CY8C21323-24PVXI [CYPRESS]

PSoC® Mixed Signal Array; 的PSoC ™混合信号阵列
CY8C21323-24PVXI
型号: CY8C21323-24PVXI
厂家: CYPRESS    CYPRESS
描述:

PSoC® Mixed Signal Array
的PSoC ™混合信号阵列

文件: 总37页 (文件大小:954K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY8C21123, CY8C21223, CY8C21323  
PSoC® Mixed Signal Array  
Additional System Resources  
Features  
I2C™ Master, Slave and MultiMaster to 400 kHz  
Watchdog and Sleep Timers  
Powerful Harvard Architecture Processor  
M8C Processor Speeds to 24 MHz  
Low power at High Speed  
User Configurable Low Voltage Detection  
Integrated Supervisory Circuit  
2.4V to 5.25V Operating Voltage  
On-Chip Precision Voltage Reference  
Operating Voltages down to 1.0V using On-Chip Switch  
Mode Pump (SMP)  
Industrial Temperature Range: -40°C to +85°C  
Logic Block Diagram  
Advanced Peripherals (PSoC Blocks)  
Four Analog Type “E” PSoC Blocks Provide:  
• Two Comparators with DAC Refs  
• Single or Dual 8-Bit 8:1 ADC  
Port 1 Port 0  
PSoC  
CORE  
Four Digital PSoC Blocks Provide:  
• 8 to 32-Bit Timers, Counters, and PWMs  
• CRC and PRS Modules  
Full Duplex UART, SPIMaster or Slave  
• Connectable to All GPIO Pins  
SystemBus  
Global Digital Interconnect  
Global Analog Interconnect  
SROM  
Flash  
SRAM  
Complex Peripherals by Combining Blocks  
CPUCore  
(M8C)  
Sleep and  
Watchdog  
Interrupt  
Controller  
Flexible On-Chip Memory  
4K Flash Program Storage 50,000 Erase/Write Cycles  
256 Bytes SRAM Data Storage  
In-System Serial Programming (ISSP)  
Partial Flash Updates  
Clock Sources  
(Includes IMO and ILO)  
Flexible Protection Modes  
EEPROM Emulation in Flash  
DIGITAL SYSTEM  
ANALOG SYSTEM  
Analog  
Ref .  
Complete Development Tools  
Digital  
PSoC Block  
Array  
Analog  
PSoC Block  
Array  
Free Development Software (PSoC Designer)  
Full Featured, In-Circuit Emulator and Programmer  
Full Speed Emulation  
Complex Breakpoint Structure  
128 Bytes Trace Memory  
Precision, Programmable Clocking  
Internal ±2.5% 24/48 MHz Oscillator  
Internal Oscillator for Watchdog and Sleep  
Sw itch  
Mode  
Pump  
POR and LVD  
System Resets  
Internal  
Voltage  
Ref .  
Digital  
Clocks  
I2C  
Programmable Pin Configurations  
25 mA Drive on All GPIO  
SYSTEM RESOURCES  
Pull Up, Pull Down, High Z, Strong, or Open Drain Drive  
Modes on All GPIO  
Up to Eight Analog Inputs on GPIO  
Configurable Interrupt on all GPIO  
Cypress Semiconductor Corporation  
Document Number: 38-12022 Rev. *H  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised October 22, 2008  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
®
Digital System  
PSoC Functional Overview  
The Digital System consists of four digital PSoC blocks. Each  
block is an 8-bit resource that can be used alone or combined  
with other blocks to form 8, 16, 24, and 32-bit peripherals, which  
are called user module references. Digital peripheral  
configurations include:  
The PSoC® family consists of many Mixed Signal Array with  
On-Chip Controller devices. These devices are designed to  
replace multiple traditional MCU-based system components with  
a low cost single-chip programmable component. A PSoC  
device includes configurable blocks of analog and digital logic,  
and programmable interconnect. This architecture allows the  
user to create customized peripheral configurations, to match  
the requirements of each individual application. Additionally, a  
fast CPU, Flash program memory, SRAM data memory, and  
configurable IO are included in a range of convenient pinouts.  
PWMs (8 to 32 bit)  
PWMs with Dead band (8 to 32 bit)  
Counters (8 to 32 bit)  
Timers (8 to 32 bit)  
The PSoC architecture, as shown in Figure 1, consists of four  
main areas: the Core, the System Resources, the Digital  
System, and the Analog System. Configurable global bus  
resources allow the combining of all device resources into a  
complete custom system. Each PSoC device includes four digital  
blocks. Depending on the PSoC package, up to two analog  
comparators and up to 16 general purpose IO (GPIO) are also  
included. The GPIO provide access to the global digital and  
analog interconnects.  
UART 8 bit with selectable parity (up to four)  
SPI master and slave  
I2C slave, master, MultiMaster (one available as a System  
Resource)  
Cyclical Redundancy Checker/Generator (8 to 32 bit)  
IrDA (up to four)  
PSoC Core  
Pseudo Random Sequence Generators (8 to 32 bit)  
The PSoC Core is a powerful engine that supports a rich  
instruction set. It encompasses SRAM for data storage, an  
interrupt controller, sleep and watchdog timers, and IMO  
(internal main oscillator) and ILO (internal low speed oscillator).  
The CPU core, called the M8C, is a powerful processor with  
speeds up to 24 MHz. The M8C is a four MIPS 8-bit Harvard  
architecture microprocessor.  
The digital blocks can be connected to any GPIO through a  
series of global bus that can route any signal to any pin. The  
busses also allow for signal multiplexing and performing logic  
operations. This configurability frees your designs from the  
constraints of a fixed peripheral controller.  
Digital blocks are provided in rows of four, where the number of  
blocks varies by PSoC device family. This provides an optimum  
choice of system resources for your application. Family  
resources are shown in Table 1 on page 3.  
System Resources provide additional capability, such as digital  
clocks to increase the flexibility of the PSoC mixed-signal arrays,  
I2C functionality for implementing an I2C master, slave, Multi-  
Master, an internal voltage reference that provides an absolute  
value of 1.3V to a number of PSoC subsystems, a switch mode  
pump (SMP) that generates normal operating voltages off a  
single battery cell, and various system resets supported by the  
M8C.  
Figure 1. Digital System Block Diagram  
Port1  
Port0  
ToSystemBus  
DigitalClocks  
FromCore  
ToAnalog  
System  
The Digital System consists of an array of digital PSoC blocks,  
which can be configured into any number of digital peripherals.  
The digital blocks can be connected to the GPIO through a series  
of global bus that can route any signal to any pin. This frees  
designs from the constraints of a fixed peripheral controller.  
DIGITAL SYSTEM  
DigitalPSoCBlockArray  
The Analog System consists of four analog PSoC blocks,  
supporting comparators and analog-to-digital conversion up to 8  
bits in precision.  
Row 0  
4
DBB00  
DBB01  
DCB02 DCB03  
4
8
8
8
8
GlobalDigital  
Interconnect  
GIE[7:0]  
GIO[7:0]  
GOE[7:0]  
GOO[7:0]  
Document Number: 38-12022 Rev. *H  
Page 2 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Analog System  
Additional System Resources  
The Analog System consists of four configurable blocks to allow  
creation of complex analog signal flows. Analog peripherals are  
very flexible and may be customized to support specific  
application requirements. Some of the more common PSoC  
analog functions (most available as user modules) are:  
System Resources, some of which listed in the previous  
sections, provide additional capability useful to complete  
systems. Additional resources include a switch mode pump, low  
voltage detection, and power on reset. Brief statements  
describing the merits of each system resource follow.  
Analog-to-digital converters (single or dual, with 8-bit  
resolution)  
Digital clock dividers provide three customizable clock  
frequencies for use in applications. The clocks can be routed  
to both the digital and analog systems. Additional clocks can  
be generated using digital PSoC blocks as clock dividers.  
Pin-to-pin comparators (one)  
Single-ended comparators (up to 2) with absolute (1.3V)  
reference or 8-bit DAC reference  
TheI2Cmoduleprovides100and400kHzcommunicationover  
two wires. Slave, master, and multi-master modes are all  
supported.  
1.3V reference (as a System Resource)  
In most PSoC devices, analog blocks are provided in columns of  
three, which includes one CT (Continuous Time) and two SC  
(Switched Capacitor) blocks. The CY8C21x23 devices provide  
limited functionality Type “E” analog blocks. Each column  
contains one CT block and one SC block.  
Low Voltage Detection (LVD) interrupts can signal the  
application of falling voltage levels, while the advanced POR  
(Power On Reset) circuit eliminates the need for a system  
supervisor.  
An internal 1.3 voltage reference provides an absolute  
reference for the analog system, including ADCs and DACs.  
The number of blocks is on the device family which is detailed in  
Table 1.  
An integrated switch mode pump (SMP) generates normal  
operating voltages from a single 1.2V battery cell, providing a  
low cost boost converter.  
Figure 2. CY8C21x23 Analog System Block Diagram  
PSoC Device Characteristics  
Depending on your PSoC device characteristics, the digital and  
analog systems can have 16, 8, or 4 digital blocks, and 12, 6, or  
4 analog blocks. Table 1 lists the resources available for specific  
PSoC device groups. The PSoC device covered by this data  
sheet is highlighted.  
Array Input  
Configuration  
Table 1. PSoC Device Characteristics  
ACI0[1:0]  
ACI1[1:0]  
PSoC Part  
Number  
CY8C29x66 upto 4  
64  
16 12  
4
4
4
4
12 2K  
32K  
ACOL1MUX  
CY8C27x43 upto 2  
44  
8
12  
12 256 16K  
Bytes  
Array  
CY8C24x94 56  
1
4
4
48  
12  
2
2
2
2
6
6
1K  
16K  
ACE00  
ASE10  
ACE01  
ASE11  
CY8C24x23A upto 1  
24  
256 4K  
Bytes  
CY8C21x34 upto 1  
28  
4
4
0
28  
8
0
0
0
2
2
0
4a 512 8K  
Bytes  
4a 256 4K  
Bytes  
3b 512 8K  
Bytes  
CY8C21x23 16  
1
CY8C20x34 upto 0  
28  
28  
a. Limited analog functionality.  
b. Two analog blocks and one CapSense.  
Document Number: 38-12022 Rev. *H  
Page 3 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Getting Started  
Development Tools  
The quickest path to understanding PSoC silicon is by reading  
this data sheet and using the PSoC Designer Integrated  
Development Environment (IDE). This data sheet is an overview  
of the PSoC integrated circuit and presents specific pin, register,  
and electrical specifications. For in depth information, along with  
detailed programming information, refer the PSoC Mixed Signal  
Array Technical Reference Manual, which can be found on  
http://www.cypress.com/psoc.  
PSoC Designer is a Microsoft® Windows-based, integrated  
development  
environment  
for  
the  
Programmable  
System-on-Chip (PSoC) devices. The PSoC Designer IDE and  
application runs on Windows NT 4.0, Windows 2000, Windows  
Millennium (Me), or Windows XP. Refer the PSoC Designer  
Functional Flow diagram (Figure 3).  
PSoC Designer helps the customer to select an operating  
configuration for PSoC, write application code that uses the  
PSoC, and debug the application. This system provides design  
database management by project, an integrated debugger with  
In-Circuit Emulator, in-system programming support, and the  
CYASM macro assembler for the CPUs.  
For up to date Ordering, Packaging, and Electrical Specification  
information, refer to the latest PSoC device data sheets on the  
web at http://www.cypress.com.  
Development Kits  
PSoC Designer also supports a high-level C language compiler  
developed specifically for the devices in the family.  
Development Kits are available from the following distributors:  
Digi-Key, Avnet, Arrow, and Future. The Cypress Online Store  
contains development kits, C compilers, and all accessories for  
PSoC development. Go to the Cypress Online Store web site at  
Order >> Buy Kits at http://www.cypress.com/shop, click the  
Online Store shopping cart icon at the bottom of the web page,  
and click PSoC (Programmable System-on-Chip) to view a  
current list of available items.  
Figure 3. PSoC Designer Subsystems  
Context  
Graphical Designer  
PSoCTM  
Sensitive  
Interf ace  
Designer  
Help  
Technical Training Modules  
Free On-Demand PSoC Training modules are available for new  
users to PSoC. Training modules cover designing, debugging,  
advanced  
http://www.cypress.com/techtrain.  
analog,  
and  
CapSense.  
Go  
to  
Importable  
Design  
Database  
Consultants  
PSoC  
Configuration  
Sheet  
Device  
Database  
Certified PSoC Consultants offer everything from technical  
assistance to completed PSoC designs. To contact or become a  
PSoC Consultant go to http://www.cypress.com, click on Support  
located at the top of the web page, and select CYPros  
Consultants.  
TM  
PSoC  
Designer  
Core  
Engine  
Application  
Database  
Manufacturing  
Information  
File  
Project  
Database  
Technical Support  
PSoC application engineers take pride in fast and accurate  
response. They can be reached with a 4-hour guaranteed  
response at http://www.cypress.com/support.  
User  
Modules  
Library  
Application Notes  
A long list of application notes can assist you in every aspect of  
your design effort. To view the PSoC application notes, go to  
http://www.cypress.com and select Application Notes under  
Documentation located in the center of the web page.  
Emulation  
Pod  
In-Circuit  
Emulator  
Device  
Programmer  
.
Document Number: 38-12022 Rev. *H  
Page 4 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Online Help System  
PSoC Designer Software Subsystems  
The online help system displays online context-sensitive help for  
the user. Designed for procedural and quick reference, each  
functional subsystem has its own context-sensitive help. This  
system also provides tutorials and links to FAQs and an Online  
Support Forum to aid the designer in getting started.  
Device Editor  
The device editor subsystem allows the user to select different  
onboard analog and digital components called user modules  
using the PSoC blocks. Examples of user modules are ADCs,  
DACs, Amplifiers, and Filters.  
Hardware Tools  
The device editor also supports easy development of multiple  
configurations and dynamic reconfiguration. Dynamic  
reconfiguration allows changing configurations at run time.  
In-Circuit Emulator  
A low cost, high functionality ICE (In-Circuit Emulator) is  
available for development support. This hardware can program  
single devices.  
PSoC Designer sets up power on initialization tables for selected  
PSoC block configurations and creates source code for an  
application framework. The framework contains software to  
operate the selected components and, if the project uses more  
than one operating configuration, contains routines to switch  
between different sets of PSoC block configurations at run time.  
PSoC Designer can print out a configuration sheet for a given  
project configuration for use during application programming in  
conjunction with the Device Data Sheet. After the framework is  
generated, the user can add application specific code to flesh out  
the framework. It is also possible to change the selected  
components and regenerate the framework.  
The emulator consists of a base unit that connects to the PC  
through the parallel or USB port. The base unit is universal and  
operates with all PSoC devices. Emulation pods for each device  
family are available separately. The emulation pod takes the  
place of the PSoC device in the target board and performs full  
speed (24 MHz) operation  
Designing with User Modules  
The development process for the PSoC device differs from that  
of a traditional fixed function microprocessor. The configurable  
analog and digital hardware blocks give the PSoC architecture a  
unique flexibility that pays dividends in managing specification  
changes during development and by lowering inventory costs.  
These configurable resources, called PSoC Blocks, can  
implement a wide variety of user-selectable functions. Each  
block has several registers that determine its function and  
connectivity to other blocks, multiplexers, bus, and to the IO pins.  
Iterative development cycles permit you to adapt the hardware  
and the software. This substantially lowers the risk of having to  
select a different part to meet the final design requirements.  
Design Browser  
The Design Browser allows users to select and import  
preconfigured designs into the user’s project. Users can easily  
browse  
a catalog of preconfigured designs to facilitate  
time-to-design. Examples provided in the tools include a  
300-baud modem, LIN Bus master and slave, fan controller, and  
magnetic card reader.  
Application Editor  
In the Application Editor you can edit C language and Assembly  
language source code. You can also assemble, compile, link,  
and build.  
To speed the development process, the PSoC Designer  
Integrated Development Environment (IDE) provides a library of  
pre-built, pre-tested hardware peripheral functions, called “User  
Modules.” User modules make selecting and implementing  
peripheral devices simple, and come in analog, digital, and  
mixed signal varieties. The standard User Module library  
contains over 50 common peripherals such as ADCs, DACs,  
Timers, Counters, UARTs, and other uncommon peripherals,  
such as DTMF Generators and Bi-Quad analog filter sections.  
Assembler. The macro assembler allows the seamless merging  
of the assembly code with C code. The link libraries automatically  
use absolute addressing or can be compiled in relative mode,  
and linked with other software modules to get absolute  
addressing.  
C Language Compiler. A C language compiler that supports  
PSoC family devices is available. Even if you have never worked  
in the C language before, the product helps you to quickly create  
complete C programs for the PSoC family devices.  
Each user module establishes the basic register settings that  
implement the selected function. It also provides parameters that  
allow you to tailor its precise configuration to your particular  
application. For example, a Pulse Width Modulator User Module  
configures one or more digital PSoC blocks, one for each 8 bits  
of resolution. The user module parameters permit you to  
establish the pulse width and duty cycle. User modules also  
provide tested software to cut your development time. The user  
module application programming interface (API) provides  
high-level functions to control and respond to hardware events  
at run time. The API also provides optional interrupt service  
routines that you can adapt as required.  
The embedded, optimizing C compiler provides all the features  
of C tailored to the PSoC architecture. It comes complete with  
embedded libraries providing port and bus operations, standard  
keypad and display support, and extended math functionality.  
Debugger  
The PSoC Designer Debugger subsystem provides hardware  
in-circuit emulation, which allows the designer to test the  
program in a physical system while providing an internal view of  
the PSoC device. Debugger commands allow the designer to  
read the program and read and write data memory, read and  
write IO registers, read and write CPU registers, set and clear  
breakpoints, and provide program run, halt, and step control. The  
debugger also allows the designer to create a trace buffer of  
registers and memory locations of interest.  
Document Number: 38-12022 Rev. *H  
Page 5 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
The API functions are documented in user module data sheets  
that are viewed directly in the PSoC Designer IDE. These data  
sheets explain the internal operation of the user module and  
provide performance specifications. Each data sheet describes  
the use of each user module parameter and documents the  
setting of each register controlled by the user module.  
The next step is to write the main program, and any sub-routine  
using PSoC Designer’s Application Editor subsystem. The  
Application Editor includes a Project Manager that allows you to  
open the project source code files (including all generated code  
files) from a hierarchal view. The source code editor provides  
syntax coloring and advanced edit features for both C and  
assembly language. File search capabilities include simple string  
searches and recursive “grep-style” patterns. A single mouse  
The development process starts when you open a new project  
and bring up the Device Editor, a graphical user interface (GUI)  
for configuring the hardware. Pick the user modules required for  
your project and map them onto the PSoC blocks with  
point-and-click simplicity. Next, build signal chains by  
interconnecting user modules to each other and the IO pins. At  
this stage, you can also configure the clock source connections  
and enter parameter values directly or by selecting values from  
drop-down menus. When you are ready to test the hardware  
configuration or move on to developing code for the project,  
perform the “Generate Application” step. This causes PSoC  
Designer to generate source code that automatically configures  
the device to your specification and provides high-level user  
module API functions.  
click invokes the Build Manager. It employs  
a
professional-strength “makefile” system to automatically analyze  
all file dependencies and run the compiler and assembler as  
necessary. Project-level options control optimization strategies  
used by the compiler and linker. Syntax errors are displayed in a  
console window. Double clicking the error message takes you  
directly to the offending line of source code. When all is correct,  
the linker builds a HEX file image suitable for programming.  
The last step in the development process takes place inside the  
PSoC Designer’s Debugger subsystem. The Debugger  
downloads the HEX image to the In-Circuit Emulator (ICE) where  
it runs at full speed. Debugger capabilities rival those of systems  
costing many times more. In addition to traditional single-step,  
run-to-breakpoint and watch-variable features, the Debugger  
provides a large trace buffer and allows you define complex  
breakpoint events that include monitoring address and data bus  
values, memory locations, and external signals.  
Figure4. User ModuleandSourceCodeDevelopmentFlows  
Device Editor  
Placement  
User  
Module  
Selection  
Source  
Code  
Generator  
and  
Parameter  
-ization  
Generate  
Application  
Application Editor  
Source  
Code  
Editor  
Project  
Manager  
Build  
Manager  
Build  
All  
Debugger  
Event &  
Breakpoint  
Manager  
Interface  
to ICE  
Storage  
Inspector  
Document Number: 38-12022 Rev. *H  
Page 6 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Units of Measure  
Document Conventions  
A units of measure table is located in the section  
Electrical Specifications on page 16. Table 11 on page 16 lists all  
the abbreviations used to measure the PSoC devices.  
Acronyms Used  
The following table lists the acronyms used in this data sheet.  
Table 2. Acronyms  
Numeric Naming  
Hexadecimal numbers are represented with all letters in  
uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or  
‘3Ah’). Hexadecimal numbers may also be represented by a ‘0x’  
prefix, the C coding convention. Binary numbers have an  
appended lowercase ‘b’ (for example, 01010100b’ or  
‘01000011b’). Numbers not indicated by an ‘h’, ‘b’, or 0x are  
decimal.  
Acronym  
AC  
Description  
alternating current  
ADC  
API  
analog-to-digital converter  
application programming interface  
central processing unit  
continuous time  
CPU  
CT  
DAC  
DC  
digital-to-analog converter  
direct current  
EEPROM  
electrically erasable programmable read-only  
memory  
FSR  
GPIO  
IO  
full scale range  
general purpose IO  
input/output  
IPOR  
LSb  
imprecise power on reset  
least-significant bit  
low voltage detect  
LVD  
MSb  
PC  
most-significant bit  
program counter  
POR  
PPOR  
PSoC®  
PWM  
ROM  
SC  
power on reset  
precision power on reset  
Programmable System-on-Chip  
pulse width modulator  
read only memory  
switched capacitor  
switch mode pump  
static random access memory  
SMP  
SRAM  
Document Number: 38-12022 Rev. *H  
Page 7 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Pin Information  
This section describes, lists, and illustrates the CY8C21x23 PSoC device pins and pinout configurations. Every port pin (labeled with  
a “P”) is capable of Digital IO. However, Vss, Vdd, SMP, and XRES are not capable of Digital IO.  
8-Pin Part Pinout  
Table 3. Pin Definitions - 8-Pin SOIC  
Type  
Figure 5. CY8C21123 8-Pin PSoC Device  
Pin  
No.  
Pin  
Name  
Description  
Digital Analog  
1
IO  
I
I
P0[5] Analog Column Mux Input  
A, I, P0[5]  
A, I, P0[3]  
I2C SCL, P1[1]  
1
2
3
8
7
6
Vdd  
P0[4], A, I  
P0[2], A, I  
2
3
4
5
6
7
8
IO  
P0[3] Analog Column Mux Input  
SOIC  
IO  
P1[1] I2C Serial Clock (SCL), ISSP-SCLK*  
Vss  
5
P1[0], I2CSDA  
4
Power  
IO  
Vss  
Ground Connection  
P1[0] I2C Serial Data (SDA), ISSP-SDATA*  
P0[2] Analog Column Mux Input  
IO  
I
I
IO  
P0[4] Analog Column Mux Input  
Power  
Vdd  
Supply Voltage  
LEGEND: A = Analog, I = Input, and O = Output. * These are the ISSP pins, which are not High Z at POR (Power On Reset). See the PSoC Mixed-Signal Array  
Technical Reference Manual for details.  
16-Pin Part Pinout  
Table 4. Pin Definitions - 16-Pin SOIC  
Type  
Figure 6. CY8C21223 16-Pin PSoC Device  
Pin  
No.  
Pin  
Description  
Name  
Digital Analog  
A,I,P0[7]  
A, I,P0[5]  
A, I,P0[3]  
A, I,P0[1]  
SMP  
Vdd  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
IO  
I
I
I
I
P0[7]  
P0[5]  
P0[3]  
P0[1]  
SMP  
Analog Column Mux Input  
Analog Column Mux Input  
Analog Column Mux Input  
Analog Column Mux Input  
P0[6],A,I  
P0[4],A,I  
P0[2],A,I  
P0[0],A,I  
P1[4],EXTCLK  
P1[2]  
IO  
SOIC  
IO  
Vss  
IO  
I2CSCL,P1[1]  
Vss  
Power  
Switch Mode Pump (SMP) Connection to  
required External Components  
P1[0],I2CSDA  
6
7
8
9
Power  
IO  
Vss  
Ground Connection  
P1[1]  
Vss  
I2C Serial Clock (SCL), ISSP-SCLK*  
Ground Connection  
Power  
IO  
P1[0]  
P1[2]  
P1[4]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Vdd  
I2C Serial Data (SDA), ISSP-SDATA*  
10  
11  
12  
13  
14  
15  
16  
IO  
IO  
Optional External Clock Input (EXTCLK)  
Analog Column Mux Input  
Analog Column Mux Input  
Analog Column Mux Input  
Analog Column Mux Input  
Supply Voltage  
IO  
I
I
I
I
IO  
IO  
IO  
Power  
LEGEND A = Analog, I = Input, and O = Output. * These are the ISSP pins, which are not High Z at  
POR (Power On Reset). See the PSoC Mixed-Signal Array Technical Reference Manual for details.  
Document Number: 38-12022 Rev. *H  
Page 8 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Table 5. Pin Definitions - 16-Pin QFNa  
Type  
Figure 7. CY8C21223 16-Pin PSoC Device  
Pin  
No.  
Pin  
Description  
Name  
Digital Analog  
1
2
3
4
5
6
7
8
9
IO  
I
P0[3]  
P0[1]  
P0[7]  
P1[5]  
P1[3]  
P1[1]  
Vss  
Analog Column Mux Input  
Analog Column Mux Input  
I2C Serial Clock (SCL)  
I2C Serial Data (SDA)  
IO  
I
IO  
P0[3], AI  
P0[1], AI  
I2C SCL, P1[7]  
I2C SDA, P1[5]  
1
2
3
4
12 P0[4], AI  
IO  
QFN  
11  
(Top View)  
P0[0], AI  
XRES  
10  
IO  
9
P1[4], EXTCLK  
IO  
I2C Serial Clock (SCL), ISSP-SCLK*  
Ground Connection  
Power  
IO  
P1[0]  
P1[4]  
XRES  
I2C Serial Data (SDA), ISSP-SDATA*  
Optional External Clock Input (EXCLK)  
IO  
10  
Input  
Active High External Reset with Internal  
Pull Down  
11  
12  
13  
14  
15  
16  
IO  
I
I
I
P0[0]  
P0[4]  
P0[6]  
Vdd  
Analog Column Mux Input  
Analog Column Mux Input  
Analog Column Mux Input  
Supply Voltage  
IO  
IO  
Power  
IO  
I
I
P0[7]  
P0[5]  
Analog Column Mux Input  
Analog Column Mux Input  
IO  
LEGEND A = Analog, I = Input, and O = Output. * These are the ISSP pins, which are not High Z at POR (Power On Reset). See the PSoC Mixed-Signal Array  
Technical Reference Manual for details.  
a. The center pad on the QFN package must be connected to ground (Vss) for best mechanical, thermal, and electrical performance. If not  
connected to ground, it must be electrically floated and not connected to any other signal.  
Document Number: 38-12022 Rev. *H  
Page 9 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
20-Pin Part Pinout  
Table 6. Pin Definitions - 20-Pin SSOP  
Type  
Figure 8. CY8C21323 20-Pin PSoC Device  
Pin  
No.  
Pin  
Name  
Description  
Digital Analog  
A,I,P0[7]  
A, I,P0[5]  
A, I,P0[3]  
A, I,P0[1]  
Vss  
Vdd  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
IO  
I
I
I
I
P0[7]  
P0[5]  
P0[3]  
P0[1]  
Vss  
Analog Column Mux Input  
Analog Column Mux Input  
Analog Column Mux Input  
Analog Column Mux Input  
Ground Connection  
P0[6],A,I  
P0[4],A,I  
P0[2],A,I  
P0[0],A,I  
XRES  
P1[6]  
P1[4],EXTCLK  
P1[2]  
IO  
IO  
IO  
SSOP  
I2C SCL,P1[7]  
I2C SDA,P1[5]  
P1[3]  
I2C SCL,P1[1]  
Vss  
Power  
IO  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
Vss  
I2C Serial Clock (SCL)  
I2C Serial Data (SDA)  
IO  
P1[0],I2C SDA  
10  
IO  
IO  
I2C Serial Clock (SCL), ISSP-SCLK*  
Ground connection  
10  
11  
12  
13  
14  
15  
Power  
IO  
P1[0]  
P1[2]  
P1[4]  
P1[6]  
I2C Serial Data (SDA), ISSP-SDATA*  
IO  
IO  
Optional External Clock Input (EXTCLK)  
IO  
Input  
XRES Active High External Reset with Internal  
Pull Down  
16  
17  
18  
19  
20  
IO  
I
I
I
I
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Vdd  
Analog Column Mux Input  
Analog Column Mux Input  
Analog Column Mux Input  
Analog Column Mux Input  
Supply Voltage  
IO  
IO  
IO  
Power  
LEGEND A = Analog, I = Input, and O = Output. * These are the ISSP pins, which are not High Z at  
POR (Power On Reset). See the PSoC Mixed-Signal Array Technical Reference Manual for details.  
Document Number: 38-12022 Rev. *H  
Page 10 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
24-Pin Part Pinout  
Table 7. Pin Definitions - 24-Pin QFN*a  
Type  
Figure 9. CY8C21323 24-Pin PSoC Device  
Pin  
No.  
Pin  
Name  
Description  
Digital Analog  
1
2
IO  
I
P0[1]  
SMP  
Analog Column Mux Input  
Power  
Switch Mode Pump (SMP) Connection to  
required External Components  
3
4
5
6
7
8
9
Power  
IO  
Vss  
Ground connection  
A, I, P0[1]  
SMP  
18  
17  
16  
15  
14  
13  
P0[4], A, I  
P0[2], A, I  
1
2
3
4
5
6
P1[7]  
P1[5]  
P1[3]  
P1[1]  
NC  
I2C Serial Clock (SCL)  
I2C Serial Data (SDA)  
IO  
Vss  
MLF  
(Top View)  
P0[0], A, I  
NC  
XRES  
I2C SCL, P1[7]  
I2C SDA, P1[5]  
P1[3]  
IO  
IO  
I2C Serial Clock (SCL), ISSP-SCLK*  
No Connection  
P1[6]  
Power  
IO  
Vss  
Ground Connection  
10  
11  
12  
13  
14  
P1[0]  
P1[2]  
P1[4]  
P1[6]  
I2C Serial Data (SDA), ISSP-SDATA*  
IO  
IO  
Optional External Clock Input (EXTCLK)  
IO  
Input  
XRES Active High External Reset with Internal  
Pull Down  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
NC  
No Connection  
IO  
I
I
I
I
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Vdd  
Analog Column Mux Input  
Analog Column Mux Input  
Analog Column Mux Input  
Analog Column Mux Input  
Supply Voltage  
IO  
IO  
IO  
Power  
Power  
IO  
Vss  
Ground Connection  
I
I
I
P0[7]  
P0[5]  
P0[3]  
Analog Column Mux Input  
Analog Column Mux Input  
Analog Column Mux Input  
IO  
IO  
LEGEND A = Analog, I = Input, and O = Output. * These are the ISSP pins, which are not High Z at  
POR (Power On Reset). See the PSoC Mixed-Signal Array Technical Reference Manual for details.  
a. The center pad on the QFN package must be connected to ground (Vss) for best mechanical, thermal, and electrical performance.  
If not connected to ground, it must be electrically floated and not connected to any other signal.  
Document Number: 38-12022 Rev. *H  
Page 11 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Register Mapping Tables  
Register Reference  
The PSoC device has a total register address space of  
512 bytes. The register space is referred to as IO space and is  
divided into two banks. The XOI bit in the Flag register (CPU_F)  
determines which bank the user is currently in. When the XOI bit  
is set the user is in Bank 1.  
This section lists the registers of the CY8C21x23 PSoC device.  
For detailed register information, refer the PSoC™ Mixed-Signal  
Array Technical Reference Manual.  
Register Conventions  
Note In the following register mapping tables, blank fields are  
Reserved and must not be accessed.  
The register conventions specific to this section are listed in the  
following table.  
Table 8. Register Conventions  
Convention  
Description  
Read register or bit(s)  
R
W
L
Write register or bit(s)  
Logical register or bit(s)  
Clearable register or bit(s)  
Access is bit specific  
C
#
Document Number: 38-12022 Rev. *H  
Page 12 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Table 9. Register Map Bank 0 Table: User Space  
Addr  
(0,Hex)  
Addr  
(0,Hex)  
Addr  
(0,Hex)  
Addr  
(0,Hex)  
Name  
PRT0DR  
Access  
Name  
Access  
Name  
ASE10CR0  
Access  
Name  
Access  
00  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
40  
80  
RW  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
PRT0IE  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
PRT0GS  
PRT0DM2  
PRT1DR  
PRT1IE  
ASE11CR0  
RW  
PRT1GS  
PRT1DM2  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
I2C_CFG  
RW  
#
I2C_SCR  
I2C_DR  
RW  
#
I2C_MSCR  
INT_CLR0  
INT_CLR1  
RW  
RW  
INT_CLR3  
INT_MSK3  
RW  
RW  
DBB00DR0  
DBB00DR1  
DBB00DR2  
DBB00CR0  
DBB01DR0  
DBB01DR1  
DBB01DR2  
DBB01CR0  
DCB02DR0  
DCB02DR1  
DCB02DR2  
DCB02CR0  
DCB03DR0  
DCB03DR1  
DCB03DR2  
#
AMX_IN  
RW  
RW  
#
INT_MSK0  
INT_MSK1  
INT_VC  
RW  
RW  
RC  
W
W
RW  
#
PWM_CR  
CMP_CR0  
CMP_CR1  
RES_WDT  
#
W
RW  
#
RW  
DEC_CR0  
DEC_CR1  
RW  
RW  
#
ADC0_CR  
ADC1_CR  
#
#
W
RW  
#
#
TMP_DR0  
TMP_DR1  
TMP_DR2  
RW  
RW  
RW  
W
RW  
Blank fields are Reserved and must not be accessed.  
# Access is bit specific.  
Document Number: 38-12022 Rev. *H  
Page 13 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Table 9. Register Map Bank 0 Table: User Space (continued)  
Addr  
(0,Hex)  
Addr  
(0,Hex)  
Addr  
(0,Hex)  
Addr  
(0,Hex)  
Name  
Access  
Name  
TMP_DR3  
Access  
Name  
Access  
Name  
Access  
DCB03CR0  
2F  
#
6F  
RW  
AF  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
RDI0RI  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RDI0SYN  
RDI0IS  
ACE00CR1  
ACE00CR2  
RW  
RW  
RDI0LT0  
RDI0LT1  
RDI0RO0  
RDI0RO1  
ACE01CR1  
ACE01CR2  
RW  
RW  
CPU_F  
RL  
CPU_SCR1  
CPU_SCR0  
#
#
Blank fields are Reserved and must not be accessed.  
# Access is bit specific.  
Table 10. Register Map Bank 1 Table: Configuration Space  
Addr  
(1,Hex)  
Addr  
(1,Hex)  
Addr  
(1,Hex)  
Addr  
(1,Hex)  
Name  
PRT0DM0  
Access  
Name  
Access  
Name  
Access  
Name  
Access  
00  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
40  
ASE10CR0  
80  
RW  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
PRT0DM1  
PRT0IC0  
PRT0IC1  
PRT1DM0  
PRT1DM1  
PRT1IC0  
PRT1IC1  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
ASE11CR0  
RW  
GDI_O_IN  
GDI_E_IN  
GDI_O_OU  
GDI_E_OU  
RW  
RW  
RW  
RW  
Blank fields are Reserved and must not be accessed.  
# Access is bit specific.  
Document Number: 38-12022 Rev. *H  
Page 14 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Table 10. Register Map Bank 1 Table: Configuration Space (continued)  
Addr  
(1,Hex)  
Addr  
(1,Hex)  
Addr  
(1,Hex)  
Addr  
(1,Hex)  
Name  
Access  
Name  
Access  
Name  
Access  
Name  
Access  
1A  
5A  
9A  
DA  
DB  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
OSC_GO_EN  
OSC_CR4  
OSC_CR3  
OSC_CR0  
OSC_CR1  
OSC_CR2  
VLT_CR  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
DBB00FN  
RW  
RW  
RW  
CLK_CR0  
RW  
RW  
RW  
RW  
RW  
DBB00IN  
CLK_CR1  
DBB00OU  
ABF_CR0  
AMD_CR0  
CMP_GO_EN  
DBB01FN  
DBB01IN  
DBB01OU  
RW  
RW  
RW  
VLT_CMP  
ADC0_TR  
ADC1_TR  
RW  
RW  
AMD_CR1  
ALT_CR0  
RW  
RW  
DCB02FN  
DCB02IN  
DCB02OU  
RW  
RW  
RW  
IMO_TR  
ILO_TR  
BDG_TR  
ECO_TR  
W
W
RW  
W
CLK_CR3  
TMP_DR0  
TMP_DR1  
TMP_DR2  
TMP_DR3  
RW  
RW  
RW  
RW  
RW  
DCB03FN  
DCB03IN  
DCB03OU  
RW  
RW  
RW  
RDI0RI  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RDI0SYN  
RDI0IS  
ACE00CR1  
ACE00CR2  
RW  
RW  
RDI0LT0  
RDI0LT1  
RDI0RO0  
RDI0RO1  
ACE01CR1  
ACE01CR2  
RW  
RW  
CPU_F  
RL  
FLS_PR1  
RW  
CPU_SCR1  
CPU_SCR0  
#
#
Blank fields are Reserved and must not be accessed.  
# Access is bit specific.  
Document Number: 38-12022 Rev. *H  
Page 15 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Electrical Specifications  
This section presents the DC and AC electrical specifications of the CY8C21x23 PSoC device. For up to date electrical specifications,  
check if you have the latest data sheet by visiting the web at http://www.cypress.com/psoc.  
Specifications are valid for -40oC T 85oC and T 100oC, except where noted.  
A
J
Refer to Table 25 on page 26 for the electrical specifications on the internal main oscillator (IMO) using SLIMO mode.  
Figure 11. Voltage versus IMO Frequency  
Figure 10. Voltage versus CPU Frequency  
5.25  
4.75  
5.25  
4.75  
SLIMO  
Mode=1  
SLIMO  
Mode=0  
3.60  
3.00  
2.40  
SLIMO  
Mode=1  
SLIMO SLIMO  
Mode=1 Mode=1  
SLIMO  
Mode=0  
3.00  
2.40  
93kHz  
12MHz  
CPUFrequency  
24MHz  
93kHz  
6MHz  
IMOFrequency  
3MHz  
12MHz  
24MHz  
The following table lists the units of measure that are used in this section.  
Table 11. Units of Measure  
Symbol  
Unit of Measure  
Symbol  
Unit of Measure  
oC  
dB  
fF  
degree Celsius  
decibels  
μW  
mA  
ms  
mV  
nA  
ns  
microwatts  
milli-ampere  
milli-second  
milli-volts  
femto farad  
hertz  
Hz  
KB  
1024 bytes  
1024 bits  
nanoampere  
nanosecond  
nanovolts  
Kbit  
kHz  
kΩ  
kilohertz  
nV  
W
kilohm  
ohm  
MHz  
MΩ  
μA  
μF  
μH  
μs  
μV  
μVrms  
megahertz  
megaohm  
microampere  
microfarad  
microhenry  
microsecond  
microvolts  
pA  
pF  
pp  
picoampere  
picofarad  
peak-to-peak  
parts per million  
picosecond  
ppm  
ps  
sps  
s
samples per second  
sigma: one standard deviation  
volts  
microvolts root-mean-square  
V
Document Number: 38-12022 Rev. *H  
Page 16 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Absolute Maximum Ratings  
Table 12. Absolute Maximum Ratings  
Symbol  
Description  
Storage Temperature  
Min  
Typ  
Max  
Units  
oC  
Notes  
TSTG  
-55  
+100  
Higher storage temperatures  
reduce data retention time.  
Recommended storage temper-  
ature is +25°C ± 25°C. Extended  
duration storage temperatures  
above 65°C degrade reliability.  
TA  
Ambient Temperature with Power Applied  
Supply Voltage on Vdd Relative to Vss  
DC Input Voltage  
-40  
-0.5  
+85  
+6.0  
oC  
V
Vdd  
VIO  
VIOZ  
IMIO  
ESD  
LU  
Vss - 0.5  
Vss - 0.5  
-25  
Vdd + 0.5  
Vdd + 0.5  
+50  
V
DC Voltage Applied to Tri-state  
Maximum Current into any Port Pin  
Electro Static Discharge Voltage  
Latch-up Current  
V
mA  
V
2000  
Human Body Model ESD  
200  
mA  
Operating Temperature  
Table 13. Operating Temperature  
Symbol  
Description  
Min  
-40  
-40  
Typ  
Max  
+85  
Units  
oC  
oC  
Notes  
TA  
TJ  
Ambient Temperature  
Junction Temperature  
+100  
The temperature rise from  
ambient to junction is package  
specific. SeeTable 37 on page  
35. The user must limit the power  
consumption to comply with this  
requirement.  
Document Number: 38-12022 Rev. *H  
Page 17 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
DC Electrical Characteristics  
DC Chip-Level Specifications  
Table 14 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters apply to  
5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 14. DC Chip-Level Specifications  
Symbol  
Description  
Supply Voltage  
Min  
Typ  
Max  
Units  
Notes  
Vdd  
2.40  
5.25  
V
See DC POR and LVD specifica-  
tions, Table 21 on page 22.  
IDD  
Supply Current, IMO = 24 MHz  
Supply Current, IMO = 6 MHz  
Supply Current, IMO = 6 MHz  
3
4
mA Conditions are Vdd = 5.0V, 25oC,  
CPU = 3 MHz, SYSCLK doubler  
disabled. VC1 = 1.5 MHz  
VC2 = 93.75 kHz  
VC3 = 0.366 kHz.  
IDD3  
1.2  
1.1  
2
mA Conditions are Vdd = 3.3V, 25oC,  
CPU = 3 MHz, clock doubler  
disabled. VC1 = 375 kHz  
VC2 = 23.4 kHz  
VC3 = 0.091 kHz  
IDD27  
1.5  
mA Conditions are Vdd = 2.55V,  
25oC, CPU = 3 MHz, clock  
doubler disabled. VC1 = 375 kHz  
VC2 = 23.4 kHz  
VC3 = 0.091 kHz  
ISB27  
Sleep (Mode) Current with POR, LVD,  
Sleep Timer, WDT, and internal slow  
oscillator active. Mid temperature range.  
2.6  
2.8  
4
5
μA Vdd = 2.55V, 0oC to 40oC  
ISB  
Sleep (Mode) Current with POR, LVD,  
Sleep Timer, WDT, and internal slow  
oscillator active.  
μA Vdd = 3.3V, -40oC TA 85oC  
VREF  
Reference Voltage (Bandgap)  
1.28  
1.16  
1.30  
1.30  
1.32  
V
V
V
Trimmed for appropriate Vdd.  
Vdd = 3.0V to 5.25V  
VREF27 Reference Voltage (Bandgap)  
AGND Analog Ground  
1.330  
Trimmed for appropriate Vdd.  
Vdd = 2.4V to 3.0V  
VREF - 0.003 VREF VREF+ 0.003  
Document Number: 38-12022 Rev. *H  
Page 18 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
DC General Purpose IO Specifications  
Table 15 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at 25°C and are for  
design guidance only.  
Table 15. 5V and 3.3V DC GPIO Specifications  
Symbol  
RPU  
Description  
Min  
4
Typ  
5.6  
5.6  
Max  
Units  
kΩ  
Notes  
Pull up Resistor  
8
8
RPD  
Pull down Resistor  
High Output Level  
4
kΩ  
VOH  
Vdd -  
1.0  
V
IOH = 10 mA, Vdd = 4.75 to 5.25V (8  
total loads, 4 on even port pins (for  
example, P0[2], P1[4]), 4 on odd port  
pins (for example, P0[3], P1[5])). 80  
mA maximum combined IOH budget.  
VOL  
Low Output Level  
0.75  
0.8  
V
IOL = 25 mA, Vdd = 4.75 to 5.25V (8  
total loads, 4 on even port pins (for  
example, P0[2], P1[4]), 4 on odd port  
pins (for example, P0[3], P1[5])).  
150 mA maximum combined IOL  
budget.  
VIL  
VIH  
VH  
IIL  
Input Low Level  
2.1  
V
V
Vdd = 3.0 to 5.25  
Vdd = 3.0 to 5.25  
Input High Level  
Input Hysteresis  
60  
1
mV  
Input Leakage (Absolute Value)  
Capacitive Load on Pins as Input  
nA Gross tested to 1 μA  
CIN  
3.5  
10  
pF Package and pin dependent.  
Temp = 25oC  
COUT  
Capacitive Load on Pins as Output  
3.5  
10  
pF Package and pin dependent.  
Temp = 25oC  
Table 16 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 2.4V to 3.0V and -40°C  
TA 85°C. Typical parameters apply to 2.7V at 25°C and are for design guidance only.  
Table 16. 2.7V DC GPIO Specifications  
Symbol  
RPU  
Description  
Min  
4
Typ  
5.6  
5.6  
Max  
Units  
kΩ  
kΩ  
Notes  
Pull up Resistor  
8
8
RPD  
Pull down Resistor  
High Output Level  
4
VOH  
Vdd -  
0.4  
V
IOH = 2.5 mA (6.25 Typ), Vdd = 2.4 to  
3.0V (16 mA maximum, 50 mA Typ  
combined IOH budget).  
VOL  
Low Output Level  
0.75  
V
IOL = 10 mA, Vdd = 2.4 to 3.0V (90  
mA maximum combined IOL budget).  
VIL  
VIH  
VH  
IIL  
Input Low Level  
2.0  
0.75  
V
V
Vdd = 2.4 to 3.0  
Vdd = 2.4 to 3.0  
Input High Level  
Input Hysteresis  
60  
1
mV  
nA  
pF  
Input Leakage (Absolute Value)  
Capacitive Load on Pins as Input  
Gross tested to 1 μA  
Package and pin dependent.  
Temp = 25oC  
CIN  
3.5  
10  
COUT  
Capacitive Load on Pins as Output  
3.5  
10  
pF  
Package and pin dependent.  
Temp = 25oC  
Document Number: 38-12022 Rev. *H  
Page 19 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
DC Amplifier Specifications  
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 17. 5V DC Amplifier Specifications  
Symbol  
Description  
Min  
Typ  
2.5  
10  
Max  
15  
Units  
mV  
μV/oC  
Notes  
VOSOA  
Input Offset Voltage (absolute value)  
TCVOSOA Average Input Offset Voltage Drift  
IEBOA  
CINOA  
Input Leakage Current (Port 0 Analog Pins)  
Input Capacitance (Port 0 Analog Pins)  
200  
4.5  
pA  
Gross tested to 1 μA  
9.5  
pF  
Package and pin dependent.  
Temp = 25oC  
VCMOA  
Common Mode Voltage Range  
0.0  
Vdd - 1  
V
GOLOA  
ISOA  
Open Loop Gain  
80  
dB  
Amplifier Supply Current  
10  
30  
μA  
Table 18. 3.3V DC Amplifier Specifications  
Symbol  
Description  
Min  
Typ  
2.5  
10  
Max  
15  
Units  
mV  
μV/oC  
Notes  
VOSOA  
Input Offset Voltage (absolute value)  
TCVOSOA Average Input Offset Voltage Drift  
IEBOA  
CINOA  
Input Leakage Current (Port 0 Analog Pins)  
Input Capacitance (Port 0 Analog Pins)  
200  
4.5  
pA  
Gross tested to 1 μA  
9.5  
pF  
Package and pin dependent.  
Temp = 25oC  
VCMOA  
GOLOA  
ISOA  
Common Mode Voltage Range  
Open Loop Gain  
0
80  
Vdd - 1  
V
dB  
μA  
Amplifier Supply Current  
10  
30  
Table 19. 2.7V DC Amplifier Specifications  
Symbol  
Description  
Min  
Typ  
2.5  
10  
Max  
15  
Units  
mV  
μV/oC  
Notes  
VOSOA  
Input Offset Voltage (absolute value)  
TCVOSOA Average Input Offset Voltage Drift  
IEBOA  
CINOA  
Input Leakage Current (Port 0 Analog Pins)  
Input Capacitance (Port 0 Analog Pins)  
200  
4.5  
pA  
Gross tested to 1 μA  
9.5  
pF  
Package and pin dependent.  
Temp = 25oC  
VCMOA  
GOLOA  
ISOA  
Common Mode Voltage Range  
Open Loop Gain  
0
80  
Vdd - 1  
V
dB  
μA  
Amplifier Supply Current  
10  
30  
Document Number: 38-12022 Rev. *H  
Page 20 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
DC Switch Mode Pump Specifications  
Table 20 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters apply to  
5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 20. DC Switch Mode Pump (SMP) Specifications  
Symbol  
VPUMP5V  
Description  
Min  
Typ  
Max Units  
Notes  
5V Output Voltage from Pump  
4.75  
5.0  
5.25  
3.60  
2.80  
V
V
V
Configuration of footnote.a Average,  
neglecting ripple. SMP trip voltage is set  
to 5.0V.  
Configuration of footnote.a Average,  
neglecting ripple. SMP trip voltage is set  
to 3.25V.  
Configuration of footnote.a Average,  
neglecting ripple. SMP trip voltage is set  
to 2.55V.  
Configuration of footnote.a  
VPUMP3V  
VPUMP2V  
IPUMP  
3.3V Output Voltage from Pump  
2.6V Output Voltage from Pump  
Available Output Current  
3.00  
2.45  
3.25  
2.55  
V
BAT = 1.8V, VPUMP = 5.0V  
VBAT = 1.5V, VPUMP = 3.25V  
BAT = 1.3V, VPUMP = 2.55V  
5
8
8
mA SMP trip voltage is set to 5.0V.  
mA SMP trip voltage is set to 3.25V.  
mA SMP trip voltage is set to 2.55V.  
V
VBAT5V  
Input Voltage Range from Battery  
Input Voltage Range from Battery  
Input Voltage Range from Battery  
1.8  
1.0  
1.0  
1.2  
5
5.0  
3.3  
2.8  
V
V
V
V
Configuration of footnote.a SMP trip  
voltage is set to 5.0V.  
Configuration of footnote.a SMP trip  
voltage is set to 3.25V.  
Configuration of footnote.a SMP trip  
voltage is set to 2.55V.  
VBAT3V  
VBAT2V  
VBATSTART  
Minimum Input Voltage from Battery to  
Start Pump  
Configuration of footnote.a 0oC TA ≤  
100. 1.25V at TA = -40oC.  
ΔVPUMP_Line Line Regulation (over Vi range)  
%VO Configuration of footnote.a VO is the  
“Vdd Value for PUMP Trip” specified by  
the VM[2:0] setting in the DC POR and  
LVD Specification, Table 21 on page 22.  
ΔVPUMP_Load Load Regulation  
5
%VO Configuration of footnote.a VO is the  
“Vdd Value for PUMP Trip” specified by  
the VM[2:0] setting in the DC POR and  
LVD Specification, Table 21 on page 22.  
ΔVPUMP_Ripple Output Voltage Ripple (depends on  
100  
50  
mVpp Configuration of footnote.a Load is  
5 mA.  
cap/load)  
E3  
E2  
Efficiency  
Efficiency  
35  
35  
%
Configuration of footnote.a Load is  
5 mA. SMP trip voltage is set to 3.25V.  
80  
%
For I load = 1mA, VPUMP = 2.55V,  
VBAT = 1.3V, 10 uH inductor, 1 uF  
capacitor, and Schottky diode.  
FPUMP  
Switching Frequency  
Switching Duty Cycle  
1.3  
50  
MHz  
%
DCPUMP  
a. L1 = 2 mH inductor, C1 = 10 mF capacitor, D1 = Schottky diode. See Figure 12 on page 22.  
Document Number: 38-12022 Rev. *H  
Page 21 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Figure 12. Basic Switch Mode Pump Circuit  
D1  
Vdd  
VPUMP  
L1  
C1  
SMP  
V ss  
+
VBAT  
PSoC
Battery  
DC POR and LVD Specifications  
Table 21 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters apply to  
5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 21. DC POR and LVD Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
Vdd Value for PPOR Trip  
PORLEV[1:0] = 00b  
PORLEV[1:0] = 01b  
PORLEV[1:0] = 10b  
Vdd must be greater than or equal to  
2.5V during startup, reset from the  
XRES pin, or reset from Watchdog.  
VPPOR0  
VPPOR1  
VPPOR2  
2.36  
2.82  
4.55  
2.40  
2.95  
4.70  
V
V
V
Vdd Value for LVD Trip  
VM[2:0] = 000b  
VM[2:0] = 001b  
VM[2:0] = 010b  
VM[2:0] = 011b  
VM[2:0] = 100b  
VM[2:0] = 101b  
VM[2:0] = 110b  
VM[2:0] = 111b  
VLVD0  
VLVD1  
VLVD2  
VLVD3  
VLVD4  
VLVD5  
VLVD6  
VLVD7  
2.40  
2.85  
2.95  
3.06  
4.37  
4.50  
4.62  
4.71  
2.45  
2.92  
3.02  
3.13  
4.48  
4.64  
4.73  
4.81  
2.51a  
2.99b  
3.09  
3.20  
4.55  
4.75  
4.83  
4.95  
V
V
V
V
V
V
V
V
Vdd Value for PUMP Trip  
VM[2:0] = 000b  
VM[2:0] = 001b  
VM[2:0] = 010b  
VM[2:0] = 011b  
VM[2:0] = 100b  
VM[2:0] = 101b  
VM[2:0] = 110b  
VM[2:0] = 111b  
VPUMP0  
VPUMP1  
VPUMP2  
VPUMP3  
VPUMP4  
VPUMP5  
VPUMP6  
VPUMP7  
2.45  
2.96  
3.03  
3.18  
4.54  
4.62  
4.71  
4.89  
2.55  
3.02  
3.10  
3.25  
4.64  
4.73  
4.82  
5.00  
2.62c  
3.09  
3.16  
3.32d  
4.74  
4.83  
4.92  
5.12  
V
V
V
V
V
V
V
V
a. Always greater than 50 mV above V  
b. Always greater than 50 mV above V  
c. Always greater than 50 mV above V  
d. Always greater than 50 mV above V  
(PORLEV = 00) for falling supply.  
(PORLEV = 01) for falling supply.  
PPOR  
PPOR  
.
.
LVD0  
LVD3  
Document Number: 38-12022 Rev. *H  
Page 22 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
DC Programming Specifications  
Table 22 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters apply to  
5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 22. DC Programming Specifications  
Symbol  
Description  
Min  
2.70  
Typ  
Max  
Units  
V
Notes  
VddIWRITE Supply Voltage for Flash Write Operations  
IDDP  
VILP  
Supply Current During Programming or Verify  
5
25  
mA  
V
Input Low Voltage During Programming or  
Verify  
0.8  
VIHP  
IILP  
Input High Voltage During Programming or  
Verify  
2.2  
0.2  
V
mA  
mA  
V
Input Current when Applying Vilp to P1[0] or  
P1[1] During Programming or Verify  
Driving internal pull down  
resistor  
IIHP  
Input Current when Applying Vihp to P1[0] or  
P1[1] During Programming or Verify  
1.5  
Driving internal pull down  
resistor  
VOLV  
VOHV  
Output Low Voltage During Programming or  
Verify  
Vss + 0.75  
Vdd  
Output High Voltage During Programming or  
Verify  
Vdd - 1.0  
50,000  
V
FlashENPB Flash Endurance (per block)  
Erase/write cycles per  
block.  
Erase/write cycles.0  
0
0
0
FlashENT  
Flash Endurance (total)a  
1,800,000  
0
FlashDR  
Flash Data Retention  
10  
Years  
a. A maximum of 36 x 50,000 block endurance cycles is allowed. This may be balanced between operations on 36x1 blocks of 50,000 maximum cycles each, 36x2  
blocks of 25,000 maximum cycles each, or 36x4 blocks of 12,500 maximum cycles each (and so forth to limit the total number of cycles to 36x50,000 and that no  
single block ever sees more than 50,000 cycles).  
For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing.  
Refer to the Flash APIs Application Note AN2015 at http://www.cypress.com under Application Notes for more information.  
Document Number: 38-12022 Rev. *H  
Page 23 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
AC Electrical Characteristics  
AC Chip-Level Specifications  
Table 23 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters apply to  
5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 23. 5V and 3.3V AC Chip-Level Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
24.6a,b,c  
FIMO24  
Internal Main Oscillator Frequency for 24 MHz  
23.4  
24  
MHz Trimmed for 5V or 3.3V operation  
using factory trim values. See  
Figure 11 on page 16.  
SLIMO mode = 0.  
6.35a,b,c  
FIMO6  
Internal Main Oscillator Frequency for 6 MHz  
5.75  
6
MHz Trimmed for 3.3V operation using  
factory trim values. See Figure 11  
on page 16. SLIMO mode = 1.  
24.6a,b  
12.3b,c  
FCPU1  
FCPU2  
FBLK5  
CPU Frequency (5V Nominal)  
0.93  
0.93  
0
24  
12  
48  
MHz 24 MHz only for SLIMO mode = 0.  
MHz  
CPU Frequency (3.3V Nominal)  
Digital PSoC Block Frequency0(5V Nominal)  
MHz Refer to the AC Digital Block  
Specifications.  
49.2a,b,d  
24.6b,d  
FBLK33  
Digital PSoC Block Frequency (3.3V Nominal)  
0
24  
MHz  
F32K1  
Internal Low Speed Oscillator Frequency  
32 kHz RMS Period Jitter  
15  
32  
100  
1400  
64  
200  
kHz  
ns  
Jitter32k  
Jitter32k  
TXRST  
32 kHz Peak-to-Peak Period Jitter  
External Reset Pulse Width  
24 MHz Duty Cycle  
ns  
10  
40  
μs  
DC24M  
Step24M  
Fout48M  
50  
60  
%
24 MHz Trim Step Size  
50  
kHz  
49.2a,c  
48 MHz Output Frequency  
46.8  
48.0  
MHz Trimmed. Using factory trim  
values.  
Jitter24M1 24 MHz Peak-to-Peak Period Jitter (IMO)  
300  
ps  
FMAX  
Maximum frequency of signal on row input or  
row output.  
12.3  
MHz  
TRAMP  
Supply Ramp Time  
0
μs  
a. 4.75V < Vdd < 5.25V.  
b. Accuracy derived from Internal Main Oscillator with appropriate trim for Vdd range.  
c. 3.0V < Vdd < 3.6V. See application note AN2012 “Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation” for information on trimming for opera-  
tion at 3.3V.  
d. See the individual user module data sheets for information on maximum frequencies for user modules.  
Document Number: 38-12022 Rev. *H  
Page 24 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Table 24. 2.7V AC Chip-Level Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
12.7a,b,c  
FIMO12  
Internal Main Oscillator Frequency for 12 MHz  
11.5  
120  
MHz Trimmed for 2.7V operation using  
factory trim values. See Figure 11  
on page 16. SLIMO mode = 1.  
6.35a,b,c  
FIMO6  
Internal Main Oscillator Frequency for 6 MHz  
5.5  
6
MHz Trimmed for 2.7V operation using  
factory trim values. See Figure 11  
on page 16. SLIMO mode = 1.  
3.15a,b  
FCPU1  
FBLK27  
CPU Frequency (2.7V Nominal)  
0.093  
0
3
MHz 24 MHz only for SLIMO mode = 0.  
12.5a,b,c  
Digital PSoC Block Frequency (2.7V Nominal)  
12  
MHz Refer to the AC Digital Block  
Specifications.  
F32K1  
Internal Low Speed Oscillator Frequency  
32 kHz RMS Period Jitter  
8
32  
150  
1400  
96  
200  
kHz  
ns  
Jitter32k  
Jitter32k  
TXRST  
32 kHz Peak-to-Peak Period Jitter  
External Reset Pulse Width  
ns  
10  
μs  
FMAX  
Maximum frequency of signal on row input or  
row output.  
12.3  
MHz  
TRAMP  
Supply Ramp Time  
0
μs  
a. 2.4V < Vdd < 3.0V.  
b. Accuracy derived from Internal Main Oscillator with appropriate trim for Vdd range.  
c. See application note AN2012 “Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation” for information on maximum frequency for user modules.  
Figure 13. 24 MHz Period Jitter (IMO) Timing Diagram  
Jitter24M1  
F24M  
Figure 14. 32 kHz Period Jitter (ILO) Timing Diagram  
Jitter32k  
F32K1  
Document Number: 38-12022 Rev. *H  
Page 25 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
AC General Purpose IO Specifications  
Table 25 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters apply to  
5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 25. 5V and 3.3V AC GPIO Specifications  
Symbol  
FGPIO  
Description  
Min  
0
Typ  
Max  
12  
18  
18  
Units  
Notes  
GPIO Operating Frequency  
MHz Normal Strong Mode  
TRiseF  
TFallF  
Rise Time, Normal Strong Mode, Cload = 50 pF  
Fall Time, Normal Strong Mode, Cload = 50 pF  
Rise Time, Slow Strong Mode, Cload = 50 pF  
Fall Time, Slow Strong Mode, Cload = 50 pF  
3
ns  
ns  
ns  
ns  
Vdd = 4.5 to 5.25V, 10% - 90%  
2
Vdd = 4.5 to 5.25V, 10% - 90%  
Vdd = 3 to 5.25V, 10% - 90%  
Vdd = 3 to 5.25V, 10% - 90%  
TRiseS  
TFallS  
10  
10  
27  
22  
Table 26. 2.7V AC GPIO Specifications  
Symbol  
FGPIO  
Description  
Min  
0
Typ  
Max  
3
Units  
Notes  
GPIO Operating Frequency  
MHz Normal Strong Mode  
TRiseF  
TFallF  
Rise Time, Normal Strong Mode, Cload = 50 pF  
Fall Time, Normal Strong Mode, Cload = 50 pF  
Rise Time, Slow Strong Mode, Cload = 50 pF  
Fall Time, Slow Strong Mode, Cload = 50 pF  
6
50  
ns  
ns  
ns  
ns  
Vdd = 2.4 to 3.0V, 10% - 90%  
6
50  
Vdd = 2.4 to 3.0V, 10% - 90%  
Vdd = 2.4 to 3.0V, 10% - 90%  
Vdd = 2.4 to 3.0V, 10% - 90%  
TRiseS  
TFallS  
18  
18  
40  
40  
120  
120  
Figure 15. GPIO Timing Diagram  
90%  
GPIO  
Pin  
10%  
TRiseF  
TRi seS  
TFallF  
TFallS  
AC Amplifier Specifications  
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Settling times, slew rates, and gain bandwidth are based on the Analog Continuous Time PSoC block.  
Table 27. 5V and 3.3V AC Amplifier Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
TCOMP1  
Comparator Mode Response Time, 50 mVpp Signal Centered on  
Ref  
100  
ns  
TCOMP2  
Comparator Mode Response Time, 2.5V Input, 0.5V Overdrive  
300  
ns  
Table 28. 2.7V AC Amplifier Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
TCOMP1  
Comparator Mode Response Time, 50 mVpp Signal Centered on  
Ref  
600  
ns  
TCOMP2  
Comparator Mode Response Time, 1.5V Input, 0.5V Overdrive  
300  
ns  
Document Number: 38-12022 Rev. *H  
Page 26 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
AC Digital Block Specifications  
Table 29 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters apply to  
5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 29. 5V and 3.3V AC Digital Block Specifications  
Function  
All  
Functions  
Description  
Maximum Block Clocking Frequency (> 4.75V)  
Maximum Block Clocking Frequency (< 4.75V)  
Capture Pulse Width  
Min  
Typ  
Max Units  
Notes  
49.2  
24.6  
MHz 4.75V < Vdd < 5.25V.  
MHz 3.0V < Vdd < 4.75V.  
Timer  
50a  
ns  
Maximum Frequency, No Capture  
Maximum Frequency, With or Without Capture  
Enable Pulse Width  
49.2  
24.6  
MHz 4.75V < Vdd < 5.25V.  
MHz  
Counter  
50  
ns  
Maximum Frequency, No Enable Input  
Maximum Frequency, Enable Input  
Kill Pulse Width:  
49.2  
24.6  
MHz 4.75V < Vdd < 5.25V.  
MHz  
Dead Band  
Asynchronous Restart Mode  
Synchronous Restart Mode  
20  
50  
50  
ns  
ns  
Disable Mode  
ns  
Maximum Frequency  
49.2  
49.2  
MHz 4.75V < Vdd < 5.25V.  
MHz 4.75V < Vdd < 5.25V.  
CRCPRS  
(PRS Mode)  
Maximum Input Clock Frequency  
CRCPRS  
(CRC Mode)  
Maximum Input Clock Frequency  
Maximum Input Clock Frequency  
Maximum Input Clock Frequency  
24.6  
8.2  
MHz  
SPIM  
MHz Maximum data rate at 4.1 MHz due  
to 2 x over clocking.  
SPIS  
4.1  
MHz  
ns  
Width of SS_ Negated Between Transmissions 50  
Transmitter  
Receiver  
Maximum Input Clock Frequency  
24.6  
MHz Maximum data rate at 3.08 MHz due  
to 8 x over clocking.  
Maximum Input Clock Frequency  
24.6  
MHz Maximum data rate at 3.08 MHz due  
to 8 x over clocking.  
a. 50 ns minimum input pulse width is based on the input synchronizers running at 12 MHz (84 ns nominal period).  
Document Number: 38-12022 Rev. *H  
Page 27 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Table 30. 2.7V AC Digital Block Specifications  
Function  
All  
Description  
Min  
Typ  
Max Units  
Notes  
Maximum Block Clocking Frequency  
12.7  
MHz 2.4V < Vdd < 3.0V.  
Functions  
Timer  
Capture Pulse Width  
100a  
ns  
Maximum Frequency, With or Without Capture  
Enable Pulse Width  
12.7  
MHz  
ns  
Counter  
100  
Maximum Frequency, No Enable Input  
Maximum Frequency, Enable Input  
Kill Pulse Width:  
12.7  
12.7  
MHz  
MHz  
Dead Band  
Asynchronous Restart Mode  
Synchronous Restart Mode  
Disable Mode  
20  
100  
100  
ns  
ns  
ns  
Maximum Frequency  
12.7  
12.7  
MHz  
MHz  
CRCPRS  
(PRS Mode)  
Maximum Input Clock Frequency  
CRCPRS  
(CRC Mode)  
Maximum Input Clock Frequency  
Maximum Input Clock Frequency  
Maximum Input Clock Frequency  
12.7  
6.35  
MHz  
SPIM  
MHz Maximum data rate at 3.17 MHz due  
to 2 x over clocking.  
SPIS  
4.1  
MHz  
ns  
Width of SS_ Negated Between Transmis-  
sions  
100  
Transmitter  
Receiver  
Maximum Input Clock Frequency  
12.7  
12.7  
MHz Maximum data rate at 1.59 MHz due  
to 8 x over clocking.  
Maximum Input Clock Frequency  
MHz Maximum data rate at 1.59 MHz due  
to 8 x over clocking.  
a. 100 ns minimum input pulse width is based on the input synchronizers running at 12 MHz (84 ns nominal period).  
Document Number: 38-12022 Rev. *H  
Page 28 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
AC External Clock Specifications  
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at 25°C  
and are for design guidance only.  
Table 31. 5V AC External Clock Specifications  
Symbol  
Description  
Min  
0.093  
20.6  
20.6  
150  
Typ  
Max  
24.6  
5300  
Units  
MHz  
ns  
Notes  
FOSCEXT Frequency  
High Period  
Low Period  
ns  
Power Up IMO to Switch  
μs  
Table 32. 3.3V AC External Clock Specifications  
Symbol Description  
Min  
Typ  
Max  
Units  
Notes  
FOSCEXT Frequency with CPU Clock divide by 1  
0.093  
12.3  
MHz Maximum CPU frequency is 12 MHz  
at 3.3V. With the CPU clock divider  
set to 1, the external clock must  
adhere to the maximum frequency  
and duty cycle requirements.  
FOSCEXT Frequency with CPU Clock divide by 2 or  
greater  
0.186  
24.6  
MHz If the frequency of the external clock  
isgreaterthan12MHz, theCPUclock  
divider must be set to 2 or greater. In  
this case, the CPU clock divider  
ensures that the fifty percent duty  
cycle requirement is met.  
High Period with CPU Clock divide by 1  
Low Period with CPU Clock divide by 1  
Power Up IMO to Switch  
41.7  
41.7  
150  
5300  
ns  
ns  
μs  
Table 33. 2.7V AC External Clock Specifications  
Symbol Description  
Min  
Typ  
Max  
Units  
Notes  
FOSCEXT Frequency with CPU Clock divide by 1  
0.093  
6.060  
MHz Maximum CPU frequency is 3 MHz at  
2.7V. With the CPU clock divider set  
to 1, the external clock must adhere to  
the maximum frequency and duty  
cycle requirements.  
FOSCEXT Frequency with CPU Clock divide by 2 or  
greater  
0.186  
12.12  
MHz If the frequency of the external clock  
is greater than 3 MHz, the CPU clock  
divider must be set to 2 or greater. In  
this case, the CPU clock divider  
ensures that the fifty percent duty  
cycle requirement is met.  
High Period with CPU Clock divide by 1  
Low Period with CPU Clock divide by 1  
Power Up IMO to Switch  
83.4  
83.4  
150  
5300  
ns  
ns  
μs  
Document Number: 38-12022 Rev. *H  
Page 29 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
AC Programming Specifications  
Table 34 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at 25°C and are for  
design guidance only.  
Table 34. AC Programming Specifications  
Symbol  
TRSCLK  
TFSCLK  
TSSCLK  
THSCLK  
FSCLK  
Description  
Min  
1
Typ  
Max  
20  
20  
Units  
ns  
Notes  
Rise Time of SCLK  
Fall Time of SCLK  
1
ns  
Data Set up Time to Falling Edge of SCLK  
Data Hold Time from Falling Edge of SCLK  
Frequency of SCLK  
40  
40  
0
ns  
ns  
8
MHz  
ms  
ms  
ns  
TERASEB Flash Erase Time (Block)  
TWRITE Flash Block Write Time  
15  
30  
TDSCLK3 Data Out Delay from Falling Edge of SCLK  
TDSCLK2 Data Out Delay from Falling Edge of SCLK  
50  
70  
3.0 Vdd 3.6  
2.4 Vdd 3.0  
ns  
AC I2C Specifications  
Table 35 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters apply to  
5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 35. AC Characteristics of the I2C SDA and SCL Pins for Vcc 3.0V  
Standard Mode  
Fast Mode  
Min Max  
Symbol  
Description  
Units  
Min  
Max  
FSCLI2C  
SCL Clock Frequency  
0
100  
0
400  
kHz  
THDSTAI2C Hold Time (repeated) START Condition. After this period, the first  
clock pulse is generated.  
4.0  
0.6  
μs  
TLOWI2C  
THIGHI2C  
LOW Period of the SCL Clock  
HIGH Period of the SCL Clock  
4.7  
4.0  
4.7  
0
2500  
4.0  
4.7  
1.3  
0.6  
0.6  
0
100a  
0.6  
1.3  
0
μs  
μs  
μs  
μs  
ns0  
μs  
μs  
ns  
TSUSTAI2C Setup Time for a Repeated START Condition  
THDDATI2C Data Hold Time  
TSUDATI2C Data Setup Time0  
0
0
TSUSTOI2C Setup Time for STOP Condition  
TBUFI2C  
TSPI2C  
Bus Free Time Between a STOP and START Condition  
Pulse Width of spikes are suppressed by the input filter.  
50  
a. A Fast-Mode I2C-bus device can be used in a Standard-Mode I2C-bus system, but the requirement t  
250 ns must then be met. This automatically  
SU;DAT  
becomes the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output  
the next data bit to the SDA line t  
+ t  
= 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.  
rmax  
SU;DAT  
Document Number: 38-12022 Rev. *H  
Page 30 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Table 36. 2.7V AC Characteristics of the I2C SDA and SCL Pins (Fast Mode Not Supported)  
Standard Mode  
Fast Mode  
Min Max  
Symbol  
Description  
Units  
Min  
Max  
FSCLI2C  
SCL Clock Frequency  
0
100  
kHz  
THDSTAI2C Hold Time (repeated) START Condition. After this period, the first  
clock pulse is generated.  
4.0  
μs  
TLOWI2C  
THIGHI2C  
LOW Period of the SCL Clock  
HIGH Period of the SCL Clock  
4.7  
4.0  
4.7  
0
μs  
μs  
μs  
μs  
ns  
μs  
μs  
ns  
TSUSTAI2C Setup Time for a Repeated START Condition  
THDDATI2C Data Hold Time  
TSUDATI2C Data Setup Time  
250  
4.0  
4.7  
TSUSTOI2C Setup Time for STOP Condition  
TBUFI2C  
TSPI2C  
Bus Free Time Between a STOP and START Condition  
Pulse Width of spikes are suppressed by the input filter.  
Figure 16. Definition for Timing for Fast/Standard Mode on the I2C Bus  
SDA  
SCL  
TSPI2C  
TLOWI2C  
TSUDATI2C  
THDSTAI2C  
TBUFI2C  
TSUSTOI2C  
TSUSTAI2C  
THDDATI2C  
THDSTAI2C  
THIGHI2C  
S
Sr  
P
S
Document Number: 38-12022 Rev. *H  
Page 31 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Packaging Information  
This section illustrates the packaging specifications for the CY8C21x23 PSoC device, along with the thermal impedances for each  
package and minimum solder reflow peak temperature.  
Important Note Emulation tools may require a larger area on the target PCB than the chip’s footprint. For a detailed description of  
the emulation tools’ dimensions, refer to the document titled PSoC Emulator Pod Dimensions at  
http://www.cypress.com/design/MR10161.  
Packaging Dimensions  
Figure 17. 8-Pin (150-Mil) SOIC  
PIN 1 ID  
4
1
1. DIMENSIONS IN INCHES[MM] MIN.  
MAX.  
2. PIN 1 ID IS OPTIONAL,  
ROUND ON SINGLE LEADFRAME  
RECTANGULAR ON MATRIX LEADFRAME  
0.150[3.810]  
0.157[3.987]  
3. REFERENCE JEDEC MS-012  
4. PACKAGE WEIGHT 0.07gms  
0.230[5.842]  
0.244[6.197]  
PART #  
S08.15 STANDARD PKG.  
SZ08.15 LEAD FREE PKG.  
5
8
0.189[4.800]  
0.196[4.978]  
0.010[0.254]  
0.016[0.406]  
X 45°  
SEATING PLANE  
0.061[1.549]  
0.068[1.727]  
0.004[0.102]  
0.050[1.270]  
BSC  
0.0075[0.190]  
0.0098[0.249]  
0.004[0.102]  
0.0098[0.249]  
0°~8°  
0.016[0.406]  
0.035[0.889]  
0.0138[0.350]  
0.0192[0.487]  
51-85066 *C  
Document Number: 38-12022 Rev. *H  
Page 32 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Figure 18. 16-Pin (150-Mil) SOIC  
51-85022 *B  
Figure 19. 16-Pin COL  
001-09116 *D  
Document Number: 38-12022 Rev. *H  
Page 33 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Figure 20. 20-Pin (210-MIL) SSOP  
51-85077 *C  
Figure 21. 24-Pin (4x4) QFN  
SIDE VIEW  
TOP VIEW  
BOTTOM VIEW  
0.05  
C
3.90  
4.10  
1.00 MAX.  
0.80 MAX.  
0.23±0.05  
0.05 MAX.  
0.20 REF.  
3.70  
3.80  
2.49  
PIN1 ID  
0.20 R.  
Ø0.50  
N
N
1
2
1
2
0.45  
SOLDERABLE  
EXPOSED  
PAD  
2.45  
2.55  
2.49  
0.30-0.50  
0.42±0.18  
(4X)  
0°-12°  
0.50  
C
2.45  
2.55  
SEATING  
PLANE  
NOTES:  
1.  
HATCH IS SOLDERABLE EXPOSED METAL.  
2. REFERENCE JEDEC#: MO-220  
3. PACKAGE WEIGHT: 0.042g  
4. ALL DIMENSIONS ARE IN MM [MIN/MAX]  
5. PACKAGE CODE  
PART #  
DESCRIPTION  
LF24A  
LY24A  
STANDARD  
LEAD FREE  
51-85203 *A  
Important Note For information on the preferred dimensions for mounting QFN packages, see the following Application Note at  
http://www.amkor.com/products/notes_papers/MLFAppNote.pdf.  
It is important to note that pinned vias for thermal conduction are not required for the low power 24, 32, and 48-pin QFN PSoC devices.  
Document Number: 38-12022 Rev. *H  
Page 34 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Thermal Impedances  
Table 37. Thermal Impedances per Package  
Package  
Typical θJA *  
8 SOIC  
186 oC/W  
125 oC/W  
46 °C/W  
117 oC/W  
40 oC/W  
16 SOIC  
16 QFN  
20 SSOP  
24 MLF**  
* T = T + POWER x θJA  
J
A
**To achieve the thermal impedance specified for the QFN package, the center thermal  
pad must be soldered to the PCB ground plane.  
Solder Reflow Peak Temperature  
Table 38 lists the minimum solder reflow peak temperature to achieve good solderability.  
Table 38. Solder Reflow Peak Temperature  
Package  
Minimum Peak Temperature*  
240oC  
Maximum Peak Temperature  
260oC  
8 SOIC  
16 SOIC  
16 QFN  
20 SSOP  
24 MLF  
240oC  
240oC  
240oC  
240oC  
260oC  
260oC  
260oC  
260oC  
o
*Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220+/-5 C with Sn-Pb or  
o
245+/-5 C with Sn-Ag-Cu paste. Refer to the solder manufacturer specifications.  
Document Number: 38-12022 Rev. *H  
Page 35 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Ordering Information  
The following table lists the CY8C21x23 PSoC device’s key package features and ordering codes.  
Table 39. CY8C21x23 PSoC Device Key Features and Ordering Information  
Switch  
Mode  
Pump  
Digital  
PSoC  
Blocks  
Flash  
(Bytes)  
RAM  
(Bytes)  
Temperature  
Range  
Analog Digital IO Analog Analog  
XRES  
Pin  
Package  
Ordering Code  
Blocks  
Pins  
Inputs Outputs  
8-Pin (150-Mil) SOIC  
CY8C21123-24SXI  
CY8C21123-24SXIT  
4K  
4K  
256  
256  
No  
No  
-40°C to +85°C  
-40°C to +85°C  
4
4
4
4
6
6
4
4
0
0
No  
No  
8-Pin (150-Mil) SOIC  
(Tape and Reel)  
16-Pin (150-Mil) SOIC  
CY8C21223-24SXI  
CY8C21223-24SXIT  
4K  
4K  
256  
256  
Yes  
Yes  
-40°C to +85°C  
-40°C to +85°C  
4
4
4
4
12  
12  
8
8
0
0
No  
No  
16-Pin (150-Mil) SOIC  
(Tape and Reel)  
16-Pin (3x3) QFN  
CY8C21223-LGXI  
4K  
4K  
4K  
256  
256  
256  
Yes  
No  
No  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
4
4
4
4
4
4
12  
16  
16  
8
8
8
0
0
0
No  
Yes  
Yes  
20-Pin (210-Mil) SSOP CY8C21323-24PVXI  
20-Pin (210-Mil) SSOP CY8C21323-24PVXIT  
(Tape and Reel)  
24-Pin (4x4) QFN  
CY8C21323-24LFXI  
CY8C21323-24LFXIT  
4K  
4K  
256  
256  
Yes  
Yes  
-40°C to +85°C  
-40°C to +85°C  
4
4
4
4
16  
16  
8
8
0
0
Yes  
Yes  
24-Pin (4x4) QFN  
(Tape and Reel)  
Ordering Code Definitions  
CY 8 C 21 xxx-24xx  
Package Type:  
Thermal Rating:  
PX = PDIP Pb-Free  
SX = SOIC Pb-Free  
PVX = SSOP Pb-Free  
LFX = QFN Pb-Free  
AX = TQFP Pb-Free  
C = Commercial  
I = Industrial  
E = Extended  
Speed: 24 MHz  
Part Number  
Family Code  
Technology Code: C = CMOS  
Marketing Code: 8 = Cypress Semiconductor  
Company ID: CY = Cypress  
Document Number: 38-12022 Rev. *H  
Page 36 of 37  
[+] Feedback  
CY8C21123, CY8C21223, CY8C21323  
Document History Page  
Document Title: CY8C21123/CY8C21223/CY8C21323 PSoC® Mixed Signal Array  
Document Number:38-12022  
Orig. of Submission  
Revision  
**  
ECN  
Description of Change  
New silicon and document (Revision **).  
Change  
Date  
See ECN  
See ECN  
See ECN  
133248  
208900  
212081  
227321  
235973  
NWJ  
*A  
*B  
*C  
*D  
NWJ  
NWJ  
Add new part, new package and update all ordering codes to Pb-free.  
Expand and prepare Preliminary version.  
CMS Team See ECN  
Update specs., data, format.  
SFV  
See ECN  
Updated Overview and Electrical Spec. chapters, along with 24-pin pinout. Added  
CMP_GO_EN register (1,64h) to mapping table.  
*E  
290991  
HMT  
See ECN  
Update data sheet standards per SFV memo. Fix device table. Add part numbers  
to pinouts and fine tune. Change 20-pin SSOP to CY8C21323. Add Reflow Temp.  
table. Update diagrams and specs.  
*F  
301636  
324073  
HMT  
HMT  
See ECN  
See ECN  
DC Chip-Level Specification changes. Update links to new CY.com Portal.  
*G  
Obtained clearer 16 SOIC package. Update Thermal Impedances and Solder  
Reflow tables. Re-add pinout ISSP notation. Fix ADC type-o. Fix TMP register  
names. Update Electrical Specifications. Add CY logo. Update CY copyright.  
Make data sheet Final.  
*H  
2588457 KET/HMI/ 10/22/2008  
AESA  
New package information on page 9. Converted data sheet to new template.  
Added 16-Pin OFN package diagram.  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at cypress.com/sales.  
Products  
PSoC  
PSoC Solutions  
General  
psoc.cypress.com  
clocks.cypress.com  
wireless.cypress.com  
memory.cypress.com  
image.cypress.com  
psoc.cypress.com/solutions  
psoc.cypress.com/low-power  
psoc.cypress.com/precision-analog  
psoc.cypress.com/lcd-drive  
psoc.cypress.com/can  
Clocks & Buffers  
Wireless  
Low Power/Low Voltage  
Precision Analog  
LCD Drive  
Memories  
Image Sensors  
CAN 2.0b  
USB  
psoc.cypress.com/usb  
© Cypress Semiconductor Corporation, 2004-2008. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 38-12022 Rev. *H  
Revised October 22, 2008  
Page 37 of 37  
PSoC Designer™, Programmable System-on-Chip™, and PSoC Express™ are trademarks and PSoC® is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered  
trademarks referenced herein are property of the respective corporations.  
Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I2C Patent Rights to use these components in an I2C system, provided  
that the system conforms to the I2C Standard Specification as defined by Philips.  
[+] Feedback  

相关型号:

CY8C21323-24PVXIT

PSoC Programmable System-on-Chip
CYPRESS

CY8C21323_06

PSoC㈢ Mixed-Signal Array
CYPRESS

CY8C21323_08

PSoC® Mixed Signal Array
CYPRESS

CY8C21334

PSoC Mixed-Signal Array
CYPRESS

CY8C21334-12PVXE

Multifunction Peripheral, CMOS, PDSO20, SSOP-20
CYPRESS

CY8C21334-24AX

PSoC Mixed-Signal Array
CYPRESS

CY8C21334-24C

PSoC Mixed-Signal Array
CYPRESS

CY8C21334-24E

PSoC Mixed-Signal Array
CYPRESS

CY8C21334-24I

PSoC Mixed-Signal Array
CYPRESS

CY8C21334-24LFX

PSoC Mixed-Signal Array
CYPRESS

CY8C21334-24PVX

PSoC Mixed-Signal Array
CYPRESS

CY8C21334-24PVXA

Automotive PSoC? Programmable System-on-Chip?
CYPRESS