CY8C24894-24LTXI [CYPRESS]

PSoC Programmable System-on-Chip; 的PSoC可编程系统级芯片
CY8C24894-24LTXI
型号: CY8C24894-24LTXI
厂家: CYPRESS    CYPRESS
描述:

PSoC Programmable System-on-Chip
的PSoC可编程系统级芯片

多功能外围设备 微控制器和处理器 时钟
文件: 总47页 (文件大小:1479K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
PSoC® Programmable System-on-Chip™  
Full Speed USB (12 Mbps)  
Four Uni-Directional Endpoints  
One Bi-Directional Control Endpoint  
USB 2.0 Compliant  
1. Features  
XRES Pin to Support In-System Serial Programming (ISSP)  
and External Reset Control in CY8C24894  
Dedicated 256 Byte Buffer  
No External Crystal Required  
Powerful Harvard Architecture Processor  
M8C Processor Speeds to 24 MHz  
Two 8x8 Multiply, 32-Bit Accumulate  
Low Power at High Speed  
3V to 5.25V Operating Voltage  
Industrial Temperature Range: -40°C to +85°C  
USB Temperature Range: -10°C to +85°C  
Flexible On-Chip Memory  
16K Flash Program Storage 50,000 Erase and Write Cycles  
1K SRAM Data Storage  
In-System Serial Programming (ISSP)  
Partial Flash Updates  
Advanced Peripherals (PSoC® Blocks)  
6 Rail-to-Rail Analog PSoC Blocks Provide:  
• Up to 14-Bit ADCs  
Flexible Protection Modes  
EEPROM Emulation in Flash  
Programmable Pin Configurations  
• Up to 9-Bit DACs  
25 mA Sink, 10 mA Drive on all GPI/O  
• Programmable Gain Amplifiers  
• Programmable Filters and Comparators  
Four Digital PSoC Blocks Provide:  
• 8 to 32-Bit Timers, Counters, and PWMs  
• CRC and PRS Modules  
Pull Up, Pull Down, High Z, Strong, or Open Drain Drive  
Modes on all GPI/O  
Up to 48 Analog Inputs on GPI/O  
Two 33 mA Analog Outputs on GPI/O  
Configurable Interrupt on all GPI/O  
Precision, Programmable Clocking  
• Full-Duplex UART  
Internal ±4% 24 and 48 MHz Oscillator  
Internal Oscillator for Watchdog and Sleep  
0.25% Accuracy for USB with no External Components  
• Multiple SPIMasters or Slaves  
• Connectable to all GPI/O Pins  
Complex Peripherals by Combining Blocks  
Capacitive Sensing Application Capability  
Additional System Resources  
I2C Slave, Master, and Multi-Master to 400 kHz  
Watchdog and Sleep Timers  
User Configurable Low Voltage Detection  
A n a lo g  
P o r t  
5
P o r t  
4
P o r t  
3
P o r t  
2
P o r t  
1
P o r t 0  
P o r t  
7
D
r iv e r s  
2. Logic Block Diagram  
G lo b a l D ig ita l In t e r c o n n e c t  
G lo b a l A n a lo g In te r c o n n e c t  
P S o C C O R E  
S R A M  
1 K  
S R O M  
F la s h 1 6 K  
S le e p a n d  
a tc h d o g  
C P U C o r e ( M 8 C )  
W
In t e r r u p t  
C o n tr o lle r  
C lo c k S o u r c e s  
( I n c lu d e s IM O a n d I L O )  
D IG IT A L S Y S T E M  
A N A L O G S Y S T E M  
A n a lo g  
R e f.  
D i g it a l  
B lo c k  
A r r a y  
A n a l o g  
B lo c k  
A r r a y  
In te r n a l  
V o lta g e  
R e f.  
A n a lo g  
In p u t  
D ig ita l  
C lo c k s  
2
D e c im a to r  
T y p e  
P O R a n d L V D  
S y s te m R e s e t s  
I 2 C  
U S B  
M
A C s  
2
M
u x in g  
S Y S T E M R E S O U R C E S  
Cypress Semiconductor Corporation  
Document Number: 38-12018 Rev. *O  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised June 11, 2009  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
2.2 The Digital System  
2. PSoC Functional Overview  
The Digital System is composed of four digital PSoC blocks.  
Each block is an 8-bit resource used alone or combined with  
other blocks to form 8, 16, 24, and 32-bit peripherals, which are  
called user module references.  
The PSoC family consists of many programmable  
system-on-chips with On-Chip Controller devices. All PSoC  
family devices are designed to replace traditional MCUs, system  
ICs, and the numerous discrete components that surround them.  
The PSoC CY8C24x94 devices are unique members of the  
PSoC family because it includes a full featured, full speed (12  
Mbps) USB port. Configurable analog, digital, and interconnect  
circuitry enable a high level of integration in a host of industrial,  
consumer, and communication applications.  
Figure 2-1. Digital System Block Diagram  
Port 7  
Port 5  
Port 3  
Port 1  
Port 4  
Port 2  
Port 0  
This architecture enables the user to create customized  
peripheral configurations that match the requirements of each  
individual application. Additionally, a fast CPU, Flash program  
memory, SRAM data memory, and configurable I/O are included  
in a range of convenient pinouts and packages.  
To System Bus  
Digital Clocks  
From Core  
To Analog  
System  
DIGITAL SYSTEM  
Digital PSoC Block Array  
The PSoC architecture, as illustrated on the left, is comprised of  
four main areas: PSoC Core, Digital System, Analog System,  
and System Resources including a full speed USB port. Config-  
urable global busing enables all the device resources to be  
Row 0  
8
4
8
8
8
DBB00  
DBB01  
DCB02  
DCB03  
4
combined into  
a complete custom system. The PSoC  
CY8C24x94 devices can have up to seven I/O ports that connect  
to the global digital and analog interconnects, providing access  
to 4 digital blocks and 6 analog blocks.  
GIE[7:0]  
GIO[7:0]  
GOE[7:0]  
GOO[7:0]  
Global Digital  
Interconnect  
2.1 The PSoC Core  
The PSoC Core is a powerful engine that supports a rich feature  
set. The core includes a CPU, memory, clocks, and configurable  
GPI/O (General Purpose I/O).  
Digital peripheral configurations include the following:  
Full Speed USB (12 Mbps)  
The M8C CPU core is a powerful processor with speeds up to 24  
MHz, providing a four MIPS 8-bit Harvard architecture micropro-  
cessor. The CPU uses an interrupt controller with up to 20  
vectors, to simplify programming of real time embedded events.  
Program execution is timed and protected using the included  
Sleep and Watch Dog Timers (WDT).  
PWMs (8 to 32 bit)  
PWMs with Dead band (8 to 24 bit)  
Counters (8 to 32 bit)  
Memory encompasses 16K of Flash for program storage, 1K of  
SRAM for data storage, and up to 2K of EEPROM emulated  
using the Flash. Program Flash uses four protection levels on  
blocks of 64 bytes, allowing customized software IP protection.  
Timers (8 to 32 bit)  
UART 8 bit with selectable parity  
SPI master and slave  
The PSoC device incorporates flexible internal clock generators,  
including a 24 MHz IMO (internal main oscillator) accurate to 8%  
over temperature and voltage. The 24 MHz IMO can also be  
doubled to 48 MHz for use by the digital system. A low power 32  
kHz ILO (internal low speed oscillator) is provided for the Sleep  
timer and WDT. The clocks, together with programmable clock  
dividers (as a System Resource), provide the flexibility to  
integrate almost any timing requirement into the PSoC device. In  
USB systems, the IMO self tunes to ± 0.25% accuracy for USB  
communication.  
I2C slave and multi-master  
Cyclical Redundancy Checker/Generator (8 to 32 bit)  
IrDA  
Pseudo Random Sequence Generators (8 to 32 bit)  
The digital blocks are connected to any GPI/O through a series  
of global buses that can route any signal to any pin. The buses  
also enable signal multiplexing and performing logic operations.  
This configurability frees the designs from the constraints of a  
fixed peripheral controller.  
PSoC GPIOs provide connection to the CPU, digital and analog  
resources of the device. Each pin’s drive mode may be selected  
from eight options, allowing great flexibility in external inter-  
facing. Every pin is also capable of generating a system interrupt  
on high level, low level, and change from last read.  
Digital blocks are provided in rows of four, where the number of  
blocks varies by PSoC device family. This enables you the  
optimum choice of system resources for your application. Family  
resources are shown in Table 2-1 on page 4.  
Document Number: 38-12018 Rev. *O  
Page 2 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
Figure 2-2. Analog System Block Diagram  
2.3 The Analog System  
A ll IO  
(E x c e p t P o rt 7 )  
The Analog System is composed of 6 configurable blocks, each  
comprised of an opamp circuit allowing the creation of complex  
analog signal flows. Analog peripherals are very flexible and can  
be customized to support specific application requirements.  
Some of the more common PSoC analog functions (most  
available as user modules) are as follows.  
P 0 [7 ]  
P 0 [5 ]  
P 0 [6 ]  
P 0 [4 ]  
P 0 [3 ]  
P 0 [1 ]  
P 0 [2 ]  
P 0 [0 ]  
Analog-to-digital converters (up to 2, with 6 to 14-bit resolution,  
selectable as Incremental, Delta Sigma, and SAR)  
P 2 [6 ]  
P 2 [4 ]  
P 2 [3 ]  
P 2 [1 ]  
Filters (2 and 4 pole band-pass, low-pass, and notch)  
Amplifiers (up to 2, with selectable gain to 48x)  
Instrumentation amplifiers (1 with selectable gain to 93x)  
Comparators (up to 2, with 16 selectable thresholds)  
DACs (up to 2, with 6- to 9-bit resolution)  
P 2 [2 ]  
P 2 [0 ]  
Multiplying DACs (up to 2, with 6- to 9-bit resolution)  
A C I0 [1 :0 ]  
A rra y In p u t  
A C I1 [1 :0 ]  
High current output drivers (two with 30 mA drive as a PSoC  
Core Resource)  
C o n fig u ra tio n  
1.3V reference (as a System Resource)  
DTMF Dialer  
B lo c k  
A rray  
A C B 0 0  
A S C 1 0  
A S D 2 0  
A C B 0 1  
Modulators  
A S D 1 1  
A S C 2 1  
Correlators  
Peak Detectors  
A n a lo g R e fe re n c e  
Many other topologies possible  
In te rfa c e to  
D ig ita l S y s te m  
R e fe re n c e  
G e n e ra to rs  
Analog blocks are arranged in a column of three, which includes  
one CT (Continuous Time) and two SC (Switched Capacitor)  
blocks, as shown in Figure 2-2.  
R e fH i  
R e fL o  
A G N D  
A G N D In  
R e fIn  
B a n d g a p  
M 8 C In te rfa c e (A d d re s s B u s , D a ta B u s , E tc .)  
2.3.1 The Analog Multiplexer System  
The Analog Mux Bus can connect to every GPI/O pin in ports 0-5.  
Pins are connected to the bus individually or in any combination.  
The bus also connects to the analog system for analysis with  
comparators and analog-to-digital converters. It is split into two  
sections for simultaneous dual-channel processing. An  
additional 8:1 analog input multiplexer provides a second path to  
bring Port 0 pins to the analog array.  
Switch control logic enables selected pins to precharge continu-  
ously under hardware control. This enables capacitive  
measurement for applications such as touch sensing. Other  
multiplexer applications include:  
Track pad, finger sensing.  
Chip-wide mux that enables analog input from up to 48 I/O pins.  
Crosspoint connection between any I/O pin combinations.  
When designing capacitive sensing applications, refer to the  
latest signal-to-noise signal level requirements Application  
Notes, which are found under http://www.cypress.com > Design  
Resources > Application Notes. In general, and unless otherwise  
noted in the relevant Application Notes, the minimum  
signal-to-noise ratio (SNR) for CapSense applications is 5:1.  
Document Number: 38-12018 Rev. *O  
Page 3 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
2.4 Additional System Resources  
3. Getting Started  
System Resources, provide additional capability useful to  
complete systems. Additional resources include a multiplier,  
decimator, low voltage detection, and power on reset. Brief state-  
ments describing the merits of each resource follow.  
The quickest way to understand PSoC silicon is to read this data  
sheet and then use the PSoC Designer Integrated Development  
Environment (IDE). This data sheet is an overview of the PSoC  
integrated circuit and presents specific pin, register, and  
electrical specifications.  
Full Speed USB (12 Mbps) with 5 configurable endpoints and  
256 bytes of RAM. No external components required except  
two series resistors. Wider than commercial temperature USB  
operation (-10°C to +85°C).  
For in depth information, along with detailed programming infor-  
mation, see the PSoC® Programmable System-on-Chip  
Technical Reference Manual for CY8C28xxx PSoC devices.  
Digital clock dividers provide three customizable clock  
frequencies for use in applications. The clocks can be routed  
to both the digital and analog systems. Additional clocks are  
generated using digital PSoC blocks as clock dividers.  
For up-to-date ordering, packaging, and electrical specification  
information, see the latest PSoC device data sheets on the web  
at www.cypress.com/psoc.  
3.1 Application Notes  
Two multiply accumulates (MACs) provide fast 8-bit multipliers  
with 32-bit accumulate, to assist in both general math and  
digital filters.  
Application notes are an excellent introduction to the wide variety  
of possible PSoC designs. They are located here:  
www.cypress.com/psoc. Select Application Notes under the  
Documentation tab.  
Decimator provides a custom hardware filter for digital signal  
processing applications including creation of Delta Sigma  
ADCs.  
3.2 Development Kits  
TheI2Cmoduleprovides100and400kHzcommunicationover  
two wires. Slave, master, multi-master are supported.  
PSoC Development Kits are available online from Cypress at  
www.cypress.com/shop and through a growing number of  
regional and global distributors, which include Arrow, Avnet,  
Digi-Key, Farnell, Future Electronics, and Newark.  
Low Voltage Detection (LVD) interrupts signal the application  
of falling voltage levels, while the advanced POR (Power On  
Reset) circuit eliminates the need for a system supervisor.  
3.3 Training  
An internal 1.3V reference provides an absolute reference for  
the analog system, including ADCs and DACs.  
Free PSoC technical training (on demand, webinars, and  
workshops) is available online at www.cypress.com/training. The  
training covers a wide variety of topics and skill levels to assist  
you in your designs.  
Versatile analog multiplexer system.  
2.5 PSoC Device Characteristics  
3.4 CyPros Consultants  
Depending on your PSoC device characteristics, the digital and  
analog systems can have 16, 8, or 4 digital blocks and 12, 6, or  
4 analog blocks. The following table lists the resources available  
for specific PSoC device groups. The device covered by this data  
sheet is shown in the highlighted row of the table  
Certified PSoC Consultants offer everything from technical  
assistance to completed PSoC designs. To contact or become a  
PSoC Consultant go to www.cypress.com/cypros.  
3.5 Solutions Library  
Visit our growing library of solution focused designs at  
www.cypress.com/solutions. Here you can find various appli-  
cation designs that include firmware and hardware design files  
that enable you to complete your designs quickly.  
Table 2-1. PSoC Device Characteristics  
PSoC Part  
Number  
3.6 Technical Support  
CY8C29x66  
CY8C27x43  
up to  
64  
4
2
16  
8
12  
12  
4
4
4
4
12  
12  
2K  
32K  
16K  
For assistance with technical issues, search KnowledgeBase  
articles and forums at www.cypress.com/support. If you cannot  
find an answer to your question, call technical support at  
1-800-541-4736.  
up to  
44  
256  
Bytes  
CY8C24x94  
56  
1
1
4
4
48  
12  
2
2
2
2
6
6
1K  
16K  
4K  
CY8C24x23A  
up to  
24  
256  
Bytes  
CY8C21x34  
CY8C21x23  
CY8C20x34  
up to  
28  
1
1
0
4
4
0
28  
8
0
0
0
2
2
0
4
4
3
512  
8K  
4K  
8K  
Bytes  
16  
256  
Bytes  
up to  
28  
28  
512  
Bytes  
Document Number: 38-12018 Rev. *O  
Page 4 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
4.1.4 Code Generation Tools  
4. Development Tools  
PSoC Designer supports multiple third party C compilers and  
assemblers. The code generation tools work seamlessly within  
the PSoC Designer interface and have been tested with a full  
range of debugging tools. The choice is yours.  
PSoC Designer is a Microsoft® Windows-based, integrated  
development  
environment  
for  
the  
Programmable  
System-on-Chip (PSoC) devices. The PSoC Designer IDE runs  
on Windows XP or Windows Vista.  
This system provides design database management by project,  
an integrated debugger with In-Circuit Emulator, in-system  
programming support, and built-in support for third-party  
assemblers and C compilers.  
Assemblers. The assemblers allow assembly code to merge  
seamlessly with C code. Link libraries automatically use absolute  
addressing or are compiled in relative mode, and linked with  
other software modules to get absolute addressing.  
PSoC Designer also supports C language compilers developed  
specifically for the devices in the PSoC family.  
C Language Compilers. C language compilers are available  
that support the PSoC family of devices. The products allow you  
to create complete C programs for the PSoC family devices.  
4.1 PSoC Designer Software Subsystems  
The optimizing C compilers provide all the features of C tailored  
to the PSoC architecture. They come complete with embedded  
libraries providing port and bus operations, standard keypad and  
display support, and extended math functionality.  
4.1.1 System-Level View  
A drag-and-drop visual embedded system design environment  
based on PSoC Express. In the system level view you create a  
model of your system inputs, outputs, and communication inter-  
faces. You define when and how an output device changes state  
based upon any or all other system devices. Based upon the  
design, PSoC Designer automatically selects one or more PSoC  
Mixed-Signal Controllers that match your system requirements.  
4.1.5 Debugger  
The PSoC Designer Debugger subsystem provides hardware  
in-circuit emulation, allowing you to test the program in a physical  
system while providing an internal view of the PSoC device.  
Debugger commands allow the designer to read and program  
and read and write data memory, read and write I/O registers,  
read and write CPU registers, set and clear breakpoints, and  
provide program run, halt, and step control. The debugger also  
allows the designer to create a trace buffer of registers and  
memory locations of interest.  
PSoC Designer generates all embedded code, then compiles  
and links it into a programming file for a specific PSoC device.  
4.1.2 Chip-Level View  
The chip-level view is a more traditional integrated development  
environment (IDE) based on PSoC Designer 4.4. Choose a base  
device to work with and then select different onboard analog and  
digital components called user modules that use the PSoC  
blocks. Examples of user modules are ADCs, DACs, Amplifiers,  
and Filters. Configure the user modules for your chosen  
application and connect them to each other and to the proper  
pins. Then generate your project. This prepopulates your project  
with APIs and libraries that you can use to program your  
application.  
4.1.6 Online Help System  
The online help system displays online, context-sensitive help  
for the user. Designed for procedural and quick reference, each  
functional subsystem has its own context-sensitive help. This  
system also provides tutorials and links to FAQs and an Online  
Support Forum to aid the designer in getting started.  
4.2 In-Circuit Emulator  
The device editor also supports easy development of multiple  
configurations and dynamic reconfiguration. Dynamic  
configuration enables changing configurations at run time.  
A low cost, high functionality In-Circuit Emulator (ICE) is  
available for development support. This hardware has the  
capability to program single devices.  
4.1.3 Hybrid Designs  
The emulator consists of a base unit that connects to the PC by  
way of a USB port. The base unit is universal and operates with  
all PSoC devices. Emulation pods for each device family are  
available separately. The emulation pod takes the place of the  
PSoC device in the target board and performs full speed (24  
MHz) operation.  
You can begin in the system-level view, allow it to choose and  
configure your user modules, routing, and generate code, then  
switch to the chip-level view to gain complete control over  
on-chip resources. All views of the project share a common code  
editor, builder, and common debug, emulation, and programming  
tools.  
Document Number: 38-12018 Rev. *O  
Page 5 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
5.3 Organize and Connect  
5. Designing with PSoC Designer  
You can build signal chains at the chip level by interconnecting  
user modules to each other and the I/O pins, or connect system  
level inputs, outputs, and communication interfaces to each  
other with valuator functions.  
The development process for the PSoC device differs from that  
of a traditional fixed function microprocessor. The configurable  
analog and digital hardware blocks give the PSoC architecture a  
unique flexibility that pays dividends in managing specification  
change during development and by lowering inventory costs.  
These configurable resources, called PSoC Blocks, have the  
ability to implement a wide variety of user-selectable functions.  
In the system-level view, selecting a potentiometer driver to  
control a variable speed fan driver and setting up the valuators  
to control the fan speed based on input from the pot selects,  
places, routes, and configures a programmable gain amplifier  
(PGA) to buffer the input from the potentiometer, an analog to  
digital converter (ADC) to convert the potentiometer’s output to  
a digital signal, and a PWM to control the fan.  
The PSoC development process can be summarized in the  
following four steps:  
1. Select components  
2. Configure components  
3. Organize and Connect  
4. Generate, Verify, and Debug  
In the chip-level view, perform the selection, configuration, and  
routing so that you have complete control over the use of all  
on-chip resources.  
5.4 Generate, Verify, and Debug  
5.1 Select Components  
When you are ready to test the hardware configuration or move  
on to developing code for the project, perform the “Generate  
Application” step. This causes PSoC Designer to generate  
source code that automatically configures the device to your  
specification and provides the software for the system.  
Both the system-level and chip-level views provide a library of  
prebuilt, pretested hardware peripheral components. In the  
system-level view, these components are called “drivers” and  
correspond to inputs (a thermistor, for example), outputs (a  
brushless DC fan, for example), communication interfaces  
(I2C-bus, for example), and the logic to control how they interact  
with one another (called valuators).  
Both system-level and chip-level designs generate software  
based on your design. The chip-level design provides application  
programming interfaces (APIs) with high level functions to  
control and respond to hardware events at run-time and interrupt  
service routines that you can adapt as needed. The system-level  
design also generates a C main() program that completely  
controls the chosen application and contains placeholders for  
custom code at strategic positions allowing you to further refine  
the software without disrupting the generated code.  
In the chip-level view, the components are called “user modules”.  
User modules make selecting and implementing peripheral  
devices simple, and come in analog, digital, and mixed signal  
varieties.  
5.2 Configure Components  
Each of the components you select establishes the basic register  
settings that implement the selected function. They also provide  
parameters and properties that allow you to tailor their precise  
configuration to your particular application. For example, a Pulse  
Width Modulator (PWM) User Module configures one or more  
digital PSoC blocks, one for each 8 bits of resolution. The user  
module parameters permit you to establish the pulse width and  
duty cycle. Configure the parameters and properties to  
correspond to your chosen application. Enter values directly or  
by selecting values from drop-down menus.  
A complete code development environment allows you to  
develop and customize your applications in C, assembly  
language, or both.  
The last step in the development process takes place inside the  
PSoC Designer’s Debugger subsystem. The Debugger  
downloads the HEX image to the ICE where it runs at full speed.  
Debugger capabilities rival those of systems costing many times  
more. In addition to traditional single-step, run-to-breakpoint and  
watch-variable features, the Debugger provides a large trace  
buffer and allows you define complex breakpoint events that  
include monitoring address and data bus values, memory  
locations and external signals.  
Both the system-level drivers and chip-level user modules are  
documented in data sheets that are viewed directly in PSoC  
Designer. These data sheets explain the internal operation of the  
component and provide performance specifications. Each data  
sheet describes the use of each user module parameter or driver  
property, and other information you may need to successfully  
implement your design.  
Document Number: 38-12018 Rev. *O  
Page 6 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
6.2 Units of Measure  
6. Document Conventions  
A units of measure table is located in the Electrical Specifications  
section. Table 9-1 on page 20 lists all the abbreviations used to  
measure the PSoC devices.  
6.1 Acronyms Used  
The following table lists the acronyms that are used in this  
document.  
6.3 Numeric Naming  
Acronym  
AC  
Description  
alternating current  
Hexadecimal numbers are represented with all letters in  
uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or  
‘3Ah’). Hexadecimal numbers may also be represented by a ‘0x’  
prefix, the C coding convention. Binary numbers have an  
appended lowercase ‘b’ (e.g., 01010100b’ or ‘01000011b’).  
Numbers not indicated by an ‘h’ or ‘b’ are decimal.  
ADC  
API  
analog-to-digital converter  
application programming interface  
central processing unit  
continuous time  
CPU  
CT  
DAC  
DC  
digital-to-analog converter  
direct current  
ECO  
external crystal oscillator  
EEPROM electrically erasable programmable read-only  
memory  
FSR  
GPI/O  
GUI  
full scale range  
general purpose I/O  
graphical user interface  
human body model  
in-circuit emulator  
HBM  
ICE  
ILO  
internal low speed oscillator  
internal main oscillator  
input/output  
IMO  
I/O  
IPOR  
LSb  
imprecise power on reset  
least-significant bit  
LVD  
low voltage detect  
MSb  
PC  
most-significant bit  
program counter  
PLL  
phase-locked loop  
POR  
PPOR  
PSoC®  
PWM  
SC  
power on reset  
precision power on reset  
Programmable System-on-Chip™  
pulse width modulator  
switched capacitor  
SRAM  
static random access memory  
Document Number: 38-12018 Rev. *O  
Page 7 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
7. Pin Information  
This section describes, lists, and illustrates the CY8C24x94 PSoC device family pins and pinout configuration.  
The CY8C24x94 PSoC devices are available in the following packages, all of which are shown on the following pages. Every port pin  
(labeled with a “P”) is capable of Digital I/O. However, Vss, Vdd, and XRES are not capable of Digital I/O.  
Note CY8C24794 must use Power Cycle programming when using the MiniProg.  
7.1 56-Pin Part Pinout  
Table 7-1. 56-Pin Part Pinout (QFN[2]) See LEGEND details and footnotes in Table 7-2 on page 9.  
Type  
Digital Analog  
Pin  
No.  
Figure 7-1. CY8C24794 56-Pin PSoC Device  
Name  
Description  
1
2
3
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I, M  
I, M  
M
P2[3] Direct switched capacitor block input.  
P2[1] Direct switched capacitor block input.  
P4[7]  
4
5
6
M
M
M
P4[5]  
P4[3]  
P4[1]  
A,I, M,P2[3]  
A,I, M,P2[1]  
M,P4[7]  
1
2
P2[2], A, I,M  
P2[0], A, I,M  
P4[6],M  
P4[4],M  
P4[2],M  
P4[0],M  
P3[6],M  
P3[4],M  
P3[2],M  
P3[0],M  
P5[6],M  
P5[4],M  
P5[2],M  
P5[0],M  
42  
41  
7
8
9
M
M
M
P3[7]  
P3[5]  
P3[3]  
3
4
5
6
40  
39  
M,P4[5]  
M,P4[3]  
M,P4[1]  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
M
M
M
P3[1]  
P5[7]  
P5[5]  
M,P3[7]  
7
8
9
10  
11  
12  
13  
14  
QFN  
(Top View )  
M,P3[5]  
M,P3[3]  
M
M
M
P5[3]  
P5[1]  
M,P3[1]  
M,P5[7]  
M,P5[5]  
M,P5[3]  
M,P5[1]  
P1[7] I2C Serial Clock (SCL).  
P1[5] I2C Serial Data (SDA).  
P1[3]  
M
M
M
[1]  
P1[1] I2C Serial Clock (SCL), ISSP SCLK  
.
Power  
Vss Ground connection.  
D+  
D-  
USB  
USB  
Power  
Vdd Supply voltage.  
P7[7]  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P7[0]  
[1]  
M
M
M
M
M
P1[0] I2C Serial Data (SDA), ISSP SDATA  
P1[2]  
.
P1[4] Optional External Clock Input (EXTCLK).  
P1[6]  
P5[0]  
Type  
Pin  
No.  
Name  
Description  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
M
M
M
M
M
M
M
M
M
M
M
P5[2]  
Digital Analog  
P5[4]  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
I/O  
I/O  
I/O  
I/O  
I/O  
M
P2[6] External Voltage Reference (VREF) input.  
P0[0] Analog column mux input.  
P0[2] Analog column mux input.  
P0[4] Analog column mux input VREF.  
P0[6] Analog column mux input.  
Vdd Supply voltage.  
P5[6]  
I, M  
I, M  
I, M  
I, M  
P3[0]  
P3[2]  
P3[4]  
P3[6]  
Power  
Power  
I, M  
P4[0]  
Vss Ground connectI/On.  
P4[2]  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P0[7] Analog column mux input,.  
P4[4]  
I/O, M P0[5] Analog column mux input and column output.  
I/O, M P0[3] Analog column mux input and column output.  
P4[6]  
I, M  
I, M  
M
P2[0] Direct switched capacitor block input.  
P2[2] Direct switched capacitor block input.  
P2[4] External Analog Ground (AGND) input.  
I, M  
M
P0[1] Analog column mux input.  
P2[7]  
P2[5]  
M
Document Number: 38-12018 Rev. *O  
Page 8 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
7.2 56-Pin Part Pinout (with XRES)  
Table 7-2. 56-Pin Part Pinout (QFN[2])  
Type  
Pin  
Figure 7-2. CY8C24894 56-Pin PSoC Device  
Name  
Description  
No.  
Digital Analog  
1
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I, M  
I, M  
M
P2[3] Direct switched capacitor block input.  
2
3
4
P2[1] Direct switched capacitor block input.  
P4[7]  
P4[5]  
M
5
6
7
M
M
M
P4[3]  
P4[1]  
P3[7]  
A, I, M, P2[3]  
1
2
P2[2], A, I, M  
P2[0], A, I, M  
42  
41  
40  
39  
38  
37  
A, I, M, P2[1]  
8
9
M
M
M
P3[5]  
P3[3]  
P3[1]  
M, P4[7]  
M, P4[5]  
M, P4[3]  
M, P4[1]  
M, P3[7]  
3
4
5
6
P4[6], M  
P4[4], M  
P4[2], M  
P4[0], M  
XRES  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
M
M
M
P5[7]  
P5[5]  
P5[3]  
7
8
QFN  
(Top View)  
36  
35  
34  
33  
M, P3[5]  
M, P3[3]  
M, P3[1]  
P3[4], M  
P3[2], M  
P3[0], M  
9
M
M
M
P5[1]  
10  
P1[7] I2C Serial Clock (SCL).  
P1[5] I2C Serial Data (SDA).  
P1[3]  
M, P5[7]  
M, P5[5]  
M, P5[3]  
M, P5[1]  
11  
12  
13  
14  
P5[6], M  
P5[4], M  
P5[2], M  
P5[0], M  
32  
31  
30  
29  
M
M
[1].  
P1[1] I2C Serial Clock (SCL), ISSP SCLK  
Power  
Vss Ground connection.  
USB  
USB  
D+  
D-  
Power  
Vdd Supply voltage.  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P7[7]  
P7[0]  
[1]  
M
M
M
M
P1[0] I2C Serial Data (SDA), ISSP SDATA  
P1[2]  
.
P1[4] Optional External Clock Input (EXTCLK).  
P1[6]  
29  
30  
31  
32  
33  
34  
35  
36  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
M
M
M
M
M
M
M
P5[0]  
P5[2]  
P5[4]  
P5[6]  
P3[0]  
P3[2]  
P3[4]  
Type  
Pin  
No.  
Name  
Description  
Digital Analog  
44  
45  
46  
47  
48  
49  
I/O  
I/O  
I/O  
I/O  
I/O  
M
P2[6] External Voltage Reference (VREF) input.  
P0[0] Analog column mux input.  
P0[2] Analog column mux input.  
P0[4] Analog column mux input VREF.  
P0[6] Analog column mux input.  
Vdd Supply voltage.  
I, M  
I, M  
I, M  
I, M  
Input  
XRES Active high external reset with internal  
pull down.  
Power  
37  
38  
39  
40  
41  
42  
43  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
M
M
M
M
P4[0]  
50  
51  
52  
53  
54  
55  
56  
Power  
I, M  
Vss Ground connection.  
P4[2]  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P0[7] Analog column mux input,.  
P4[4]  
I/O, M P0[5] Analog column mux input and column output.  
I/O, M P0[3] Analog column mux input and column output.  
P4[6]  
I, M  
I, M  
M
P2[0] Direct switched capacitor block input.  
P2[2] Direct switched capacitor block input.  
P2[4] External Analog Ground (AGND) input.  
I, M  
M
P0[1] Analog column mux input.  
P2[7]  
P2[5]  
M
LEGEND A = Analog, I = Input, O = Output, and M = Analog Mux Input.  
Notes  
1. These are the ISSP pins, which are not High Z at POR. See the PSoC Programmable System-on-Chip Technical Reference Manual for details.  
2. The center pad on the QFN package should be connected to ground (Vss) for best mechanical, thermal, and electrical performance. If not connected to ground, it  
should be electrically floated and not connected to any other signal.  
Document Number: 38-12018 Rev. *O  
Page 9 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
7.3 68-Pin Part Pinout  
The following 68-pin QFN part table and drawing is for the CY8C24994 PSoC device.  
Table 7-3. 68-Pin Part Pinout (QFN[2])  
Type  
Figure 7-3. CY8C24994 68-Pin PSoC Device  
Pin  
No.  
Name  
Description  
Digital Analog  
1
I/O  
I/O  
I/O  
I/O  
M
M
M
M
P4[7]  
P4[5]  
P4[3]  
P4[1]  
NC  
2
3
4
5
6
7
8
9
No connection.  
No connection.  
NC  
Power  
I/O  
Vss  
Ground connection.  
M, P4[7]  
M, P4[5]  
M, P4[3]  
P2[0], M, AI  
51  
1
2
M
M
M
M
M
M
M
M
M
M
M
M
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P5[7]  
P5[5]  
P5[3]  
P5[1]  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
Vss  
50  
P4[6], M  
P4[4], M  
P4[2], M  
I/O  
3
4
49  
48  
47  
46  
M, P4[1]  
NC  
10 I/O  
11 I/O  
5
6
P4[0], M  
XRES  
NC  
NC  
12 I/O  
13 I/O  
14 I/O  
15 I/O  
16 I/O  
17 I/O  
18 I/O  
19 I/O  
20 Power  
21 USB  
22 USB  
23 Power  
24 I/O  
25 I/O  
26 I/O  
27 I/O  
28 I/O  
29 I/O  
30 I/O  
31 I/O  
32 I/O  
33 I/O  
34 I/O  
35 I/O  
36 I/O  
37 I/O  
38 I/O  
39 I/O  
40 I/O  
41 I/O  
42 I/O  
43 I/O  
Vss  
M, P3[7]  
M, P3[5]  
45  
7
8
9
NC  
P3[6], M  
P3[4], M  
44  
43  
42  
QFN  
(Top View)  
10  
M, P3[3]  
M, P3[1]  
M, P5[7]  
P3[2], M  
P3[0], M  
11  
12  
13  
14  
15  
41  
I2C Serial Clock (SCL).  
I2C Serial Data (SDA).  
40  
39  
M, P5[5]  
P5[6], M  
P5[4], M  
M, P5[3]  
M, P5[1]  
I2C SCL, M, P1[7]  
I2C SDA, M, P1[5]  
38  
37  
36  
35  
P5[2], M  
P5[0], M  
[1]  
I2C Serial Clock (SCL) ISSP SCLK  
Ground connection.  
.
16  
17  
P1[6], M  
D+  
D-  
Vdd  
Supply voltage.  
P7[7]  
P7[6]  
P7[5]  
P7[4]  
P7[3]  
P7[2]  
P7[1]  
P7[0]  
P1[0]  
P1[2]  
P1[4]  
P1[6]  
P5[0]  
P5[2]  
P5[4]  
P5[6]  
P3[0]  
P3[2]  
P3[4]  
P3[6]  
Type  
Pin  
No.  
Name  
Description  
Digital Analog  
50 I/O  
51 I/O  
52 I/O  
M
P4[6]  
[1]  
M
M
M
M
M
M
M
M
M
M
M
M
I2C Serial Data (SDA), ISSP SDATA  
.
I,M  
I,M  
M
P2[0] Direct switched capacitor block input.  
P2[2] Direct switched capacitor block input.  
P2[4] External Analog Ground (AGND) input.  
P2[6] External Voltage Reference (VREF) input.  
P0[0] Analog column mux input.  
Optional External Clock Input (EXTCLK). 53 I/O  
54 I/O  
55 I/O  
56 I/O  
57 I/O  
58 I/O  
M
I,M  
I,M  
I,M  
I,M  
P0[2] Analog column mux input and column output.  
P0[4] Analog column mux input and column output.  
P0[6] Analog column mux input.  
59 Power  
Vdd  
Vss  
Supply voltage.  
60 Power  
61 I/O  
Ground connection.  
I,M  
P0[7] Analog column mux input, integration input #1  
62 I/O  
I/O,M  
P0[5] Analog column mux input and column output, integration  
input #2.  
44  
NC  
NC  
No connection.  
No connection.  
63 I/O  
64 I/O  
65 I/O  
I/O,M  
I,M  
P0[3] Analog column mux input and column output.  
P0[1] Analog column mux input.  
P2[7]  
45  
46 Input  
XRES Active high pin reset with internal pull  
down.  
M
47 I/O  
48 I/O  
49 I/O  
M
M
M
P4[0]  
P4[2]  
P4[4]  
66 I/O  
67 I/O  
68 I/O  
M
P2[5]  
I,M  
I,M  
P2[3] Direct switched capacitor block input.  
P2[1] Direct switched capacitor block input.  
LEGENDA = Analog, I = Input, O = Output, NC = No Connection, M = Analog Mux Input.  
Document Number: 38-12018 Rev. *O  
Page 10 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
7.4 68-Pin Part Pinout (On-Chip Debug)  
The following 68-pin QFN part table and drawing is for the CY8C24094 On-Chip Debug (OCD) PSoC device.  
Note This part is only used for in-circuit debugging. It is NOT available for production.  
Table 7-4. 68-Pin Part Pinout (QFN[2])  
Type  
Pin  
No.  
Figure 7-4. CY8C24094 68-Pin OCD PSoC Device  
Name  
Description  
Digital Analog  
1
I/O  
I/O  
I/O  
I/O  
M
M
M
M
P4[7]  
P4[5]  
P4[3]  
P4[1]  
2
3
4
5
6
7
8
9
OCDE OCD even data I/O.  
OCDO OCD odd data output.  
Power  
I/O  
Vss  
Ground connection.  
M, P4[7]  
M, P4[5]  
M, P4[3]  
P2[0], M, AI  
P4[6], M  
1
2
3
4
5
6
7
8
9
51  
50  
M
M
M
M
M
M
M
M
M
M
M
M
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P5[7]  
P5[5]  
P5[3]  
P5[1]  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
Vss  
P4[4], M  
P4[2], M  
49  
48  
47  
I/O  
M, P4[1]  
OCDE  
OCDO  
10 I/O  
11 I/O  
P4[0], M  
XRES  
CCLK  
46  
45  
Vss  
M, P3[7]  
M, P3[5]  
12 I/O  
13 I/O  
14 I/O  
15 I/O  
16 I/O  
17 I/O  
18 I/O  
19 I/O  
20 Power  
21 USB  
22 USB  
23 Power  
24 I/O  
25 I/O  
26 I/O  
27 I/O  
28 I/O  
29 I/O  
30 I/O  
31 I/O  
32 I/O  
33 I/O  
34 I/O  
35 I/O  
36 I/O  
37 I/O  
38 I/O  
39 I/O  
40 I/O  
41 I/O  
42 I/O  
43 I/O  
HCLK  
P3[6], M  
P3[4], M  
44  
43  
42  
QFN  
(Top View)  
10  
M, P3[3]  
M, P3[1]  
M, P5[7]  
M, P5[5]  
P3[2], M  
P3[0], M  
11  
12  
13  
14  
15  
16  
17  
41  
40  
39  
38  
37  
36  
35  
I2C Serial Clock (SCL).  
I2C Serial Data (SDA).  
P5[6], M  
P5[4], M  
M, P5[3]  
M, P5[1]  
I2C SCL, M, P1[7]  
I2C SDA, M, P1[5]  
P5[2], M  
P5[0], M  
P1[6], M  
[1]  
I2C Serial Clock (SCL), ISSP SCLK  
Ground connection.  
.
D+  
D-  
Vdd  
Supply voltage.  
P7[7]  
P7[6]  
P7[5]  
P7[4]  
P7[3]  
P7[2]  
P7[1]  
P7[0]  
P1[0]  
P1[2]  
P1[4]  
P1[6]  
P5[0]  
P5[2]  
P5[4]  
P5[6]  
P3[0]  
P3[2]  
P3[4]  
P3[6]  
Type  
Digital Analog  
Pin  
No.  
Name  
Description  
50 I/O  
51 I/O  
52 I/O  
M
P4[6]  
[1]  
M
M
M
M
M
M
M
M
M
M
M
M
I2C Serial Data (SDA), ISSP SDATA  
.
I,M  
I,M  
M
P2[0] Direct switched capacitor block input.  
P2[2] Direct switched capacitor block input.  
Optional External Clock Input (EXTCLK). 53 I/O  
P2[4] External Analog Ground (AGND) input.  
P2[6] External Voltage Reference (VREF) input.  
P0[0] Analog column mux input.  
54 I/O  
55 I/O  
56 I/O  
57 I/O  
58 I/O  
M
I,M  
I,M  
I,M  
I,M  
P0[2] Analog column mux input and column output.  
P0[4] Analog column mux input and column output.  
P0[6] Analog column mux input.  
59 Power  
Vdd  
Vss  
Supply voltage.  
60 Power  
61 I/O  
Ground connection.  
I,M  
P0[7] Analog column mux input, integration input #1  
62 I/O  
I/O,M  
P0[5] Analog column mux input and column output,  
integration input #2.  
44  
HCLK OCD high speed clock output.  
CCLK OCD CPU clock output.  
63 I/O  
64 I/O  
65 I/O  
I/O,M  
I,M  
P0[3] Analog column mux input and column output.  
P0[1] Analog column mux input.  
P2[7]  
45  
46 Input  
XRES Active high pin reset with internal pull  
down.  
M
47 I/O  
48 I/O  
49 I/O  
M
M
M
P4[0]  
P4[2]  
P4[4]  
66 I/O  
67 I/O  
68 I/O  
M
P2[5]  
I,M  
I,M  
P2[3] Direct switched capacitor block input.  
P2[1] Direct switched capacitor block input.  
LEGENDA = Analog, I = Input, O = Output, M = Analog Mux Input, OCD = On-Chip Debugger.  
Document Number: 38-12018 Rev. *O  
Page 11 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
7.5 100-Ball VFBGA Part Pinout  
The 100-ball VFBGA part is for the CY8C24994 PSoC device.  
Table 7-5. 100-Ball Part Pinout (VFBGA)  
Pin  
No.  
Pin  
No.  
Name  
Description  
Name  
Description  
A1 Power  
A2 Power  
A3  
Vss  
Vss  
NC  
NC  
NC  
Vdd  
NC  
NC  
Vss  
Vss  
Vss  
Vss  
Ground connection.  
F1  
NC  
No connection.  
Ground connection.  
No connection.  
F2 I/O  
F3 I/O  
F4 I/O  
M
M
M
P5[7]  
P3[5]  
P5[1]  
Vss  
A4  
No connection.  
A5  
No connection.  
F5 Power  
F6 Power  
Ground connection.  
Ground connection.  
A6 Power  
A7  
Supply voltage.  
Vss  
No connection.  
F7 I/O  
F8 I/O  
F9  
M
P5[0]  
P3[0]  
A8  
No connection.  
M
A9 Power  
A10 Power  
B1 Power  
B2 Power  
B3 I/O I,M  
B4 I/O I,M  
B5 I/O I,M  
B6 Power  
B7 I/O I,M  
B8 I/O I,M  
B9 Power  
B10 Power  
C1  
Ground connection.  
Ground connection.  
Ground connection.  
Ground connection.  
XRES Active high pin reset with internal pull down.  
P7[1]  
F10 I/O  
G1  
NC  
No connection.  
G2 I/O  
G3 I/O  
G4 I/O  
G5 I/O  
G6 I/O  
G7 I/O  
G8 I/O  
G9 I/O  
G10 I/O  
H1  
M
M
M
M
M
M
M
M
P5[5]  
P3[3]  
P2[1] Direct switched capacitor block input.  
P0[1] Analog column mux input.  
P1[7] I2C Serial Clock (SCL).  
[1]  
P0[7] Analog column mux input.  
P1[1] I2C Serial Clock (SCL), ISSP SCLK .  
[1]  
Vdd  
Supply voltage.  
P1[0] I2C Serial Data (SDA), ISSP SDATA .  
P0[2] Analog column mux input.  
P1[6]  
P3[4]  
P5[6]  
P7[2]  
P2[2] Direct switched capacitor block input.  
Vss  
Ground connection.  
Ground connection.  
No connection.  
Vss  
NC  
NC  
No connection.  
C2 I/O  
C3 I/O  
C4 I/O  
M
M
M
P4[1]  
P4[7]  
P2[7]  
H2 I/O  
H3 I/O  
H4 I/O  
M
M
M
M
M
M
M
M
P5[3]  
P3[1]  
P1[5] I2C Serial Data (SDA).  
C5 I/O I/O,M P0[5] Analog column mux input and column output. H5 I/O  
P1[3]  
P1[2]  
C6 I/O I,M  
C7 I/O I,M  
C8 I/O I,M  
P0[6] Analog column mux input.  
P0[0] Analog column mux input.  
P2[0] Direct switched capacitor block input.  
P4[2]  
H6 I/O  
H7 I/O  
H8 I/O  
H9 I/O  
H10 I/O  
P1[4] Optional External Clock Input (EXTCLK).  
P3[2]  
P5[4]  
P7[3]  
C9 I/O  
C10  
M
NC  
No connection.  
No connection.  
D1  
NC  
J1  
J2  
J3  
J4  
Power  
Power  
Vss  
Vss  
D+  
Ground connection.  
Ground connection.  
D2 I/O  
D3 I/O  
D4 I/O  
M
M
M
P3[7]  
P4[5]  
P2[5]  
USB  
USB  
Power  
I/O  
D-  
D5 I/O I/O,M P0[3] Analog column mux input and column output. J5  
Vdd  
P7[7]  
P7[0]  
P5[2]  
Vss  
Vss  
Vss  
Vss  
NC  
Supply voltage.  
D6 I/O I,M  
P0[4] Analog column mux input.  
J6  
J7  
J8  
J9  
D7 I/O  
D8 I/O  
D9 I/O  
D10  
M
M
M
P2[6] External Voltage Reference (VREF) input.  
I/O  
P4[6]  
P4[0]  
I/O  
M
Power  
Ground connection.  
Ground connection.  
Ground connection.  
Ground connection.  
No connection.  
NC  
No connection.  
No connection.  
No connection.  
J10 Power  
K1 Power  
K2 Power  
K3  
E1  
NC  
E2  
NC  
E3 I/O  
M
P4[3]  
E4 I/O I,M  
E5 Power  
E6 Power  
P2[3] Direct switched capacitor block input.  
K4  
NC  
No connection.  
Vss  
Vss  
Ground connection.  
Ground connection.  
K5 Power  
K6 I/O  
K7 I/O  
K8 I/O  
K9 Power  
K10 Power  
Vdd  
P7[6]  
P7[5]  
P7[4]  
Vss  
Vss  
Supply voltage.  
E7 I/O  
E8 I/O  
E9 I/O  
E10  
M
M
M
P2[4] External Analog Ground (AGND) input.  
P4[4]  
P3[6]  
Ground connection.  
Ground connection.  
NC  
No connection.  
LEGENDA = Analog, I = Input, O = Output, M = Analog Mux Input, NC = No Connection.  
Document Number: 38-12018 Rev. *O  
Page 12 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
Figure 7-5. CY8C24094 OCD (Not for Production)  
1
2
3
4
5
6
7
8
9
10  
Vss  
Vss  
NC  
NC  
NC  
NC  
NC  
NC  
Vss  
Vss  
Vss  
NC  
NC  
NC  
Vdd  
NC  
NC  
Vss  
Vss  
Vss  
NC  
NC  
NC  
A
B
C
D
E
F
Vss P2[1] P0[1] P0[7] Vdd P0[2] P2[2] Vss  
P4[1] P4[7] P2[7] P0[5] P0[6] P0[0] P2[0] P4[2]  
P3[7] P4[5] P2[5] P0[3] P0[4] P2[6] P4[6] P4[0]  
NC P4[3] P2[3] Vss  
P5[7] P3[5] P5[1] Vss  
Vss P2[4] P4[4] P3[6]  
Vss P5[0] P3[0] XRES P7[1]  
P5[5] P3[3] P1[7] P1[1] P1[0] P1[6] P3[4] P5[6] P7[2]  
P5[3] P3[1] P1[5] P1[3] P1[2] P1[4] P3[2] P5[4] P7[3]  
G
H
J
Vss  
Vss  
D +  
NC  
D -  
Vdd P7[7] P7[0] P5[2] Vss  
Vdd P7[6] P7[5] P7[4] Vss  
Vss  
Vss  
NC  
K
BGA (Top View)  
7.6 100-Ball VFBGA Part Pinout (On-Chip Debug)  
The following 100-pin VFBGA part table and drawing is for the CY8C24094 On-Chip Debug (OCD) PSoC device.  
Note This part is only used for in-circuit debugging. It is NOT available for production.  
Table 7-6. 100-Ball Part Pinout (VFBGA)  
Pin  
No.  
Pin  
No.  
Name  
Description  
Name  
Description  
A1 Power  
A2 Power  
A3  
Vss  
Vss  
NC  
NC  
NC  
Vdd  
NC  
NC  
Vss  
Vss  
Vss  
Vss  
Ground connection.  
F1  
OCDE OCD even data I/O.  
Ground connection.  
No connection.  
F2 I/O  
F3 I/O  
F4 I/O  
M
M
M
P5[7]  
P3[5]  
P5[1]  
A4  
No connection.  
A5  
No connection.  
F5 Power  
F6 Power  
Vss  
Ground connection.  
Ground connection.  
A6 Power  
A7  
Supply voltage.  
Vss  
No connection.  
F7 I/O  
F8 I/O  
F9  
M
P5[0]  
P3[0]  
A8  
No connection.  
M
A9 Power  
A10 Power  
B1 Power  
B2 Power  
Ground connection.  
Ground connection.  
Ground connection.  
Ground connection.  
XRES Active high pin reset with internal pull down.  
F10 I/O  
G1  
P7[1]  
OCDO OCD odd data output.  
G2 I/O  
G3 I/O  
G4 I/O  
G5 I/O  
G6 I/O  
G7 I/O  
G8 I/O  
G9 I/O  
G10 I/O  
H1  
M
M
M
M
M
M
M
M
P5[5]  
P3[3]  
B3 I/O I,M P2[1] Direct switched capacitor block input.  
B4 I/O I,M P0[1] Analog column mux input.  
B5 I/O I,M P0[7] Analog column mux input.  
P1[7] I2C Serial Clock (SCL).  
[1]  
P1[1] I2C Serial Clock (SCL), ISSP SCLK  
.
[1]  
B6 Power  
Vdd  
Supply voltage.  
P1[0] I2C Serial Data (SDA), ISSP SDATA .  
B7 I/O I,M P0[2] Analog column mux input.  
P1[6]  
P3[4]  
P5[6]  
P7[2]  
B8 I/O I,M P2[2] Direct switched capacitor block input.  
B9 Power  
B10 Power  
C1  
Vss  
Ground connection.  
Ground connection.  
No connection.  
Vss  
NC  
NC  
No connection.  
C2 I/O  
C3 I/O  
C4 I/O  
M
P4[1]  
P4[7]  
P2[7]  
H2 I/O  
H3 I/O  
H4 I/O  
M
M
M
M
P5[3]  
P3[1]  
M
M
P1[5] I2C Serial Data (SDA).  
P1[3]  
C5 I/O I/O, P0[5] Analog column mux input and column output. H5 I/O  
M
C6 I/O I,M P0[6] Analog column mux input.  
C7 I/O I,M P0[0] Analog column mux input.  
H6 I/O  
H7 I/O  
M
M
P1[2]  
P1[4] Optional External Clock Input (EXTCLK).  
Document Number: 38-12018 Rev. *O  
Page 13 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
Table 7-6. 100-Ball Part Pinout (VFBGA) (continued)  
C8 I/O I,M P2[0] Direct switched capacitor block input.  
H8 I/O  
H9 I/O  
H10 I/O  
M
M
P3[2]  
P5[4]  
P7[3]  
Vss  
Vss  
D+  
C9 I/O  
C10  
M
P4[2]  
NC  
No connection.  
No connection.  
D1  
NC  
J1  
J2  
J3  
J4  
Power  
Power  
Ground connection.  
D2 I/O  
D3 I/O  
D4 I/O  
M
M
M
P3[7]  
P4[5]  
P2[5]  
Ground connection.  
USB  
USB  
D-  
D5 I/O I/O, P0[3] Analog column mux input and column output. J5  
M
Power  
Vdd  
Supply voltage.  
D6 I/O I,M P0[4] Analog column mux input.  
J6  
J7  
J8  
J9  
I/O  
I/O  
P7[7]  
P7[0]  
P5[2]  
Vss  
D7 I/O  
D8 I/O  
D9 I/O  
D10  
M
M
M
P2[6] External Voltage Reference (VREF) input.  
P4[6]  
I/O  
M
P4[0]  
Power  
Ground connection.  
Ground connection.  
Ground connection.  
Ground connection.  
No connection.  
CCLK OCD CPU clock output.  
J10 Power  
K1 Power  
K2 Power  
K3  
Vss  
E1  
NC  
No connection.  
No connection.  
Vss  
E2  
NC  
Vss  
E3 I/O  
M
P4[3]  
NC  
E4 I/O I,M P2[3] Direct switched capacitor block input.  
K4  
NC  
No connection.  
E5 Power  
E6 Power  
Vss  
Vss  
Ground connection.  
Ground connection.  
K5 Power  
K6 I/O  
K7 I/O  
K8 I/O  
K9 Power  
K10 Power  
Vdd  
P7[6]  
P7[5]  
P7[4]  
Vss  
Supply voltage.  
E7 I/O  
E8 I/O  
E9 I/O  
E10  
M
P2[4] External Analog Ground (AGND) input.  
M
M
P4[4]  
P3[6]  
Ground connection.  
Ground connection.  
HCLK OCD high speed clock output.  
Vss  
LEGENDA = Analog, I = Input, O = Output, M = Analog Mux Input, NC = No Connection, OCD = On-Chip Debugger.  
Figure 7-6. CY8C24094 OCD (Not for Production)  
1
2
3
4
5
6
7
8
9
10  
Vss  
Vss  
NC  
NC  
NC  
Vss  
NC  
NC  
NC  
Vdd  
NC  
NC  
Vss  
Vss  
Vss  
NC  
A
B
C
D
E
F
Vss P2[1] P0[1] P0[7] Vdd P0[2] P2[2] Vss  
P4[1] P4[7] P2[7] P0[5] P0[6] P0[0] P2[0] P4[2]  
P3[7] P4[5] P2[5] P0[3] P0[4] P2[6] P4[6] P4[0] CClk  
NC P4[3] P2[3] Vss  
Vss P2[4] P4[4] P3[6] HClk  
Vss P5[0] P3[0] XRES P7[1]  
ocde P5[7] P3[5] P5[1] Vss  
ocdo P5[5] P3[3] P1[7] P1[1] P1[0] P1[6] P3[4] P5[6] P7[2]  
G
H
J
NC  
Vss  
Vss  
P5[3] P3[1] P1[5] P1[3] P1[2] P1[4] P3[2] P5[4] P7[3]  
Vss  
Vss  
D +  
NC  
D -  
Vdd P7[7] P7[0] P5[2] Vss  
Vdd P7[6] P7[5] P7[4] Vss  
Vss  
Vss  
NC  
K
BGA (Top View)  
Document Number: 38-12018 Rev. *O  
Page 14 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
7.7 100-Pin Part Pinout (On-Chip Debug)  
The 100-pin TQFP part is for the CY8C24094 On-Chip Debug (OCD) PSoC device.  
Note This part is only used for in-circuit debugging. It is NOT available for production.  
Table 7-7. 100-Pin Part Pinout (TQFP)  
Pin  
No.  
Pin  
No.  
Name  
Description  
Name  
Description  
1
NC  
NC  
No connection.  
No connection.  
51 I/O  
52 I/O  
53 I/O  
54 I/O  
55 I/O  
56 I/O  
57 I/O  
58 I/O  
59 I/O  
60  
M
M
M
M
M
M
M
M
M
P1[6]  
P5[0]  
P5[2]  
P5[4]  
P5[6]  
P3[0]  
P3[2]  
P3[4]  
P3[6]  
2
3
4
5
6
7
8
9
I/O I, M P0[1] Analog column mux input.  
I/O  
I/O  
M
M
P2[7]  
P2[5]  
I/O I, M P2[3] Direct switched capacitor block input.  
I/O I, M P2[1] Direct switched capacitor block input.  
I/O  
I/O  
M
M
M
M
P4[7]  
P4[5]  
10 I/O  
P4[3]  
HCLK OCD high speed clock output.  
11  
12  
13  
14  
I/O  
P4[1]  
61  
CCLK OCD CPU clock output.  
OCDE OCD even data I/O.  
OCDO OCD odd data output.  
62 Input  
63 I/O  
64 I/O  
XRES Active high pin reset with internal pull down.  
M
M
P4[0]  
P4[2]  
NC  
No connection.  
15 Power  
Vss  
Ground connection.  
65 Power  
Vss  
Ground connection.  
16 I/O  
17 I/O  
18 I/O  
19 I/O  
20 I/O  
21 I/O  
22 I/O  
23 I/O  
24 I/O  
25  
M
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P5[7]  
P5[5]  
P5[3]  
P5[1]  
66 I/O  
67 I/O  
M
P4[4]  
P4[6]  
M
M
M
M
M
M
M
M
M
68 I/O I, M P2[0] Direct switched capacitor block input.  
69 I/O I, M P2[2] Direct switched capacitor block input.  
70 I/O  
71  
P2[4] External Analog Ground (AGND) input.  
NC No connection.  
P2[6] External Voltage Reference (VREF) input.  
NC No connection.  
P0[0] Analog column mux input.  
72 I/O  
73  
P1[7] I2C Serial Clock (SCL).  
74 I/O  
75  
I
NC  
NC  
NC  
No connection.  
No connection.  
No connection.  
NC  
NC  
No connection.  
No connection.  
26  
76  
27  
77 I/O I, M P0[2] Analog column mux input and column output.  
78 NC No connection.  
79 I/O I, M P0[4] Analog column mux input and column output.  
80 NC No connection.  
28 I/O  
29 I/O  
30 I/O  
P1[5] I2C Serial Data (SDA)  
P1[3]  
P1[1] Crystal (XTALin), I2C Serial Clock (SCL),  
[1]  
ISSP SCLK  
.
31  
NC  
No connection.  
81 I/O I, M P0[6] Analog column mux input.  
32 Power  
33 USB  
34 USB  
35 Power  
36 I/O  
37 I/O  
38 I/O  
39 I/O  
40 I/O  
41 I/O  
42 I/O  
43 I/O  
44  
Vss  
Ground connection.  
82 Power  
Vdd  
NC  
Vss  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
Supply voltage.  
No connection.  
Ground connection.  
No connection.  
No connection.  
No connection.  
No connection.  
No connection.  
No connection.  
No connection.  
No connection.  
No connection.  
No connection.  
D+  
83  
D-  
84 Power  
Vdd  
P7[7]  
P7[6]  
P7[5]  
P7[4]  
P7[3]  
P7[2]  
P7[1]  
P7[0]  
NC  
Supply voltage.  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
No connection.  
No connection.  
No connection.  
No connection.  
45  
NC  
95 I/O I, M P0[7] Analog column mux input.  
96 NC No connection.  
46  
NC  
47  
NC  
97 I/O I/O, P0[5] Analog column mux input and column output.  
M
48 I/O  
49 I/O  
50 I/O  
P1[0] Crystal (XTALout), I2C Serial Data (SDA),  
98  
NC  
No connection.  
[1]  
ISSP SDATA  
.
P1[2]  
99 I/O I/O, P0[3] Analog column mux input and column output.  
M
P1[4] Optional External Clock Input (EXTCLK).  
100  
NC  
No connection.  
Document Number: 38-12018 Rev. *O  
Page 15 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
Table 7-7. 100-Pin Part Pinout (TQFP) (continued)  
LEGENDA = Analog, I = Input, O = Output, NC = No Connection, M = Analog Mux Input, OCD = On-Chip Debugger.  
Figure 7-7. CY8C24094 OCD (Not for Production)  
NC  
NC  
NC  
1
2
3
4
75  
74  
P0[0],M,AI  
AI, M,P0[1]  
M,P2[7]  
M,P2[5]  
AI, M,P2[3]  
AI, M,P2[1]  
M,P4[7]  
M,P4[5]  
M,P4[3]  
M,P4[1]  
OCDE  
NC  
73  
72  
71  
P2[6],M,External VREF  
NC  
P2[4],M,External AGND  
5
6
70  
69  
7
8
9
P2[2],M,AI  
P2[0],M,AI  
P4[6],M  
68  
67  
P4[4],M  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
66  
65  
64  
63  
62  
61  
60  
59  
Vss  
P4[2],M  
OCDO  
TQFP  
P4[0],M  
XRES  
NC  
Vss  
M,P3[7]  
M,P3[5]  
CCLK  
HCLK  
P3[6],M  
P3[4],M  
P3[2],M  
P3[0],M  
P5[6],M  
M,P3[3]  
58  
57  
56  
55  
M,P3[1]  
M,P5[7]  
M,P5[5]  
P5[4],M  
P5[2],M  
P5[0],M  
M,P5[3]  
M,P5[1]  
54  
53  
52  
51  
23  
24  
25  
I2C SCL,P1[7]  
NC  
P1[6],M  
Document Number: 38-12018 Rev. *O  
Page 16 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
8. Register Reference  
This section lists the registers of the CY8C24x94 PSoC device family. For detailed register information, reference the  
PSoC Programmable System-on-Chip Technical Reference Manual.  
8.1 Register Conventions  
8.2 Register Mapping Tables  
The register conventions specific to this section are listed in the  
following table.  
The PSoC device has a total register address space of 512  
bytes. The register space is referred to as I/O space and is  
divided into two banks. The XOI bit in the Flag register (CPU_F)  
determines which bank the user is currently in. When the XOI bit  
is set the user is in Bank 1.  
Convention  
Description  
Read register or bit(s)  
R
W
L
Note In the following register mapping tables, blank fields are  
Reserved and should not be accessed.  
Write register or bit(s)  
Logical register or bit(s)  
Clearable register or bit(s)  
Access is bit specific  
C
#
Document Number: 38-12018 Rev. *O  
Page 17 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
8.3 Register Map Bank 0 Table: User Space  
Name  
PRT0DR  
Addr (0,Hex) Access  
Name  
Addr (0,Hex) Access  
Name  
ASC10CR0  
Addr (0,Hex) Access  
Name  
Addr (0,Hex)  
C0  
Access  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
PMA0_DR  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
PRT0IE  
PMA1_DR  
PMA2_DR  
PMA3_DR  
PMA4_DR  
PMA5_DR  
PMA6_DR  
PMA7_DR  
USB_SOF0  
USB_SOF1  
USB_CR0  
USBI/O_CR0  
USBI/O_CR1  
ASC10CR1  
ASC10CR2  
ASC10CR3  
ASD11CR0  
ASD11CR1  
ASD11CR2  
ASD11CR3  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
PRT0GS  
PRT0DM2  
PRT1DR  
PRT1IE  
PRT1GS  
PRT1DM2  
PRT2DR  
PRT2IE  
R
PRT2GS  
PRT2DM2  
PRT3DR  
PRT3IE  
RW  
#
RW  
PRT3GS  
PRT3DM2  
PRT4DR  
PRT4IE  
EP1_CNT1  
EP1_CNT  
EP2_CNT1  
EP2_CNT  
EP3_CNT1  
EP3_CNT  
EP4_CNT1  
EP4_CNT  
EP0_CR  
#
RW  
#
ASD20CR0  
ASD20CR1  
ASD20CR2  
ASD20CR3  
ASC21CR0  
ASC21CR1  
ASC21CR2  
ASC21CR3  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
CUR_PP  
RW  
RW  
#
STK_PP  
RW  
PRT4GS  
PRT4DM2  
PRT5DR  
PRT5IE  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
RW  
#
IDX_PP  
RW  
RW  
RW  
RW  
#
MVR_PP  
RW  
#
MVW_PP  
I2C_CFG  
I2C_SCR  
I2C_DR  
PRT5GS  
PRT5DM2  
EP0_CNT  
EP0_DR0  
EP0_DR1  
EP0_DR2  
EP0_DR3  
EP0_DR4  
EP0_DR5  
EP0_DR6  
EP0_DR7  
AMX_IN  
#
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
#
I2C_MSCR  
INT_CLR0  
INT_CLR1  
INT_CLR2  
INT_CLR3  
INT_MSK3  
INT_MSK2  
INT_MSK0  
INT_MSK1  
INT_VC  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RC  
W
PRT7DR  
RW  
RW  
RW  
RW  
#
PRT7IE  
PRT7GS  
PRT7DM2  
DBB00DR0  
DBB00DR1  
DBB00DR2  
DBB00CR0  
DBB01DR0  
DBB01DR1  
DBB01DR2  
DBB01CR0  
DCB02DR0  
DCB02DR1  
DCB02DR2  
DCB02CR0  
DCB03DR0  
DCB03DR1  
DCB03DR2  
DCB03CR0  
W
AMUXCFG  
RW  
#
ARF_CR  
CMP_CR0  
ASY_CR  
CMP_CR1  
RW  
#
RES_WDT  
DEC_DH  
#
RC  
RC  
RW  
RW  
W
W
#
DEC_DL  
RW  
#
RW  
DEC_CR0  
DEC_CR1  
MUL0_X  
#
MUL1_X  
W
W
MUL1_Y  
W
MUL0_Y  
W
RW  
#
MUL1_DH  
MUL1_DL  
ACC1_DR1  
ACC1_DR0  
ACC1_DR3  
ACC1_DR2  
RDI0RI  
R
MUL0_DH  
MUL0_DL  
ACC0_DR1  
ACC0_DR0  
ACC0_DR3  
ACC0_DR2  
R
R
R
#
TMP_DR0  
TMP_DR1  
TMP_DR2  
TMP_DR3  
ACB00CR3  
ACB00CR0  
ACB00CR1  
ACB00CR2  
ACB01CR3  
ACB01CR0  
ACB01CR1  
ACB01CR2  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
W
RW  
#
RDI0SYN  
RDI0IS  
RDI0LT0  
RDI0LT1  
RDI0RO0  
RDI0RO1  
CPU_F  
RL  
DAC_D  
RW  
#
CPU_SCR1  
CPU_SCR0  
#
Blank fields are Reserved and should not be accessed.  
# Access is bit specific.  
Document Number: 38-12018 Rev. *O  
Page 18 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
8.4 Register Map Bank 1 Table: Configuration Space  
Name  
PRT0DM0  
PRT0DM1  
PRT0IC0  
PRT0IC1  
PRT1DM0  
PRT1DM1  
PRT1IC0  
PRT1IC1  
PRT2DM0  
PRT2DM1  
PRT2IC0  
PRT2IC1  
PRT3DM0  
PRT3DM1  
PRT3IC0  
PRT3IC1  
PRT4DM0  
PRT4DM1  
PRT4IC0  
PRT4IC1  
PRT5DM0  
PRT5DM1  
PRT5IC0  
PRT5IC1  
Addr (1,Hex) Access  
Name  
Addr (1,Hex) Access  
Name  
ASC10CR0  
ASC10CR1  
ASC10CR2  
ASC10CR3  
ASD11CR0  
ASD11CR1  
ASD11CR2  
ASD11CR3  
Addr (1,Hex) Access  
Name  
USBI/O_CR2  
USB_CR1  
Addr(1,Hex) Access  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
PMA0_WA  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
80  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
C0  
C1  
RW  
#
PMA1_WA  
PMA2_WA  
PMA3_WA  
PMA4_WA  
PMA5_WA  
PMA6_WA  
PMA7_WA  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
EP1_CR0  
EP2_CR0  
EP3_CR0  
EP4_CR0  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
#
#
#
#
PMA0_RA  
PMA1_RA  
PMA2_RA  
PMA3_RA  
PMA4_RA  
PMA5_RA  
PMA6_RA  
PMA7_RA  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
GDI_O_IN  
GDI_E_IN  
GDI_O_OU  
GDI_E_OU  
RW  
RW  
RW  
RW  
ASD20CR1  
ASD20CR2  
ASD20CR3  
ASC21CR0  
ASC21CR1  
ASC21CR2  
ASC21CR3  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
MUX_CR0  
MUX_CR1  
MUX_CR2  
MUX_CR3  
RW  
RW  
RW  
RW  
PRT7DM0  
PRT7DM1  
PRT7IC0  
PRT7IC1  
DBB00FN  
DBB00IN  
DBB00OU  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
OSC_GO_EN  
OSC_CR4  
OSC_CR3  
OSC_CR0  
OSC_CR1  
OSC_CR2  
VLT_CR  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
CLK_CR0  
CLK_CR1  
ABF_CR0  
AMD_CR0  
CMP_GO_EN  
RW  
RW  
RW  
RW  
RW  
DBB01FN  
DBB01IN  
DBB01OU  
RW  
RW  
RW  
VLT_CMP  
AMD_CR1  
ALT_CR0  
RW  
RW  
DCB02FN  
DCB02IN  
DCB02OU  
RW  
RW  
RW  
IMO_TR  
W
ILO_TR  
W
BDG_TR  
ECO_TR  
MUX_CR4  
MUX_CR5  
RW  
W
DCB03FN  
DCB03IN  
DCB03OU  
RW  
RW  
RW  
TMP_DR0  
TMP_DR1  
TMP_DR2  
TMP_DR3  
ACB00CR3  
ACB00CR0  
ACB00CR1  
ACB00CR2  
ACB01CR3  
ACB01CR0  
ACB01CR1  
ACB01CR2  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RDI0RI  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RDI0SYN  
RDI0IS  
RDI0LT0  
RDI0LT1  
RDI0RO0  
RDI0RO1  
CPU_F  
RL  
DAC_CR  
RW  
#
CPU_SCR1  
CPU_SCR0  
#
Blank fields are Reserved and should not be accessed.  
# Access is bit specific.  
Document Number: 38-12018 Rev. *O  
Page 19 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
9. Electrical Specifications  
This section presents the DC and AC electrical specifications of the CY8C24x94 PSoC device family. For the most up to date electrical  
specifications, confirm that you have the most recent data sheet by going to the web at http://www.cypress.com/psoc.  
Specifications are valid for -40oC T 85oC and T 100oC, except where noted. Specifications for devices running at greater than  
A
J
12 MHz are valid for -40oC T 70oC and T 82oC.  
A
J
Figure 9-1. Voltage versus CPU Frequency  
5.25  
4.75  
3.00  
93 kHz  
12 MHz  
24 MHz  
CPU Frequency  
The following table lists the units of measure that are used in this chapter.  
Table 9-1. Units of Measure  
Symbol  
oC  
Unit of Measure  
degree Celsius  
Symbol  
μW  
mA  
ms  
mV  
nA  
Unit of Measure  
microwatts  
dB  
decibels  
milli-ampere  
milli-second  
milli-volts  
fF  
femto farad  
hertz  
Hz  
KB  
1024 bytes  
1024 bits  
nanoampere  
nanosecond  
nanovolts  
Kbit  
kHz  
kΩ  
ns  
kilohertz  
nV  
kilohm  
W
ohm  
MHz  
MΩ  
μA  
μF  
μH  
μs  
μV  
μVrms  
megahertz  
megaohm  
pA  
picoampere  
picofarad  
pF  
microampere  
microfarad  
microhenry  
microsecond  
microvolts  
pp  
peak-to-peak  
parts per million  
picosecond  
ppm  
ps  
sps  
s
samples per second  
sigma: one standard deviation  
volts  
microvolts root-mean-square  
V
Document Number: 38-12018 Rev. *O  
Page 20 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
9.1 Absolute Maximum Ratings  
Table 9-2. Absolute Maximum Ratings  
Symbol  
Description  
Storage Temperature  
Min  
Typ  
Max  
Units  
oC  
Notes  
TSTG  
-55  
25  
+100  
Higher storage temperatures  
reduces data retention time. Recom-  
mended storage temperature is  
+25oC ± 25oC. Extended duration  
storage temperatures above 65oC  
degrades reliability.  
TA  
Ambient Temperature with Power Applied  
Supply Voltage on Vdd Relative to Vss  
DC Input Voltage  
-40  
+85  
oC  
V
Vdd  
VI/O  
-0.5  
+6.0  
Vss -  
0.5  
Vdd +  
0.5  
V
VI/O2  
DC Voltage Applied to Tri-state  
Vss -  
0.5  
Vdd +  
0.5  
V
IMI/O  
Maximum Current into any Port Pin  
-25  
-50  
+50  
+50  
mA  
mA  
IMAI/O  
Maximum Current into any Port Pin  
Configured as Analog Driver  
ESD  
LU  
Electro Static Discharge Voltage  
Latch-up Current  
2000  
V
Human Body Model ESD.  
200  
mA  
9.2 Operating Temperature  
Table 9-3. Operating Temperature  
Symbol  
TA  
Description  
Min  
-40  
-10  
-40  
Typ  
Max  
+85  
Units  
oC  
oC  
oC  
Notes  
Ambient Temperature  
TAUSB  
TJ  
Ambient Temperature using USB  
Junction Temperature  
+85  
+100  
Thetemperaturerisefromambientto  
junction is package specific. See  
Thermal Impedance on page 41. The  
user must limit the power  
consumption to comply with this  
requirement.  
Document Number: 38-12018 Rev. *O  
Page 21 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
9.3 DC Electrical Characteristics  
9.3.1 DC Chip Level Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only.  
Table 9-4. DC Chip-Level Specifications  
Symbol  
Vdd  
Description  
Supply Voltage  
Min  
3.0  
Typ  
Max  
5.25  
Units  
V
Notes  
See DC POR and LVD specifications,  
Table 9-14 on page 28.  
IDD5  
Supply Current, IMO = 24 MHz (5V)  
Supply Current, IMO = 24 MHz (3.3V)  
14  
27  
mA  
Conditions are Vdd = 5.0V, TA = 25 oC,  
CPU = 3 MHz, SYSCLK doubler  
disabled, VC1 = 1.5 MHz, VC2 =93.75  
kHz, VC3 = 93.75 kHz, analog power  
= off.  
Conditions are Vdd = 3.3V, TA = 25 oC,  
CPU = 3 MHz, SYSCLK doubler  
disabled, VC1 = 1.5 MHz, VC2 =93.75  
kHz, VC3 = 0.367 kHz, analog power  
= off.  
IDD3  
8
14  
mA  
ISB  
Sleep (Mode) Current with POR, LVD,  
Sleep Timer, and WDT.[3]  
3
4
6.5  
25  
μA  
μA  
Conditions are with internal slow  
speed oscillator, Vdd = 3.3V, -40 oC ≤  
TA 55 oC, analog power = off.  
Conditions are with internal slow  
speed oscillator, Vdd = 3.3V, 55 oC <  
TA 85 oC, analog power = off.  
ISBH  
Sleep (Mode) Current with POR, LVD,  
Sleep Timer, and WDT at high temper-  
ature.[3]  
9.3.2 DC General Purpose I/O Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only.  
Table 9-5. DC GPI/O Specifications  
Symbol  
RPU  
RPD  
Description  
Pull Up Resistor  
Pull Down Resistor  
High Output Level  
Min  
4
4
Typ  
5.6  
5.6  
Max  
Units  
kΩ  
kΩ  
Notes  
8
8
VOH  
Vdd - 1.0  
V
I/OH = 10 mA, Vdd = 4.75 to 5.25V (8  
total loads, 4 on even port pins (for  
example, P0[2], P1[4]), 4 on odd port  
pins (for example, P0[3], P1[5])). 80  
mA maximum combined I/OH budget.  
VOL  
Low Output Level  
0.75  
0.8  
V
I/OL = 25 mA, Vdd = 4.75 to 5.25V (8  
total loads, 4 on even port pins (for  
example, P0[2], P1[4]), 4 on odd port  
pins (for example, P0[3], P1[5])). 200  
mA maximum combined I/OL budget.  
Vdd = 3.0 to 5.25.  
Vdd = 3.0 to 5.25.  
VIL  
VIH  
VH  
IIL  
Input Low Level  
Input High Level  
Input Hysterisis  
Input Leakage (Absolute Value)  
Capacitive Load on Pins as Input  
2.1  
60  
1
V
V
mV  
nA  
pF  
10  
Gross tested to 1 μA.  
CIN  
3.5  
Package and pin dependent.  
Temp = 25oC.  
COUT  
Capacitive Load on Pins as Output  
3.5  
10  
pF  
Package and pin dependent.  
Temp = 25oC.  
Note  
3. Standby current includes all functions (POR, LVD, WDT, Sleep Time) needed for reliable system operation. This should be compared with devices that have similar  
functions enabled.  
Document Number: 38-12018 Rev. *O  
Page 22 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
9.3.3 DC Full Speed USB Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -10°C TA 85°C, or 3.0V to 3.6V and -10°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only.  
Table 9-6. DC Full Speed (12 Mbps) USB Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
| (D+) - (D-) |  
USB Interface  
VDI  
Differential Input Sensitivity  
0.2  
0.8  
0.8  
V
V
VCM  
VSE  
CIN  
Differential Input Common Mode Range  
Single Ended Receiver Threshold  
Transceiver Capacitance  
2.5  
2.0  
20  
10  
25  
3.6  
V
pF  
μA  
W
V
II/O  
High-Z State Data Line Leakage  
External USB Series Resistor  
Static Output High, Driven  
-10  
23  
0V < VIN < 3.3V.  
REXT  
VUOH  
In series with each USB pin.  
2.8  
15 kΩ ± 5% to Ground. Internal  
pull up enabled.  
VUOHI  
VUOL  
Static Output High, Idle  
Static Output Low  
2.7  
3.6  
0.3  
V
V
15 kΩ ± 5% to Ground. Internal  
pull up enabled.  
15 kΩ ± 5% to Ground. Internal  
pull up enabled.  
ZO  
USB Driver Output Impedance  
D+/D- Crossover Voltage  
28  
44  
W
V
Including REXT Resistor.  
VCRS  
1.3  
2.0  
9.3.4 DC Operational Amplifier Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only.  
The Operational Amplifier is a component of both the Analog Continuous Time PSoC blocks and the Analog Switched Capacitor PSoC  
blocks. The guaranteed specifications are measured in the Analog Continuous Time PSoC block.  
Table 9-7. 5V DC Operational Amplifier Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
VOSOA  
Input Offset Voltage (absolute value)  
Power = Low, Opamp Bias = High  
Power = Medium, Opamp Bias = High  
Power = High, Opamp Bias = High  
1.6  
1.3  
1.2  
10  
8
7.5  
mV  
mV  
mV  
TCVOSOA Average Input Offset Voltage Drift  
7.0  
20  
35.0  
μV/oC  
pA  
IEBOA  
CINOA  
Input Leakage Current (Port 0 Analog Pins)  
Input Capacitance (Port 0 Analog Pins)  
Gross tested to 1 μA.  
Package and pin dependent.  
Temp = 25oC.  
4.5  
9.5  
pF  
VCMOA  
Common Mode Voltage Range  
Common Mode Voltage Range (high power  
or high opamp bias)  
0.0  
0.5  
Vdd  
Vdd - 0.5  
V
The common-mode input  
voltage range is measured  
through an analog output  
buffer. The specification  
includes the limitations  
imposed by the characteristics  
of the analog output buffer.  
GOLOA  
Open Loop Gain  
dB  
Power = Low, Opamp Bias = High  
Power = Medium, Opamp Bias = High  
Power = High, Opamp Bias = High  
60  
60  
80  
Document Number: 38-12018 Rev. *O  
Page 23 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
Table 9-7. 5V DC Operational Amplifier Specifications (continued)  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
VOHIGHO High Output Voltage Swing (internal signals)  
Power = Low, Opamp Bias = High  
Power = Medium, Opamp Bias = High  
Power = High, Opamp Bias = High  
Vdd - 0.2  
Vdd - 0.2  
Vdd - 0.5  
V
V
V
A
VOLOWOA Low Output Voltage Swing (internal signals)  
Power = Low, Opamp Bias = High  
0.2  
0.2  
0.5  
V
V
V
Power = Medium, Opamp Bias = High  
Power = High, Opamp Bias = High  
ISOA  
Supply Current (including associated AGND  
buffer)  
400  
500  
800  
1200  
2400  
4600  
800  
900  
1000  
1600  
3200  
6400  
μA  
μA  
μA  
μA  
μA  
μA  
Power = Low, Opamp Bias = Low  
Power = Low, Opamp Bias = High  
Power = Medium, Opamp Bias = Low  
Power = Medium, Opamp Bias = High  
Power = High, Opamp Bias = Low  
Power = High, Opamp Bias = High  
PSRROA Supply Voltage Rejection Ratio  
65  
80  
dB  
Vss VIN (Vdd - 2.25) or (Vdd  
- 1.25V) VIN Vdd.  
9.3.5 DC Low Power Comparator Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V at 25°C and are for design guidance only.  
Table 9-8. DC Low Power Comparator Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
VREFLPC Low power comparator (LPC) reference  
voltage range  
0.2  
Vdd - 1  
V
ISLPC  
LPC supply current  
LPC voltage offset  
10  
40  
30  
μA  
mV  
VOSLPC  
2.5  
Document Number: 38-12018 Rev. *O  
Page 24 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
9.3.6 DC Analog Output Buffer Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only.  
Table 9-9. 5V DC Analog Output Buffer Specifications  
Symbol  
Description  
Min  
Typ  
3
Max  
12  
Units  
mV  
Notes  
VOSOB  
Input Offset Voltage (Absolute Value)  
TCVOSO Average Input Offset Voltage Drift  
+6  
μV/°C  
B
VCMOB  
Common-Mode Input Voltage Range  
0.5  
Vdd - 1.0  
V
ROUTOB Output Resistance  
Power = Low  
0.6  
0.6  
W
W
Power = High  
VOHIGHO High Output Voltage Swing (Load = 32 ohms  
to Vdd/2)  
0.5 x Vdd +  
1.1  
0.5 x Vdd +  
1.1  
V
V
B
Power = Low  
Power = High  
VOLOWOB Low Output Voltage Swing (Load = 32 ohms  
to Vdd/2)  
Power = Low  
0.5 x Vdd -  
1.3  
V
V
Power = High  
0.5 x Vdd -  
1.3  
ISOB  
Supply Current Including Bias Cell (No Load)  
Power = Low  
Power = High  
1.1  
2.6  
5.1  
8.8  
mA  
mA  
PSRROB Supply Voltage Rejection Ratio  
53  
64  
dB  
(0.5 x Vdd - 1.3) VOUT ≤  
(Vdd - 2.3).  
Table 9-10. 3.3V DC Analog Output Buffer Specifications  
Symbol  
Description  
Min  
Typ  
3
Max  
12  
Units  
mV  
Notes  
VOSOB  
Input Offset Voltage (Absolute Value)  
TCVOSOB Average Input Offset Voltage Drift  
VCMOB Common-Mode Input Voltage Range  
+6  
-
μV/°C  
V
0.5  
Vdd - 1.0  
ROUTOB Output Resistance  
Power = Low  
1
1
W
W
Power = High  
VOHIGHO High Output Voltage Swing (Load = 1K ohms  
to Vdd/2)  
0.5 x Vdd +  
1.0  
V
V
B
Power = Low  
Power = High  
0.5 x Vdd +  
1.0  
VOLOWOB Low Output Voltage Swing (Load = 1K ohms  
to Vdd/2)  
Power = Low  
Power = High  
0.5 x Vdd -  
1.0  
0.5 x Vdd -  
1.0  
V
V
ISOB  
Supply Current Including Bias Cell (No Load)  
Power = Low  
Power = High  
0.8  
2.0  
2.0  
4.3  
mA  
mA  
PSRROB Supply Voltage Rejection Ratio  
34  
64  
dB  
(0.5 xVdd -1.0)VOUT (0.5  
x Vdd + 0.9).  
Document Number: 38-12018 Rev. *O  
Page 25 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
9.3.7 DC Analog Reference Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only.  
The guaranteed specifications are measured through the Analog Continuous Time PSoC blocks. The power levels for AGND refer to  
the power of the Analog Continuous Time PSoC block. The power levels for RefHi and RefLo refer to the Analog Reference Control  
register. The limits stated for AGND include the offset error of the AGND buffer local to the Analog Continuous Time PSoC block.  
Reference control power is high.  
Table 9-11. 5V DC Analog Reference Specifications  
Symbol  
Description  
Bandgap Voltage Reference  
AGND = Vdd/2[4, 5]  
AGND = 2 x BandGap[4, 5]  
AGND = P2[4] (P2[4] = Vdd/2)[4, 5]  
AGND = BandGap[4, 5]  
AGND = 1.6 x BandGap[4, 5]  
AGND Block to Block Variation (AGND = Vdd/2)[4, 5]  
RefHi = Vdd/2 + BandGap  
Min  
Typ  
1.30  
Max  
Units  
V
BG  
1.28  
1.32  
Vdd/2 - 0.04  
2 x BG - 0.048  
P2[4] - 0.011  
BG - 0.009  
1.6 x BG - 0.022  
-0.034  
Vdd/2 - 0.01  
2 x BG - 0.030  
P2[4]  
Vdd/2 + 0.007  
2 x BG + 0.024  
P2[4] + 0.011  
BG + 0.016  
1.6 x BG + 0.018  
0.034  
V
V
V
BG + 0.008  
1.6 x BG - 0.010  
0.000  
V
V
V
Vdd/2 + BG - 0.10  
3 x BG - 0.06  
Vdd/2 + BG  
3 x BG  
Vdd/2 + BG + 0.10  
3 x BG + 0.06  
V
RefHi = 3 x BandGap  
V
RefHi = 2 x BandGap + P2[6] (P2[6] = 1.3V)  
2 x BG + P2[6] -  
0.113  
2 x BG + P2[6] -  
0.018  
2 x BG + P2[6] +  
0.077  
V
RefHi = P2[4] + BandGap (P2[4] = Vdd/2)  
P2[4] + BG - 0.130 P2[4] + BG - 0.016 P2[4] + BG + 0.098  
V
V
RefHi = P2[4] + P2[6] (P2[4] = Vdd/2, P2[6] = 1.3V)  
P2[4] + P2[6] -  
0.133  
P2[4] + P2[6] -  
0.016  
P2[4] + P2[6]+  
0.100  
RefHi = 3.2 x BandGap  
3.2 x BG - 0.112  
3.2 x BG  
3.2 x BG + 0.076  
V
V
V
V
RefLo = Vdd/2 – BandGap  
RefLo = BandGap  
Vdd/2 - BG - 0.04 Vdd/2 - BG + 0.024 Vdd/2 - BG + 0.04  
BG - 0.06  
BG  
BG + 0.06  
RefLo = 2 x BandGap - P2[6] (P2[6] = 1.3V)  
2 x BG - P2[6] -  
0.084  
2 x BG - P2[6] +  
0.025  
2 x BG - P2[6] +  
0.134  
RefLo = P2[4] – BandGap (P2[4] = Vdd/2)  
P2[4] - BG - 0.056 P2[4] - BG + 0.026 P2[4] - BG + 0.107  
V
V
RefLo = P2[4]-P2[6] (P2[4] = Vdd/2, P2[6] = 1.3V)  
P2[4] - P2[6] -  
0.057  
P2[4] - P2[6] +  
0.026  
P2[4] - P2[6] +  
0.110  
Table 9-12. 3.3V DC Analog Reference Specifications  
Symbol  
Description  
Min  
1.28  
Typ  
1.30  
Max  
1.32  
Units  
BG  
Bandgap Voltage Reference  
AGND = Vdd/2[4, 5]  
AGND = 2 x BandGap[4, 5]  
AGND = P2[4] (P2[4] = Vdd/2)  
AGND = BandGap[4, 5]  
V
V
Vdd/2 - 0.03  
Vdd/2 - 0.01  
Not Allowed  
P2[4] + 0.001  
BG + 0.005  
1.6 x BG - 0.010  
0.000  
Vdd/2 + 0.005  
P2[4] - 0.008  
BG - 0.009  
P2[4] + 0.009  
BG + 0.015  
1.6 x BG + 0.018  
0.034  
V
V
V
V
AGND = 1.6 x BandGap[4, 5]  
1.6 x BG - 0.027  
-0.034  
AGND Column to Column Variation (AGND =  
Vdd/2)[4, 5]  
RefHi = Vdd/2 + BandGap  
Not Allowed  
Not Allowed  
Not Allowed  
Not Allowed  
RefHi = 3 x BandGap  
RefHi = 2 x BandGap + P2[6] (P2[6] = 0.5V)  
RefHi = P2[4] + BandGap (P2[4] = Vdd/2)  
RefHi = P2[4] + P2[6] (P2[4] = Vdd/2, P2[6] = 0.5V)  
P2[4] + P2[6] -  
0.075  
P2[4] + P2[6] -  
0.009  
P2[4] + P2[6] +  
0.057  
V
Document Number: 38-12018 Rev. *O  
Page 26 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
Table 9-12. 3.3V DC Analog Reference Specifications (continued)  
Symbol  
Description  
RefHi = 3.2 x BandGap  
Min  
Typ  
Max  
Units  
Not Allowed  
Not Allowed  
Not Allowed  
Not Allowed  
Not Allowed  
RefLo = Vdd/2 - BandGap  
RefLo = BandGap  
RefLo = 2 x BandGap - P2[6] (P2[6] = 0.5V)  
RefLo = P2[4] – BandGap (P2[4] = Vdd/2)  
RefLo = P2[4]-P2[6] (P2[4] = Vdd/2, P2[6] = 0.5V) P2[4] - P2[6] - 0.048  
P2[4]- P2[6] +  
0.022  
P2[4] - P2[6] +  
0.092  
V
9.3.8 DC Analog PSoC Block Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only.  
Table 9-13. DC Analog PSoC Block Specifications  
Symbol  
RCT  
Description  
Min  
Typ  
12.2  
80  
Max  
Units  
kΩ  
fF  
Notes  
Resistor Unit Value (Continuous Time)  
Capacitor Unit Value (Switched Capacitor)  
CSC  
Note  
4. AGND tolerance includes the offsets of the local buffer in the PSoC block. Bandgap voltage is 1.3V ± 0.02V.  
5. Avoid using P2[4] for digital signaling when using an analog resource that depends on the Analog Reference. Some coupling of the digital signal may appear on the  
AGND.  
Document Number: 38-12018 Rev. *O  
Page 27 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
9.3.9 DC POR and LVD Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V or 3.3V at 25°C and are  
for design guidance only.  
Note The bits PORLEV and VM in the following table refer to bits in the VLT_CR register. See the PSoC Programmable  
System-on-Chip Technical Reference Manual for more information on the VLT_CR register.  
Table 9-14. DC POR and LVD Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
Vdd Value for PPOR Trip (positive ramp)  
VPPOR0R PORLEV[1:0] = 00b  
VPPOR1R PORLEV[1:0] = 01b  
VPPOR2R PORLEV[1:0] = 10b  
2.91  
4.39  
4.55  
V
V
V
Vdd Value for PPOR Trip (negative ramp)  
PORLEV[1:0] = 00b  
PORLEV[1:0] = 01b  
PORLEV[1:0] = 10b  
VPPOR0  
VPPOR1  
VPPOR2  
2.82  
4.39  
4.55  
V
V
V
PPOR Hysteresis  
PORLEV[1:0] = 00b  
PORLEV[1:0] = 01b  
PORLEV[1:0] = 10b  
VPH0  
VPH1  
VPH2  
92  
0
0
mV  
mV  
mV  
Vdd Value for LVD Trip  
VM[2:0] = 000b  
VM[2:0] = 001b  
VM[2:0] = 010b  
VM[2:0] = 011b  
VM[2:0] = 100b  
VM[2:0] = 101b  
VM[2:0] = 110b  
VM[2:0] = 111b  
VLVD0  
VLVD1  
VLVD2  
VLVD3  
VLVD4  
VLVD5  
VLVD6  
VLVD7  
2.86  
2.96  
3.07  
3.92  
4.39  
4.55  
4.63  
4.72  
2.92  
3.02  
3.13  
4.00  
4.48  
4.64  
4.73  
4.81  
2.98[6]  
3.08  
3.20  
V
V
V
V
V
V
V
V
V
4.08  
4.57  
4.74[7]  
4.82  
4.91  
Notes  
6. Always greater than 50 mV above PPOR (PORLEV = 00) for falling supply.  
7. Always greater than 50 mV above PPOR (PORLEV = 10) for falling supply.  
Document Number: 38-12018 Rev. *O  
Page 28 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
9.3.10 DC Programming Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only.  
Table 9-15. DC Programming Specifications  
Symbol  
IDDP  
Description  
Min  
Typ  
15  
Max  
30  
Units  
mA  
V
Notes  
Supply Current During Programming or Verify  
VILP  
Input Low Voltage During Programming or  
Verify  
0.8  
VIHP  
IILP  
Input High Voltage During Programming or  
Verify  
2.1  
V
mA  
mA  
V
Input Current when Applying Vilp to P1[0] or  
P1[1] During Programming or Verify  
0.2  
1.5  
Driving internal pull down  
resistor.  
IIHP  
Input Current when Applying Vihp to P1[0] or  
P1[1] During Programming or Verify  
Driving internal pull down  
resistor.  
VOLV  
VOHV  
Output Low Voltage During Programming or  
Verify  
Vss +  
0.75  
Output High Voltage During Programming or Vdd- 1.0  
Verify  
Vdd  
V
FlashENP Flash Endurance (per block)  
50,000  
Erase/write cycles per block.  
Erase/write cycles.  
B
FlashENT Flash Endurance (total)[8]  
1,800,0  
00  
FlashDR Flash Data Retention  
10  
Years  
Note  
8. A maximum of 36 x 50,000 block endurance cycles is allowed. This may be balanced between operations on 36x1 blocks of 50,000 maximum cycles each, 36x2 blocks  
of 25,000 maximum cycles each, or 36x4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36x50,000 and that no single block ever sees  
more than 50,000 cycles).  
For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing.  
Refer to the Flash APIs Application Note AN2015 at http://www.cypress.com under Application Notes for more information.  
Document Number: 38-12018 Rev. *O  
Page 29 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
9.4 AC Electrical Characteristics  
9.4.1 AC Chip-Level Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only.  
Table 9-16. AC Chip-Level Specifications  
Symbol  
Description  
Min  
Typ  
Max  
24.96[9,10]  
Units  
Notes  
FIMO245V Internal Main Oscillator Frequency for 24 MHz 23.04  
(5V)  
24  
MHz Trimmed for 5V operation  
using factory trim values.  
FIMO243V Internal Main Oscillator Frequency for 24 MHz 22.08  
(3.3V)  
24  
24  
25.92[10,11]  
24.06[10]  
MHz Trimmed for 3.3V operation  
using factory trim values.  
FIMOUSB5 Internal Main Oscillator Frequency with USB  
23.94  
MHz -10°C TA 85°C  
4.35 Vdd 5.15  
(5V)  
V
Frequency locking enabled and USB traffic  
present.  
FIMOUSB3 Internal Main Oscillator Frequency with USB  
23.94  
24  
24.06[10]  
MHz -0°C TA 70°C  
3.15 Vdd 3.45  
(3.3V)  
V
Frequency locking enabled and USB traffic  
present.  
FCPU1  
FCPU2  
FBLK5  
CPU Frequency (5V Nominal)  
0.93  
0.93  
0
24  
12  
48  
24.96[9,10]  
12.96[10,11]  
49.92[9,10,12]  
MHz  
MHz  
CPU Frequency (3.3V Nominal)  
Digital PSoC Block Frequency (5V Nominal)  
MHz Refer to the AC Digital Block  
Specifications.  
FBLK3  
F32K1  
Digital PSoC Block Frequency (3.3V Nominal)  
Internal Low Speed Oscillator Frequency  
0
15  
24  
32  
25.92[10,12]  
64  
MHz  
kHz  
ns  
Jitter32k 32 kHz Period Jitter  
100  
50  
Step24M 24 MHz Trim Step Size  
Fout48M 48 MHz Output Frequency  
kHz  
46.08  
48.0  
49.92[9,11]  
MHz Trimmed. Utilizing factory  
trim values.  
Jitter24M 24 MHz Period Jitter (IMO) Peak-to-Peak  
1
0
300  
ps  
MHz  
μs  
FMAX  
Maximum frequency of signal on row input or  
row output.  
12.96  
TRAMP  
Supply Ramp Time  
Figure 9-2. 24 MHz Period Jitter (IMO) Timing Diagram  
Jitter24M1  
F24M  
Notes  
9. 4.75V < Vdd < 5.25V.  
10. Accuracy derived from Internal Main Oscillator with appropriate trim for Vdd range.  
11. 3.0V < Vdd < 3.6V. See Application Note AN2012 “Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation” for information on trimming for operation  
at 3.3V.  
12. See the individual user module data sheets for information on maximum frequencies for user modules  
Document Number: 38-12018 Rev. *O  
Page 30 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
9.4.2 AC General Purpose I/O Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only.  
Table 9-17. AC GPI/O Specifications  
Symbol  
FGPI/O  
Description  
Min  
0
Typ  
Max  
12  
18  
18  
Units  
Notes  
GPI/O Operating Frequency  
MHz Normal Strong Mode  
TRiseF  
TFallF  
Rise Time, Normal Strong Mode, Cload = 50 pF  
Fall Time, Normal Strong Mode, Cload = 50 pF  
Rise Time, Slow Strong Mode, Cload = 50 pF  
Fall Time, Slow Strong Mode, Cload = 50 pF  
3
ns  
ns  
ns  
ns  
Vdd = 4.5 to 5.25V, 10% - 90%  
2
Vdd = 4.5 to 5.25V, 10% - 90%  
Vdd = 3 to 5.25V, 10% - 90%  
Vdd = 3 to 5.25V, 10% - 90%  
TRiseS  
TFallS  
10  
10  
27  
22  
Figure 9-3. GPI/O Timing Diagram  
90%  
GPIO  
Pin  
Output  
Voltage  
10%  
TRiseF  
TRiseS  
TFallF  
TFallS  
9.4.3 AC Full Speed USB Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -10°C TA 85°C, or 3.0V to 3.6V and -10°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only.  
Table 9-18. AC Full Speed (12 Mbps) USB Specifications  
Symbol  
TRFS  
Description  
Transition Rise Time  
Min  
4
Typ  
Max  
20  
Units  
ns  
Notes  
For 50 pF load.  
TFSS  
Transition Fall Time  
4
20  
ns  
For 50 pF load.  
For 50 pF load.  
TRFMFS  
Rise/Fall Time Matching: (TR/TF)  
90  
111  
%
TDRATEFS Full Speed Data Rate  
12 -  
0.25%  
12  
12 +  
0.25%  
Mbps  
Document Number: 38-12018 Rev. *O  
Page 31 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
9.4.4 AC Operational Amplifier Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only.  
Settling times, slew rates, and gain bandwidth are based on the Analog Continuous Time PSoC block.  
Power = High and Opamp Bias = High is not supported at 3.3V.  
Table 9-19. 5V AC Operational Amplifier Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
TROA  
Rising Settling Time from 80% of ΔV to 0.1% of ΔV (10  
pF load, Unity Gain)  
Power = Low, Opamp Bias = Low  
Power = Medium, Opamp Bias = High  
Power = High, Opamp Bias = High  
3.9  
0.72  
0.62  
μs  
μs  
μs  
TSOA  
Falling Settling Time from 20% of ΔV to 0.1% of ΔV (10  
pF load, Unity Gain)  
Power = Low, Opamp Bias = Low  
Power = Medium, Opamp Bias = High  
Power = High, Opamp Bias = High  
5.9  
0.92  
0.72  
μs  
μs  
μs  
SRROA  
Rising Slew Rate (20% to 80%)(10 pF load, Unity  
Gain)  
Power = Low, Opamp Bias = Low  
Power = Medium, Opamp Bias = High  
Power = High, Opamp Bias = High  
0.15  
1.7  
6.5  
V/μs  
V/μs  
V/μs  
SRFOA  
Falling Slew Rate (20% to 80%)(10 pF load, Unity  
Gain)  
Power = Low, Opamp Bias = Low  
Power = Medium, Opamp Bias = High  
Power = High, Opamp Bias = High  
0.01  
0.5  
4.0  
V/μs  
V/μs  
V/μs  
BWOA  
Gain Bandwidth Product  
Power = Low, Opamp Bias = Low  
Power = Medium, Opamp Bias = High  
Power = High, Opamp Bias = High  
0.75  
3.1  
5.4  
MHz  
MHz  
MHz  
ENOA  
Noise at 1 kHz (Power = Medium, Opamp Bias = High)  
100  
nV/rt-Hz  
Table 9-20. 3.3V AC Operational Amplifier Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
TROA  
Rising Settling Time from 80% of ΔV to 0.1% of ΔV (10  
pF load, Unity Gain)  
Power = Low, Opamp Bias = Low  
Power = Medium, Opamp Bias = High  
3.92  
0.72  
μs  
μs  
TSOA  
Falling Settling Time from 20% of ΔV to 0.1% of ΔV  
(10 pF load, Unity Gain)  
Power = Low, Opamp Bias = Low  
Power = Medium, Opamp Bias = High  
5.41  
0.72  
μs  
μs  
SRROA  
Rising Slew Rate (20% to 80%)(10 pF load, Unity  
Gain)  
Power = Low, Opamp Bias = Low  
Power = Medium, Opamp Bias = High  
0.31  
2.7  
V/μs  
V/μs  
SRFOA  
Falling Slew Rate (20% to 80%)(10 pF load, Unity  
Gain)  
Power = Low, Opamp Bias = Low  
Power = Medium, Opamp Bias = High  
0.24  
1.8  
V/μs  
V/μs  
BWOA  
Gain Bandwidth Product  
Power = Low, Opamp Bias = Low  
Power = Medium, Opamp Bias = High  
0.67  
2.8  
MHz  
MHz  
ENOA  
Noise at 1 kHz (Power = Medium, Opamp Bias = High)  
100  
nV/rt-Hz  
Document Number: 38-12018 Rev. *O  
Page 32 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
When bypassed by a capacitor on P2[4], the noise of the analog ground signal distributed to each block is reduced by a factor of up  
to 5 (14 dB). This is at frequencies above the corner frequency defined by the on-chip 8.1k resistance and the external capacitor.  
Figure 9-4. Typical AGND Noise with P2[4] Bypass  
dBV/rtHz  
10000  
0
0.01  
0.1  
1.0  
10  
1000  
100  
0.001  
0.01  
0.1 Freq (kHz)  
1
10  
100  
At low frequencies, the opamp noise is proportional to 1/f, power independent, and determined by device geometry. At high  
frequencies, increased power level reduces the noise spectrum level.  
Figure 9-5. Typical Opamp Noise  
nV/rtHz  
10000  
PH_BH  
PH_BL  
PM_BL  
PL_BL  
1000  
100  
10  
0.001  
0.01  
0.1  
1
10  
100  
Freq (kHz)  
Document Number: 38-12018 Rev. *O  
Page 33 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
9.4.5 AC Low Power Comparator Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V at 25°C and are for design guidance only.  
Table 9-21. AC Low Power Comparator Specifications  
Symbol  
Description  
LPC response time  
Min  
Typ  
Max  
Units  
Notes  
TRLPC  
50  
μs  
50 mV overdrive comparator  
reference set within VREFLPC  
.
9.4.6 AC Digital Block Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only.  
Table 9-22. AC Digital Block Specifications  
Function  
Description  
Capture Pulse Width  
Min  
50[13]  
Typ  
Max  
Units  
Notes  
Timer  
ns  
Maximum Frequency, No Capture  
Maximum Frequency, With Capture  
49.92  
25.92  
MHz 4.75V < Vdd < 5.25V.  
50[13]  
MHz  
Counter Enable Pulse Width  
Maximum Frequency, No Enable Input  
ns  
49.92  
25.92  
MHz 4.75V < Vdd < 5.25V.  
MHz  
Maximum Frequency, Enable Input  
Kill Pulse Width:  
Dead  
Band  
Asynchronous Restart Mode  
Synchronous Restart Mode  
Disable Mode  
20  
50[13]  
50[13]  
ns  
ns  
ns  
Maximum Frequency  
49.92  
49.92  
MHz 4.75V < Vdd < 5.25V.  
MHz 4.75V < Vdd < 5.25V.  
CRCPRS Maximum Input Clock Frequency  
(PRS  
Mode)  
CRCPRS Maximum Input Clock Frequency  
(CRC  
Mode)  
24.6  
8.2  
MHz  
SPIM  
Maximum Input Clock Frequency  
Maximum Input Clock Frequency  
MHz Maximum data rate at 4.1 MHz due  
to 2 x over clocking.  
SPIS  
4.1  
MHz  
ns  
Width of SS_ Negated Between Transmissions 50[13]  
Trans-  
mitter  
Maximum Input Clock Frequency  
24.6  
MHz Maximum data rate at 3.08 MHz  
due to 8 x over clocking.  
Receiver Maximum Input Clock Frequency  
24.6  
MHz Maximum data rate at 3.08 MHz  
due to 8 x over clocking.  
Note  
13. 50 ns minimum input pulse width is based on the input synchronizers running at 24 MHz (42 ns nominal period).  
Document Number: 38-12018 Rev. *O  
Page 34 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
9.4.7 AC External Clock Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only.  
Table 9-23. AC External Clock Specifications  
Symbol  
Description  
Min  
23.94  
47  
Typ  
24  
50  
Max  
24.06  
53  
Units  
MHz  
%
Notes  
FOSCEXT Frequency for USB Applications  
Duty Cycle  
Power up to IMO Switch  
150  
μs  
9.4.8 AC Analog Output Buffer Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only.  
Table 9-24. 5V AC Analog Output Buffer Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
TROB  
Rising Settling Time to 0.1%, 1V Step, 100pF  
Load  
Power = Low  
Power = High  
2.5  
2.5  
μs  
μs  
TSOB  
Falling Settling Time to 0.1%, 1V Step, 100pF  
Load  
Power = Low  
Power = High  
2.2  
2.2  
μs  
μs  
SRROB  
Rising Slew Rate (20% to 80%), 1V Step, 100  
pF Load  
Power = Low  
Power = High  
0.65  
0.65  
V/μs  
V/μs  
SRFOB  
Falling Slew Rate (80% to 20%), 1V Step, 100  
pF Load  
Power = Low  
Power = High  
0.65  
0.65  
V/μs  
V/μs  
BWOBSS Small Signal Bandwidth, 20mVpp, 3dB BW,  
100 pF Load  
Power = Low  
Power = High  
0.8  
0.8  
MHz  
MHz  
BWOBLS Large Signal Bandwidth, 1Vpp, 3dB BW, 100  
pF Load  
Power = Low  
Power = High  
300  
300  
kHz  
kHz  
Document Number: 38-12018 Rev. *O  
Page 35 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
Table 9-25. 3.3V AC Analog Output Buffer Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
TROB  
Rising Settling Time to 0.1%, 1V Step, 100 pF  
Load  
Power = Low  
Power = High  
3.8  
3.8  
μs  
μs  
TSOB  
Falling Settling Time to 0.1%, 1V Step, 100 pF  
Load  
Power = Low  
Power = High  
2.6  
2.6  
μs  
μs  
SRROB  
Rising Slew Rate (20% to 80%), 1V Step, 100  
pF Load  
Power = Low  
Power = High  
0.5  
0.5  
V/μs  
V/μs  
SRFOB  
Falling Slew Rate (80% to 20%), 1V Step, 100  
pF Load  
Power = Low  
Power = High  
0.5  
0.5  
V/μs  
V/μs  
BWOBSS Small Signal Bandwidth, 20mVpp, 3dB BW,  
100 pF Load  
Power = Low  
Power = High  
0.7  
0.7  
MHz  
MHz  
BWOBLS Large Signal Bandwidth, 1Vpp, 3dB BW, 100  
pF Load  
Power = Low  
Power = High  
200  
200  
kHz  
kHz  
9.4.9 AC Programming Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only.  
Table 9-26. AC Programming Specifications  
Symbol  
TRSCLK  
TFSCLK  
TSSCLK  
THSCLK  
FSCLK  
Description  
Rise Time of SCLK  
Min  
1
Typ  
Max  
20  
20  
Units  
ns  
Notes  
Fall Time of SCLK  
1
ns  
Data Set up Time to Falling Edge of SCLK  
Data Hold Time from Falling Edge of SCLK  
Frequency of SCLK  
40  
40  
0
ns  
ns  
8
MHz  
ms  
ms  
ns  
TERASEB Flash Erase Time (Block)  
10  
30  
TWRITE  
TDSCLK  
Flash Block Write Time  
Data Out Delay from Falling Edge of SCLK  
45  
50  
Vdd > 3.6  
3.0 Vdd 3.6  
TDSCLK3 Data Out Delay from Falling Edge of SCLK  
ns  
Document Number: 38-12018 Rev. *O  
Page 36 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
9.4.10 AC I2C Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only.  
Table 9-27. AC Characteristics of the I2C SDA and SCL Pins for Vdd  
Standard Mode  
Fast Mode  
Symbol  
Description  
SCL Clock Frequency  
Units  
Notes  
Min  
0
Max  
100  
Min  
0
Max  
FSCLI2C  
400  
kHz  
THDSTAI2 Hold Time (repeated) START Condition. After  
this period, the first clock pulse is generated.  
4.0  
0.6  
μs  
C
TLOWI2C LOW Period of the SCL Clock  
4.7  
4.0  
4.7  
1.3  
0.6  
0.6  
μs  
μs  
μs  
THIGHI2C HIGH Period of the SCL Clock  
TSUSTAI2 Setup Time for a Repeated START Condition  
C
THDDATI2 Data Hold Time  
C
0
250  
4.0  
4.7  
0
100[14]  
0.6  
μs  
ns  
μs  
μs  
ns  
TSUDATI2 Data Setup Time  
C
TSUSTOI2 Setup Time for STOP Condition  
C
TBUFI2C  
Bus Free Time Between a STOP and START  
Condition  
1.3  
TSPI2C  
Pulse Width of spikes are suppressed by the  
input filter.  
0
50  
Figure 9-6. Definition for Timing for Fast/Standard Mode on the I2C Bus  
SDA  
SCL  
TSPI2C  
TLOWI2C  
TSUDATI2C  
THDSTAI2C  
TBUFI2C  
TSUSTOI2C  
TSUSTAI2C  
THDDATI2C  
THDSTAI2C  
THIGHI2C  
S
Sr  
P
S
Note  
14. A Fast-Mode I2C-bus device can be used in a Standard-Mode I2C-bus system, but the requirement t  
Š 250 ns must then be met. This automatically is the case  
SU;DAT  
if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the  
SDA line t + t = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.  
rmax  
SU;DAT  
Document Number: 38-12018 Rev. *O  
Page 37 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
10. Packaging Dimensions  
This section illustrates the package specification for the CY8C24x94 PSoC devices, along with the thermal impedance for the package  
and solder reflow peak temperatures.  
Important Note Emulation tools may require a larger area on the target PCB than the chip’s footprint. For a detailed description of  
the emulation tools’ dimensions, refer to the document titled PSoC Emulator Pod Dimensions at  
http://www.cypress.com/design/MR10161.  
Figure 10-1. 56-Pin (8x8 mm) QFN  
001-12921 **  
Document Number: 38-12018 Rev. *O  
Page 38 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
Figure 10-2. 56-Pin QFN (8 X 8 X 0.9 MM) - Sawn  
001-53450 **  
Figure 10-3. 68-Pin (8x8 mm x 0.89 mm) QFN  
51-85214 *C  
Document Number: 38-12018 Rev. *O  
Page 39 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
Important Note  
For information on the preferred dimensions for mounting QFN packages, see the following Application Note at  
http://www.amkor.com/products/notes_papers/MLFAppNote.pdf.  
Pinned vias for thermal conduction are not required for the low-power PSoC device.  
Figure 10-4. 68-Pin SAWN QFN (8X8 mm X 0.90 mm)  
001-09618 *A  
Figure 10-5. 100-Ball (6x6 mm) VFBGA  
51-85209 *B  
Document Number: 38-12018 Rev. *O  
Page 40 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
Figure 10-6. 100-Pin (14x14 x 1.4 mm) TQFP  
51-85048 *C  
10.1 Thermal Impedance  
Table 10-1. Thermal Impedance for the Package  
[15]  
Package  
Typical θJA  
12.93 oC/W  
56 QFN[16]  
68 QFN[16]  
13.05 oC/W  
65 oC/W  
100 VFBGA  
100 TQFP  
51 oC/W  
10.2 Solder Reflow Peak Temperature  
Following is the minimum solder reflow peak temperature to achieve good solderability.  
Table 10-2. Solder Reflow Peak Temperature  
Package  
Minimum Peak Temperature[17]  
240oC  
Maximum Peak Temperature  
56 QFN  
68 QFN  
260oC  
260oC  
260oC  
240oC  
240oC  
100 VFBGA  
Notes  
15. T = T + POWER x θ  
J
A
JA  
16. To achieve the thermal impedance specified for the QFN package, the center thermal pad should be soldered to the PCB ground plane.  
o
o
17. Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220 ± 5 C with Sn-Pb or 245 ± 5 C with Sn-Ag-Cu paste.  
Refer to the solder manufacturer specifications  
Document Number: 38-12018 Rev. *O  
Page 41 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
11. Development Tool Selection  
11.1 Software  
11.3 Evaluation Tools  
All evaluation tools can be purchased from the Cypress Online  
Store.  
11.1.1 PSoC Designer  
At the core of the PSoC development software suite is PSoC  
Designer, used to generate PSoC firmware applications. PSoC  
11.3.1 CY3210-MiniProg1  
Designer  
is  
available  
free  
of  
charge  
at  
The CY3210-MiniProg1 kit enables a user to program PSoC  
devices via the MiniProg1 programming unit. The MiniProg is a  
small, compact prototyping programmer that connects to the PC  
via a provided USB 2.0 cable. The kit includes:  
http://www.cypress.com/psocdesigner and includes a free C  
compiler.  
11.1.2 PSoC Programmer  
MiniProg Programming Unit  
Flexible enough to be used on the bench in development, yet  
suitable for factory programming, PSoC Programmer works  
either as a standalone programming application or it can operate  
directly from PSoC Designer. PSoC Programmer software is  
compatible with both PSoC ICE-Cube In-Circuit Emulator and  
PSoC MiniProg. PSoC programmer is available free of charge at  
http://www.cypress.com/psocprogrammer.  
MiniEval Socket Programming and Evaluation Board  
28-Pin CY8C29466-24PXI PDIP PSoC Device Sample  
28-Pin CY8C27443-24PXI PDIP PSoC Device Sample  
PSoC Designer Software CD  
Getting Started Guide  
11.2 Development Kits  
All development kits can be purchased from the Cypress Online  
Store.  
USB 2.0 Cable  
11.3.2 CY3210-PSoCEval1  
11.2.1 CY3215-DK Basic Development Kit  
The CY3210-PSoCEval1 kit features an evaluation board and  
the MiniProg1 programming unit. The evaluation board includes  
an LCD module, potentiometer, LEDs, and plenty of bread-  
boarding space to meet all of your evaluation needs. The kit  
includes:  
The CY3215-DK is for prototyping and development with PSoC  
Designer. This kit supports in-circuit emulation and the software  
interface enables users to run, halt, and single step the  
processor and view the content of specific memory locations.  
Advance emulation features also supported through PSoC  
Designer. The kit includes:  
Evaluation Board with LCD Module  
MiniProg Programming Unit  
PSoC Designer Software CD  
28-Pin CY8C29466-24PXI PDIP PSoC Device Sample (2)  
PSoC Designer Software CD  
Getting Started Guide  
ICE-Cube In-Circuit Emulator  
ICE Flex-Pod for CY8C29x66 Family  
Cat-5 Adapter  
USB 2.0 Cable  
Mini-Eval Programming Board  
110 ~ 240V Power Supply, Euro-Plug Adapter  
iMAGEcraft C Compiler (Registration Required)  
ISSP Cable  
11.3.3 CY3214-PSoCEvalUSB  
The CY3214-PSoCEvalUSB evaluation kit features a devel-  
opment board for the CY8C24794-24LFXI PSoC device. Special  
features of the board include both USB and capacitive sensing  
development and debugging support. This evaluation board also  
includes an LCD module, potentiometer, LEDs, an enunciator  
and plenty of bread boarding space to meet all of your evaluation  
needs. The kit includes:  
USB 2.0 Cable and Blue Cat-5 Cable  
2 CY8C29466-24PXI 28-PDIP Chip Samples  
PSoCEvalUSB Board  
LCD Module  
MIniProg Programming Unit  
Mini USB Cable  
PSoC Designer and Example Projects CD  
Getting Started Guide  
Wire Pack  
Document Number: 38-12018 Rev. *O  
Page 42 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
11.4 Device Programmers  
All device programmers can be purchased from the Cypress  
Online Store.  
11.4.2 CY3207ISSP In-System Serial Programmer (ISSP)  
The CY3207ISSP is a production programmer. It includes  
protection circuitry and an industrial case that is more robust than  
the MiniProg in a production-programming environment.  
11.4.1 CY3216 Modular Programmer  
The CY3216 Modular Programmer kit features a modular  
programmer and the MiniProg1 programming unit. The modular  
programmer includes three programming module cards and  
supports multiple Cypress products. The kit includes:  
Note: CY3207ISSP needs special software and is not  
compatible with PSoC Programmer. The kit includes:  
CY3207 Programmer Unit  
PSoC ISSP Software CD  
Modular Programmer Base  
3 Programming Module Cards  
MiniProg Programming Unit  
PSoC Designer Software CD  
Getting Started Guide  
110 ~ 240V Power Supply, Euro-Plug Adapter  
USB 2.0 Cable  
USB 2.0 Cable  
11.5 Accessories (Emulation and Programming)  
Table 11-1. Emulation and Programming Accessories  
Part #  
Pin Package  
56 QFN  
56 QFN  
Flex-Pod Kit[18]  
CY3250-24X94QFN  
CY3250-24X94QFN  
Foot Kit[19]  
CY3250-56QFN-FK  
CY3250-56QFN-FK  
Adapter[20]  
CY8C24794-24LFXI  
CY8C24894-24LFXI  
AS-56-28  
AS-28-28-02SS-6ENG-GANG  
11.5.1 3rd-Party Tools  
11.5.2 Build a PSoC Emulator into Your Board  
Several tools have been specially designed by the following  
3rd-party vendors to accompany PSoC devices during devel-  
opment and production. Specific details for each of these tools  
are found at http://www.cypress.com under Design Resources >  
Evaluation Boards.  
For details on how to emulate your circuit before going to volume  
production using an on-chip debug (OCD) non-production PSoC  
device, see Application Note “Debugging - Build a PSoC  
Emulator  
into  
Your  
Board  
-
AN2323”  
at  
http://www.cypress.com/an2323.  
Notes  
18. Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods.  
19. Foot kit includes surface mount feet that are soldered to the target PCB.  
20. Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters are found at  
http://www.emulation.com.  
Document Number: 38-12018 Rev. *O  
Page 43 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
12. Ordering Information  
Table 12-1. CY8C24x94 PSoC Device’s Key Features and Ordering Information  
56-Pin (8x8 mm) QFN (Sawn) CY8C24794-24LTXI  
16K 1K  
16K 1K  
-40°C to +85°C  
-40°C to +85°C  
4
4
6
6
50  
50  
48  
48  
2
2
No  
No  
56-Pin (8x8 mm) QFN (Sawn) CY8C24794-24LTXIT  
(Tape and Reel)  
56-Pin (8x8 mm) QFN  
56-Pin (8x8 mm) QFN  
56-Pin (8x8 mm) QFN  
CY8C24894-24LTXI  
CY8C24894-24LTXIT  
CY8C24794-24LFXI  
CY8C24794-24LFXIT  
16K 1K  
16K 1K  
16K 1K  
16K 1K  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
4
4
4
4
6
6
6
6
50  
50  
50  
50  
48  
48  
48  
48  
2
2
2
2
No  
No  
No  
No  
56-Pin (8x8 mm) QFN  
(Tape and Reel)  
56-Pin (8x8 mm) QFN  
CY8C24894-24LFXI  
CY8C24894-24LFXIT  
16K 1K  
16K 1K  
-40°C to +85°C  
-40°C to +85°C  
4
4
6
6
49  
49  
47  
47  
2
2
Yes  
Yes  
56-Pin (8x8 mm) QFN  
(Tape and Reel)  
68 Pin OCD (8x8 mm) QFN[21] CY8C24094-24LFXI  
16K 1K  
16K 1K  
16K 1K  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
4
4
4
6
6
6
56  
56  
56  
48  
48  
48  
2
2
2
Yes  
Yes  
Yes  
68 Pin (8x8 mm) QFN  
CY8C24994-24LFXI  
CY8C24994-24LFXIT  
68 Pin (8x8 mm) QFN  
(Tape and Reel)  
68-Pin QFN (Sawn)  
68-Pin QFN (Sawn)  
CY8C24994-24LTXI  
CY8C24994-24LTXIT  
CY8C24094-24BVXI  
16K 1K  
16K 1K  
16K 1K  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
4
4
4
6
6
6
56  
56  
56  
48  
48  
48  
2
2
2
Yes  
Yes  
Yes  
100-Ball OCD (6x6 mm)  
VFBGA[21]  
100-Ball (6x6 mm) VFBGA  
100 Pin OCD TQFP[21]  
68-Pin QFN (Sawn)  
CY8C24994-24BVXI  
CY8C24094-24AXI  
CY8C24094-24LTXI  
CY8C24094-24LTXIT  
16K 1K  
16K 1K  
16K 1K  
16K 1K  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
4
4
4
4
6
6
6
6
56  
56  
56  
56  
48  
48  
48  
48  
2
2
2
2
Yes  
Yes  
Yes  
Yes  
68-Pin QFN (Sawn)  
Note For Die sales information, contact a local Cypress sales office or Field Applications Engineer (FAE).  
Document Number: 38-12018 Rev. *O  
Page 44 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
12.1 Ordering Code Definitions  
CY 8 C 24 XXX-SP XX  
Package Type:  
Thermal Rating:  
C = Commercial  
I = Industrial  
PX = PDIP Pb-Free  
SX = SOIC Pb-Free  
PVX = SSOP Pb-Free  
LFX/LKX/LTX = QFN Pb-Free  
AX = TQFP Pb-Free  
E = Extended  
BVX = VFBGA Pb-Free  
Speed: 24 MHz  
Part Number  
Family Code  
Technology Code: C = CMOS  
Marketing Code: 8 = Cypress PSoC  
Company ID: CY = Cypress  
Note  
21. This part may be used for in-circuit debugging. It is NOT available for production.  
Document Number: 38-12018 Rev. *O  
Page 45 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
13. Document History Page  
Document Title: CY8C24094, CY8C24794, CY8C24894 and CY8C24994 PSoC® Programmable System-on-Chip™  
Document Number: 38-12018  
Submission  
Date  
Orig. of  
Change  
Rev. ECN No.  
Description of Change  
**  
133189 01.27.2004  
251672 See ECN  
NWJ  
New silicon and new document – Advance Data Sheet.  
*A  
SFV  
First Preliminary Data Sheet. Changed title to encompass only the CY8C24794  
because the CY8C24494 and CY8C24694 are not being offered by Cypress.  
*B  
*C  
289742 See ECN  
335236 See ECN  
HMT  
Add standard DS items from SFV memo. Add Analog Input Mux on pinouts. 2  
MACs. Change 512 bytes of SRAM to 1K. Add dimension key to package. Remove  
HAPI. Update diagrams, registers and specs.  
HMT  
Add CY logo. Update CY copyright. Update new CY.com URLs. Re-add ISSP  
programming pinout notation. Add Reflow Temp. table. Update features (MAC,  
Oscillator, and voltage range), registers (INT_CLR2/MSK2, second MAC), and  
specs. (Rext, IMO, analog output buffer...).  
*D  
344318 See ECN  
HMT  
Add new color and logo. Expand analog arch. diagram. Fix I/O #. Update Electrical  
Specifications.  
*E  
*F  
346774 See ECN  
349566 See ECN  
HMT  
HMT  
Add USB temperature specifications. Make data sheet Final.  
Remove USB logo. Add URL to preferred dimensions for mounting MLF  
packages.  
*G  
*H  
393164 See ECN  
469243 See ECN  
HMT  
HMT  
Add new device, CY8C24894 56-pin MLF with XRES pin. Add Fimousb3v char. to  
specs. Upgrade to CY Perform logo and update corporate address and copyright.  
Add ISSP note to pinout tables. Update typical and recommended Storage  
Temperature per industrial specs. Update Low Output Level maximum I/OL  
budget. Add FLS_PR1 to Register Map Bank 1 for users to specify which Flash  
bank should be used for SROM operations. Add two new devices for a 68-pin QFN  
and 100-ball VFBGA under RPNs: CY8C24094 and CY8C24994. Add two  
packages for 68-pin QFN. Add OCD non-production pinouts and package  
diagrams. Update CY branding and QFN convention. Add new Dev. Tool section.  
Update copyright and trademarks.  
*I  
561158  
See ECN  
HMT  
Add Low Power Comparator (LPC) AC/DC electrical spec. tables. Add  
CY8C20x34 to PSoC Device Characteristics table. Add detailed dimensions to  
56-pin QFN package diagram and update revision. Secure one package  
diagram/manufacturing per QFN. Update emulation pod/feet kit part numbers. Fix  
pinout type-o per TestTrack.  
*J  
728238 See ECN  
2552459 08/14/08  
HMT  
Add CapSense SNR requirement reference. Update figure standards. Update  
Technical Training paragraphs. Add QFN package clarifications and dimensions.  
Update ECN-ed Amkor dimensioned QFN package diagram revisions. Reword  
SNR reference. Add new 56-pin QFN spec.  
*K  
AZIE/PYRS  
Add footnote on AGND descriptions to avoid using P2[4] for digital signaling as it  
may add noise to AGND. Remove reference to CMP_GO_EN1 in Map Bank 1  
Table on Address 65; this register has no functionality on 24xxx. Add footnote on  
die sales. Add description 'Optional External Clock Input’ on P1[4] to match  
description of P1[4].  
*L  
2616550 12/05/08  
OGNE/PYRS Updated Programmable Pin Configuration detail.  
Changed title from PSoC® Mixed-Signal Array to PSoC® Programmable  
System-on-Chip™  
*M  
*N  
2657956 02/11/09  
DPT/PYRS  
BRW  
Added package diagram 001-09618 and updated Ordering Information table  
Added Note in the Pin Information section on page 8.  
2708135 05/18/2009  
Removed reference to Hi-Tech Lite Compiler in the section Development Tools  
Selection on page 42.  
*O  
2718162 06/11/2009  
DPT  
Added 56-Pin QFN (Sawn) package diagram and updated ordering information  
Document Number: 38-12018 Rev. *O  
Page 46 of 47  
[+] Feedback  
CY8C24094, CY8C24794  
CY8C24894, CY8C24994  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at cypress.com/sales.  
Products  
PSoC  
PSoC Solutions  
General  
psoc.cypress.com  
clocks.cypress.com  
wireless.cypress.com  
memory.cypress.com  
image.cypress.com  
psoc.cypress.com/solutions  
psoc.cypress.com/low-power  
psoc.cypress.com/precision-analog  
psoc.cypress.com/lcd-drive  
psoc.cypress.com/can  
Clocks & Buffers  
Wireless  
Low Power/Low Voltage  
Precision Analog  
LCD Drive  
Memories  
Image Sensors  
CAN 2.0b  
USB  
psoc.cypress.com/usb  
© Cypress Semiconductor Corporation, 2004-2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 38-12018 Rev. *O  
Revised June 11, 2009  
Page 47 of 47  
PSoC Designer™ and Programmable System-on-Chip™ are trademarks and PSoC® is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced  
herein are property of the respective corporations.  
[+] Feedback  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY