD CPU clock output  
HCLK OCD high speed clock output  
DATA[1], I2C SDA  
P1[0]  
IOH  
IOH  
I
I
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
CP  
P1[2]  
NC  
NC  
No connection  
No connection  
No connection  
NC  
IOH  
IOH  
I
I
P1[4]  
P1[6]  
Optional external clock input (EXTCLK)  
Input  
XRES Active high external reset with internal pull down  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
I
I
I
I
I
I
I
I
P3[0]  
P3[2]  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
NC  
NC  
No connection  
No connection  
No connection  
NC  
IO  
I
P0[6]  
Vdd  
Power  
Supply voltage  
OCDO OCD odd data output  
OCDE OCD even data IO  
IO  
IO  
IO  
I
I
I
P0[7]  
P0[5]  
P0[3]  
Vss  
NC  
Integrating input  
Power  
Power  
Ground connection  
No connection  
Vss  
Center pad is connected to ground  
A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive.  
Document Number: 001-41947 Rev. *D  
Page 12 of 34  
[+] Feedback  
CY8C20224, CY8C20324  
CY8C20424, CY8C20524  
Electrical Specifications  
This section presents the DC and AC electrical specifications of the CY8C20224, CY8C20324, CY8C20424, and CY8C20524 PSoC  
devices. For the latest electrical specifications, visit the web at http://www.cypress.com/psoc.  
Specifications are valid for -40oC T 85oC and T 100oC as specified, except where noted.  
A
J
Refer to Table 17 on page 19 for the electrical specifications on the internal main oscillator (IMO) using SLIMO mode.  
Figure 8. Voltage versus CPU Frequency and IMO Frequency Trim Options  
5.25  
4.75  
5.25  
SLIMO SLIMO SLIMO  
Mode=1 Mode=1 Mode=0  
4.75  
3.60  
SLIMO SLIMO  
Mode=1 Mode=0  
SLIMO  
3.00  
2.70  
3.00  
2.70  
SLIMO  
Mode=0  
Mode=1  
2.40  
2.40  
750 kHz  
3 MHz  
6 MHz  
750 kHz  
3 MHz  
6 MHz  
12 MHz  
12 MHz  
IMO Frequency  
CPU Frequency  
The following table lists the units of measure that are used in this section.  
Table 7. Units of Measure  
Symbol  
oC  
Unit of Measure  
Symbol  
Unit of Measure  
degree Celsius  
decibels  
μW  
mA  
ms  
mV  
nA  
ns  
microwatts  
milli-ampere  
milli-second  
milli-volts  
dB  
fF  
femto farad  
hertz  
Hz  
KB  
1024 bytes  
1024 bits  
nanoampere  
nanosecond  
nanovolts  
Kbit  
kHz  
kΩ  
kilohertz  
nV  
Ω
kilohm  
ohm  
MHz  
MΩ  
μA  
μF  
μH  
μs  
μV  
μVrms  
megahertz  
megaohm  
microampere  
microfarad  
microhenry  
microsecond  
microvolts  
pA  
pF  
pp  
ppm  
ps  
picoampere  
picofarad  
peak-to-peak  
parts per million  
picosecond  
sps  
s
samples per second  
sigma: one standard deviation  
volts  
microvolts root-mean-square  
V
Document Number: 001-41947 Rev. *D  
Page 13 of 34  
[+] Feedback  
CY8C20224, CY8C20324  
CY8C20424, CY8C20524  
Absolute Maximum Ratings  
Table 8. Absolute Maximum Ratings  
Symbol  
TSTG  
Description  
Storage Temperature  
Min  
Typ  
Max  
Units  
oC  
Notes  
-55  
25  
+100  
Higher storage temperatures  
reduces data retention time.  
Recommended storage temper-  
ature is +25oC ± 25oC. Extended  
duration storage temperatures  
above 65oC degrades reliability.  
TA  
Ambient Temperature with Power Applied  
Supply Voltage on Vdd Relative to Vss  
DC Input Voltage  
-40  
+85  
oC  
V
Vdd  
VIO  
-0.5  
+6.0  
Vss -  
0.5  
Vdd +  
0.5  
V
VIOZ  
DC Voltage Applied to Tri-state  
Vss -  
0.5  
Vdd +  
0.5  
V
IMIO  
ESD  
LU  
Maximum Current into any Port Pin  
Electro Static Discharge Voltage  
Latch-up Current  
-25  
2000  
+50  
mA  
V
Human Body Model ESD.  
200  
mA  
Operating Temperature  
Table 9. Operating Temperature  
Symbol  
TA  
TJ  
Description  
Min  
-40  
-40  
Typ  
Max  
+85  
Units  
oC  
oC  
Notes  
Ambient Temperature  
Junction Temperature  
+100  
The temperature rise from ambient  
to junction is package specific. See  
Table 32 on page 29. The user must  
limit the power consumption to  
comply with this requirement.  
Document Number: 001-41947 Rev. *D  
Page 14 of 34  
[+] Feedback  
CY8C20224, CY8C20324  
CY8C20424, CY8C20524  
DC Electrical Characteristics  
DC Chip Level Specifications  
Table 10 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters apply to  
5V, 3.3V, or 2.7V at 25°C. These are for design guidance only.  
Table 10. DC Chip Level Specifications  
Symbol  
Vdd  
Description  
Min  
2.40  
Typ  
Max  
5.25  
2.5  
Units  
Notes  
Supply Voltage  
V
IDD12  
Supply Current, IMO = 12 MHz  
1.5  
mA Conditions are Vdd = 3.0V,  
TA = 25oC, CPU = 12 MHz.  
IDD6  
Supply Current, IMO = 6 MHz  
1
1.5  
4
mA Conditions are Vdd = 3.0V,  
TA = 25oC, CPU = 6 MHz.  
ISB27  
Sleep (Mode) Current with POR, LVD, Sleep  
Timer, WDT, and Internal Slow Oscillator Active.  
Mid Temperature Range.  
2.6  
μA Vdd = 2.55V, 0oC TA 40oC.  
μA Vdd = 3.3V, -40oC TA 85oC.  
ISB  
Sleep (Mode) Current with POR, LVD, Sleep  
Timer, WDT, and Internal Slow Oscillator Active.  
2.8  
5
DC General Purpose IO Specifications  
Unless otherwise noted, Table 11 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges:  
4.75V to 5.25V and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively.  
Typical parameters apply to 5V, 3.3V, and 2.7V at 25°C. These are for design guidance only.  
Table 11. 5V and 3.3V DC GPIO Specifications  
Symbol  
RPU  
Description  
Min  
4
Typ  
5.6  
Max  
8
Units  
kΩ  
Notes  
Pull Up Resistor  
VOH1  
High Output Voltage  
Port 0, 2, or 3 Pins  
Vdd - 0.2  
V
IOH<10 μA, Vdd>3.0V, maximum  
of 20 mA source current in all IOs.  
VOH2  
VOH3  
VOH4  
VOH5  
VOH6  
VOH7  
VOH8  
High Output Voltage  
Port 0, 2, or 3 Pins  
Vdd - 0.9  
Vdd - 0.2  
Vdd - 0.9  
2.7  
V
V
V
V
V
V
V
IOH = 1 mA, Vdd > 3.0V, maximum  
of 20 mA source current in all IOs.  
High Output Voltage  
Port 1 Pins with LDO Regulator Disabled  
IOH<10μA, Vdd>3.0V, maximum  
of 10 mA source current in all IOs.  
High Output Voltage  
Port 1 Pins with LDO Regulator Disabled  
IOH = 5 mA, Vdd > 3.0V, maximum  
of 20 mA source current in all IOs.  
High Output Voltage  
Port 1 Pins with 3.0V LDO Regulator Enabled  
3.0  
3.3  
IOH<10 uA, Vdd > 3.1V, maximum  
of 4 IOs all sourcing 5 mA.  
High Output Voltage  
Port 1 Pins with 3.0V LDO Regulator Enabled  
2.2  
IOH = 5 mA, Vdd > 3.1V, maximum  
of 20 mA source current in all IOs.  
High Output Voltage  
Port 1 Pins with 2.4V LDO Regulator Enabled  
2.1  
2.4  
2.7  
IOH<10μA, Vdd>3.0V, maximum  
of 20 mA source current in all IOs.  
High Output Voltage  
Port 1 Pins with 2.4V LDO Regulator Enabled  
2.0  
IOH < 200 μA, Vdd > 3.0V,  
maximum of 20 mA source current  
in all IOs.  
VOH9  
High Output Voltage  
Port 1 Pins with 1.8V LDO Regulator Enabled  
1.6  
1.8  
2.0  
V
IOH < 10 μA  
3.0V Vdd 3.6V  
0oC TA ≤ 85oC  
Maximum of 20 mA source current  
in all IOs.  
Document Number: 001-41947 Rev. *D  
Page 15 of 34  
[+] Feedback  
CY8C20224, CY8C20324  
CY8C20424, CY8C20524  
Table 11. 5V and 3.3V DC GPIO Specifications (continued)  
Symbol  
Description  
High Output Voltage  
Port 1 Pins with 1.8V LDO Regulator Enabled  
Min  
Typ  
Max  
Units  
Notes  
VOH10  
1.5  
V
IOH < 100 μA  
3.0V Vdd 3.6V  
0oC TA ≤ 85oC  
Maximum of 20 mA source current  
in all IOs.  
VOL  
Low Output Voltage  
0.75  
V
IOL = 20 mA, Vdd > 3.0V,  
maximum of 60 mA sink current on  
even port pins (for example, P0[2]  
and P1[4]) and 60 mA sink current  
on odd port pins (for example,  
P0[3] and P1[5]).  
VIL  
VIH  
VH  
IIL  
Input Low Voltage  
2.0  
0.8  
V
V
3.0V Vdd 5.25V  
3.0V Vdd 5.25V  
Input High Voltage  
Input Hysteresis Voltage  
Input Leakage (Absolute Value)  
Capacitive Load on Pins as Input  
140  
1
5
mV  
nA Gross tested to 1 μA  
CIN  
0.5  
1.7  
pF Package and pin dependent  
temperature = 25oC  
COUT  
Capacitive Load on Pins as Output  
0.5  
1.7  
5
pF Package and pin dependent  
temperature = 25oC  
Table 12. 2.7V DC GPIO Specifications  
Symbol  
RPU  
Description  
Min  
4
Typ  
5.6  
Max  
8
Units  
Notes  
Pull Up Resistor  
kΩ  
VOH1  
High Output Voltage  
Port 1 Pins with LDO Regulator Disabled  
Vdd - 0.2  
V
IOH < 10 μA, maximum of 10 mA  
source current in all IOs.  
VOH2  
VOL  
High Output Voltage  
Port 1 Pins with LDO Regulator Disabled  
Vdd - 0.5  
V
V
IOH = 2 mA, maximum of 10 mA  
source current in all IOs.  
Low Output Voltage  
0.75  
IOL = 10 mA, maximum of 30 mA  
sink current on even port pins (for  
example, P0[2] and P1[4]) and 30  
mA sink current on odd port pins  
(for example, P0[3] and P1[5]).  
VOLP1  
Low Output Voltage Port 1 Pins  
0.4  
V
IOL=5 mA  
Maximum of 50 mA sink current on  
even port pins (for example, P0[2]  
and P3[4]) and 50 mA sink current  
on odd port pins (for example,  
P0[3] and P2[5]).  
2.4V Vdd 3.0V  
2.4V Vdd 3.0V  
2.4V Vdd 2.7V  
2.7V Vdd 3.0V  
VIL  
Input Low Voltage  
1.4  
1.6  
0.75  
V
V
VIH1  
VIH2  
VH  
Input High Voltage  
5
Input High Voltage  
V
Input Hysteresis Voltage  
Input Leakage (Absolute Value)  
Capacitive Load on Pins as Input  
60  
1
mV  
IIL  
nA Gross tested to 1 μA  
CIN  
0.5  
1.7  
pF Package and pin dependent  
temperature = 25oC  
COUT  
Capacitive Load on Pins as Output  
0.5  
1.7  
5
pF Package and pin dependent  
temperature = 25oC  
Document Number: 001-41947 Rev. *D  
Page 16 of 34  
[+] Feedback  
CY8C20224, CY8C20324  
CY8C20424, CY8C20524  
DC Analog Mux Bus Specifications  
Table 13 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and  
-40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C. These are for design guidance only.  
Table 13. DC Analog Mux Bus Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
RSW  
Switch Resistance to Common Analog Bus  
400  
800  
Ω
Ω
Vdd 2.7V  
2.4V Vdd 2.7V  
DC Low Power Comparator Specifications  
Table 14 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and  
-40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V at 25°C. These are for design guidance only.  
Table 14. DC Low Power Comparator Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
VREFLPC Low power comparator (LPC) reference  
voltage range  
0.2  
Vdd – 1  
V
ISLPC  
LPC supply current  
LPC voltage offset  
10  
40  
30  
μA  
mV  
VOSLPC  
2.5  
DC POR and LVD Specifications  
Table 15 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and  
-40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C. These are for design guidance only.  
Table 15. DC POR and LVD Specifications  
Symbol  
Description  
Vdd Value for PPOR Trip  
Min  
Typ  
Max  
Units  
Notes  
Vdd is greater than or equal to 2.5V  
during startup, reset from the XRES  
pin, or reset from Watchdog.  
VPPOR0 PORLEV[1:0] = 00b  
VPPOR1 PORLEV[1:0] = 01b  
VPPOR2 PORLEV[1:0] = 10b  
2.36  
2.60  
2.82  
2.40  
2.65  
2.95  
V
V
V
Vdd Value for LVD Trip  
VLVD0  
VLVD1  
VLVD2  
VLVD3  
VLVD4  
VLVD5  
VLVD6  
VLVD7  
VM[2:0] = 000b  
VM[2:0] = 001b  
VM[2:0] = 010b  
VM[2:0] = 011b  
VM[2:0] = 100b  
VM[2:0] = 101b  
VM[2:0] = 110b  
VM[2:0] = 111b  
2.39  
2.54  
2.75  
2.85  
2.96  
2.45  
2.71  
2.92  
3.02  
3.13  
2.51[3]  
2.78[4]  
2.99[5]  
3.09  
3.20  
V
V
V
V
V
V
V
V
4.52  
4.73  
4.83  
Notes  
3. Always greater than 50 mV above V  
4. Always greater than 50 mV above V  
5. Always greater than 50 mV above V  
(PORLEV = 00) for falling supply.  
(PORLEV = 01) for falling supply.  
(PORLEV = 10) for falling supply.  
PPOR  
PPOR  
PPOR  
Document Number: 001-41947 Rev. *D  
Page 17 of 34  
[+] Feedback  
CY8C20224, CY8C20324  
CY8C20424, CY8C20524  
DC Programming Specifications  
Table 16 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and  
-40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C. These are for design guidance only.  
Table 16. DC Programming Specifications  
Symbol  
Description  
Min  
2.70  
Typ  
Max  
Units  
V
Notes  
VddIWRITE Supply Voltage for Flash Write Operations  
IDDP  
VILP  
Supply Current During Programming or Verify  
5
25  
mA  
V
Input Low Voltage During Programming or  
Verify  
0.8  
VIHP  
IILP  
Input High Voltage During Programming or  
Verify  
2.2  
V
mA  
mA  
V
Input Current when Applying Vilp to P1[0] or  
P1[1] During Programming or Verify  
0.2  
1.5  
Driving internal pull down  
resistor.  
IIHP  
Input Current when Applying Vihp to P1[0] or  
P1[1] During Programming or Verify  
Driving internal pull down  
resistor.  
VOLV  
VOHV  
Output Low Voltage During Programming or  
Verify  
Vss +  
0.75  
Output High Voltage During Programming or  
Verify  
Vdd  
–1.0  
Vdd  
V
FlashENPB Flash Endurance (per block)  
50,000  
Erase/write cycles per block.  
Erase/write cycles.  
Flash Endurance (total)[6]  
FlashENT  
1,800,0  
00  
FlashDR  
Flash Data Retention  
10  
Years  
Note  
6. A maximum of 36 x 50,000 block endurance cycles is allowed. This is balanced between operations on 36x1 blocks of 50,000 maximum cycles each, 36x2 blocks of  
25,000 maximum cycles each, or 36x4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36x50,000 and that no single block ever sees  
more than 50,000 cycles).  
Document Number: 001-41947 Rev. *D  
Page 18 of 34  
[+] Feedback  
CY8C20224, CY8C20324  
CY8C20424, CY8C20524  
AC Electrical Characteristics  
AC Chip Level Specifications  
Table 17 and Table 18 list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to  
5.25V and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C respectively. Typical  
parameters apply to 5V, 3.3V, or 2.7V at 25°C. These are for design guidance only.  
Table 17. 5V and 3.3V AC Chip-Level Specifications  
Symbol  
FCPU1  
Description  
Min  
0.75  
15  
Typ  
Max  
12.6  
64  
Units  
Notes  
CPU Frequency (3.3V Nominal)  
Internal Low Speed Oscillator Frequency  
MHz 12 MHz only for SLIMO Mode = 0  
kHz  
F32K1  
32  
12  
FIMO12  
Internal Main Oscillator Stability for 12 MHz 11.4  
(Commercial Temperature)[7]  
12.6  
MHz Trimmed for 3.3V operation using  
factory trim values.  
See Figure 8 on page 13, SLIMO  
Mode = 0.  
FIMO6  
Internal Main Oscillator Stability for 6 MHz  
(Commercial Temperature)  
5.70  
6.0  
6.30  
MHz Trimmed for 3.3V operation using  
factory trim values.  
See Figure 8 on page 13, SLIMO  
Mode = 1.  
DCIMO  
TRAMP  
TXRST  
Duty Cycle of IMO  
40  
0
50  
60  
%
μs  
μs  
Supply Ramp Time  
External Reset Pulse Width  
10  
Table 18. 2.7V AC Chip Level Specifications  
Symbol  
FCPU1A  
FCPU1B  
F32K1  
Description  
Min  
0.75  
0.75  
8
Typ  
Max  
3.25  
6.3  
Units  
Notes  
CPU Frequency (2.7V Nominal)  
CPU Frequency (2.7V Minimum)  
Internal Low Speed Oscillator Frequency  
MHz 2.4V < Vdd < 3.0V.  
MHz 2.7V < Vdd < 3.0V.  
kHz  
32  
12  
96  
FIMO12  
Internal Main Oscillator Stability for 12 MHz 11.0  
(Commercial Temperature)[7]  
12.9  
MHz Trimmed for 2.7V operation using  
factory trim values.  
See Figure 8 on page 13, SLIMO  
Mode = 0.  
FIMO6  
Internal Main Oscillator Stability for 6 MHz  
(Commercial Temperature)  
5.60  
6.0  
6.40  
MHz Trimmed for 2.7V operation using  
factory trim values.  
See Figure 8 on page 13, SLIMO  
Mode = 1.  
DCIMO  
TRAMP  
TXRST  
Duty Cycle of IMO  
40  
0
50  
60  
%
μs  
μs  
Supply Ramp Time  
External Reset Pulse Width  
10  
Note  
7. 0 to 70 °C ambient, Vdd = 3.3 V.  
Document Number: 001-41947 Rev. *D  
Page 19 of 34  
[+] Feedback  
CY8C20224, CY8C20324  
CY8C20424, CY8C20524  
AC General Purpose IO Specifications  
Table 19 and Table 20 list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to  
5.25V and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C respectively. Typical  
parameters apply to 5V, 3.3V, or 2.7V at 25°C. These are for design guidance only.  
Table 19. 5V and 3.3V AC GPIO Specifications  
Symbol  
Description  
Min  
0
Typ  
Max  
6
Units  
Notes  
FGPIO  
GPIO Operating Frequency  
MHz Normal Strong Mode, Port 1.  
TRise023 Rise Time, Strong Mode, Cload = 50 pF  
Ports 0, 2, 3  
15  
80  
ns  
ns  
ns  
Vdd = 3.0 to 3.6V and 4.75V to 5.25V,  
10% - 90%  
TRise1  
Rise Time, Strong Mode, Cload = 50 pF  
Port 1  
10  
10  
50  
50  
Vdd = 3.0 to 3.6V, 10% - 90%  
TFall  
Fall Time, Strong Mode, Cload = 50 pF  
All Ports  
Vdd = 3.0 to 3.6V and 4.75V to 5.25V,  
10% - 90%  
Table 20. 2.7V AC GPIO Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
FGPIO  
GPIO Operating Frequency  
0
1.5  
MHz Normal Strong Mode, Port 1.  
TRise023 Rise Time, Strong Mode, Cload = 50 pF  
Ports 0, 2, 3  
15  
10  
10  
100  
ns  
ns  
ns  
Vdd = 2.4 to 3.0V, 10% - 90%  
Vdd = 2.4 to 3.0V, 10% - 90%  
Vdd = 2.4 to 3.0V, 10% - 90%  
TRise1  
Rise Time, Strong Mode, Cload = 50 pF  
Port 1  
70  
TFall  
Fall Time, Strong Mode, Cload = 50 pF  
All Ports  
70  
Figure 9. GPIO Timing Diagram  
90%  
GPIO  
Pin  
Output  
Voltage  
10%  
TFall  
TRise023  
TRise1  
AC Comparator Amplifier Specifications  
Table 21 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters apply to  
5V, 3.3V, or 2.7V at 25°C. These are for design guidance only.  
Table 21. AC Operational Amplifier Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
TCOMP  
Comparator Response Time, 50 mV  
Overdrive  
100  
200  
ns  
ns  
Vdd 3.0V  
2.4V < Vcc < 3.0V  
Document Number: 001-41947 Rev. *D  
Page 20 of 34  
[+] Feedback  
CY8C20224, CY8C20324  
CY8C20424, CY8C20524  
AC Analog Mux Bus Specifications  
Table 22 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C respectively. Typical parameters apply to  
5V, 3.3V, or 2.7V at 25°C. These are for design guidance only.  
Table 22. AC Analog Mux Bus Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
FSW  
Switch Rate  
3.17  
MHz  
AC Low Power Comparator Specifications  
Table 23 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters apply to  
5V at 25°C. These are for design guidance only.  
Table 23. AC Low Power Comparator Specifications  
Symbol  
Description  
LPC response time  
Min  
Typ  
Max  
Units  
Notes  
TRLPC  
50  
μs  
50 mV overdrive comparator  
reference set within VREFLPC  
.
AC External Clock Specifications  
Table 24, Table 25, and Table 26 list the guaranteed maximum and minimum specifications for the voltage and temperature ranges:  
4.75V to 5.25V and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively.  
Typical parameters apply to 5V, 3.3V, or 2.7V at 25°C. These are for design guidance only.  
Table 24. 5V AC External Clock Specifications  
Symbol  
Description  
Min  
0.750  
38  
Typ  
Max  
12.6  
5300  
Units  
MHz  
ns  
Notes  
FOSCEXT Frequency  
High Period  
Low Period  
38  
ns  
Power Up IMO to Switch  
150  
μs  
Table 25. 3.3V AC External Clock Specifications  
Symbol Description  
FOSCEXT Frequency with CPU Clock divide by 1  
Min  
Typ  
Max  
Units  
Notes  
0.750  
12.6  
MHz Maximum CPU frequency is 12  
MHz at 3.3V. With the CPU clock  
divider set to 1, the external clock  
must adhere to the maximum  
frequency and duty cycle require-  
ments.  
High Period with CPU Clock divide by 1  
Low Period with CPU Clock divide by 1  
Power Up IMO to Switch  
41.7  
41.7  
150  
5300  
ns  
ns  
μs  
Document Number: 001-41947 Rev. *D  
Page 21 of 34  
[+] Feedback  
CY8C20224, CY8C20324  
CY8C20424, CY8C20524  
Table 26. 2.7V AC External Clock Specifications  
Symbol Description  
Min  
Typ  
Max  
Units  
Notes  
FOSCEXT1A Frequency with CPU Clock divide by 1  
(2.7V Nominal)  
0.75  
3.080  
MHz 2.4V < Vdd < 3.0V. Maximum CPU  
frequency is 3 MHz at 2.7V. With the  
CPUclockdividersetto1, theexternal  
clock must adhere to the maximum  
frequency and duty cycle require-  
ments.  
FOSCEXT1B Frequency with CPU Clock divide by 1  
(2.7V Minimum)  
0.75  
1.5  
6.30  
6.35  
12.6  
MHz 2.7V < Vdd < 3.0V. Maximum CPU  
frequency is 3 MHz at 2.7V. With the  
CPUclockdividersetto1, theexternal  
clock must adhere to the maximum  
frequency and duty cycle require-  
ments.  
FOSCEXT2A Frequency with CPU Clock divide by 2 or  
greater (2.7V Nominal)  
MHz 2.4V < Vdd < 3.0V. If the frequency of  
the external clock is greater than 3  
MHz, the CPU clock divider is set to 2  
or greater. In this case, the CPU clock  
divider ensures that the fifty percent  
duty cycle requirement is met.  
FOSCEXT2B Frequency with CPU Clock divide by 2 or  
greater (2.7V Minimum)  
1.5  
MHz 2.7V < Vdd < 3.0V. If the frequency of  
the external clock is greater than 3  
MHz, the CPU clock divider is set to 2  
or greater. In this case, the CPU clock  
divider ensures that the fifty percent  
duty cycle requirement is met.  
High Period with CPU Clock divide by 1  
Low Period with CPU Clock divide by 1  
Power Up IMO to Switch  
160  
160  
150  
5300  
ns  
ns  
μs  
AC Programming Specifications  
Table 27 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C respectively. Typical parameters apply to  
5V, 3.3V, or 2.7V at 25°C. These are for design guidance only.  
Table 27. AC Programming Specifications  
Symbol  
TRSCLK  
TFSCLK  
TSSCLK  
THSCLK  
FSCLK  
Description  
Rise Time of SCLK  
Min  
1
Typ  
Max  
20  
20  
Units  
ns  
Notes  
Fall Time of SCLK  
1
ns  
Data Set up Time to Falling Edge of SCLK  
Data Hold Time from Falling Edge of SCLK  
Frequency of SCLK  
40  
40  
0
ns  
ns  
8
MHz  
ms  
ms  
ns  
TERASEB  
TWRITE  
TDSCLK  
TDSCLK3  
TDSCLK2  
Flash Erase Time (Block)  
15  
30  
Flash Block Write Time  
Data Out Delay from Falling Edge of SCLK  
Data Out Delay from Falling Edge of SCLK  
Data Out Delay from Falling Edge of SCLK  
45  
50  
70  
3.6 < Vdd  
3.0 Vdd 3.6  
2.4 Vdd 3.0  
ns  
ns  
Document Number: 001-41947 Rev. *D  
Page 22 of 34  
[+] Feedback  
CY8C20224, CY8C20324  
CY8C20424, CY8C20524  
AC SPI Specifications  
Table 28 and Table 29 list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to  
5.25V and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical  
parameters apply to 5V, 3.3V, or 2.7V at 25°C. These are for design guidance only.  
Table 28. 5V and 3.3V AC SPI Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
FSPIM  
MaximumInputClockFrequencySelection,  
Master  
6.3  
MHz Output clock frequency is half of  
input clock rate.  
FSPIS  
TSS  
MaximumInputClockFrequencySelection,  
Slave  
2.05  
MHz  
Width of SS_ Negated Between Transmis-  
sions  
50  
ns  
Table 29. 2.7V AC SPI Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
FSPIM  
MaximumInputClockFrequencySelection,  
Master  
3.15  
MHz Output clock frequency is half of  
input clock rate  
FSPIS  
TSS  
MaximumInputClockFrequencySelection,  
Slave  
1.025  
MHz  
Width of SS_ Negated Between Transmis-  
sions  
50  
ns  
AC I2C Specifications  
Table 30 and Table 31 list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to  
5.25V and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C respectively. Typical  
parameters apply to 5V, 3.3V, or 2.7V at 25°C. These are for design guidance only.  
Table 30. AC Characteristics of the I2C SDA and SCL Pins for Vdd 3.0V  
Standard Mode  
Fast Mode  
Symbol  
Description  
Units  
Notes  
Min  
Max  
Min  
Max  
FSCLI2C  
SCL Clock Frequency  
0
100  
0
400  
kHz  
THDSTAI2C  
Hold Time (repeated) START  
Condition. After this period, the  
first clock pulse is generated.  
4.0  
0.6  
μs  
TLOWI2C  
THIGHI2C  
TSUSTAI2C  
LOW Period of the SCL Clock  
4.7  
4.0  
4.7  
1.3  
0.6  
0.6  
μs  
μs  
μs  
HIGH Period of the SCL Clock  
Setup Time for a Repeated  
START Condition  
THDDATI2C  
TSUDATI2C  
TSUSTOI2C  
TBUFI2C  
Data Hold Time  
0
0
μs  
ns  
μs  
μs  
Data Setup Time  
250  
4.0  
4.7  
100[8]  
Setup Time for STOP Condition  
0.6  
Bus Free Time Between a STOP  
and START Condition  
1.3  
TSPI2C  
Pulse Width of spikes are  
suppressed by the input filter  
0
50  
ns  
Note  
2
2
8. A Fast Mode I C bus device is used in a Standard Mode I C bus system but the requirement tSU; DAT Š 250 ns is met. This automatically is the case if the device  
does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line trmax  
2
+ tSU; DAT = 1000 + 250 = 1250 ns (according to the Standard Mode I C bus specification) before the SCL line is released.  
Document Number: 001-41947 Rev. *D  
Page 23 of 34  
[+] Feedback  
CY8C20224, CY8C20324  
CY8C20424, CY8C20524  
Table 31. 2.7V AC Characteristics of the I2C SDA and SCL Pins (Fast Mode Not Supported)  
Standard Mode  
Fast Mode  
Symbol  
Description  
Units  
Notes  
Min  
Max  
Min  
Max  
FSCLI2C  
SCL Clock Frequency.  
0
100  
kHz  
THDSTAI2C  
Hold Time (repeated) START  
Condition. After this period, the  
first clock pulse is generated.  
4.0  
μs  
TLOWI2C  
THIGHI2C  
TSUSTAI2C  
LOW Period of the SCL Clock.  
4.7  
4.0  
4.7  
μs  
μs  
μs  
HIGH Period of the SCL Clock.  
Setup Time for a Repeated  
START Condition.  
THDDATI2C  
TSUDATI2C  
TSUSTOI2C  
TBUFI2C  
Data Hold Time.  
0
μs  
ns  
μs  
μs  
Data Setup Time.  
250  
4.0  
4.7  
Setup Time for STOP Condition.  
Bus Free Time Between a STOP  
and START Condition.  
TSPI2C  
Pulse Width of spikes are  
suppressed by the input filter.  
ns  
Figure 10. Definition for Timing for Fast or Standard Mode on the I2C Bus  
SDA  
SCL  
TSPI2C  
TLOWI2C  
TSUDATI2C  
THDSTAI2C  
TBUFI2C  
TSUSTOI2C  
TSUSTAI2C  
THDDATI2C  
THDSTAI2C  
THIGHI2C  
S
Sr  
P
S
Document Number: 001-41947 Rev. *D  
Page 24 of 34  
[+] Feedback  
CY8C20224, CY8C20324  
CY8C20424, CY8C20524  
Packaging Dimensions  
This section illustrates the packaging specifications for the CY8C20224, CY8C20324, CY8C20424, and CY8C20524 PSoC devices,  
along with the thermal impedances for each package.  
Important Note Emulation tools may require a larger area on the target PCB than the chip’s footprint. For a detailed description of  
the emulation tools’ dimensions, refer to the document titled PSoC Emulator Pod Dimensions at  
http://www.cypress.com/design/MR10161.  
Figure 11. 16-Pin (3x3 mm x 0.6 MAX) COL  
001-09116 *D  
Document Number: 001-41947 Rev. *D  
Page 25 of 34  
[+] Feedback  
CY8C20224, CY8C20324  
CY8C20424, CY8C20524  
Figure 12. 24-Pin (4x4 x 0.6 mm) QFN  
19  
24  
18  
1
6
13  
7
12  
NOTES :  
1.  
HATCH IS SOLDERABLE EXPOSED METAL.  
2. REFERENCE JEDEC # MO-248  
3. UNIT PACKAGE W EIGHT : 0.024 grams  
4. ALL DIMENSIONS ARE IN MILLIMETERS  
001-13937 *B  
COMPANY CONFIDENTIAL  
Figure 13. 28-Pin (210-Mil) SSOP  
51-85079 *C  
Document Number: 001-41947 Rev. *D  
Page 26 of 34  
[+] Feedback  
CY8C20224, CY8C20324  
CY8C20424, CY8C20524  
Figure 14. 32-Pin (5x5 mm 0.60 MAX) QFN  
001-06392 *A  
Figure 15. 32-Pin (5X5X 0.60 Max) QFN  
001-48913 *A  
Document Number: 001-41947 Rev. *D  
Page 27 of 34  
[+] Feedback  
CY8C20224, CY8C20324  
CY8C20424, CY8C20524  
Figure 16. 48-Pin (7x7 mm) QFN  
001-12919 *A  
Important For information on the preferred dimensions for mounting the QFN packages, see the following application note at  
http://www.amkor.com/products/notes_papers/MLFAppNote.pdf.  
It is important to note that pinned vias for thermal conduction are not required for the low power 24, 32, and 48-pin QFN PSoC devices.  
Document Number: 001-41947 Rev. *D  
Page 28 of 34  
[+] Feedback  
CY8C20224, CY8C20324  
CY8C20424, CY8C20524  
Thermal Impedances  
Table 32. Thermal Impedances Per Package  
[9]  
Package  
16 COL  
24 QFN[10]  
28 SSOP  
32 QFN[10]  
48 QFN[10]  
Typical θJA  
46 oC/W  
25 oC/W  
96 oC/W  
27 oC/W  
28 oC/W  
Solder Reflow Peak Temperature  
Table 33 lists the minimum solder reflow peak temperature to achieve good solderability.  
Table 33. Solder Reflow Peak Temperature  
Package  
16 COL  
24 QFN  
28 SSOP  
32 QFN  
48 QFN  
Minimum Peak Temperature [11]  
Maximum Peak Temperature  
240oC  
240oC  
240oC  
240oC  
240oC  
260oC  
260oC  
260oC  
260oC  
260oC  
Notes  
9.  
T
= T + Power x θ  
A JA.  
J
10. To achieve the thermal impedance specified for the QFN package, the center thermal pad is soldered to the PCB ground plane.  
11. Higher temperatures is required based on the solder melting point. Typical temperatures for solder are 220 ± 5oC with Sn-Pb or 245 ± 5oC with Sn-Ag-Cu paste. Refer  
to the solder manufacturer specifications.  
Document Number: 001-41947 Rev. *D  
Page 29 of 34  
[+] Feedback  
CY8C20224, CY8C20324  
CY8C20424, CY8C20524  
Development Tool Selection  
Software  
Development Kits  
All development kits are sold at the Cypress Online Store.  
PSoC Designer™  
At the core of the PSoC development software suite is PSoC  
Designer. This is used by thousands of PSoC developers. This  
robust software is facilitating PSoC designs for half a decade.  
PSoC Designer is available free of charge at  
http://www.cypress.com under DESIGN RESOURCES >>  
Software and Drivers.  
CY3215-DK Basic Development Kit  
The CY3215-DK is for prototyping and development with PSoC  
Designer. This kit supports in-circuit emulation and the software  
interface enables users to run, halt, and single step the  
processor and view the content of specific memory locations.  
PSoC Designer supports the advance emulation features also.  
The kit includes:  
PSoC Programmer  
PSoC Designer Software CD  
PSoC Programmer is flexible enough and is used on the bench  
in development and is also suitable for factory programming.  
PSoC Programmer works either as a standalone programming  
application or operates directly from PSoC Designer or PSoC  
Express. PSoC Programmer software is compatible with both  
PSoC ICE Cube In-Circuit Emulator and PSoC MiniProg. PSoC  
ICE-Cube In-Circuit Emulator  
ICE Flex-Pod for CY8C29x66 Family  
Cat-5 Adapter  
programmer  
http://www.cypress.com/psocprogrammer.  
is  
available  
free  
of  
charge  
at  
Mini-Eval Programming Board  
110 ~ 240V Power Supply, Euro-Plug Adapter  
iMAGEcraft C Compiler (Registration Required)  
ISSP Cable  
C Compilers  
PSoC Designer comes with a free HI-TECH C Lite C compiler.  
The HI-TECH C Lite compiler is free, supports all PSoC devices,  
integrates fully with PSoC Designer and PSoC Express, and  
runs on Windows versions up to 32-bit Vista. Compilers with  
additional features are available at additional cost from their  
manufactures.  
USB 2.0 Cable and Blue Cat-5 Cable  
2 CY8C29466-24PXI 28-PDIP Chip Samples  
CY3210-ExpressDK PSoC Express Development Kit  
HI-TECH C PRO for the PSoC is available from  
http://www.htsoft.com.  
The CY3210-ExpressDK is for advanced prototyping and  
development with PSoC Express (used with ICE-Cube In-Circuit  
Emulator). It provides access to I2C buses, voltage reference,  
switches, upgradeable modules, and more. The kit includes:  
ImageCraft Cypress Edition Compiler is available from  
http://www.imagecraft.com.  
PSoC Express Software CD  
Express Development Board  
Four Fan Modules  
Two Proto Modules  
MiniProg In-System Serial Programmer  
MiniEval PCB Evaluation Board  
Jumper Wire Kit  
USB 2.0 Cable  
Serial Cable (DB9)  
110 ~ 240V Power Supply, Euro-Plug Adapter  
2 CY8C24423A-24PXI 28-PDIP Chip Samples  
2 CY8C27443-24PXI 28-PDIP Chip Samples  
2 CY8C29466-24PXI 28-PDIP Chip Samples  
Document Number: 001-41947 Rev. *D  
Page 30 of 34  
[+] Feedback  
CY8C20224, CY8C20324  
CY8C20424, CY8C20524  
Device Programmers  
Evaluation Tools  
All device programmers are purchased from the Cypress Online  
Store.  
All evaluation tools are sold at the Cypress Online Store.  
CY3210-MiniProg1  
CY3216 Modular Programmer  
The CY3210-MiniProg1 kit enables the user to program PSoC  
devices via the MiniProg1 programming unit. The MiniProg is a  
small, compact prototyping programmer that connects to the PC  
via a provided USB 2.0 cable. The kit includes:  
The CY3216 Modular Programmer kit features a modular  
programmer and the MiniProg1 programming unit. The modular  
programmer includes three programming module cards and  
supports multiple Cypress products. The kit includes:  
MiniProg Programming Unit  
Modular Programmer Base  
Three Programming Module Cards  
MiniProg Programming Unit  
PSoC Designer Software CD  
Getting Started Guide  
MiniEval Socket Programming and Evaluation Board  
28-Pin CY8C29466-24PXI PDIP PSoC Device Sample  
28-Pin CY8C27443-24PXI PDIP PSoC Device Sample  
PSoC Designer Software CD  
Getting Started Guide  
USB 2.0 Cable  
USB 2.0 Cable  
CY3207ISSP In-System Serial Programmer (ISSP)  
CY3210-PSoCEval1  
The CY3207ISSP is a production programmer. It includes  
protection circuitry and an industrial case that is more robust than  
the MiniProg in a production programming environment.  
Note that CY3207ISSP needs special software and is not  
compatible with PSoC Programmer. The kit includes:  
The CY3210-PSoCEval1 kit features an evaluation board and  
the MiniProg1 programming unit. The evaluation board includes  
an LCD module, potentiometer, LEDs, and plenty of bread-  
boarding space to meet all of your evaluation needs. The kit  
includes:  
CY3207 Programmer Unit  
PSoC ISSP Software CD  
Evaluation Board with LCD Module  
MiniProg Programming Unit  
110 ~ 240V Power Supply, Euro-Plug Adapter  
USB 2.0 Cable  
28-Pin CY8C29466-24PXI PDIP PSoC Device Sample (2)  
PSoC Designer Software CD  
Getting Started Guide  
USB 2.0 Cable  
CY3214-PSoCEvalUSB  
The CY3214-PSoCEvalUSB evaluation kit features  
a
development board for the CY8C24794-24LFXI PSoC device.  
Special features of the board include both USB and capacitive  
sensing development and debugging support. This evaluation  
board also includes an LCD module, potentiometer, LEDs, an  
enunciator and plenty of bread boarding space to meet all of your  
evaluation needs. The kit includes:  
PSoCEvalUSB Board  
LCD Module  
MIniProg Programming Unit  
Mini USB Cable  
PSoC Designer and Example Projects CD  
Getting Started Guide  
Wire Pack  
Document Number: 001-41947 Rev. *D  
Page 31 of 34  
[+] Feedback  
CY8C20224, CY8C20324  
CY8C20424, CY8C20524  
Accessories (Emulation and Programming)  
Table 34. Emulation and Programming Accessories  
Prototyping  
Adapter [14]  
Module  
Part Number  
Pin Package  
Flex-Pod Kit [12]  
Foot Kit [13]  
Not available  
CY3250-24QFN-FK  
CY8C20224-12LKXI  
CY8C20324-12LQXI  
CY8C20524-12PVXI  
CY8C20424-12LKXI  
16 COL  
24 QFN  
28 SSOP  
32 QFN  
Not available  
CY3210-20X34  
CY3210-20X34  
-
CY3250-20334QFN  
CY3250-20534  
AS-24-28-01ML-6  
-
CY3250-28SSOP-FK CY3210-20X34  
CY3250-32QFN-FK CY3210-20X34  
CY3250-20434QFN  
AS-32-28-03ML-6  
Third Party Tools  
Build a PSoC Emulator into Your Board  
Several tools are specially designed by the following third party  
vendors to accompany PSoC devices during development and  
production. Specific details of each of these tools are found at  
http://www.cypress.com under DESIGN RESOURCES >>  
Evaluation Boards.  
For details on emulating the circuit before going to volume  
production using an on-chip debug (OCD) non-production PSoC  
device, refer application note AN2323 “Build a PSoC Emulator  
into Your Board”.  
Notes  
12. Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods.  
13. Foot kit includes surface mount feet that is soldered to the target PCB.  
14. Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters is found at  
http://www.emulation.com.  
Document Number: 001-41947 Rev. *D  
Page 32 of 34  
[+] Feedback  
CY8C20224, CY8C20324  
CY8C20424, CY8C20524  
Ordering Information  
Table 35 lists the CY8C20224, CY8C20324, CY8C20424, and CY8C20524 PSoC devices key package features and ordering codes.  
Table 35. PSoC Device Key Features and Ordering Information  
Maximum Maximum Maximum Configurable  
Ordering  
Code  
Flash  
SRAM  
Proximity  
Sensing  
Package  
Numberof Numberof Numberof LED Behavior  
(Bytes) (Bytes)  
Buttons  
Sliders  
LEDs  
(Fade, Strobe)  
16-Pin(3x3mm0.60MAX) CY8C20224-12LKXI  
COL  
8K  
8K  
8K  
8K  
512  
512  
512  
512  
10  
1
13  
Yes  
Yes  
Yes  
Yes  
Yes  
16-Pin(3x3mm0.60MAX) CY8C20224-12LKXIT  
COL (Tape and Reel)  
10  
17  
17  
1
1
1
13  
20  
20  
Yes  
Yes  
Yes  
24-Pin(4x4mm0.60MAX) CY8C20324-12LQXI  
QFN  
24-Pin(4x4mm0.60MAX) CY8C20324-12LQXIT  
QFN (Tape and Reel)  
28-Pin (210-Mil) SSOP  
CY8C20524-12PVXI  
CY8C20524-12PVXIT  
8K  
8K  
512  
512  
21  
21  
1
1
24  
24  
Yes  
Yes  
Yes  
Yes  
28-Pin (210-Mil) SSOP  
(Tape and Reel)  
32-Pin(5x5mm0.60MAX) CY8C20424-12LKXI  
QFN  
8K  
8K  
8K  
8K  
512  
512  
512  
512  
25  
25  
25  
25  
1
1
1
1
28  
28  
28  
28  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
32-Pin(5x5mm0.60MAX) CY8C20424-12LKXIT  
QFN (Tape and Reel)  
32-Pin (5X5 mm 0.60  
MAX) QFN (Sawn)  
CY8C20424-12LQXI  
32-Pin (5X5 mm 0.60  
MAX) QFN (Sawn)  
CY8C20424-12LQXIT  
Note For Die sales information, contact a local Cypress sales office or Field Applications Engineer (FAE).  
Figure 17. Ordering Code Definitions  
CY 8 C 20 xxx- 12 xx  
Package Type:  
Thermal Rating:  
C = Commercial  
I = Industrial  
PX = PDIP Pb-Free  
SX = SOIC Pb-Free  
PVX = SSOP Pb-Free  
LFX/LKX/LQX= QFN Pb-Free  
AX = TQFP Pb-Free  
E = Extended  
Speed: 12 MHz  
Part Number  
Family Code  
Technology Code: C = CMOS  
Marketing Code: 8 = Cypress PSoC  
Company ID: CY = Cypress  
Document Number: 001-41947 Rev. *D  
Page 33 of 34  
[+] Feedback  
CY8C20224, CY8C20324  
CY8C20424, CY8C20524  
Document History Page  
Document Title: CY8C20224, CY8C20324, CY8C20424, CY8C20524, CapSense™ PSoC® Programmable  
System-on-Chip™  
Document Number: 001-41947  
Orig. of  
Change  
Submission  
Date  
Revision ECN No.  
Description of Change  
**  
1734104  
2542938  
YHW/AESA  
RLRM/AESA  
See ECN New parts and document (Revision **).  
*A  
07/28/2008 Corrected Ordering Information format. Updated package diagram  
001-13937 to Rev *B. Updated data sheet template.  
*B  
*C  
2610469  
2634376  
SNV/PYRS  
DRSW  
11/20/08  
01/12/09  
Updated VOH5, VOH7, and VOH9 specifications.  
Removed the part number CY3250-20234QFN from the  
'CY8C20224-12LKXI' flex-pod kit  
Changed title from CapSense™ Multimedia PSoC® Mixed-Signal Array to  
CapSense™ Multimedia PSoC® Programmable System-on-Chip™  
Added -12 to the CY8C20524 parts in the Ordering Information table  
Updated ‘Development Tools’ and ‘Designing with PSoC Designer’ sections  
on pages 4 and 5  
Updated ‘Development Tools Selection’ section on page 30  
Changed status from ‘Preliminary’ to ‘Final’  
Changed 16-Pin from QFN to COL  
*D  
2693024  
DPT/PYRS  
04/16/2009 Added 32-Pin Sawn QFN package diagram  
Added devices CY8C20424-12LQXI and CY8C20424-12LQXIT in the  
Ordering Information table  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at cypress.com/sales.  
Products  
PSoC  
PSoC Solutions  
General  
psoc.cypress.com  
clocks.cypress.com  
wireless.cypress.com  
memory.cypress.com  
image.cypress.com  
psoc.cypress.com/solutions  
psoc.cypress.com/low-power  
psoc.cypress.com/precision-analog  
psoc.cypress.com/lcd-drive  
psoc.cypress.com/can  
Clocks & Buffers  
Wireless  
Low Power/Low Voltage  
Precision Analog  
LCD Drive  
Memories  
Image Sensors  
CAN 2.0b  
USB  
psoc.cypress.com/usb  
© Cypress Semiconductor Corporation, 2008-2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 001-41947 Rev. *D  
Revised April 15, 2009  
Page 34 of 34  
PSoC Designer™ and Programmable System-on-Chip™ are trademarks and PSoC® is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced  
herein are property of the respective corporations. Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I2C Patent Rights  
to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips. All products and company names mentioned in this document  
may be the trademarks of their respective holders.  
[+] Feedback  

相关型号:

CY8C20324-12LQXI

CapSense PSoC Programmable System-on-Chip
CYPRESS
INFINEON

CY8C20324-12LQXIT

CapSense PSoC Programmable System-on-Chip
CYPRESS
INFINEON

CY8C20334

PSoC㈢ Mixed-Signal Array
CYPRESS

CY8C20334-12LFXC

Multifunction Peripheral, CMOS, 4 X 4 MM, LEAD FREE, MO-220, QFN-24
CYPRESS

CY8C20334-12LFXCT

Multifunction Peripheral, CMOS, 4 X 4 MM, LEAD FREE, MO-220, QFN-24
CYPRESS

CY8C20334-12LKXI

Multifunction Peripheral, CMOS, 4 X 4 MM, 0.60 MM HEIGHT, LEAD FREE, MO-220, QFN-16
CYPRESS

CY8C20334-12LKXIT

Multifunction Peripheral, CMOS, 4 X 4 MM, 0.60 MM HEIGHT, LEAD FREE, MO-220, QFN-16
CYPRESS

CY8C20334-12LQXI

PSoC㈢ Mixed-Signal Array
CYPRESS

CY8C20334-12LQXIT

PSoC Programmable System-0n-Chip
CYPRESS

CY8C20336-24LQXI

CapSense Applications
CYPRESS