CY8C24X23 [CYPRESS]

PSoC⑩ Mixed-Signal Array; 的PSoC ™混合信号阵列
CY8C24X23
型号: CY8C24X23
厂家: CYPRESS    CYPRESS
描述:

PSoC⑩ Mixed-Signal Array
的PSoC ™混合信号阵列

文件: 总33页 (文件大小:326K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PSoC™ Mixed-Signal Array  
Final Data Sheet  
CY8C21123,  
CY8C21223, and CY8C21323  
Features  
Powerful Harvard Architecture Processor  
M8C Processor Speeds to 24 MHz  
Low Power at High Speed  
Flexible On-Chip Memory  
Precision, Programmable Clocking  
Internal ±2.5% 24/48 MHz Oscillator  
Internal Oscillator for Watchdog and Sleep  
4K Flash Program Storage 50,000 Erase/Write  
Cycles  
256 Bytes SRAM Data Storage  
In-System Serial Programming (ISSP)  
Partial Flash Updates  
2.4V to 5.25V Operating Voltage  
Programmable Pin Configurations  
25 mA Drive on All GPIO  
Operating Voltages Down to 1.0V Using  
On-Chip Switch Mode Pump (SMP)  
Industrial Temperature Range: -40°C to +85°C  
Flexible Protection Modes  
Pull Up, Pull Down, High Z, Strong, or Open  
Drain Drive Modes on All GPIO  
EEPROM Emulation in Flash  
Advanced Peripherals (PSoC Blocks)  
4 Analog Type “E” PSoC Blocks Provide:  
- 2 Comparators with DAC Refs  
Up to 8 Analog Inputs on GPIO  
Configurable Interrupt on All GPIO  
Complete Development Tools  
Free Development Software  
(PSoC™ Designer)  
Additional System Resources  
- Single or Dual 8-Bit 8:1 ADC  
Full-Featured, In-Circuit Emulator and  
I2C™ Master, Slave and Multi-Master to  
4 Digital PSoC Blocks Provide:  
- 8- to 32-Bit Timers, Counters, and PWMs  
- CRC and PRS Modules  
Programmer  
400 kHz  
Full Speed Emulation  
Watchdog and Sleep Timers  
Complex Breakpoint Structure  
128 Bytes Trace Memory  
- Full-Duplex UART, SPIMaster or Slave  
- Connectable to All GPIO Pins  
User-Configurable Low Voltage Detection  
Integrated Supervisory Circuit  
Complex Peripherals by Combining Blocks  
On-Chip Precision Voltage Reference  
PSoC™ Functional Overview  
Port 1 Port 0  
PSoC  
CORE  
The PSoC™ family consists of many Mixed-Signal Array with  
On-Chip Controller devices. These devices are designed to  
replace multiple traditional MCU-based system components  
with one, low cost single-chip programmable component. A  
PSoC device includes configurable blocks of analog and digital  
logic, as well as programmable interconnect. This architecture  
allows the user to create customized peripheral configurations,  
to match the requirements of each individual application. Addi-  
tionally, a fast CPU, Flash program memory, SRAM data mem-  
ory, and configurable IO are included in a range of convenient  
pinouts.  
SystemBus  
Global Digital Interconnect  
Global Analog Interconnect  
Flash  
CPUCore  
SROM  
SRAM  
Sleep and  
Watchdog  
Interrupt  
Controller  
(M8C)  
Clock Sources  
(Includes IMO and ILO)  
The PSoC architecture, as illustrated on the left, is comprised of  
four main areas: the Core, the System Resources, the Digital  
System, and the Analog System. Configurable global bus  
resources allow all the device resources to be combined into a  
complete custom system. Each PSoC device includes four digi-  
tal blocks. Depending on the PSoC package, up to two analog  
comparators and up to 16 general purpose IO (GPIO) are also  
included. The GPIO provide access to the global digital and  
analog interconnects.  
DIGITAL SYSTEM  
ANALOG SYSTEM  
Analog  
Ref.  
Digital  
PSoC Block  
Array  
Analog  
PSoC Block  
Array  
The PSoC Core  
The PSoC Core is a powerful engine that supports a rich  
instruction set. It encompasses SRAM for data storage, an  
interrupt controller, sleep and watchdog timers, and IMO (inter-  
nal main oscillator) and ILO (internal low speed oscillator). The  
Sw itch  
Mode  
Pump  
POR and LVD  
System Resets  
Internal  
Voltage  
Ref.  
Digital  
Clocks  
I2C  
SYSTEM RESOURCES  
February 25, 2005  
© Cypress Semiconductor Corp. 2004-2005 — Document No. 38-12022 Rev. *G  
1
CY8C21x23 Final Data Sheet  
PSoC™ Overview  
CPU core, called the M8C, is a powerful processor with speeds  
up to 24 MHz. The M8C is a four MIPS 8-bit Harvard architec-  
ture microprocessor.  
Port1  
Port0  
System Resources provide additional capability, such as digital  
clocks to increase the flexibility of the PSoC mixed-signal  
arrays, I2C functionality for implementing an I2C master, slave,  
MultiMaster, an internal voltage reference that provides an  
absolute value of 1.3V to a number of PSoC subsystems, a  
switch mode pump (SMP) that generates normal operating volt-  
ages off a single battery cell, and various system resets sup-  
ported by the M8C.  
To SystemBus  
DigitalClocks  
FromCore  
ToAnalog  
System  
DIGITAL SYSTEM  
DigitalPSoCBlockArray  
Row 0  
4
The Digital System is composed of an array of digital PSoC  
blocks, which can be configured into any number of digital  
peripherals. The digital blocks can be connected to the GPIO  
through a series of global busses that can route any signal to  
any pin. Freeing designs from the constraints of a fixed periph-  
eral controller.  
DBB00  
DBB01  
DCB02 DCB03  
4
8
8
8
8
The Analog System is composed of four analog PSoC blocks,  
supporting comparators and analog-to-digital conversion up to  
8 bits in precision.  
GlobalDigital  
Interconnect  
GIE[7:0]  
GIO[7:0]  
GOE[7:0]  
GOO[7:0]  
The Digital System  
Digital System Block Diagram  
The Digital System is composed of 4 digital PSoC blocks. Each  
block is an 8-bit resource that can be used alone or combined  
with other blocks to form 8, 16, 24, and 32-bit peripherals, which  
are called user module references. Digital peripheral configura-  
tions include those listed below.  
The Analog System  
The Analog System is composed of 4 configurable blocks to  
allow creation of complex analog signal flows. Analog peripher-  
als are very flexible and can be customized to support specific  
application requirements. Some of the more common PSoC  
analog functions (most available as user modules) are listed  
below.  
PWMs (8 to 32 bit)  
PWMs with Dead band (8 to 32 bit)  
Counters (8 to 32 bit)  
Timers (8 to 32 bit)  
Analog-to-digital converters (single or dual, with 8-bit resolu-  
tion)  
UART 8 bit with selectable parity (up to 4)  
SPI master and slave  
Pin-to-pin comparators (1)  
Single-ended comparators (up to 2) with absolute (1.3V) ref-  
I2C slave, master, multi-master (1 available as a System  
erence or 8-bit DAC reference  
Resource)  
1.3V reference (as a System Resource)  
Cyclical Redundancy Checker/Generator (8 to 32 bit)  
IrDA (up to 4)  
In most PSoC devices, analog blocks are provided in columns  
of three, which includes one CT (Continuous Time) and two SC  
(Switched Capacitor) blocks. The CY8C21x23 devices provide  
limited functionality Type “E” analog blocks. Each column con-  
tains one CT block and one SC block.  
Pseudo Random Sequence Generators (8 to 32 bit)  
The digital blocks can be connected to any GPIO through a  
series of global busses that can route any signal to any pin. The  
busses also allow for signal multiplexing and for performing  
logic operations. This configurability frees your designs from the  
constraints of a fixed peripheral controller.  
The number of blocks is on the device family which is detailed  
in the table titled “PSoC Device Characteristics” on page 3.  
Digital blocks are provided in rows of four, where the number of  
blocks varies by PSoC device family. This allows you the opti-  
mum choice of system resources for your application. Family  
resources are shown in the table titled “PSoC Device Charac-  
teristics” on page 3.  
February 25, 2005  
Document No. 38-12022 Rev. *G  
2
CY8C21x23 Final Data Sheet  
PSoC™ Overview  
PSoC Device Characteristics  
Depending on your PSoC device characteristics, the digital and  
analog systems can have 16, 8, or 4 digital blocks and 12, 6, or  
4 analog blocks. The following table lists the resources  
available for specific PSoC device groups. The PSoC device  
covered by this data sheet is highlighted below.  
Array Input  
Configuration  
PSoC Device Characteristics  
ACI0[1:0]  
ACI1[1:0]  
PSoC Device  
Group  
ACOL1MUX  
Array  
CY8C29x66  
CY8C27x43  
CY8C24794  
CY8C24x23A  
CY8C24x23  
CY8C21x34  
64  
44  
56  
24  
24  
28  
4
2
1
1
1
1
16  
8
12  
12  
48  
12  
12  
28  
4
4
2
2
2
0
4
4
2
2
2
2
12  
12  
6
2K  
32K  
16K  
16K  
4K  
256 Bytes  
1K  
ACE00  
ASE10  
ACE01  
ASE11  
4
4
6
256 Bytes  
256 Bytes  
512 Bytes  
4
6
4K  
4a  
4
8K  
4a  
CY8C21x23  
16  
1
4
8
0
2
256 Bytes  
4K  
a. Limited analog functionality.  
Analog System Block Diagram, CY8C21x23  
Additional System Resources  
System Resources, some of which have been previously listed,  
provide additional capability useful to complete systems. Addi-  
tional resources include a switch mode pump, low voltage  
detection, and power on reset. Brief statements describing the  
merits of each system resource are presented below.  
Digital clock dividers provide three customizable clock fre-  
quencies for use in applications. The clocks can be routed to  
both the digital and analog systems. Additional clocks can be  
generated using digital PSoC blocks as clock dividers.  
The I2C module provides 100 and 400 kHz communication  
over two wires. Slave, master, and multi-master modes are  
all supported.  
Low Voltage Detection (LVD) interrupts can signal the appli-  
cation of falling voltage levels, while the advanced POR  
(Power On Reset) circuit eliminates the need for a system  
supervisor.  
An internal 1.3 voltage reference provides an absolute refer-  
ence for the analog system, including ADCs and DACs.  
An integrated switch mode pump (SMP) generates normal  
operating voltages from a single 1.2V battery cell, providing a  
low cost boost converter.  
February 25, 2005  
Document No. 38-12022 Rev. *G  
3
CY8C21x23 Final Data Sheet  
PSoC™ Overview  
Getting Started  
Development Tools  
PSoC Designer is a Microsoft® Windows-based, integrated  
development environment for the Programmable System-on-  
Chip (PSoC) devices. The PSoC Designer IDE and application  
runs on Windows NT 4.0, Windows 2000, Windows Millennium  
(Me), or Windows XP. (Reference the PSoC Designer Func-  
tional Flow diagram below.)  
The quickest path to understanding the PSoC silicon is by read-  
ing this data sheet and using the PSoC Designer Integrated  
Development Environment (IDE). This data sheet is an over-  
view of the PSoC integrated circuit and presents specific pin,  
register, and electrical specifications. For in-depth information,  
along with detailed programming information, reference the  
PSoC Mixed-Signal Array Technical Reference Manual, which  
can be found on http://www.cypress.com/psoc.  
PSoC Designer helps the customer to select an operating con-  
figuration for the PSoC, write application code that uses the  
PSoC, and debug the application. This system provides design  
database management by project, an integrated debugger with  
In-Circuit Emulator, in-system programming support, and the  
CYASM macro assembler for the CPUs.  
For up-to-date Ordering, Packaging, and Electrical Specification  
information, reference the latest PSoC device data sheets on  
the web at http://www.cypress.com.  
Development Kits  
PSoC Designer also supports a high-level C language compiler  
developed specifically for the devices in the family.  
Development Kits are available from the following distributors:  
Digi-Key, Avnet, Arrow, and Future. The Cypress Online Store  
contains development kits, C compilers, and all accessories for  
PSoC development. Go to the Cypress Online Store web site at  
http://www.cypress.com, click the Online Store shopping cart  
icon at the bottom of the web page, and click PSoC (Program-  
mable System-on-Chip) to view a current list of available items.  
Context  
Sensitive  
Help  
Graphical Designer  
PSoCTM  
Interf ace  
Designer  
Technical Training  
Free PSoC technical training is available for beginners and is  
taught by a marketing or application engineer over the phone.  
PSoC training classes cover designing, debugging, advanced  
analog, as well as application-specific classes covering topics  
such as PSoC and the LIN bus. Go to http://www.cypress.com,  
click on Design Support located on the left side of the web  
page, and select Technical Training for more details.  
Importable  
Design  
Database  
PSoC  
Configuration  
Sheet  
Device  
Database  
TM  
PSoC  
Designer  
Core  
Application  
Database  
Consultants  
Manufacturing  
Information  
File  
Engine  
Project  
Database  
Certified PSoC Consultants offer everything from technical  
assistance to completed PSoC designs. To contact or become a  
PSoC Consultant go to http://www.cypress.com, click on Design  
Support located on the left side of the web page, and select  
CYPros Consultants.  
User  
Modules  
Library  
Technical Support  
PSoC application engineers take pride in fast and accurate  
response. They can be reached with a 4-hour guaranteed  
response at http://www.cypress.com/support/login.cfm.  
Emulation  
Pod  
In-Circuit  
Emulator  
Device  
Programmer  
PSoC Designer Subsystems  
Application Notes  
A long list of application notes will assist you in every aspect of  
your design effort. To view the PSoC application notes, go to  
the http://www.cypress.com web site and select Application  
Notes under the Design Resources list located in the center of  
the web page. Application notes are sorted by date by default.  
February 25, 2005  
Document No. 38-12022 Rev. *G  
4
CY8C21x23 Final Data Sheet  
PSoC™ Overview  
Debugger  
PSoC Designer Software Subsystems  
The PSoC Designer Debugger subsystem provides hardware  
in-circuit emulation, allowing the designer to test the program in  
a physical system while providing an internal view of the PSoC  
device. Debugger commands allow the designer to read the  
program and read and write data memory, read and write IO  
registers, read and write CPU registers, set and clear break-  
points, and provide program run, halt, and step control. The  
debugger also allows the designer to create a trace buffer of  
registers and memory locations of interest.  
Device Editor  
The device editor subsystem allows the user to select different  
onboard analog and digital components called user modules  
using the PSoC blocks. Examples of user modules are ADCs,  
DACs, Amplifiers, and Filters.  
The device editor also supports easy development of multiple  
configurations and dynamic reconfiguration. Dynamic reconfig-  
uration allows for changing configurations at run time.  
Online Help System  
PSoC Designer sets up power-on initialization tables for  
selected PSoC block configurations and creates source code  
for an application framework. The framework contains software  
to operate the selected components and, if the project uses  
more than one operating configuration, contains routines to  
switch between different sets of PSoC block configurations at  
run time. PSoC Designer can print out a configuration sheet for  
a given project configuration for use during application pro-  
gramming in conjunction with the Device Data Sheet. Once the  
framework is generated, the user can add application-specific  
code to flesh out the framework. It’s also possible to change the  
selected components and regenerate the framework.  
The online help system displays online, context-sensitive help  
for the user. Designed for procedural and quick reference, each  
functional subsystem has its own context-sensitive help. This  
system also provides tutorials and links to FAQs and an Online  
Support Forum to aid the designer in getting started.  
Hardware Tools  
In-Circuit Emulator  
A low cost, high functionality ICE (In-Circuit Emulator) is avail-  
able for development support. This hardware has the capability  
to program single devices.  
Design Browser  
The Design Browser allows users to select and import precon-  
figured designs into the user’s project. Users can easily browse  
a catalog of preconfigured designs to facilitate time-to-design.  
Examples provided in the tools include a 300-baud modem, LIN  
Bus master and slave, fan controller, and magnetic card reader.  
The emulator consists of a base unit that connects to the PC by  
way of the parallel or USB port. The base unit is universal and  
will operate with all PSoC devices. Emulation pods for each  
device family are available separately. The emulation pod takes  
the place of the PSoC device in the target board and performs  
full speed (24 MHz) operation  
Application Editor  
In the Application Editor you can edit your C language and  
Assembly language source code. You can also assemble, com-  
pile, link, and build.  
Assembler. The macro assembler allows the assembly code  
to be merged seamlessly with C code. The link libraries auto-  
matically use absolute addressing or can be compiled in relative  
mode, and linked with other software modules to get absolute  
addressing.  
C Language Compiler. A C language compiler is available  
that supports PSoC family devices. Even if you have never  
worked in the C language before, the product quickly allows you  
to create complete C programs for the PSoC family devices.  
The embedded, optimizing C compiler provides all the features  
of C tailored to the PSoC architecture. It comes complete with  
embedded libraries providing port and bus operations, standard  
keypad and display support, and extended math functionality.  
February 25, 2005  
Document No. 38-12022 Rev. *G  
5
CY8C21x23 Final Data Sheet  
PSoC™ Overview  
Designing with User Modules  
The development process for the PSoC device differs from that  
of a traditional fixed function microprocessor. The configurable  
analog and digital hardware blocks give the PSoC architecture  
a unique flexibility that pays dividends in managing specification  
change during development and by lowering inventory costs.  
These configurable resources, called PSoC Blocks, have the  
ability to implement a wide variety of user-selectable functions.  
Each block has several registers that determine its function and  
connectivity to other blocks, multiplexers, busses and to the IO  
pins. Iterative development cycles permit you to adapt the hard-  
ware as well as the software. This substantially lowers the risk  
of having to select a different part to meet the final design  
requirements.  
DeviceEditor  
Placement  
and  
Parameter  
-ization  
User  
Module  
Selection  
Source  
Code  
Generator  
Generate  
Application  
Application Editor  
Source  
Code  
Editor  
To speed the development process, the PSoC Designer Inte-  
grated Development Environment (IDE) provides a library of  
pre-built, pre-tested hardware peripheral functions, called “User  
Modules.” User modules make selecting and implementing  
peripheral devices simple, and come in analog, digital, and  
mixed signal varieties. The standard User Module library con-  
tains over 50 common peripherals such as ADCs, DACs Tim-  
ers, Counters, UARTs, and other not-so common peripherals  
such as DTMF Generators and Bi-Quad analog filter sections.  
Project  
Manager  
Build  
Manager  
Build  
All  
Debugger  
Each user module establishes the basic register settings that  
implement the selected function. It also provides parameters  
that allow you to tailor its precise configuration to your particular  
application. For example, a Pulse Width Modulator User Mod-  
ule configures one or more digital PSoC blocks, one for each 8  
bits of resolution. The user module parameters permit you to  
establish the pulse width and duty cycle. User modules also  
provide tested software to cut your development time. The user  
module application programming interface (API) provides high-  
level functions to control and respond to hardware events at run  
time. The API also provides optional interrupt service routines  
that you can adapt as needed.  
Event &  
Breakpoint  
Manager  
Interface  
to ICE  
Storage  
Inspector  
User Module and Source Code Development Flows  
The next step is to write your main program, and any sub-rou-  
tines using PSoC Designer’s Application Editor subsystem.  
The Application Editor includes a Project Manager that allows  
you to open the project source code files (including all gener-  
ated code files) from a hierarchal view. The source code editor  
provides syntax coloring and advanced edit features for both C  
and assembly language. File search capabilities include simple  
string searches and recursive “grep-style” patterns. A single  
mouse click invokes the Build Manager. It employs a profes-  
sional-strength “makefile” system to automatically analyze all  
file dependencies and run the compiler and assembler as nec-  
essary. Project-level options control optimization strategies  
used by the compiler and linker. Syntax errors are displayed in  
a console window. Double clicking the error message takes you  
directly to the offending line of source code. When all is correct,  
the linker builds a HEX file image suitable for programming.  
The API functions are documented in user module data sheets  
that are viewed directly in the PSoC Designer IDE. These data  
sheets explain the internal operation of the user module and  
provide performance specifications. Each data sheet describes  
the use of each user module parameter and documents the set-  
ting of each register controlled by the user module.  
The development process starts when you open a new project  
and bring up the Device Editor, a graphical user interface (GUI)  
for configuring the hardware. You pick the user modules you  
need for your project and map them onto the PSoC blocks with  
point-and-click simplicity. Next, you build signal chains by inter-  
connecting user modules to each other and the IO pins. At this  
stage, you also configure the clock source connections and  
enter parameter values directly or by selecting values from  
drop-down menus. When you are ready to test the hardware  
configuration or move on to developing code for the project, you  
perform the “Generate Application” step. This causes PSoC  
Designer to generate source code that automatically configures  
the device to your specification and provides the high-level user  
module API functions.  
The last step in the development process takes place inside the  
PSoC Designer’s Debugger subsystem. The Debugger down-  
loads the HEX image to the In-Circuit Emulator (ICE) where it  
runs at full speed. Debugger capabilities rival those of systems  
costing many times more. In addition to traditional single-step,  
run-to-breakpoint and watch-variable features, the Debugger  
provides a large trace buffer and allows you define complex  
breakpoint events that include monitoring address and data bus  
values, memory locations and external signals.  
February 25, 2005  
Document No. 38-12022 Rev. *G  
6
CY8C21x23 Final Data Sheet  
PSoC™ Overview  
Document Conventions  
Table of Contents  
For an in depth discussion and more information on your PSoC  
device, obtain the PSoC Mixed-Signal Array Technical Refer-  
ence Manual on http://www.cypress.com. This data sheet  
encompasses and is organized into the following chapters and  
sections.  
Acronyms Used  
The following table lists the acronyms that are used in this doc-  
ument.  
Acronym  
AC  
Description  
1.  
Pin Information ............................................................. 8  
alternating current  
1.1 Pinouts ................................................................... 8  
1.1.1 8-Pin Part Pinout ...................................... 8  
1.1.2 16-Pin Part Pinout ..................................... 8  
1.1.3 20-Pin Part Pinout .................................... 9  
1.1.4 24-Pin Part Pinout ................................. 10  
ADC  
API  
analog-to-digital converter  
application programming interface  
central processing unit  
continuous time  
CPU  
CT  
DAC  
DC  
digital-to-analog converter  
direct current  
2.  
3.  
Register Reference ..................................................... 11  
EEPROM  
FSR  
GPIO  
IO  
electrically erasable programmable read-only memory  
full scale range  
2.1 Register Conventions ........................................... 11  
2.2 Register Mapping Tables ..................................... 11  
general purpose IO  
Electrical Specifications ............................................ 14  
input/output  
3.1 Absolute Maximum Ratings ................................ 15  
3.2 Operating Temperature ....................................... 15  
3.3 DC Electrical Characteristics ................................ 15  
3.3.1 DC Chip-Level Specifications ................... 15  
3.3.2 DC General Purpose IO Specifications .... 16  
3.3.3 DC Amplifier Specifications ..................... 17  
3.3.4 DC Switch Mode Pump Specifications ..... 18  
3.3.5 DC POR and LVD Specifications ............. 19  
3.3.6 DC Programming Specifications ............... 20  
3.4 AC Electrical Characteristics ................................ 21  
3.4.1 AC Chip-Level Specifications ................... 21  
3.4.2 AC General Purpose IO Specifications .... 23  
3.4.3 AC Amplifier Specifications ...................... 24  
3.4.4 AC Digital Block Specifications ................. 24  
3.4.5 AC External Clock Specifications ............. 26  
3.4.6 AC Programming Specifications ............... 27  
3.4.7 AC I2C Specifications ............................... 27  
IPOR  
LSb  
imprecise power on reset  
least-significant bit  
LVD  
low voltage detect  
MSb  
PC  
most-significant bit  
program counter  
POR  
PPOR  
PSoC™  
PWM  
ROM  
SC  
power on reset  
precision power on reset  
Programmable System-on-Chip  
pulse width modulator  
read only memory  
switched capacitor  
SMP  
SRAM  
switch mode pump  
static random access memory  
Units of Measure  
4.  
Packaging Information ............................................... 29  
A units of measure table is located in the Electrical Specifica-  
tions section. Table 3-1 on page 14 lists all the abbreviations  
used to measure the PSoC devices.  
4.1 Packaging Dimensions ......................................... 29  
4.2 Thermal Impedances .......................................... 31  
4.3 Solder Reflow Peak Temperature ........................ 31  
5.  
6.  
Ordering Information .................................................. 32  
Numeric Naming  
5.1 Ordering Code Definitions ................................... 32  
Hexidecimal numbers are represented with all letters in upper-  
case with an appended lowercase ‘h’ (for example, ‘14h’ or  
‘3Ah’). Hexidecimal numbers may also be represented by a ‘0x’  
prefix, the C coding convention. Binary numbers have an  
appended lowercase ‘b’ (e.g., 01010100b’ or ‘01000011b’).  
Numbers not indicated by an ‘h’, ‘b’, or 0x are decimal.  
Sales and Service Information .................................. 33  
6.1 Revision History .................................................. 33  
6.2 Copyrights and Flash Code Protection ................ 33  
February 25, 2005  
Document No. 38-12022 Rev. *G  
7
1. Pin Information  
This chapter describes, lists, and illustrates the CY8C21x23 PSoC device pins and pinout configurations.  
1.1  
Pinouts  
The CY8C21x23 PSoC device is available in a variety of packages which are listed and illustrated in the following tables. Every port  
pin (labeled with a “P”) is capable of Digital IO. However, Vss, Vdd, SMP, and XRES are not capable of Digital IO.  
1.1.1  
8-Pin Part Pinout  
Table 1-1. 8-Pin Part Pinout (SOIC)  
Type  
CY8C21123 8-Pin PSoC Device  
Pin  
No.  
Pin  
Name  
Description  
Digital Analog  
1
2
3
4
5
6
7
8
IO  
IO  
IO  
I
I
P0[5]  
Analog column mux input.  
Analog column mux input.  
I2C Serial Clock (SCL), ISSP-SCLK.  
Ground connection.  
A, I, P0[5]  
A, I, P0[3]  
I2C SCL, P1[1]  
1
2
3
8
7
6
5
Vdd  
P0[4], A, I  
P0[2], A, I  
P0[3]  
P1[1]  
Vss  
SOIC  
Vss  
P1[0], I2CSDA  
Power  
Power  
4
IO  
IO  
IO  
P1[0]  
P0[2]  
P0[4]  
Vdd  
I2C Serial Data (SDA), ISSP-SDATA.  
Analog column mux input.  
Analog column mux input.  
Supply voltage.  
I
I
LEGEND: A = Analog, I = Input, and O = Output.  
1.1.2  
16-Pin Part Pinout  
Table 1-2. 16-Pin Part Pinout (SOIC)  
Type  
Pin  
CY8C21223 16-Pin PSoC Device  
Name  
Description  
No.  
Digital Analog  
1
2
3
4
5
IO  
IO  
IO  
IO  
I
I
I
I
P0[7] Analog column mux input.  
P0[5] Analog column mux input.  
P0[3] Analog column mux input.  
P0[1] Analog column mux input.  
A,I,P0[7]  
A, I,P0[5]  
A, I,P0[3]  
A, I,P0[1]  
SMP  
Vdd  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
P0[6],A,I  
P0[4],A,I  
P0[2],A,I  
P0[0],A,I  
P1[4],EXTCLK  
P1[2]  
SOIC  
Power  
Power  
SMP  
Switch Mode Pump (SMP) connection to  
required external components.  
Vss  
I2CSCL,P1[1]  
Vss  
6
Vss  
Ground connection.  
P1[0],I2CSDA  
7
IO  
P1[1] I2C Serial Clock (SCL), ISSP-SCLK.  
Vss Ground connection.  
8
Power  
9
IO  
IO  
IO  
IO  
IO  
IO  
IO  
P1[0] I2C Serial Data (SDA), ISSP-SDATA.  
P1[2]  
10  
11  
12  
13  
14  
15  
16  
P1[4] Optional External Clock Input (EXTCLK).  
P0[0] Analog column mux input.  
P0[2] Analog column mux input.  
P0[4] Analog column mux input.  
P0[6] Analog column mux input.  
I
I
I
I
Power  
Vdd  
Supply voltage.  
LEGEND A = Analog, I = Input, and O = Output.  
February 25, 2005  
Document No. 38-12022 Rev. *G  
8
CY8C21x23 Final Data Sheet  
1. Pin Information  
1.1.3  
20-Pin Part Pinout  
Table 1-3. 20-Pin Part Pinout (SSOP)  
Type  
Pin  
CY8C21323 20-Pin PSoC Device  
Name  
Description  
No.  
Digital Analog  
1
2
IO  
IO  
IO  
IO  
I
I
I
I
P0[7]  
P0[5]  
P0[3]  
P0[1]  
Vss  
Analog column mux input.  
Analog column mux input.  
Analog column mux input.  
Analog column mux input.  
Ground connection.  
A,I,P0[7]  
A, I,P0[5]  
A, I,P0[3]  
A, I,P0[1]  
Vss  
Vdd  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
3
4
5
6
7
8
9
P0[6],A,I  
P0[4],A,I  
P0[2],A,I  
P0[0],A,I  
XRES  
P1[6]  
P1[4],EXTCLK  
P1[2]  
3
4
5
Power  
Power  
SSOP  
I2C SCL,P1[7]  
I2C SDA,P1[5]  
P1[3]  
I2C SCL,P1[1]  
Vss  
6
IO  
IO  
IO  
IO  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
Vss  
I2C Serial Clock (SCL).  
I2C Serial Data (SDA).  
7
8
9
I2C Serial Clock (SCL), ISSP-SCLK.  
Ground connection.  
P1[0],I2C SDA  
10  
10  
11  
12  
13  
IO  
IO  
IO  
P1[0]  
P1[2]  
P1[4]  
I2C Serial Data (SDA), ISSP-SDATA.  
Optional External Clock Input (EXT-  
CLK).  
14  
15  
IO  
P1[6]  
Input  
XRES  
Active high external reset with internal  
pull down.  
16  
17  
18  
19  
20  
IO  
IO  
IO  
IO  
I
I
I
I
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Vdd  
Analog column mux input.  
Analog column mux input.  
Analog column mux input.  
Analog column mux input.  
Supply voltage.  
Power  
LEGEND A = Analog, I = Input, and O = Output.  
February 25, 2005  
Document No. 38-12022 Rev. *G  
9
CY8C21x23 Final Data Sheet  
1. Pin Information  
1.1.4  
24-Pin Part Pinout  
Table 1-4. 24-Pin Part Pinout (MLF*)  
Type  
Pin  
CY8C21323 24-Pin PSoC Device  
Name  
Description  
No.  
Digital Analog  
1
2
IO  
I
P0[1]  
SMP  
Analog column mux input.  
Power  
Power  
Switch Mode Pump (SMP) connection to  
required external components.  
3
4
Vss  
Ground connection.  
IO  
IO  
IO  
IO  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
NC  
I2C Serial Clock (SCL).  
I2C Serial Data (SDA).  
5
A, I, P0[1]  
SMP  
18  
17  
16  
15  
14  
13  
P0[4], A, I  
P0[2], A, I  
1
2
3
4
5
6
6
7
I2C Serial Clock (SCL), ISSP-SCLK.  
No connection.  
Vss  
MLF  
(Top View)  
P0[0], A, I  
NC  
XR ES  
I2CSCL, P1[7]  
I2C SDA, P1[5]  
P1[3]  
8
9
Power  
Vss  
Ground connection.  
P1[6]  
10  
11  
12  
IO  
IO  
IO  
P1[0]  
P1[2]  
P1[4]  
I2C Serial Data (SDA), ISSP-SDATA.  
Optional External Clock Input (EXT-  
CLK).  
13  
14  
IO  
P1[6]  
Input  
XRES Active high external reset with internal  
pull down.  
15  
16  
17  
18  
19  
NC  
No connection.  
IO  
IO  
IO  
IO  
I
I
I
I
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Analog column mux input.  
Analog column mux input.  
Analog column mux input.  
Analog column mux input.  
20  
21  
Power  
Power  
Vdd  
Vss  
Supply voltage.  
Ground connection.  
22  
23  
24  
IO  
IO  
IO  
I
I
I
P0[7]  
P0[5]  
P0[3]  
Analog column mux input.  
Analog column mux input.  
Analog column mux input.  
LEGEND A = Analog, I = Input, and O = Output.  
* Note The MLF package has a center pad that must be connected to the  
same ground as the Vss pin.  
February 25, 2005  
Document No. 38-12022 Rev. *G  
10  
2. Register Reference  
This chapter lists the registers of the CY8C21x23 PSoC device. For detailed register information, reference the  
PSoC™ Mixed-Signal Array Technical Reference Manual.  
2.1  
Register Conventions  
2.2  
Register Mapping Tables  
The register conventions specific to this section are listed in the  
following table.  
The PSoC device has a total register address space of 512  
bytes. The register space is referred to as IO space and is  
divided into two banks. The XOI bit in the Flag register (CPU_F)  
determines which bank the user is currently in. When the XOI  
bit is set the user is in Bank 1.  
Convention  
Description  
Read register or bit(s)  
R
W
L
Write register or bit(s)  
Logical register or bit(s)  
Clearable register or bit(s)  
Access is bit specific  
Note In the following register mapping tables, blank fields are  
Reserved and should not be accessed.  
C
#
February 25, 2005  
Document No. 38-12022 Rev. *G  
11  
CY8C21x23 Final Data Sheet  
2. Register Reference  
Register Map Bank 0 Table: User Space  
PRT0DR  
PRT0IE  
PRT0GS  
PRT0DM2  
PRT1DR  
PRT1IE  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
ASE10CR0  
ASE11CR0  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
RW  
RW  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
PRT1GS  
PRT1DM2  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
I2C_CFG  
I2C_SCR  
I2C_DR  
I2C_MSCR  
INT_CLR0  
INT_CLR1  
RW  
#
RW  
#
RW  
RW  
INT_CLR3  
INT_MSK3  
RW  
RW  
DBB00DR0  
DBB00DR1  
DBB00DR2  
DBB00CR0  
DBB01DR0  
DBB01DR1  
DBB01DR2  
DBB01CR0  
DCB02DR0  
DCB02DR1  
DCB02DR2  
DCB02CR0  
DCB03DR0  
DCB03DR1  
DCB03DR2  
DCB03CR0  
#
AMX_IN  
RW  
RW  
#
INT_MSK0  
INT_MSK1  
INT_VC  
RW  
RW  
RC  
W
W
RW  
#
PWM_CR  
CMP_CR0  
CMP_CR1  
RES_WDT  
#
W
RW  
#
RW  
DEC_CR0  
DEC_CR1  
RW  
RW  
#
ADC0_CR  
ADC1_CR  
#
#
W
RW  
#
#
TMP_DR0  
TMP_DR1  
TMP_DR2  
TMP_DR3  
RW  
RW  
RW  
RW  
W
RW  
#
RDI0RI  
RDI0SYN  
RDI0IS  
RDI0LT0  
RDI0LT1  
RDI0RO0  
RDI0RO1  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
ACE00CR1  
ACE00CR2  
RW  
RW  
ACE01CR1  
ACE01CR2  
RW  
RW  
CPU_F  
RL  
CPU_SCR1  
CPU_SCR0  
#
#
Blank fields are Reserved and should not be accessed.  
# Access is bit specific.  
February 25, 2005  
Document No. 38-12022 Rev. *G  
12  
CY8C21x23 Final Data Sheet  
2. Register Reference  
Register Map Bank 1 Table: Configuration Space  
PRT0DM0  
PRT0DM1  
PRT0IC0  
PRT0IC1  
PRT1DM0  
PRT1DM1  
PRT1IC0  
PRT1IC1  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
ASE10CR0  
ASE11CR0  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
RW  
RW  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
GDI_O_IN  
GDI_E_IN  
GDI_O_OU  
GDI_E_OU  
RW  
RW  
RW  
RW  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
OSC_GO_EN DD  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
OSC_CR4  
OSC_CR3  
OSC_CR0  
OSC_CR1  
OSC_CR2  
VLT_CR  
VLT_CMP  
ADC0_TR  
ADC1_TR  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
DBB00FN  
DBB00IN  
DBB00OU  
RW  
RW  
RW  
CLK_CR0  
CLK_CR1  
ABF_CR0  
AMD_CR0  
RW  
RW  
RW  
RW  
RW  
DBB01FN  
DBB01IN  
DBB01OU  
RW  
RW  
RW  
CMP_GO_EN 64  
65  
RW  
RW  
AMD_CR1  
ALT_CR0  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
RW  
RW  
DCB02FN  
DCB02IN  
DCB02OU  
RW  
RW  
RW  
IMO_TR  
ILO_TR  
BDG_TR  
ECO_TR  
W
W
RW  
W
CLK_CR3  
TMP_DR0  
TMP_DR1  
TMP_DR2  
TMP_DR3  
RW  
RW  
RW  
RW  
RW  
DCB03FN  
DCB03IN  
DCB03OU  
RW  
RW  
RW  
RDI0RI  
RDI0SYN  
RDI0IS  
RDI0LT0  
RDI0LT1  
RDI0RO0  
RDI0RO1  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
ACE00CR1  
ACE00CR2  
RW  
RW  
ACE01CR1  
ACE01CR2  
RW  
RW  
CPU_F  
RL  
FLS_PR1  
RW  
CPU_SCR1  
CPU_SCR0  
#
#
Blank fields are Reserved and should not be accessed.  
# Access is bit specific.  
February 25, 2005  
Document No. 38-12022 Rev. *G  
13  
3. Electrical Specifications  
This chapter presents the DC and AC electrical specifications of the CY8C21x23 PSoC device. For the most up to date electrical  
specifications, confirm that you have the most recent data sheet by going to the web at http://www.cypress.com/psoc.  
Specifications are valid for -40oC T 85oC and T 100oC, except where noted.  
A
J
Refer to Table 3-15 for the electrical specifications on the internal main oscillator (IMO) using SLIMO mode.  
5.25  
4.75  
5.25  
4.75  
SLIMO  
Mode=1  
SLIMO  
Mode=0  
3.60  
3.00  
2.40  
SLIMO  
Mode=1  
SLIMO SLIMO  
Mode=1 Mode=1  
SLIMO  
Mode=0  
3.00  
2.40  
93kHz  
12MHz  
CPUFrequency  
24MHz  
93kHz  
6MHz  
IMOFrequency  
3MHz  
12MHz  
24MHz  
Figure 3-1a. Voltage versus CPU Frequency  
Figure 3-1b. Voltage versus IMO Frequency  
The following table lists the units of measure that are used in this chapter.  
Table 3-1: Units of Measure  
Symbol  
Unit of Measure  
Symbol  
Unit of Measure  
oC  
dB  
degree Celsius  
µW  
microwatts  
decibels  
mA  
ms  
mV  
nA  
ns  
milli-ampere  
milli-second  
milli-volts  
fF  
femto farad  
hertz  
Hz  
KB  
1024 bytes  
1024 bits  
kilohertz  
nanoampere  
nanosecond  
nanovolts  
Kbit  
kHz  
kΩ  
nV  
kilohm  
ohm  
MHz  
MΩ  
µA  
megahertz  
megaohm  
microampere  
microfarad  
microhenry  
microsecond  
microvolts  
pA  
pF  
pp  
ppm  
ps  
picoampere  
picofarad  
peak-to-peak  
parts per million  
picosecond  
µF  
µH  
µs  
sps  
σ
samples per second  
sigma: one standard deviation  
volts  
µV  
µVrms  
microvolts root-mean-square  
V
February 2005  
Document No. 38-12022 Rev. *G  
14  
CY8C21x23 Final Data Sheet  
3. Electrical Specifications  
3.1  
Absolute Maximum Ratings  
Table 3-2. Absolute Maximum Ratings  
Symbol  
Description  
Min  
-55  
Typ  
Max  
+100  
Units  
oC  
Notes  
TSTG  
Storage Temperature  
Higher storage temperatures will reduce data  
retention time.  
oC  
V
TA  
Ambient Temperature with Power Applied  
-40  
+85  
Vdd  
VIO  
Supply Voltage on Vdd Relative to Vss  
DC Input Voltage  
-0.5  
+6.0  
Vss - 0.5  
Vdd + 0.5  
V
VIOZ  
IMIO  
DC Voltage Applied to Tri-state  
Vss - 0.5  
-25  
Vdd + 0.5  
+50  
V
Maximum Current into any Port Pin  
mA  
ESD  
LU  
Electro Static Discharge Voltage  
Latch-up Current  
2000  
V
Human Body Model ESD.  
200  
mA  
3.2  
Operating Temperature  
Table 3-3. Operating Temperature  
Symbol  
TA  
Description  
Min  
Typ  
Max  
Units  
Notes  
oC  
oC  
Ambient Temperature  
Junction Temperature  
-40  
+85  
TJ  
-40  
+100  
The temperature rise from ambient to junction is  
package specific. See “Thermal Impedances”  
on page 31. The user must limit the power con-  
sumption to comply with this requirement.  
3.3  
DC Electrical Characteristics  
3.3.1  
DC Chip-Level Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 3-4. DC Chip-Level Specifications  
Symbol  
Description  
Min  
2.40  
Typ  
Max  
5.25  
Units  
Notes  
Vdd  
Supply Voltage  
3
V
See DC POR and LVD specifications, Table 3-11  
on page 19.  
Conditions are Vdd = 5.0V, 25oC, CPU = 3 MHz,  
SYSCLK doubler disabled. VC1 = 1.5 MHz, VC2  
= 93.75 kHz, VC3 = 0.366 kHz.  
IDD  
Supply Current, IMO = 24 MHz  
Supply Current, IMO = 6 MHz  
Supply Current, IMO = 6 MHz  
4
mA  
mA  
mA  
Conditions are Vdd = 3.3V, 25oC, CPU = 3 MHz,  
clock doubler disabled. VC1 = 375 kHz, VC2 =  
23.4 kHz, VC3 = 0.091 kHz.  
IDD3  
1.2  
1.1  
2
Conditions are Vdd = 2.55V, 25oC, CPU = 3  
MHz, clock doubler disabled. VC1 = 375 kHz,  
VC2 = 23.4 kHz, VC3 = 0.091 kHz.  
IDD27  
1.5  
Vdd = 2.55V, 0oC to 40oC.  
ISB27  
ISB  
Sleep (Mode) Current with POR, LVD, Sleep Timer, WDT,  
and internal slow oscillator active. Mid temperature range.  
2.6  
4
µA  
µA  
V
Vdd = 3.3V, -40oC TA 85oC.  
Sleep (Mode) Current with POR, LVD, Sleep Timer, WDT,  
and internal slow oscillator active.  
2.8  
5
VREF  
VREF27  
AGND  
Reference Voltage (Bandgap)  
Reference Voltage (Bandgap)  
Analog Ground  
1.28  
1.16  
1.30  
1.30  
VREF  
1.32  
1.330  
Trimmed for appropriate Vdd. Vdd = 3.0V to  
5.25V.  
V
Trimmed for appropriate Vdd. Vdd = 2.4V to  
3.0V.  
VREF  
VREF  
V
- 0.003  
+ 0.003  
February 25, 2005  
Document No. 38-12022 Rev. *G  
15  
CY8C21x23 Final Data Sheet  
3. Electrical Specifications  
3.3.2  
DC General Purpose IO Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at 25°C and  
are for design guidance only.  
Table 3-5. 5V and 3.3V DC GPIO Specifications  
Symbol  
Description  
Min  
Typ  
5.6  
Max  
Units  
kΩ  
Notes  
RPU  
Pull up Resistor  
4
4
8
8
RPD  
VOH  
Pull down Resistor  
High Output Level  
5.6  
kΩ  
Vdd - 1.0  
V
IOH = 10 mA, Vdd = 4.75 to 5.25V (8 total loads,  
4 on even port pins (for example, P0[2], P1[4]),  
4 on odd port pins (for example, P0[3], P1[5])).  
80 mA maximum combined IOH budget.  
VOL  
Low Output Level  
0.75  
0.8  
V
IOL = 25 mA, Vdd = 4.75 to 5.25V (8 total loads,  
4 on even port pins (for example, P0[2], P1[4]),  
4 on odd port pins (for example, P0[3], P1[5])).  
150 mA maximum combined IOL budget.  
VIL  
Input Low Level  
Input High Level  
Input Hysteresis  
V
Vdd = 3.0 to 5.25.  
Vdd = 3.0 to 5.25.  
VIH  
VH  
2.1  
V
60  
1
mV  
nA  
pF  
pF  
IIL  
Input Leakage (Absolute Value)  
Capacitive Load on Pins as Input  
Capacitive Load on Pins as Output  
Gross tested to 1 µA.  
Package and pin dependent. Temp = 25oC.  
Package and pin dependent. Temp = 25oC.  
CIN  
COUT  
3.5  
3.5  
10  
10  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 2.4V to 3.0V and  
-40°C TA 85°C. Typical parameters apply to 2.7V at 25°C and are for design guidance only.  
Table 3-6. 2.7V DC GPIO Specifications  
Symbol  
Description  
Min  
Typ  
5.6  
Max  
Units  
kΩ  
Notes  
RPU  
Pull up Resistor  
4
4
8
8
RPD  
VOH  
Pull down Resistor  
High Output Level  
5.6  
kΩ  
Vdd - 0.4  
V
IOH = 2.5 mA (6.25 Typ), Vdd = 2.4 to 3.0V (16  
mA maximum, 50 mA Typ combined IOH bud-  
get).  
VOL  
Low Output Level  
0.75  
V
IOL = 10 mA, Vdd = 2.4 to 3.0V (90 mA maxi-  
mum combined IOL budget).  
VIL  
Input Low Level  
Input High Level  
Input Hysteresis  
0.75  
V
Vdd = 2.4 to 3.0.  
Vdd = 2.4 to 3.0.  
VIH  
VH  
2.0  
V
60  
1
mV  
nA  
pF  
pF  
IIL  
Input Leakage (Absolute Value)  
Capacitive Load on Pins as Input  
Capacitive Load on Pins as Output  
Gross tested to 1 µA.  
Package and pin dependent. Temp = 25oC.  
Package and pin dependent. Temp = 25oC.  
CIN  
COUT  
3.5  
3.5  
10  
10  
February 25, 2005  
Document No. 38-12022 Rev. *G  
16  
CY8C21x23 Final Data Sheet  
3. Electrical Specifications  
3.3.3  
DC Amplifier Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 3-7. 5V DC Amplifier Specifications  
Symbol  
VOSOA  
TCVOSOA  
IEBOA  
Description  
Min  
Typ  
2.5  
Max  
Units  
mV  
Notes  
Input Offset Voltage (absolute value)  
15  
µV/oC  
Average Input Offset Voltage Drift  
Input Leakage Current (Port 0 Analog Pins)  
Input Capacitance (Port 0 Analog Pins)  
Common Mode Voltage Range  
10  
200  
4.5  
pA  
Gross tested to 1 µA.  
Package and pin dependent. Temp = 25oC.  
CINOA  
9.5  
pF  
V
VCMOA  
0.0  
Vdd - 1  
GOLOA  
ISOA  
Open Loop Gain  
80  
dB  
Amplifier Supply Current  
10  
30  
µA  
Table 3-8. 3.3V DC Amplifier Specifications  
Symbol  
VOSOA  
TCVOSOA  
IEBOA  
Description  
Min  
Typ  
2.5  
Max  
Units  
Notes  
Input Offset Voltage (absolute value)  
15  
mV  
µV/oC  
Average Input Offset Voltage Drift  
Input Leakage Current (Port 0 Analog Pins)  
Input Capacitance (Port 0 Analog Pins)  
Common Mode Voltage Range  
Open Loop Gain  
10  
200  
4.5  
pA  
Gross tested to 1 µA.  
Package and pin dependent. Temp = 25oC.  
CINOA  
VCMOA  
GOLOA  
ISOA  
9.5  
pF  
V
0
Vdd - 1  
80  
dB  
µA  
Amplifier Supply Current  
10  
30  
Table 3-9. 2.7V DC Amplifier Specifications  
Symbol  
VOSOA  
TCVOSOA  
IEBOA  
Description  
Min  
Typ  
Max  
Units  
Notes  
Input Offset Voltage (absolute value)  
2.5  
10  
200  
4.5  
15  
mV  
µV/oC  
Average Input Offset Voltage Drift  
Input Leakage Current (Port 0 Analog Pins)  
Input Capacitance (Port 0 Analog Pins)  
Common Mode Voltage Range  
Open Loop Gain  
pA  
Gross tested to 1 µA.  
Package and pin dependent. Temp = 25oC.  
CINOA  
VCMOA  
GOLOA  
ISOA  
9.5  
pF  
V
0
Vdd - 1  
80  
dB  
µA  
Amplifier Supply Current  
10  
30  
February 25, 2005  
Document No. 38-12022 Rev. *G  
17  
CY8C21x23 Final Data Sheet  
3. Electrical Specifications  
3.3.4  
DC Switch Mode Pump Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 3-10. DC Switch Mode Pump (SMP) Specifications  
Symbol  
VPUMP5V  
Description  
Min  
4.75  
Typ  
5.0  
Max  
5.25  
Units  
Notes  
Configuration of footnote.a Average, neglecting  
ripple. SMP trip voltage is set to 5.0V.  
5V Output Voltage from Pump  
V
V
V
Configuration of footnote.a Average, neglecting  
ripple. SMP trip voltage is set to 3.25V.  
VPUMP3V  
VPUMP2V  
IPUMP  
3.3V Output Voltage from Pump  
2.6V Output Voltage from Pump  
Available Output Current  
3.00  
2.45  
3.25  
2.55  
3.60  
2.80  
Configuration of footnote.a Average, neglecting  
ripple. SMP trip voltage is set to 2.55V.  
Configuration of footnote.a  
V
BAT = 1.8V, VPUMP = 5.0V  
5
8
8
mA  
mA  
mA  
SMP trip voltage is set to 5.0V.  
SMP trip voltage is set to 3.25V.  
SMP trip voltage is set to 2.55V.  
VBAT = 1.5V, VPUMP = 3.25V  
VBAT = 1.3V, VPUMP = 2.55V  
Input Voltage Range from Battery  
Configuration of footnote.a SMP trip voltage is  
set to 5.0V.  
VBAT5V  
1.8  
1.0  
1.0  
1.2  
5
5.0  
3.3  
2.8  
V
Configuration of footnote.a SMP trip voltage is  
set to 3.25V.  
VBAT3V  
Input Voltage Range from Battery  
V
Configuration of footnote.a SMP trip voltage is  
set to 2.55V.  
VBAT2V  
Input Voltage Range from Battery  
V
Configuration of footnote.a 0oC TA 100.  
VBATSTART  
VPUMP_Line  
Minimum Input Voltage from Battery to Start Pump  
Line Regulation (over Vi range)  
V
1.25V at TA = -40oC.  
Configuration of footnote.a VO is the “Vdd Value  
for PUMP Trip” specified by the VM[2:0] setting  
in the DC POR and LVD Specification, Table 3-  
11 on page 19.  
%VO  
Configuration of footnote.a VO is the “Vdd Value  
for PUMP Trip” specified by the VM[2:0] setting  
in the DC POR and LVD Specification, Table 3-  
11 on page 19.  
VPUMP_Load  
Load Regulation  
5
%VO  
Configuration of footnote.a Load is 5 mA.  
VPUMP_Ripple Output Voltage Ripple (depends on cap/load)  
100  
50  
mVpp  
%
Configuration of footnote.a Load is 5 mA. SMP  
trip voltage is set to 3.25V.  
E3  
Efficiency  
35  
E2  
Efficiency  
35  
80  
%
For I load = 1mA, VPUMP = 2.55V, VBAT = 1.3V,  
10 uH inductor, 1 uF capacitor, and Schottky  
diode.  
FPUMP  
Switching Frequency  
Switching Duty Cycle  
1.3  
50  
MHz  
%
DCPUMP  
a. L = 2 µH inductor, C = 10 µF capacitor, D = Schottky diode. See Figure 3-2.  
1
1
1
D1  
Vdd  
VPUMP  
L1  
C1  
SMP  
V ss  
+
VBAT  
PSoCTM  
Battery  
Figure 3-2. Basic Switch Mode Pump Circuit  
February 25, 2005  
Document No. 38-12022 Rev. *G  
18  
CY8C21x23 Final Data Sheet  
3. Electrical Specifications  
3.3.5  
DC POR and LVD Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 3-11. DC POR and LVD Specifications  
Symbol  
Description  
Vdd Value for PPOR Trip  
Min  
Typ  
Max  
Units  
Notes  
Vdd must be greater than or equal to 2.5V  
during startup, reset from the XRES pin, or  
reset from Watchdog.  
VPPOR0  
VPPOR1  
VPPOR2  
PORLEV[1:0] = 00b  
PORLEV[1:0] = 01b  
PORLEV[1:0] = 10b  
2.36  
2.40  
V
V
V
2.82  
4.55  
2.95  
4.70  
Vdd Value for LVD Trip  
VM[2:0] = 000b  
VM[2:0] = 001b  
VM[2:0] = 010b  
VM[2:0] = 011b  
VM[2:0] = 100b  
VM[2:0] = 101b  
VM[2:0] = 110b  
VM[2:0] = 111b  
2.51a  
V
V
V
V
V
V
V
V
VLVD0  
VLVD1  
VLVD2  
VLVD3  
VLVD4  
VLVD5  
VLVD6  
VLVD7  
2.40  
2.85  
2.95  
3.06  
4.37  
4.50  
4.62  
4.71  
2.45  
2.92  
3.02  
3.13  
4.48  
4.64  
4.73  
4.81  
2.99b  
3.09  
3.20  
4.55  
4.75  
4.83  
4.95  
Vdd Value for PUMP Trip  
VM[2:0] = 000b  
VM[2:0] = 001b  
VM[2:0] = 010b  
VM[2:0] = 011b  
VM[2:0] = 100b  
VM[2:0] = 101b  
VM[2:0] = 110b  
VM[2:0] = 111b  
2.62c  
3.09  
3.16  
VPUMP0  
VPUMP1  
VPUMP2  
VPUMP3  
VPUMP4  
VPUMP5  
VPUMP6  
VPUMP7  
2.45  
2.96  
3.03  
3.18  
4.54  
4.62  
4.71  
4.89  
2.55  
3.02  
3.10  
3.25  
4.64  
4.73  
4.82  
5.00  
V
V
V
V
V
V
V
V
3.32d  
4.74  
4.83  
4.92  
5.12  
a. Always greater than 50 mV above V  
(PORLEV = 00) for falling supply.  
PPOR  
b. Always greater than 50 mV above V  
(PORLEV = 01) for falling supply.  
PPOR  
c. Always greater than 50 mV above VLVD0  
d. Always greater than 50 mV above VLVD3  
.
.
February 25, 2005  
Document No. 38-12022 Rev. *G  
19  
CY8C21x23 Final Data Sheet  
3. Electrical Specifications  
3.3.6  
DC Programming Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 3-12. DC Programming Specifications  
Symbol  
Description  
Min  
2.70  
Typ  
Max  
Units  
Notes  
VddIWRITE  
Supply Voltage for Flash Write Operations  
5
V
IDDP  
VILP  
VIHP  
IILP  
Supply Current During Programming or Verify  
Input Low Voltage During Programming or Verify  
Input High Voltage During Programming or Verify  
25  
0.8  
mA  
V
2.2  
V
Input Current when Applying Vilp to P1[0] or P1[1] During  
Programming or Verify  
0.2  
mA  
Driving internal pull-down resistor.  
Driving internal pull-down resistor.  
IIHP  
Input Current when Applying Vihp to P1[0] or P1[1] During  
Programming or Verify  
1.5  
mA  
VOLV  
VOHV  
Output Low Voltage During Programming or Verify  
Output High Voltage During Programming or Verify  
Vss + 0.75  
Vdd  
V
V
Vdd - 1.0  
FlashENPB  
FlashENT  
FlashDR  
Flash Endurance (per block)  
50,000  
Erase/write cycles per block.  
Erase/write cycles.0  
Flash Endurance (total)a  
Flash Data Retention  
1,800,0000  
10  
0
0
0
Years  
a. A maximum of 36 x 50,000 block endurance cycles is allowed. This may be balanced between operations on 36x1 blocks of 50,000 maximum cycles each, 36x2 blocks of  
25,000 maximum cycles each, or 36x4 blocks of 12,500 maximum cycles each (and so forth to limit the total number of cycles to 36x50,000 and that no single block ever  
sees more than 50,000 cycles).  
For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to  
the Flash APIs Application Note AN2015 at http://www.cypress.com under Application Notes for more information.  
February 25, 2005  
Document No. 38-12022 Rev. *G  
20  
CY8C21x23 Final Data Sheet  
3. Electrical Specifications  
3.4  
AC Electrical Characteristics  
3.4.1  
AC Chip-Level Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only..  
Table 3-13. 5V and 3.3V AC Chip-Level Specifications  
Symbol  
FIMO24  
Description  
Min  
23.4  
Typ  
Max  
24.6a,b,c  
Units  
MHz  
Notes  
Internal Main Oscillator Frequency for 24 MHz  
24  
6
Trimmed for 5V or 3.3V operation using  
factory trim values. See Figure 3-1b on  
page 14. SLIMO mode = 0.  
6.35a,b,c  
FIMO6  
Internal Main Oscillator Frequency for 6 MHz  
5.75  
MHz  
Trimmed for 3.3V operation using factory  
trim values. See Figure 3-1b on page 14.  
SLIMO mode = 1.  
24.6a,b  
12.3b,c  
FCPU1  
FCPU2  
FBLK5  
CPU Frequency (5V Nominal)  
0.93  
0.93  
0
24  
12  
48  
MHz  
MHz  
MHz  
24 MHz only for SLIMO mode = 0.  
CPU Frequency (3.3V Nominal)  
Digital PSoC Block Frequency0(5V Nominal)  
49.2a,b,d  
Refer to the AC Digital Block Specifica-  
tions below.  
24.6b,d  
64  
FBLK33  
F32K1  
Digital PSoC Block Frequency (3.3V Nominal)  
Internal Low Speed Oscillator Frequency  
0
24  
32  
MHz  
kHz  
15  
Jitter32k  
Jitter32k  
TXRST  
32 kHz RMS Period Jitter  
100  
1400  
200  
ns  
32 kHz Peak-to-Peak Period Jitter  
External Reset Pulse Width  
ns  
10  
40  
µs  
DC24M  
Step24M  
Fout48M  
Jitter24M1  
FMAX  
24 MHz Duty Cycle  
50  
60  
%
24 MHz Trim Step Size  
50  
kHz  
MHz  
ps  
49.2a,c  
48 MHz Output Frequency  
46.8  
48.0  
300  
Trimmed. Utilizing factory trim values.  
24 MHz Peak-to-Peak Period Jitter (IMO)  
Maximum frequency of signal on row input or row output.  
Supply Ramp Time  
12.3  
MHz  
µs  
TRAMP  
0
a. 4.75V < Vdd < 5.25V.  
b. Accuracy derived from Internal Main Oscillator with appropriate trim for Vdd range.  
c. 3.0V < Vdd < 3.6V. See Application Note AN2012 Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation” for information on trimming for operation at 3.3V.  
d. See the individual user module data sheets for information on maximum frequencies for user modules.  
Table 3-14. 2.7V AC Chip-Level Specifications  
Symbol  
FIMO12  
Description  
Min  
11.5  
Typ  
120  
Max  
12.7a,b,c  
Units  
MHz  
Notes  
Internal Main Oscillator Frequency for 12 MHz  
Trimmed for 2.7V operation using factory  
trim values. See Figure 3-1b on page 14.  
SLIMO mode = 1.  
6.35a,b,c  
FIMO6  
Internal Main Oscillator Frequency for 6 MHz  
5.5  
6
MHz  
Trimmed for 2.7V operation using factory  
trim values. See Figure 3-1b on page 14.  
SLIMO mode = 1.  
3.15a,b  
FCPU1  
CPU Frequency (2.7V Nominal)  
0.093  
0
3
MHz  
MHz  
24 MHz only for SLIMO mode = 0.  
12.5a,b,c  
FBLK27  
Digital PSoC Block Frequency (2.7V Nominal)  
12  
Refer to the AC Digital Block Specifica-  
tions below.  
F32K1  
Internal Low Speed Oscillator Frequency  
32 kHz RMS Period Jitter  
8
32  
150  
1400  
96  
200  
kHz  
ns  
Jitter32k  
Jitter32k  
TXRST  
FMAX  
32 kHz Peak-to-Peak Period Jitter  
External Reset Pulse Width  
ns  
10  
µs  
Maximum frequency of signal on row input or row output.  
Supply Ramp Time  
12.3  
MHz  
µs  
TRAMP  
0
a. 2.4V < Vdd < 3.0V.  
b. Accuracy derived from Internal Main Oscillator with appropriate trim for Vdd range.  
c. See Application Note AN2012 Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation” for information on maximum frequency for user modules.  
February 25, 2005  
Document No. 38-12022 Rev. *G  
21  
CY8C21x23 Final Data Sheet  
3. Electrical Specifications  
Jitter24M1  
F24M  
Figure 3-3. 24 MHz Period Jitter (IMO) Timing Diagram  
Jitter32k  
F32K1  
Figure 3-4. 32 kHz Period Jitter (ILO) Timing Diagram  
February 25, 2005  
Document No. 38-12022 Rev. *G  
22  
CY8C21x23 Final Data Sheet  
3. Electrical Specifications  
3.4.2  
AC General Purpose IO Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 3-15. 5V and 3.3V AC GPIO Specifications  
Symbol  
FGPIO  
Description  
GPIO Operating Frequency  
Min  
Typ  
Max  
Units  
MHz  
Notes  
Normal Strong Mode  
0
12  
TRiseF  
TFallF  
TRiseS  
TFallS  
Rise Time, Normal Strong Mode, Cload = 50 pF  
Fall Time, Normal Strong Mode, Cload = 50 pF  
Rise Time, Slow Strong Mode, Cload = 50 pF  
Fall Time, Slow Strong Mode, Cload = 50 pF  
3
18  
18  
ns  
ns  
ns  
ns  
Vdd = 4.5 to 5.25V, 10% - 90%  
Vdd = 4.5 to 5.25V, 10% - 90%  
Vdd = 3 to 5.25V, 10% - 90%  
Vdd = 3 to 5.25V, 10% - 90%  
2
10  
10  
27  
22  
Table 3-16. 2.7V AC GPIO Specifications  
Symbol  
FGPIO  
Description  
GPIO Operating Frequency  
Min  
Typ  
Max  
Units  
Notes  
0
3
MHz  
Normal Strong Mode  
TRiseF  
TFallF  
TRiseS  
TFallS  
Rise Time, Normal Strong Mode, Cload = 50 pF  
Fall Time, Normal Strong Mode, Cload = 50 pF  
Rise Time, Slow Strong Mode, Cload = 50 pF  
Fall Time, Slow Strong Mode, Cload = 50 pF  
6
50  
50  
ns  
ns  
ns  
ns  
Vdd = 2.4 to 3.0V, 10% - 90%  
Vdd = 2.4 to 3.0V, 10% - 90%  
Vdd = 2.4 to 3.0V, 10% - 90%  
Vdd = 2.4 to 3.0V, 10% - 90%  
6
18  
18  
40  
40  
120  
120  
90%  
10%  
GPIO  
Pin  
TRiseF  
TRi seS  
TFallF  
TFallS  
Figure 3-5. GPIO Timing Diagram  
February 25, 2005  
Document No. 38-12022 Rev. *G  
23  
CY8C21x23 Final Data Sheet  
3. Electrical Specifications  
3.4.3  
AC Amplifier Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Settling times, slew rates, and gain bandwidth are based on the Analog Continuous Time PSoC block.  
Table 3-17. 5V and 3.3V AC Amplifier Specifications  
Symbol  
TCOMP1  
Description  
Min  
Typ  
Typ  
Max  
100  
Units  
ns  
Notes  
Comparator Mode Response Time, 50 mVpp Signal Cen-  
tered on Ref  
TCOMP2  
Comparator Mode Response Time, 2.5V Input, 0.5V Over-  
drive  
300  
ns  
Table 3-18. 2.7V AC Amplifier Specifications  
Symbol  
TCOMP1  
Description  
Min  
Max  
Units  
Notes  
Comparator Mode Response Time, 50 mVpp Signal Cen-  
tered on Ref  
600  
ns  
TCOMP2  
Comparator Mode Response Time, 1.5V Input, 0.5V Over-  
drive  
300  
ns  
3.4.4  
AC Digital Block Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 3-19. 5V and 3.3V AC Digital Block Specifications  
Function  
Description  
Maximum Block Clocking Frequency (> 4.75V)  
Maximum Block Clocking Frequency (< 4.75V)  
Capture Pulse Width  
Min  
Typ  
Max  
49.2  
Units  
MHz  
Notes  
4.75V < Vdd < 5.25V.  
All  
Functions  
Timer  
24.6  
MHz  
ns  
3.0V < Vdd < 4.75V.  
50a  
Maximum Frequency, No Capture  
Maximum Frequency, With or Without Capture  
Enable Pulse Width  
49.2  
24.6  
MHz  
MHz  
ns  
4.75V < Vdd < 5.25V.  
Counter  
50  
Maximum Frequency, No Enable Input  
Maximum Frequency, Enable Input  
49.2  
24.6  
MHz  
MHz  
4.75V < Vdd < 5.25V.  
Dead Band Kill Pulse Width:  
Asynchronous Restart Mode  
20  
50  
50  
ns  
Synchronous Restart Mode  
Disable Mode  
ns  
ns  
Maximum Frequency  
49.2  
49.2  
MHz  
MHz  
4.75V < Vdd < 5.25V.  
4.75V < Vdd < 5.25V.  
CRCPRS  
Maximum Input Clock Frequency  
(PRS Mode)  
CRCPRS  
(CRC Mode)  
Maximum Input Clock Frequency  
Maximum Input Clock Frequency  
24.6  
8.2  
MHz  
MHz  
SPIM  
SPIS  
Maximum data rate at 4.1 MHz due to 2 x over  
clocking.  
Maximum Input Clock Frequency  
4.1  
MHz  
ns  
Width of SS_ Negated Between Transmissions  
50  
Transmitter Maximum Input Clock Frequency  
24.6  
MHz  
Maximum data rate at 3.08 MHz due to 8 x over  
clocking.  
Receiver Maximum Input Clock Frequency  
24.6  
MHz  
Maximum data rate at 3.08 MHz due to 8 x over  
clocking.  
a. 50 ns minimum input pulse width is based on the input synchronizers running at 12 MHz (84 ns nominal period).  
February 25, 2005  
Document No. 38-12022 Rev. *G  
24  
CY8C21x23 Final Data Sheet  
3. Electrical Specifications  
Table 3-20. 2.7V AC Digital Block Specifications  
Function  
Description  
Min  
Typ  
Max  
12.7  
Units  
MHz  
Notes  
All  
Maximum Block Clocking Frequency  
2.4V < Vdd < 3.0V.  
Functions  
Timer  
100a  
Capture Pulse Width  
ns  
Maximum Frequency, With or Without Capture  
Enable Pulse Width  
12.7  
MHz  
ns  
Counter  
100  
Maximum Frequency, No Enable Input  
Maximum Frequency, Enable Input  
12.7  
12.7  
MHz  
MHz  
Dead Band Kill Pulse Width:  
Asynchronous Restart Mode  
20  
100  
100  
ns  
Synchronous Restart Mode  
Disable Mode  
ns  
ns  
Maximum Frequency  
12.7  
12.7  
MHz  
MHz  
CRCPRS  
Maximum Input Clock Frequency  
(PRS Mode)  
CRCPRS  
(CRC Mode)  
Maximum Input Clock Frequency  
Maximum Input Clock Frequency  
12.7  
6.35  
MHz  
MHz  
SPIM  
SPIS  
Maximum data rate at 3.17 MHz due to 2 x over  
clocking.  
Maximum Input Clock Frequency  
4.1  
MHz  
ns  
Width of SS_ Negated Between Transmissions  
100  
Transmitter Maximum Input Clock Frequency  
12.7  
MHz  
Maximum data rate at 1.59 MHz due to 8 x over  
clocking.  
Receiver Maximum Input Clock Frequency  
12.7  
MHz  
Maximum data rate at 1.59 MHz due to 8 x over  
clocking.  
a. 100 ns minimum input pulse width is based on the input synchronizers running at 12 MHz (84 ns nominal period).  
February 25, 2005  
Document No. 38-12022 Rev. *G  
25  
CY8C21x23 Final Data Sheet  
3. Electrical Specifications  
3.4.5  
AC External Clock Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at 25°C  
and are for design guidance only.  
Table 3-21. 5V AC External Clock Specifications  
Symbol  
Description  
Min  
0.093  
Typ  
Max  
24.6  
Units  
MHz  
Notes  
FOSCEXT  
Frequency  
High Period  
Low Period  
20.6  
20.6  
150  
5300  
ns  
ns  
µs  
Power Up IMO to Switch  
Table 3-22. 3.3V AC External Clock Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
FOSCEXT  
Frequency with CPU Clock divide by 1  
0.093  
MHz  
Maximum CPU frequency is 12 MHz at 3.3V.  
With the CPU clock divider set to 1, the external  
clock must adhere to the maximum frequency  
and duty cycle requirements.  
12.3  
FOSCEXT  
Frequency with CPU Clock divide by 2 or greater  
0.186  
24.6  
MHz  
If the frequency of the external clock is greater  
than 12 MHz, the CPU clock divider must be set  
to 2 or greater. In this case, the CPU clock  
divider will ensure that the fifty percent duty  
cycle requirement is met.  
High Period with CPU Clock divide by 1  
Low Period with CPU Clock divide by 1  
Power Up IMO to Switch  
41.7  
41.7  
150  
5300  
ns  
ns  
µs  
Table 3-23. 2.7V AC External Clock Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
6.060  
FOSCEXT  
Frequency with CPU Clock divide by 1  
0.093  
MHz  
Maximum CPU frequency is 3 MHz at 2.7V.  
With the CPU clock divider set to 1, the external  
clock must adhere to the maximum frequency  
and duty cycle requirements.  
FOSCEXT  
Frequency with CPU Clock divide by 2 or greater  
0.186  
12.12  
MHz  
If the frequency of the external clock is greater  
than 3 MHz, the CPU clock divider must be set  
to 2 or greater. In this case, the CPU clock  
divider will ensure that the fifty percent duty  
cycle requirement is met.  
High Period with CPU Clock divide by 1  
Low Period with CPU Clock divide by 1  
Power Up IMO to Switch  
83.4  
83.4  
150  
5300  
ns  
ns  
µs  
February 25, 2005  
Document No. 38-12022 Rev. *G  
26  
CY8C21x23 Final Data Sheet  
3. Electrical Specifications  
3.4.6  
AC Programming Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at 25°C  
and are for design guidance only.  
Table 3-24. AC Programming Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
ns  
Notes  
TRSCLK  
Rise Time of SCLK  
Fall Time of SCLK  
1
20  
20  
TFSCLK  
TSSCLK  
THSCLK  
FSCLK  
1
ns  
Data Set up Time to Falling Edge of SCLK  
Data Hold Time from Falling Edge of SCLK  
Frequency of SCLK  
40  
40  
0
ns  
ns  
8
MHz  
ms  
ms  
ns  
TERASEB Flash Erase Time (Block)  
TWRITE Flash Block Write Time  
15  
30  
TDSCLK3 Data Out Delay from Falling Edge of SCLK  
TDSCLK2 Data Out Delay from Falling Edge of SCLK  
50  
70  
3.0 Vdd 3.6  
2.4 Vdd 3.0  
ns  
2
3.4.7  
AC I C Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 3-25. AC Characteristics of the I2C SDA and SCL Pins for Vcc 3.0V  
Standard Mode  
Min Max  
100  
Fast Mode  
Min Max  
Symbol  
Description  
Units  
kHz  
Notes  
FSCLI2C  
SCL Clock Frequency  
0
0
400  
THDSTAI2C Hold Time (repeated) START Condition. After this period, 4.0  
the first clock pulse is generated.  
0.6  
µs  
TLOWI2C  
THIGHI2C  
LOW Period of the SCL Clock  
HIGH Period of the SCL Clock  
4.7  
4.0  
4.7  
0
1.3  
0.6  
0.6  
0
µs  
µs  
µs  
µs  
TSUSTAI2C Set-up Time for a Repeated START Condition  
THDDATI2C Data Hold Time  
0
0
Data Set-up Time0  
TSUDATI2C  
2500  
4.0  
100a  
0.6  
ns0  
TSUSTOI2C Set-up Time for STOP Condition  
µs  
TBUFI2C  
TSPI2C  
Bus Free Time Between a STOP and START Condition  
Pulse Width of spikes are suppressed by the input filter.  
4.7  
1.3  
0
µs  
50  
ns  
a. A Fast-Mode I2C-bus device can be used in a Standard-Mode I2C-bus system, but the requirement t  
250 ns must then be met. This will automatically be the case if  
SU;DAT  
the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line  
+ t = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.  
t
rmax SU;DAT  
February 25, 2005  
Document No. 38-12022 Rev. *G  
27  
CY8C21x23 Final Data Sheet  
3. Electrical Specifications  
Table 3-26. 2.7V AC Characteristics of the I2C SDA and SCL Pins (Fast Mode not Supported)  
Standard Mode  
Min Max  
100  
Fast Mode  
Min Max  
Symbol  
Description  
Units  
kHz  
Notes  
FSCLI2C  
SCL Clock Frequency  
0
THDSTAI2C Hold Time (repeated) START Condition. After this period, 4.0  
the first clock pulse is generated.  
µs  
TLOWI2C  
THIGHI2C  
LOW Period of the SCL Clock  
HIGH Period of the SCL Clock  
4.7  
4.0  
4.7  
0
µs  
µs  
µs  
µs  
ns  
µs  
µs  
ns  
TSUSTAI2C Set-up Time for a Repeated START Condition  
THDDATI2C Data Hold Time  
TSUDATI2C Data Set-up Time  
250  
4.0  
4.7  
TSUSTOI2C Set-up Time for STOP Condition  
TBUFI2C  
TSPI2C  
Bus Free Time Between a STOP and START Condition  
Pulse Width of spikes are suppressed by the input filter.  
SDA  
TSPI2C  
TLOWI2C  
TSUDATI2C  
THDSTAI2C  
TBUFI2C  
SCL  
Figure 3-6. Definition for Timing for Fast/Standard Mode on the I2C Bus  
February 25, 2005  
Document No. 38-12022 Rev. *G  
28  
4. Packaging Information  
4. Packaging Information  
This chapter illustrates the packaging specifications for the CY8C21x23 PSoC device, along with the thermal impedances for each  
package and minimum solder reflow peak temperature.  
Important Note Emulation tools may require a larger area on the target PCB than the chip’s footprint. For a detailed description of  
the emulation tools’ dimensions, refer to the document titled PSoC Emulator Pod Dimensions at  
http://www.cypress.com/support/link.cfm?mr=poddim.  
4.1  
Packaging Dimensions  
PIN 1 ID  
4
1
1. DIMENSIONS IN INCHES[MM] MIN.  
MAX.  
2. PIN 1 ID IS OPTIONAL,  
ROUND ON SINGLE LEADFRAME  
RECTANGULAR ON MATRIX LEADFRAME  
0.150[3.810]  
0.157[3.987]  
3. REFERENCE JEDEC MS-012  
4. PACKAGE WEIGHT 0.07gms  
0.230[5.842]  
0.244[6.197]  
PART #  
S08.15 STANDARD PKG.  
SZ08.15 LEAD FREE PKG.  
5
8
0.189[4.800]  
0.196[4.978]  
0.010[0.254]  
0.016[0.406]  
X 45°  
SEATING PLANE  
0.061[1.549]  
0.068[1.727]  
0.004[0.102]  
0.050[1.270]  
BSC  
0.0075[0.190]  
0.0098[0.249]  
0.004[0.102]  
0.0098[0.249]  
0°~8°  
0.016[0.406]  
0.035[0.889]  
0.0138[0.350]  
0.0192[0.487]  
51-85066 *C  
Figure 4-1. 8-Lead (150-Mil) SOIC  
February 25, 2005  
Document No. 38-12022 Rev. *G  
29  
CY8C21x23 Final Data Sheet  
4. Packaging Information  
51-85022 *B  
Figure 4-2. 16-Lead (150-Mil) SOIC  
51-85077 *C  
Figure 4-3. 20-Lead (210-MIL) SSOP  
Document No. 38-12022 Rev. *G  
February 25, 2005  
30  
CY8C21x23 Final Data Sheet  
4. Packaging Information  
51-85203 **  
Figure 4-4. 24-Lead (4x4) MLF  
4.2  
Thermal Impedances  
Table 4-1. Thermal Impedances per Package  
Package  
Typical θJA  
186 oC/W  
*
8 SOIC  
125 oC/W  
117 oC/W  
40 oC/W  
16 SOIC  
20 SSOP  
24 MLF  
* TJ = TA + POWER x θJA  
4.3  
Solder Reflow Peak Temperature  
Following is the minimum solder reflow peak temperature to achieve good solderability.  
Table 4-2. Solder Reflow Peak Temperature  
Package  
Minimum Peak Temperature*  
Maximum Peak Temperature  
240oC  
240oC  
240oC  
240oC  
260oC  
260oC  
260oC  
260oC  
8 SOIC  
16 SOIC  
20 SSOP  
24 MLF  
*Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220+/-5oC  
with Sn-Pb or 245+/-5oC with Sn-Ag-Cu paste. Refer to the solder manufacturer specifications.  
February 25, 2005  
Document No. 38-12022 Rev. *G  
31  
5. Ordering Information  
The following table lists the CY8C21x23 PSoC device’s key package features and ordering codes.  
CY8C21x23 PSoC Device Key Features and Ordering Information  
8 Pin (150-Mil) SOIC  
CY8C21123-24SXI  
CY8C21123-24SXIT  
CY8C21223-24SXI  
CY8C21223-24SXIT  
CY8C21323-24PVXI  
CY8C21323-24PVXIT  
CY8C21323-24LFXI  
CY8C21323-24LFXIT  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
256  
256  
256  
256  
256  
256  
256  
256  
No  
No  
-40°C to +85°C  
-40°C to +85°C  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
6
4
4
8
8
8
8
8
8
0
0
0
0
0
0
0
0
No  
No  
8 Pin (150-Mil) SOIC  
(Tape and Reel)  
6
16 Pin (150-Mil) SOIC  
Yes -40°C to +85°C  
Yes -40°C to +85°C  
12  
12  
16  
16  
16  
16  
No  
16 Pin (150-Mil) SOIC  
(Tape and Reel)  
No  
20 Pin (210-Mil) SSOP  
No  
No  
-40°C to +85°C  
-40°C to +85°C  
Yes  
Yes  
Yes  
Yes  
20 Pin (210-Mil) SSOP  
(Tape and Reel)  
24 Pin (4x4) MLF  
Yes -40°C to +85°C  
Yes -40°C to +85°C  
24 Pin (4x4) MLF  
(Tape and Reel)  
5.1  
Ordering Code Definitions  
CY 8 C 21 xxx-24xx  
Package Type:  
PX = PDIP Pb-Free  
SX = SOIC Pb-Free  
Thermal Rating:  
C = Commercial  
I = Industrial  
PVX = SSOP Pb-Free  
LFX = MLF Pb-Free  
AX = TQFP Pb-Free  
E = Extended  
Speed: 24 MHz  
Part Number  
Family Code  
Technology Code: C = CMOS  
Marketing Code: 8 = Cypress MicroSystems  
Company ID: CY = Cypress  
February 25, 2005  
Document No. 38-12022 Rev. *G  
32  
6. Sales and Service Information  
To obtain information about Cypress Semiconductor or PSoC sales and technical support, reference the following information.  
Cypress Semiconductor  
2700 162nd Street SW, Building D  
Lynnwood, WA 98037  
Phone: 800.669.0557  
Facsimile: 425.787.4641  
Web Sites:  
Company Information – http://www.cypress.com  
Sales – http://www.cypress.com/aboutus/sales_locations.cfm  
Technical Support – http://www.cypress.com/support/login.cfm  
6.1  
Revision History  
Document Title:  
Document Number: 38-12022  
Revision ECN # Issue Date Origin of Change  
**  
CY8C21x23 PSoC Mixed-Signal Array Final Data Sheet  
Description of Change  
New silicon and document (Revision **).  
133248 01/28/2004 NWJ  
208900 03/05/2004 NWJ  
*A  
*B  
*C  
Add new part, new package and update all ordering codes to Pb-free.  
Expand and prepare Preliminary version.  
03/18/2004 NWJ  
212081  
227321  
05/19/2004 CMS Team  
Update specs., data, format.  
Updated Overview and Electrical Spec. chapters, along with 24-pin pinout. Added  
CMP_GO_EN register (1,64h) to mapping table.  
*D  
See ECN  
See ECN  
SFV  
235973  
290991  
Update data sheet standards per SFV memo. Fix device table. Add part numbers to  
pinouts and fine tune. Change 20-pin SSOP to CY8C21323. Add Reflow Temp. table.  
Update diagrams and specs.  
*E  
*F  
*G  
HMT  
HMT  
HMT  
301636 See ECN  
324073 See ECN  
DC Chip-Level Specification changes. Update links to new CY.com Portal.  
Obtained clearer 16 SOIC package. Update Thermal Impedances and Solder Reflow  
tables. Re-add pinout ISSP notation. Fix ADC type-o. Fix TMP register names. Update  
Electrical Specifications. Add CY logo. Update CY copyright. Make data sheet Final.  
Distribution: External/Public  
Posting: None  
6.2  
Copyrights and Flash Code Protection  
Copyrights  
© Cypress Semiconductor Corp. 2004-2005. All rights reserved. PSoC™, PSoC Designer™, and Programmable System-on-Chip™ are PSoC-related trademarks of  
Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are property of the respective corporations.  
The information contained herein is subject to change without notice. Cypress Semiconductor assumes no responsibility for the use of any circuitry other than circuitry  
embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products  
for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of  
Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress  
Semiconductor against all charges. Cypress Semiconductor products are not warranted nor intended to be used for medical, life-support, life-saving, critical control or safety  
applications, unless pursuant to an express written agreement with Cypress Semiconductor.  
Flash Code Protection  
Note the following details of the Flash code protection features on Cypress Semiconductor PSoC devices.  
Cypress Semiconductor products meet the specifications contained in their particular data sheets. Cypress Semiconductor believes that its PSoC family of products is one  
of the most secure families of its kind on the market today, regardless of how they are used. There may be methods, unknown to Cypress Semiconductor, that can breach  
the code protection features. Any of these methods, to our knowledge, would be dishonest and possibly illegal. Neither Cypress Semiconductor nor any other semicon-  
ductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."  
Cypress Semiconductor is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly evolving. We at Cypress  
Semiconductor are committed to continuously improving the code protection features of our products.  
February 25, 2005  
© Cypress Semiconductor Corp. 2004-2005 — Document No. 38-12022 Rev. *G  
33  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY