CY8C24894-24LFXA [CYPRESS]

Automotive PSoC Programmable System-on-Chip Low power at high speed; 汽车的PSoC可编程系统级芯片的低功耗高速
CY8C24894-24LFXA
型号: CY8C24894-24LFXA
厂家: CYPRESS    CYPRESS
描述:

Automotive PSoC Programmable System-on-Chip Low power at high speed
汽车的PSoC可编程系统级芯片的低功耗高速

文件: 总46页 (文件大小:1206K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY8C24894  
Automotive PSoC®  
Programmable System-on-Chip™  
Internal low-speed, low-power oscillator for watchdog and  
sleep functionality  
Features  
Optional external oscillator, up to 24 MHz  
Automotive Electronics Council (AEC) qualified  
Additional system resources  
Powerful Harvard-architecture processor  
M8C processor speeds up to 24 MHz  
Two 8 × 8 multiply, 32-bit accumulate  
Low power at high speed  
Operating voltage: 3.0 V to 5.25 V  
Automotive temperature range: –40 °C to +85 °C  
I2C™ slave, master, or multimaster operation up to 400 kHz  
Watchdog and sleep timers  
User-configurable LVD  
Integrated supervisory circuit  
On-chip precision voltage reference  
Complete development tools  
Advanced peripherals (PSoC® blocks)  
Six rail-to-rail analog PSoC blocks provide:  
• Up to 14-bit analog-to-digital converters (ADCs)  
• Up to 9-bit digital-to-analog converters (DACs)  
• Programmable gain amplifiers (PGAs)  
• Programmable filters and comparators  
Free development software (PSoC Designer™)  
Full-featured in-circuit emulator (ICE) and programmer  
Full-speed emulation  
Complex breakpoint structure  
128 KB trace memory  
Four digital PSoC blocks provide:  
• 8- to 32-bit timers, counters, and pulse-width modulators  
(PWMs)  
Logic Block Diagram  
Analog  
Drivers  
• Cyclic redundancy check (CRC) and pseudo-random  
sequence (PRS) modules  
Port5 Port4 Port3 Port2 Port1 Port0  
Port7  
• Full- or half-duplex UART  
• SPI master or slave  
• Connectable to all general purpose I/O (GPIO) pins  
Complex peripherals by combining blocks  
• Capacitive sensing application capability  
Global Digital Interconnect  
Global Analog Interconnect  
PSoC CORE  
SRAM  
1K  
SROM  
Flash16K  
Flexible on-chip memory  
16 KB flash program storage, 1000 erase/write cycles  
1 KB SRAM data storage  
In-system serial programming (ISSP)  
Partial flash updates  
Sleep and  
Watchdog  
CPU Core(M8C)  
Interrupt  
Controller  
Clock Sources  
(Includes IMO and ILO)  
Flexible protection modes  
EEPROM emulation in flash  
DIGITAL SYSTEM  
ANALOG SYSTEM  
Analog  
Ref.  
Programmable pin configurations  
25 mA sink, 10 mA drive on all GPIOs  
Pull-up, pull-down, high Z, strong, or open-drain drive modes  
on all GPIOs  
Digital  
Block  
Array  
Analog  
Block  
Array  
Up to 47 analog inputs on GPIOs  
Two 30 mA analog outputs on GPIOs  
Configurable interrupt on all GPIOs  
Analog  
Input  
Muxing  
Internal  
Voltage  
Re.f  
Digital  
Clocks MACs  
2
Decimator  
Type2  
POR and LVD  
System Resets  
I2C  
Precision, programmable clocking  
Internal ±4% 24/48 MHz oscillator  
SYSTEM RESOURCES  
Cypress Semiconductor Corporation  
Document Number: 001-53754 Rev. *D  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised June 2, 2011  
[+] Feedback  
CY8C24894  
Contents  
PSoC Functional Overview ..............................................3  
The PSoC Core ...........................................................3  
The Digital System ......................................................3  
The Analog System .....................................................4  
Additional System Resources .....................................5  
PSoC Device Characteristics ......................................5  
Getting Started ..................................................................6  
Application Notes ........................................................6  
Development Kits ........................................................6  
Training .......................................................................6  
CYPros Consultants ....................................................6  
Solutions Library ..........................................................6  
Technical Support .......................................................6  
Development Tools ..........................................................6  
PSoC Designer Software Subsystems ........................6  
Designing with PSoC Designer .......................................7  
Select User Modules ...................................................7  
Configure User Modules ..............................................7  
Organize and Connect ................................................7  
Generate, Verify, and Debug .......................................7  
Pinouts ..............................................................................8  
56-Pin Part Pinout (with XRES pin) ............................8  
Registers ...........................................................................9  
Register Conventions ..................................................9  
Register Mapping Tables ............................................9  
Register Map Bank 0 Table: User Space .................10  
Register Map Bank 1 Table: Configuration Space ...11  
Electrical Specifications ................................................12  
Absolute Maximum Ratings .......................................13  
Operating Temperature .............................................13  
DC Electrical Characteristics .....................................14  
AC Electrical Characteristics .....................................26  
Packaging Information ...................................................34  
Thermal Impedances .................................................34  
Solder Reflow Specifications .....................................34  
Tape and Reel Information ........................................35  
Development Tool Selection .........................................36  
Software ....................................................................36  
Development Kits ......................................................36  
Evaluation Tools ........................................................36  
Device Programmers .................................................37  
Accessories (Emulation and Programming) ..............37  
Ordering Information ......................................................38  
Ordering Code Definitions .........................................38  
Reference Information ...................................................39  
Acronyms ..................................................................39  
Reference Documents ...............................................39  
Document Conventions .............................................40  
Glossary ....................................................................40  
Document History Page .................................................45  
Sales, Solutions, and Legal Information ......................46  
Worldwide Sales and Design Support .......................46  
Products ....................................................................46  
PSoC Solutions .........................................................46  
Document Number: 001-53754 Rev. *D  
Page 2 of 46  
[+] Feedback  
CY8C24894  
The Digital System  
PSoC Functional Overview  
The digital system is composed of four digital PSoC blocks. Each  
block is an 8-bit resource used alone or combined with other  
blocks to form 8-, 16-, 24-, and 32-bit peripherals, which are  
called user modules.  
The PSoC family consists of many Programmable  
System-on-Chip with on-chip controller devices. All PSoC family  
devices are designed to replace traditional microcontroller units  
(MCUs), system ICs, and the numerous discrete components  
that surround them. Configurable analog, digital, and inter-  
connect circuitry enable a high level of integration in a host of  
industrial, consumer, and communication applications.  
Figure 1. Digital System Block Diagram  
Port 7  
Port 5  
Port 3  
Port 1  
Port 4  
Port 2  
Port 0  
This architecture allows the user to create customized peripheral  
configurations that match the requirements of each individual  
application. Additionally, a fast CPU, Flash program memory,  
SRAM data memory, and configurable I/O are included in a  
range of convenient pinouts and packages.  
To System Bus  
Digital Clocks  
From Core  
To Analog  
System  
The PSoC architecture, as illustrated in the Logic Block Diagram  
on page 1, is comprised of four main areas: PSoc Core, digital  
system, analog system, and system resources. Configurable  
global busing allows all the device resources to be combined into  
a complete custom system. The PSoC CY8C24x94 devices can  
have up to seven I/O ports that connect to the global digital and  
analog interconnects, providing access to four digital blocks and  
six analog blocks.  
DIGITAL SYSTEM  
Digital PSoC Block Array  
Row 0  
8
4
8
8
8
DBB00  
DBB01  
DCB02 DCB03  
4
The PSoC Core  
GIE[7:0]  
GIO[7:0]  
GOE[7:0]  
GOO[7:0]  
Global Digital  
Interconnect  
The PSoC Core is a powerful engine that supports a rich feature  
set. The core includes a CPU, memory, clocks, and configurable  
GPIOs.  
The M8C CPU core is a powerful processor with speeds up to  
24 MHz, providing a four-MIPS 8-bit Harvard architecture micro-  
processor. The CPU uses an interrupt controller with up to 20  
vectors, to simplify programming of real-time embedded events.  
Program execution is timed and protected using the included  
sleep timer and watchdog timer (WDT).  
Digital peripheral configurations include those listed below.  
PWMs (8- to 32-bit)  
PWMs with Dead band (8- to 24-bit)  
Counters (8- to 32-bit)  
Memory encompasses 16 KB of flash for program storage, 1 KB  
of SRAM for data storage, and up to 2 KB of emulated EEPROM  
using the flash. Program flash has four protection levels on  
blocks of 64 bytes, allowing customized software IP protection.  
Timers (8- to 32-bit)  
Full- or half-duplex 8-bit UART with selectable parity  
SPI master and slave  
The PSoC device incorporates flexible internal clock generators,  
including a 24-MHz internal main oscillator (IMO) accurate to  
±4% over temperature and voltage. The 24-MHz IMO can also  
be doubled to 48 MHz for use by the digital system. A low power  
32-kHz internal low-speed oscillator (ILO) is provided for the  
sleep timer and WDT. The clocks, together with programmable  
clock dividers (as system resources), provide the flexibility to  
integrate almost any timing requirement into the PSoC device.  
I2C master, slave, or multimaster (implemented in a dedicated  
I2C block)  
Cyclic redundancy checker/generator (16-bit)  
Infrared Data Association (IrDA)  
PRS generators (8- to 32-bit)  
PSoC GPIOs provide connection to the CPU, digital resources,  
and analog resources of the device. Each pin’s drive mode may  
be selected from eight options, allowing great flexibility in  
external interfacing. Every pin is also capable of generating a  
system interrupt.  
The digital blocks can be connected to any GPIO through a  
series of global buses that can route any signal to any pin. The  
buses also allow signal multiplexing and performing logic opera-  
tions. This configurability frees your designs from the constraints  
of a fixed peripheral controller.  
Digital blocks are provided in rows of four, where the number of  
blocks varies by PSoC device family. This allows you the  
optimum choice of system resources for your application. Family  
resources are shown in Table 1 on page 5.  
Document Number: 001-53754 Rev. *D  
Page 3 of 46  
[+] Feedback  
CY8C24894  
Figure 2. Analog System Block Diagram  
The Analog System  
A ll IO  
(E x c e p t P o rt 7 )  
The analog system is composed of six configurable blocks, each  
comprised of an opamp circuit allowing the creation of complex  
analog signal flows. Analog peripherals are very flexible and can  
be customized to support specific application requirements.  
Some of the more common PSoC analog functions (most  
available as user modules) are listed below.  
P 0 [7 ]  
P 0 [5 ]  
P 0 [6 ]  
P 0 [4 ]  
P 0 [3 ]  
P 0 [1 ]  
P 0 [2 ]  
P 0 [0 ]  
ADCs (up to two, with 6- to 14-bit resolution, selectable as  
incremental,delta-sigma, orsuccessiveapproximationregister  
(SAR))  
P 2 [6 ]  
P 2 [4 ]  
P 2 [3 ]  
P 2 [1 ]  
Filters (Two- and Four-pole band pass, low pass, and notch)  
Amplifiers (up to two, with selectable gain to 48x)  
Instrumentation amplifiers (one with selectable gain to 93x)  
Comparators (up to two, with 16 selectable thresholds)  
DACs (up to two, with 6- to 9-bit resolution)  
Multiplying DACs (up to two, with 6- to 9-bit resolution)  
High current output drivers (two with 30 mA drive)  
1.3-V reference (as a system resource)  
DTMF Dialer  
P 2 [2 ]  
P 2 [0 ]  
A C I0 [1 :0 ]  
A rra y In p u t  
A C I1 [1 :0 ]  
C o n fig u ra tio n  
B lo c k  
A rray  
A C B 0 0  
A S C 1 0  
A S D 2 0  
A C B 0 1  
Modulators  
A S D 1 1  
A S C 2 1  
Correlators  
Peak Detectors  
A n a lo g R e fe re n c e  
Many other topologies possible  
In te rfa c e to  
D ig ita l S y s te m  
R e fe re n c e  
G e n e ra to rs  
Analog blocks are arranged in a column of three, which includes  
one continuous time (CT) and two switched capacitor (SC)  
blocks, as shown in Figure 2.  
R e fH i  
R e fL o  
A G N D  
A G N D In  
R e fIn  
B a n d g a p  
M 8 C In te rfa c e (A d d re s s B u s , D a ta B u s , E tc .)  
The Analog Multiplexer System  
The analog mux bus can connect to every GPIO pin in ports 0-5.  
Pins are connected to the bus individually or in any combination.  
The bus also connects to the analog system for analysis with  
comparators and ADCs. It can be split into two sections for simul-  
taneous dual-channel processing. An additional 8:1 analog input  
multiplexer provides a second path to bring Port 0 pins to the  
analog array.  
Switch control logic enables selected pins to precharge continu-  
ously under hardware control. This enables capacitive  
measurement for applications such as touch sensing. Other  
multiplexer applications include:  
Track pad, finger sensing.  
Chip-wide mux that allows analog input from up to 47 I/O pins.  
Crosspoint connection between any I/O pin combination.  
Document Number: 001-53754 Rev. *D  
Page 4 of 46  
[+] Feedback  
CY8C24894  
Additional System Resources  
System resources provide additional capability useful for  
complete systems. Additional resources include a multiplier,  
decimator, LVD, and power-on reset (POR). Brief statements  
describing the merits of each resource follow.  
The decimator provides a custom hardware filter for digital  
signal processing applications including creation of Delta-  
Sigma ADCs.  
The I2C module provides 0 to 400 kHz communication over two  
wires. Slave, master, and multi-master modes are all  
supported.  
Digital clock dividers provide three customizable clock  
frequencies for use in applications. The clocks can be routed  
to both the digital and analog systems. Additional clocks are  
generated using digital PSoC blocks as clock dividers.  
LVD interrupts can signal the application of falling voltage  
levels, while the advanced POR circuit eliminates the need for  
a system supervisor.  
Two multiply accumulates (MACs) provide fast 8-bit multipliers  
with 32-bit accumulate, to assist in both general math and  
digital filters.  
An internal 1.3-V voltage reference provides an absolute  
reference for the analog system, including ADCs and DACs.  
Versatile analog multiplexer system.  
PSoC Device Characteristics  
Depending on your PSoC device characteristics, the digital and analog systems can have varying numbers of digital and analog  
blocks. The following table lists the resources available for specific PSoC device groups. The device covered by this datasheet is  
shown in the highlighted row of the table.  
Table 1. PSoC Device Characteristics  
PSoC Part  
Number  
Digital  
I/O  
Digital  
Rows  
Digital  
Blocks  
Analog  
Inputs  
Analog  
Analog  
Analog  
SRAM  
Size  
Flash  
Size  
Outputs Columns Blocks  
[1]  
CY8C29x66  
CY8C28xxx  
up to 64  
up to 44  
4
16  
up to 12  
up to 44  
4
4
12  
2 K  
1 K  
32 K  
16 K  
up to 3  
up to 12  
up to 4  
up to 6  
up to  
12 + 4  
[2]  
CY8C27x43  
up to 44  
up to 56  
up to 24  
up to 26  
up to 38  
up to 24  
up to 28  
up to 16  
up to 28  
up to 36  
2
1
1
1
2
1
1
1
0
0
8
4
4
4
8
4
4
4
0
0
up to 12  
up to 48  
up to 12  
up to 12  
up to 38  
up to 24  
up to 28  
4
2
2
2
0
0
0
0
0
0
4
2
2
2
4
4
2
2
0
0
12  
6
256  
1 K  
16 K  
16 K  
4 K  
[1]  
CY8C24x94  
[1]  
CY8C24x23A  
6
256  
CY8C23x33  
4
256  
8 K  
[1]  
[2]  
CY8C22x45  
CY8C21x45  
CY8C21x34  
6
1 K  
16 K  
8 K  
[1]  
[1]  
[2]  
6
512  
[2]  
4
512  
8 K  
[2]  
CY8C21x23  
up to  
8
4
256  
4 K  
[1]  
[2,3]  
CY8C20x34  
CY8C20xx6  
up to 28  
up to 36  
3
512  
8 K  
[2,3]  
3
up to 2 K  
up to 32 K  
Notes  
1. Automotive qualified devices available in this group.  
2. Limited analog functionality.  
®
3. Two analog blocks and one CapSense block.  
Document Number: 001-53754 Rev. *D  
Page 5 of 46  
[+] Feedback  
CY8C24894  
Free C compiler with no size restrictions or time limits  
Getting Started  
Built-in debugger  
In-circuit emulation  
For in depth information, along with detailed programming  
details, see the PSoC® Technical Reference Manual.  
For up-to-date ordering, packaging, and electrical specification  
information, see the latest PSoC device datasheets on the web.  
Built-in support for communication interfaces:  
Hardware and software I2C slaves and masters  
Full-speed USB 2.0  
Up to four full-duplex universal asynchronous receiver/trans-  
mitters (UARTs), SPI master and slave, and wireless  
Application Notes  
Cypress application notes are an excellent introduction to the  
wide variety of possible PSoC designs.  
PSoC Designer supports the entire library of PSoC 1 devices and  
runs on Windows XP, Windows Vista, and Windows 7.  
Development Kits  
PSoC Development Kits are available online from and through a  
growing number of regional and global distributors, which  
include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and  
Newark.  
PSoC Designer Software Subsystems  
Design Entry  
In the chip-level view, choose a base device to work with. Then  
select different onboard analog and digital components that use  
the PSoC blocks, which are called user modules. Examples of  
user modules are analog-to-digital converters (ADCs),  
digital-to-analog converters (DACs), amplifiers, and filters.  
Configure the user modules for your chosen application and  
connect them to each other and to the proper pins. Then  
generate your project. This prepopulates your project with APIs  
and libraries that you can use to program your application.  
Training  
Free PSoC technical training (on demand, webinars, and  
workshops), which is available online via www.cypress.com,  
covers a wide variety of topics and skill levels to assist you in  
your designs.  
CYPros Consultants  
Certified PSoC consultants offer everything from technical assis-  
tance to completed PSoC designs. To contact or become a PSoC  
consultant go to the CYPros Consultants web site.  
The tool also supports easy development of multiple configura-  
tions and dynamic reconfiguration. Dynamic reconfiguration  
makes it possible to change configurations at run time. In  
essence, this allows you to use more than 100 percent of PSoC's  
resources for a given application.  
Solutions Library  
Visit our growing library of solution focused designs. Here you  
can find various application designs that include firmware and  
hardware design files that enable you to complete your designs  
quickly.  
Code Generation Tools  
The code generation tools work seamlessly within the  
PSoC Designer interface and have been tested with a full range  
of debugging tools. You can develop your design in C, assembly,  
or a combination of the two.  
Technical Support  
Technical support – including a searchable Knowledge Base  
articles and technical forums – is also available online. If you  
cannot find an answer to your question, call our Technical  
Support hotline at 1-800-541-4736.  
Assemblers. The assemblers allow you to merge assembly  
code seamlessly with C code. Link libraries automatically use  
absolute addressing or are compiled in relative mode, and linked  
with other software modules to get absolute addressing.  
C Language Compilers. C language compilers are available  
that support the PSoC family of devices. The products allow you  
to create complete C programs for the PSoC family devices. The  
optimizing C compilers provide all of the features of C, tailored  
to the PSoC architecture. They come complete with embedded  
libraries providing port and bus operations, standard keypad and  
display support, and extended math functionality.  
Development Tools  
PSoC Designer™ is the revolutionary Integrated Design  
Environment (IDE) that you can use to customize PSoC to meet  
your specific application requirements. PSoC Designer software  
accelerates system design and time to market. Develop your  
applications using a library of precharacterized analog and digital  
peripherals (called user modules) in a drag-and-drop design  
environment. Then, customize your design by leveraging the  
dynamically generated application programming interface (API)  
libraries of code. Finally, debug and test your designs with the  
integrated debug environment, including in-circuit emulation and  
standard software debug features. PSoC Designer includes:  
Debugger  
PSoC Designer has a debug environment that provides  
hardware in-circuit emulation, allowing you to test the program in  
a physical system while providing an internal view of the PSoC  
device. Debugger commands allow you to read and program and  
read and write data memory, and read and write I/O registers.  
You can read and write CPU registers, set and clear breakpoints,  
and provide program run, halt, and step control. The debugger  
also allows you to create a trace buffer of registers and memory  
locations of interest.  
Application editor graphical user interface (GUI) for device and  
user module configuration and dynamic reconfiguration  
Extensive user module catalog  
Integrated source-code editor (C and assembly)  
Document Number: 001-53754 Rev. *D  
Page 6 of 46  
[+] Feedback  
CY8C24894  
Online Help System  
configuration to your particular application. For example, a pulse  
width modulator (PWM) User Module configures one or more  
digital PSoC blocks, one for each 8 bits of resolution. The user  
module parameters permit you to establish the pulse width and  
duty cycle. Configure the parameters and properties to corre-  
spond to your chosen application. Enter values directly or by  
selecting values from drop-down menus. All the user modules  
are documented in datasheets that may be viewed directly in  
PSoC Designer or on the Cypress website. These user module  
datasheets explain the internal operation of the user module and  
provide performance specifications. Each datasheet describes  
the use of each user module parameter, and other information  
you may need to successfully implement your design.  
The online help system displays online, context-sensitive help.  
Designed for procedural and quick reference, each functional  
subsystem has its own context-sensitive help. This system also  
provides tutorials and links to FAQs and an Online Support  
Forum to aid the designer.  
In-Circuit Emulator  
A low-cost, high-functionality In-Circuit Emulator (ICE) is  
available for development support. This hardware can program  
single devices.  
The emulator consists of a base unit that connects to the PC  
using a USB port. The base unit is universal and operates with  
all PSoC devices. Emulation pods for each device family are  
available separately. The emulation pod takes the place of the  
PSoC device in the target board and performs full-speed  
(24-MHz) operation.  
Organize and Connect  
You build signal chains at the chip level by interconnecting user  
modules to each other and the I/O pins. You perform the  
selection, configuration, and routing so that you have complete  
control over all on-chip resources.  
Designing with PSoC Designer  
Generate, Verify, and Debug  
The development process for the PSoC® device differs from that  
of a traditional fixed function microprocessor. The configurable  
analog and digital hardware blocks give the PSoC architecture a  
unique flexibility that pays dividends in managing specification  
change during development and by lowering inventory costs.  
These configurable resources, called PSoC Blocks, have the  
ability to implement a wide variety of user-selectable functions.  
The PSoC development process is summarized in four steps:  
When you are ready to test the hardware configuration or move  
on to developing code for the project, you perform the “Generate  
Configuration Files” step. This causes PSoC Designer to  
generate source code that automatically configures the device to  
your specification and provides the software for the system. The  
generated code provides application programming interfaces  
(APIs) with high-level functions to control and respond to  
hardware events at run time and interrupt service routines that  
you can adapt as needed.  
1. Select User Modules.  
2. Configure user modules.  
3. Organize and connect.  
4. Generate, verify, and debug.  
A complete code development environment allows you to  
develop and customize your applications in either C, assembly  
language, or both.  
The last step in the development process takes place inside  
PSoC Designer’s debugger (access by clicking the Connect  
icon). PSoC Designer downloads the HEX image to the ICE  
where it runs at full speed. PSoC Designer debugging capabil-  
ities rival those of systems costing many times more. In addition  
to traditional single-step, run-to-breakpoint and watch-variable  
features, the debug interface provides a large trace buffer and  
allows you to define complex breakpoint events that include  
monitoring address and data bus values, memory locations and  
external signals.  
Select User Modules  
PSoC Designer provides a library of prebuilt, pretested hardware  
peripheral components called “user modules.” User modules  
make selecting and implementing peripheral devices, both  
analog and digital, simple.  
Configure User Modules  
Each user module that you select establishes the basic register  
settings that implement the selected function. They also provide  
parameters and properties that allow you to tailor their precise  
Document Number: 001-53754 Rev. *D  
Page 7 of 46  
[+] Feedback  
CY8C24894  
Pinouts  
The automotive CY8C24x94 PSoC device is available in a variety of packages which are listed and illustrated in the following tables.  
Every port pin (labeled with a “P”) is capable of digital I/O. However, VSS, VDD, and XRES are not capable of digital I/O.  
56-Pin Part Pinout (with XRES pin)  
Table 2. 56-Pin Part Pinout (QFN)  
Type  
Pin  
No.  
Figure 3. CY8C24894 56-Pin PSoC Device  
Name  
Description  
Digital Analog  
1
2
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I, M  
I, M  
M
M
M
P2[3] Direct switched capacitor block input  
P2[1] Direct switched capacitor block input  
3
4
5
P4[7]  
P4[5]  
P4[3]  
P4[1]  
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P5[7]  
P5[5]  
P5[3]  
P5[1]  
6
7
8
M
M
M
9
M
M
M
AI, M, P2[3]  
1
2
3
4
5
6
7
8
9
42 P2[2], AI, M  
AI, M, P2[1]  
M, P4[7]  
M, P4[5]  
M, P4[3]  
M, P4[1]  
M, P3[7]  
M, P3[5]  
41 P2[0], AI, M  
40 P4[6], M  
39 P4[4], M  
38 P4[2], M  
37 P4[0], M  
36 XRES  
35 P3[4], M  
34 P3[2], M  
33 P3[0], M  
32 P5[6], M  
31 P5[4], M  
30 P5[2], M  
29 P5[0], M  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
M
M
M
QFN  
(Top View)  
2
M
M
M
P1[7] I C serial clock (SCL)  
P1[5] I C serial data (SDA)  
2
M, P3[3]  
P1[3]  
M, P3[1] 10  
M, P5[7] 11  
M, P5[5] 12  
M, P5[3] 13  
M, P5[1] 14  
2
[4]  
M
P1[1] I C SCL, ISSP SCLK  
Power  
V
Ground connection  
SS  
DNC  
DNC  
Do not connect anything to this pin  
Do not connect anything to this pin  
Supply voltage  
Power  
V
DD  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P7[7]  
P7[0]  
2
[4]  
M
M
M
M
P1[0] I C SDA, ISSP SDATA  
P1[2]  
P1[4] Optional external clock (EXTCLK) input  
P1[6]  
29  
30  
31  
32  
33  
34  
35  
36  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
M
M
M
M
M
M
M
P5[0]  
P5[2]  
P5[4]  
P5[6]  
P3[0]  
P3[2]  
P3[4]  
Type  
Digital Analog  
Name  
Description  
Pin  
No.  
45  
46  
47  
48  
49  
I/O  
I/O  
I/O  
I/O  
I, M  
I, M  
I, M  
I, M  
P0[0] Analog column mux input  
P0[2] Analog column mux input  
P0[4] Analog column mux input  
P0[6] Analog column mux input  
Input  
XRES Active high external reset with internal  
pull-down  
Power  
V
Supply voltage  
DD  
37  
38  
39  
40  
41  
42  
43  
44  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
M
M
M
M
P4[0]  
50  
51  
52  
53  
54  
55  
56  
Power  
I, M  
V
Ground connection  
SS  
P4[2]  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P0[7] Analog column mux input  
P4[4]  
I/O, M P0[5] Analog column mux input and column output  
I/O, M P0[3] Analog column mux input and column output  
P4[6]  
I, M  
I, M  
M
P2[0] Direct switched capacitor block input  
P2[2] Direct switched capacitor block input  
P2[4] External analog ground (AGND) input  
I, M  
M
P0[1] Analog column mux input  
P2[7]  
P2[5]  
M
M
P2[6] External voltage reference (VREF) input EP  
Power  
V
Exposed pad is not connected internally. Connect  
to circuit ground for best performance  
SS  
LEGEND A = Analog, I = Input, O = Output, and M = Analog Mux Input.  
Note  
4. These are the ISSP pins, which are not high Z when coming out of reset state. See the PSoC Technical Reference Manual for details.  
Document Number: 001-53754 Rev. *D  
Page 8 of 46  
[+] Feedback  
CY8C24894  
Registers  
This section lists the registers of the automotive CY8C24x94 PSoC device family. For detailed register information, refer to the PSoC  
Technical Reference Manual.  
Register Conventions  
Register Mapping Tables  
The register conventions specific to this section are listed in the  
following table.  
The PSoC device has a total register address space of 512  
bytes. The register space is referred to as I/O space and is  
divided into two banks. The XIO bit in the Flag register (CPU_F)  
determines which bank the user is currently in. When the XIO bit  
is set the user is in Bank 1.  
Convention  
Description  
Read register or bit(s)  
R
W
L
Note In the following register mapping tables, blank fields are  
Reserved and should not be accessed.  
Write register or bit(s)  
Logical register or bit(s)  
Clearable register or bit(s)  
Access is bit specific  
C
#
Document Number: 001-53754 Rev. *D  
Page 9 of 46  
[+] Feedback  
CY8C24894  
Register Map Bank 0 Table: User Space  
Name  
Addr (0,Hex) Access  
Name  
Addr (0,Hex) Access  
Name  
ASC10CR0  
ASC10CR1  
ASC10CR2  
ASC10CR3  
ASD11CR0  
ASD11CR1  
ASD11CR2  
ASD11CR3  
Addr (0,Hex) Access  
Name  
Addr (0,Hex) Access  
PRT0DR  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
PRT0IE  
PRT0GS  
PRT0DM2  
PRT1DR  
PRT1IE  
PRT1GS  
PRT1DM2  
PRT2DR  
PRT2IE  
PRT2GS  
PRT2DM2  
PRT3DR  
PRT3IE  
PRT3GS  
PRT3DM2  
PRT4DR  
PRT4IE  
ASD20CR0  
ASD20CR1  
ASD20CR2  
ASD20CR3  
ASC21CR0  
ASC21CR1  
ASC21CR2  
ASC21CR3  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
CUR_PP  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
RW  
RW  
STK_PP  
PRT4GS  
PRT4DM2  
PRT5DR  
PRT5IE  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
IDX_PP  
RW  
RW  
RW  
RW  
#
MVR_PP  
MVW_PP  
I2C_CFG  
I2C_SCR  
I2C_DR  
PRT5GS  
PRT5DM2  
RW  
#
I2C_MSCR  
INT_CLR0  
INT_CLR1  
INT_CLR2  
INT_CLR3  
INT_MSK3  
INT_MSK2  
INT_MSK0  
INT_MSK1  
INT_VC  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RC  
W
PRT7DR  
RW  
RW  
RW  
RW  
#
PRT7IE  
PRT7GS  
PRT7DM2  
DBB00DR0  
DBB00DR1  
DBB00DR2  
DBB00CR0  
DBB01DR0  
DBB01DR1  
DBB01DR2  
DBB01CR0  
DCB02DR0  
DCB02DR1  
DCB02DR2  
DCB02CR0  
DCB03DR0  
DCB03DR1  
DCB03DR2  
DCB03CR0  
AMX_IN  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
RW  
RW  
W
AMUXCFG  
RW  
#
ARF_CR  
CMP_CR0  
ASY_CR  
CMP_CR1  
RW  
#
RES_WDT  
DEC_DH  
#
RC  
RC  
RW  
RW  
W
W
#
DEC_DL  
RW  
#
RW  
DEC_CR0  
DEC_CR1  
MUL0_X  
#
MUL1_X  
W
W
MUL1_Y  
W
MUL0_Y  
W
RW  
#
MUL1_DH  
MUL1_DL  
ACC1_DR1  
ACC1_DR0  
ACC1_DR3  
ACC1_DR2  
RDI0RI  
R
MUL0_DH  
MUL0_DL  
ACC0_DR1  
ACC0_DR0  
ACC0_DR3  
ACC0_DR2  
R
R
R
#
TMP_DR0  
TMP_DR1  
TMP_DR2  
TMP_DR3  
ACB00CR3  
ACB00CR0  
ACB00CR1  
ACB00CR2  
ACB01CR3  
ACB01CR0  
ACB01CR1  
ACB01CR2  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
W
RW  
#
RDI0SYN  
RDI0IS  
RDI0LT0  
RDI0LT1  
RDI0RO0  
RDI0RO1  
CPU_F  
RL  
DAC_D  
RW  
#
CPU_SCR1  
CPU_SCR0  
#
Blank fields are Reserved and should not be accessed.  
# Access is bit specific.  
Document Number: 001-53754 Rev. *D  
Page 10 of 46  
[+] Feedback  
CY8C24894  
Register Map Bank 1 Table: Configuration Space  
Name  
PRT0DM0  
PRT0DM1  
PRT0IC0  
PRT0IC1  
PRT1DM0  
PRT1DM1  
PRT1IC0  
PRT1IC1  
PRT2DM0  
PRT2DM1  
PRT2IC0  
PRT2IC1  
PRT3DM0  
PRT3DM1  
PRT3IC0  
PRT3IC1  
PRT4DM0  
PRT4DM1  
PRT4IC0  
PRT4IC1  
PRT5DM0  
PRT5DM1  
PRT5IC0  
PRT5IC1  
Addr (1,Hex) Access  
Name  
Addr (1,Hex) Access  
Name  
ASC10CR0  
ASC10CR1  
ASC10CR2  
ASC10CR3  
ASD11CR0  
ASD11CR1  
ASD11CR2  
ASD11CR3  
Addr (1,Hex) Access  
Name  
Addr (1,Hex) Access  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
GDI_O_IN  
GDI_E_IN  
GDI_O_OU  
GDI_E_OU  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
RW  
RW  
RW  
RW  
ASD20CR1  
ASD20CR2  
ASD20CR3  
ASC21CR0  
ASC21CR1  
ASC21CR2  
ASC21CR3  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
MUX_CR0  
MUX_CR1  
MUX_CR2  
MUX_CR3  
RW  
RW  
RW  
RW  
PRT7DM0  
PRT7DM1  
PRT7IC0  
PRT7IC1  
DBB00FN  
DBB00IN  
DBB00OU  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
OSC_GO_EN  
OSC_CR4  
OSC_CR3  
OSC_CR0  
OSC_CR1  
OSC_CR2  
VLT_CR  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
CLK_CR0  
CLK_CR1  
ABF_CR0  
AMD_CR0  
CMP_GO_EN  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
RW  
RW  
RW  
RW  
RW  
DBB01FN  
DBB01IN  
DBB01OU  
RW  
RW  
RW  
VLT_CMP  
AMD_CR1  
ALT_CR0  
RW  
RW  
DCB02FN  
DCB02IN  
DCB02OU  
RW  
RW  
RW  
IMO_TR  
W
W
ILO_TR  
BDG_TR  
ECO_TR  
MUX_CR4  
MUX_CR5  
RW  
W
DCB03FN  
DCB03IN  
DCB03OU  
RW  
RW  
RW  
TMP_DR0  
TMP_DR1  
TMP_DR2  
TMP_DR3  
ACB00CR3  
ACB00CR0  
ACB00CR1  
ACB00CR2  
ACB01CR3  
ACB01CR0  
ACB01CR1  
ACB01CR2  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RDI0RI  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RDI0SYN  
RDI0IS  
RDI0LT0  
RDI0LT1  
RDI0RO0  
RDI0RO1  
CPU_F  
RL  
DAC_CR  
RW  
#
CPU_SCR1  
CPU_SCR0  
#
Blank fields are Reserved and should not be accessed.  
# Access is bit specific.  
Document Number: 001-53754 Rev. *D  
Page 11 of 46  
[+] Feedback  
CY8C24894  
Electrical Specifications  
This section presents the DC and AC electrical specifications of the automotive CY8C24x94 PSoC device family. For the most up to  
date electrical specifications, confirm that you have the most recent datasheet by visiting http://www.cypress.com.  
Specifications are valid for –40 °C T 85 °C and T 100 °C, except where noted.  
A
J
Figure 4. Voltage versus CPU Frequency  
5.25  
4.75  
3.0  
0
93 kHz  
12 MHz  
24 MHz  
CPU Frequency  
(nominal setting)  
Document Number: 001-53754 Rev. *D  
Page 12 of 46  
[+] Feedback  
CY8C24894  
Absolute Maximum Ratings  
Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.  
Table 3. Absolute Maximum Ratings  
Symbol  
TSTG  
Description  
Storage temperature  
Min  
Typ  
Max  
Units  
Notes  
–55  
25  
+100  
°C  
Higher storage temperatures  
reduce data retention time.  
Recommended storage  
temperature is +25 °C ± 25 °C.  
Time spent in storage at a  
temperature greater than 65 °C  
counts toward the FlashDR  
electrical specification in Table 16  
on page 25.  
TBAKETEMP Bake temperature  
tBAKETIME Bake time  
125  
See  
package  
label  
°C  
See  
package  
label  
72  
Hours  
TA  
Ambient temperature with power applied  
–40  
–0.5  
+85  
+6.0  
°C  
V
VDD  
VIO  
Supply voltage on VDD relative to VSS  
DC input voltage  
VSS – 0.5  
VSS – 0.5  
–25  
VDD + 0.5  
VDD + 0.5  
+50  
V
VIO2  
IMIO  
IMAIO  
DC voltage applied to tri-state  
Maximum current into any port pin  
V
mA  
mA  
Maximum current into any port pin  
configured as analog driver  
–50  
+50  
ESD  
LU  
Electro static discharge voltage  
Latch-up current  
2000  
V
Human Body Model ESD.  
200  
mA  
Operating Temperature  
Table 4. Operating Temperature  
Symbol  
Description  
Min  
–40  
–40  
Typ  
Max  
+85  
Units  
°C  
°C  
Notes  
TA  
TJ  
Ambient temperature  
Junction temperature  
+100  
The temperature rise from ambient  
to junction is package specific. See  
Table 28 on page 34. The user must  
limit the power consumption to  
comply with this requirement.  
Document Number: 001-53754 Rev. *D  
Page 13 of 46  
[+] Feedback  
CY8C24894  
DC Electrical Characteristics  
DC Chip Level Specifications  
Table 5 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C  
TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for  
design guidance only.  
Table 5. DC Chip-Level Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
VDD  
Supply voltage  
3.0  
5.25  
V
See DC POR and LVD specifications,  
Table 15 on page 24.  
IDD5  
Supply current, IMO = 24 MHz, VDD = 5 V  
Supply current, IMO = 24 MHz, VDD = 3.3 V  
14  
8
27  
14  
mA  
mA  
Conditions are VDD = 5.0 V, TA = 25 °C,  
CPU = 3 MHz, 48 MHz disabled, VC1 =  
1.5MHz, VC2=93.75kHz, VC3=93.75  
kHz, Analog power = off.  
Conditions are VDD = 3.3 V, TA = 25 °C,  
CPU = 3 MHz, 48 MHz disabled, VC1 =  
1.5MHz, VC2=93.75kHz, VC3=0.367  
kHz, Analog power = off.  
IDD3  
ISB  
Sleep(mode)currentwithPOR,LVD, sleep  
timer, and WDT.[5]  
3
4
6.5  
25  
μA  
μA  
Conditions are with ILO active, VDD  
3.3 V, –40 °C TA 55 °C, Analog  
power = off.  
=
ISBH  
Sleep(mode)currentwithPOR,LVD, sleep  
timer, and WDT at high temperature.[5]  
Conditions are with ILO active, VDD  
=
3.3 V, 55 °C < TA 85 °C, Analog power  
= off.  
DC GPIO Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V  
and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C  
and are for design guidance only.  
Table 6. DC GPIO Specifications  
Symbol  
RPU  
RPD  
Description  
Pull-up resistor  
Pull-down resistor  
Min  
4
4
Typ  
5.6  
5.6  
Max  
8
8
Units  
kΩ  
kΩ  
Notes  
Also applies to the internal pull-down  
resistor on the XRES pin  
VOH  
High output level  
VDD – 1.0  
V
IOH = 10 mA, VDD = 4.75 V to 5.25 V (8  
total loads, 4 on even port pins (for  
example, P0[2], P1[4]), 4 on odd port  
pins (for example, P0[3], P1[5])). 80 mA  
maximum combined IOH budget.  
VOL  
Low output level  
0.75  
V
IOL = 25 mA, VDD = 4.75 V to 5.25 V (8  
total loads, 4 on even port pins (for  
example, P0[2], P1[4]), 4 on odd port  
pins (for example, P0[3], P1[5])). 200  
mA maximum combined IOL budget.  
IOH  
IOL  
High level source current  
Low level sink current  
10  
25  
mA  
mA  
VOH VDD – 1.0 V, see the limitations  
of the total current in the note for VOH  
.
VOL 0.75 V, see the limitations of the  
total current in the note for VOL  
.
VIL  
VIH  
VH  
IIL  
Input low level  
Input high level  
Input hysterisis  
Input leakage (absolute value)  
Capacitive load on pins as input  
2.1  
60  
1
0.8  
10  
V
V
mV  
nA  
pF  
VDD = 3.0 V to 5.25 V.  
VDD = 3.0 V to 5.25 V.  
Gross tested to 1 μA.  
Package and pin dependent.  
TA = 25 °C.  
CIN  
3.5  
COUT  
Capacitive load on pins as output  
3.5  
10  
pF  
Package and pin dependent.  
TA = 25 °C.  
Note  
5. Standby current includes all functions (POR, LVD, WDT, sleep timer) needed for reliable system operation. This should be compared with devices that have similar  
functions enabled.  
Document Number: 001-53754 Rev. *D  
Page 14 of 46  
[+] Feedback  
CY8C24894  
DC Operational Amplifier Specifications  
Table 7 and Table 8 on page 16 list the guaranteed maximum and minimum specifications for the voltage and temperature ranges:  
4.75 V to 5.25 V and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V  
and 3.3 V at 25 °C and are for design guidance only.  
The Operational Amplifier is a component of both the Analog Continuous Time (CT) PSoC blocks and the Analog Switched Capacitor  
(SC) PSoC blocks. The guaranteed specifications are measured in the Analog Continuous Time PSoC block.  
Table 7. 5-V DC Operational Amplifier Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
VOSOA  
Input offset voltage (absolute value)  
Power = low, Opamp bias = high  
Power = medium, Opamp bias = high  
Power = high, Opamp bias = high  
1.6  
1.3  
1.2  
10  
8
7.5  
mV  
mV  
mV  
TCVOSOA Average input offset voltage Drift  
7.0  
20  
35.0  
μV/°C  
pA  
IEBOA  
CINOA  
Input leakage current (Port 0 Analog Pins)  
Input capacitance (Port 0 Analog Pins)  
Gross tested to 1 μA.  
Package and pin dependent. TA =  
25 °C.  
4.5  
9.5  
pF  
VCMOA  
Common Mode Voltage Range  
All cases, except highest  
Power = high, Opamp bias = high  
The common-mode input voltage  
range is measured through an  
analog output buffer. The specifi-  
cation includes the limitations  
imposed by the characteristics of  
the analog output buffer.  
0.0  
0.5  
VDD  
VDD – 0.5  
V
V
GOLOA  
Open loop gain  
Specification is applicable at high  
power. For all other bias modes  
(except high power, high Opamp  
bias), minimum is 60 dB.  
Power = low, Opamp bias = high  
Power = medium, Opamp bias = high  
Power = high, Opamp bias = high  
60  
60  
80  
dB  
dB  
dB  
VOHIGHOA High output voltage swing (internal  
signals)  
VDD – 0.2  
V
V
V
Power = low, Opamp bias = high  
Power = medium, Opamp bias = high  
Power = high, Opamp bias = high  
VDD – 0.2  
DD – 0.5  
V
VOLOWOA Low output voltage swing (internal  
signals)  
0.2  
0.2  
0.5  
V
V
V
Power = low, Opamp bias = high  
Power = medium, Opamp bias = high  
Power = high, Opamp bias = high  
ISOA  
Supply current (including associated  
AGND buffer)  
Power = low, Opamp bias = low  
Power = low, Opamp bias = high  
Power = medium, Opamp bias = low  
Power = medium, Opamp bias = high  
Power = high, Opamp bias = low  
Power = high, Opamp bias = high  
400  
500  
800  
1200  
2400  
4600  
800  
900  
1000  
1600  
3200  
6400  
μA  
μA  
μA  
μA  
μA  
μA  
PSRROA Supply voltage rejection ratio  
65  
80  
dB  
VSS VIN (VDD – 2.25 V) or (VDD  
– 1.25 V) VIN VDD  
.
Document Number: 001-53754 Rev. *D  
Page 15 of 46  
[+] Feedback  
CY8C24894  
Table 8. 3.3-V DC Operational Amplifier Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
VOSOA  
Input offset voltage (absolute value)  
Power = low, Opamp bias = high  
Power = medium, Opamp bias = high  
Power = high, Opamp bias = high  
Power = high, Opamp bias =  
1.65  
1.32  
10  
8
mV high setting is not allowed for  
mV 3.3 V VDD operation  
mV  
TCVOSOA Average input offset voltage drift  
7.0  
20  
35.0  
µV/°C  
IEBOA  
CINOA  
Input leakage current (Port 0 analog pins)  
Input capacitance (Port 0 analog pins)  
pA  
pF  
Gross tested to 1 µA.  
4.5  
9.5  
Package and pin dependent.  
TA = 25 °C.  
VCMOA  
Common mode voltage range  
0.2  
VDD – 0.2  
V
The common-mode input  
voltage range is measured  
through an analog output  
buffer. The specification  
includes the limitations  
imposed by the characteristics  
of the analog output buffer.  
GOLOA  
Open loop gain  
Specification is applicable at  
low Opamp bias. For high  
Opampbiasmode(excepthigh  
power, high Opamp bias),  
minimum is 60 dB.  
Power = low, Opamp bias = low  
Power = medium, Opamp bias = low  
Power = high, Opamp bias = low  
60  
60  
80  
dB  
dB  
dB  
VOHIGHOA High output voltage swing (internal signals)  
Power = low, Opamp bias = low  
VDD – 0.2  
VDD – 0.2  
VDD – 0.2  
V
V
V
Power = medium, Opamp bias = low  
Power = high, Opamp bias = low  
VOLOWOA Low output voltage swing (internal signals)  
Power = low, Opamp bias = low  
0.2  
0.2  
0.2  
V
V
V
Power = medium, Opamp bias = low  
Power = high, Opamp bias = low  
ISOA  
Supply current  
Power = high, Opamp bias =  
high setting is not allowed for  
3.3 V VDD operation  
(including associated AGND buffer)  
Power = low, Opamp bias = low  
Power = low, Opamp bias = high  
Power = medium, Opamp bias = low  
Power = medium, Opamp bias = high  
Power = high, Opamp bias = low  
Power = high, Opamp bias = high  
400  
500  
800  
1200  
2400  
800  
900  
1000  
1600  
3200  
µA  
µA  
µA  
µA  
µA  
µA  
PSRROA Supply voltage rejection ratio  
65  
80  
dB  
VSS VIN (VDD – 2.25) or  
(VDD – 1.25 V) VIN VDD  
DC Low Power Comparator Specifications  
Table 9 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C  
TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V at 25 °C and are for design  
guidance only.  
Table 9. DC Low Power Comparator Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
VREFLPC  
Low power comparator (LPC) reference  
voltage range  
0.2  
VDD – 1.0  
V
ISLPC  
LPC supply current  
LPC voltage offset  
10  
55  
55  
μA  
mV  
VOSLPC  
2.5  
Document Number: 001-53754 Rev. *D  
Page 16 of 46  
[+] Feedback  
CY8C24894  
DC Analog Output Buffer Specifications  
Table 10 and Table 11 on page 18 list the guaranteed maximum and minimum specifications for the voltage and temperature ranges:  
4.75 V to 5.25 V and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V  
and 3.3 V at 25 °C and are for design guidance only.  
Table 10. 5-V DC Analog Output Buffer Specifications  
Symbol  
Description  
Min  
Typ  
3
Max  
Units  
mV  
Notes  
VOSOB  
Input offset voltage (absolute value)  
12  
TCVOSOB Average input offset voltage drift  
VCMOB  
+6  
µV/°C  
V
Common mode input voltage range  
0.5  
VDD – 1.0  
ROUTOB  
Output resistance  
Power = low  
0.6  
0.6  
Ω
Ω
Power = high  
VOHIGHOB High output voltage swing  
(load = 32 Ω to VDD/2)  
Power = low  
0.5 × VDD + 1.1  
0.5 × VDD + 1.1  
V
V
Power = high  
VOLOWOB Low output voltage swing  
(load = 32 Ω to VDD/2)  
Power = low  
0.5 × VDD – 1.3  
0.5 × VDD – 1.3  
V
V
Power = high  
ISOB  
Supply current including opamp  
bias cell (no load)  
Power = low  
1.1  
2.6  
5.1  
8.8  
mA  
mA  
Power = high  
PSRROB  
CL  
Supply voltage rejection ratio  
53  
64  
dB  
(0.5 × VDD – 1.3) VOUT ≤  
(VDD – 2.3).  
This specification applies to  
the external circuit that is being  
driven by the analog output  
buffer.  
Load capacitance  
200  
pF  
Document Number: 001-53754 Rev. *D  
Page 17 of 46  
[+] Feedback  
CY8C24894  
Table 11. 3.3-V DC Analog Output Buffer Specifications  
Symbol  
Description  
Min  
Typ  
3
Max  
Units  
mV  
Notes  
VOSOB  
Input offset voltage (absolute value)  
12  
TCVOSOB Average input offset voltage drift  
VCMOB  
+6  
µV/°C  
V
Common mode input voltage range  
0.5  
VDD – 1.0  
ROUTOB  
Output resistance  
Power = low  
1
1
Ω
Ω
Power = high  
VOHIGHOB High output voltage swing  
(load = 1 KΩ to VDD/2)  
Power = low  
0.5 × VDD + 1.0  
0.5 × VDD + 1.0  
V
V
Power = high  
VOLOWOB Low output voltage swing  
(load = 1 KΩ to VDD/2)  
Power = low  
0.5 × VDD – 1.0  
0.5 × VDD – 1.0  
V
V
Power = high  
ISOB  
Supply current including opamp  
bias cell (no load)  
Power = low  
0.8  
2.0  
2.0  
4.3  
mA  
mA  
Power = high  
PSRROB  
CL  
Supply voltage rejection ratio  
Load capacitance  
34  
64  
dB  
(0.5 × VDD – 1.0) VOUT (0.5  
× VDD + 0.9).  
Thisspecificationappliestothe  
external circuit that is being  
driven by the analog output  
buffer.  
200  
pF  
Document Number: 001-53754 Rev. *D  
Page 18 of 46  
[+] Feedback  
CY8C24894  
DC Analog Reference Specifications  
Table 12 and Table 13 on page 22 list the guaranteed maximum and minimum specifications for the voltage and temperature ranges:  
4.75 V to 5.25 V and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V  
and 3.3 V at 25 °C. These are for design guidance only.  
The guaranteed specifications are measured through the analog CT PSoC blocks. The power levels for AGND refer to the power of  
the analog CT PSoC block. The power levels for RefHi and RefLo refer to the Analog Reference Control register. The limits stated for  
AGND include the offset error of the AGND buffer local to the analog CT PSoC block. Reference control power is high.  
Note Avoid using P2[4] for digital signaling when using an analog resource that depends on the analog reference. Some coupling of  
the digital signal may appear on the AGND.  
Table 12. 5-V DC Analog Reference Specifications  
Reference  
ARF_CR  
[5:3]  
Reference Power  
Symbol Reference  
Description  
Min  
Typ  
Max  
Units  
Settings  
0b000  
RefPower = high  
Opamp bias = high  
V
Ref High  
AGND  
V
V
V
V
V
V
V
V
V
V
V
V
/2 + Bandgap  
/2  
V
V
V
V
V
V
V
V
V
V
V
V
/2 + 1.229  
/2 – 0.038  
/2 – 1.356  
/2 + 1.220  
/2 – 0.036  
/2 – 1.357  
/2 + 1.221  
/2 – 0.036  
/2 – 1.357  
/2 + 1.219  
/2 – 0.037  
/2 – 1.359  
V
/2 + 1.290  
V
V
V
V
V
V
V
V
V
V
V
V
/2 + 1.346  
/2 + 0.040  
/2 – 1.218  
/2 + 1.348  
/2 + 0.036  
/2 – 1.225  
/2 + 1.351  
/2 + 0.036  
/2 – 1.228  
/2 + 1.353  
/2 + 0.036  
/2 – 1.229  
V
V
V
V
V
V
V
V
V
V
V
V
V
REFHI  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
V
V
/2  
AGND  
DD  
V
Ref Low  
Ref High  
AGND  
/2 – Bandgap  
/2 + Bandgap  
/2  
V
V
/2 – 1.295  
/2 + 1.292  
REFLO  
V
REFHI  
DD  
DD  
RefPower = high  
Opamp bias = low  
V
V
/2  
AGND  
DD  
V
Ref Low  
Ref High  
AGND  
/2 – Bandgap  
/2 + Bandgap  
/2  
V
V
/2 – 1.297  
/2 + 1.293  
REFLO  
REFHI  
AGND  
REFLO  
REFHI  
AGND  
REFLO  
DD  
DD  
RefPower = medium V  
Opamp bias = high  
V
V
/2  
DD  
V
Ref Low  
Ref High  
AGND  
/2 – Bandgap  
/2 + Bandgap  
/2  
V
V
V
V
/2 – 1.298  
/2 + 1.293  
/2 – 0.001  
/2 – 1.299  
DD  
DD  
DD  
DD  
RefPower = medium V  
Opamp bias = low  
V
V
Ref Low  
Ref High  
/2 – Bandgap  
0b001  
RefPower = high  
Opamp bias = high  
V
P2[4]+P2[6] (P2[4] =  
/2, P2[6] = 1.3 V)  
P2[4] + P2[6] – P2[4]+P2[6]P2[4]+P2[6]+  
REFHI  
V
0.092  
0.011  
0.064  
DD  
V
AGND  
P2[4]  
P2[4]  
P2[4]  
P2[4]  
AGND  
V
Ref Low  
P2[4]–P2[6] (P2[4] =  
P2[4] – P2[6] – P2[4]P2[6]+ P2[4]P2[6]+  
0.031 0.007 0.056  
P2[4] + P2[6] – P2[4]+P2[6]P2[4]+P2[6]+  
V
REFLO  
V
/2, P2[6] = 1.3 V)  
DD  
RefPower = high  
Opamp bias = low  
V
Ref High  
P2[4]+P2[6] (P2[4] =  
/2, P2[6] = 1.3 V)  
V
REFHI  
V
0.078  
0.008  
0.063  
DD  
V
AGND  
P2[4]  
P2[4]  
P2[4]  
P2[4]  
AGND  
V
Ref Low  
P2[4]–P2[6] (P2[4] =  
P2[4] – P2[6] – P2[4]P2[6]+ P2[4]P2[6]+  
0.031 0.004 0.043  
P2[4] + P2[6] – P2[4]+P2[6]P2[4]+P2[6]+  
V
REFLO  
V
/2, P2[6] = 1.3 V)  
DD  
RefPower = medium V  
Opamp bias = high  
Ref High  
P2[4]+P2[6] (P2[4] =  
/2, P2[6] = 1.3 V)  
V
REFHI  
V
0.073  
0.006  
0.062  
DD  
V
V
AGND  
P2[4]  
P2[4]  
P2[4]  
P2[4]  
AGND  
Ref Low  
P2[4]–P2[6] (P2[4] =  
P2[4] – P2[6] – P2[4]P2[6]+ P2[4]P2[6]+  
0.032 0.003 0.038  
P2[4] + P2[6] – P2[4]+P2[6]P2[4]+P2[6]+  
V
REFLO  
V
/2, P2[6] = 1.3 V)  
DD  
RefPower = medium V  
Opamp bias = low  
Ref High  
P2[4]+P2[6] (P2[4] =  
/2, P2[6] = 1.3 V)  
V
REFHI  
V
0.073  
0.006  
0.062  
DD  
V
V
AGND  
P2[4]  
P2[4]  
P2[4]  
P2[4]  
AGND  
Ref Low  
P2[4]–P2[6] (P2[4] =  
P2[4] – P2[6] – P2[4]P2[6]+ P2[4]P2[6]+  
0.034 0.002 0.037  
V
REFLO  
V
/2, P2[6] = 1.3 V)  
DD  
Document Number: 001-53754 Rev. *D  
Page 19 of 46  
[+] Feedback  
CY8C24894  
Table 12. 5-V DC Analog Reference Specifications (continued)  
Reference  
ARF_CR  
[5:3]  
Reference Power  
Symbol Reference  
Description  
Min  
Typ  
Max  
Units  
Settings  
0b010  
0b011  
0b100  
RefPower = high  
Opamp bias = high  
V
Ref High  
AGND  
V
V
V
V
V
V
V
V
V
V
V
V
V
– 0.037  
V
– 0.007  
V
DD  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
REFHI  
DD  
DD  
SS  
DD  
DD  
SS  
DD  
DD  
SS  
DD  
DD  
SS  
DD  
DD  
V
/2  
V
/2 – 0.036  
V
/2 – 0.001  
V
/2 + 0.036  
AGND  
DD  
DD  
DD  
DD  
DD  
DD  
V
Ref Low  
Ref High  
AGND  
V
V
V
+ 0.005  
– 0.006  
V
+ 0.029  
REFLO  
REFHI  
SS  
SS  
DD  
SS  
RefPower = high  
Opamp bias = low  
V
V
– 0.034  
V
DD  
DD  
V
/2  
/2  
/2  
V
/2 – 0.036  
V /2 – 0.001  
DD  
V
/2 + 0.035  
+ 0.024  
AGND  
DD  
V
Ref Low  
Ref High  
AGND  
V
V
V
+ 0.004  
– 0.005  
V
REFLO  
REFHI  
AGND  
REFLO  
REFHI  
AGND  
REFLO  
SS  
SS  
DD  
SS  
RefPower = medium V  
Opamp bias = high  
V
– 0.032  
V
DD  
DD  
V
V
/2 – 0.036  
V
/2 – 0.001  
V
/2 + 0.035  
+ 0.022  
DD  
DD  
V
Ref Low  
Ref High  
AGND  
V
V
V
+ 0.003  
– 0.005  
V
SS  
SS  
SS  
RefPower = medium V  
Opamp bias = low  
V
– 0.031  
V
DD  
DD  
DD  
V
V
/2 – 0.037  
V
/2 – 0.001  
V
/2 + 0.035  
+ 0.020  
DD  
DD  
V
Ref Low  
Ref High  
AGND  
V
V
+ 0.003  
V
SS  
SS  
SS  
RefPower = high  
Opamp bias = high  
V
3 × Bandgap  
2 × Bandgap  
Bandgap  
3.760  
2.522  
1.252  
3.766  
2.523  
1.252  
3.769  
2.523  
1.251  
3.769  
2.523  
1.251  
3.884  
2.593  
1.299  
3.887  
2.594  
1.297  
3.888  
2.594  
1.296  
3.889  
2.595  
1.296  
4.006  
2.669  
1.342  
4.010  
2.670  
1.342  
4.013  
2.671  
1.343  
4.015  
2.671  
1.344  
REFHI  
V
AGND  
V
Ref Low  
Ref High  
AGND  
REFLO  
REFHI  
RefPower = high  
Opamp bias = low  
V
3 × Bandgap  
2 × Bandgap  
Bandgap  
V
AGND  
V
Ref Low  
Ref High  
AGND  
REFLO  
REFHI  
AGND  
REFLO  
REFHI  
AGND  
REFLO  
RefPower = medium V  
Opamp bias = high  
3 × Bandgap  
2 × Bandgap  
Bandgap  
V
V
Ref Low  
Ref High  
AGND  
RefPower = medium V  
Opamp bias = low  
3 × Bandgap  
2 × Bandgap  
Bandgap  
V
V
Ref Low  
Ref High  
RefPower = high  
Opamp bias = high  
V
2 × Bandgap + P2[6]  
(P2[6] = 1.3 V)  
2.483 – P2[6] 2.582 – P2[6] 2.674 – P2[6]  
REFHI  
V
AGND  
2 × Bandgap  
2.522 2.593 2.669  
V
V
AGND  
V
Ref Low  
2 × Bandgap – P2[6]  
(P2[6] = 1.3 V)  
2.524 – P2[6] 2.600 – P2[6] 2.676 – P2[6]  
2.490 – P2[6] 2.586 – P2[6] 2.679 – P2[6]  
REFLO  
RefPower = high  
Opamp bias = low  
V
Ref High  
2 × Bandgap + P2[6]  
(P2[6] = 1.3 V)  
V
REFHI  
V
AGND  
2 × Bandgap  
2.523  
2.594  
2.669  
V
V
AGND  
V
Ref Low  
2 × Bandgap – P2[6]  
(P2[6] = 1.3 V)  
2.523 – P2[6] 2.598 – P2[6] 2.675 – P2[6]  
REFLO  
RefPower = medium V  
Opamp bias = high  
Ref High  
2 × Bandgap + P2[6]  
(P2[6] = 1.3 V)  
2.493 – P2[6] 2.588 – P2[6] 2.682 – P2[6]  
V
REFHI  
V
V
AGND  
2 × Bandgap  
2.523  
2.594  
2.670  
V
V
AGND  
Ref Low  
2 × Bandgap – P2[6]  
(P2[6] = 1.3 V)  
2.523 – P2[6] 2.597 – P2[6] 2.675 – P2[6]  
REFLO  
RefPower = medium V  
Opamp bias = low  
Ref High  
2 × Bandgap + P2[6]  
(P2[6] = 1.3 V)  
2.494 – P2[6] 2.589 – P2[6] 2.685 – P2[6]  
V
REFHI  
V
V
AGND  
2 × Bandgap  
2.523  
2.595  
2.671  
V
V
AGND  
Ref Low  
2 × Bandgap – P2[6]  
(P2[6] = 1.3 V)  
2.522 – P2[6] 2.596 – P2[6] 2.676 – P2[6]  
REFLO  
Document Number: 001-53754 Rev. *D  
Page 20 of 46  
[+] Feedback  
CY8C24894  
Table 12. 5-V DC Analog Reference Specifications (continued)  
Reference  
ARF_CR  
[5:3]  
Reference Power  
Symbol Reference  
Description  
Min  
P2[4] + 1.218 P2[4] + 1.291 P2[4] + 1.354  
P2[4] P2[4] P2[4]  
Typ  
Max  
Units  
Settings  
0b101  
RefPower = high  
V
Ref High  
P2[4] + Bandgap  
V
REFHI  
Opamp bias = high  
(P2[4] = V /2)  
DD  
V
AGND  
P2[4]  
AGND  
V
Ref Low  
P2[4] – Bandgap  
P2[4] – 1.335 P2[4] – 1.294 P2[4] – 1.237  
V
REFLO  
(P2[4] = V /2)  
DD  
RefPower = high  
Opamp bias = low  
V
Ref High  
P2[4] + Bandgap  
P2[4] + 1.221 P2[4] + 1.293 P2[4] + 1.358  
V
REFHI  
(P2[4] = V /2)  
DD  
V
AGND  
P2[4]  
P2[4]  
P2[4]  
P2[4]  
AGND  
V
Ref Low  
P2[4] – Bandgap  
P2[4] – 1.337 P2[4] – 1.297 P2[4] – 1.243  
V
REFLO  
(P2[4] = V /2)  
DD  
RefPower = medium V  
Opamp bias = high  
Ref High  
P2[4] + Bandgap  
P2[4] + 1.222 P2[4] + 1.294 P2[4] + 1.360  
V
REFHI  
(P2[4] = V /2)  
DD  
V
V
AGND  
P2[4]  
P2[4]  
P2[4]  
P2[4]  
AGND  
Ref Low  
P2[4] – Bandgap  
P2[4] – 1.338 P2[4] – 1.298 P2[4] – 1.245  
V
REFLO  
(P2[4] = V /2)  
DD  
RefPower = medium V  
Opamp bias = low  
Ref High  
P2[4] + Bandgap  
P2[4] + 1.221 P2[4] + 1.294 P2[4] + 1.362  
V
REFHI  
(P2[4] = V /2)  
DD  
V
V
AGND  
P2[4]  
P2[4]  
P2[4]  
P2[4]  
AGND  
Ref Low  
P2[4] – Bandgap  
P2[4] – 1.340 P2[4] – 1.298 P2[4] – 1.245  
V
REFLO  
(P2[4] = V /2)  
DD  
0b110  
RefPower = high  
Opamp bias = high  
V
Ref High  
AGND  
2 × Bandgap  
Bandgap  
2.513  
1.264  
2.593  
1.302  
2.672  
1.340  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
REFHI  
V
AGND  
V
Ref Low  
Ref High  
AGND  
V
V
V
V
V
V
V
V
V
V
+ 0.008  
V
V
V
V
V
V
V
V
+ 0.038  
REFLO  
REFHI  
SS  
SS  
SS  
SS  
RefPower = high  
Opamp bias = low  
V
2 × Bandgap  
Bandgap  
2.514  
1.264  
2.593  
1.301  
2.674  
1.340  
V
AGND  
V
Ref Low  
Ref High  
AGND  
V
V
+ 0.005  
+ 0.028  
SS  
REFLO  
REFHI  
AGND  
REFLO  
REFHI  
AGND  
REFLO  
SS  
SS  
SS  
RefPower = medium V  
Opamp bias = high  
2 × Bandgap  
Bandgap  
2.514  
1.264  
2.593  
1.301  
2.676  
1.340  
V
V
Ref Low  
Ref High  
AGND  
V
V
+ 0.004  
+ 0.024  
SS  
SS  
SS  
SS  
RefPower = medium V  
Opamp bias = low  
2 × Bandgap  
Bandgap  
2.514  
1.264  
2.593  
1.300  
2.677  
1.340  
V
V
Ref Low  
Ref High  
AGND  
V
V
+ 0.003  
+ 0.021  
SS  
SS  
SS  
SS  
0b111  
RefPower = high  
Opamp bias = high  
V
3.2 × Bandgap  
1.6 × Bandgap  
4.028  
2.028  
4.144  
2.076  
4.242  
2.125  
REFHI  
V
AGND  
V
Ref Low  
Ref High  
AGND  
V
V
+ 0.008  
+ 0.034  
SS  
REFLO  
REFHI  
SS  
SS  
SS  
RefPower = high  
Opamp bias = low  
V
3.2 × Bandgap  
1.6 × Bandgap  
4.032  
2.029  
4.142  
2.076  
4.245  
2.126  
V
AGND  
V
Ref Low  
Ref High  
AGND  
V
V
+ 0.005  
+ 0.025  
SS  
REFLO  
REFHI  
AGND  
REFLO  
REFHI  
AGND  
REFLO  
SS  
SS  
SS  
RefPower = medium V  
Opamp bias = high  
3.2 × Bandgap  
1.6 × Bandgap  
4.034  
2.029  
4.143  
2.076  
4.247  
2.126  
V
V
Ref Low  
Ref High  
AGND  
V
V
+ 0.004  
+ 0.021  
SS  
SS  
SS  
SS  
RefPower = medium V  
Opamp bias = low  
3.2 × Bandgap  
1.6 × Bandgap  
4.036  
2.029  
4.144  
2.076  
4.249  
2.126  
V
V
Ref Low  
V
V
+ 0.003  
+ 0.019  
SS  
SS  
SS  
SS  
Document Number: 001-53754 Rev. *D  
Page 21 of 46  
[+] Feedback  
CY8C24894  
Table 13. 3.3-V DC Analog Reference Specifications  
Reference  
ARF_CR  
[5:3]  
Reference Power  
Symbol Reference  
Description  
Min  
Typ  
Max  
Units  
Settings  
0b000  
RefPower = high  
Opamp bias = high  
V
Ref High  
AGND  
V
V
V
V
V
V
V
V
V
V
V
V
/2 + Bandgap  
/2  
V
V
V
V
V
V
V
V
V
V
V
V
/2 + 1.200  
/2 – 0.030  
/2 – 1.346  
/2 + 1.196  
/2 – 0.029  
/2 – 1.349  
/2 + 1.204  
/2 – 0.030  
/2 – 1.351  
/2 + 1.189  
/2 – 0.032  
/2 – 1.353  
V
/2 + 1.290  
V
V
V
V
V
V
V
V
V
V
V
V
/2 + 1.365  
/2 + 0.034  
/2 – 1.208  
/2 + 1.374  
/2 + 0.031  
/2 – 1.227  
/2 + 1.369  
/2 + 0.030  
/2 – 1.229  
/2 + 1.384  
/2 + 0.029  
/2 – 1.230  
V
V
V
V
V
V
V
V
V
V
V
V
V
REFHI  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
V
V
/2  
DD  
AGND  
V
Ref Low  
Ref High  
AGND  
/2 – Bandgap  
/2 + Bandgap  
/2  
V
V
/2 – 1.292  
/2 + 1.292  
REFLO  
V
REFHI  
DD  
DD  
RefPower = high  
Opamp bias = low  
V
V
/2  
DD  
AGND  
V
Ref Low  
Ref High  
AGND  
/2 – Bandgap  
/2 + Bandgap  
/2  
V
V
/2 – 1.295  
/2 + 1.293  
REFLO  
REFHI  
AGND  
REFLO  
REFHI  
AGND  
REFLO  
DD  
DD  
RefPower = medium V  
Opamp bias = high  
V
V
/2  
DD  
V
Ref Low  
Ref High  
AGND  
/2 – Bandgap  
/2 + Bandgap  
/2  
V
V
/2 – 1.297  
/2 + 1.294  
DD  
DD  
RefPower = medium V  
Opamp bias = low  
V
V
/2  
DD  
V
Ref Low  
Ref High  
/2 – Bandgap  
V
/2 – 1.297  
DD  
0b001  
RefPower = high  
V
P2[4]+P2[6] (P2[4] = P2[4] + P2[6] – P2[4]+P2[6]P2[4]+P2[6]+  
REFHI  
Opamp bias = high  
V
/2, P2[6] = 0.5 V)  
0.105  
0.008  
0.095  
DD  
V
AGND  
P2[4]  
P2[4]  
P2[4]  
P2[4]  
AGND  
V
Ref Low  
P2[4]–P2[6] (P2[4] = P2[4] – P2[6] – P2[4]P2[6]+ P2[4]P2[6]+  
/2, P2[6] = 0.5 V) 0.035 0.006 0.053  
P2[4]+P2[6] (P2[4] = P2[4] + P2[6] – P2[4]+P2[6]P2[4]+P2[6]+  
V
REFLO  
V
DD  
RefPower = high  
Opamp bias = low  
V
Ref High  
V
REFHI  
V
/2, P2[6] = 0.5 V)  
0.094  
0.005  
0.073  
DD  
V
AGND  
P2[4]  
P2[4]  
P2[4]  
P2[4]  
AGND  
V
Ref Low  
P2[4]–P2[6] (P2[4] = P2[4] – P2[6] – P2[4]P2[6]+ P2[4]P2[6]+  
/2, P2[6] = 0.5 V) 0.033 0.002 0.042  
P2[4]+P2[6] (P2[4] = P2[4] + P2[6] – P2[4]+P2[6]P2[4]+P2[6]+  
V
REFLO  
V
DD  
RefPower = medium V  
Opamp bias = high  
Ref High  
V
REFHI  
V
/2, P2[6] = 0.5 V)  
0.094  
0.003  
0.075  
DD  
V
V
AGND  
P2[4]  
P2[4]  
P2[4]  
P2[4]  
AGND  
Ref Low  
P2[4]–P2[6] (P2[4] = P2[4] – P2[6] – P2[4] – P2[6] P2[4]P2[6]+  
/2, P2[6] = 0.5 V) 0.035 0.038  
P2[4]+P2[6] (P2[4] = P2[4] + P2[6] – P2[4]+P2[6]P2[4]+P2[6]+  
V
REFLO  
V
DD  
RefPower = medium V  
Opamp bias = low  
Ref High  
V
REFHI  
V
/2, P2[6] = 0.5 V)  
0.095  
0.003  
0.080  
DD  
V
V
AGND  
P2[4]  
P2[4]  
P2[4]  
P2[4]  
AGND  
Ref Low  
P2[4]–P2[6] (P2[4] = P2[4] – P2[6] – P2[4] – P2[6] P2[4]P2[6]+  
V
REFLO  
V
V
V
V
V
V
V
V
V
V
V
V
V
/2, P2[6] = 0.5 V)  
0.038  
0.038  
DD  
DD  
DD  
SS  
DD  
DD  
SS  
DD  
DD  
SS  
DD  
DD  
SS  
0b010  
RefPower = high  
Opamp bias = high  
V
Ref High  
AGND  
V
– 0.119  
V
– 0.005  
V
DD  
V
V
V
V
V
V
V
V
V
V
V
V
REFHI  
DD  
DD  
V
/2  
V
/2 – 0.028  
V
/2  
V
/2 + 0.029  
AGND  
DD  
DD  
DD  
DD  
DD  
DD  
V
Ref Low  
Ref High  
AGND  
V
V
V
+ 0.004  
– 0.004  
V
+ 0.022  
SS  
REFLO  
REFHI  
SS  
SS  
DD  
RefPower = high  
Opamp bias = low  
V
V
– 0.131  
V
DD  
DD  
V
/2  
/2  
/2  
V
/2 – 0.028  
V /2  
DD  
V
/2 + 0.028  
+ 0.021  
AGND  
DD  
V
Ref Low  
Ref High  
AGND  
V
V
V
+ 0.003  
– 0.003  
V
REFLO  
REFHI  
AGND  
REFLO  
REFHI  
AGND  
REFLO  
SS  
SS  
DD  
SS  
RefPower = medium V  
Opamp bias = high  
V
– 0.111  
V
DD  
DD  
V
V
/2 – 0.029  
V
/2  
DD  
V
/2 + 0.028  
+ 0.017  
DD  
V
Ref Low  
Ref High  
AGND  
V
V
V
+ 0.002  
– 0.003  
V
SS  
SS  
DD  
SS  
RefPower = medium V  
Opamp bias = low  
V
– 0.128  
V
DD  
DD  
V
V
/2 – 0.029  
V
/2  
DD  
V
/2 + 0.029  
+ 0.019  
DD  
V
Ref Low  
V
V
+ 0.002  
V
SS  
SS  
SS  
Document Number: 001-53754 Rev. *D  
Page 22 of 46  
[+] Feedback  
CY8C24894  
Table 13. 3.3-V DC Analog Reference Specifications (continued)  
Reference  
ARF_CR  
[5:3]  
Reference Power  
Symbol Reference  
Description  
Min  
Typ  
Max  
Units  
Settings  
0b011  
0b100  
0b101  
All power settings.  
Not allowed for 3.3 V.  
V
All power settings.  
Not allowed for 3.3 V.  
RefPower = high  
V
Ref High  
P2[4] + Bandgap  
P2[4] + 1.214 P2[4] + 1.291 P2[4] + 1.359  
P2[4] P2[4] P2[4]  
REFHI  
Opamp bias = high  
(P2[4] = V /2)  
DD  
V
AGND  
P2[4]  
AGND  
V
Ref Low  
P2[4] – Bandgap  
P2[4] – 1.335 P2[4] – 1.292 P2[4] – 1.200  
V
REFLO  
(P2[4] = V /2)  
DD  
RefPower = high  
Opamp bias = low  
V
Ref High  
P2[4] + Bandgap  
P2[4] + 1.219 P2[4] + 1.293 P2[4] + 1.357  
V
REFHI  
(P2[4] = V /2)  
DD  
V
AGND  
P2[4]  
P2[4]  
P2[4]  
P2[4]  
AGND  
V
Ref Low  
P2[4] – Bandgap  
P2[4] – 1.335 P2[4] – 1.295 P2[4] – 1.243  
V
REFLO  
(P2[4] = V /2)  
DD  
RefPower = medium V  
Opamp bias = high  
Ref High  
P2[4] + Bandgap  
P2[4] + 1.222 P2[4] + 1.294 P2[4] + 1.356  
V
REFHI  
(P2[4] = V /2)  
DD  
V
V
AGND  
P2[4]  
P2[4]  
P2[4]  
P2[4]  
AGND  
Ref Low  
P2[4] – Bandgap  
P2[4] – 1.337 P2[4] – 1.296 P2[4] – 1.244  
V
REFLO  
(P2[4] = V /2)  
DD  
RefPower = medium V  
Opamp bias = low  
Ref High  
P2[4] + Bandgap  
P2[4] + 1.224 P2[4] + 1.295 P2[4] + 1.355  
V
REFHI  
(P2[4] = V /2)  
DD  
V
V
AGND  
P2[4]  
P2[4]  
P2[4]  
P2[4]  
AGND  
Ref Low  
P2[4] – Bandgap  
P2[4] – 1.339 P2[4] – 1.297 P2[4] – 1.244  
V
REFLO  
(P2[4] = V /2)  
DD  
0b110  
RefPower = high  
Opamp bias = high  
V
Ref High  
AGND  
2 × Bandgap  
Bandgap  
2.510  
1.276  
2.595  
1.301  
2.655  
1.332  
V
V
V
V
V
V
V
V
V
V
V
V
REFHI  
V
AGND  
V
Ref Low  
Ref High  
AGND  
V
V
V
V
V
V
+ 0.006  
V
V
V
V
+ 0.031  
SS  
REFLO  
REFHI  
SS  
SS  
SS  
RefPower = high  
Opamp bias = low  
V
2 × Bandgap  
Bandgap  
2.513  
1.275  
2.594  
1.301  
2.656  
1.331  
V
AGND  
V
Ref Low  
Ref High  
AGND  
V
V
+ 0.004  
+ 0.021  
SS  
REFLO  
REFHI  
AGND  
REFLO  
REFHI  
AGND  
REFLO  
SS  
SS  
SS  
RefPower = medium V  
Opamp bias = high  
2 × Bandgap  
Bandgap  
2.516  
1.275  
2.595  
1.301  
2.657  
1.331  
V
V
Ref Low  
Ref High  
AGND  
V
V
+ 0.003  
+ 0.017  
SS  
SS  
SS  
SS  
RefPower = medium V  
Opamp bias = low  
2 × Bandgap  
Bandgap  
2.520  
1.275  
2.595  
1.300  
2.658  
1.331  
V
V
Ref Low  
V
V
+ 0.002  
+ 0.015  
SS  
SS  
SS  
SS  
0b111  
All power settings.  
Not allowed for 3.3 V.  
Document Number: 001-53754 Rev. *D  
Page 23 of 46  
[+] Feedback  
CY8C24894  
DC Analog PSoC Block Specifications  
Table 14 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40  
°C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are  
for design guidance only.  
Table 14. DC Analog PSoC Block Specifications  
Symbol  
RCT  
Description  
Min  
Typ  
12.2  
80  
Max  
Units  
kΩ  
fF  
Notes  
Resistor unit value (continuous time)  
Capacitor unit value (switched capacitor)  
CSC  
DC POR and LVD Specifications  
Table 15 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40  
°C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V or 3.3 V at 25 °C and are  
for design guidance only.  
Note The bits PORLEV and VM in the table below refer to bits in the VLT_CR register. See the PSoC Technical Reference Manual  
for more information on the VLT_CR register.  
Table 15. DC POR and LVD Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
VDD Value for PPOR Trip (negative ramp)  
PORLEV[1:0] = 00b  
PORLEV[1:0] = 01b  
VDD must be greater than or equal  
to 2.5 V during startup, reset from  
the XRES pin, or reset from  
watchdog.  
VPPOR0  
VPPOR1  
VPPOR2  
2.82  
4.39  
4.55  
V
V
V
PORLEV[1:0] = 10b  
PPOR Hysteresis  
PORLEV[1:0] = 00b  
PORLEV[1:0] = 01b  
PORLEV[1:0] = 10b  
VPH0  
VPH1  
VPH2  
92  
0
0
mV  
mV  
mV  
VDD Value for LVD Trip  
VM[2:0] = 000b  
VM[2:0] = 001b  
VM[2:0] = 010b  
VM[2:0] = 011b  
VM[2:0] = 100b  
VM[2:0] = 101b  
VM[2:0] = 110b  
VM[2:0] = 111b  
VLVD0  
VLVD1  
VLVD2  
VLVD3  
VLVD4  
VLVD5  
VLVD6  
VLVD7  
2.86  
2.96  
3.07  
3.92  
4.39  
4.55  
4.63  
4.72  
2.92  
3.02  
3.13  
4.00  
4.48  
4.64  
4.73  
4.81  
3.02[6]  
3.12  
3.24  
V
V
V
V
V
V
V
V
4.12  
4.62  
4.78[7]  
4.87  
4.96  
Notes  
6. Always greater than 50 mV above PPOR (PORLEV = 00) for falling supply.  
7. Always greater than 50 mV above PPOR (PORLEV = 10) for falling supply.  
Document Number: 001-53754 Rev. *D  
Page 24 of 46  
[+] Feedback  
CY8C24894  
DC Programming Specifications  
Table 16 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40  
°C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are  
for design guidance only.  
Table 16. DC Programming Specifications  
Symbol  
VDDP  
Description  
Min  
Typ  
Max  
Units  
Notes  
VDD for programming and erase  
4.5  
5.0  
5.5  
V
This specification applies to  
the functional requirements of  
external programmer tools  
VDDLV  
Low VDD for verify  
High VDD for verify  
3.0  
5.1  
3.0  
3.1  
5.2  
3.2  
5.3  
V
V
V
This specification applies to  
the functional requirements of  
external programmer tools  
VDDHV  
This specification applies to  
the functional requirements of  
external programmer tools  
VDDIWRITE Supply voltage for flash write operation  
5.25  
This specification applies to  
this device when it is  
executing internal flash writes  
IDDP  
VILP  
VIHP  
IILP  
Supply current during programming or verify  
Input low voltage during programming or verify  
Input high voltage during programming or verify  
15  
30  
0.8  
mA  
V
2.1  
V
Input current when applying VILP to P1[0] or  
P1[1] during programming or verify  
0.2  
mA  
Driving internal pull-down  
resistor.  
IIHP  
Input current when applying VIHP to P1[0] or  
P1[1] during programming or verify  
1.5  
0.75  
VDD  
mA  
V
Driving internal pull-down  
resistor.  
VOLV  
VOHV  
Output low voltage during programming or  
verify  
Output high voltage during programming or  
verify  
VDD – 1.0  
V
FlashENPB Flash endurance (per block)[8, 9]  
FlashENT Flash endurance (total)[9, 10]  
1,000  
256,000  
10  
Erase/write cycles per block.  
Erase/write cycles.  
FlashDR  
Flash data retention[9]  
Years  
Notes  
8. The erase/write cycle limit per block (Flash  
) is only guaranteed if the device operates within one voltage range. Voltage ranges are 3.0 V to 3.6 V and 4.75 V to  
ENPB  
5.25 V.  
9. For the full temperature range, the user must employ a temperature sensor user module (FlashTemp) or other temperature sensor, and feed the result to the temperature  
argument before writing. Refer to the Flash APIs Application Note AN2015 for more information.  
10. The maximum total number of allowed erase/write cycles is the minimum Flash  
value multiplied by the number of flash blocks in the device.  
ENPB  
Document Number: 001-53754 Rev. *D  
Page 25 of 46  
[+] Feedback  
CY8C24894  
AC Electrical Characteristics  
AC Chip-Level Specifications  
Table 17 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40  
°C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are  
for design guidance only.  
Table 17. AC Chip-Level Specifications  
Symbol  
Description  
Min  
23.04[11]  
Typ  
Max  
24.96[11]  
Units  
Notes  
FIMO245V  
IMO frequency for 24 MHz (5 V  
nominal)  
24  
MHz Trimmed for 5 V operation using  
factory trim values.  
FIMO243V  
IMO frequency for 24 MHz (3.3 V  
nominal)  
22.08[11]  
24  
25.92[11]  
MHz Trimmedfor3.3Voperationusing  
factory trim values.  
FCPU1  
FCPU2  
FBLK5  
CPU frequency (5 V nominal)  
CPU frequency (3.3 V nominal)  
0.090[11]  
0.086[11]  
0
24  
12  
48  
24.96[11]  
12.96[11]  
49.92[11,12]  
MHz SLIMO mode = 0.  
MHz SLIMO mode = 0.  
Digital PSoC block frequency (5 V  
nominal)  
MHz Refer to the AC Digital Block  
Specifications.  
FBLK3  
F32K1  
F32KU  
Digital PSoC block frequency (3.3 V  
nominal)  
0
15  
5
24  
32  
25.92[11,12]  
MHz Refer to the AC Digital Block  
Specifications.  
ILO frequency  
64  
kHz This specification applies when  
the ILO has been trimmed.  
ILO untrimmed frequency  
100  
kHz After a reset and before the M8C  
processor starts to execute, the  
ILO is not trimmed.  
tXRST  
External reset pulse width  
24 MHz duty cycle  
10  
60  
µs  
DC24M  
DCILO  
40  
50  
50  
50  
48  
%
ILO duty cycle  
20  
80  
%
Step24M  
Fout48M  
FMAX  
24 MHz trim step size  
48 MHz output frequency  
46.08[11]  
kHz  
49.92[11]  
12.96[11]  
MHz 4.75 V VDD 5.25 V  
MHz  
Maximum frequency of signal on row  
input or row output.  
SRPOWERUP Power supply slew rate  
250  
100  
V/ms VDD slew rate during power-up.  
tPOWERUP  
Time between end of POR state and  
16  
ms  
Power-up from 0 V.  
CPU code execution  
[13]  
t
24 MHz IMO cycle-to-cycle jitter (RMS)  
200  
900  
1200  
6000  
ps  
ps  
JIT_IMO  
24 MHz IMO long term N cycle-to-cycle  
jitter (RMS)  
N = 32  
24 MHz IMO period jitter (RMS)  
200  
900  
ps  
Notes  
11. Accuracy derived from IMO with appropriate trim for V range.  
DD  
12. See the individual user module datasheets for information on maximum frequencies for user modules.  
13. Refer to Cypress Jitter Specifications application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 for more information.  
Document Number: 001-53754 Rev. *D  
Page 26 of 46  
[+] Feedback  
CY8C24894  
AC GPIO Specifications  
Table 18 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40  
°C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are  
for design guidance only.  
Table 18. AC GPIO Specifications  
Symbol  
FGPIO  
tRISEF  
tFALLF  
tRISES  
tFALLS  
Description  
Min  
0
Typ  
Max  
Units  
Notes  
GPIO operating frequency  
12.96[14] MHz Normal Strong Mode  
Rise time, normal strong mode, Cload = 50 pF  
Fall time, normal strong mode, Cload = 50 pF  
Rise time, slow strong mode, Cload = 50 pF  
Fall time, slow strong mode, Cload = 50 pF  
3
18  
18  
ns  
ns  
ns  
ns  
VDD = 4.5 to 5.25 V, 10% to 90%  
VDD = 4.5 to 5.25 V, 10% to 90%  
VDD = 3 to 5.25 V, 10% to 90%  
VDD = 3 to 5.25 V, 10% to 90%  
2
10  
10  
27  
22  
Figure 5. GPIO Timing Diagram  
90%  
GPIO  
Pin  
Output  
Voltage  
10%  
t
t
FALLF  
RISEF  
t
FALLS  
t
T
RISES  
Note  
14. Specification derived from the accuracy of the Internal Main Oscillator (IMO) with appropriate trim for V range.  
DD  
Document Number: 001-53754 Rev. *D  
Page 27 of 46  
[+] Feedback  
CY8C24894  
AC Operational Amplifier Specifications  
Table 19 and Table 20 list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to  
5.25 V and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V  
at 25 °C and are for design guidance only.  
Settling times, slew rates, and gain bandwidth are based on the Analog Continuous Time PSoC block.  
Power = high and Opamp bias = high is not supported at 3.3 V.  
Table 19. 5-V AC Operational Amplifier Specifications  
Symbol  
tROA  
Description  
Min  
Typ  
Max  
Units  
Rising settling time from 80% of ΔV to 0.1% of ΔV  
(10 pF load, unity gain)  
Power = low, Opamp bias = low  
Power = medium, Opamp bias = high  
Power = high, Opamp bias = high  
3.9  
0.72  
0.62  
µs  
µs  
µs  
tSOA  
Falling settling time from 20% of ΔV to 0.1% of ΔV  
(10 pF load, unity gain)  
Power = low, Opamp bias = low  
Power = medium, Opamp bias = high  
Power = high, Opamp bias = high  
5.9  
0.92  
0.72  
µs  
µs  
µs  
SRROA  
SRFOA  
BWOA  
ENOA  
Rising slew rate (20% to 80%) (10 pF load, unity gain)  
Power = low, Opamp bias = low  
Power = medium, Opamp bias = high  
Power = high, Opamp bias = high  
0.15  
1.7  
6.5  
V/µs  
V/µs  
V/µs  
Falling slew rate (20% to 80%) (10 pF load, unity gain)  
Power = low, Opamp bias = low  
Power = medium, Opamp bias = high  
Power = high, Opamp bias = high  
0.01  
0.5  
4.0  
V/µs  
V/µs  
V/µs  
Gain bandwidth product  
Power = low, Opamp bias = low  
Power = medium, Opamp bias = high  
Power = high, Opamp bias = high  
0.75  
3.1  
5.4  
MHz  
MHz  
MHz  
Noise at 1 kHz (Power = medium, Opamp bias = high)  
100  
nV/rt-Hz  
Table 20. 3.3-V AC Operational Amplifier Specifications  
Symbol  
tROA  
Description  
Min  
Typ  
Max  
Units  
Rising settling time from 80% of ΔV to 0.1% of ΔV  
(10 pF load, unity gain)  
Power = low, Opamp bias = low  
Power = medium, Opamp bias = high  
3.92  
0.72  
µs  
µs  
tSOA  
Falling settling time from 20% of ΔV to 0.1% of ΔV  
(10 pF load, unity gain)  
Power = low, Opamp bias = low  
Power = medium, Opamp bias = high  
5.41  
0.72  
µs  
µs  
SRROA  
SRFOA  
BWOA  
ENOA  
Rising slew rate (20% to 80%) (10 pF load, unity gain)  
Power = low, Opamp bias = low  
Power = medium, Opamp bias = high  
0.31  
2.7  
V/µs  
V/µs  
Falling slew rate (20% to 80%) (10 pF load, Unity Gain)  
Power = low, Opamp bias = low  
Power = medium, Opamp bias = high  
0.24  
1.8  
V/µs  
V/µs  
Gain bandwidth product  
Power = low, Opamp bias = low  
Power = medium, Opamp bias = high  
0.67  
2.8  
MHz  
MHz  
Noise at 1 kHz (Power = medium, Opamp bias = high)  
100  
nV/rt-Hz  
Document Number: 001-53754 Rev. *D  
Page 28 of 46  
[+] Feedback  
CY8C24894  
When bypassed by a capacitor on P2[4], the noise of the analog ground signal distributed to each block is reduced by a factor of up  
to 5 (14 dB). This is at frequencies above the corner frequency defined by the on-chip 8.1 kΩ resistance and the external capacitor.  
Figure 6. Typical AGND Noise with P2[4] Bypass  
nV/rtHz  
10000  
0
0.01  
0.1  
1.0  
10  
1000  
100  
0.001  
0.01  
0.1 Freq (kHz)  
1
10  
100  
At low frequencies, the opamp noise is proportional to 1/f, power independent, and determined by device geometry. At high  
frequencies, increased power level reduces the noise spectrum level.  
Figure 7. Typical Opamp Noise  
nV/rtHz  
10000  
PH_BH  
PH_BL  
PM_BL  
PL_BL  
1000  
100  
10  
0.001  
0.01  
0.1  
1
10  
100  
Freq (kHz)  
Document Number: 001-53754 Rev. *D  
Page 29 of 46  
[+] Feedback  
CY8C24894  
AC Low Power Comparator Specifications  
Table 21 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40  
°C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V at 25 °C and are for design  
guidance only.  
Table 21. AC Low Power Comparator Specifications  
Symbol  
tRLPC  
Description  
LPC response time  
Min  
Typ  
Max  
50  
Units  
μs  
Notes  
50 mV overdrive comparator  
reference set within VREFLPC  
.
AC Digital Block Specifications  
Table 22 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40  
°C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are  
for design guidance only.  
Table 22. AC Digital Block Specifications  
Function  
All  
functions  
Description  
Block input clock frequency  
VDD 4.75 V  
Min  
Typ  
Max  
Units  
Notes  
49.92[15] MHz  
25.92[15] MHz  
V
DD < 4.75 V  
Timer  
Input clock frequency  
No capture, VDD 4.75 V  
No capture, VDD < 4.75 V  
With capture  
49.92[15] MHz  
25.92[15] MHz  
25.92[15] MHz  
Capture pulse width  
50[16]  
ns  
Counter Input clock frequency  
No enable input, VDD 4.75 V  
49.92[15] MHz  
25.92[15] MHz  
25.92[15] MHz  
No enable input, VDD < 4.75 V  
With enable input  
Enable input pulse width  
Kill pulse width  
Asynchronous restart mode  
Synchronous restart mode  
Disable mode  
50[16]  
ns  
Dead  
Band  
20  
ns  
ns  
ns  
50[16]  
50[16]  
Input clock frequency  
VDD 4.75 V  
49.92[15] MHz  
25.92[15] MHz  
V
DD < 4.75 V  
CRCPRS Input clock frequency  
49.92[15] MHz  
25.92[15] MHz  
25.92[15] MHz  
(PRS  
VDD 4.75 V  
Mode)  
V
DD < 4.75 V  
CRCPRS Input clock frequency  
(CRC  
Mode)  
SPIM  
Input clock frequency  
8.64[15]  
MHz The SPI serial clock (SCLK)  
frequency is equal to the input  
clock frequency divided by 2.  
MHz The input clock is the SPI SCLK in  
SPIS mode.  
SPIS  
Input clock (SCLK) frequency  
4.32[15]  
Width of SS_Negated between transmissions  
Input Clock Frequency  
VDD 4.75 V, 2 stop bits  
50[16]  
ns  
Trans-  
mitter  
The baud rate is equal to the input  
clock frequency divided by 8.  
49.92[15] MHz  
25.92[15] MHz  
25.92[15] MHz  
VDD 4.75 V, 1 stop bit  
V
DD < 4.75 V  
Notes  
15. Accuracy derived from IMO with appropriate trim for V range.  
DD  
16. 50 ns minimum input pulse width is based on the input synchronizers running at 24 MHz (42 ns nominal period).  
Document Number: 001-53754 Rev. *D  
Page 30 of 46  
[+] Feedback  
CY8C24894  
Table 22. AC Digital Block Specifications (continued)  
Function Description  
Min  
Typ  
Max  
Units  
Notes  
Receiver Input clock frequency  
VDD 4.75 V, 2 stop bits  
VDD 4.75 V, 1 stop bit  
The baud rate is equal to the input  
clock frequency divided by 8.  
49.92[15] MHz  
25.92[15] MHz  
25.92[15] MHz  
V
DD < 4.75 V  
AC External Clock Specifications  
Table 23 list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C  
TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for  
design guidance only.  
Table 23. AC External Clock Specifications  
Symbol  
Description  
Min  
0
Typ  
Max  
Units  
MHz  
ns  
Notes  
FOSCEXT Frequency  
24.24  
High period  
Low period  
20.5  
20.5  
150  
ns  
Power-up IMO to switch  
μs  
AC Analog Output Buffer Specifications  
Table 24 and Table 25 on page 32 list the guaranteed maximum and minimum specifications for the voltage and temperature ranges:  
4.75 V to 5.25 V and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V  
and 3.3 V at 25 °C and are for design guidance only.  
Table 24. 5-V AC Analog Output Buffer Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
tROB  
Rising settling time to 0.1%, 1 V step, 100pF load  
Power = low  
Power = high  
2.5  
2.5  
μs  
μs  
tSOB  
Falling settling time to 0.1%, 1 V step, 100pF load  
Power = low  
Power = high  
2.2  
2.2  
μs  
μs  
SRROB  
SRFOB  
Rising slew rate (20% to 80%), 1 V step, 100 pF load  
Power = low  
Power = high  
0.65  
0.65  
V/μs  
V/μs  
Falling slew rate (80% to 20%), 1 V step, 100 pF load  
Power = low  
Power = high  
0.65  
0.65  
V/μs  
V/μs  
BWOBSS Small signal bandwidth, 20 mVpp, 3 dB BW, 100 pF load  
Power = low  
Power = high  
0.8  
0.8  
MHz  
MHz  
BWOBLS Large signal bandwidth, 1 Vpp, 3 dB BW, 100 pF load  
Power = low  
Power = high  
300  
300  
kHz  
kHz  
Document Number: 001-53754 Rev. *D  
Page 31 of 46  
[+] Feedback  
CY8C24894  
Table 25. 3.3-V AC Analog Output Buffer Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
tROB  
Rising settling time to 0.1%, 1 V step, 100 pF load  
Power = low  
Power = high  
3.8  
3.8  
μs  
μs  
tSOB  
Falling settling time to 0.1%, 1 V step, 100 pF load  
Power = low  
Power = high  
2.6  
2.6  
μs  
μs  
SRROB  
SRFOB  
Rising slew rate (20% to 80%), 1 V step, 100 pF load  
Power = low  
Power = high  
0.5  
0.5  
V/μs  
V/μs  
Falling slew rate (80% to 20%), 1 V step, 100 pF load  
Power = low  
Power = high  
0.5  
0.5  
V/μs  
V/μs  
BWOBSS Small signal bandwidth, 20 mVpp, 3 dB BW, 100 pF load  
Power = low  
Power = high  
0.7  
0.7  
MHz  
MHz  
BWOBLS Large signal bandwidth, 1 Vpp, 3 dB BW, 100 pF load  
Power = low  
Power = high  
200  
200  
kHz  
kHz  
AC Programming Specifications  
Table 26 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40  
°C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are  
for design guidance only.  
Table 26. AC Programming Specifications  
Symbol  
tRSCLK  
tFSCLK  
tSSCLK  
tHSCLK  
FSCLK  
Description  
Min  
1
Typ  
Max  
20  
Units  
ns  
Notes  
Rise time of SCLK  
Fall time of SCLK  
1
20  
ns  
Data setup time to falling edge of SCLK  
Data hold time from falling edge of SCLK  
Frequency of SCLK  
40  
40  
0
ns  
ns  
8
MHz  
ms  
ms  
ns  
tERASEB  
tWRITE  
tDSCLK  
tDSCLK3  
tPRGH  
Flash erase time (block)  
10  
40  
40[17]  
160[17]  
45  
Flash block write time  
Data out delay from falling edge of SCLK  
Data out delay from falling edge of SCLK  
Total flash block program time (tERASEB + tWRITE), hot  
Total flash block program time (tERASEB + tWRITE), cold  
VDD > 3.6 V  
50  
ns  
3.0 V VDD 3.6 V  
TJ 0 °C  
100[17]  
200[17]  
ms  
ms  
tPRGC  
TJ < 0 °C  
Note  
17. For the full temperature range, the user must employ a temperature sensor user module (FlashTemp) or other temperature sensor, and feed the result to the temperature  
argument before writing. Refer to the Flash APIs Application Note AN2015 for more information.  
Document Number: 001-53754 Rev. *D  
Page 32 of 46  
[+] Feedback  
CY8C24894  
AC I2C Specifications  
Table 27 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40  
°C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are  
for design guidance only.  
Table 27. AC Characteristics of the I2C SDA and SCL Pins for VDD  
Standard Mode  
Fast Mode  
Symbol  
Description  
SCL clock frequency  
Units  
Notes  
Min  
0
Max  
100[18]  
Min  
0
Max  
400[18]  
FSCLI2C  
kHz  
tHDSTAI2C Hold time (repeated) START condition. After  
this period, the first clock pulse is generated.  
4.0  
0.6  
μs  
tLOWI2C  
tHIGHI2C  
LOW period of the SCL clock  
HIGH period of the SCL clock  
4.7  
4.0  
4.7  
0
1.3  
0.6  
μs  
μs  
μs  
μs  
ns  
μs  
μs  
tSUSTAI2C Setup time for a repeated START condition  
tHDDATI2C Data hold time  
0.6  
0
tSUDATI2C Data setup time  
250  
4.0  
4.7  
100[19]  
tSUSTOI2C Setup time for STOP condition  
0.6  
tBUFI2C  
Bus free time between a stop and start  
condition  
1.3  
tSPI2C  
Pulse width of spikes are suppressed by the  
input filter.  
0
50  
ns  
Figure 8. Definition for Timing for Fast/Standard Mode on the I2C Bus  
I2C_SDA  
I2C_SCL  
tSUDATI2C  
tHDSTAI2C  
tSPI2C  
tSUSTAI2C  
tBUFI2C  
tHDDATI2C  
tHIGHI2C tLOWI2C  
tSUSTOI2C  
P
S
S
Sr  
Repeated START Condition  
STOP Condition  
START Condition  
Notes  
18. F  
is derived from SysClk of the PSoC. This specification assumes that SysClk is operating at 24 MHz, nominal. If SysClk is at a lower frequency, then the F  
SCLI2C  
SCLI2C  
specification adjusts accordingly.  
19. A Fast-Mode I2C-bus device can be used in a Standard-Mode I2C-bus system, but the requirement t  
250 ns must then be met. This is automatically the  
SUDATI2C  
case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to  
the SDA line t  
+ t  
= 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.  
rmax  
SUDATI2C  
Document Number: 001-53754 Rev. *D  
Page 33 of 46  
[+] Feedback  
CY8C24894  
Packaging Information  
This section illustrates the package specification for the CY8C24x94 PSoC devices, along with the thermal impedance for the package  
and solder reflow peak temperatures.  
Note Emulation tools may require a larger area on the target PCB than the chip's footprint. For a detailed description of the emulation  
tools' dimensions, refer to the emulator pod drawings at http://www.cypress.com.  
Figure 9. 56-Pin (8 × 8 mm) QFN (Punched)  
SOLDERABLE  
EXPOSED  
PAD  
001-12921 *B  
Important Note  
For information on the preferred dimensions for mounting QFN packages, see the following application note, Application Notes for  
Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages available at http://www.amkor.com.  
Pinned vias for thermal conduction are not required for the low power PSoC device.  
Thermal Impedances  
Solder Reflow Specifications  
Table 29 shows the solder reflow temperature limits that must not  
be exceeded.  
Table 28. Thermal Impedance per Package  
[20]  
Package  
Typical θJA  
19 °C/W  
Typical θJC  
1.7 °C/W  
Table 29. Solder Reflow Specifications  
56-pin QFN[21]  
Maximum Peak  
Temperature (TC)  
Maximum Time  
above TC – 5 °C  
Package  
56-pin QFN  
260 °C  
30 seconds  
Notes  
20. T = T + Power × θ  
J
A
JA.  
21. To achieve the thermal impedance specified for the QFN package, refer to the application notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF)  
Packages available at http://www.amkor.com.  
Document Number: 001-53754 Rev. *D  
Page 34 of 46  
[+] Feedback  
CY8C24894  
Tape and Reel Information  
Figure 10. 56-Pin (8 × 8 mm) QFN (Punched) Carrier Tape Drawing  
51-51165 *B  
Table 30. Tape and Reel Specifications  
Minimum  
Trailing Empty  
Pockets  
Cover Tape  
Package  
Hub Size  
(inches)  
Minimum Leading  
Empty Pockets  
Standard Full Reel  
Width (mm)  
Quantity  
56-Pin QFN  
13.1  
7
42  
25  
2000  
Document Number: 001-53754 Rev. *D  
Page 35 of 46  
[+] Feedback  
CY8C24894  
Development Tool Selection  
Software  
The Universal CapSense Controller Kit is designed for easy  
prototyping and debug of CapSense designs with pre-defined  
control circuitry and plug-in hardware. The CY3280-24X94 kit  
contains no plug-in hardware. Therefore, it is only usable if  
plug-in hardware is purchased as part of the CY3280-BK1 kit or  
other separate kits. The kit includes:  
PSoC Designer  
At the core of the PSoC development software suite is PSoC  
Designer, used to generate PSoC firmware applications. PSoC  
Designer is available free of charge at http://www.cypress.com  
and includes a free C compiler.  
CY3280-24X94 Universal CapSense Controller Board  
CY3240-I2USB Bridge Board  
PSoC Programmer  
Flexible enough to be used on the bench in development, yet  
suitable for factory programming, PSoC Programmer works  
either as a standalone programming application or it can operate  
directly from PSoC Designer or PSoC Express. PSoC  
Programmer software is compatible with both PSoC ICE-Cube  
In-Circuit Emulator and PSoC MiniProg. PSoC programmer is  
available free of charge at http://www.cypress.com.  
CY3210 PSoC MiniProg1 Programmer  
CY3280-24X94 Quick Start  
USB Retractable Cable (A to mini-B)  
PSoC Express Installation CD  
PSoC Designer and PSoC Programmer CD  
CY3280-24X94 Universal CapSense Controller Kit CD  
Development Kits  
All development kits can be purchased from the Cypress Online  
Store. The online store also has the most up to date information  
on kit contents, descriptions, and availability.  
Evaluation Tools  
All evaluation tools can be purchased from the Cypress Online  
Store. The online store also has the most up to date information  
on kit contents, descriptions, and availability.  
CY3215-DK Basic Development Kit  
The CY3215-DK is for prototyping and development with PSoC  
Designer. This kit supports in-circuit emulation and the software  
interface allows users to run, halt, and single step the processor  
and view the contents of specific memory locations. Advanced  
emulation features are also supported through PSoC Designer.  
The kit includes:  
CY3210-PSoCEval1  
The CY3210-PSoCEval1 kit features an evaluation board and  
the MiniProg1 programming unit. The evaluation board includes  
an LCD module, potentiometer, LEDs, and plenty of bread-  
boarding space to meet all of your evaluation needs. The kit  
includes:  
ICE-Cube Unit  
Evaluation Board with LCD Module  
MiniProg Programming Unit  
28-Pin PDIP Emulation Pod for CY8C29466-24PXI  
28-Pin CY8C29466-24PXI PDIP PSoC Device Samples (two)  
PSoC Designer Software CD  
28-Pin CY8C29466-24PXI PDIP PSoC Device Sample (2)  
PSoC Designer Software CD  
Getting Started Guide  
ISSP Cable  
MiniEval Socket Programming and Evaluation board  
Backward Compatibility Cable (for connecting to legacy Pods)  
Universal 110/220 Power Supply (12 V)  
European Plug Adapter  
USB 2.0 Cable  
CY3210-24X94 Evaluation Pod (EvalPod)  
PSoC EvalPods are pods that connect to the ICE In-Circuit  
Emulator (CY3215-DK kit) to allow debugging capability. They  
can also function as a standalone device without debugging  
capability. The EvalPod has a 28-pin DIP footprint on the bottom  
for easy connection to development kits or other hardware. The  
top of the EvalPod has prototyping headers for easy connection  
to the device's pins. CY3210-24X94 provides evaluation of the  
CY8C24x94 PSoC device family.  
USB 2.0 Cable  
Getting Started Guide  
Development Kit Registration form  
CY3280-24X94 Universal CapSense Controller Board  
The CY3280-24X94 Controller Board is an additional controller  
board for the CY3280-BK1 Universal CapSense Controller Kit.  
Document Number: 001-53754 Rev. *D  
Page 36 of 46  
[+] Feedback  
CY8C24894  
CY3207ISSP In-System Serial Programmer (ISSP)  
Device Programmers  
The CY3207ISSP is a production programmer. It includes  
protection circuitry and an industrial case that is more robust than  
the MiniProg in a production-programming environment.  
All device programmers can be purchased from the Cypress  
Online Store.  
CY3210-MiniProg1  
Note: CY3207ISSP needs special software and is not  
The CY3210-MiniProg1 kit allows a user to program PSoC  
devices via the MiniProg1 programming unit. The MiniProg is a  
small, compact prototyping programmer that connects to the PC  
via a provided USB 2.0 cable. The kit includes:  
compatible with PSoC Programmer. The kit includes:  
CY3207 Programmer Unit  
PSoC ISSP Software CD  
MiniProg Programming Unit  
110 ~ 240 V Power Supply, Euro-Plug Adapter  
USB 2.0 Cable  
MiniEval Socket Programming and Evaluation Board  
28-Pin CY8C29466-24PXI PDIP PSoC Device Sample  
28-Pin CY8C27443-24PXI PDIP PSoC Device Sample  
PSoC Designer Software CD  
Getting Started Guide  
USB 2.0 Cable  
Accessories (Emulation and Programming)  
Table 31. Emulation and Programming Accessories  
Part #  
Pin Package  
Flex-Pod Kit[22]  
Foot Kit[23]  
Adapter[24]  
AS-56-28-01ML-6  
CY8C24894-24LFXA  
56-pin QFN  
CY3250-24X94QFN  
CY3250-56QFN-FK  
Notes  
22. Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods.  
23. Foot kit includes surface mount feet that are soldered to the target PCB.  
24. Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters are found at  
http://www.emulation.com.  
Document Number: 001-53754 Rev. *D  
Page 37 of 46  
[+] Feedback  
CY8C24894  
Ordering Information  
Table 32. CY8C24x94 PSoC Device’s Key Features and Ordering Information  
56-pin (8 × 8 mm) QFN,  
punched  
CY8C24894-24LFXA  
CY8C24894-24LFXAT  
16 K 1 K  
16 K 1 K  
–40 °C to +85 °C  
–40 °C to +85 °C  
4
4
6
6
49  
49  
47  
47  
2
2
Yes  
Yes  
56-pin (8 × 8 mm) QFN,  
punched (tape and reel)  
Ordering Code Definitions  
CY 8 C 24 xxx-SPxx  
Package Type:  
Thermal Rating:  
PX = PDIP Pb-free  
A = Automotive –40 °C to +85 °C  
SX = SOIC Pb-free  
PVX = SSOP Pb-free  
LFX/LKX = QFN Pb-free  
AX = TQFP Pb-free  
BVX = VFBGA Pb-free  
C = Commercial  
E = Automotive Extended –40 °C to +125 °C  
I = Industrial  
CPU Speed: 24 MHz  
Part Number  
Family Code  
Technology Code: C = CMOS  
Marketing Code: 8 = PSoC  
Company ID: CY = Cypress  
Document Number: 001-53754 Rev. *D  
Page 38 of 46  
[+] Feedback  
CY8C24894  
Reference Information  
Acronyms  
Table 33 lists the acronyms that are used in this document.  
Table 33. Acronyms Used in this Datasheet  
Acronym  
AC  
Description  
Acronym  
MIPS  
PCB  
Description  
alternating current  
million instructions per second  
printed circuit board  
ADC  
AEC  
analog-to-digital converter  
Automotive Electronics Council  
application programming interface  
central processing unit  
PDIP  
PLL  
plastic dual in-line package  
phase-locked loop  
API  
CPU  
CRC  
CT  
POR  
power-on reset  
cyclic redundancy check  
continuous time  
PPOR  
PSoC®  
PWM  
QFN  
precision POR  
Programmable System-on-Chip  
pulse-width modulator  
quad flat no leads  
DAC  
DC  
digital-to-analog converter  
direct current or duty cycle  
dual-tone multi-frequency  
DTMF  
EEPROM  
RMS  
root mean square  
electrically erasable programmable read-only  
memory  
SAR  
successive approximation register  
EXTCLK  
GPIO  
I2C  
external clock  
SC  
SCL / SCLK  
SDA  
switched capacitor  
serial clock  
general purpose I/O  
inter-integrated circuit  
in-circuit emulator  
serial data  
ICE  
SLIMO  
SMP  
slow IMO  
IDE  
integrated development environment  
internal low-speed oscillator  
internal main oscillator  
input/output  
switch mode pump  
small-outline integrated circuit  
serial peripheral interface  
static random-access memory  
supervisory read-only memory  
thin quad flat pack  
ILO  
SOIC  
IMO  
I/O  
SPI  
SRAM  
SROM  
TQFP  
UART  
IrDA  
ISSP  
LCD  
Infrared Data Association  
in-system serial programming  
liquid crystal display  
universal asynchronous receiver  
transmitter  
LED  
LPC  
LVD  
MCU  
light-emitting diode  
low power comparator  
low voltage detect  
microcontroller unit  
USB  
WDT  
XRES  
universal serial bus  
watchdog timer  
external reset  
Reference Documents  
CY8CPLC20, CY8CLED16P01, CY8C29x66, CY8C27x43, CY8C24x94, CY8C24x23, CY8C24x23A, CY8C22x13, CY8C21x34,  
CY8C21x23, CY7C64215, CY7C603xx, CY8CNP1xx, and CYWUSB6953 PSoC® Programmable System-on-Chip Technical  
Reference Manual (TRM) (001-14463)  
Design Aids – Reading and Writing PSoC® Flash – AN2015 (001-40459)  
Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 (001-14503)  
Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages – available at http://www.amkor.com.  
Document Number: 001-53754 Rev. *D  
Page 39 of 46  
[+] Feedback  
CY8C24894  
Document Conventions  
Units of Measure  
The following table lists the units of measure that are used in this document.  
Table 34. Units of Measure  
Symbol  
°C  
Unit of Measure  
Symbol  
mVPP  
nA  
Unit of Measure  
millivolts peak-to-peak  
degree Celsius  
decibel  
dB  
nanoampere  
nanosecond  
nanovolt  
ohm  
fF  
femtofarad  
1024 bytes  
kilohertz  
ns  
KB  
nV  
kHz  
kΩ  
Ω
%
kilohm  
percent  
MHz  
μA  
μs  
μV  
mA  
ms  
megahertz  
microampere  
microsecond  
microvolt  
pA  
picoampere  
picofarad  
picosecond  
root hertz  
volt  
pF  
ps  
rt-Hz  
V
milliampere  
millisecond  
millivolt  
W
watt  
mV  
Numeric Conventions  
Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or ‘3Ah’).  
Hexadecimal numbers may also be represented by a ‘0x’ prefix, the C coding convention. Binary numbers have an appended  
lowercase ‘b’ (for example, ‘01010100b’ or ‘01000011b’). Numbers not indicated by an ‘h’, ‘b’, or ‘0x’ are in decimal format.  
Glossary  
active high  
1. A logic signal having its asserted state as the logic 1 state.  
2. A logic signal having the logic 1 state as the higher voltage of the two states.  
analog blocks  
The basic programmable opamp circuits. These are SC (switched capacitor) and CT (continuous time) blocks.  
These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain stages, and much more.  
analog-to-digital A device that changes an analog signal to a digital signal of corresponding magnitude. Typically, an ADC converts  
converter (ADC) a voltage to a digital number. The digital-to-analog converter (DAC) performs the reverse operation.  
Application  
programming  
interface (API)  
A series of software routines that comprise an interface between a computer application and lower level services  
and functions (for example, user modules and libraries). APIs serve asbuilding blocks for programmers that create  
software applications.  
asynchronous  
A signal whose data is acknowledged or acted upon immediately, irrespective of any clock signal.  
bandgap  
reference  
A stable voltage reference design that matches the positive temperature coefficient of VT with the negative  
temperature coefficient of VBE, to produce a zero temperature coefficient (ideally) reference.  
bandwidth  
1. The frequency range of a message or information processing system measured in hertz.  
2. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or  
loss); it is sometimes represented more specifically as, for example, full width at half maximum.  
Document Number: 001-53754 Rev. *D  
Page 40 of 46  
[+] Feedback  
CY8C24894  
Glossary (continued)  
bias  
1. A systematic deviation of a value from a reference value.  
2. The amount by which the average of a set of values departs from a reference value.  
3. The electrical, mechanical, magnetic, or other force (field) applied to a device to establish a reference level to  
operate the device.  
block  
buffer  
1. A functional unit that performs a single function, such as an oscillator.  
2. A functional unit that may be configured to perform one of several functions, such as a digital PSoC block or  
an analog PSoC block.  
1. A storage area for data that is used to compensate for a speed difference, when transferring data from one  
device to another. Usually refers to an area reserved for I/O operations, into which data is read, or from which  
data is written.  
2. A portion of memory set aside to store data, often before it is sent to an external device or as it is received  
from an external device.  
3. An amplifier used to lower the output impedance of a system.  
bus  
1. A named connection of nets. Bundling nets together in a bus makes it easier to route nets with similar routing  
patterns.  
2. A set of signals performing a common function and carrying similar data. Typically represented using vector  
notation; for example, address[7:0].  
3. One or more conductors that serve as a common connection for a group of related devices.  
clock  
The device that generates a periodic signal with a fixed frequency and duty cycle. A clock is sometimes used to  
synchronize different logic blocks.  
comparator  
compiler  
An electronic circuit that produces an output voltage or current whenever two input levels simultaneously satisfy  
predetermined amplitude requirements.  
A program that translates a high level language, such as C, into machine language.  
configuration  
space  
In PSoC devices, the register space accessed when the XIO bit, in the CPU_F register, is set to  
‘1’.  
crystal oscillator An oscillator in which the frequency is controlled by a piezoelectric crystal. Typically a piezoelectric  
crystal is less sensitive to ambient temperature than other circuit components.  
cyclicredundancy A calculation used to detect errors in data communications, typically performed using a linear feedback shift  
check (CRC)  
register. Similar calculations may be used for a variety of other purposes such as data compression.  
data bus  
A bi-directional set of signals used by a computer to convey information from a memory location to the central  
processing unit and vice versa. More generally, a set of signals used to convey data between digital functions.  
debugger  
A hardware and software system that allows you to analyze the operation of the system under development. A  
debugger usually allows the developer to step through the firmware one step at a time, set break points, and  
analyze memory.  
dead band  
A period of time when neither of two or more signals are in their active state or in transition.  
digital blocks  
The 8-bit logic blocks that can act as a counter, timer, serial receiver, serial transmitter, CRC generator,  
pseudo-random number generator, or SPI.  
digital-to-analog A device that changes a digital signal to an analog signal of corresponding magnitude. The analog-to-digital  
converter (DAC) converter (ADC) performs the reverse operation.  
Document Number: 001-53754 Rev. *D  
Page 41 of 46  
[+] Feedback  
CY8C24894  
Glossary (continued)  
duty cycle  
emulator  
The relationship of a clock period high time to its low time, expressed as a percent.  
Duplicates (provides an emulation of) the functions of one system with a different system, so that the second  
system appears to behave like the first system.  
external reset  
(XRES)  
An active high signal that is driven into the PSoC device. It causes all operation of the CPU and blocks to stop  
and return to a pre-defined state.  
flash  
An electrically programmable and erasable, non-volatile technology that provides you the programmability and  
data storage of EPROMs, plus in-system erasability. Non-volatile means that the data is retained when power is  
off.  
flash block  
The smallest amount of flash ROM space that may be programmed at one time and the smallest amount of flash  
space that may be protected.  
frequency  
gain  
The number of cycles or events per unit of time, for a periodic function.  
The ratio of output current, voltage, or power to input current, voltage, or power, respectively. Gain is usually  
expressed in dB.  
I2C  
A two-wire serial computer bus by Philips Semiconductors (now NXP Semiconductors). It is used to connect  
low-speed peripherals in an embedded system. The original system was created in the early 1980s as a battery  
control interface, but it was later used as a simple internal bus system for building control electronics. I2C uses  
only two bi-directional pins, clock and data, both running at the VDD suppy voltage and pulled high with resistors.  
The bus operates up to100 kbits/second in standard mode and 400 kbits/second in fast mode.  
ICE  
The in-circuit emulator that allows you to test the project in a hardware environment, while viewing the debugging  
device activity in a software environment (PSoC Designer).  
input/output (I/O) A device that introduces data into or extracts data from a system.  
interrupt  
A suspension of a process, such as the execution of a computer program, caused by an event external to that  
process, and performed in such a way that the process can be resumed.  
interrupt service A block of code that normal code execution is diverted to when the CPU receives a hardware interrupt. Many  
routine (ISR)  
interrupt sources may each exist with its own priority and individual ISR code block. Each ISR code block ends  
with the RETI instruction, returning the device to the point in the program where it left normal program execution.  
jitter  
1. A misplacement of the timing of a transition from its ideal position. A typical form of corruption that occurs on  
serial data streams.  
2. The abrupt and unwanted variations of one or more signal characteristics, such as the interval between  
successive pulses, the amplitude of successive cycles, or the frequency or phase of successive cycles.  
low voltage detect A circuit that senses VDD and provides an interrupt to the system when VDD falls below a selected threshold.  
(LVD)  
M8C  
An 8-bit Harvard-architecture microprocessor. The microprocessor coordinates all activity inside a PSoC by  
interfacing to the flash, SRAM, and register space.  
master device  
A device that controls the timing for data exchanges between two devices. Or when devices are cascaded in  
width, the master device is the one that controls the timing for data exchanges between the cascaded devices  
and an external interface. The controlled device is called the slave device.  
Document Number: 001-53754 Rev. *D  
Page 42 of 46  
[+] Feedback  
CY8C24894  
Glossary (continued)  
microcontroller  
An integrated circuit chip that is designed primarily for control systems and products. In addition to a CPU, a  
microcontroller typically includes memory, timing circuits, and I/O circuitry. The reason for this is to permit the  
realization of a controller with a minimal quantity of chips, thus achieving maximal possible miniaturization. This  
in turn, reduces the volume and the cost of the controller. The microcontroller is normally not used for  
general-purpose computation as is a microprocessor.  
mixed-signal  
modulator  
noise  
The reference to a circuit containing both analog and digital techniques and components.  
A device that imposes a signal on a carrier.  
1. A disturbance that affects a signal and that may distort the information carried by the signal.  
2. The random variations of one or more characteristics of any entity such as voltage, current, or data.  
oscillator  
parity  
A circuit that may be crystal controlled and is used to generate a clock frequency.  
A technique for testing transmitted data. Typically, a binary digit is added to the data to make the sum of all the  
digits of the binary data either always even (even parity) or always odd (odd parity).  
phase-locked  
loop (PLL)  
An electronic circuit that controls an oscillator so that it maintains a constant phase angle relative to a reference  
signal.  
pinouts  
The pin number assignment: the relation between the logical inputs and outputs of the PSoC device and their  
physical counterparts in the printed circuit board (PCB) package. Pinouts involve pin numbers as a link between  
schematic and PCB design (both being computer generated files) and may also involve pin names.  
port  
A group of pins, usually eight.  
power-on reset  
(POR)  
A circuit that forces the PSoC device to reset when the voltage is below a pre-set level. This is one type of hardware  
reset.  
PSoC®  
Cypress Semiconductor’s PSoC® is a registered trademark and Programmable System-on-Chip™ is a trademark  
of Cypress.  
PSoC Designer™ The software for Cypress’ Programmable System-on-Chip technology.  
pulse width  
An output in the form of duty cycle which varies as a function of the applied value.  
modulator (PWM)  
RAM  
An acronym for random access memory. A data-storage device from which data can be read out and new data  
can be written in.  
register  
reset  
A storage device with a specific capacity, such as a bit or byte.  
A means of bringing a system back to a known state. See hardware reset and software reset.  
ROM  
An acronym for read only memory. A data-storage device from which data can be read out, but new data cannot  
be written in.  
serial  
1. Pertaining to a process in which all events occur one after the other.  
2. Pertaining to the sequential or consecutive occurrence of two or more related activities in a single device or  
channel.  
settling time  
The time it takes for an output signal or value to stabilize after the input has changed from one value to another.  
Document Number: 001-53754 Rev. *D  
Page 43 of 46  
[+] Feedback  
CY8C24894  
Glossary (continued)  
shift register  
slave device  
A memory storage device that sequentially shifts a word either left or right to output a stream of serial data.  
A device that allows another device to control the timing for data exchanges between two devices. Or when  
devices are cascaded in width, the slave device is the one that allows another device to control the timing of data  
exchanges between the cascaded devices and an external interface. The controlling device is called the master  
device.  
SRAM  
SROM  
An acronym for static random access memory. A memory device where you can store and retrieve data at a high  
rate of speed. The term static is used because, after a value is loaded into an SRAM cell, it remains unchanged  
until it is explicitly altered or until power is removed from the device.  
An acronym for supervisory read only memory. The SROM holds code that is used to boot the device, calibrate  
circuitry, and perform flash operations. The functions of the SROM may be accessed in normal user code,  
operating from flash.  
stop bit  
A signal following a character or block that prepares the receiving device to receive the next character or block.  
synchronous  
1. A signal whose data is not acknowledged or acted upon until the next active edge of a clock signal.  
2. A system whose operation is synchronized by a clock signal.  
tri-state  
A function whose output can adopt three states: 0, 1, and Z (high-impedance). The function does not drive any  
value in the Z state and, in many respects, may be considered to be disconnected from the rest of the circuit,  
allowing another output to drive the same net.  
UART  
A UART or universal asynchronous receiver-transmitter translates between parallel bits of data and serial bits.  
user modules  
Pre-built, pre-tested hardware/firmware peripheral functions that take care of managing and configuring the lower  
level analog and digital PSoC blocks. User modules also provide high level API (Application Programming  
Interface) for the peripheral function.  
user space  
The bank 0 space of the register map. The registers in this bank are more likely to be modified during normal  
program execution and not just during initialization. Registers in bank 1 are most likely to be modified only during  
the initialization phase of the program.  
VDD  
A name for a power net meaning "voltage drain." The most positive power supply signal. Usually 5 V or 3.3 V.  
A name for a power net meaning "voltage source." The most negative power supply signal.  
VSS  
watchdog timer  
A timer that must be serviced periodically. If it is not serviced, the CPU resets after a specified period of time.  
Document Number: 001-53754 Rev. *D  
Page 44 of 46  
[+] Feedback  
CY8C24894  
Document History Page  
Document Title: CY8C24894 Automotive PSoC® Programmable System-on-Chip™  
Document Number: 001-53754  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
**  
2715097  
2782580  
MASJ  
BTK  
06/08/09  
10/09/09  
New datasheet.  
*A  
Updated Features section. Updated text of PSoC Functional Overview section.  
Updated Getting Started section. Made corrections and minor text edits to  
Pinouts section. Changed the name of some sections to improve consistency.  
Improved formatting of the register tables. Added clarifying comments to some  
electrical specifications. Fixed all AC specifications to conform to a ±4% or ±8%  
IMO accuracy. Made other miscellaneous minor text edits. Deleted some  
non-applicable or redundant information. Improved and edited content in Devel-  
opment Tool Selection section. Improved the bookmark structure. Changed  
FlashENT, VCMOA, the DC POR and LVD specifications, and the DC Analog  
Reference specifications according to MASJ directives. Added TXRST, DC24M,  
and 3.3 V DC Operational Amplifier specifications.  
*B  
*C  
2822792 BTK/AESA  
12/07/09  
03/30/10  
Added TPRGH, TPRGC, IOL, IOH, F32KU, DCILO, and TPOWERUP electrical speci-  
fications. Updated the footnotes of Table 16, “DC Programming Specifications,”  
on page 25. Added maximum values and updated typical values for TERASEB  
and TWRITE electrical specifications. Replaced TRAMP electrical specification  
with SRPOWERUP electrical specification. Added “Contents” on page 2.  
2888007  
3272922  
NJF  
Updated Cypress website links.  
Removed reference to PSoC Designer 4.4 in PSoC Designer Software  
Subsystems  
Updated The Analog System.  
Added TBAKETEMP and TBAKETIME parameters in Absolute Maximum Ratings.  
Updated AC Chip-Level Specifications. Updated Packaging Information.  
Removed Third Party Tools and Build a PSoC Emulator into your Board.  
Updated links in Sales, Solutions, and Legal Information.  
*D  
BTK/NJF  
06/02/11  
Updated Figure 8 on page 33 to improve clarity.  
Updated wording, formatting, and notes of the AC Digital Block Specifications  
table to improve clarity.  
Added VDDP, VDDLV, and VDDHV electrical specifications to give more infor-  
mation for programming the device.  
Updated Solder Reflow Specifications to give more clarity.  
Updated the jitter specifications.  
Updated PSoC Device Characteristics table.  
Updated the F32KU electrical specification.  
Updated note for RPD electrical specification.  
Updated note for the TSTG electrical specification to add more clarity.  
Added Tape and Reel Specifications section.  
Added CL electrical specification.  
Updated DC Analog Reference Specifications.  
Changed “NC” pins on the device to “DNC” pins.  
Corrected information about the exposed pad to clarify that it is not internally  
connected.  
Document Number: 001-53754 Rev. *D  
Page 45 of 46  
[+] Feedback  
CY8C24894  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
Products  
Automotive  
cypress.com/go/automotive  
cypress.com/go/clocks  
cypress.com/go/interface  
cypress.com/go/powerpsoc  
cypress.com/go/plc  
PSoC Solutions  
Clocks & Buffers  
Interface  
psoc.cypress.com/solutions  
PSoC 1 | PSoC 3 | PSoC 5  
Lighting & Power Control  
Memory  
cypress.com/go/memory  
cypress.com/go/image  
cypress.com/go/psoc  
Optical & Image Sensing  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/go/touch  
cypress.com/go/USB  
cypress.com/go/wireless  
© Cypress Semiconductor Corporation, 2009-2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 001-53754 Rev. *D  
Revised June 2, 2011  
Page 46 of 46  
All products and company names mentioned in this document may be the trademarks of their respective holders.  
[+] Feedback  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY