CY8C21634B-24LTXI [CYPRESS]

Multifunction Peripheral, CMOS, 5 X 5 MM 1.00 MM HEIGHT, LEAD FREE, MO-220, QFN-32;
CY8C21634B-24LTXI
型号: CY8C21634B-24LTXI
厂家: CYPRESS    CYPRESS
描述:

Multifunction Peripheral, CMOS, 5 X 5 MM 1.00 MM HEIGHT, LEAD FREE, MO-220, QFN-32

文件: 总47页 (文件大小:1307K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
PSoC® Programmable System-on-Chip™  
SmartSense™ Auto-Tuning user module:  
SmartSense Auto-Tuning is easy to use and provides robust  
noise immunity.  
SmartSense tunes your CapSense system automatically at  
power up and monitors the system in real time to maintain  
optimum performance.  
SmartSense significantly reduces design cycle time by  
eliminating the tuning process from prototype to mass  
production.  
Features  
Powerful Harvard-architecture processor  
M8C processor speeds up to 24 MHz  
Low power at high speed  
Operating voltage: 2.4 V to 5.25 V  
Operating voltages down to 1.0 V using on-chip switch mode  
pump (SMP)  
Industrial temperature range: –40 °C to +85 °C  
Advanced peripherals (PSoC® blocks)  
Four analog Type E PSoC blocks provide:  
• Two comparators with digital-to-analog converter (DAC)  
references  
SmartSense allows maximum production flexibility by  
compensating for variations caused by using multiple  
manufacturing sites and vendors.  
Versatile analog mux  
Common internal analog bus  
• Single or dual 10-bit 28 channel analog-to-digital  
converters (ADC)  
Simultaneous connection of I/O combinations  
Capacitive sensing application capability  
Four digital PSoC blocks provide:  
• 8- to 32-bit timers, counters, and pulse width modulators  
(PWMs)  
• Cyclical redundancy check (CRC) and pseudo random  
sequence (PRS) modules  
Additional system resources  
I2C master, slave, and multi-master to 400 kHz  
Watchdog and sleep timers  
User-configurable low-voltage detection (LVD)  
Integrated supervisory circuit  
On-chip precision voltage reference  
• Full-duplex universal asynchronous receiver transmitter  
(UART), serial peripheral interface (SPI) master or slave  
• Connectable to all general purpose I/O (GPIO) pins  
Complex peripherals by combining blocks  
Logic Block Diagram  
Flexible on-chip memory  
8 KB flash program storage 50,000 erase/write cycles  
512 bytes static random access memory (SRAM) data  
storage  
In-system serial programming (ISSP)  
Partial flash updates  
Flexible protection modes  
EEPROM emulation in flash  
Complete development tools  
Free development software  
(PSoC Designer™)  
Full-featured, in-circuit emulator (ICE) and programmer  
Full-speed emulation  
Complex breakpoint structure  
128-KB trace memory  
Precision, programmable clocking  
Internal ±2.5% 24- / 48-MHz main oscillator  
Internal oscillator for watchdog and sleep  
Programmable pin configurations  
25-mA sink, 10-mA source on all GPIOs  
Pull-up, pull-down, high Z, strong, or open-drain drive modes  
on all GPIOs  
Up to eight analog inputs on GPIOs  
Configurable interrupt on all GPIOs  
Cypress Semiconductor Corporation  
Document Number: 001-67345 Rev. *A  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised May 13, 2011  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
Contents  
Features............................................................................. 1  
Logic Block Diagram........................................................ 1  
Contents............................................................................ 2  
PSoC Functional Overview.............................................. 3  
The PSoC Core........................................................... 3  
The Digital System ...................................................... 3  
The Analog System..................................................... 4  
Additional System Resources ..................................... 4  
PSoC Device Characteristics ...................................... 5  
Getting Started.................................................................. 5  
Application Notes ........................................................ 5  
Development Kits ........................................................ 5  
Training ....................................................................... 5  
CYPros Consultants.................................................... 5  
Solutions Library.......................................................... 5  
Technical Support ....................................................... 5  
Development Tools .......................................................... 6  
PSoC Designer Software Subsystems........................ 6  
Designing with PSoC Designer....................................... 7  
Select User Modules ................................................... 7  
Configure User Modules.............................................. 7  
Organize and Connect ................................................ 7  
Generate, Verify, and Debug....................................... 7  
SmartSense................................................................. 7  
Pin Information ................................................................. 8  
16-Pin Part Pinout ....................................................... 8  
20-Pin Part Pinout ....................................................... 9  
28-Pin Part Pinout ..................................................... 10  
32-Pin Part Pinout ..................................................... 11  
56-Pin Part Pinout ..................................................... 13  
Register Reference......................................................... 15  
Register Conventions................................................ 15  
Register Mapping Tables .......................................... 15  
Electrical Specifications ................................................ 18  
Absolute Maximum Ratings....................................... 18  
Operating Temperature............................................. 19  
DC Electrical Characteristics..................................... 19  
AC Electrical Characteristics..................................... 25  
Packaging Information................................................... 33  
Thermal Impedances................................................. 36  
Solder Reflow Peak Temperature ............................. 36  
Development Tool Selection ......................................... 37  
Software .................................................................... 37  
Development Kits ...................................................... 37  
Evaluation Tools........................................................ 37  
Device Programmers................................................. 38  
Accessories (Emulation and Programming).............. 38  
Ordering Information...................................................... 39  
Ordering Code Definitions......................................... 40  
Acronyms........................................................................ 41  
Reference Documents.................................................... 41  
Document Conventions ................................................. 42  
Units of Measure ....................................................... 42  
Numeric Conventions................................................ 42  
Glossary .......................................................................... 42  
Document History Page................................................. 47  
.......................................................................................... 47  
Sales, Solutions, and Legal Information ...................... 47  
Worldwide Sales and Design Support....................... 47  
Products.................................................................... 47  
PSoC Solutions......................................................... 47  
Document Number: 001-67345 Rev. *A  
Page 2 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
PSoC Functional Overview  
The PSoC family consists of many devices with on-chip  
controllers. These devices are designed to replace multiple  
traditional MCU-based system components with one low-cost  
single-chip programmable component. A PSoC device includes  
configurable blocks of analog and digital logic, and  
programmable interconnect. This architecture makes it possible  
for you to create customized peripheral configurations, to match  
the requirements of each individual application. Additionally, a  
fast central processing unit (CPU), flash program memory,  
SRAM data memory, and configurable I/O are included in a  
range of convenient pinouts.  
The Digital System  
The digital system consists of four digital PSoC blocks. Each  
block is an 8-bit resource that is used alone or combined with  
other blocks to form 8-, 16-, 24-, and 32-bit peripherals, which  
are called user modules. Digital peripheral configurations  
include:  
PWMs (8- to 32-bit)  
PWMs with dead band (8- to 32-bit)  
Counters (8- to 32-bit)  
The PSoC architecture, shown in Figure 1, consists of four main  
areas: the core, the system resources, the digital system, and  
the analog system. Configurable global bus resources allow  
combining all of the device resources into a complete custom  
system. Each CY8C21x34B PSoC device includes four digital  
blocks and four analog blocks. Depending on the PSoC  
package, up to 28 GPIOs are also included. The GPIOs provide  
access to the global digital and analog interconnects.  
Timers (8- to 32-bit)  
UART 8- with selectable parity  
Serial peripheral interface (SPI) master and slave  
I2C slave and multi-master  
CRC/generator (8-bit)  
IrDA  
The PSoC Core  
PRS generators (8-bit to 32-bit)  
The PSoC core is a powerful engine that supports a rich  
instruction set. It encompasses SRAM for data storage, an  
interrupt controller, sleep and watchdog timers, and internal main  
oscillator (IMO) and internal low speed oscillator (ILO). The CPU  
core, called the M8C, is a powerful processor with speeds up to  
24 MHz. The M8C is a four-million instructions per second  
(MIPS) 8-bit Harvard-architecture microprocessor.  
The digital blocks are connected to any GPIO through a series  
of global buses that can route any signal to any pin. The buses  
also allow for signal multiplexing and for performing logic  
operations. This configurability frees your designs from the  
constraints of a fixed peripheral controller.  
Digital blocks are provided in rows of four, where the number of  
blocks varies by PSoC device family. This allows the optimum  
choice of system resources for your application. Family  
resources are shown in Table 1 on page 5.  
System resources provide these additional capabilities:  
Digital clocks for increased flexibility  
I2C functionality to implement an I2C master and slave  
Figure 1. Digital System Block Diagram  
An internal voltage reference, multi-master, that provides an  
absolute value of 1.3 V to a number of PSoC subsystems  
Port 3  
Port 1  
Port 2  
Port 0  
A SMP that generates normal operating voltages from a single  
battery cell  
Digital Clocks  
From Core  
To Analog  
System  
To System Bus  
Various system resets supported by the M8C  
The digital system consists of an array of digital PSoC blocks that  
may be configured into any number of digital peripherals. The  
digital blocks are connected to the GPIOs through a series of  
global buses. These buses can route any signal to any pin,  
freeing designs from the constraints of a fixed peripheral  
controller.  
DIGITAL SYSTEM  
Digital PSoC Block Array  
Row 0  
4
4
The analog system consists of four analog PSoC blocks,  
supporting comparators, and analog-to-digital conversion up to  
10 bits of precision.  
DBB00  
DBB01 DCB02 DCB03  
8
8
8
8
GIE[7:0]  
GIO[7:0]  
GOE[7:0]  
GOO[7:0]  
Global Digital  
Interconnect  
Document Number: 001-67345 Rev. *A  
Page 3 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
The Analog Multiplexer System  
The Analog System  
The analog mux bus can connect to every GPIO pin. Pins may  
be connected to the bus individually or in any combination. The  
bus also connects to the analog system for analysis with  
comparators and analog-to-digital converters. An additional 8:1  
analog input multiplexer provides a second path to bring Port 0  
pins to the analog array.  
The analog system consists of four configurable blocks that allow  
for the creation of complex analog signal flows. Analog  
peripherals are very flexible and can be customized to support  
specific application requirements. Some of the common PSoC  
analog functions for this device (most available as user modules)  
are:  
Switch-control logic enables selected pins to precharge  
continuously under hardware control. This enables capacitive  
measurement for applications such as touch sensing. Other  
multiplexer applications include:  
ADCs (single or dual, with 8-bit or 10-bit resolution)  
Pin-to-pin comparator  
Single-ended comparators (up to two) with absolute (1.3 V)  
reference or 8-bit DAC reference  
Track pad, finger sensing  
1.3-V reference (as a system resource)  
Chip-wide mux that allows analog input from any I/O pin  
Crosspoint connection between any I/O pin combinations  
In most PSoC devices, analog blocks are provided in columns of  
three, which includes one continuous time (CT) and two switched  
capacitor (SC) blocks. The CY8C21x34B devices provide limited  
functionality Type E analog blocks. Each column contains one  
CT Type E block and one SC Type E block. Refer to the PSoC  
Technical Reference Manual for detailed information on the  
CY8C21x34B’s Type E analog blocks.  
Additional System Resources  
System resources, some of which are listed in the previous  
sections, provide additional capability useful to complete  
systems. Additional resources include a switch-mode pump,  
low-voltage detection, and power-on-reset (POR).  
Figure 2. Analog System Block Diagram  
Digital clock dividers provide three customizable clock  
frequencies for use in applications. The clocks may be routed  
to both the digital and analog systems. Additional clocks can  
be generated using digital PSoC blocks as clock dividers.  
Array Input  
The I2C module provides 100- and 400-kHz communication  
over two wires. Slave, master, and multi-master modes are all  
supported.  
Configuration  
LVD interrupts can signal the application of falling voltage  
levels, while the advanced POR circuit eliminates the need for  
a system supervisor.  
ACI0[1:0]  
ACI1[1:0]  
An internal 1.3-V reference provides an absolute reference for  
the analog system, including ADCs and DACs.  
All I/O  
X
X
An integrated switch-mode pump generates normal operating  
voltages from a single 1.2-V battery cell, providing a low cost  
boost converter.  
ACOL1MUX  
X
X
Analog Mux Bus  
Versatile analog multiplexer system.  
X
Array  
ACE00  
ACE01  
ASE11  
ASE10  
Document Number: 001-67345 Rev. *A  
Page 4 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
PSoC Device Characteristics  
Depending on your PSoC device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks and 12, 6, or 4  
analog blocks. Table 1 lists the resources available for specific PSoC device groups. The PSoC device covered by this datasheet is  
highlighted in Table 1.  
Table 1. PSoC Device Characteristics  
PSoC Part  
Number  
Digital  
I/O  
Digital  
Rows  
Digital  
Blocks  
Analog  
Inputs  
Analog  
Analog  
Analog  
SRAM  
Size  
Flash  
Size  
SmartSense  
Enabled  
Outputs Columns Blocks  
CY8C29x66  
CY8C28xxx  
up to 64  
up to 44  
4
16  
up to 12  
up to 44  
4
4
12  
2 K  
1 K  
32 K  
16 K  
up to 3  
up to 12  
up to 4  
up to 6  
up to  
12 + 4  
[1]  
CY8C27x43  
CY8C24x94  
CY8C24x23A  
CY8C23x33  
CY8C22x45  
CY8C21x45  
CY8C21x34  
CY8C21x34B  
CY8C21x23  
CY8C20x34  
CY8C20xx6A  
up to 44  
up to 56  
up to 24  
up to 26  
up to 38  
up to 24  
up to 28  
up to 28  
up to 16  
up to 28  
up to 36  
2
1
1
1
2
1
1
1
1
0
0
8
4
4
4
8
4
4
4
4
0
0
up to 12  
up to 48  
up to 12  
up to 12  
up to 38  
up to 24  
up to 28  
up to 28  
4
2
2
2
0
0
0
0
0
0
0
4
2
2
2
4
4
2
2
2
0
0
12  
6
256  
1 K  
256  
256  
1 K  
512  
512  
512  
256  
512  
16 K  
16 K  
4 K  
Y
Y
6
4
8 K  
[1]  
6
16 K  
8 K  
[1]  
6
[1]  
4
8 K  
[1]  
4
8 K  
[1]  
up to  
8
4
4 K  
[1,2]  
up to 28  
up to 36  
3
8 K  
[1,2]  
3
up to  
2 K  
up to  
32 K  
Getting Started  
For in-depth information, along with detailed programming  
CYPros Consultants  
details, see the PSoC® Technical Reference Manual.  
Certified PSoC consultants offer everything from technical  
assistance to completed PSoC designs. To contact or become a  
PSoC consultant go to the CYPros Consultants web site.  
For up-to-date ordering, packaging, and electrical specification  
information, see the latest PSoC device datasheets on the web.  
Application Notes  
Solutions Library  
Cypress application notes are an excellent introduction to the  
wide variety of possible PSoC designs.  
Visit our growing library of solution focused designs. Here you  
can find various application designs that include firmware and  
hardware design files that enable you to complete your designs  
quickly.  
Development Kits  
PSoC Development Kits are available online from and through a  
growing number of regional and global distributors, which  
include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and  
Newark.  
Technical Support  
Technical support – including a searchable Knowledge Base  
articles and technical forums – is also available online. If you  
cannot find an answer to your question, call our Technical  
Support hotline at 1-800-541-4736.  
Training  
Free PSoC technical training (on demand, webinars, and  
workshops), which is available online via www.cypress.com,  
covers a wide variety of topics and skill levels to assist you in  
your designs.  
Notes  
1. Limited analog functionality.  
®
2. Two analog blocks and one CapSense .  
Document Number: 001-67345 Rev. *A  
Page 5 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
Development Tools  
PSoC Designer™ is the revolutionary integrated design  
Code Generation Tools  
environment (IDE) that you can use to customize PSoC to meet  
your specific application requirements. PSoC Designer software  
accelerates system design and time to market. Develop your  
applications using a library of precharacterized analog and digital  
peripherals (called user modules) in a drag-and-drop design  
environment. Then, customize your design by leveraging the  
dynamically generated application programming interface (API)  
libraries of code. Finally, debug and test your designs with the  
integrated debug environment, including in-circuit emulation and  
standard software debug features. PSoC Designer includes:  
The code generation tools work seamlessly within the  
PSoC Designer interface and have been tested with a full range  
of debugging tools. You can develop your design in C, assembly,  
or a combination of the two.  
Assemblers. The assemblers allow you to merge assembly  
code seamlessly with C code. Link libraries automatically use  
absolute addressing or are compiled in relative mode, and are  
linked with other software modules to get absolute addressing.  
C Language Compilers. C language compilers are available  
that support the PSoC family of devices. The products allow you  
to create complete C programs for the PSoC family devices. The  
optimizing C compilers provide all of the features of C, tailored  
to the PSoC architecture. They come complete with embedded  
libraries providing port and bus operations, standard keypad and  
display support, and extended math functionality.  
Application editor graphical user interface (GUI) for device and  
user module configuration and dynamic reconfiguration  
Extensive user module catalog  
Integrated source-code editor (C and assembly)  
Free C compiler with no size restrictions or time limits  
Built-in debugger  
Debugger  
PSoC Designer has a debug environment that provides  
hardware in-circuit emulation, allowing you to test the program in  
a physical system while providing an internal view of the PSoC  
device. Debugger commands allow you to read and program and  
read and write data memory, and read and write I/O registers.  
You can read and write CPU registers, set and clear breakpoints,  
and provide program run, halt, and step control. The debugger  
also allows you to create a trace buffer of registers and memory  
locations of interest.  
In-circuit emulation  
Built-in support for communication interfaces:  
2
Hardware and software I C slaves and masters  
Full-speed USB 2.0  
Up to four full-duplex universal asynchronous  
receiver/transmitters (UARTs), SPI master and slave, and  
wireless  
PSoC Designer supports the entire library of PSoC 1 devices and  
runs on Windows XP, Windows Vista, and Windows 7.  
Online Help System  
The online help system displays online, context-sensitive help.  
Designed for procedural and quick reference, each functional  
subsystem has its own context-sensitive help. This system also  
provides tutorials and links to FAQs and an online support Forum  
to aid the designer.  
PSoC Designer Software Subsystems  
Design Entry  
In the chip-level view, choose a base device to work with. Then  
select different onboard analog and digital components that use  
the PSoC blocks, which are called user modules. Examples of  
user modules are ADCs, DACs, amplifiers, and filters. Configure  
the user modules for your chosen application and connect them  
to each other and to the proper pins. Then generate your project.  
This prepopulates your project with APIs and libraries that you  
can use to program your application.  
In-Circuit Emulator  
A low-cost, high-functionality in-circuit emulator (ICE) is  
available for development support. This hardware can program  
single devices.  
The emulator consists of a base unit that connects to the PC  
using a USB port. The base unit is universal and operates with  
all PSoC devices. Emulation pods for each device family are  
available separately. The emulation pod takes the place of the  
PSoC device in the target board and performs full-speed  
(24 MHz) operation.  
The tool also supports easy development of multiple configura-  
tions and dynamic reconfiguration. Dynamic reconfiguration  
makes it possible to change configurations at run time. In  
essence, this allows you to use more than 100 percent of PSoC's  
resources for an application.  
Document Number: 001-67345 Rev. *A  
Page 6 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
Designing with PSoC Designer  
The development process for the PSoC device differs from that  
of a traditional fixed function microprocessor. The configurable  
analog and digital hardware blocks give the PSoC architecture a  
unique flexibility that pays dividends in managing specification  
change during development and by lowering inventory costs.  
These configurable resources, called PSoC Blocks, have the  
ability to implement a wide variety of user-selectable functions.  
The PSoC development process is summarized in four steps:  
Generate, Verify, and Debug  
When you are ready to test the hardware configuration or move  
on to developing code for the project, you perform the “Generate  
Configuration Files” step. This causes PSoC Designer to  
generate source code that automatically configures the device to  
your specification and provides the software for the system. The  
generated code provides application programming interfaces  
(APIs) with high-level functions to control and respond to  
hardware events at run-time and interrupt service routines that  
you can adapt as needed.  
1. Select User Modules.  
2. Configure User Modules.  
3. Organize and Connect.  
4. Generate, Verify, and Debug.  
A complete code development environment allows you to  
develop and customize your applications in either C, assembly  
language, or both.  
The last step in the development process takes place inside  
PSoC Designer’s debugger (access by clicking the Connect  
icon). PSoC Designer downloads the HEX image to the ICE  
where it runs at full speed. PSoC Designer debugging  
capabilities rival those of systems costing many times more. In  
addition to traditional single-step, run-to-breakpoint, and  
watch-variable features, the debug interface provides a large  
trace buffer and allows you to define complex breakpoint events.  
These include monitoring address and data bus values, memory  
locations, and external signals.  
Select User Modules  
PSoC Designer provides a library of prebuilt, pretested hardware  
peripheral components called “user modules.” User modules  
make selecting and implementing peripheral devices, both  
analog and digital, simple.  
Configure User Modules  
Each user module that you select establishes the basic register  
settings that implement the selected function. They also provide  
parameters and properties that allow you to tailor their precise  
configuration to your particular application. For example, a PWM  
User Module configures one or more digital PSoC blocks, one  
for each 8 bits of resolution. The user module parameters permit  
you to establish the pulse width and duty cycle. Configure the  
parameters and properties to correspond to your chosen  
application. Enter values directly or by selecting values from  
drop-down menus. All the user modules are documented in  
datasheets that may be viewed directly in PSoC Designer or on  
the Cypress website. These user module datasheets explain the  
internal operation of the user module and provide performance  
specifications. Each datasheet describes the use of each user  
module parameter, and other information you may need to  
successfully implement your design.  
SmartSense  
A key differentiation between the current offering of CY8C21x34  
and CY8C21x34B, is the addition of the SmartSense user  
module in the ‘B’ version.  
SmartSense is an innovative solution from Cypress that  
eliminates the manual tuning process from CapSense  
applications. This solution is easy to use and provides robust  
noise immunity. It is the only auto-tuning solution that  
establishes, monitors and maintains all required tuning  
parameters. SmartSense allows engineers to go from  
prototyping to mass production without re-tuning for  
manufacturing variations in PCB and/or overlay material  
properties.  
Organize and Connect  
You build signal chains at the chip level by interconnecting user  
modules to each other and the I/O pins. You perform the  
selection, configuration, and routing so that you have complete  
control over all on-chip resources.  
Document Number: 001-67345 Rev. *A  
Page 7 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
Pin Information  
The CY8C21x34B PSoC device is available in a variety of packages which are listed in the following tables. Every port pin (labeled  
with a “P”) is capable of Digital I/O and connection to the common analog bus. However, V , V , SMP, and XRES are not capable  
SS DD  
of Digital I/O.  
16-Pin Part Pinout  
Figure 3. CY8C21234B 16-Pin PSoC Device  
A, I, M, P0[7]  
A, I, M, P0[5]  
A, I, M, P0[3]  
A, I, M, P0[1]  
SMP  
VDD  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
P0[6], A, I, M  
P0[4], A, I, M  
P0[2], A, I, M  
P0[0], A, I, M  
P1[4], EXTCLK, M  
P1[2], M  
SOIC  
VSS  
M, I2C SCL, P1[1]  
VSS  
P1[0], I2C SDA, M  
Table 2. Pin Definitions – CY8C21234B 16-Pin (SOIC)  
Type  
Pin No.  
Name  
Description  
Digital  
I/O  
Analog  
I, M  
1
P0[7]  
Analog column mux input  
Analog column mux input  
2
I/O  
I, M  
I, M  
I, M  
P0[5]  
P0[3]  
P0[1]  
SMP  
3
I/O  
Analog column mux input, integrating input  
Analog column mux input, integrating input  
Switch-mode pump (SMP) connection to required external components  
Ground connection  
4
I/O  
5
Power  
Power  
I/O  
6
V
SS  
2
[3]  
7
M
P1[1]  
I C serial clock (SCL), ISSP-SCLK  
8
Power  
I/O  
V
Ground connection  
SS  
2
[3]  
9
M
P1[0]  
P1[2]  
P1[4]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
I C serial data (SDA), ISSP-SDATA  
10  
11  
12  
13  
14  
15  
16  
I/O  
M
I/O  
M
Optional external clock input (EXTCLK)  
Analog column mux input  
Analog column mux input  
Analog column mux input  
Analog column mux input  
Supply voltage  
I/O  
I, M  
I, M  
I, M  
I, M  
I/O  
I/O  
I/O  
Power  
V
DD  
LEGEND A = Analog, I = Input, O = Output, and M = Analog Mux Input.  
Note  
3. These are the ISSP pins, which are not High Z at POR. See the PSoC Technical Reference Manual for details.  
Document Number: 001-67345 Rev. *A  
Page 8 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
20-Pin Part Pinout  
Figure 4. CY8C21334B 20-Pin PSoC Device  
A, I, M, P0[7]  
A, I, M, P0[5]  
A, I, M, P0[3]  
A, I, M, P0[1]  
VSS  
VDD  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
P0[6], A, I, M  
P0[4], A, I, M  
P0[2], A, I, M  
P0[0], A, I, M  
XRES  
3
4
5
SSOP  
M, I2C SCL, P1[7]  
M, I2C SDA, P1[5]  
M, P1[3]  
6
P1[6], M  
7
P1[4], EXTCLK, M  
P1[2], M  
8
M, I2C SCL, P1[1]  
VSS  
9
P1[0], I2C SDA, M  
10  
Table 3. Pin Definitions – CY8C21334B 20-Pin (SSOP)  
Type  
Pin No.  
Name  
Description  
Digital  
I/O  
Analog  
I, M  
1
P0[7]  
P0[5]  
P0[3]  
P0[1]  
Analog column mux input  
Analog column mux input  
2
I/O  
I, M  
I, M  
I, M  
3
I/O  
Analog column mux input, integrating input  
Analog column mux input, integrating input  
Ground connection  
4
I/O  
5
Power  
I/O  
V
SS  
2
6
M
M
M
M
P1[7]  
P1[5]  
P1[3]  
P1[1]  
I C SCL  
2
7
I/O  
I C SDA  
8
I/O  
2
[4]  
9
I/O  
I C SCL, ISSP-SCLK  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Power  
I/O  
V
Ground connection.  
SS  
2
[4]  
M
M
M
M
P1[0]  
P1[2]  
P1[4]  
P1[6]  
XRES  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
I C SDA, ISSP-SDATA  
I/O  
I/O  
Optional external clock input (EXTCLK)  
I/O  
Input  
I/O  
Active high external reset with internal pull-down  
Analog column mux input  
Analog column mux input  
Analog column mux input  
Analog column mux input  
Supply voltage  
I, M  
I, M  
I, M  
I, M  
I/O  
I/O  
I/O  
Power  
V
DD  
LEGEND A = Analog, I = Input, O = Output, and M = Analog Mux Input.  
Note  
4. These are the ISSP pins, which are not High Z at POR. See the PSoC Technical Reference Manual for details.  
Document Number: 001-67345 Rev. *A  
Page 9 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
28-Pin Part Pinout  
Figure 5. CY8C21534B 28-Pin PSoC Device  
A, I, M, P0[7]  
A, I, M, P0[5]  
A, I, M, P0[3]  
A, I, M, P0[1]  
M, P2[7]  
VDD  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
P0[6], A, I, M  
P0[4], A, I, M  
P0[2], A, I, M  
P0[0], A, I, M  
P2[6], M  
3
4
5
M, P2[5]  
6
M, P2[3]  
P2[4], M  
7
SSOP  
M, P2[1]  
P2[2], M  
8
VSS  
P2[0], M  
9
M, I2C SCL, P1[7]  
M, I2C SDA, P1[5]  
M, P1[3]  
XRES  
10  
11  
12  
13  
14  
P1[6], M  
P1[4], EXTCLK, M  
P1[2], M  
M, I2C SCL, P1[1]  
VSS  
P1[0], I2C SDA, M  
Table 4. Pin Definitions – CY8C21534B 28-Pin (SSOP)  
Type  
Pin No.  
Name  
Description  
Digital  
I/O  
Analog  
I, M  
1
2
3
4
5
6
7
8
9
P0[7]  
Analog column mux input  
I/O  
I, M  
I, M  
I, M  
M
P0[5]  
P0[3]  
P0[1]  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
Analog column mux input and column output  
I/O  
Analog column mux input and column output, integrating input  
Analog column mux input, integrating input  
I/O  
I/O  
I/O  
M
I/O  
I, M  
I, M  
Direct switched capacitor block input  
Direct switched capacitor block input  
Ground connection  
I/O  
Power  
I/O  
V
SS  
2
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
M
M
M
M
P1[7]  
P1[5]  
P1[3]  
P1[1]  
I C SCL  
2
I/O  
I C SDA  
I/O  
2
[5]  
I/O  
I C SCL, ISSP-SCLK  
Power  
I/O  
V
Ground connection  
SS  
2
[5]  
M
M
M
M
P1[0]  
P1[2]  
P1[4]  
P1[6]  
XRES  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
I C SDA, ISSP-SDATA  
I/O  
I/O  
Optional external clock input (EXTCLK)  
I/O  
Input  
I/O  
Active high external reset with internal pull-down  
Direct switched capacitor block input  
I, M  
I, M  
M
I/O  
Direct switched capacitor block input  
I/O  
I/O  
M
I/O  
I, M  
I, M  
I, M  
I, M  
Analog column mux input  
Analog column mux input  
Analog column mux input  
Analog column mux input  
Supply voltage  
I/O  
I/O  
I/O  
Power  
V
DD  
LEGEND A: Analog, I: Input, O = Output, and M = Analog Mux Input.  
Note  
5. These are the ISSP pins, which are not high Z at POR. See the PSoC Technical Reference Manual for details.  
Document Number: 001-67345 Rev. *A  
Page 10 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
32-Pin Part Pinout  
Figure 6. CY8C21434B 32-Pin PSoC Device  
Figure 7. CY8C21634B 32-Pin PSoC Device  
Figure 8. CY8C21434B 32-Pin Sawn PSoC Device Sawn  
Figure 9. CY8C21634B 32-Pin Sawn PSoC Device  
A, I, M, P0[1]  
M, P2[7]  
M, P2[5]  
M, P2[3]  
M, P2[1]  
M, P3[3]  
1
2
3
4
5
6
7
8
P0[0], A, I, M  
A, I, M, P0[1]  
24  
1
2
3
4
5
6
7
8
P0[0], A, I, M  
24  
M, P2[7]  
M, P2[5]  
M, P2[3]  
M, P2[1]  
SMP  
23 P2[6], M  
22 P2[4], M  
P2[2], M  
21  
23 P2[6], M  
22 P2[4], M  
P2[2], M  
21  
QFN  
(Top View)  
QFN  
(Top View)  
20 P2[0], M  
20 P2[0], M  
P3[2], M  
19  
P3[2], M  
19  
M, P3[1]  
M, I2C SCL, P1[7]  
Vss  
18 P3[0], M  
17 XRES  
18 P3[0], M  
17 XRES  
M, I2C SCL, P1[7]  
Document Number: 001-67345 Rev. *A  
Page 11 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
[6]  
Table 5. Pin Definitions - CY8C21434B/CY8C21634B 32-Pin (QFN)  
Type  
Analog  
I, M  
Pin No.  
Name  
P0[1]  
Description  
Analog column mux input, integrating input  
Digital  
I/O  
1
2
I/O  
M
M
M
M
M
P2[7]  
P2[5]  
P2[3]  
P2[1]  
P3[3]  
SMP  
P3[1]  
3
I/O  
4
I/O  
5
I/O  
6
I/O  
In CY8C21434B part  
6
Power  
I/O  
SMP connection to required external components in CY8C21634B part  
In CY8C21434B part  
7
M
7
Power  
I/O  
V
Ground connection in CY8C21634B part  
SS  
2
8
M
M
M
M
P1[7]  
P1[5]  
P1[3]  
P1[1]  
I C SCL  
2
9
I/O  
I C SDA  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
I/O  
2
[7]  
I/O  
I C SCL, ISSP-SCLK  
Power  
I/O  
V
Ground connection  
SS  
2
[7]  
M
M
M
M
P1[0]  
P1[2]  
P1[4]  
P1[6]  
XRES  
P3[0]  
P3[2]  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
I C SDA, ISSP-SDATA  
I/O  
I/O  
Optional external clock input (EXTCLK)  
I/O  
Input  
I/O  
Active high external reset with internal pull-down  
M
I/O  
M
I/O  
M
I/O  
M
I/O  
M
I/O  
M
I/O  
I, M  
I, M  
I, M  
I, M  
Analog column mux input  
Analog column mux input  
Analog column mux input  
Analog column mux input  
Supply voltage  
I/O  
I/O  
I/O  
Power  
I/O  
V
DD  
I, M  
I, M  
I, M  
P0[7]  
P0[5]  
P0[3]  
Analog column mux input  
Analog column mux input  
Analog column mux input, integrating input  
Ground connection  
I/O  
I/O  
Power  
V
SS  
LEGEND A = Analog, I = Input, O = Output, and M = Analog Mux Input.  
Notes  
6. The center pad on the QFN package must be connected to ground (VSS) for best mechanical, thermal, and electrical performance. If not connected to ground,  
it must be electrically floated and not connected to any other signal.  
7. These are the ISSP pins, which are not high Z at POR. See the PSoC Technical Reference Manual for details.  
Document Number: 001-67345 Rev. *A  
Page 12 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
56-Pin Part Pinout  
The 56-Pin SSOP part is for the CY8C21001 on-chip debug (OCD) PSoC device.  
Note This part is only used for in-circuit debugging. It is NOT available for production.  
Figure 10. CY8C21001 56-Pin PSoC Device  
Vss  
56  
55  
Vdd  
1
2
AI, P0[7]  
AI, P0[5]  
AI, P0[3]  
P0[6], AI  
P0[4], AI  
P0[2], AI  
3
4
5
6
54  
53  
AI, P0[1]  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
NC  
P0[0], AI  
P2[6]  
52  
51  
P2[4]  
P2[2]  
P2[0]  
NC  
7
8
9
50  
49  
48  
10  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
NC  
NC  
NC  
NC  
11  
12  
13  
P3[2]  
P3[0]  
CCLK  
HCLK  
XRES  
NC  
OCDE  
OCDO  
SMP  
14  
SSOP  
15  
16  
17  
Vss  
Vss  
NC  
NC  
NC  
18  
19  
20  
P3[3]  
P3[1]  
NC  
NC  
NC  
21  
22  
23  
NC  
P1[6]  
I2C SCL, P1[7]  
P1[4], EXTCLK  
P1[2]  
I2C SDA, P1[5]  
24  
25  
33  
32  
NC  
P1[3]  
P1[0], I2C  
NC  
SDA, SDATA  
26  
27  
28  
31  
30  
SCLK, I2C SCL, P1[1]  
Vss  
NC  
29  
Table 6. Pin Definitions – CY8C21001 56-Pin (SSOP)  
Type  
Pin No.  
Pin Name  
Description  
Digital  
Power  
Analog  
1
V
Ground connection  
SS  
2
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
I
I
I
P0[7]  
Analog column mux input  
3
P0[5]  
P0[3]  
P0[1]  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
NC  
Analog column mux input and column output  
Analog column mux input and column output  
Analog column mux input  
4
5
6
7
8
I
I
Direct switched capacitor block input  
Direct switched capacitor block input  
No connection  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
NC  
No connection  
NC  
No connection  
NC  
No connection  
OCD  
OCD  
Power  
Power  
Power  
I/O  
OCDE  
OCDO  
SMP  
OCD even data I/O  
OCD odd data output  
SMP connection to required external components  
Ground connection  
V
V
SS  
Ground connection  
SS  
P3[3]  
Document Number: 001-67345 Rev. *A  
Page 13 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
Table 6. Pin Definitions – CY8C21001 56-Pin (SSOP) (continued)  
Type  
Pin No.  
20  
Pin Name  
Description  
Digital  
Analog  
I/O  
P3[1]  
NC  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
No connection  
No connection  
NC  
2
I/O  
I/O  
P1[7]  
P1[5]  
NC  
I C SCL  
2
I C SDA  
No connection  
I/O  
I/O  
P1[3]  
P1[1]  
I
FMTEST  
2
[8]  
I C SCL, ISSP-SCLK  
Ground connection  
No connection  
Power  
V
SS  
NC  
NC  
No connection  
2
[8]  
I/O  
I/O  
I/O  
I/O  
P1[0]  
P1[2]  
P1[4]  
P1[6]  
NC  
I C SDA, ISSP-SDATA  
V
FMTEST  
Optional external clock input (EXTCLK)  
No connection  
NC  
No connection  
NC  
No connection  
NC  
No connection  
NC  
No connection  
NC  
No connection  
Input  
OCD  
OCD  
I/O  
XRES  
HCLK  
CCLK  
P3[0]  
P3[2]  
NC  
Active high external reset with internal pull-down  
OCD high-speed clock output  
OCD CPU clock output  
I/O  
No connection  
No connection  
NC  
I/O  
I
I
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
I/O  
I/O  
I/O  
I/O  
I
I
I
I
Analog column mux input  
I/O  
Analog column mux input and column output  
Analog column mux input and column output  
Analog column mux input  
I/O  
I/O  
Power  
V
Supply voltage  
DD  
LEGEND: A = Analog, I = Input, O = Output, and OCD = On-Chip Debug.  
Note  
8. These are the ISSP pins, which are not High Z at POR. See the PSoC Technical Reference Manual for details.  
Document Number: 001-67345 Rev. *A  
Page 14 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
Register Reference  
This chapter lists the registers of the CY8C21x34B PSoC device. For detailed register information, see the PSoC Technical Reference  
Manual.  
Register Conventions  
The register conventions specific to this section are listed in Table 7.  
Table 7. Register Conventions  
Convention  
Description  
Read register or bit(s)  
R
W
L
Write register or bit(s)  
Logical register or bit(s)  
Clearable register or bit(s)  
Access is bit specific  
C
#
Register Mapping Tables  
The PSoC device has a total register address space of 512 bytes. The register space is referred to as I/O space and is divided into  
two banks, Bank 0 and Bank 1. The XOI bit in the Flag register (CPU_F) determines which bank the user is currently in. When the  
XOI bit is set to 1, the user is in Bank 1.  
Note In the following register mapping tables, blank fields are reserved and must not be accessed.  
Document Number: 001-67345 Rev. *A  
Page 15 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
Table 8. Register Map 0 Table: User Space  
Name  
PRT0DR  
Addr (0,Hex) Access  
Name  
Addr (0,Hex) Access  
40  
Name  
ASE10CR0  
Addr (0,Hex) Access  
Name  
Addr (0,Hex) Access  
C0  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
RW  
PRT0IE  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
PRT0GS  
PRT0DM2  
PRT1DR  
PRT1IE  
ASE11CR0  
RW  
PRT1GS  
PRT1DM2  
PRT2DR  
PRT2IE  
PRT2GS  
PRT2DM2  
PRT3DR  
PRT3IE  
PRT3GS  
PRT3DM2  
CUR_PP  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
RW  
RW  
STK_PP  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
IDX_PP  
RW  
RW  
RW  
RW  
#
MVR_PP  
MVW_PP  
I2C_CFG  
I2C_SCR  
I2C_DR  
RW  
#
I2C_MSCR  
INT_CLR0  
INT_CLR1  
RW  
RW  
INT_CLR3  
INT_MSK3  
RW  
RW  
DBB00DR0  
DBB00DR1  
DBB00DR2  
DBB00CR0  
DBB01DR0  
DBB01DR1  
DBB01DR2  
DBB01CR0  
DCB02DR0  
DCB02DR1  
DCB02DR2  
DCB02CR0  
DCB03DR0  
DCB03DR1  
DCB03DR2  
DCB03CR0  
#
AMX_IN  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
RW  
RW  
RW  
INT_MSK0  
INT_MSK1  
INT_VC  
RW  
RW  
RC  
W
W
RW  
#
AMUXCFG  
PWM_CR  
RES_WDT  
#
CMP_CR0  
CMP_CR1  
#
W
RW  
#
RW  
DEC_CR0  
DEC_CR1  
RW  
RW  
#
ADC0_CR  
ADC1_CR  
#
#
W
RW  
#
#
TMP_DR0  
TMP_DR1  
TMP_DR2  
TMP_DR3  
RW  
RW  
RW  
RW  
W
RW  
#
RDI0RI  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RDI0SYN  
RDI0IS  
ACE00CR1  
ACE00CR2  
RW  
RW  
RDI0LT0  
RDI0LT1  
RDI0RO0  
RDI0RO1  
ACE01CR1  
ACE01CR2  
RW  
RW  
CPU_F  
RL  
DAC_D  
RW  
#
CPU_SCR1  
CPU_SCR0  
#
Blank fields are reserved and must not be accessed.  
# Access is bit specific.  
Document Number: 001-67345 Rev. *A  
Page 16 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
Table 9. Register Map 1 Table: Configuration Space  
Name  
PRT0DM0  
Addr (1,Hex) Access  
Name  
Addr (1,Hex) Access  
Name  
ASE10CR0  
Addr (1,Hex) Access  
Name  
Addr (1,Hex) Access  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
RW  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
PRT0DM1  
PRT0IC0  
PRT0IC1  
PRT1DM0  
PRT1DM1  
PRT1IC0  
PRT1IC1  
PRT2DM0  
PRT2DM1  
PRT2IC0  
PRT2IC1  
PRT3DM0  
PRT3DM1  
PRT3IC0  
PRT3IC1  
ASE11CR0  
RW  
GDI_O_IN  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
RW  
RW  
RW  
RW  
GDI_E_IN  
GDI_O_OU  
GDI_E_OU  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
MUX_CR0  
MUX_CR1  
MUX_CR2  
MUX_CR3  
RW  
RW  
RW  
RW  
OSC_GO_EN  
OSC_CR4  
OSC_CR3  
OSC_CR0  
OSC_CR1  
OSC_CR2  
VLT_CR  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
DBB00FN  
DBB00IN  
DBB00OU  
RW  
RW  
RW  
CLK_CR0  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
RW  
RW  
RW  
RW  
RW  
CLK_CR1  
ABF_CR0  
AMD_CR0  
CMP_GO_EN  
DBB01FN  
DBB01IN  
DBB01OU  
RW  
RW  
RW  
VLT_CMP  
ADC0_TR  
ADC1_TR  
RW  
RW  
AMD_CR1  
ALT_CR0  
RW  
RW  
DCB02FN  
DCB02IN  
DCB02OU  
RW  
RW  
RW  
IMO_TR  
ILO_TR  
BDG_TR  
ECO_TR  
W
W
RW  
W
CLK_CR3  
TMP_DR0  
TMP_DR1  
TMP_DR2  
TMP_DR3  
RW  
RW  
RW  
RW  
RW  
DCB03FN  
DCB03IN  
DCB03OU  
RW  
RW  
RW  
RDI0RI  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RDI0SYN  
RDI0IS  
ACE00CR1  
ACE00CR2  
RW  
RW  
RDI0LT0  
RDI0LT1  
RDI0RO0  
RDI0RO1  
ACE01CR1  
ACE01CR2  
RW  
RW  
CPU_F  
RL  
FLS_PR1  
RW  
DAC_CR  
RW  
#
CPU_SCR1  
CPU_SCR0  
#
Blank fields are reserved and must not be accessed.  
# Access is bit specific.  
Document Number: 001-67345 Rev. *A  
Page 17 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
Electrical Specifications  
This section presents the DC and AC electrical specifications of the CY8C21x34B PSoC device. For up-to-date electrical specifica-  
tions, visit the Cypress web site at http://www.cypress.com.  
Specifications are valid for –40 °C T 85 °C and T 100 °C as specified, except where noted.  
A
J
Refer to Table 21 on page 25 for the electrical specifications for the IMO using SLIMO mode.  
Figure 14. IMO Frequency Trim Options  
Figure 11. Voltage versus CPU Frequency  
5.25  
4.75  
5.25  
4.75  
SLIMO  
SLIMO  
Mode=1  
Mode=0  
3.60  
3.00  
2.40  
SLIMO  
SLIMO  
Mode=1  
Mode=0  
3.00  
2.40  
SLIMO  
SLIMO  
Mode=1 Mode=1  
93 kHz  
12 MHz  
CPU Frequency  
24 MHz  
3 MHz  
93 kHz  
6 MHz  
12 MHz  
24 MHz  
IMO Frequency  
Absolute Maximum Ratings  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
T
Storage temperature  
–55  
25  
+100  
°C  
Higher storage temperatures  
reduce data retention time.  
Recommended storage  
STG  
temperature is +25 °C ± 25 °C.  
Extended duration storage  
temperatures above 65 °C  
degrade reliability.  
T
Bake temperature  
Bake time  
125  
See  
package  
label  
°C  
BAKETEMP  
BAKETIME  
t
See  
package  
label  
72  
Hours  
T
Ambient temperature with power applied  
–40  
+85  
°C  
V
A
V
V
V
Supply voltage on V relative to V  
SS  
–0.5  
+6.0  
DD  
IO  
DD  
DC input voltage  
V
V
– 0.5  
– 0.5  
V
V
+ 0.5  
+ 0.5  
V
SS  
SS  
DD  
DD  
DC voltage applied to tri-state  
Maximum current into any port pin  
Electrostatic discharge voltage  
Latch-up current  
V
IOZ  
MIO  
I
–25  
+50  
mA  
V
ESD  
LU  
2000  
Human body model ESD.  
200  
mA  
Document Number: 001-67345 Rev. *A  
Page 18 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
Operating Temperature  
Symbol  
Description  
Min  
–40  
–40  
Typ  
Max  
+85  
Units  
°C  
Notes  
T
Ambient temperature  
Junction temperature  
A
T
+100  
°C  
The temperature rise from ambient to  
junction is package specific. SeeTable  
34 on page 36. You must limit the  
power consumption tocomply with this  
requirement.  
J
DC Electrical Characteristics  
DC Chip-Level Specifications  
Table 10 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  
–40 °C T 85 °C, 3.0 V to 3.6 V and –40 °C T 85 °C, or 2.4 V to 3.0 V and –40 °C T 85 °C, respectively. Typical parameters  
A
A
A
are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.  
Table 10. DC Chip-level Specifications  
Symbol  
Description  
Supply voltage  
Min  
2.40  
Typ  
Max  
5.25  
4
Units  
V
Notes  
V
See Table 18 on page 23  
DD  
I
I
I
Supply current, IMO = 24 MHz  
3
mA  
Conditions are V = 5.0 V,  
DD  
T = 25 °C, CPU = 3 MHz,  
48 MHz disabled. VC1 = 1.5 MHz,  
VC2 = 93.75 kHz, VC3 = 0.366 kHz  
DD  
A
Supply current, IMO = 6 MHz using  
SLIMO mode.  
1.2  
1.1  
2
mA  
mA  
Conditions are V = 3.3 V,  
DD  
T = 25 °C, CPU = 3 MHz, clock  
doubler disabled. VC1 = 375 kHz,  
VC2 = 23.4 kHz, VC3 = 0.091 kHz  
DD3  
A
Supply current, IMO = 6 MHz using  
SLIMO mode.  
1.5  
Conditions are V = 2.55 V,  
DD  
T = 25 °C, CPU = 3 MHz, clock  
doubler disabled. VC1 = 375 kHz,  
VC2 = 23.4 kHz, VC3 = 0.091 kHz  
DD27  
A
I
I
Sleep (mode) current with POR, LVD,  
sleep timer, WDT, and internal slow  
oscillator active. Mid temperature range.  
2.6  
2.8  
4
5
µA  
µA  
V
V
= 2.55 V, 0 °C T 40 °C  
SB27  
DD  
A
Sleep (mode) current with POR, LVD,  
Sleep Timer, WDT, and internal slow  
oscillator active.  
= 3.3 V, –40 °C T 85 °C  
SB  
DD  
A
V
V
Reference voltage (Bandgap)  
Reference voltage (Bandgap)  
Analog ground  
1.28  
1.16  
1.30  
1.30  
1.32  
1.33  
V
V
V
Trimmed for appropriate V  
DD  
REF  
DD  
DD  
V
= 3.0 V to 5.25 V  
Trimmed for appropriate V  
= 2.4 V to 3.0 V  
REF27  
V
DD  
AGND  
V
– 0.003  
V
V
+ 0.003  
REF  
REF  
REF  
Document Number: 001-67345 Rev. *A  
Page 19 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
DC General-Purpose I/O Specifications  
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to  
5.25 V and –40 °C T 85 °C, 3.0 V to 3.6 V and –40 °C T 85 °C, or 2.4 V to 3.0 V and –40 °C T 85 °C, respectively.  
A
A
A
Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at 25 °C and are for design guidance only.  
Table 11. 5-V and 3.3-V DC GPIO Specifications  
Symbol  
Description  
Min  
4
Typ  
5.6  
5.6  
Max  
Units  
kΩ  
Notes  
R
Pull-up resistor  
8
8
PU  
PD  
OH  
R
Pull-down resistor  
High output level  
4
kΩ  
V
V
– 1.0  
V
I
= 10 mA, V = 4.75 to 5.25 V  
OH DD  
DD  
(8 total loads, 4 on even port pins (for  
example, P0[2], P1[4]), 4 on odd port  
pins (for example, P0[3], P1[5])  
V
Low output level  
0.75  
V
I
= 25 mA, V = 4.75 to 5.25 V  
OL  
OL DD  
(8 total loads, 4 on even port pins (for  
example, P0[2], P1[4]), 4 on odd port  
pins (for example, P0[3], P1[5]))  
I
I
High level source current  
Low level sink current  
10  
25  
mA  
mA  
V
= V – 1.0 V, see the limitations  
OH DD  
OH  
of the total current in the note for V  
OH  
V
= 0.75 V, see the limitations of the  
OL  
OL  
total current in the note for V  
OL  
V
V
V
Input low level  
2.1  
0.8  
V
V
V
V
= 3.0 to 5.25  
= 3.0 to 5.25  
IL  
IH  
H
DD  
DD  
Input high level  
Input hysteresis  
60  
1
mV  
nA  
pF  
I
Input leakage (absolute value)  
Capacitive load on pins as input  
Gross tested to 1 µA  
IL  
C
3.5  
10  
Package and pin dependent  
Temp = 25 °C  
IN  
C
Capacitive load on pins as output  
3.5  
10  
pF  
Package and pin dependent  
Temp = 25 °C  
OUT  
Table 12. 2.7-V DC GPIO Specifications  
Symbol Description  
Min  
4
Typ  
5.6  
5.6  
Max  
Units  
kΩ  
kΩ  
Notes  
R
Pull-up resistor  
8
8
PU  
PD  
OH  
R
Pull-down resistor  
High output level  
4
V
V
– 0.4  
V
I
= 2.5 mA (6.25 Typ), V = 2.4 to  
OH DD  
3.0 V (16 mA maximum, 50 mA Typ  
combined I budget)  
DD  
OH  
V
Low output level  
0.75  
V
I
= 10 mA, V = 2.4 to 3.0 V (90 mA  
OL  
OL DD  
maximum combined I budget)  
OL  
I
I
High level source current  
Low level sink current  
2.5  
10  
mA  
mA  
V
= V – 0.4 V, see the limitations  
OH DD  
OH  
of the total current in the note for V  
OH  
V
= 0.75 V, see the limitations of the  
OL  
OL  
total current in the note for V  
OL  
V
V
V
Input low level  
2.0  
0.75  
V
V
V
V
= 2.4 to 3.0  
= 2.4 to 3.0  
IL  
IH  
H
DD  
DD  
Input high level  
Input hysteresis  
90  
1
mV  
nA  
pF  
I
Input leakage (absolute value)  
Capacitive load on pins as input  
Gross tested to 1 µA  
IL  
C
3.5  
10  
Package and pin dependent  
Temp = 25 °C  
IN  
C
Capacitive load on pins as output  
3.5  
10  
pF  
Package and pin dependent  
Temp = 25 °C  
OUT  
Document Number: 001-67345 Rev. *A  
Page 20 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
DC Operational Amplifier Specifications  
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to  
5.25 V and –40 °C T 85 °C, 3.0 V to 3.6 V and –40 °C T 85 °C, or 2.4 V to 3.0 V and –40 °C T 85 °C, respectively.  
A
A
A
Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.  
Table 13. 5-V DC Operational Amplifier Specifications  
Symbol  
Description  
Min  
Typ  
2.5  
10  
Max  
15  
Units  
mV  
Notes  
V
Input offset voltage (absolute value)  
Average input offset voltage drift  
OSOA  
TCV  
µV/°C  
pA  
OSOA  
I
I
Input leakage current (Port 0 analog pins 7-to-1)  
Input leakage current (Port 0, Pin 0 analog pin)  
Input capacitance (Port 0 analog pins)  
200  
50  
Gross tested to 1 µA  
Gross tested to 1 µA  
EBOA  
EBOA00  
nA  
C
4.5  
9.5  
pF  
Package and pin dependent.  
Temp = 25 °C  
INOA  
V
Common mode voltage range  
0.0  
V
– 1.0  
DD  
V
CMOA  
G
Open loop gain  
80  
10  
dB  
µA  
OLOA  
I
Amplifier supply current  
30  
SOA  
Table 14. 3.3-V DC Operational Amplifier Specifications  
Symbol  
Description  
Min  
Typ  
2.5  
10  
Max  
15  
Units  
mV  
Notes  
V
Input offset voltage (absolute value)  
Average input offset voltage drift  
OSOA  
TCV  
µV/°C  
pA  
OSOA  
I
I
Input leakage current (Port 0 analog pins)  
Input leakage current (Port 0, Pin 0 analog pin)  
Input capacitance (Port 0 analog pins)  
200  
50  
Gross tested to 1 µA  
Gross tested to 1 µA  
EBOA  
EBOA00  
nA  
C
4.5  
9.5  
pF  
Package and pin dependent.  
Temp = 25 °C  
INOA  
V
Common mode voltage range  
Open loop gain  
0
V
– 1.0  
DD  
V
CMOA  
G
80  
10  
dB  
µA  
OLOA  
I
Amplifier supply current  
30  
SOA  
Table 15. 2.7-V DC Operational Amplifier Specifications  
Symbol  
Description  
Min  
Typ  
2.5  
10  
Max  
15  
Units  
mV  
Notes  
V
Input offset voltage (absolute value)  
Average input offset voltage drift  
OSOA  
TCV  
µV/°C  
pA  
OSOA  
I
I
Input leakage current (Port 0 analog pins)  
Input leakage current (Port 0, Pin 0 analog pin)  
Input capacitance (Port 0 analog pins)  
200  
50  
Gross tested to 1 µA  
Gross tested to 1 µA  
EBOA  
EBOA00  
nA  
C
4.5  
9.5  
pF  
Package and pin dependent.  
Temp = 25 °C  
INOA  
V
Common mode voltage range  
Open loop gain  
0
V
– 1.0  
DD  
V
CMOA  
G
80  
10  
dB  
µA  
OLOA  
I
Amplifier supply current  
30  
SOA  
Document Number: 001-67345 Rev. *A  
Page 21 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
DC Switch Mode Pump Specifications  
Table 16 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  
–40 °C T 85 °C, 3.0 V to 3.6 V and –40 °C T 85 °C, or 2.4 V to 3.0 V and –40 °C T 85 °C, respectively. Typical parameters  
A
A
A
are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.  
Figure 12. Basic Switch Mode Pump Circuit  
D1  
Vdd  
VPUMP  
L1  
SMP  
Vss  
+
C1  
VBAT  
Battery  
PSoC  
Table 16. DC Switch Mode Pump (SMP) Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
V
V
V
5 V output voltage from pump  
4.75  
3.00  
2.45  
5.0  
5.25  
V
V
V
Configured as in Note 9  
PUMP5V  
Average, neglecting ripple  
SMP trip voltage is set to 5.0 V  
3.3 V output voltage from pump  
2.6 V output voltage from pump  
Available output current  
3.25  
2.55  
3.60  
2.80  
Configured as in Note 9  
Average, neglecting ripple.  
SMP trip voltage is set to 3.25 V  
PUMP3V  
PUMP2V  
PUMP  
Configured as in Note 9  
Average, neglecting ripple.  
SMP trip voltage is set to 2.55 V  
I
Configured as in Note 9  
V
V
V
= 1.8 V, V  
= 1.5 V, V  
= 1.3 V, V  
= 5.0 V  
= 3.25 V  
= 2.55 V  
5
8
8
mA  
mA  
mA  
SMP trip voltage is set to 5.0 V  
SMP trip voltage is set to 3.25 V  
SMP trip voltage is set to 2.55 V  
BAT  
BAT  
BAT  
PUMP  
PUMP  
PUMP  
V
V
V
V
Input voltage range from battery  
1.8  
1.0  
1.0  
1.2  
5.0  
3.3  
2.8  
V
V
V
V
Configured as in Note 9  
BAT5V  
SMP trip voltage is set to 5.0 V  
Input voltage range from battery  
Configured as in Note 9  
SMP trip voltage is set to 3.25 V  
BAT3V  
Input voltage range from battery  
Configured as in Note 9  
SMP trip voltage is set to 2.55 V  
BAT2V  
Minimum input voltage from battery to start pump  
Configured as in Note 9  
BATSTART  
0 °C T 100. 1.25 V at  
A
T = –40 °C  
A
ΔV  
ΔV  
Line regulation (over Vi range)  
Load regulation  
5
5
%V  
Configured as in Note 9  
PUMP_Line  
PUMP_Load  
O
V
is the “V Value for PUMP Trip”  
O
DD  
specified by the VM[2:0] setting in  
the DC POR and LVD Specification,  
Table 18 on page 23  
%V  
Configured as in Note 9  
O
V
is the “V Value for PUMP Trip”  
O
DD  
specified by the VM[2:0] setting in  
the DC POR and LVD Specification,  
Table 18 on page 23  
Note  
9. L1 = 2 mH inductor, C1 = 10 mF capacitor, D1 = Schottky diode. See Figure 12.  
Document Number: 001-67345 Rev. *A  
Page 22 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
Table 16. DC Switch Mode Pump (SMP) Specifications (continued)  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
ΔV  
Output voltage ripple (depends on cap/load)  
100  
mVpp Configured as in Note 9  
Load is 5 mA  
PUMP_Ripple  
E
E
Efficiency  
Efficiency  
35  
35  
50  
80  
%
Configured as in Note 9  
Load is 5 mA. SMP trip voltage is set  
to 3.25 V  
3
2
%
For I load = 1mA, V  
= 2.55 V,  
PUMP  
V
= 1.3 V,  
BAT  
10 µH inductor, 1 µF capacitor, and  
Schottky diode  
F
Switching frequency  
Switching duty cycle  
1.3  
50  
MHz  
%
PUMP  
DC  
PUMP  
DC Analog Mux Bus Specifications  
Table 17 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  
–40 °C T 85 °C, 3.0 V to 3.6 V and –40 °C T 85 °C, or 2.4 V to 3.0 V and –40 °C T 85 °C, respectively. Typical parameters  
A
A
A
are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.  
Table 17. DC Analog Mux Bus Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
2.4 V V 2.7 V  
R
R
Switch resistance to common analog bus  
400  
800  
Ω
V
2.7 V  
DD  
SW  
DD  
Resistance of initialization switch to V  
800  
Ω
VDD  
DD  
DC POR and LVD Specifications  
Table 18 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  
–40 °C T 85 °C, 3.0 V to 3.6 V and –40 °C T 85 °C, or 2.4 V to 3.0 V and –40 °C T 85 °C, respectively. Typical parameters  
A
A
A
are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.  
Table 18. DC POR and LVD Specifications  
Symbol  
Description  
value for PPOR trip  
Min  
Typ  
Max  
Units  
Notes  
V
V
must be greater than or equal to  
DD  
DD  
V
V
V
PORLEV[1:0] = 00b  
PORLEV[1:0] = 01b  
PORLEV[1:0] = 10b  
2.36  
2.82  
4.55  
2.40  
2.95  
4.70  
V
V
V
2.5 V during startup, the reset from  
the XRES pin, or reset from  
watchdog  
PPOR0  
PPOR1  
PPOR2  
V
value for LVD trip  
DD  
[10]  
[11]  
V
V
V
V
V
V
V
V
VM[2:0] = 000b  
VM[2:0] = 001b  
VM[2:0] = 010b  
VM[2:0] = 011b  
VM[2:0] = 100b  
VM[2:0] = 101b  
VM[2:0] = 110b  
VM[2:0] = 111b  
2.40  
2.85  
2.95  
3.06  
4.37  
4.50  
4.62  
4.71  
2.45  
2.92  
3.02  
3.13  
4.48  
4.64  
4.73  
4.81  
2.51  
2.99  
V
V
V
V
V
V
V
V
LVD0  
LVD1  
LVD2  
LVD3  
LVD4  
LVD5  
LVD6  
LVD7  
3.09  
3.20  
4.55  
4.75  
4.83  
4.95  
V
value for pump trip  
DD  
[12]  
V
V
V
V
V
V
V
V
VM[2:0] = 000b  
VM[2:0] = 001b  
VM[2:0] = 010b  
VM[2:0] = 011b  
VM[2:0] = 100b  
VM[2:0] = 101b  
VM[2:0] = 110b  
VM[2:0] = 111b  
2.45  
2.96  
3.03  
3.18  
4.54  
4.62  
4.71  
4.89  
2.55  
3.02  
3.10  
3.25  
4.64  
4.73  
4.82  
5.00  
2.62  
V
V
V
V
V
V
V
V
PUMP0  
PUMP1  
PUMP2  
PUMP3  
PUMP4  
PUMP5  
PUMP6  
PUMP7  
3.09  
3.16  
[13]  
3.32  
4.74  
4.83  
4.92  
5.12  
Notes  
10. Always greater than 50 mV above VPPOR (PORLEV = 00) for falling supply.  
11. Always greater than 50 mV above VPPOR (PORLEV = 01) for falling supply.  
12. Always greater than 50 mV above VLVD0  
13. Always greater than 50 mV above VLVD3  
.
.
Document Number: 001-67345 Rev. *A  
Page 23 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
DC Programming Specifications  
Table 19 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  
–40 °C T 85 °C, 3.0 V to 3.6 V and –40 °C T 85 °C, or 2.4 V to 3.0 V and –40 °C T 85 °C, respectively. Typical parameters  
A
A
A
are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.  
Table 19. DC Programming Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
V
V
V
V
V
for programming and erase  
4.5  
5
5.5  
V
This specification applies to the  
functional requirements of external  
programmer tools  
DDP  
DD  
Low V for verify  
2.4  
5.1  
2.7  
2.5  
5.2  
2.6  
5.3  
V
V
V
This specification applies to the  
functional requirements of external  
programmer tools  
DDLV  
DDHV  
DD  
High V for verify  
This specification applies to the  
functional requirements of external  
programmer tools  
DD  
Supply voltage for flash write operation  
5.25  
This specification applies to this  
device when it is executing internal  
flash writes  
DDIWRITE  
I
Supply current during programming or verify  
Input low voltage during programming or verify  
5
25  
0.8  
mA  
V
DDP  
V
V
ILP  
Input high voltage during programming or  
verify  
2.2  
V
IHP  
I
I
Input current when applying V to P1[0] or  
0.2  
1.5  
mA  
mA  
V
Driving internal pull-down resistor  
Driving internal pull-down resistor  
ILP  
IHP  
ILP  
P1[1] during programming or verify  
Input current when applying V  
to P1[0] or  
IHP  
P1[1] during programming or verify  
V
V
Output low voltage during programming or  
verify  
V
+ 0.75  
OLV  
SS  
Output high voltage during programming or  
verify  
V
– 1.0  
V
V
OHV  
DD  
DD  
[14]  
Flash  
Flash  
Flash  
Flash endurance (per block)  
50,000  
Erase/write cycles per block  
Erase/write cycles  
ENPB  
ENT  
DR  
[15]  
Flash endurance (total)  
1,800,000  
10  
Flash data retention  
Years  
DC I2C Specifications  
Table 20 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  
–40 °C T 85 °C, 3.0 V to 3.6 V and –40 °C T 85 °C, or 2.4 V to 3.0 V and –40 °C T 85 °C, respectively. Typical parameters  
A
A
A
are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.  
[16]  
Table 20. DC I2C Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
V
V
Input low level  
Input high level  
0.3 × V  
V
V
V
2.4 V V 3.6 V  
ILI2C  
DD  
DD  
0.25 × V  
4.75 V V 5.25 V  
DD  
DD  
0.7 × V  
2.4 V V 5.25 V  
IHI2C  
DD  
DD  
Notes  
14. The 50,000 cycle flash endurance per block is only guaranteed if the flash is operating within one voltage range. Voltage ranges are 2.4 V to 3.0 V, 3.0 V to 3.6 V,  
and 4.75 V to 5.25 V.  
15. A maximum of 36 × 50,000 block endurance cycles is allowed. This may be balanced between operations on 36 × 1 blocks of 50,000 maximum cycles each, 36×2  
blocks of 25,000 maximum cycles each, or 36 × 4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36 × 50,000 and ensure that no  
single block ever sees more than 50,000 cycles). For the full industrial range, you must employ a temperature sensor user module (FlashTemp) and feed the result  
to the temperature argument before writing. Refer to the Flash APIs application note AN2015 (Design Aids - Reading and Writing PSoC® Flash) for more information.  
16. All GPIO meet the DC GPIO VIL and VIH specifications found in the DC GPIO Specifications sections. The I2C GPIO pins also meet the above specs.  
Document Number: 001-67345 Rev. *A  
Page 24 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
AC Electrical Characteristics  
AC Chip-Level Specifications  
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to  
5.25 V and –40 °C T 85 °C, 3.0 V to 3.6 V and –40 °C T 85 °C, or 2.4 V to 3.0 V and –40 °C T 85 °C, respectively.  
A
A
A
Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.  
Table 21. 5-V and 3.3-V AC Chip-Level Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
[17,18]  
F
F
F
IMO frequency for 24 MHz  
23.4  
24  
24.6  
MHz Trimmed for 5 V or 3.3 V  
operation using factory trim  
values. See Figure 14 on  
IMO24  
page 18. SLIMO mode = 0  
[17,18]  
[17]  
IMO frequency for 6 MHz  
5.5  
6
6.5  
MHz Trimmed for 5 V or 3.3 V  
operation using factory trim  
values. See Figure 14 on  
IMO6  
CPU1  
page 18. SLIMO mode = 1  
CPU frequency (5 V nominal)  
CPU frequency (3.3 V nominal)  
0.091  
24  
24.6  
MHz 24 MHz only for  
SLIMO mode = 0  
[18]  
F
F
0.091  
0
12  
48  
12.3  
MHz SLIMO mode = 0  
CPU2  
BLK5  
0
[17,19]  
Digital PSoC block frequency (5 V nominal)  
49.2  
MHz Refer to AC Digital Block  
Specifications on page 28  
[19]  
F
F
F
Digital PSoC block frequency (3.3 V nominal)  
ILO frequency  
0
15  
5
24  
32  
24.6  
MHz  
kHz  
BLK33  
32K1  
64  
ILO untrimmed frequency  
100  
kHz  
After a reset and before the  
M8C starts to run, the ILO is  
not trimmed. See the system  
resets section of the PSoC  
Technical Reference Manual  
for details on this timing  
32K_U  
t
External reset pulse width  
24 MHz duty cycle  
10  
40  
50  
60  
80  
μs  
%
XRST  
DC24M  
DC  
ILO duty cycle  
20  
50  
%
ILO  
Step24M  
Fout48M  
24 MHz trim step size  
48 MHz output frequency  
50  
kHz  
[17,18]  
46.8  
48.0  
49.2  
MHz Trimmed. Using factory trim  
values  
F
Maximum frequency of signal on row input or  
row output.  
12.3  
250  
100  
MHz  
MAX  
SR  
Power supply slew rate  
V/ms  
ms  
V
slew rate during  
POWER_UP  
POWERUP  
DD  
power-up  
t
Time from end of POR to CPU executing code  
16  
Power-up from 0 V. See the  
System Resets section of the  
PSoC Technical Reference  
Manual  
[20]  
t
24-MHz IMO cycle-to-cycle jitter (RMS)  
200  
300  
700  
900  
ps  
ps  
jit_IMO  
24-MHz IMO long term N cycle-to-cycle jitter  
N = 32  
[20]  
(RMS)  
[20]  
24-MHz IMO period jitter (RMS)  
100  
400  
ps  
Notes  
17. 4.75 V < VDD < 5.25 V.  
18. 3.0 V < VDD < 3.6 V. See application note AN2012 “Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation” for information on trimming for operation  
at 3.3 V.  
19. See the individual user module datasheets for information on maximum frequencies for user modules.  
20. Refer to Cypress Jitter Specifications Application Note AN5054 “Understanding Datasheet Jitter Specifications for Cypress Timing Products” at  
www.cypress.com under Application Notes for more information.  
Document Number: 001-67345 Rev. *A  
Page 25 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
Table 22. 2.7-V AC Chip-Level Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
0
[21,22]  
F
F
IMO frequency for 12 MHz  
11.5  
12  
12.7  
MHz Trimmed for 2.7 V operation  
using factory trim values. See  
Figure 14 on page 18. SLIMO  
mode = 1  
IMO12  
[21,22]  
IMO frequency for 6 MHz  
5.5  
6
6.5  
MHz Trimmed for 2.7 V operation  
using factory trim values. See  
Figure 14 on page 18. SLIMO  
mode = 1  
IMO6  
[21]  
F
F
CPU frequency (2.7 V nominal)  
0.093  
0
3
3.15  
MHz 12 MHz only for  
SLIMO mode = 0  
CPU1  
[21,22]  
Digital PSoC block frequency (2.7 V nominal)  
12  
12.5  
MHz Refer to AC Digital Block  
Specifications on page 28  
BLK27  
F
F
ILO frequency  
8
5
32  
96  
kHz  
32K1  
ILO untrimmed frequency  
100  
kHz  
After a reset and before the  
M8C starts to run, the ILO is  
not trimmed. See the System  
Resets section of the PSoC  
Technical Reference Manual  
for details on this timing  
32K_U  
t
External reset pulse width  
IILO duty cycle  
10  
20  
50  
µs  
%
XRST  
DC  
80  
ILO  
F
Maximum frequency of signal on row input or  
row output.  
12.3  
MHz  
MAX  
SR  
Power supply slew rate  
250  
100  
V/ms  
ms  
V
slew rate during  
POWER_UP  
DD  
power-up  
t
Time from end of POR to CPU executing code  
16  
Power-up from 0 V. See the  
System Resets section of the  
PSoC Technical Reference  
Manual.  
POWERUP  
[23]  
t
12 MHz IMO cycle-to-cycle jitter (RMS)  
400  
600  
1000  
1300  
ps  
ps  
jit_IMO  
12 MHz IMO long term N cycle-to-cycle jitter  
N = 32  
[23]  
(RMS)  
[23]  
12 MHz IMO period jitter (RMS)  
100  
500  
ps  
Note  
21. 2.4 V < VDD < 3.0 V.  
22. See Application Note AN2012 “Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation” available at http://www.cypress.com for information on  
maximum frequency for user modules.  
23. Refer to Cypress Jitter Specifications Application Note AN5054 “Understanding Datasheet Jitter Specifications for Cypress Timing Products” at  
www.cypress.com under Application Notes for more information.  
Document Number: 001-67345 Rev. *A  
Page 26 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
AC General Purpose I/O Specifications  
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to  
5.25 V and –40 °C T 85 °C, 3.0 V to 3.6 V and –40 °C T 85 °C, or 2.4 V to 3.0 V and –40 °C T 85 °C, respectively.  
A
A
A
Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.  
Table 23. 5-V and 3.3-V AC GPIO Specifications  
Symbol  
Description  
GPIO operating frequency  
Min  
0
Typ  
Max  
12  
18  
18  
Units  
Notes  
F
MHz Normal strong mode  
GPIO  
TRiseF  
TFallF  
TRiseS  
TFallS  
Rise time, normal strong mode, Cload = 50 pF  
Fall time, normal strong mode, Cload = 50 pF  
Rise time, slow strong mode, Cload = 50 pF  
Fall time, slow strong mode, Cload = 50 pF  
3
ns  
ns  
ns  
ns  
V
V
V
V
= 4.5 to 5.25 V, 10% to 90%  
= 4.5 to 5.25 V, 10% to 90%  
= 3 to 5.25 V, 10% to 90%  
= 3 to 5.25 V, 10% to 90%  
DD  
DD  
DD  
DD  
2
7
27  
22  
7
Table 24. 2.7 V AC GPIO Specifications  
Symbol  
Description  
GPIO operating frequency  
Min  
0
Typ  
Max  
3
Units  
Notes  
F
MHz Normal strong mode  
GPIO  
TRiseF  
TFallF  
TRiseS  
TFallS  
Rise time, normal strong mode, Cload = 50 pF  
Fall time, normal strong mode, Cload = 50 pF  
Rise time, slow strong mode, Cload = 50 pF  
Fall time, slow strong mode, Cload = 50 pF  
6
50  
ns  
ns  
ns  
ns  
V
V
V
V
= 2.4 to 3.0 V, 10% to 90%  
= 2.4 to 3.0 V, 10% to 90%  
= 2.4 to 3.0 V, 10% to 90%  
= 2.4 to 3.0 V, 10% to 90%  
DD  
DD  
DD  
DD  
6
50  
18  
18  
40  
40  
120  
120  
Figure 13. GPIO Timing Diagram  
90%  
GPIO  
Pin  
Output  
Voltage  
10%  
TRiseF  
TRiseS  
TFallF  
TFallS  
AC Operational Amplifier Specifications  
Table 25 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  
–40 °C T 85 °C, 3.0 V to 3.6 V and –40 °C T 85 °C, or 2.4 V to 3.0 V and –40 °C T 85 °C, respectively. Typical parameters  
A
A
A
are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.  
Table 25. AC Operational Amplifier Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
2.4 V < V < 3.0 V  
T
Comparator mode response time, 50 mV  
overdrive  
100  
200  
ns  
ns  
V
3.0 V  
DD  
COMP  
CC  
Document Number: 001-67345 Rev. *A  
Page 27 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
AC Digital Block Specifications  
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to  
5.25 V and –40 °C T 85 °C, 3.0 V to 3.6 V and –40 °C T 85 °C, or 2.4 V to 3.0 V and –40 °C T 85 °C, respectively.  
A
A
A
Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.  
Table 26. 5-V and 3.3-V AC Digital Block Specifications  
Function  
Description  
Min  
Typ  
Max  
Unit  
Notes  
All functions Block input clock frequency  
V
V
4.75 V  
49.2  
24.6  
MHz  
MHz  
DD  
< 4.75 V  
DD  
Timer  
Input clock frequency  
No capture, V 4.75 V  
49.2  
24.6  
24.6  
MHz  
MHz  
MHz  
ns  
DD  
No capture, V < 4.75 V  
DD  
With capture  
[24]  
Capture pulse width  
Input clock frequency  
50  
Counter  
Dead Band  
No enable input, V 4.75 V  
49.2  
24.6  
24.6  
MHz  
MHz  
MHz  
ns  
DD  
No enable input, V < 4.75 V  
DD  
With enable input  
Enable input pulse width  
Kill pulse width  
[24]  
50  
Asynchronous restart mode  
Synchronous restart mode  
Disable mode  
20  
ns  
ns  
ns  
[24]  
50  
50  
[24]  
Input clock frequency  
V
4.75 V  
49.2  
24.6  
MHz  
MHz  
DD  
V
< 4.75 V  
DD  
CRCPRS  
(PRS  
Input clock frequency  
V
V
4.75 V  
49.2  
24.6  
24.6  
MHz  
MHz  
MHz  
DD  
DD  
Mode)  
< 4.75 V  
CRCPRS  
(CRC  
Mode)  
Input clock frequency  
SPIM  
Input clock frequency  
8.2  
MHz  
The SPI serial clock (SCLK) frequency is equal to  
the input clock frequency divided by 2.  
SPIS  
Input clock (SCLK) frequency  
4.1  
MHz  
ns  
The input clock is the SPI SCLK in SPIS mode.  
[24]  
Width of SS_negated between  
transmissions  
50  
Transmitter  
Receiver  
Input clock frequency  
The baud rate is equal to the input clock frequency  
divided by 8.  
V
V
V
4.75 V, 2 stop bits  
4.75 V, 1 stop bit  
< 4.75 V  
49.2  
24.6  
24.6  
MHz  
MHz  
MHz  
DD  
DD  
DD  
Input clock frequency  
The baud rate is equal to the input clock frequency  
divided by 8.  
V
V
V
4.75 V, 2 stop bits  
49.2  
24.6  
24.6  
MHz  
MHz  
MHz  
DD  
DD  
DD  
4.75 V, 1 stop bit  
< 4.75 V  
Note  
24. 50 ns minimum input pulse width is based on the input synchronizers running at 24 MHz (42 ns nominal period).  
Document Number: 001-67345 Rev. *A  
Page 28 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
Table 27. 2.7-V AC Digital Block Specifications  
Function  
Description  
Min  
Typ  
Max  
Units  
Notes  
All  
functions  
Block input clock frequency  
12.7  
MHz  
2.4 V < V < 3.0 V  
DD  
[25]  
Timer  
Capture pulse width  
100  
ns  
Input clock frequency, with or without capture  
Enable input pulse width  
Input clock frequency, no enable input  
Input clock frequency, enable input  
Kill pulse width:  
100  
12.7  
MHz  
ns  
Counter  
12.7  
12.7  
MHz  
MHz  
Dead Band  
Asynchronous restart mode  
Synchronous restart mode  
Disable mode  
20  
100  
100  
ns  
ns  
ns  
Input clock frequency  
12.7  
12.7  
MHz  
MHz  
CRCPRS  
(PRS Mode)  
Input clock frequency  
CRCPRS  
Input clock frequency  
Input clock frequency  
12.7  
6.35  
MHz  
MHz  
(CRC Mode)  
SPIM  
The SPI serial clock (SCLK)  
frequency is equal to the input  
clock frequency divided by 2.  
SPIS  
Input clock (SCLK) frequency  
Width of SS_ Negated between transmissions  
Input clock frequency  
100  
4.1  
MHz  
ns  
Transmitter  
Receiver  
12.7  
MHz  
The baud rate is equal to the input  
clock frequency divided by 8.  
Input clock frequency  
12.7  
MHz  
The baud rate is equal to the input  
clock frequency divided by 8.  
AC External Clock Specifications  
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to  
5.25 V and –40 °C T 85 °C, or 3.0 V to 3.6 V and –40 °C T 85 °C, respectively. Typical parameters are measured at 5 V,  
A
A
3.3 V, or 2.7 V at 25 °C and are for design guidance only.  
Table 28. 5-V AC External Clock Specifications  
Symbol  
Description  
Min  
Typ  
Max  
24.6  
5300  
Units  
MHz  
ns  
Notes  
F
Frequency  
High period  
Low period  
0.093  
20.6  
20.6  
150  
OSCEXT  
ns  
Power-up IMO to switch  
µs  
Note  
25. 100 ns minimum input pulse width is based on the input synchronizers running at 12 MHz (84 ns nominal period).  
Document Number: 001-67345 Rev. *A  
Page 29 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
Table 29. 3.3-V AC External Clock Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
F
F
Frequency with CPU clock divide by 1  
0.093  
12.3  
MHz Maximum CPU frequency is 12 MHz  
at 3.3 V. With the CPU clock divider  
set to 1, the external clock must  
adhere to the maximum frequency  
and duty cycle requirements  
OSCEXT  
Frequency with CPU clock divide by 2 or  
greater  
0.186  
24.6  
MHz If the frequency of the external clock  
is greater than 12 MHz, the CPU clock  
divider must be set to 2 or greater. In  
this case, the CPU clock divider  
ensures that the fifty percent duty  
cycle requirement is met  
OSCEXT  
High period with CPU clock divide by 1  
Low period with CPU clock divide by 1  
Power-up IMO to switch  
41.7  
41.7  
150  
5300  
ns  
ns  
µs  
Table 30. 2.7-V AC External Clock Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
0
F
F
Frequency with CPU clock divide by 1  
0.093  
3.08  
MHz Maximum CPU frequency is 3 MHz at  
2.7 V. With the CPU clock divider set  
to 1, the external clock must adhere to  
the maximum frequency and duty  
cycle requirements  
OSCEXT  
Frequency with CPU clock divide  
by 2 or greater  
0.186  
6.35  
MHz If the frequency of the external clock  
is greater than 3 MHz, the CPU clock  
divider must be set to 2 or greater. In  
this case, the CPU clock divider  
ensures that the fifty percent duty  
cycle requirement is met  
OSCEXT  
High period with CPU clock divide by 1  
Low period with CPU clock divide by 1  
Power-up IMO to switch  
160  
160  
150  
5300  
ns  
ns  
µs  
Document Number: 001-67345 Rev. *A  
Page 30 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
AC Programming Specifications  
Table 31 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  
–40 °C T 85 °C, or 3.0 V to 3.6 V and –40 °C T 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V  
A
A
at 25 °C and are for design guidance only.  
Table 31. AC Programming Specifications  
Symbol  
Description  
Rise time of SCLK  
Fall time of SCLK  
Min  
1
Typ  
Max  
20  
20  
Units  
ns  
Notes  
T
T
T
T
F
T
T
T
T
T
T
RSCLK  
1
ns  
FSCLK  
Data setup time to falling edge of SCLK  
Data hold time from falling edge of SCLK  
Frequency of SCLK  
40  
40  
0
ns  
SSCLK  
ns  
HSCLK  
SCLK  
8
MHz  
ms  
ms  
ns  
Flash erase time (block)  
10  
40  
ERASEB  
WRITE  
Flash block write time  
Data out delay from falling edge of SCLK  
Data out delay from falling edge of SCLK  
Data out delay from falling edge of SCLK  
Flash erase time (Bulk)  
45  
50  
70  
3.6 < V  
DD  
DSCLK  
DSCLK3  
DSCLK2  
ERASEALL  
ns  
3.0 V 3.6  
DD  
ns  
2.4 V 3.0  
DD  
20  
ms  
Erase all blocks and protection  
fields at once  
[26]  
T
T
Flash block erase + flash block write time  
Flash block erase + flash block write time  
100  
200  
ms  
ms  
0 °C Tj 100 °C  
–40 °C Tj 0 °C  
PROGRAM_HOT  
PROGRAM_COLD  
[26]  
2
AC I C Specifications  
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to  
5.25 V and –40 °C T 85 °C, 3.0 V to 3.6 V and –40 °C T 85 °C, or 2.4 V to 3.0 V and –40 °C T 85 °C, respectively.  
A
A
A
Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.  
Table 32. AC Characteristics of the I2C SDA and SCL Pins for VDD 3.0 V  
Standard Mode  
Fast Mode  
Symbol  
Description  
SCL clock frequency  
Units  
Min  
0
Max  
100  
Min  
Max  
400  
F
T
0
kHz  
µs  
SCLI2C  
Hold time (repeated) start condition. After this  
period, the first clock pulse is generated  
4.0  
0.6  
HDSTAI2C  
T
T
T
T
T
T
T
T
Low period of the SCL clock  
High period of the SCL clock  
Setup time for a repeated start condition  
Data hold time  
4.7  
4.0  
4.7  
0
1.3  
0.6  
0.6  
0
µs  
µs  
µs  
µs  
ns  
µs  
µs  
ns  
LOWI2C  
HIGHI2C  
SUSTAI2C  
HDDATI2C  
SUDATI2C  
SUSTOI2C  
BUFI2C  
[27]  
Data setup time  
250  
4.0  
4.7  
100  
Setup time for stop condition  
Bus free time between a stop and start condition  
0.6  
1.3  
0
Pulse width of spikes suppressed by the input  
filter.  
50  
SPI2C  
Notes  
26. For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing.  
Refer to the Flash APIs application note AN2015 (Design Aids - Reading and Writing PSoC® Flash) for more information.  
27. A Fast-Mode I2C-bus device may be used in a Standard-Mode I2C-bus system, but it must meet the requirement TSU;DAT 250 ns. This is automatically the case if  
the device does not stretch the LOW period of the SCL signal. If the device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA  
line Trmax + TSU;DAT = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.  
Document Number: 001-67345 Rev. *A  
Page 31 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
Table 33. 2.7-V AC Characteristics of the I2C SDA and SCL Pins (Fast Mode not Supported)  
Standard Mode  
Fast Mode  
Symbol  
Description  
SCL clock frequency  
Units  
Min  
Max  
100  
Min  
Max  
F
T
0
kHz  
µs  
SCLI2C  
Hold time (repeated) start condition. After this  
period, the first clock pulse is generated.  
4.0  
HDSTAI2C  
T
T
T
T
T
T
T
Low period of the SCL clock  
High period of the SCL clock  
Setup time for a repeated start condition  
Data hold time  
4.7  
4.0  
4.7  
0
µs  
µs  
µs  
µs  
ns  
µs  
µs  
LOWI2C  
HIGHI2C  
SUSTAI2C  
HDDATI2C  
SUDATI2C  
SUSTOI2C  
BUFI2C  
Data setup time  
250  
4.0  
4.7  
Setup time for stop condition  
Bus free time between a stop and start  
condition  
T
Pulse width of spikes are suppressed by the  
input filter.  
ns  
SPI2C  
Figure 14. Definition for Timing for Fast/Standard Mode on the I2C Bus  
I2C_SDA  
I2C_SCL  
TSUDATI2C  
THDSTAI2C  
TSPI2C  
TSUSTAI2C  
TBUFI2C  
THDDATI2C  
THIGHI2C TLOWI2C  
TSUSTOI2C  
P
S
S
Sr  
Repeated START Condition  
STOP Condition  
START Condition  
Document Number: 001-67345 Rev. *A  
Page 32 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
Packaging Information  
This section shows the packaging specifications for the CY8C21x34B PSoC device with the thermal impedances for each package.  
Important Note Emulation tools may require a larger area on the target PCB than the chip's footprint. For a detailed description of  
the emulation tools' dimensions, refer to the emulator pod drawings at http://www.cypress.com.  
Figure 15. 16-Pin (150-Mil) SOIC  
51-85068 *C  
Figure 16. 20-Pin (210-Mil) SSOP  
51-85077 *E  
Document Number: 001-67345 Rev. *A  
Page 33 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
Figure 17. 28-Pin (210-Mil) SSOP  
51-85079 *E  
Figure 18. 32-Pin QFN ( 5 X 5 X 1.0 MM) LT32B (3.5 X 3.5) EPAD (SAWN)  
001-30999 *C  
Document Number: 001-67345 Rev. *A  
Page 34 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
Figure 19. 32-Pin (5 × 5 × 0.4 mm) QFN (Sawn 1.85 × 2.85) EPAD  
0.500  
0.064  
-0.090  
0.25±0.040  
0.10 MIN  
D
P A  
S E D X P E O  
E
A B R E L D S O L  
0.400  
0
0 . 1 8 5 1 ± .  
TOP VIEW  
0.300 MIN  
BOTTOM VIEW  
BARE COOPER  
NOTES:  
1. HATCH AREA IS SOLDERABLE EXPOSED PAD.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
0.064  
0.127  
3. REFERENCE JEDEC #: MO-220  
001-44368 *B  
4. MAXIMUM ALLOWABLE METAL IS 0.0508mm  
5. PACKAGE WEIGHT: 0.029 grams  
Figure 20. 32-Pin Thin Sawn QFN Package  
001-48913 *B  
Important Note For information on the preferred dimensions for mounting QFN packages, see the Application Notes for Surface  
Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages available at http://www.amkor.com.  
Document Number: 001-67345 Rev. *A  
Page 35 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
Figure 21. 56-Pin (300-Mil) SSOP  
51-85062 *D  
Thermal Impedances  
Table 34. Thermal Impedances per Package  
[28]  
Package  
16-Pin SOIC  
Typical θ  
Typical θ  
JC  
JA  
123 °C/W  
117 °C/W  
96 °C/W  
27 °C/W  
22 °C/W  
48 °C/W  
55 °C/W  
41 °C/W  
39 °C/W  
15 °C/W  
12 °C/W  
24 °C/W  
20-Pin SSOP  
28-Pin SSOP  
[29]  
32-Pin QFN  
32-Pin QFN  
5 × 5 mm 0.60 Max  
5 × 5 mm 0.93 Max  
[29]  
56-Pin SSOP  
Solder Reflow Peak Temperature  
Table 35 lists the maximum solder reflow peak temperatures to achieve good solderability. Thermal ramp rate during preheat should  
be 3 °C/s or lower.  
Table 35. Solder Reflow Peak Temperature  
Package  
Maximum Peak Temperature  
Time at Maximum Temperature  
16-Pin SOIC  
260 °C  
260 °C  
260 °C  
260 °C  
260 °C  
20 s  
20 s  
20 s  
20 s  
20 s  
20-Pin SSOP  
28-Pin SSOP  
32-Pin QFN  
56-Pin SSOP  
Notes  
28. TJ = TA + Power × θ  
JA  
29. To achieve the thermal impedance specified for the QFN package, refer to Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF)  
Packages available at http://www.amkor.com.  
30. Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220 ± 5 °C with Sn-Pb or 245 ± 5 °C with Sn-Ag-Cu  
paste. Refer to the solder manufacturer specifications.  
Document Number: 001-67345 Rev. *A  
Page 36 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
Development Tool Selection  
This section presents the development tools available for all  
current PSoC device families including the CY8C21x34B family.  
Evaluation Tools  
All evaluation tools can be purchased from the Cypress Online  
Store.  
Software  
CY3210-MiniProg1  
PSoC Designer™  
The CY3210-MiniProg1 kit allows you to program PSoC devices  
through the MiniProg1 programming unit. The MiniProg is a  
small, compact prototyping programmer that connects to the PC  
through a provided USB 2.0 cable. The kit includes:  
At the core of the PSoC development software suite is  
PSoC Designer, used to generate PSoC firmware applications.  
PSoC Designer is available free of charge at  
http://www.cypress.com and includes a free C compiler.  
MiniProg programming unit  
PSoC Programmer  
MiniEval socket programming and evaluation board  
28-Pin CY8C29466-24PXI PDIP PSoC device sample  
28-Pin CY8C27443-24PXI PDIP PSoC device sample  
PSoC Designer software CD  
Flexible enough to be used on the bench in development, yet  
suitable for factory programming, PSoC Programmer works  
either as a standalone programming application or operates  
directly from PSoC Designer. PSoC Programmer software is  
compatible with both PSoC ICE-Cube In-Circuit Emulator and  
PSoC MiniProg. PSoC programmer is available free of charge at  
http://www.cypress.com.  
Getting Started guide  
USB 2.0 cable  
Development Kits  
All development kits can be purchased from the Cypress Online  
Store.  
CY3210-PSoCEval1  
The CY3210-PSoCEval1 kit features an evaluation board and  
the MiniProg1 programming unit. The evaluation board includes  
an LCD module, potentiometer, LEDs, and plenty of bread-  
boarding space to meet all of your evaluation needs. The kit  
includes:  
CY3215-DK Basic Development Kit  
The CY3215-DK is for prototyping and development with  
PSoC Designer. This kit supports in-circuit emulation, and the  
software interface allows you to run, halt, and single step the  
processor, and view the content of specific memory locations.  
Advance emulation features also supported through PSoC  
Designer. The kit includes:  
Evaluation board with LCD module  
MiniProg programming unit  
Two 28-Pin CY8C29466-24PXI PDIP PSoC device samples  
PSoC Designer software CD  
Getting Started guide  
PSoC Designer software CD  
ICE-Cube in-circuit emulator  
ICE Flex-Pod for CY8C29x66 family  
Cat-5 adapter  
USB 2.0 cable  
Mini-Eval programming board  
110 ~ 240 V power supply, Euro-Plug adapter  
iMAGEcraft C compiler  
CY3214-PSoCEvalUSB  
The CY3214-PSoCEvalUSB evaluation kit features a  
development board for the CY8C24794-24LFXI PSoC device.  
The board includes both USB and capacitive sensing  
development and debugging support. This evaluation board also  
includes an LCD module, potentiometer, LEDs, an enunciator  
and plenty of breadboarding space to meet all of your evaluation  
needs. The kit includes:  
ISSP cable  
USB 2.0 cable and Blue Cat-5 cable  
Two CY8C29466-24PXI 28-PDIP chip samples  
PSoCEvalUSB board  
LCD module  
MIniProg programming unit  
Mini USB cable  
PSoC Designer and example projects CD  
Getting Started guide  
Wire pack  
Document Number: 001-67345 Rev. *A  
Page 37 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
Device Programmers  
All device programmers can be purchased from the Cypress Online Store.  
CY3216 Modular Programmer  
CY3207ISSP In-System Serial Programmer (ISSP)  
The CY3216 Modular Programmer kit features a modular  
programmer and the MiniProg1 programming unit. The modular  
programmer includes three programming module cards and  
supports multiple Cypress products. The kit includes:  
The CY3207ISSP is a production programmer. It includes  
protection circuitry and an industrial case that is more robust than  
the MiniProg in a production-programming environment.  
Note CY3207ISSP needs special software and is not compatible  
with PSoC Programmer. The kit includes:  
Modular programmer base  
Three programming module cards  
MiniProg programming unit  
PSoC Designer software CD  
Getting Started guide  
CY3207 programmer unit  
PSoC ISSP software CD  
110 ~ 240 V power supply, Euro-Plug adapter  
USB 2.0 cable  
USB 2.0 cable  
Accessories (Emulation and Programming)  
Table 36. Emulation and Programming Accessories  
[31]  
[32]  
Part Number  
CY8C21234B-24SXI  
CY8C21334B-24PVXI  
CY8C21534B-24PVXI  
Pin Package  
16-Pin SOIC  
Flex-Pod Kit  
CY3250-21X34  
CY3250-21X34  
CY3250-21X34  
Foot Kit  
Adapter  
CY3250-16SOIC-FK  
CY3250-20SSOP-FK  
CY3250-28SSOP-FK  
Adapters can be found at  
http://www.emulation.com.  
20-Pin SSOP  
28-Pin SSOP  
Notes  
31. Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods.  
32. Foot kit includes surface mount feet that can be soldered to the target PCB.  
Document Number: 001-67345 Rev. *A  
Page 38 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
Ordering Information  
[33]  
16-Pin (150-Mil) SOIC  
CY8C21x34B-24SXI  
CY8C21x34B-24SXIT  
8 K  
8 K  
512 Yes –40 °C to +85 °C  
512 Yes –40 °C to +85 °C  
4
4
4
4
12 12  
12 12  
0
0
No  
No  
[33]  
16-Pin (150-Mil) SOIC  
(Tape and Reel)  
[33]  
[33]  
20-Pin (210-Mil) SSOP  
CY8C21x34B-24PVXI  
8 K  
512  
512  
No  
No  
–40 °C to +85 °C  
–40 °C to +85 °C  
4
4
4
4
16 16  
16 16  
0
0
Yes  
Yes  
20-Pin (210-Mil) SSOP  
(Tape and Reel)  
CY8C21x34B-24PVXIT 8 K  
[33]  
[33]  
28-Pin (210-Mil) SSOP  
CY8C21x34B-24PVXI  
8 K  
512  
512  
No  
No  
–40 °C to +85 °C  
–40 °C to +85 °C  
4
4
4
4
24 24  
24 24  
0
0
Yes  
Yes  
28-Pin (210-Mil) SSOP  
(Tape and Reel)  
CY8C21x34B-24PVXIT 8 K  
[33]  
[33]  
[33]  
[33]  
32-Pin (5 × 5 mm 1.00 max)  
Sawn QFN  
CY8C21x34B-24LTXI  
CY8C21x34B-24LTXIT  
CY8C21x34B-24LCXI  
CY8C21x34B-24LCXIT  
8 K  
8 K  
8 K  
8 K  
512  
512  
512  
512  
No  
No  
No  
No  
–40 °C to +85 °C  
–40 °C to +85 °C  
–40 °C to +85 °C  
–40 °C to +85 °C  
4
4
4
4
4
4
4
4
28 28  
28 28  
28 28  
28 28  
0
0
0
0
Yes  
Yes  
Yes  
Yes  
32-Pin (5 × 5 mm 1.00 max)  
[34]  
Sawn QFN  
(Tape and Reel)  
32-Pin (5 × 5 mm 0.40 max)  
[34]  
Sawn QFN  
32-Pin (5 × 5 mm 0.40 max)  
[34]  
Sawn QFN  
(Tape and Reel)  
[33]  
[33]  
32-Pin (5 × 5 mm 0.60 max)  
Thin Sawn QFN  
CY8C21x34B-24LQXI  
8 K  
512  
512  
No  
No  
–40 °C to +85 °C  
–40 °C to +85 °C  
4
4
4
4
28 28  
28 28  
0
0
Yes  
Yes  
32-Pin (5 × 5 mm 0.60 max)  
Thin Sawn QFN  
CY8C21x34B-24LQXIT 8 K  
(Tape and Reel)  
[33]  
56-Pin OCD SSOP  
CY8C21001-24PVXI  
8 K  
512 Yes –40 °C to +85 °C  
4
4
26 26  
0
Yes  
Note For Die sales information, contact a local Cypress sales office or Field Applications Engineer (FAE).  
Notes  
33. All Digital I/O Pins also connect to the common analog mux.  
34. Refer to the section 32-Pin Part Pinout on page 11 for pin differences.  
Document Number: 001-67345 Rev. *A  
Page 39 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
Ordering Code Definitions  
CY 8 C 21xxxx-24 xx  
Package Type:  
Thermal Rating:  
C = Commercial  
I = Industrial  
PX = PDIP Pb-free  
SX = SOIC Pb-free  
PVX = SSOP Pb-free  
E = Extended  
LFX/LKX/LTX/LCX/LQX = QFN Pb-free  
Speed: 24 MHz  
Part Number  
Family Code  
Technology Code: C = CMOS  
Marketing Code: 8 = Cypress PSoC  
Cypress  
Company ID: CY =  
Document Number: 001-67345 Rev. *A  
Page 40 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
Acronyms  
Table 37 lists the acronyms that are used in this document.  
Table 37. Acronyms Used in this Datasheet  
Acronym  
AC  
Description  
alternating current  
Acronym  
MIPS  
OCD  
PCB  
Description  
million instructions per second  
on-chip debug  
ADC  
API  
analog-to-digital converter  
application programming interface  
complementary metal oxide semiconductor  
central processing unit  
printed circuit board  
CMOS  
CPU  
CRC  
CT  
PDIP  
PGA  
plastic dual-in-line package  
programmable gain amplifier  
phase-locked loop  
cyclic redundancy check  
continuous time  
PLL  
POR  
power on reset  
DAC  
DC  
digital-to-analog converter  
direct current  
PPOR  
PRS  
precision power on reset  
pseudo-random sequence  
Programmable System-on-Chip  
pulse width modulator  
quad flat no leads  
®
DTMF  
ECO  
dual-tone multi-frequency  
external crystal oscillator  
PSoC  
PWM  
QFN  
EEPROM electrically erasable programmable read-only  
memory  
GPIO  
ICE  
general purpose I/O  
RTC  
SAR  
real time clock  
in-circuit emulator  
successive approximation  
switched capacitor  
IDE  
integrated development environment  
internal low speed oscillator  
internal main oscillator  
input/output  
SC  
ILO  
SLIMO  
SMP  
SOIC  
slow IMO  
IMO  
I/O  
switch-mode pump  
small-outline integrated circuit  
serial peripheral interface  
static random access memory  
supervisory read only memory  
shrink small-outline package  
universal asynchronous receiver / transmitter  
universal serial bus  
TM  
IrDA  
ISSP  
LCD  
LED  
LPC  
LVD  
MAC  
MCU  
infrared data association  
in-system serial programming  
liquid crystal display  
light-emitting diode  
SPI  
SRAM  
SROM  
SSOP  
UART  
USB  
low power comparator  
low voltage detect  
multiply-accumulate  
WDT  
watchdog timer  
microcontroller unit  
XRES  
external reset  
Reference Documents  
CY8CPLC20, CY8CLED16P01, CY8C29x66, CY8C27x43, CY8C24x94, CY8C24x23, CY8C24x23A, CY8C22x13, CY8C21x34B,  
CY8C21x23, CY7C64215, CY7C603xx, CY8CNP1xx, and CYWUSB6953 PSoC® Programmable System-on-Chip Technical  
Reference Manual (TRM) (001-14463)  
Design Aids – Reading and Writing PSoC® Flash - AN2015 (001-40459)  
Adjusting PSoC® Trims for 3.3 V and 2.7 V Operation – AN2012 (001-17397)  
Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 (001-14503)  
Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages – available at http://www.amkor.com.  
Document Number: 001-67345 Rev. *A  
Page 41 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
Document Conventions  
Units of Measure  
Table 38 lists the units of measures.  
Table 38. Units of Measure  
Symbol  
kB  
Unit of Measure  
Symbol  
µH  
Unit of Measure  
1024 bytes  
decibels  
microhenry  
microsecond  
millisecond  
nanosecond  
picosecond  
microvolts  
millivolts  
dB  
µs  
°C  
degree Celsius  
microfarad  
femto farad  
picofarad  
ms  
µF  
ns  
fF  
ps  
pF  
µV  
kHz  
MHz  
rt-Hz  
kΩ  
kilohertz  
mV  
mVpp  
nV  
megahertz  
root hertz  
kilohm  
millivolts peak-to-peak  
nanovolts  
volts  
V
Ω
ohm  
µW  
W
microwatts  
watt  
µA  
microampere  
milliampere  
nanoampere  
pikoampere  
millihenry  
mA  
nA  
mm  
ppm  
%
millimeter  
parts per million  
percent  
pA  
mH  
Numeric Conventions  
Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or ‘3Ah’).  
Hexadecimal numbers may also be represented by a ‘0x’ prefix, the C coding convention. Binary numbers have an appended  
lowercase ‘b’ (for example, 01010100b’ or ‘01000011b’). Numbers not indicated by an ‘h’ or ‘b’ are decimals.  
Glossary  
active high  
1. A logic signal having its asserted state as the logic 1 state.  
2. A logic signal having the logic 1 state as the higher voltage of the two states.  
analog blocks  
The basic programmable opamp circuits. These are SC (switched capacitor) and CT (continuous  
time) blocks. These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain  
stages, and much more.  
analog-to-digital A device that changes an analog signal to a digital signal of corresponding magnitude. Typically,  
(ADC)  
an ADC converts a voltage to a digital number. The digital-to-analog (DAC) converter performs  
the reverse operation.  
Application  
programming  
interface (API)  
A series of software routines that comprise an interface between a computer application and  
lower level services and functions (for example, user modules and libraries). APIs serve as  
building blocks for programmers that create software applications.  
asynchronous  
A signal whose data is acknowledged or acted upon immediately, irrespective of any clock signal.  
bandgap  
reference  
A stable voltage reference design that matches the positive temperature coefficient of VT with  
the negative temperature coefficient of VBE, to produce a zero temperature coefficient (ideally)  
reference.  
Document Number: 001-67345 Rev. *A  
Page 42 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
Glossary (continued)  
bandwidth  
1. The frequency range of a message or information processing system measured in hertz.  
2. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or  
loss); it is sometimes represented more specifically as, for example, full width at half maximum.  
bias  
1. A systematic deviation of a value from a reference value.  
2. The amount by which the average of a set of values departs from a reference value.  
3. The electrical, mechanical, magnetic, or other force (field) applied to a device to establish a  
reference level to operate the device.  
block  
buffer  
1. A functional unit that performs a single function, such as an oscillator.  
2. A functional unit that may be configured to perform one of several functions, such as a digital  
PSoC block or an analog PSoC block.  
1. A storage area for data that is used to compensate for a speed difference, when transferring  
data from one device to another. Usually refers to an area reserved for IO operations, into  
which data is read, or from which data is written.  
2. A portion of memory set aside to store data, often before it is sent to an external device or as  
it is received from an external device.  
3. An amplifier used to lower the output impedance of a system.  
bus  
1. A named connection of nets. Bundling nets together in a bus makes it easier to route nets  
with similar routing patterns.  
2. A set of signals performing a common function and carrying similar data. Typically represented  
using vector notation; for example, address[7:0].  
3. One or more conductors that serve as a common connection for a group of related devices.  
clock  
The device that generates a periodic signal with a fixed frequency and duty cycle. A clock is  
sometimes used to synchronize different logic blocks.  
comparator  
compiler  
An electronic circuit that produces an output voltage or current whenever two input levels simultaneously  
satisfy predetermined amplitude requirements.  
A program that translates a high level language, such as C, into machine language.  
configuration  
space  
In PSoC devices, the register space accessed when the XIO bit, in the CPU_F register, is set to  
‘1’.  
crystal oscillator An oscillator in which the frequency is controlled by a piezoelectric crystal. Typically a piezoelectric  
crystal is less sensitive to ambient temperature than other circuit components.  
cyclicredundancy A calculation used to detect errors in data communications, typically performed using a linear  
check (CRC)  
feedback shift register. Similar calculations may be used for a variety of other purposes such as  
data compression.  
data bus  
A bi-directional set of signals used by a computer to convey information from a memory location  
to the central processing unit and vice versa. More generally, a set of signals used to convey  
data between digital functions.  
debugger  
A hardware and software system that allows you to analyze the operation of the system  
under development. A debugger usually allows the developer to step through the firmware one  
step at a time, set break points, and analyze memory.  
dead band  
A period of time when neither of two or more signals are in their active state or in transition.  
Document Number: 001-67345 Rev. *A  
Page 43 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
Glossary (continued)  
digital blocks  
The 8-bit logic blocks that can act as a counter, timer, serial receiver, serial transmitter, CRC  
generator, pseudo-random number generator, or SPI.  
digital-to-analog A device that changes a digital signal to an analog signal of corresponding magnitude. The analog-  
(DAC)  
to-digital (ADC) converter performs the reverse operation.  
duty cycle  
emulator  
The relationship of a clock period high time to its low time, expressed as a percent.  
Duplicates (provides an emulation of) the functions of one system with a different system, so that  
the second system appears to behave like the first system.  
External Reset  
(XRES)  
An active high signal that is driven into the PSoC device. It causes all operation of the CPU and  
blocks to stop and return to a pre-defined state.  
Flash  
An electrically programmable and erasable, non-volatile technology that provides you the  
programmability and data storage of EPROMs, plus in-system erasability. Non-volatile means  
that the data is retained when power is OFF.  
Flash block  
The smallest amount of Flash ROM space that may be programmed at one time and the smallest  
amount of Flash space that may be protected. A Flash block holds 64 bytes.  
frequency  
gain  
The number of cycles or events per unit of time, for a periodic function.  
The ratio of output current, voltage, or power to input current, voltage, or power, respectively.  
Gain is usually expressed in dB.  
2
I C  
A two-wire serial computer bus by Philips Semiconductors (now NXP Semiconductors). I2C is an  
Inter-Integrated Circuit. It is used to connect low-speed peripherals in an embedded system. The  
original system was created in the early 1980s as a battery control interface, but it was later used  
as a simple internal bus system for building control electronics. I2C uses only two bi-directional  
pins, clock and data, both running at +5V and pulled high with resistors. The bus operates at 100  
kbits/second in standard mode and 400 kbits/second in fast mode.  
ICE  
The in-circuit emulator that allows you to test the project in a hardware environment, while  
viewing the debugging device activity in a software environment (PSoC Designer).  
input/output (I/O) A device that introduces data into or extracts data from a system.  
interrupt  
A suspension of a process, such as the execution of a computer program, caused by an event  
external to that process, and performed in such a way that the process can be resumed.  
interrupt service A block of code that normal code execution is diverted to when the M8C receives a hardware  
routine (ISR)  
interrupt. Many interrupt sources may each exist with its own priority and individual ISR code  
block. Each ISR code block ends with the RETI instruction, returning the device to the point in  
the program where it left normal program execution.  
jitter  
1. A misplacement of the timing of a transition from its ideal position. A typical form of corruption that occurs on  
serial data streams.  
2. The abrupt and unwanted variations of one or more signal characteristics, such as the interval between  
successive pulses, the amplitude of successive cycles, or the frequency or phase of successive cycles.  
low-voltagedetect A circuit that senses Vdd and provides an interrupt to the system when Vdd falls below a  
(LVD) selected threshold.  
Document Number: 001-67345 Rev. *A  
Page 44 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
Glossary (continued)  
M8C  
An 8-bit Harvard-architecture microprocessor. The microprocessor coordinates all activity inside  
a PSoC by interfacing to the Flash, SRAM, and register space.  
master device  
A device that controls the timing for data exchanges between two devices. Or when devices are  
cascaded in width, the master device is the one that controls the timing for data exchanges  
between the cascaded devices and an external interface. The controlled device is called the  
slave device.  
microcontroller  
An integrated circuit chip that is designed primarily for control systems and products. In addition  
to a CPU, a microcontroller typically includes memory, timing circuits, and IO circuitry. The reason  
for this is to permit the realization of a controller with a minimal quantity of chips, thus  
achieving maximal possible miniaturization. This in turn, reduces the volume and the cost of  
the controller. The microcontroller is normally not used for general-purpose computation as is a  
microprocessor.  
mixed-signal  
modulator  
noise  
The reference to a circuit containing both analog and digital techniques and components.  
A device that imposes a signal on a carrier.  
1. A disturbance that affects a signal and that may distort the information carried by the signal.  
2. The random variations of one or more characteristics of any entity such as voltage, current, or data.  
oscillator  
parity  
A circuit that may be crystal controlled and is used to generate a clock frequency.  
A technique for testing transmitting data. Typically, a binary digit is added to the data to make the  
sum of all the digits of the binary data either always even (even parity) or always odd (odd parity).  
Phase-locked  
loop (PLL)  
An electronic circuit that controls an oscillator so that it maintains a constant phase angle relative  
to a reference signal.  
pinouts  
The pin number assignment: the relation between the logical inputs and outputs of the PSoC  
device and their physical counterparts in the printed circuit board (PCB) package. Pinouts  
involve pin numbers as a link between schematic and PCB design (both being computer generated  
files) and may also involve pin names.  
port  
A group of pins, usually eight.  
Power on reset  
(POR)  
A circuit that forces the PSoC device to reset when the voltage is below a pre-set level. This is  
one type of hardware reset.  
®
®
PSoC  
Cypress Semiconductor’s PSoC is a registered trademark and Programmable System-on-  
Chip™ is a trademark of Cypress.  
PSoC Designer™ The software for Cypress’ Programmable System-on-Chip technology.  
pulse width  
An output in the form of duty cycle which varies as a function of the applied measurement  
modulator (PWM)  
RAM  
An acronym for random access memory. A data-storage device from which data can be read out  
and new data can be written in.  
register  
reset  
A storage device with a specific capacity, such as a bit or byte.  
A means of bringing a system back to a know state. See hardware reset and software reset.  
Document Number: 001-67345 Rev. *A  
Page 45 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
Glossary (continued)  
ROM  
serial  
An acronym for read only memory. A data-storage device from which data can be read out, but  
new data cannot be written in.  
1. Pertaining to a process in which all events occur one after the other.  
2. Pertaining to the sequential or consecutive occurrence of two or more related activities in a single device or  
channel.  
settling time  
shift register  
slave device  
The time it takes for an output signal or value to stabilize after the input has changed from one  
value to another.  
A memory storage device that sequentially shifts a word either left or right to output a stream of  
serial data.  
A device that allows another device to control the timing for data exchanges between two  
devices. Or when devices are cascaded in width, the slave device is the one that allows another  
device to control the timing of data exchanges between the cascaded devices and an external  
interface. The controlling device is called the master device.  
SRAM  
SROM  
An acronym for static random access memory. A memory device where you can store and  
retrieve data at a high rate of speed. The term static is used because, after a value is loaded into an SRAM cell,  
it remains unchanged until it is explicitly altered or until power is removed from the device.  
An acronym for supervisory read only memory. The SROM holds code that is used to boot the  
device, calibrate circuitry, and perform Flash operations. The functions of the SROM may be  
accessed in normal user code, operating from Flash.  
stop bit  
A signal following a character or block that prepares the receiving device to receive the next  
character or block.  
synchronous  
1. A signal whose data is not acknowledged or acted upon until the next active edge of a clock signal.  
2. A system whose operation is synchronized by a clock signal.  
tri-state  
A function whose output can adopt three states: 0, 1, and Z (high-impedance). The function does  
not drive any value in the Z state and, in many respects, may be considered to be disconnected  
from the rest of the circuit, allowing another output to drive the same net.  
UART  
A UART or universal asynchronous receiver-transmitter translates between parallel bits of data  
and serial bits.  
user modules  
Pre-build, pre-tested hardware/firmware peripheral functions that take care of managing and  
configuring the lower level Analog and Digital PSoC Blocks. User Modules also provide high  
level API (Application Programming Interface) for the peripheral function.  
user space  
The bank 0 space of the register map. The registers in this bank are more likely to be modified  
during normal program execution and not just during initialization. Registers in bank 1 are most  
likely to be modified only during the initialization phase of the program.  
V
V
A name for a power net meaning ‘voltage drain’. The most positive power supply signal. Usually  
5 V or 3.3 V.  
DD  
A name for a power net meaning ‘voltage source’. The most negative power supply signal.  
SS  
watchdog timer  
A timer that must be serviced periodically. If it is not serviced, the CPU resets after a specified  
period of time.  
Document Number: 001-67345 Rev. *A  
Page 46 of 47  
[+] Feedback  
CY8C21634B, CY8C21534B, CY8C21434B  
CY8C21334B, CY8C21234B  
Document History Page  
Document Title: CY8C21234B, CY8C21334B, CY8C21434B, CY8C21534B, CY8C21634B PSoC® Programmable  
System-on-Chip™  
Document Number: 001-67345  
Orig. of  
Change  
Submission  
Date  
Description of Change  
Revision  
ECN  
**  
3169205  
3247292  
YVA  
YVA  
02/16/2011 New datasheet  
*A  
05/11/2011 Updated package diagrams. Post to Web.  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
Products  
Automotive  
cypress.com/go/automotive  
cypress.com/go/clocks  
cypress.com/go/interface  
cypress.com/go/powerpsoc  
cypress.com/go/plc  
PSoC Solutions  
Clocks & Buffers  
Interface  
psoc.cypress.com/solutions  
PSoC 1 | PSoC 3 | PSoC 5  
Lighting & Power Control  
Memory  
cypress.com/go/memory  
cypress.com/go/image  
cypress.com/go/psoc  
Optical & Image Sensing  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/go/touch  
cypress.com/go/USB  
cypress.com/go/wireless  
© Cypress Semiconductor Corporation, 2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any  
circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical,  
life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical  
components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 001-67345 Rev. *A  
Revised May 13, 2011  
Page 47 of 47  
®
®
PSoC Designer™ and Programmable System-on-Chip™ are trademarks and PSoC and CapSense are registered trademarks of Cypress Semiconductor Corporation.  
2
2
2
Purchase of I C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I C Patent Rights to use these components in an I C system, provided  
2
that the system conforms to the I C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name - NXP Semiconductors.  
All products and company names mentioned in this document may be the trademarks of their respective holders.  
[+] Feedback  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY