CY8C22045 [CYPRESS]

PSoC® Programmable System-on-Chip; PSoC®可编程系统级芯片
CY8C22045
型号: CY8C22045
厂家: CYPRESS    CYPRESS
描述:

PSoC® Programmable System-on-Chip
PSoC®可编程系统级芯片

文件: 总39页 (文件大小:531K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY8C21345  
CY8C22345  
CY8C22545  
PSoC® Programmable System-on-Chip  
Programmable pin configurations:  
25 mA sink, 10 mA source on all GPIOs  
Features  
Powerful Harvard-architecture processor:  
M8C processor speeds up to 24 MHz  
8 × 8 multiply, 32-bit accumulate  
Pull-up, pull-down, high Z, Strong, or open-drain drive modes  
on all GPIOs  
Up to 38 analog inputs on GPIOs  
Configurable interrupt on all GPIOs  
Low power at high speed  
3.0 V to 5.25 V operating voltage  
Industrial temperature range: –40 °C to +85 °C  
Advanced peripherals (PSoC® Blocks)  
Six analog type “E” PSoC blocks provide:  
• Single or dual 8-Bit ADC  
• Comparators (up to four)  
Up to eight digital PSoC blocks provide:  
• 8- to 32-bit timers and counters, 8- and 16-bit pulse-width  
modulators (PWMs)  
Additional system resources:  
I2Cslave, master, and multimaster to 400 kHz  
Supports hardware addressing feature  
Watchdog and sleep timers  
User configurable low voltage detection  
Integrated supervisory circuit  
On-Chip precision voltage reference  
Supports RTC block into digital peripheral logic  
• One shot, multi-shot mode support in timers and PWMs  
• PWM with deadband support in one digital block  
• Shift register, CRC, and PRS modules  
• Full duplex UART  
• Multiple SPI masters or slaves, variable data length  
Support: 8- to 16-Bit  
Top Level Block Diagram  
Analog  
Drivers  
Port 4  
Port 3  
Port 2 Port 1 Port 0  
PSoC Core  
• Can be connected to all GPIO pins  
Complex peripherals by combining blocks  
Shift function support for FSK detection  
Powerful synchronize feature support. Analog module  
operations can be synchronized by digital blocks or external  
signals.  
Global Digital Interconnect  
Global Analog Interconnect  
Flash 16K  
SRAM  
1K  
SROM  
Sleep and  
Watchdog  
CPU Core (M8C)  
Interrupt  
High speed 10-bit SAR ADC with sample and hold optimized for  
Controller  
embedded control  
Multiple Clock Sources  
(Includes IMO, ILO, PLL, and ECO)  
Precision, programmable clocking:  
Internal ± 5% 24/48 MHz oscillator across the industrial  
temperature range  
High accuracy 24 MHz with optional 32 kHz crystal and PLL  
Optional external oscillator, up to 24 MHz  
ANALOG SYSTEM  
DIGITAL SYSTEM  
Digital Block Array  
Analog Input  
Muxing(L,R)  
Analog  
Ref  
Internal/external oscillator for watchdog and sleep  
=
DBC DBC DCC DCC  
ROW 1  
Flexible on-chip memory:  
Up to 16 KB flash program storage 50,000 erase/write cycles  
Up to 1-KB SRAM data storage  
In-system serial programming (ISSP)  
Partial flash updates  
Flexible protection modes  
EEPROM emulation in flash  
Analog Block Array  
CTE CTE CTE CTE  
SCE SCE  
DBC DBC DCC DCC  
ROW 2  
CapSense  
Digital Resource  
10-bit SAR  
ADC  
Optimized CapSense® resource:  
Two IDAC support up to 640 µA source current to replace  
external resistor  
Two dedicated clock resources for CapSense:  
• CSD_CLK: 1/2/4/8/16/32/128/256 derive from SYSCLK  
• CNT_CLK: 1/2/4/8 Derive from CSD_CLK  
Dedicated 16-bit timers/counters for CapSense scanning  
Support dual CSD channels simultaneous scanning  
POR and LVD  
System Resets  
Internal  
Voltage  
Ref.  
I2C  
Digital  
Clocks  
MACs  
SYSTEM RESOURCES  
Cypress Semiconductor Corporation  
Document Number: 001-43084 Rev. *Q  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised April 9, 2013  
CY8C21345  
CY8C22345  
CY8C22545  
Contents  
PSoC Functional Overview ..............................................3  
PSoC Core ..................................................................3  
Digital System .............................................................3  
Analog System ............................................................4  
Additional System Resources .....................................4  
PSoC Device Characteristics ......................................5  
Getting Started ..................................................................5  
Application Notes ........................................................5  
Development Kits ........................................................5  
Training .......................................................................5  
CYPros Consultants ....................................................5  
Solutions Library ..........................................................5  
Technical Support .......................................................5  
Development Tools ..........................................................6  
PSoC Designer Software Subsystems ........................6  
Designing with PSoC Designer .......................................7  
Select User Modules ...................................................7  
Configure User Modules ..............................................7  
Organize and Connect ................................................7  
Generate, Verify, and Debug .......................................7  
Pinouts ..............................................................................8  
CY8C22345, CY8C21345 28-pin SOIC ......................8  
CY8C22545 44-pin TQFP ...........................................9  
Registers .........................................................................10  
Register Conventions ................................................10  
Register Mapping Tables ..........................................10  
Electrical Specifications ................................................13  
Absolute Maximum Ratings .......................................14  
Operating Temperature .............................................14  
DC Electrical Characteristics .....................................15  
AC Electrical Characteristics .....................................21  
Packaging Information ...................................................27  
Thermal Impedances .................................................28  
Solder Reflow Specifications .....................................28  
Ordering Information ......................................................28  
Ordering Code Definitions .........................................28  
Acronyms ........................................................................29  
Reference Documents ....................................................29  
Document Conventions .................................................30  
Units of Measure .......................................................30  
Numeric Conventions ....................................................30  
Glossary ..........................................................................30  
Appendix: Silicon Errata for the PSoC® CY8C21x45,  
CY8C22x45 Product Family ...........................................35  
Part Numbers Affected ..............................................35  
CY8C21x45, CY8C22x45 Qualification Status ..........35  
Errata Summary ........................................................35  
Document History Page .................................................37  
Sales, Solutions, and Legal Information ......................39  
Worldwide Sales and Design Support .......................39  
Products ....................................................................39  
PSoC Solutions .........................................................39  
Document Number: 001-43084 Rev. *Q  
Page 2 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
Digital System  
PSoC Functional Overview  
The Digital System is composed of eight digital PSoC blocks.  
Each block is an 8-bit resource that may be used alone or  
combined with other blocks to form 8, 16, 24, and 32-bit  
peripherals, which are called user module references.  
The PSoC family consists of many On-Chip Controller devices.  
These devices are designed to replace multiple traditional  
MCU-based system components with one low cost single-chip  
programmable device. PSoC devices include configurable  
blocks of analog and digital logic, and programmable  
interconnects. This architecture enables the user to create  
customized peripheral configurations that match the  
requirements of each individual application. Additionally, a fast  
CPU, Flash program memory, SRAM data memory, and  
configurable I/O are included in a range of convenient pinouts  
and packages.  
Figure 1. Digital System Block Diagram  
Port 3  
Port 1  
Port 4  
Port 2  
Port 0  
To System Bus  
Digital Clocks  
From Core  
To Analog  
System  
The PSoC architecture, shown in Figure 1, consists of four main  
areas: PSoC Core, Digital System, Analog System, and System  
Resources. Configurable global busing allows the combining of  
all the device resources into a complete custom system. The  
PSoC family can have up to five I/O ports connecting to the  
global digital and analog interconnects, providing access to eight  
digital blocks and six analog blocks.  
DIGITAL SYSTEM  
Digital PSoC Block Array  
Row 0  
4
DBC00  
DBC01 DCC02 DCC03  
4
8
8
PSoC Core  
8
8
The PSoC Core is a powerful engine that supports a rich feature  
set. The core includes a CPU, memory, clocks, and configurable  
general-purpose I/O (GPIO).  
Row 1  
DBC01 DCC02 DCC03  
DBC00  
The M8C CPU core is a powerful processor with speeds up to  
24 MHz, providing a four MIPS 8-bit Harvard architecture  
microprocessor. The CPU uses an interrupt controller with 21  
vectors, to simplify the programming of real time embedded  
events.  
GIE[7:0]  
GIO[7:0]  
GOE[7:0]  
GOO[7:0]  
Global Digital  
Interconnect  
Program execution is timed and protected using the included  
Sleep and watchdog timers (WDT).  
Memory encompasses 16 KB of Flash for program storage, 1 K  
bytes of SRAM for data storage, and up to 2 KB of EEPROM  
emulated using the Flash. Program Flash uses four protection  
levels on blocks of 64 bytes, allowing customized software IP  
protection.  
Digital peripheral configurations are:  
PWMs (8- and 16-Bit)  
PWMs with Dead band (8- and 16-Bit)  
Counters (8 to 32-Bit)  
The PSoC device incorporates flexible internal clock generators,  
including a 24 MHz IMO (internal main oscillator). The 24 MHz  
IMO can also be doubled to 48 MHz for use by the digital system.  
A low power 32 kHz internal low-speed oscillator (ILO) is  
provided for the Sleep timer and WDT. If crystal accuracy is  
required, the ECO (32.768 kHz external crystal oscillator) is  
available for use as a Real Time Clock (RTC), and can optionally  
generate a crystal-accurate 24 MHz system clock using a PLL.  
The clocks, together with programmable clock dividers (as a  
System Resource), provide the flexibility to integrate almost any  
timing requirement into the PSoC device.  
Timers (8 to 32-Bit)  
UART 8 Bit with Selectable Parity (Up to Two)  
SPI Master and Slave (Up to Two)  
Shift Register (1 to 32-Bit)  
I2C Slave and Master (One Available as a System Resource)  
Cyclical Redundancy Checker/Generator (8 to 32-Bit)  
IrDA (Up to Two)  
PSoC GPIOs provide connection to the CPU, digital, and analog  
resources of the device. Each pin’s drive mode may be selected  
from eight options, allowing great flexibility in external  
interfacing. Every pin can also generate a system interrupt on  
high level, low level, and change from last read.  
Pseudo Random Sequence Generators (8 to 32-Bit)  
The digital blocks may be connected to any GPIO through a  
series of global buses that can route any signal to any pin. The  
buses also allow for signal multiplexing and performing logic  
operations. This configurability frees your designs from the  
constraints of a fixed peripheral controller.  
Digital blocks are provided in rows of four, where the number of  
blocks varies by PSoC device family. This provides a choice of  
system resources for your application. Family resources are  
shown in Table 1 on page 5.  
Document Number: 001-43084 Rev. *Q  
Page 3 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
Analog System  
Additional System Resources  
The Analog System consists of a 10-bit SAR ADC and six  
configurable blocks.  
System Resources, some of which are listed in the previous  
sections, provide additional capability useful to complete  
systems. Additional resources include a MAC, low voltage  
detection, and power on reset. The merits of each system  
resource are:  
The programmable 10-bit SAR ADC is an optimized ADC that  
can be run up to 200 ksps with ± 1.5 LSB DNL and ± 2.5 LSB INL  
(true for VDD 3.0 V and Vref 3.0 V). External filters are  
required on ADC input channels for antialiasing. This ensures  
that any out-of-band content is not folded into the input signal  
band.  
Digital clock dividers provide three customizable clock  
frequencies for use in applications. The clocks may be routed  
to both the digital and analog systems. Additional clocks can  
be generated using digital PSoC blocks as clock dividers.  
Reconfigurable analog resources allow creating complex analog  
signal flows. Analog peripherals are very flexible and may be  
customized to support specific application requirements. Some  
of the more common PSoC analog functions (most available as  
user modules) are:  
Additional Digital resources and clocks optimized for CSD.  
Support “RTC” block into digital peripheral logic.  
A multiply accumulate (MAC) provides a fast 8-bit multiplier  
with 32-bit accumulate, to assist in both general math and  
digital filters.  
Analog-to-Digital converters (Single or Dual, with 8-bit  
resolution)  
Pin-to-pin Comparator  
TheI2Cmoduleprovides100and400kHzcommunicationover  
two wires. Slave, master, and multi-master modes are all  
supported.  
Single ended comparators with absolute (1.3 V) reference or  
5-bit DAC reference  
Low Voltage Detection (LVD) interrupts can signal the  
application of falling voltage levels, while the advanced POR  
(Power On Reset) circuit eliminates the need for a system  
supervisor.  
1.3 V reference (as a System Resource)  
Analog blocks are provided in columns of four, which include  
CT-E (Continuous Time) and SC-E (Switched Capacitor) blocks.  
These devices provide limited functionality Type “E” analog  
blocks.  
An internal 1.3 V reference provides an absolute reference for  
the analog system, including ADCs and DACs.  
Figure 2. Analog System Block Diagram  
Array Input Configuration  
ACI0[1:0]  
ACI1[1:0]  
ACI1[1:0]  
ACI1[1:0]  
ACE00  
ASE10  
ACE01  
ASE11  
ACE10  
ACE11  
Block Array  
AmuxL  
AmuxR  
P0[0:7]  
ACI2[3:0]  
10 bit SAR ADC  
Analog Reference  
Interface to  
Reference  
Digital System  
Generators  
AGND  
Bandgap  
M8C Interface (Address Bus, Data Bus, Etc.)  
Document Number: 001-43084 Rev. *Q  
Page 4 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
PSoC Device Characteristics  
Depending on your PSoC device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks and 12, 6, or 3  
analog blocks. The following table lists the resources available for specific PSoC device groups.  
Table 1. PSoC Device Characteristics  
PSoC Part  
Number  
Digital  
I/O  
Digital  
Rows  
Digital  
Blocks  
Analog  
Inputs  
Analog  
Analog  
Analog  
SRAM  
Size  
Flash  
Size  
Outputs Columns Blocks  
[1]  
CY8C29x66  
CY8C28xxx  
up to 64  
up to 44  
4
16  
up to 12  
up to 44  
4
4
12  
2 K  
1 K  
32 K  
16 K  
up to 3  
up to 12  
up to 4  
up to 6  
up to  
12 + 4  
[2]  
CY8C27x43  
up to 44  
up to 56  
up to 24  
up to 26  
up to 38  
up to 24  
up to 28  
up to 16  
up to 28  
up to 36  
2
1
1
1
2
1
1
1
0
0
8
4
4
4
8
4
4
4
0
0
up to 12  
up to 48  
up to 12  
up to 12  
up to 38  
up to 24  
up to 28  
4
2
2
2
0
0
0
0
0
0
4
2
2
2
4
4
2
2
0
0
12  
6
256  
1 K  
16 K  
16 K  
4 K  
[1]  
CY8C24x94  
[1]  
CY8C24x23A  
6
256  
CY8C23x33  
4
256  
8 K  
[1]  
[2]  
CY8C22x45  
CY8C21x45  
CY8C21x34  
6
1 K  
16 K  
8 K  
[1]  
[1]  
[2]  
6
512  
[2]  
4
512  
8 K  
[2]  
CY8C21x23  
up to  
8
4
256  
4 K  
[1]  
[2,3]  
CY8C20x34  
CY8C20xx6  
up to 28  
up to 36  
3
512  
8 K  
[2,3]  
3
up to 2 K  
up to 32 K  
Getting Started  
For in-depth information, along with detailed programming  
covers a wide variety of topics and skill levels to assist you in  
your designs.  
details, see the PSoC® Technical Reference Manual.  
For up-to-date ordering, packaging, and electrical specification  
information, see the latest PSoC device datasheets on the web.  
CYPros Consultants  
Certified PSoC consultants offer everything from technical  
assistance to completed PSoC designs. To contact or become a  
PSoC consultant go to the CYPros Consultants web site.  
Application Notes  
Cypress application notes are an excellent introduction to the  
wide variety of possible PSoC designs.  
Solutions Library  
Development Kits  
Visit our growing library of solution focused designs. Here you  
can find various application designs that include firmware and  
hardware design files that enable you to complete your designs  
quickly.  
PSoC Development Kits are available online from and through a  
growing number of regional and global distributors, which  
include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and  
Newark.  
Technical Support  
Training  
Technical support – including a searchable Knowledge Base  
articles and technical forums – is also available online. If you  
cannot find an answer to your question, call our Technical  
Support hotline at 1-800-541-4736.  
Free PSoC technical training (on demand, webinars, and  
workshops), which is available online via www.cypress.com,  
Notes  
1. Automotive qualified devices available in this group.  
2. Limited analog functionality.  
®
3. Two analog blocks and one CapSense block.  
Document Number: 001-43084 Rev. *Q  
Page 5 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
time. In essence, this allows you to use more than 100 percent  
of PSoC's resources for an application.  
Development Tools  
PSoC Designer™ is the revolutionary integrated design  
environment (IDE) that you can use to customize PSoC to meet  
your specific application requirements. PSoC Designer software  
accelerates system design and time to market. Develop your  
applications using a library of precharacterized analog and digital  
peripherals (called user modules) in a drag-and-drop design  
environment. Then, customize your design by leveraging the  
dynamically generated application programming interface (API)  
libraries of code. Finally, debug and test your designs with the  
integrated debug environment, including in-circuit emulation and  
standard software debug features. PSoC Designer includes:  
Code Generation Tools  
The code generation tools work seamlessly within the  
PSoC Designer interface and have been tested with a full range  
of debugging tools. You can develop your design in C, assembly,  
or a combination of the two.  
Assemblers. The assemblers allow you to merge assembly  
code seamlessly with C code. Link libraries automatically use  
absolute addressing or are compiled in relative mode, and are  
linked with other software modules to get absolute addressing.  
C Language Compilers. C language compilers are available  
that support the PSoC family of devices. The products allow you  
to create complete C programs for the PSoC family devices. The  
optimizing C compilers provide all of the features of C, tailored  
to the PSoC architecture. They come complete with embedded  
libraries providing port and bus operations, standard keypad and  
display support, and extended math functionality.  
Application editor graphical user interface (GUI) for device and  
user module configuration and dynamic reconfiguration  
Extensive user module catalog  
Integrated source-code editor (C and assembly)  
Free C compiler with no size restrictions or time limits  
Built-in debugger  
Debugger  
PSoC Designer has a debug environment that provides  
hardware in-circuit emulation, allowing you to test the program in  
a physical system while providing an internal view of the PSoC  
device. Debugger commands allow you to read and program and  
read and write data memory, and read and write I/O registers.  
You can read and write CPU registers, set and clear breakpoints,  
and provide program run, halt, and step control. The debugger  
also allows you to create a trace buffer of registers and memory  
locations of interest.  
In-circuit emulation  
Built-in support for communication interfaces:  
Hardware and software I2C slaves and masters  
Full-speed USB 2.0  
Up  
to  
four  
full-duplex  
universal  
asynchronous  
receiver/transmitters (UARTs), SPI master and slave, and  
wireless  
PSoC Designer supports the entire library of PSoC 1 devices and  
runs on Windows XP, Windows Vista, and Windows 7.  
Online Help System  
The online help system displays online, context-sensitive help.  
Designed for procedural and quick reference, each functional  
subsystem has its own context-sensitive help. This system also  
provides tutorials and links to FAQs and an online support Forum  
to aid the designer.  
PSoC Designer Software Subsystems  
Design Entry  
In the chip-level view, choose a base device to work with. Then  
select different onboard analog and digital components that use  
the PSoC blocks, which are called user modules. Examples of  
user modules are ADCs, DACs, amplifiers, and filters. Configure  
the user modules for your chosen application and connect them  
to each other and to the proper pins. Then generate your project.  
This prepopulates your project with APIs and libraries that you  
can use to program your application.  
In-Circuit Emulator  
A
low-cost, high-functionality in-circuit emulator (ICE) is  
available for development support. This hardware can program  
single devices.  
The emulator consists of a base unit that connects to the PC  
using a USB port. The base unit is universal and operates with  
all PSoC devices. Emulation pods for each device family are  
available separately. The emulation pod takes the place of the  
PSoC device in the target board and performs full-speed  
(24 MHz) operation.  
The tool also supports easy development of multiple  
configurations and dynamic reconfiguration. Dynamic  
reconfiguration makes it possible to change configurations at run  
Document Number: 001-43084 Rev. *Q  
Page 6 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
specifications. Each datasheet describes the use of each user  
module parameter, and other information you may need to  
successfully implement your design.  
Designing with PSoC Designer  
The development process for the PSoC device differs from that  
of a traditional fixed function microprocessor. The configurable  
analog and digital hardware blocks give the PSoC architecture a  
unique flexibility that pays dividends in managing specification  
change during development and by lowering inventory costs.  
These configurable resources, called PSoC Blocks, have the  
ability to implement a wide variety of user-selectable functions.  
The PSoC development process is summarized in four steps:  
Organize and Connect  
You build signal chains at the chip level by interconnecting user  
modules to each other and the I/O pins. You perform the  
selection, configuration, and routing so that you have complete  
control over all on-chip resources.  
Generate, Verify, and Debug  
1. Select User Modules.  
When you are ready to test the hardware configuration or move  
on to developing code for the project, you perform the “Generate  
Configuration Files” step. This causes PSoC Designer to  
generate source code that automatically configures the device to  
your specification and provides the software for the system. The  
generated code provides application programming interfaces  
(APIs) with high-level functions to control and respond to  
hardware events at run-time and interrupt service routines that  
you can adapt as needed.  
2. Configure User Modules.  
3. Organize and Connect.  
4. Generate, Verify, and Debug.  
Select User Modules  
PSoC Designer provides a library of prebuilt, pretested hardware  
peripheral components called “user modules.” User modules  
make selecting and implementing peripheral devices, both  
analog and digital, simple.  
A complete code development environment allows you to  
develop and customize your applications in either C, assembly  
language, or both.  
Configure User Modules  
Each user module that you select establishes the basic register  
settings that implement the selected function. They also provide  
parameters and properties that allow you to tailor their precise  
configuration to your particular application. For example, a PWM  
User Module configures one or more digital PSoC blocks, one  
for each 8 bits of resolution. The user module parameters permit  
you to establish the pulse width and duty cycle. Configure the  
parameters and properties to correspond to your chosen  
application. Enter values directly or by selecting values from  
drop-down menus. All the user modules are documented in  
datasheets that may be viewed directly in PSoC Designer or on  
the Cypress website. These user module datasheets explain the  
internal operation of the user module and provide performance  
The last step in the development process takes place inside  
PSoC Designer’s debugger (access by clicking the Connect  
icon). PSoC Designer downloads the HEX image to the ICE  
where it runs at full speed. PSoC Designer debugging  
capabilities rival those of systems costing many times more. In  
addition to traditional single-step, run-to-breakpoint, and  
watch-variable features, the debug interface provides a large  
trace buffer and allows you to define complex breakpoint events.  
These include monitoring address and data bus values, memory  
locations, and external signals.  
Document Number: 001-43084 Rev. *Q  
Page 7 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
Pinouts  
This PSoC device family is available in a variety of packages that are listed in the following tables. Every port pin (labeled with a “P”)  
is capable of Digital I/O. However, Vss, Vdd, and XRES are not capable of Digital I/O.  
CY8C22345, CY8C21345 28-pin SOIC  
Table 2. Pin Definitions  
Type  
Figure 3. Pin Diagram  
Pin No.  
Pin Name  
Description  
Digital Analog  
1
2
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I, MR  
I, ML  
I, ML  
I, ML  
I, ML  
ML  
P0[7]  
P0[5]  
P0[3]  
P0[1]  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
Vss  
Integration Capacitor for MR  
Integration Capacitor for ML  
AI, MR, P0[7]  
AI, ML, P0[5]  
AI, ML, P0[3]  
AI, ML, P0[1]  
AI, ML, P2[7]  
ADC_Ext_Vref, ML, P2[5]  
ML, P2[3]  
Vdd  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
P0[6], MR, AI  
P0[4], MR, AI  
P0[2], MR, AI  
P0[0], MR, AI  
P2[6], MR, AI  
P2[4], MR  
3
4
5
To Compare Column 0  
SOIC  
6
Optional ADC External Vref  
ML, P2[1]  
P2[2], MR  
Vss  
P2[0], MR  
7
ML  
I2C SCL, ML, P1[7]  
I2C SDA, ML, P1[5]  
ML, P1[3]  
XRES  
8
ML  
P1[6], MR  
P1[4], MR, EXTCLK  
P1[2], MR  
9
Power  
Ground Connection  
I2C serial clock (SCL)  
I2C serial data (SDA)  
I2C SCL, ML, P1[1]  
Vss  
P1[0], MR, I2C SDATA  
10  
11  
12  
13  
I/O  
I/O  
I/O  
I/O  
ML  
ML  
ML  
ML  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
I2C serial clock (SCL),  
ISSP-SCLK[4]  
14  
15  
Power  
Vss  
Ground Connection  
I/O  
MR  
P1[0]  
I2C serial Clock (SCL),  
ISSP-SDATA[4]  
16  
17  
I/O  
I/O  
MR  
MR  
P1[2]  
P1[4]  
Optional external clock input  
(EXT-CLK)  
18  
19  
I/O  
MR  
P1[6]  
Input  
XRES  
Active High Pin Reset with  
Internal Pull Down  
20  
21  
22  
23  
24  
25  
26  
27  
28  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
MR  
MR  
MR  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Vdd  
I, MR  
I, MR  
I, MR  
I, MR  
I, MR  
To Compare Column 1  
Power  
Supply Voltage  
LEGEND: A = Analog, I = Input, O = Output, M=Analog Mux input, MR= Analog Mux right input, ML= Analog Mux left input.  
Note  
4. ISSP pin which is not HI-Z at POR.  
Document Number: 001-43084 Rev. *Q  
Page 8 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
CY8C22545 44-pin TQFP  
Table 3. Pin Definitions  
Type  
Figure 4. Pin Diagram  
Pin No.  
Pin Name  
Description  
Digital  
I/O  
Analog  
1
2
ML  
ML  
ML  
P2[5]  
P2[3]  
P2[1]  
Vdd  
Optional ADC External Vref  
I/O  
3
I/O  
4
Power  
Power  
Supply Voltage  
5
I/O  
I/O  
I/O  
ML  
ML  
ML  
P4[5]  
P4[3]  
P4[1]  
Vss  
6
ADC_Ext_Vref, ML, P2[5]  
1
2
3
4
5
33  
P2[4], MR  
P2[2], MR  
P2[0], MR  
7
ML, P2[3]  
ML, P2[1]  
Vdd  
32  
31  
8
Ground Connection  
30 Vss  
9
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ML  
ML  
ML  
ML  
ML  
ML  
ML  
ML  
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
Vss  
ML, P4[5]  
P4[4], MR  
29  
28  
27  
26  
25  
ML, P4[3]  
P4[2], MR  
P4[0], MR  
6
7
8
9
TQFP  
10  
11  
12  
13  
14  
15  
16  
17  
18  
ML, P4[1]  
Vss  
ML, P3[7]  
XRES  
P3[6], MR  
ML, P3[5]  
ML, P3[3]  
10  
11  
24 P3[4], MR  
23  
I2C serial clock (SCL)  
I2C serial data (SDA)  
P3[2], MR  
[4]  
Crystal (XTALin), I2C SCL, TC SCLK  
Ground Connection  
Power  
I/O  
I/O  
MR  
MR  
P1[0]  
Crystal (XTALout), I2C SDA, TC  
]
[4  
SDATA  
19  
P1[2]  
20  
21  
22  
23  
24  
25  
26  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
MR  
MR  
MR  
MR  
MR  
MR  
P1[4]  
P1[6]  
P3[0]  
P3[2]  
P3[4]  
P3[6]  
XRES  
Optional external clock input (EXTCLK)  
Input  
Active High Pin Reset with Internal Pull  
Down  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
I/O  
I/O  
I/O  
MR  
MR  
MR  
P4[0]  
P4[2]  
P4[4]  
Vss  
Power  
Ground Connection  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
MR  
MR  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Vdd  
MR  
I, MR  
I, MR  
I, MR  
I, MR  
I, MR  
To Compare Column 1  
Power  
Supply Voltage  
I/O  
I/O  
I/O  
I/O  
I/O  
I, MR  
I, ML  
I, ML  
I, ML  
I, ML  
P0[7]  
P0[5]  
P0[3]  
P0[1]  
P2[7]  
Integration Capacitor for MR  
Integration Capacitor for ML  
To Compare Column 0  
LEGEND: A = Analog, I = Input, O = Output, M=Analog Mux input, MR= Analog Mux right input, ML= Analog Mux left input.  
Document Number: 001-43084 Rev. *Q  
Page 9 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
Registers  
This section lists the registers of this PSoC device family by mapping tables. For detailed register information, refer the PSoC  
Programmable System-on Chip Technical Reference Manual.  
Register Conventions  
Table 4. Abbreviations  
Convention  
Register Mapping Tables  
The PSoC device has a total register address space of 512  
bytes. The register space is also referred to as I/O space and is  
broken into two parts. The XIO bit in the Flag register determines  
which bank the user is currently in. When the XIO bit is set, the  
user is said to be in the “extended” address space or the  
“configuration” registers.  
Description  
RW  
R
Read and write register or bit(s)  
Read register or bit(s)  
W
L
Write register or bit(s)  
Note In the following register mapping tables, blank fields are  
Reserved and must not be accessed.  
Logical register or bit(s)  
Clearable register or bit(s)  
Access is bit specific  
C
#
Document Number: 001-43084 Rev. *Q  
Page 10 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
Table 5. Register Map Bank 0 Table: User Space  
Name  
PRT0DR  
Addr (0,Hex) Access  
Name  
Addr (0,Hex) Access  
Name  
ASC10CR0*  
Addr (0,Hex) Access  
Name  
Addr (0,Hex) Access  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
#
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72*  
73*  
74  
75  
76*  
77*  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
#
80*  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
#
PRT0IE  
W
81  
PRT0GS  
PRT0DM2  
PRT1DR  
PRT1IE  
RW  
#
82  
83  
#
ASD11CR0*  
84*  
85  
W
PRT1GS  
PRT1DM2  
PRT2DR  
PRT2IE  
RW  
#
86  
87  
#
88  
PWMVREF0  
PWMVREF1  
IDAC_MODE  
PWM_SRC  
TS_CR0  
W
89  
#
PRT2GS  
PRT2DM2  
PRT3DR  
PRT3IE  
RW  
#
8A  
8B  
8C  
8D  
8E  
8F  
90  
RW  
#
#
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
#
W
TS_CMPH  
TS_CMPL  
TS_CR1  
PRT3GS  
PRT3DM2  
PRT4DR  
PRT4IE  
RW  
#
CSD0_DR0_L  
CSD0_DR1_L  
CSD0_CNT_L  
CSD0_CR0  
CSD0_DR0_H  
CSD0_DR1_H  
CSD0_CNT_H  
CSD0_CR1  
CSD1_DR0_L  
CSD1_DR1_L  
CSD1_CNT_L  
CSD1_CR0  
CSD1_DR0_H  
CSD1_DR1_H  
CSD1_CNT_H  
CSD_CR1  
R
CUR PP  
W
91  
STK_PP  
PRT4GS  
PRT4DM2  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
R
92  
PRV PP  
#
93  
IDX_PP  
R
94  
MVR_PP  
W
95  
MVW_PP  
I2C0_CFG  
I2C0_SCR  
I2C0_DR  
I2C0_MSCR  
INT_CLR0  
INT_CLR1  
INT_CLR2  
INT_CLR3  
INT_MSK3  
INT_MSK2  
INT_MSK0  
INT_MSK1  
INT_VC  
R
96  
RW  
R
97  
98  
RW  
#
W
99  
R
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RC  
W
#
R
W
R
RW  
RW  
RW  
RW  
RW  
#
DBC00DR0  
DBC00DR1  
DBC00DR2  
DBC00CR0  
DBC01DR0  
DBC01DR1  
DBC01DR2  
DBC01CR0  
DCC02DR0  
DCC02DR1  
DCC02DR2  
DCC02CR0  
DCC03DR0  
DCC03DR1  
DCC03DR2  
DCC03CR0  
DBC10DR0  
DBC10DR1  
DBC10DR2  
DBC10CR0  
DBC11DR0  
DBC11DR1  
DBC11DR2  
DBC11CR0  
DCC12DR0  
DCC12DR1  
DCC12DR2  
DCC12CR0  
DCC13DR0  
DCC13DR1  
DCC13DR2  
DCC13CR0  
AMX_IN  
W
AMUX_CFG  
PWM_CR  
RW  
#
ARF_CR  
RES_WDT  
DEC_DH  
#
CMP_CR0  
RW  
RW  
RW  
RW  
W
W
ASY_CR  
#
DEC_DL  
RW  
#
CMP_CR1  
RW  
RW  
#
DEC _CR0*  
DEC_CR1*  
MUL0_X  
#
ADC0_CR  
ADC1_CR  
SADC_DH  
SADC_DL  
TMP_DR0  
TMP_DR1  
TMP_DR2  
TMP_DR3  
W
W
#
W
MUL0_Y  
W
RW  
#
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
MUL0_DH  
MUL0_DL  
ACC0_DR1  
ACC0_DR0  
ACC0_DR3  
ACC0_DR2  
CPU A  
R
R
R
#
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
#
W
RW  
#
#
RDI0RI  
W
RDI0SYN  
RDI0IS  
CPU_T1  
#
RW  
#
ACB00CR1*  
ACB00CR2*  
CPU_T2  
#
RDI0LT0  
RDI0LT1  
RDI0RO0  
RDI0RO1  
RDI0DSM  
RDI1RI  
CPU_X  
#
#
CPU PCL  
CPU_PCH  
CPU_SP  
#
W
#
RW  
#
ACB01CR1*  
ACB01CR2*  
#
CPU_F  
I
#
CPU_TST0  
CPU_TST1  
CPU_TST2  
CPU TST3  
DAC1_D  
RW  
RW  
RW  
#
W
RDI1SYN  
RDI1IS  
RW  
#
RDI1LT0  
RDI1LT1  
RDI1RO0  
RDI1RO1  
RDI1DSM  
#
RW  
RW  
#
W
DAC0_D  
RW  
#
CPU_SCR1  
CPU_SCR0  
#
Shaded fields are Reserved and must not be accessed.  
# Access is bit specific. * has a different meaning.  
Document Number: 001-43084 Rev. *Q  
Page 11 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
Table 6. Register Map Bank 1 Table: Configuration Space  
Name  
Addr (1,Hex) Access Name  
Addr (1,Hex) Access Name  
Addr (1,Hex) Access Name  
Addr (1,Hex) Access  
PRT0DM0  
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
RW  
RW  
RW  
ASC10CR0*  
80*  
81  
82  
83  
84*  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
#
PRT0DM1  
PRT0IC0  
PRT0IC1  
PRT1DM0  
PRT1DM1  
PRT1IC0  
PRT1IC1  
PRT2DM0  
PRT2DM1  
PRT2IC0  
PRT2IC1  
PRT3DM0  
PRT3DM1  
PRT3IC0  
PRT3IC1  
PRT4DM0  
PRT4DM1  
PRT4IC0  
PRT4IC1  
1
2
3
4
RW  
RW  
RW  
ASD11CR0*  
5
6
7
8
RW  
RW  
RW  
9
RW  
RW  
RW  
#
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
CMP0CR1  
CMP0CR2  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
#
GDI_O_IN  
GDI_E_IN  
GDI_O_OU  
GDI_E_OU  
VDAC50CR0  
CMP1CR1  
CMP1CR2  
VDAC51CR0  
CSCMPCR0  
CSCMPGOEN  
CSLUTCR0  
CMPCOLMUX  
CMPPWMCR  
CMPFLTCR  
CMPCLK1  
MUX_CR0  
MUX_CR1  
MUX_CR2  
MUX_CR3  
DAC_CR1#  
OSC_GO_EN  
OSC_CR4  
OSC_CR3  
OSC_CR0  
OSC_CR1  
OSC_CR2  
VLT_CR  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
CMPCLK0  
DBC00FN  
DBC00IN  
CLK_CR0  
GDI_O_IN_CR  
GDI_E_IN_CR  
CLK_CR1  
DBC00OU  
DBC00CR1  
DBC01FN  
DBC01IN  
ABF_CR0  
GDI_O_OU_CR A2  
GDI_E_OU_CR A3  
AMD_CR0  
CMP_GO_EN  
RTC_H  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
VLT_CMP  
ADC0_TR*  
ADC1_TR*  
V2BG_TR  
IMO_TR  
CMP_GO_EN1 65  
RTC_M  
RW  
RW  
RW  
W
DBC01OU  
DBC01CR1  
DCC02FN  
DCC02IN  
DCC02OU  
DBC02CR1  
DCC03FN  
DCC03IN  
DCC03OU  
DBC03CR1  
DBC10FN  
DBC10IN  
AMD_CR1  
ALT_CR0  
ALT_CR1  
CLK_CR2  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76*  
77*  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
RTC_S  
RTC_CR  
SADC_CR0  
SADC_CR1  
SADC_CR2  
ILO_TR  
W
BDG_TR  
ECO_TR  
MUX_CR4  
MUX_CR5  
MUX_CR6  
MUX_CR7  
CPU A  
RW  
W
CLK_CR3  
TMP_DR0  
TMP_DR1  
TMP_DR2  
TMP_DR3  
SADC_CR3TRIM AB  
SADC_CR4  
I2C0_AD  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
RW  
RW  
RW  
RW  
#
RDI0RI  
RDI0SYN  
RDI0IS  
CPU_T1  
#
DBC10OU  
DBC10CR1  
DBC11FN  
DBC11IN  
ACB00CR1*  
ACB00CR2*  
CPU_T2  
#
RDI0LT0  
RDI0LT1  
RDI0RO0  
RDI0RO1  
RDI0DSM  
RDI1RI  
CPU_X  
#
CPU_PCL  
CPU_PCH  
CPU_SP  
CPU_F  
#
#
DBC11OU  
DBC11CR1  
DCC12FN  
DCC12IN  
DCC12OU  
DBC12CR1  
DCC13FN  
DCC13IN  
DCC13OU  
DBC13CR1  
ACB01CR1*  
ACB01CR2*  
#
I
FLS_PR0  
FLS TR  
RW  
W
RDI1SYN  
RDI1IS  
FLS_PR1  
RW  
RDI1LT0  
RDI1LT1  
RDI1RO0  
RDI1RO1  
RDI1DSM  
FAC_CR0  
SW  
RW  
#
DAC_CR0#  
CPU_SCR1  
CPU_SCR0  
#
Shaded fields are Reserved and must not be accessed.  
# Access is bit specific. * has a different meaning.  
Document Number: 001-43084 Rev. *Q  
Page 12 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
Electrical Specifications  
This section presents the DC and AC electrical specifications of this PSoC device family. For the latest electrical specifications, check  
the most recent data sheet by visiting http://www.cypress.com.  
Specifications are valid for –40 °C T 85 °C and T 100 °C, except where noted. Specifications for devices running at greater  
A
J
than 12 MHz are valid for –40 °C T 70 °C and T 82 °C.  
A
J
Figure 5. Voltage versus Operating Frequency  
5.25  
4.75  
3.00  
93 kHz  
12 MHz  
24 MHz  
CPU Frequency  
Document Number: 001-43084 Rev. *Q  
Page 13 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
Absolute Maximum Ratings  
Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.  
Table 7. Absolute Maximum Ratings  
Symbol  
TSTG  
Description  
Storage temperature  
Min  
Typ  
Max  
Units  
Notes  
–55  
+100  
°C  
Higher storage  
temperatures reduce  
data retention time  
TBAKETEMP Bake temperature  
125  
See Package  
label  
°C  
TBAKETIME  
Bake time  
See package  
label  
72  
Hours  
TA  
Ambient temperature with power applied  
Supply voltage on Vdd relative to Vss  
DC input voltage  
–40  
–0.5  
+85  
+6.0  
°C  
V
Vdd  
VIO  
VIOz  
IMIO  
ESD  
LU  
Vss - 0.5  
Vss - 0.5  
–25  
Vdd + 0.5  
Vdd + 0.5  
+50  
V
DC voltage applied to tristate  
Maximum current into any port pin  
Electr static discharge voltage  
Latch up current  
V
mA  
V
2000  
Human Body Model ESD  
200  
mA  
Operating Temperature  
Table 8. Operating Temperature  
Symbol  
TA  
TJ  
Description  
Min  
–40  
–40  
Typ  
Max  
+85  
Units  
Notes  
Ambient temperature  
Junction temperature  
°C  
+100  
°C The temperature rise  
from ambient to junction  
is package specific. See  
Table 29 on page 28. The  
user must limit the power  
consumption to comply  
with this requirement.  
Document Number: 001-43084 Rev. *Q  
Page 14 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
DC Electrical Characteristics  
DC Chip Level Specifications  
Table 9 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  
–40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C, and  
are for design guidance only, unless specified otherwise.  
Table 9. DC Chip Level Specifications  
Symbol  
Vdd  
Description  
Min  
3.0  
Typ  
Max  
5.25  
12  
Units  
Notes  
Supply voltage  
Supply current  
V
See Table 16 on page 19  
IDD  
7
mA Conditions are Vdd = 5.0 V,  
25°C, CPU = 3 MHz, 48 MHz disabled.  
VC1 = 1.5 MHz  
VC2 = 93.75 kHz  
VC3 = 93.75 kHz  
IDD3  
Supply current  
4
7
mA Conditions are Vdd = 3.3 V  
TA = 25 °C, CPU = 3 MHz  
48 MHz = Disabled  
VC1 = 1.5 MHz, VC2 = 93.75 kHz  
VC3 = 93.75 kHz  
ISB  
Sleep (Mode) Current with POR, LVD,  
Sleep Timer, and WDT[5]  
3
4
6.5  
25  
A Conditions are with internal slow speed  
oscillator, Vdd = 3.3 V  
–40°C <= TA <= 55°C  
ISBH  
Sleep (Mode) Current with POR, LVD,  
Sleep Timer, and WDT at high  
temperature[5]  
A Conditions are with internal slow speed  
oscillator, Vdd = 3.3 V  
55 °C < TA <= 85 °C  
ISBXTL  
ISBXTLH  
VREF  
Sleep (Mode) Current with POR, LVD,  
Sleep Timer, WDT, and external crystal[5]  
4
7.5  
A Conditions are with properly loaded,  
1 W max, 32.768 kHz crystal.  
Vdd = 3.3 V, –40 °C <= TA <= 55 °C  
Sleep (Mode) Current with POR, LVD,  
Sleep Timer, WDT, and external crystal at  
high temperature [5]  
5
26  
A Conditions are with properly loaded,  
1W max, 32.768 kHz crystal.  
Vdd = 3.3 V, 55 °C < TA <= 85 °C  
Reference Voltage (Bandgap)  
1.275  
1.3  
1.325  
V
Trimmed for appropriate Vdd  
Note  
5. Standby current includes all functions (POR, LVD, WDT, Sleep Time) needed for reliable system operation. This must be compared with devices that have similar  
functions enabled.  
Document Number: 001-43084 Rev. *Q  
Page 15 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
DC GPIO Specifications  
Table 10 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  
–40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and  
are for design guidance only, unless otherwise specified.  
Table 10. DC GPIO Specifications  
Symbol  
RPU  
Description  
Pull-up resistor  
Min  
Typ  
5.6  
5.6  
Max  
Units  
k  
Notes  
4
4
8
8
RPD  
VOH  
Pull-down resistor  
High output level  
k  
Vdd – 1.0  
V
IOH = 10 mA, Vdd = 4.75 to 5.25 V  
(8 total loads, 4 on even port pins (for  
example, P0[2], P1[4]), 4 on odd port  
pins (for example, P0[3], P1[5])).  
80 mA maximum combined IOH budget  
VOL  
Low output level  
0.75  
V
IOL = 25 mA, Vdd = 4.75 to 5.25 V  
(8 total loads, 4 on even port pins (for  
example, P0[2], P1[4]), 4 on odd port  
pins (for example, P0[3], P1[5])).  
150 mA maximum combined IOL budget.  
IOH  
IOL  
High level source current  
Low level sink current  
10  
25  
mA VOH = Vdd – 1.0 V, see the limitations of  
the total current in the note for VOH.  
mA VOL = 0.75 V, see the limitations of the  
total current in the note for VOL.  
VIL  
VIH  
VH  
IIL  
Input Low level  
2.1  
0.8  
V
V
Vdd = 3.0 to 5.25  
Vdd = 3.0 to 5.25  
Input High level  
Input hysterisis  
60  
1
mV  
Input leakage (absolute value)  
Capacitive load on pins as input  
nA Gross tested to 1 A  
CIN  
3.5  
10  
pF Package and pin dependent.  
Temp = 25 °C  
COUT  
Capacitive load on pins as output  
3.5  
10  
pF Package and pin dependent.  
Temp = 25 °C  
Document Number: 001-43084 Rev. *Q  
Page 16 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
DC Operational Amplifier Specifications  
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to  
5.25 V and –40 °C TA 85 °C, 3.0 V to 3.6 V and –40 °C TA 85 °C respectively. Typical parameters apply to 5 V or 3.3 V at 25 °C  
and are for design guidance only.  
Table 11. 5 V DC Operational Amplifier Specifications  
Symbol  
Description  
Min  
Typ  
2.5  
10  
Max  
15  
Units  
mV  
Notes  
VOSOA  
Input offset voltage (absolute value)  
TCVOSOA Average input offset voltage drift  
V/°C  
[6]  
IEBOA  
Input leakage current (Port 0 Analog Pins)  
Input capacitance (Port 0 Analog Pins)  
200  
4.5  
pA Gross tested to 1 A  
CINOA  
9.5  
pF Package and pin dependent.  
Temp = 25 °C  
VCMOA  
Common mode Voltage Range  
0.0  
Vdd - 1  
V
Table 12. 3.3 V DC Operational Amplifier Specifications  
Symbol  
Description  
Min  
Typ  
2.5  
10  
Max  
15  
Units  
Notes  
VOSOA  
Input offset voltage (absolute value)  
mV  
TCVOSOA Average input offset voltage drift  
V/°C  
[6]  
IEBOA  
Input leakage current (Port 0 Analog Pins)  
Input capacitance (Port 0 Analog Pins)  
200  
4.5  
pA Gross tested to 1 A  
CINOA  
9.5  
pF Package and pin dependent.  
Temp = 25 °C  
VCMOA  
Common mode voltage range  
0
Vdd – 1  
V
Note  
6. Atypical behavior: I  
of Port 0 Pin 0 is below 1 nA at 25 °C; 50 nA over temperature. Use Port 0 Pins 1-7 for the lowest leakage of 200 nA.  
EBOA  
Document Number: 001-43084 Rev. *Q  
Page 17 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
DC Low Power Comparator Specifications  
Table 13 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  
–40 °C TA 85 °C, 3.0 V to 3.6 V and –40 °C TA 85 °C respectively. Typical parameters apply to 5 V at 25 °C and are for design  
guidance only.  
Table 13. DC Low Power Comparator Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
VREFLPC  
Low power comparator (LPC) reference  
voltage range  
0.2  
Vdd – 1  
V
VOSLPC  
LPC voltage offset  
2.5  
30  
mV  
SAR10 ADC DC Specifications  
Table 14 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  
–40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V or 3.3 V at 25 °C and  
are for design guidance only.  
Table 14. SAR10 ADC DC Specifications  
Symbol  
Vadcvref  
Description  
Min  
Typ  
Max Units  
5.25  
Notes  
Reference voltage at pin P2[5] when configured  
as ADC reference voltage  
3.0  
V
When VREF is buffered inside  
ADC, the voltage level at P2[5]  
(when configured as ADC  
reference voltage) must be  
always maintained to be at least  
300mVlessthanthechipsupply  
voltage level on Vdd pin.  
(Vadcvref < Vdd)  
Iadcvref  
Current when P2[5] is configured as ADC VREF  
0.5  
mA Disables the internal voltage  
reference buffer  
INL at 10 bits Integral Nonlinearity  
DNL at 10 bits Differential Nonlinearity  
–2.5  
–5.0  
–1.5  
–4.0  
2.5  
5.0  
1.5  
4.0  
150  
LSB For VDD 3.0 V and Vref 3.0 V  
LSB For VDD < 3.0 V or Vref < 3.0 V  
LSB For VDD3.0 V and Vref 3.0 V  
LSB For VDD < 3.0 V or Vref < 3.0 V  
ksps Resolution 10 bits  
SPS  
Sample per second  
Document Number: 001-43084 Rev. *Q  
Page 18 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
DC Analog Mux Bus Specifications  
Table 15 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  
–40 °C TA 85 °C or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V or 3.3 V at 25 °C and  
are for design guidance only.  
Table 15. DC Analog Mux Bus Specifications  
Symbol  
RSW  
Rgnd  
Description  
Min  
Typ  
Max Units  
Notes  
Switch Resistance to Common Analog Bus  
Resistance of Initialization Switch to gnd  
400  
800  
Vdd 3.00  
DC POR and LVD Specifications  
Table 16 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  
–40 °C TA 85 °C or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V or 3.3 V at 25 °C and  
are for design guidance only.  
Table 16. DC POR and LVD Specifications  
Symbol  
Description  
Vdd Value for PPOR Trip  
PORLEV[1:0] = 01b  
PORLEV[1:0] = 10b  
Min  
Typ  
Max Units  
Notes  
Vdd must be greater than or  
equal to 3.0 V during startup,  
reset from the XRES pin, or  
reset from Watchdog.  
VPPOR1  
VPPOR2  
2.82  
4.55  
2.95  
4.70  
V
V
Vdd Value for LVD Trip  
VM[2:0] = 010b  
VM[2:0] = 011b  
VM[2:0] = 100b  
VM[2:0] = 101b  
VM[2:0] = 110b  
VM[2:0] = 111b  
VLVD2  
VLVD3  
VLVD4  
VLVD5  
VLVD6  
VLVD7  
2.95  
3.06  
4.37  
4.50  
4.62  
4.71  
3.02  
3.13  
4.48  
4.64  
4.73  
4.81  
3.09  
3.20  
4.55  
4.75  
4.83  
4.95  
V
V
V
V
V
V
Document Number: 001-43084 Rev. *Q  
Page 19 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
DC Programming Specifications  
Table 17 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  
–40 °C TA 85 °C or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V or 3.3 V at 25 °C and  
are for design guidance only.  
Table 17. DC Programming Specifications  
Symbol  
VDDP  
Description  
Min  
Typ  
Max  
Units  
Notes  
4.5  
5.0  
5.5  
V
VDD for programming and erase  
This specification applies to  
the functional requirements of  
external programmer tools  
3.0  
5.1  
3.0  
3.1  
5.2  
3.2  
5.3  
V
V
V
VDDLV  
Low VDD for verify  
High VDD for verify  
This specification applies to  
the functional requirements of  
external programmer tools  
VDDHV  
This specification applies to  
the functional requirements of  
external programmer tools  
5.25  
VDDIWRITE Supply voltage for flash write operation  
This specification applies to  
this device when it is executing  
internal flash writes  
IDDP  
VILP  
Supply Current during Programming or Verify  
5
25  
mA  
V
Input Low Voltage during Programming or  
Verify  
0.8  
VIHP  
IILP  
Input High Voltage during Programming or  
Verify  
2.2  
0.2  
V
Input Current when Applying VILP to P1[0] or  
P1[1] during Programming or Verify  
mA Driving internal pull down  
resistor  
IIHP  
Input Current when Applying VIHP to P1[0] or  
P1[1] during Programming or Verify  
1.5  
mA Driving internal pull down  
resistor  
VOLV  
VOHV  
Output Low Voltage during Programming or  
Verify  
Vss + 0.75  
Vdd  
V
Output High Voltage during Programming or  
Verify  
Vdd - 1.0  
V
FlashENPB Flash Endurance (per block)[8]  
FlashENT Flash Endurance (total)[7]  
50,000  
1,800,000  
10  
Erase/write cycles per block  
Erase/write cycles  
FlashDR  
Flash Data Retention  
Years  
DC I2C Specifications  
Table 18 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  
–40 °C TA 85 °C or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V or 3.3 V at 25 °C and  
are for design guidance only.  
Table 18. DC I2C Specifications  
Parameter  
Description  
Min  
Typ  
Max  
0.3 × VDD  
0.25 × VDD  
Units  
Notes  
[9]  
VILI2C  
Input low level  
Input high level  
V
V
V
3.0 V VDD 3.6 V  
4.75 V VDD 5.25 V  
3.0 V VDD 5.25 V  
[9]  
VIHI2C  
0.7 × VDD  
Note  
7. A maximum of 36 x 50,000 block endurance cycles is allowed. This may be balanced between operations on 36x1 blocks of 50,000 maximum cycles each, 36x2  
blocks of 25,000 maximum cycles each, or 36x4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36x50,000 and that no single block  
ever sees more than 50,000 cycles).  
For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing.  
Refer to the Flash APIs Application Note AN2015 at http://www.cypress.com under Application Notes for more information.  
8. The 50,000 cycle Flash endurance per block is guaranteed only if the Flash operates within one voltage range. Voltage ranges are 3.0 V to 3.6 V and 4.75 V to 5.25 V  
2
9. All GPIOs meet the DC GPIO V and V specifications found in the DC GPIO specifications sections.The I C GPIO pins also meet the above specs.  
IL  
IH  
Document Number: 001-43084 Rev. *Q  
Page 20 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
AC Electrical Characteristics  
AC Chip Level Specifications  
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to  
5.25 V and –40 °C TA 85 °C or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V or 3.3 V at  
25 °C and are for design guidance only.  
Table 19. 5 V and 3.3 V AC Chip-Level Specifications  
Symbol  
Description  
Min Min(%) Typ  
Max  
Max(%) Units  
Notes  
[10,11,12]  
F
Internal Main Oscillator Frequency for 22.8  
24 MHz  
24  
MHz Trimmed for 5 V or 3.3 V  
operation using factory trim  
values. See Figure 5 on page  
13. SLIMO mode = 0 < 85  
25.2  
IMO24  
[10,11,12]  
F
Internal Main Oscillator Frequency for  
6 MHz  
5.5  
6
MHz Trimmed for 5 V or 3.3 V  
operation using factory trim  
values. See Figure 5 on page  
13.  
8
6.5  
8
IMO6  
SLIMO mode = 0 < 85.  
[10,11]  
F
CPU Frequency (5 V Nominal)  
CPU Frequency (3.3 V Nominal)  
0.089  
24  
MHz 24 MHz only for  
SLIMO mode = 0.  
24.6  
12.3  
CPU1  
[11,12]  
F
F
0.089  
0
12  
48  
MHz SLIMO mode = 0.  
CPU2  
0
[10,11,13]  
Digital PSoC Block Frequency (5 V  
MHz Refer to Table 23 on page 23.  
49.2  
BLK5  
Nominal)  
[11,13]  
F
F
F
Digital PSoC Block Frequency (3.3 V  
Nominal)  
0
15  
5
24  
32  
MHz  
kHz  
24.6  
BLK33  
32K1  
Internal Low Speed Oscillator  
Frequency  
85  
Untrimmed Internal Low Speed Oscil-  
lator Frequency  
100  
kHz The ILO is not adjusted with  
the factory trim values until  
after the CPU starts running.  
See the “System Resets”  
section in the Technical  
32KU  
Reference Manual.  
T
External Reset Pulse Width  
24 MHz Duty Cycle  
10  
µs  
XRST  
DC24M  
40  
20  
50  
50  
60  
80  
%
%
DC  
Internal Low Speed Oscillator Duty  
Cycle  
ILO  
F
F
48 MHz Output Frequency  
46.8  
48.0  
49.2  
12.3  
250  
100  
MHz Trimmed. Utilizing factory trim  
values.  
OUT48M  
MAX  
Maximum frequency of signal on row  
input or row output  
MHz  
SR  
Power supply slew rate  
V/ms Vdd slew rate during power  
up.  
POWERUP  
T
Time from end of POR to CPU  
executing code  
ms  
POWERUP  
[14]  
tjit_IMO  
24 MHz IMO cycle-to-cycle jitter (RMS)  
200  
300  
700  
900  
ps  
24 MHz IMO long term N cycle-to-cycle  
jitter (RMS)  
ps N = 32  
24 MHz IMO period jitter (RMS)  
100  
200  
300  
400  
800  
ps  
[14]  
tjit_PLL  
24 MHz IMO cycle-to-cycle jitter (RMS)  
ps  
24 MHz IMO long term N cycle-to-cycle  
jitter (RMS)  
1200  
ps N = 32  
24 MHz IMO period jitter (RMS)  
100  
700  
ps  
Notes  
10. Valid only for 4.75 V < Vdd < 5.25 V.  
11. Accuracy derived from Internal Main Oscillator with appropriate trim for Vdd range.  
12. 3.0 V < Vdd < 3.6 V.  
13. Refer to the individual user module data sheets for information on maximum frequencies for user modules.  
14. Refer to Cypress Jitter Specifications, Understanding Datasheet Jitter Specifications for Cypress Timing Products for more information.  
Document Number: 001-43084 Rev. *Q  
Page 21 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
AC GPIO Specifications  
Table 20 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  
–40 °C TA 85 °C or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V or 3.3 V at 25 °C and  
are for design guidance only.  
Table 20. 5 V and 3.3 V AC GPIO Specifications  
Symbol  
FGPIO  
Description  
GPIO operating frequency  
Min  
0
Typ  
Max  
12  
18  
18  
Units  
Notes  
MHz Normal Strong Mode  
TRiseF  
TFallF  
TRiseS  
TFallS  
Rise time, normal strong mode, Cload = 50 pF  
Fall time, normal strong mode, Cload = 50 pF  
Rise time, slow strong mode, Cload = 50 pF  
Fall time, slow strong mode, Cload = 50 pF  
3
ns  
ns  
ns  
ns  
Vdd = 4.5 to 5.25 V, 10% to 90%  
2
Vdd = 4.5 to 5.25 V, 10% to 90%  
Vdd = 3 to 5.25 V, 10% to 90%  
Vdd = 3 to 5.25 V, 10% to 90%  
7
27  
22  
7
Figure 6. GPIO Timing Diagram  
90%  
GPIO  
Pin  
Output  
Voltage  
10%  
TRiseF  
TRiseS  
TFallF  
TFallS  
AC Operational Amplifier Specifications  
Table 21 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  
–40 °C TA 85 °C or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V or 3.3 V at 25 °C and  
are for design guidance only.  
Table 21. AC Operational Amplifier Specifications  
Symbol  
TCOMP  
Description  
Min  
Typ  
Max  
Units  
ns Vdd 3.0 V  
Notes  
Comparator Mode Response Time, 50 mV  
100  
AC Low Power Comparator Specifications  
Table 22 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  
–40 °C TA 85 °C or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V at 25 °C and are for  
design guidance only.  
Table 22. AC Low Power Comparator Specifications  
Symbol  
TRLPC  
Description  
LPC response time  
Min  
Typ  
Max  
Units  
Notes  
50  
s 50 mV overdrive comparator  
reference set within VREFLPC  
Document Number: 001-43084 Rev. *Q  
Page 22 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
AC Digital Block Specifications  
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to  
5.25 V and –40 °C TA 85 °C or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V or 3.3 V, at  
25 °C and are for design guidance only.  
Table 23. AC Digital Block Specifications  
Function  
Description  
Min  
Typ  
Max  
Units  
Notes  
All functions Block Input Clock Frequency  
Vdd 4.75 V  
50.4[15] MHz  
25.2[15] MHz  
Vdd < 4.75 V  
Timer  
Input Clock Frequency  
No Capture, Vdd 4.75 V  
No Capture, Vdd < 4.75 V  
With Capture  
50.4[15] MHz  
25.2[15] MHz  
25.2[15] MHz  
Capture Pulse Width  
Input Clock Frequency  
No Enable Input, Vdd 4.75 V  
No Enable Input, Vdd < 4.75 V  
With Enable Input  
50[16]  
ns  
Counter  
Dead Band  
50.4[15] MHz  
25.2[15] MHz  
25.2[15] MHz  
Enable Input Pulse Width  
Kill Pulse Width  
50[16]  
ns  
Asynchronous Restart Mode  
Synchronous Restart Mode  
Disable Mode  
20  
ns  
ns  
ns  
50[16]  
50[16]  
Input Clock Frequency  
Vdd 4.75 V  
50.4[15] MHz  
25.2[15] MHz  
Vdd < 4.75 V  
CRCPRS  
(PRS Mode)  
Input Clock Frequency  
Vdd 4.75 V  
50.4[15] MHz  
25.2[15] MHz  
25.2[15] MHz  
Vdd < 4.75 V  
CRCPRS  
Input Clock Frequency  
(CRC Mode)  
SPIM  
Input Clock Frequency  
8.4[15]  
MHz The SPI serial clock (SCLK)  
frequency is equal to the input  
clock frequency divided by 2.  
SPIS  
Input Clock (SCLK) Frequency  
4.2[15]  
MHz The input clock is the SPI SCLK in  
SPIS mode.  
Width of SS_Negated Between Transmissions 50[16]  
Input Clock Frequency  
ns  
Transmitter  
Receiver  
The baud rate is equal to the input  
clock frequency divided by 8.  
Vdd 4.75 V, 2 Stop Bits  
Vdd 4.75 V, 1 Stop Bit  
Vdd < 4.75 V  
50.4[15] MHz  
25.2[15] MHz  
25.2[15] MHz  
Input Clock Frequency  
Vdd 4.75 V, 2 Stop Bits  
Vdd 4.75 V, 1 Stop Bit  
Vdd < 4.75 V  
The baud rate is equal to the input  
clock frequency divided by 8.  
50.4[15] MHz  
25.2[15] MHz  
25.2[15] MHz  
Notes  
15. Accuracy derived from IMO with appropriate trim for V range.  
DD  
16. 50 ns minimum input pulse width is based on the input synchronizers running at 24 MHz (42 ns nominal period).  
Document Number: 001-43084 Rev. *Q  
Page 23 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
AC External Clock Specifications  
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to  
5.25 V and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V or 3.3 V at  
25 °C and are for design guidance only.  
Table 24. 5 V AC External Clock Specifications  
Symbol  
Description  
Min  
0.093  
20.6  
20.6  
150  
Typ  
Max  
24.6  
5300  
Units  
MHz  
ns  
Notes  
FOSCEXT  
Frequency  
High Period  
Low Period  
ns  
Power Up IMO to Switch  
s  
Table 25. 3.3 V AC External Clock Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
FOSCEXT  
Frequency with CPU Clock divide by 1  
0.093  
12.3  
MHz Maximum CPU frequency is  
12 MHz at 3.3 V. With the CPU  
clock divider set to 1, the  
external clock must adhere to  
the maximum frequency and  
duty cycle requirements.  
FOSCEXT  
Frequency with CPU Clock divide by 2 or greater 0.186  
24.6  
MHz If the frequency of the external  
clock is greater than 12 MHz,  
the CPU clock divider must be  
set to 2 or greater. In this case,  
the CPU clock divider ensures  
that the fifty percent duty cycle  
requirement is met.  
High Period with CPU Clock divide by 1  
Low Period with CPU Clock divide by 1  
Power Up IMO to Switch  
41.7  
41.7  
150  
5300  
ns  
ns  
s  
SAR10 ADC AC Specifications  
Table 26 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  
–40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and  
are for design guidance only.  
Table 26. SAR10 ADC AC Specifications  
Symbol  
Freq3  
Freq5  
Description  
Input clock frequency 3 V  
Input clock frequency 5 V  
Min  
Typ  
Max  
2.7  
Units  
MHz  
MHz  
Notes  
2.7  
Document Number: 001-43084 Rev. *Q  
Page 24 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
AC Programming Specifications  
Table 27 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  
–40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V, or 3.3 V at 25 °C and  
are for design guidance only.  
Table 27. AC Programming Specifications  
Symbol  
TRSCLK  
Description  
Rise Time of SCLK  
Min  
1
Typ  
Max  
20  
20  
Units  
Notes  
ns  
TFSCLK  
TSSCLK  
THSCLK  
FSCLK  
Fall Time of SCLK  
1
ns  
Data Set up Time to Falling Edge of SCLK  
Data Hold Time from Falling Edge of SCLK  
Frequency of SCLK  
40  
40  
0
ns  
ns  
8
MHz  
FSCLK3  
TERASEB  
TWRITE  
TDSCLK  
TDSCLK3  
TERASEALL  
Frequency of SCLK3  
0
6
MHz VDD < 3.6 V  
Flash Erase Time (Block)  
10  
40  
ms  
ms  
Flash Block Write Time  
Data Out Delay from Falling Edge of SCLK  
Data Out Delay from Falling Edge of SCLK  
Flash Erase Time (Bulk)  
55  
65  
ns 3.6 < Vdd; at 30 pF Load  
ns 3.0 Vdd 3.6; at 30 pF Load  
40  
ns  
ms  
ms  
TPROGRAM_HOT Flash Block Erase + Flash Block Write Time  
TPROGRAM_COLD Flash Block Erase + Flash Block Write Time  
100  
200  
Document Number: 001-43084 Rev. *Q  
Page 25 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
AC I2C Specifications  
Table 28 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  
–40 °C TA 85 °C, and 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at  
25 °C and are for design guidance only.  
Table 28. AC Characteristics of the I2C SDA and SCL Pins for Vdd 3.0 V  
Standard Mode  
Fast Mode  
Symbol  
FSCLI2C  
Description  
SCL Clock Frequency  
Units  
Notes  
Min  
0
Max  
100  
Min  
0
Max  
400  
kHz  
THDSTAI2C  
Hold Time (repeated) START Condition.  
After this period, the first clock pulse is  
generated.  
4.0  
0.6  
s  
TLOWI2C  
THIGHI2C  
TSUSTAI2C  
LOW Period of the SCL Clock  
HIGH Period of the SCL Clock  
4.7  
4.0  
4.7  
1.3  
0.6  
0.6  
s  
s  
s  
Setup Time for a Repeated START  
Condition  
THDDATI2C  
TSUDATI2C  
TSUSTOI2C  
TBUFI2C  
Data Hold Time  
0
0
100[17]  
0.6  
s  
ns  
s  
s  
Data Setup Time  
250  
4.0  
4.7  
Setup Time for STOP Condition  
Bus Free Time Between a STOP and  
START Condition  
1.3  
TSPI2C  
Pulse Width of spikes are suppressed by the  
Input Filter  
0
50  
ns  
Figure 7. Definition for Timing for Fast/Standard Mode on the I2C Bus  
I2C_SDA  
TSUDATI2C  
THDSTAI2C  
TSPI2C  
TSUSTAI2C  
TBUFI2C  
THDDATI2C  
I2C_SCL  
THIGHI2C TLOWI2C  
TSUSTOI2C  
P
S
S
Sr  
Repeated START Condition  
STOP Condition  
START Condition  
Note  
17. A Fast-Mode I2C-bus device may be used in a Standard-Mode I2C-bus system, but the requirement T  
250 ns must then be met. This is automatically the  
SUDATI2C  
case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit  
to the SDA line t + T = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.  
rmax  
SUDATI2C  
Document Number: 001-43084 Rev. *Q  
Page 26 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
Packaging Information  
Figure 8. 28-pin SOIC  
51-85026 *F  
Figure 9. 44-pin TQFP  
51-85064 *E  
Document Number: 001-43084 Rev. *Q  
Page 27 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
Thermal Impedances  
Table 29. Thermal Impedances per Package  
[19]  
Package  
28-pin SOIC  
44-pin TQFP  
Typical JA  
68 °C/W  
61 °C/W  
Solder Reflow Specifications  
Table 30 shows the solder reflow temperature limits that must not be exceeded.  
Table 30. Solder Reflow Specifications  
Maximum Peak Temperature  
Package  
Maximum Time above TC – 5 °C  
(TC)  
28-pin SOIC  
44-pin TQFP  
260 °C  
260 °C  
30 seconds  
30 seconds  
Ordering Information  
The following table lists the key package features and ordering codes of this PSoC device family.  
Table 31. PSoC Device Family Key Features and Ordering Information  
Package  
Ordering Code  
28-pin SOIC  
CY8C21345-24SXI  
CY8C21345-24SXIT  
CY8C22345-24SXI  
CY8C22345-24SXIT  
CY8C22545-24AXI  
8
512B  
512B  
1K  
4
4
8
8
8
8
6
6
6
6
6
6
24 24[18]  
24 24[18]  
24 24[18]  
24 24[18]  
38 38[18]  
38 38[18]  
0
0
0
0
0
0
Y
Y
Y
Y
Y
Y
–40 °C to +85 °C  
–40 °C to +85 °C  
–40 °C to +85 °C  
–40 °C to +85 °C  
–40 °C to +85 C  
–40 °C to +85 C  
28-pin SOIC (Tape and Reel)  
28-pin SOIC  
8
16  
16  
16  
16  
28-pin SOIC (Tape and Reel)  
44-pin TQFP  
1K  
1K  
44-pin TQFP (Tape and Reel) CY8C22545-24AXIT  
1K  
Ordering Code Definitions  
CY 8 C 2x xxx-SPxx  
Package Type:  
Thermal Rating:  
PX = PDIP Pb-free  
SX = SOIC Pb-free  
PVX = SSOP Pb-free  
LFX/LTX = QFN Pb-free  
AX = TQFP Pb-free  
C = Commercial  
I = Industrial  
E = Extended  
CPU Speed: 24 MHz  
Part Number  
Family Code (21, 22)  
Technology Code: C = CMOS  
Marketing Code: 8 = PSoC  
Company ID: CY = Cypress  
Note  
18. Ten direct inputs.  
19. T = T + POWER x   
JA  
J
A
Document Number: 001-43084 Rev. *Q  
Page 28 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
Acronyms  
Table 32 lists the acronyms that are used in this document.  
Table 32. Acronyms Used in this Datasheet  
Acronym  
AC  
Description  
alternating current  
Acronym  
MAC  
Description  
multiply-accumulate  
ADC  
API  
analog-to-digital converter  
application programming interface  
complementary metal oxide semiconductor  
central processing unit  
MCU  
MIPS  
PCB  
microcontroller unit  
million instructions per second  
printed circuit board  
CMOS  
CPU  
CRC  
CSD  
CT  
PGA  
PLL  
programmable gain amplifier  
phase-locked loop  
cyclic redundancy check  
CapSense sigma delta  
POR  
PPOR  
PRS  
PSoC®  
PWM  
QFN  
RTC  
power on reset  
continuous time  
precision power on reset  
pseudo-random sequence  
Programmable System-on-Chip  
pulse width modulator  
quad flat no leads  
DAC  
DC  
digital-to-analog converter  
direct current  
DNL  
differential nonlinearity  
ECO  
EEPROM  
external crystal oscillator  
electrically erasable programmable read-only  
memory  
real time clock  
FSK  
GPIO  
I/O  
frequency-shift keying  
general-purpose I/O  
input/output  
SAR  
successive approximation  
switched capacitor  
SC  
SLIMO  
SOIC  
SPI™  
SRAM  
SROM  
SSOP  
TQFP  
UART  
USB  
slow IMO  
ICE  
in-circuit emulator  
small-outline integrated circuit  
serial peripheral interface  
static random access memory  
supervisory read only memory  
shrink small-outline package  
thin quad flat pack  
IDE  
integrated development environment  
current DAC  
IDAC  
ILO  
internal low speed oscillator  
internal main oscillator  
integral nonlinearity  
IMO  
INL  
IrDA  
ISSP  
LPC  
LSB  
LVD  
infrared data association  
in-system serial programming  
low power comparator  
least-significant bit  
universal asynchronous receiver / transmitter  
universal serial bus  
WDT  
watchdog timer  
XRES  
external reset  
low voltage detect  
Reference Documents  
CY8C22x45 and CY8C21345 PSoC® Programmable System-on-Chip™ Technical Reference Manual (TRM) (001-48461)  
Design Aids – Reading and Writing PSoC® Flash – AN2015 (001-40459)  
Understanding Datasheet Jitter Specifications for Cypress Timing Products  
Document Number: 001-43084 Rev. *Q  
Page 29 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
Document Conventions  
Units of Measure  
Table 33 lists the units of measures.  
Table 33. Units of Measure  
Symbol  
kB  
Unit of Measure  
Symbol  
mV  
nA  
ns  
Unit of Measure  
1024 bytes  
degree Celsius  
kilohertz  
millivolts  
C  
nanoampere  
nanosecond  
ohm  
kHz  
k  
kilohm  
W
LSB  
MHz  
µA  
least significant bit  
megahertz  
microampere  
microsecond  
microvolt  
%
percent  
pF  
picofarad  
picosecond  
ps  
µs  
sps  
pA  
V
samples per second  
pikoampere  
volts  
µV  
mA  
mm  
ms  
milliampere  
millimeter  
µW  
W
microwatts  
watt  
millisecond  
Numeric Conventions  
Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or ‘3Ah’).  
Hexadecimal numbers may also be represented by a ‘0x’ prefix, the C coding convention. Binary numbers have an appended  
lowercase ‘b’ (for example, 01010100b’ or ‘01000011b’). Numbers not indicated by an ‘h’ or ‘b’ are decimals.  
Glossary  
active high  
1. A logic signal having its asserted state as the logic 1 state.  
2. A logic signal having the logic 1 state as the higher voltage of the two states.  
analog blocks  
The basic programmable opamp circuits. These are SC (switched capacitor) and CT (continuous time) blocks.  
These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain stages, and much more.  
analog-to-digital A device that changes an analog signal to a digital signal of corresponding magnitude. Typically, an ADC converts  
(ADC) a voltage to a digital number. The digital-to-analog (DAC) converter performs the reverse operation.  
API (Application A series of software routines that comprise an interface between a computer application and lower level services  
Programming  
Interface)  
and functions (for example, user modules and libraries). APIs serve as building blocks for programmers that  
create software applications.  
asynchronous  
A signal whose data is acknowledged or acted upon immediately, irrespective of any clock signal.  
bandgap  
reference  
A stable voltage reference design that matches the positive temperature coefficient of VT with the negative  
temperature coefficient of VBE, to produce a zero temperature coefficient (ideally) reference.  
bandwidth  
1. The frequency range of a message or information processing system measured in hertz.  
2. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or loss); it is  
sometimes represented more specifically as, for example, full width at half maximum.  
Document Number: 001-43084 Rev. *Q  
Page 30 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
Glossary (continued)  
bias  
1. A systematic deviation of a value from a reference value.  
2. The amount by which the average of a set of values departs from a reference value.  
3. The electrical, mechanical, magnetic, or other force (field) applied to a device to establish a reference level to  
operate the device.  
block  
buffer  
1. A functional unit that performs a single function, such as an oscillator.  
2. A functional unit that may be configured to perform one of several functions, such as a digital PSoC block or  
an analog PSoC block.  
1. A storage area for data that is used to compensate for a speed difference, when transferring data from one  
device to another. Usually refers to an area reserved for IO operations, into which data is read, or from which  
data is written.  
2. A portion of memory set aside to store data, often before it is sent to an external device or as it is received  
from an external device.  
3. An amplifier used to lower the output impedance of a system.  
bus  
1. A named connection of nets. Bundling nets together in a bus makes it easier to route nets with similar routing  
patterns.  
2. A set of signals performing a common function and carrying similar data. Typically represented using vector  
notation; for example, address[7:0].  
3. One or more conductors that serve as a common connection for a group of related devices.  
clock  
The device that generates a periodic signal with a fixed frequency and duty cycle. A clock is sometimes used to  
synchronize different logic blocks.  
comparator  
compiler  
An electronic circuit that produces an output voltage or current whenever two input levels simultaneously satisfy  
predetermined amplitude requirements.  
A program that translates a high level language, such as C, into machine language.  
configuration  
space  
In PSoC devices, the register space accessed when the XIO bit, in the CPU_F register, is set to ‘1’.  
crystal oscillator An oscillator in which the frequency is controlled by a piezoelectric crystal. Typically a piezoelectric crystal is less  
sensitive to ambient temperature than other circuit components.  
cyclicredundancy A calculation used to detect errors in data communications, typically performed using a linear feedback shift  
check (CRC)  
register. Similar calculations may be used for a variety of other purposes such as data compression.  
data bus  
A bi-directional set of signals used by a computer to convey information from a memory location to the central  
processing unit and vice versa. More generally, a set of signals used to convey data between digital functions.  
debugger  
A hardware and software system that allows the user to analyze the operation of the system under development.  
A debugger usually allows the developer to step through the firmware one step at a time, set break points, and  
analyze memory.  
dead band  
A period of time when neither of two or more signals are in their active state or in transition.  
digital blocks  
The 8-bit logic blocks that can act as a counter, timer, serial receiver, serial transmitter, CRC generator,  
pseudo-random number generator, or SPI.  
digital-to-analog A device that changes a digital signal to an analog signal of corresponding magnitude. The analog-to-digital (ADC)  
(DAC) converter performs the reverse operation.  
Document Number: 001-43084 Rev. *Q  
Page 31 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
Glossary (continued)  
duty cycle  
emulator  
The relationship of a clock period high time to its low time, expressed as a percent.  
Duplicates (provides an emulation of) the functions of one system with a different system, so that the second  
system appears to behave like the first system.  
external reset  
(XRES)  
An active high signal that is driven into the PSoC device. It causes all operation of the CPU and blocks to stop  
and return to a pre-defined state.  
flash  
An electrically programmable and erasable, non-volatile technology that provides users with the programmability  
and data storage of EPROMs, plus in-system erasability. Non-volatile means that the data is retained when power  
is off.  
Flash block  
The smallest amount of Flash ROM space that may be programmed at one time and the smallest amount of Flash  
space that may be protected. A Flash block holds 64 bytes.  
frequency  
gain  
The number of cycles or events per unit of time, for a periodic function.  
The ratio of output current, voltage, or power to input current, voltage, or power, respectively. Gain is usually  
expressed in dB.  
I2C  
A two-wire serial computer bus by Philips Semiconductors (now NXP Semiconductors). I2C is an Inter-Integrated  
Circuit. It is used to connect low-speed peripherals in an embedded system. The original system was created in  
the early 1980s as a battery control interface, but it was later used as a simple internal bus system for building  
control electronics. I2C uses only two bi-directional pins, clock and data, both running at +5 V and pulled high  
with resistors. The bus operates at 100 kbits/second in standard mode and 400 kbits/second in fast mode.  
ICE  
The in-circuit emulatorthat allowsusers to test the project ina hardware environment, while viewingthe debugging  
device activity in a software environment (PSoC Designer).  
input/output (I/O) A device that introduces data into or extracts data from a system.  
interrupt  
A suspension of a process, such as the execution of a computer program, caused by an event external to that  
process, and performed in such a way that the process can be resumed.  
interrupt service A block of code that normal code execution is diverted to when the M8C receives a hardware interrupt. Many  
routine (ISR)  
interrupt sources may each exist with its own priority and individual ISR code block. Each ISR code block ends  
with the RETI instruction, returning the device to the point in the program where it left normal program execution.  
jitter  
1. A misplacement of the timing of a transition from its ideal position. A typical form of corruption that occurs on  
serial data streams.  
2. The abrupt and unwanted variations of one or more signal characteristics, such as the interval between  
successive pulses, the amplitude of successive cycles, or the frequency or phase of successive cycles.  
low-voltage  
detect (LVD)  
A circuit that senses Vdd and provides an interrupt to the system when Vdd falls below a selected threshold.  
M8C  
An 8-bit Harvard-architecture microprocessor. The microprocessor coordinates all activity inside a PSoC by  
interfacing to the Flash, SRAM, and register space.  
master device  
A device that controls the timing for data exchanges between two devices. Or when devices are cascaded in  
width, the master device is the one that controls the timing for data exchanges between the cascaded devices  
and an external interface. The controlled device is called the slave device.  
Document Number: 001-43084 Rev. *Q  
Page 32 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
Glossary (continued)  
microcontroller  
An integrated circuit chip that is designed primarily for control systems and products. In addition to a CPU, a  
microcontroller typically includes memory, timing circuits, and IO circuitry. The reason for this is to permit the  
realization of a controller with a minimal quantity of chips, thus achieving maximal possible miniaturization. This  
in turn, reduces the volume and the cost of the controller. The microcontroller is normally not used for  
general-purpose computation as is a microprocessor.  
mixed-signal  
modulator  
noise  
The reference to a circuit containing both analog and digital techniques and components.  
A device that imposes a signal on a carrier.  
1. A disturbance that affects a signal and that may distort the information carried by the signal.  
2. The random variations of one or more characteristics of any entity such as voltage, current, or data.  
oscillator  
parity  
A circuit that may be crystal controlled and is used to generate a clock frequency.  
A technique for testing transmitting data. Typically, a binary digit is added to the data to make the sum of all the  
digits of the binary data either always even (even parity) or always odd (odd parity).  
phase-locked  
loop (PLL)  
An electronic circuit that controls an oscillator so that it maintains a constant phase angle relative to a reference  
signal.  
pinouts  
The pin number assignment: the relation between the logical inputs and outputs of the PSoC device and their  
physical counterparts in the printed circuit board (PCB) package. Pinouts involve pin numbers as a link between  
schematic and PCB design (both being computer generated files) and may also involve pin names.  
port  
A group of pins, usually eight.  
power on reset  
(POR)  
A circuit that forces the PSoC device to reset when the voltage is below a pre-set level. This is one type of hardware  
reset.  
PSoC®  
Cypress Semiconductor’s PSoC® is a registered trademark and Programmable System-on-Chip™ is a trademark  
of Cypress.  
PSoCDesigner™ The software for Cypress’ Programmable System-on-Chip technology.  
pulse width  
An output in the form of duty cycle which varies as a function of the applied measurand  
modulator (PWM)  
RAM  
An acronym for random access memory. A data-storage device from which data can be read out and new data  
can be written in.  
register  
reset  
A storage device with a specific capacity, such as a bit or byte.  
A means of bringing a system back to a know state. See hardware reset and software reset.  
ROM  
An acronym for read only memory. A data-storage device from which data can be read out, but new data cannot  
be written in.  
serial  
1. Pertaining to a process in which all events occur one after the other.  
2. Pertaining to the sequential or consecutive occurrence of two or more related activities in a single device or  
channel.  
settling time  
The time it takes for an output signal or value to stabilize after the input has changed from one value to another.  
Document Number: 001-43084 Rev. *Q  
Page 33 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
Glossary (continued)  
shift register  
slave device  
A memory storage device that sequentially shifts a word either left or right to output a stream of serial data.  
A device that allows another device to control the timing for data exchanges between two devices. Or when  
devices are cascaded in width, the slave device is the one that allows another device to control the timing of data  
exchanges between the cascaded devices and an external interface. The controlling device is called the master  
device.  
SRAM  
SROM  
An acronym for static random access memory. A memory device allowing users to store and retrieve data at a  
high rate of speed. The term static is used because, after a value has been loaded into an SRAM cell, it remains  
unchanged until it is explicitly altered or until power is removed from the device.  
An acronym for supervisory read only memory. The SROM holds code that is used to boot the device, calibrate  
circuitry, and perform Flash operations. The functions of the SROM may be accessed in normal user code,  
operating from Flash.  
stop bit  
A signal following a character or block that prepares the receiving device to receive the next character or block.  
synchronous  
1. A signal whose data is not acknowledged or acted upon until the next active edge of a clock signal.  
2. A system whose operation is synchronized by a clock signal.  
tri-state  
A function whose output can adopt three states: 0, 1, and Z (high-impedance). The function does not drive any  
value in the Z state and, in many respects, may be considered to be disconnected from the rest of the circuit,  
allowing another output to drive the same net.  
UART  
A UART or universal asynchronous receiver-transmitter translates between parallel bits of data and serial bits.  
user modules  
Pre-build, pre-tested hardware/firmware peripheral functions that take care of managing and configuring the lower  
level Analog and Digital PSoC Blocks. User Modules also provide high level API (Application Programming  
Interface) for the peripheral function.  
user space  
The bank 0 space of the register map. The registers in this bank are more likely to be modified during normal  
program execution and not just during initialization. Registers in bank 1 are most likely to be modified only during  
the initialization phase of the program.  
VDD  
A name for a power net meaning "voltage drain." The most positive power supply signal. Usually 5 V or 3.3 V.  
A name for a power net meaning "voltage source." The most negative power supply signal.  
VSS  
watchdog timer  
A timer that must be serviced periodically. If it is not serviced, the CPU resets after a specified period of time.  
Document Number: 001-43084 Rev. *Q  
Page 34 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
®
Appendix: Silicon Errata for the PSoC CY8C21x45, CY8C22x45 Product Family  
This section describes the errata for the CY8C21x45, CY8C22x45 family of PSoC devices. Details include errata trigger conditions,  
scope of impact, available workarounds, and silicon revision applicability.  
Contact your local Cypress Sales Representative if you have questions.  
Part Numbers Affected  
Part Number  
CY8C21345  
CY8C21645  
CY8C22045  
CY8C22345  
CY8C22545  
CY8C22645  
Device Characteristics  
All Variants  
All Variants  
All Variants  
All Variants  
All Variants  
All Variants  
CY8C21x45, CY8C22x45 Qualification Status  
Product Status: In Production  
Errata Summary  
The following table defines the errata applicable for this PSoC family device.  
Items  
Part Number  
Silicon Revision  
Fix Status  
1. Free Running Nonstop Reading  
All CY8C21x45, CY8C22x45  
All  
Silicon fix not planned. Use  
workaround.  
cause 7 LSB Pseudo Code Variation devices affected  
in SAR10ADC  
2. Internal Main Oscillator (IMO)  
Tolerance Deviation at Temperature devices affected  
Extremes  
All CY8C21x45, CY8C22x45  
All  
Silicon fix not planned. Use  
workaround.  
1. Free Running Nonstop Reading cause 7 LSB Pseudo Code Variation in SAR10ADC  
Problem Definition  
In free running mode, there can be a variation of up to 7 LSB in the digital output of SAR10 ADC.  
Parameters Affected  
Code Variation. This is not a specified parameter.  
It is defined as the number of unique output codes generated by the ADC for a given constant input voltage, in addition to the correct  
code. For example, for an input voltage of 2.000 V, the expected code is 190hex and the ADC generates three codes: 191hex, 190hex,  
and 192hex. The code variation is 2 LSB.  
Trigger Condition(S)  
SAR10 ADC is configured in the free running mode.  
Scope of Impact  
Inaccurate output is possible.  
Workaround  
This issue can be averted by using one or both of the following workarounds. Consult a Cypress representative for additional  
assistance.  
Use the averaging technique. That is, take multiple samples of the input, and use a digital averaging filter.  
Disable the free running mode before reading data out, and enable the free running mode after completing the read operation.  
Fix Status  
No silicon fix is planned.  
Document Number: 001-43084 Rev. *Q  
Page 35 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
2. Internal Main Oscillator (IMO) Tolerance Deviation at Temperature Extremes  
Problem Definition  
Asynchronous Digital Communications Interfaces may fail framing beyond 0 to 70 °C. This problem does not affect end-product usage  
between 0 and 70 °C.  
Parameters Affected  
The IMO frequency tolerance. The worst case deviation when operated below 0 °C and above +70 °C and within the upper and lower  
datasheet temperature range is ±5%.  
Trigger Condiiton(S)  
The asynchronous Rx/Tx clock source IMO frequency tolerance may deviate beyond the datasheet limit of ±2.5% when operated  
beyond the temperature range of 0 to +70 °C.  
Scope of Impact  
This problem may affect UART, IrDA, and FSK implementations.  
Workaround  
Implement a quartz crystal stabilized clock source on at least one end of the asynchronous digital communications interface.  
Fix Status  
The cause of this problem and its solution has been identified. No silicon fix is planned to correct the deficiency in silicon.  
Document Number: 001-43084 Rev. *Q  
Page 36 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
Document History Page  
Document Title: CY8C21345, CY8C22345, CY8C22545, PSoC® Programmable System-on-Chip  
Document Number: 001-43084  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
**  
2251907  
PMP /  
AESA  
See ECN New data sheet.  
*A  
*B  
2506377 EIJ / AESA  
See ECN Changed data sheet status to “Preliminary”. Changed part numbers to  
CY8C22x45. Updated data sheet template.  
Added 56-Pin OCD information. Added: “You must put filters on intended ADC  
input channels for anti-aliasing. This ensures that any out-of-band content is  
not folded into the Input Signal Band." To Section Analog System on page 4.  
Corrected Minimum Electro Static Discharge Voltage in Table 7 on page 14.  
2558750  
PMP /  
AESA  
08/28/2008 Updated Features on page 1, PSoC Core on page 3, Analog System on page 4.  
Changed DBB to DBC, and DCB to DCC in Register Tables Table 5 on page  
11 and Table 6 on page 12.  
Removed INL at 8 bit reference in Table 14 on page 18.  
Changed IDD3 value Table 16 on page 19 Typ:3.3 mA, Max 6 mA  
Added “3.0 V < Vdd < 3.6 V and -40C < TA < 85C, IMO can guarantee 5%  
accuracy only” to Table 19 on page 21.  
Updated data sheet template.  
*C  
2606793  
NUQ /  
AESA  
11/19/2008 Updated data sheet status to “Final”. Updated block diagram on page 1.  
Removed CY8C22045 56-Pin OCD information. Added part numbers  
CY8C21345, CY8C22345, and CY8C22545. For more details, see CDT  
31271.  
*D  
*E  
2615697  
2631733  
PMP /  
AESA  
12/03/2008 Confirmed CY8C22345 and CY8C21345 have same pinout on page 8.  
Confirmed that IMO has 5% accuracy in Table 19 on page 21.  
PMP /  
PYRS  
01/07/2009 Updated Table 16. SAR10 ADC DC Specifications and Table 29 AC  
Programming Specifications. Title changed to “CY8C21345, CY8C22345,  
CY8C22545 PSoC® Programmable System-on-Chip™”  
*F  
*G  
*H  
*I  
2648800  
2658078  
2667311  
2748976  
2786560  
JHU /  
AESA  
01/28/2009 Updated INL, DNL information in Table 14 on page 18, Development Tools on  
page 6, and TDSCLK parameter in Table 27 on page 25.  
HMI /  
AESA  
02/11/2009 Updated section Features on page 1.  
JHU /  
AESA  
03/16/2009 Added parameter “F32KU” and added Min% and Max % to parameter “FIMO6  
in Table 19 on page 21, according to updated SLIMO spec.  
JZHU /  
PYRS  
08/06/2009 Updated F32K1 max rating in Table 19 on page 21.  
*J  
JZHU  
10/23/2009 Added DCILO, TERASEALL, TPROGRAM_HOT, TPROGRAM_COLD, SRPOWERUP,  
IOH, and IOL parameters.  
Added Tape and Reel parts in Ordering Information table  
*K  
*L  
2901653  
NJF  
03/30/2010 Updated PSoC Designer Software Subsystems.  
Added TBAKETEMP and TBAKETIME parameters in Absolute Maximum Ratings  
Modified Note 6 on page 17.  
Added FOUT48M parameter in 5 V and 3.3 V AC Chip-Level Specifications.  
Removed AC Analog Mux Bus Specifications.  
Updated Ordering Code Definitions.  
Updated links in Sales, Solutions, and Legal Information.  
3114978  
NJF  
12/19/10  
Added DC I2C Specifications.  
Added Tjit_IMO specification, removed existing jitter specifications.  
Updated DC Programming Specifications.  
Updated AC Digital Block Specifications.  
Updated I2C Timing Diagram.  
Added Solder Reflow Peak Temperature table.  
Updated Units of Measure, Acronyms, Glossary, and References sections.  
Document Number: 001-43084 Rev. *Q  
Page 37 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
Document History Page (continued)  
Document Title: CY8C21345, CY8C22345, CY8C22545, PSoC® Programmable System-on-Chip  
Document Number: 001-43084  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
*M  
3231771  
BOBH /  
ECU  
04/18/11  
Updated analog inputs column in Table 31 on page 28 and included reference  
to Note 18.  
Updated the following sections: Getting Started, Development Tools, and  
Designing with PSoC Designer as all the System level designs have been  
de-emphasized.  
Updated Table 30, “Solder Reflow Specifications,” on page 28.  
Updated package diagrams:  
51-85026 to *F  
51-85064 to *E  
*N  
3578757  
PMAD  
04/11/2012 Removed reference to AN2012 as the document is in obsolete status.  
Updated template.  
No technical updates. Completing sunset review.  
*O  
*P  
3598230  
3915358  
LURE /  
XZNG  
04/24/2012 Changed the PWM description string from “8- to 32-bit” to “8- and 16-bit”.  
SAMP  
02/27/2013 Updated Electrical Specifications (Updated DC Electrical Characteristics  
(Updated DC GPIO Specifications (Updated Table 10 (Updated Notes for VOH  
and VOL parameters)))).  
*Q  
3959550  
SAMP  
04/09/2013 Added Appendix: Silicon Errata for the PSoC® CY8C21x45, CY8C22x45  
Product Family.  
Document Number: 001-43084 Rev. *Q  
Page 38 of 39  
CY8C21345  
CY8C22345  
CY8C22545  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
Products  
Automotive  
cypress.com/go/automotive  
cypress.com/go/clocks  
cypress.com/go/interface  
cypress.com/go/powerpsoc  
cypress.com/go/plc  
PSoC Solutions  
Clocks & Buffers  
Interface  
psoc.cypress.com/solutions  
PSoC 1 | PSoC 3 | PSoC 5  
Lighting & Power Control  
Memory  
cypress.com/go/memory  
cypress.com/go/psoc  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/go/touch  
cypress.com/go/USB  
cypress.com/go/wireless  
© Cypress Semiconductor Corporation, 2008-2013. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 001-43084 Rev. *Q  
Revised April 9, 2013  
Page 39 of 39  
PSoC Designer™ and Programmable System-on-Chip™ are trademarks and PSoC® and CapSense® are registered trademarks of Cypress Semiconductor Corporation.  
2
2
2
Purchase of I C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I C Patent Rights to use these components in an I C system, provided  
2
that the system conforms to the I C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name - NXP Semiconductors.  
All products and company names mentioned in this document may be the trademarks of their respective holders.  

相关型号:

CY8C22113

PSoC Mixed Signal Array
CYPRESS

CY8C22113-24PI

PSoC Mixed Signal Array
CYPRESS

CY8C22113-24PXI

Multifunction Peripheral, CMOS, PDIP8, 0.300 INCH, PLASTIC, DIP-8
CYPRESS

CY8C22113-24SI

PSoC Mixed Signal Array
CYPRESS

CY8C22113-24SIT

PSoC⑩ Mixed Signal Array
CYPRESS

CY8C22113-24SIXT

Multifunction Peripheral, CMOS, PDSO8, 0.150 INCH, MS-012, SOIC-8
CYPRESS

CY8C22113-24SXI

Multifunction Peripheral, CMOS, PDSO8, 0.150 INCH, MS-012, SOIC-8
CYPRESS

CY8C22113A-24PXI

Microcontroller, 8-Bit, FLASH, M8C CPU, 24MHz, CMOS, PDIP8,
CYPRESS

CY8C22113A-24SXIT

Microcontroller, 8-Bit, FLASH, M8C CPU, 24MHz, CMOS, PDSO8,
CYPRESS

CY8C22113_04

PSoC⑩ Mixed Signal Array
CYPRESS

CY8C22213

PSoC Mixed Signal Array
CYPRESS

CY8C22213-24LFI

PSoC Mixed Signal Array
CYPRESS