CY8C27143_06 [CYPRESS]

PSoC㈢ Mixed-Signal Array; 的PSoC ™混合信号阵列
CY8C27143_06
型号: CY8C27143_06
厂家: CYPRESS    CYPRESS
描述:

PSoC㈢ Mixed-Signal Array
的PSoC ™混合信号阵列

文件: 总51页 (文件大小:753K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PSoC® Mixed-Signal Array  
Final Data Sheet  
CY8C27143, CY8C27243,  
CY8C27443, CY8C27543, and CY8C27643  
Features  
Powerful Harvard Architecture Processor  
Precision, Programmable Clocking  
Additional System Resources  
2
M8C Processor Speeds to 24 MHz  
8x8 Multiply, 32-Bit Accumulate  
Low Power at High Speed  
3.0 to 5.25V Operating Voltage  
Operating Voltages Down to 1.0V Using On-  
Chip Switch Mode Pump (SMP)  
Internal 2.5% 24/48 MHz Oscillator  
I CSlave, Master, and Multi-Master to  
400 kHz  
24/48 MHz with Optional 32 kHz Crystal  
Optional External Oscillator, up to 24 MHz  
Internal Oscillator for Watchdog and Sleep  
Watchdog and Sleep Timers  
User-Configurable Low Voltage Detection  
Integrated Supervisory Circuit  
On-Chip Precision Voltage Reference  
Flexible On-Chip Memory  
16K Flash Program Storage 50,000 Erase/  
Write Cycles  
Industrial Temperature Range: -40°C to +85°C  
Complete Development Tools  
Advanced Peripherals (PSoC Blocks)  
256 Bytes SRAM Data Storage  
In-System Serial Programming (ISSP)  
Partial Flash Updates  
Flexible Protection Modes  
EEPROM Emulation in Flash  
Free Development Software  
(PSoC Designer™)  
12 Rail-to-Rail Analog PSoC Blocks Provide:  
Full-Featured, In-Circuit Emulator and  
Programmer  
- Up to 14-Bit ADCs  
- Up to 9-Bit DACs  
Full Speed Emulation  
Complex Breakpoint Structure  
128K Trace Memory  
- Programmable Gain Amplifiers  
- Programmable Filters and Comparators  
8 Digital PSoC Blocks Provide:  
Programmable Pin Configurations  
25 mA Sink on all GPIO  
- 8- to 32-Bit Timers, Counters, and PWMs  
- CRC and PRS Modules  
- Up to 2 Full-Duplex UARTs  
- Multiple SPIMasters or Slaves  
- Connectable to all GPIO Pins  
Pull up, Pull down, High Z, Strong, or Open  
Drain Drive Modes on all GPIO  
Up to 12 Analog Inputs on GPIO  
Four 30 mA Analog Outputs on GPIO  
Configurable Interrupt on all GPIO  
Complex Peripherals by Combining Blocks  
PSoC® Functional Overview  
Analog  
Drivers  
Port 5 Port 4 Port 3 Port 2 Port 1 Port 0  
PSoC  
CORE  
The PSoC® family consists of many Mixed-Signal Array with  
On-Chip Controller devices. These devices are designed to  
replace multiple traditional MCU-based system components  
with one, low cost single-chip programmable device. PSoC  
devices include configurable blocks of analog and digital logic,  
as well as programmable interconnects. This architecture  
allows the user to create customized peripheral configurations  
that match the requirements of each individual application.  
Additionally, a fast CPU, Flash program memory, SRAM data  
memory, and configurable IO are included in a range of conve-  
nient pinouts and packages.  
System Bus  
Global Digital Interconnect  
SRAM  
Global Analog Interconnect  
SROM  
Flash 16K  
256 Bytes  
Sleep and  
Watchdog  
CPUCore(M8C)  
Interrupt  
Controller  
MultipleClockSources  
(IncludesIMO,ILO, PLL, andECO)  
The PSoC architecture, as illustrated on the left, is comprised of  
four main areas: PSoC Core, Digital System, Analog System,  
and System Resources. Configurable global busing allows all  
the device resources to be combined into a complete custom  
system. The PSoC CY8C27x43 family can have up to five IO  
ports that connect to the global digital and analog interconnects,  
providing access to 8 digital blocks and 12 analog blocks.  
DIGITAL SYSTEM  
ANALOG SYSTEM  
Analog  
Ref.  
Digital  
Block  
Array  
Analog  
Block  
Array  
Analog  
Input  
Muxing  
The PSoC Core  
The PSoC Core is a powerful engine that supports a rich fea-  
ture set. The core includes a CPU, memory, clocks, and config-  
urable GPIO (General Purpose IO).  
POR and LVD Internal  
Voltage  
Switch  
Mode  
Pump  
Digital  
Clocks  
Multiply  
2
I C  
Decimator  
Accum.  
The M8C CPU core is a powerful processor with speeds up to  
24 MHz, providing a four MIPS 8-bit Harvard architecture micro-  
System Resets  
Ref.  
SYSTEM RESOURCES  
October 26, 2006  
© Cypress Semiconductor Corp. 2002 - 2006 — Document No. 38-12012 Rev. *K  
1
[+] Feedback  
CY8C27x43 Final Data Sheet  
PSoC® Overview  
processor. The CPU utilizes an interrupt controller with 17 vec-  
tors, to simplify programming of real time embedded events.  
Program execution is timed and protected using the included  
Sleep and Watch Dog Timers (WDT).  
Digital peripheral configurations include those listed below.  
PWMs (8 to 32 bit)  
PWMs with Dead band (8 to 32 bit)  
Counters (8 to 32 bit)  
Memory encompasses 16K of Flash for program storage, 256  
bytes of SRAM for data storage, and up to 2K of EEPROM  
emulated using the Flash. Program Flash utilizes four protec-  
tion levels on blocks of 64 bytes, allowing customized software  
IP protection.  
Timers (8 to 32 bit)  
UART 8 bit with selectable parity (up to 2)  
SPI slave and master (up to 2)  
I2C slave and multi-master (1 available as a System  
Resource)  
The PSoC device incorporates flexible internal clock genera-  
tors, including a 24 MHz IMO (internal main oscillator) accurate  
to 2.5% over temperature and voltage. The 24 MHz IMO can  
also be doubled to 48 MHz for use by the digital system. A low  
power 32 kHz ILO (internal low speed oscillator) is provided for  
the Sleep timer and WDT. If crystal accuracy is desired, the  
ECO (32.768 kHz external crystal oscillator) is available for use  
as a Real Time Clock (RTC) and can optionally generate a crys-  
tal-accurate 24 MHz system clock using a PLL. The clocks,  
together with programmable clock dividers (as a System  
Resource), provide the flexibility to integrate almost any timing  
requirement into the PSoC device.  
Cyclical Redundancy Checker/Generator (8 to 32 bit)  
IrDA (up to 2)  
Pseudo Random Sequence Generators (8 to 32 bit)  
The digital blocks can be connected to any GPIO through a  
series of global buses that can route any signal to any pin. The  
buses also allow for signal multiplexing and for performing logic  
operations. This configurability frees your designs from the con-  
straints of a fixed peripheral controller.  
Digital blocks are provided in rows of four, where the number of  
blocks varies by PSoC device family. This allows you the opti-  
mum choice of system resources for your application. Family  
resources are shown in the table titled “PSoC Device Charac-  
teristics” on page 3.  
PSoC GPIOs provide connection to the CPU, digital and analog  
resources of the device. Each pin’s drive mode may be selected  
from eight options, allowing great flexibility in external interfac-  
ing. Every pin also has the capability to generate a system inter-  
rupt on high level, low level, and change from last read.  
The Analog System  
The Analog System is composed of 12 configurable blocks,  
each comprised of an opamp circuit allowing the creation of  
complex analog signal flows. Analog peripherals are very flexi-  
ble and can be customized to support specific application  
requirements. Some of the more common PSoC analog func-  
tions (most available as user modules) are listed below.  
The Digital System  
The Digital System is composed of 8 digital PSoC blocks. Each  
block is an 8-bit resource that can be used alone or combined  
with other blocks to form 8, 16, 24, and 32-bit peripherals, which  
are called user module references.  
Analog-to-digital converters (up to 4, with 6- to 14-bit resolu-  
Port 5  
Port 3  
Port 1  
tion, selectable as Incremental, Delta Sigma, and SAR)  
Port 4  
Port 2  
Port 0  
Filters (2, 4, 6, and 8 pole band-pass, low-pass, and notch)  
Amplifiers (up to 4, with selectable gain to 48x)  
To SystemBus  
DigitalClocks  
FromCore  
ToAnalog  
System  
Instrumentation amplifiers (up to 2, with selectable gain to  
93x)  
DIGITAL SYSTEM  
Comparators (up to 4, with 16 selectable thresholds)  
DACs (up to 4, with 6- to 9-bit resolution)  
DigitalPSoCBlockArray  
Row 0  
4
4
Multiplying DACs (up to 4, with 6- to 9-bit resolution)  
High current output drivers (four with 30 mA drive as a Core  
DBB00  
DBB10  
DBB01  
DCB02  
DCB12  
DCB03  
Resource)  
1.3V reference (as a System Resource)  
DTMF Dialer  
8
8
8
8
Row 1  
4
4
Modulators  
DBB11  
DCB13  
Correlators  
Peak detectors  
Many other topologies possible  
GIE[7:0]  
GIO[7:0]  
GOE[7:0]  
GOO[7:0]  
Global Digital  
Interconnect  
Digital System Block Diagram  
October 26, 2006  
Document No. 38-12012 Rev. *K  
2
[+] Feedback  
CY8C27x43 Final Data Sheet  
PSoC® Overview  
Analog blocks are provided in columns of three, which includes  
one CT (Continuous Time) and two SC (Switched Capacitor)  
blocks, as shown in the figure below.  
Additional System Resources  
System Resources, some of which have been previously listed,  
provide additional capability useful to complete systems. Addi-  
tional resources include a multiplier, decimator, switch mode  
pump, low voltage detection, and power on reset. Statements  
describing the merits of each system resource are below.  
P0[7]  
P0[5]  
P0[6]  
P0[4]  
Digital clock dividers provide three customizable clock fre-  
quencies for use in applications. The clocks can be routed to  
both the digital and analog systems. Additional clocks can be  
generated using digital PSoC blocks as clock dividers.  
P0[3]  
P0[1]  
P0[2]  
P0[0]  
Multiply accumulate (MAC) provides fast 8-bit multiplier with  
P2[6]  
P2[4]  
32-bit accumulate, to assist in general math and digital filters.  
P2[3]  
P2[1]  
The decimator provides a custom hardware filter for digital  
signal processing applications including the creation of Delta  
Sigma ADCs.  
P2[2]  
P2[0]  
The I2C module provides 100 and 400 kHz communication  
over two wires. Slave, master, and multi-master modes are  
all supported.  
Low Voltage Detection (LVD) interrupts can signal the appli-  
cation of falling voltage levels, while the advanced POR  
(Power On Reset) circuit eliminates the need for a system  
supervisor.  
Array Input Configuration  
An internal 1.3V reference provides an absolute reference for  
the analog system, including ADCs and DACs.  
ACI0[1:0]  
ACI1[1:0]  
ACI2[1:0]  
ACI3[1:0]  
An integrated switch mode pump (SMP) generates normal  
operating voltages from a single 1.2V battery cell, providing a  
low cost boost converter.  
Block Array  
ACB00  
ASC10  
ASD20  
ACB01  
ASD11  
ASC21  
ACB02  
ASC12  
ASD22  
ACB03  
ASD13  
ASC23  
PSoC Device Characteristics  
Depending on your PSoC device characteristics, the digital and  
analog systems can have 16, 8, or 4 digital blocks and 12, 6, or  
4 analog blocks. The following table lists the resources  
available for specific PSoC device groups.The PSoC device  
covered by this data sheet is highlighted below.  
Analog Reference  
PSoC Device Characteristics  
Interface to  
Digital System  
Re fe r ence  
Generators  
Ref Hi  
Ref Lo  
AGND  
AGNDIn  
Ref In  
Bandgap  
PSoC Part  
Number  
up to  
64  
CY8C29x66  
4
16  
12  
4
4
12  
2K  
32K  
M8C Interface (Address Bus, Data Bus, Etc.)  
up to  
44  
256  
Bytes  
CY8C27x43  
CY8C24x94  
CY8C24x23  
2
1
1
8
4
4
12  
48  
12  
4
2
2
4
2
2
12  
6
16K  
16K  
4K  
Analog System Block Diagram  
49  
1K  
up to  
24  
256  
Bytes  
6
up to  
24  
256  
Bytes  
CY8C24x23A  
CY8C21x34  
CY8C21x23  
CY8C20x34  
1
1
1
0
4
4
4
0
12  
28  
8
2
0
0
0
2
2
2
0
6
4K  
8K  
4K  
8K  
up to  
28  
512  
Bytes  
a
4
256  
Bytes  
a
16  
4
up to  
28  
512  
Bytes  
b
28  
3
a. Limited analog functionality.  
b. Two analog blocks and one CapSense.  
October 26, 2006  
Document No. 38-12012 Rev. *K  
3
[+] Feedback  
CY8C27x43 Final Data Sheet  
PSoC® Overview  
Getting Started  
Development Tools  
PSoC Designer is a Microsoft® Windows-based, integrated  
development environment for the Programmable System-on-  
Chip (PSoC) devices. The PSoC Designer IDE and application  
runs on Windows NT 4.0, Windows 2000, Windows Millennium  
(Me), or Windows XP. (Reference the PSoC Designer Func-  
tional Flow diagram below.)  
The quickest path to understanding the PSoC silicon is by read-  
ing this data sheet and using the PSoC Designer Integrated  
Development Environment (IDE). This data sheet is an over-  
view of the PSoC integrated circuit and presents specific pin,  
register, and electrical specifications. For in-depth information,  
along with detailed programming information, reference the  
PSoC Mixed-Signal Array Technical Reference Manual.  
PSoC Designer helps the customer to select an operating con-  
figuration for the PSoC, write application code that uses the  
PSoC, and debug the application. This system provides design  
database management by project, an integrated debugger with  
In-Circuit Emulator, in-system programming support, and the  
CYASM macro assembler for the CPUs.  
For up-to-date Ordering, Packaging, and Electrical Specification  
information, reference the latest PSoC device data sheets on  
the web at http://www.cypress.com/psoc.  
Development Kits  
PSoC Designer also supports a high-level C language compiler  
developed specifically for the devices in the family.  
Development Kits are available from the following distributors:  
Digi-Key, Avnet, Arrow, and Future. The Cypress Online Store  
contains development kits, C compilers, and all accessories for  
PSoC development. Go to the Cypress Online Store web site at  
http://www.cypress.com, click the Online Store shopping cart  
icon at the bottom of the web page, and click PSoC (Program-  
mable System-on-Chip) to view a current list of available items.  
Context  
Graphical Designer  
PSoC  
Sensitive  
Interface  
Help  
Designer  
Technical Training  
Free PSoC technical training is available for beginners and is  
taught by a marketing or application engineer over the phone.  
PSoC training classes cover designing, debugging, advanced  
analog, as well as application-specific classes covering topics  
such as PSoC and the LIN bus. Go to http://www.cypress.com,  
click on Design Support located on the left side of the web  
page, and select Technical Training for more details.  
Importable  
Design  
Database  
PSoC  
Configuration  
Sheet  
Device  
Database  
PSoC  
Designer  
Core  
Application  
Database  
Consultants  
Manufacturing  
Information  
File  
Engine  
Certified PSoC Consultants offer everything from technical  
assistance to completed PSoC designs. To contact or become a  
PSoC Consultant go to http://www.cypress.com, click on Design  
Support located on the left side of the web page, and select  
CYPros Consultants.  
Project  
Database  
User  
Modules  
Library  
Technical Support  
PSoC application engineers take pride in fast and accurate  
response. They can be reached with a 4-hour guaranteed  
response at http://www.cypress.com/support/login.cfm.  
Emulation  
Pod  
In-Circuit  
Emulator  
Device  
Programmer  
Application Notes  
PSoC Designer Subsystems  
A long list of application notes will assist you in every aspect of  
your design effort. To view the PSoC application notes, go to  
the http://www.cypress.com web site and select Application  
Notes under the Design Resources list located in the center of  
the web page. Application Notes are sorted by date by default.  
October 26, 2006  
Document No. 38-12012 Rev. *K  
4
[+] Feedback  
CY8C27x43 Final Data Sheet  
PSoC® Overview  
PSoC Designer Software Subsystems  
Device Editor  
Debugger  
The Device Editor subsystem allows the user to select different  
onboard analog and digital components called user modules  
using the PSoC blocks. Examples of user modules are ADCs,  
DACs, Amplifiers, and Filters.  
The PSoC Designer Debugger subsystem provides hardware  
in-circuit emulation, allowing the designer to test the program in  
a physical system while providing an internal view of the PSoC  
device. Debugger commands allow the designer to read and  
program and read and write data memory, read and write IO  
registers, read and write CPU registers, set and clear break-  
points, and provide program run, halt, and step control. The  
debugger also allows the designer to create a trace buffer of  
registers and memory locations of interest.  
The device editor also supports easy development of multiple  
configurations and dynamic reconfiguration. Dynamic configu-  
ration allows for changing configurations at run time.  
PSoC Designer sets up power-on initialization tables for  
selected PSoC block configurations and creates source code  
for an application framework. The framework contains software  
to operate the selected components and, if the project uses  
more than one operating configuration, contains routines to  
switch between different sets of PSoC block configurations at  
run time. PSoC Designer can print out a configuration sheet for  
a given project configuration for use during application pro-  
gramming in conjunction with the Device Data Sheet. Once the  
framework is generated, the user can add application-specific  
code to flesh out the framework. It’s also possible to change the  
selected components and regenerate the framework.  
Online Help System  
The online help system displays online, context-sensitive help  
for the user. Designed for procedural and quick reference, each  
functional subsystem has its own context-sensitive help. This  
system also provides tutorials and links to FAQs and an Online  
Support Forum to aid the designer in getting started.  
Hardware Tools  
In-Circuit Emulator  
Design Browser  
A low cost, high functionality ICE (In-Circuit Emulator) is avail-  
able for development support. This hardware has the capability  
to program single devices.  
The Design Browser allows users to select and import precon-  
figured designs into the user’s project. Users can easily browse  
a catalog of preconfigured designs to facilitate time-to-design.  
Examples provided in the tools include a 300-baud modem, LIN  
Bus master and slave, fan controller, and magnetic card reader.  
The emulator consists of a base unit that connects to the PC by  
way of the parallel or USB port. The base unit is universal and  
will operate with all PSoC devices. Emulation pods for each  
device family are available separately. The emulation pod takes  
the place of the PSoC device in the target board and performs  
full speed (24 MHz) operation.  
Application Editor  
In the Application Editor you can edit your C language and  
Assembly language source code. You can also assemble, com-  
pile, link, and build.  
Assembler. The macro assembler allows the assembly code  
to be merged seamlessly with C code. The link libraries auto-  
matically use absolute addressing or can be compiled in relative  
mode, and linked with other software modules to get absolute  
addressing.  
C Language Compiler. A C language compiler is available  
that supports Cypress MicroSystems’ PSoC family devices.  
Even if you have never worked in the C language before, the  
product quickly allows you to create complete C programs for  
the PSoC family devices.  
The embedded, optimizing C compiler provides all the features  
of C tailored to the PSoC architecture. It comes complete with  
embedded libraries providing port and bus operations, standard  
keypad and display support, and extended math functionality.  
October 26, 2006  
Document No. 38-12012 Rev. *K  
5
[+] Feedback  
CY8C27x43 Final Data Sheet  
PSoC® Overview  
Designing with User Modules  
The development process for the PSoC device differs from that  
of a traditional fixed function microprocessor. The configurable  
analog and digital hardware blocks give the PSoC architecture  
a unique flexibility that pays dividends in managing specification  
change during development and by lowering inventory costs.  
These configurable resources, called PSoC Blocks, have the  
ability to implement a wide variety of user-selectable functions.  
Each block has several registers that determine its function and  
connectivity to other blocks, multiplexers, buses, and to the IO  
pins. Iterative development cycles permit you to adapt the hard-  
ware as well as the software. This substantially lowers the risk  
that you will have to select a different part to meet the final  
design requirements.  
Device Editor  
Placement  
and  
Parameter  
-ization  
User  
Module  
Selection  
Source  
Code  
Generator  
Generate  
Application  
Application Editor  
Source  
Code  
Editor  
To speed the development process, the PSoC Designer Inte-  
grated Development Environment (IDE) provides a library of  
pre-built, pre-tested hardware peripheral functions, called “User  
Modules.” User modules make selecting and implementing  
peripheral devices simple, and come in analog, digital, and  
mixed signal varieties. The standard User Module library con-  
tains over 50 common peripherals such as ADCs, DACs Tim-  
ers, Counters, UARTs, and other not-so common peripherals  
such as DTMF Generators and Bi-Quad analog filter sections.  
Project  
Manager  
Build  
Manager  
Build  
All  
Debugger  
Each user module establishes the basic register settings that  
implement the selected function. It also provides parameters  
that allow you to tailor its precise configuration to your particular  
application. For example, a Pulse Width Modulator User Mod-  
ule configures one or more digital PSoC blocks, one for each 8  
bits of resolution. The user module parameters permit you to  
establish the pulse width and duty cycle. User modules also  
provide tested software to cut your development time. The user  
module application programming interface (API) provides high-  
level functions to control and respond to hardware events at  
run-time. The API also provides optional interrupt service rou-  
tines that you can adapt as needed.  
Event &  
Breakpoint  
Manager  
Interface  
to ICE  
Storage  
Inspector  
User Module and Source Code Development Flows  
The next step is to write your main program, and any sub-rou-  
tines using PSoC Designer’s Application Editor subsystem.  
The Application Editor includes a Project Manager that allows  
you to open the project source code files (including all gener-  
ated code files) from a hierarchal view. The source code editor  
provides syntax coloring and advanced edit features for both C  
and assembly language. File search capabilities include simple  
string searches and recursive “grep-style” patterns. A single  
mouse click invokes the Build Manager. It employs a profes-  
sional-strength “makefile” system to automatically analyze all  
file dependencies and run the compiler and assembler as nec-  
essary. Project-level options control optimization strategies  
used by the compiler and linker. Syntax errors are displayed in  
a console window. Double clicking the error message takes you  
directly to the offending line of source code. When all is correct,  
the linker builds a HEX file image suitable for programming.  
The API functions are documented in user module data sheets  
that are viewed directly in the PSoC Designer IDE. These data  
sheets explain the internal operation of the user module and  
provide performance specifications. Each data sheet describes  
the use of each user module parameter and documents the set-  
ting of each register controlled by the user module.  
The development process starts when you open a new project  
and bring up the Device Editor, a graphical user interface (GUI)  
for configuring the hardware. You pick the user modules you  
need for your project and map them onto the PSoC blocks with  
point-and-click simplicity. Next, you build signal chains by inter-  
connecting user modules to each other and the IO pins. At this  
stage, you also configure the clock source connections and  
enter parameter values directly or by selecting values from  
drop-down menus. When you are ready to test the hardware  
configuration or move on to developing code for the project, you  
perform the “Generate Application” step. This causes PSoC  
Designer to generate source code that automatically configures  
the device to your specification and provides the high-level user  
module API functions.  
The last step in the development process takes place inside the  
PSoC Designer’s Debugger subsystem. The Debugger down-  
loads the HEX image to the In-Circuit Emulator (ICE) where it  
runs at full speed. Debugger capabilities rival those of systems  
costing many times more. In addition to traditional single-step,  
run-to-breakpoint and watch-variable features, the Debugger  
provides a large trace buffer and allows you define complex  
breakpoint events that include monitoring address and data bus  
values, memory locations and external signals.  
October 26, 2006  
Document No. 38-12012 Rev. *K  
6
[+] Feedback  
CY8C27x43 Final Data Sheet  
PSoC® Overview  
Document Conventions  
Table of Contents  
For an in depth discussion and more information on your PSoC  
device, obtain the PSoC Mixed-Signal Array Technical Refer-  
ence Manual on http://www.cypress.com. This document is  
organized into the following chapters and sections.  
Acronyms Used  
The following table lists the acronyms that are used in this doc-  
ument.  
Acronym  
AC  
Description  
1.  
Pin Information ........................................................................................ 8  
1.1 Pinouts ........................................................................................... 8  
alternating current  
1.1.1  
1.1.2  
1.1.3  
1.1.4  
1.1.5  
1.1.6  
8-Pin Part Pinout ............................................................ 8  
20-Pin Part Pinout .......................................................... 9  
28-Pin Part Pinout ........................................................ 10  
44-Pin Part Pinout ........................................................ 11  
48-Pin Part Pinouts ...................................................... 12  
56-Pin Part Pinout ......................................................... 14  
ADC  
API  
analog-to-digital converter  
application programming interface  
central processing unit  
continuous time  
CPU  
CT  
2.  
3.  
Register Reference ................................................................................ 16  
DAC  
DC  
digital-to-analog converter  
direct current  
2.1  
2.2  
Register Conventions ................................................................... 16  
Register Mapping Tables ............................................................. 16  
ECO  
EEPROM  
FSR  
GPIO  
GUI  
external crystal oscillator  
electrically erasable programmable read-only memory  
full scale range  
Electrical Specifications ....................................................................... 19  
3.1  
3.2  
3.3  
Absolute Maximum Ratings ........................................................ 20  
Operating Temperature ............................................................... 20  
DC Electrical Characteristics ........................................................ 21  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
3.3.5  
3.3.6  
3.3.7  
3.3.8  
3.3.9  
DC Chip-Level Specifications ........................................ 21  
DC General Purpose IO Specifications ......................... 21  
DC Operational Amplifier Specifications ....................... 22  
DC Low Power Comparator Specifications ................... 23  
DC Analog Output Buffer Specifications ....................... 24  
DC Switch Mode Pump Specifications .......................... 25  
DC Analog Reference Specifications ............................ 26  
DC Analog PSoC Block Specifications .......................... 28  
DC POR and LVD Specifications .................................. 28  
general purpose IO  
graphical user interface  
human body model  
HBM  
ICE  
in-circuit emulator  
ILO  
internal low speed oscillator  
internal main oscillator  
input/output  
IMO  
3.3.10 DC Programming Specifications ................................... 29  
AC Electrical Characteristics ........................................................ 30  
IO  
3.4  
IPOR  
LSb  
imprecise power on reset  
least-significant bit  
3.4.1  
3.4.2  
3.4.3  
3.4.4  
3.4.5  
3.4.6  
3.4.7  
3.4.8  
3.4.9  
AC Chip-Level Specifications ........................................ 30  
AC General Purpose IO Specifications ......................... 32  
AC Operational Amplifier Specifications ........................ 33  
AC Low Power Comparator Specifications ................... 35  
AC Digital Block Specifications ..................................... 35  
AC Analog Output Buffer Specifications ........................ 36  
AC External Clock Specifications .................................. 37  
AC Programming Specifications .................................... 37  
AC I2C Specifications .................................................... 38  
LVD  
low voltage detect  
MSb  
PC  
most-significant bit  
program counter  
PLL  
phase-locked loop  
POR  
PPOR  
PSoC®  
PWM  
SC  
power on reset  
4.  
5.  
Packaging Information .......................................................................... 39  
precision power on reset  
Programmable System-on-Chip™  
pulse width modulator  
switched capacitor  
4.1  
4.2  
4.3  
4.4  
Packaging Dimensions ................................................................. 39  
Thermal Impedances .................................................................. 44  
Capacitance on Crystal Pins ....................................................... 44  
Solder Reflow Peak Temperature ................................................ 44  
Development Tool Selection ................................................................ 45  
5.1  
Software ....................................................................................... 45  
SLIMO  
SMP  
SRAM  
slow IMO  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
PSoC Designer .............................................................. 45  
PSoC Express ............................................................... 45  
PSoC Programmer ........................................................ 45  
CY3202-C iMAGEcraft C Compiler ............................... 45  
switch mode pump  
static random access memory  
5.2  
5.3  
Development Kits ......................................................................... 45  
5.2.1  
5.2.2  
CY3215-DK Basic Development Kit .............................. 45  
CY3210-ExpressDK Development Kit ........................... 46  
Evaluation Tools ........................................................................... 46  
Units of Measure  
5.3.1  
5.3.2  
5.3.3  
CY3210-MiniProg1 ........................................................ 46  
CY3210-PSoCEval1 ...................................................... 46  
CY3214-PSoCEvalUSB ................................................ 46  
A units of measure table is located in the Electrical Specifica-  
tions section. Table 3-1 on page 19 lists all the abbreviations  
used to measure the PSoC devices.  
5.4  
Device Programmers ................................................................... 46  
5.4.1  
5.4.2  
CY3216 Modular Programmer ...................................... 46  
CY3207ISSP Serial Programmer (ISSP) ...................... 46  
5.5  
5.6  
5.7  
Accessories (Emulation and Programming) ................................. 47  
3rd-Party Tools ............................................................................. 47  
Build a PSoC Emulator into Your Board ...................................... 47  
Numeric Naming  
6.  
7.  
Ordering Information ............................................................................ 48  
6.1 Ordering Code Definitions ........................................................... 49  
Hexidecimal numbers are represented with all letters in upper-  
case with an appended lowercase ‘h’ (for example, ‘14h’ or  
‘3Ah’). Hexidecimal numbers may also be represented by a ‘0x’  
prefix, the C coding convention. Binary numbers have an  
appended lowercase ‘b’ (e.g., 01010100b’ or ‘01000011b’).  
Numbers not indicated by an ‘h’ or ‘b’ are decimal.  
Sales and Service Information ............................................................. 50  
7.1  
7.2  
Revision History ........................................................................... 50  
Copyrights and Code Protection .................................................. 51  
October 26, 2006  
Document No. 38-12012 Rev. *K  
7
[+] Feedback  
1. Pin Information  
This chapter describes, lists, and illustrates the CY8C27x43 PSoC device pins and pinout configurations.  
1.1  
Pinouts  
The CY8C27x43 PSoC device is available in a variety of packages which are listed and illustrated in the following tables. Every port  
pin (labeled with a “P”) is capable of Digital IO. However, Vss, Vdd, SMP, and XRES are not capable of Digital IO.  
1.1.1  
8-Pin Part Pinout  
Table 1-1. 8-Pin Part Pinout (PDIP)  
Type  
CY8C27143 8-Pin PSoC Device  
Pin  
No.  
Pin  
Name  
Description  
Digital Analog  
1
2
3
IO  
IO  
IO  
IO  
IO  
P0[5]  
Analog column mux input and column output.  
Analog column mux input and column output.  
Vdd  
A, IO,P0[5]  
A,IO, P0[3]  
I2CSCL,XTALin,P1[1]  
Vss  
1
2
3
4
8
7
6
5
P0[4], A,IO  
P0[2], A,IO  
P0[3]  
P1[1]  
PDIP  
Crystal Input (XTALin), I2C Serial Clock  
(SCL), ISSP-SCLK*.  
P1[0],XTALout,I2CSDA  
4
5
Power  
Power  
Vss  
Ground connection.  
IO  
P1[0]  
Crystal Output (XTALout), I2C Serial Data  
(SDA), ISSP-SDATA*.  
6
7
8
IO  
IO  
IO  
IO  
P0[2]  
P0[4]  
Vdd  
Analog column mux input and column output.  
Analog column mux input and column output.  
Supply voltage.  
LEGEND: A = Analog, I = Input, and O = Output.  
* These are the ISSP pins, which are not High Z at POR (Power On Reset). See the PSoC Mixed-Signal Array Technical Reference Manual for details.  
October 26, 2006  
Document No. 38-12012 Rev. *K  
8
[+] Feedback  
CY8C27x43 Final Data Sheet  
1. Pin Information  
1.1.2  
20-Pin Part Pinout  
Table 1-2. 20-Pin Part Pinout (SSOP, SOIC)  
Type  
CY8C27243 20-Pin PSoC Device  
Pin  
No.  
Pin  
Name  
Description  
Digital Analog  
1
2
3
4
5
IO  
IO  
IO  
IO  
I
P0[7]  
P0[5]  
P0[3]  
P0[1]  
SMP  
Analog column mux input.  
A, I,P0[7]  
A,IO, P0[5]  
A,IO, P0[3]  
A,I, P0[1]  
Vdd  
20  
19  
18  
17  
16  
1
2
3
4
5
6
7
8
9
IO  
IO  
I
Analog column mux input and column output.  
Analog column mux input and column output.  
Analog column mux input.  
P0[6], A,I  
P0[4], A,IO  
P0[2], A,IO  
P0[0], A,I  
XRES  
SSOP  
SMP  
Power  
Switch Mode Pump (SMP) connection to  
external components required.  
I2CSCL,P1[7]  
I2CSDA, P1[5]  
P1[3]  
SOIC 15  
P1[6]  
14  
13  
12  
11  
6
7
8
9
IO  
IO  
IO  
IO  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
I2C Serial Clock (SCL).  
I2C Serial Data (SDA).  
P1[4],EXTCLK  
P1[2]  
P1[0],XTALout,I2CSDA  
I2CSCL,XTALin, P1[1]  
Vss  
10  
Crystal Input (XTALin), I2C Serial Clock  
(SCL), ISSP-SCLK*.  
10  
11  
Power  
Vss  
Ground connection.  
IO  
IO  
P1[0]  
Crystal Output (XTALout), I2C Serial Data  
(SDA), ISSP-SDATA*.  
12  
P1[2]  
13  
14  
15  
IO  
IO  
P1[4]  
P1[6]  
XRES  
Optional External Clock Input (EXTCLK).  
Input  
Active high external reset with internal pull  
down.  
16  
17  
18  
19  
20  
IO  
IO  
IO  
IO  
I
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Vdd  
Analog column mux input.  
IO  
IO  
I
Analog column mux input and column output.  
Analog column mux input and column output.  
Analog column mux input.  
Power  
Supply voltage.  
LEGEND: A = Analog, I = Input, and O = Output.  
* These are the ISSP pins, which are not High Z at POR (Power On Reset). See the PSoC Mixed-Signal Array Technical Reference Manual for details.  
October 26, 2006  
Document No. 38-12012 Rev. *K  
9
[+] Feedback  
CY8C27x43 Final Data Sheet  
1. Pin Information  
1.1.3  
28-Pin Part Pinout  
Table 1-3. 28-Pin Part Pinout (PDIP, SSOP, SOIC)  
Type  
CY8C27443 28-Pin PSoC Device  
Pin  
No.  
Pin  
Name  
Description  
Digital Analog  
1
2
3
4
5
6
7
8
9
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
P0[7]  
P0[5]  
P0[3]  
P0[1]  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
SMP  
Analog column mux input.  
A, I,P0[7]  
A,IO, P0[5]  
A,IO, P0[3]  
A,I, P0[1]  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
Vdd  
P0[6], A, I  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
IO  
IO  
I
Analog column mux input and column output.  
Analog column mux input and column output.  
Analog column mux input.  
P0[4], A,IO  
P0[2], A,IO  
P0[0], A, I  
P2[6],Ex ternalVRef  
P2[4],Ex ternalAGND  
P2[2], A, I  
P2[7]  
P2[5]  
PDIP  
SSOP  
SOIC  
A,I, P2[3]  
A, I,P2[1]  
I
I
Direct switched capacitor block input.  
Direct switched capacitor block input.  
SMP  
P2[0], A, I  
XRES  
P1[6]  
Power  
Switch Mode Pump (SMP) connection to  
external components required.  
I2CSCL,P1[7]  
I2CSDA,P1[5]  
P1[3]  
10  
11  
12  
13  
IO  
IO  
IO  
IO  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
I2C Serial Clock (SCL).  
I2C Serial Data (SDA).  
P1[4],EXTCLK  
P1[2]  
P1[0],XTALout,I2CSDA  
I2CSCL,XTALin,P1[1]  
Vss  
Crystal Input (XTALin), I2C Serial Clock  
(SCL), ISSP-SCLK*.  
14  
15  
Power  
Vss  
Ground connection.  
IO  
P1[0]  
Crystal Output (XTALout), I2C Serial Data  
(SDA), ISSP-SDATA*.  
16  
17  
18  
19  
IO  
IO  
IO  
P1[2]  
P1[4]  
P1[6]  
XRES  
Optional External Clock Input (EXTCLK).  
Input  
Active high external reset with internal pull  
down.  
20  
21  
22  
23  
24  
25  
26  
27  
28  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
I
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Vdd  
Direct switched capacitor block input.  
Direct switched capacitor block input.  
External Analog Ground (AGND).  
External Voltage Reference (VRef).  
Analog column mux input.  
I
IO  
IO  
I
Analog column mux input and column output.  
Analog column mux input and column output.  
Analog column mux input.  
Power  
Supply voltage.  
LEGEND: A = Analog, I = Input, and O = Output.  
* These are the ISSP pins, which are not High Z at POR (Power On Reset). See  
the PSoC Mixed-Signal Array Technical Reference Manual for details.  
October 26, 2006  
Document No. 38-12012 Rev. *K  
10  
[+] Feedback  
CY8C27x43 Final Data Sheet  
1. Pin Information  
1.1.4  
44-Pin Part Pinout  
Table 1-4. 44-Pin Part Pinout (TQFP)  
Type  
CY8C27543 44-Pin PSoC Device  
Pin  
No.  
Pin  
Name  
Description  
Digital Analog  
1
2
3
4
5
6
7
8
IO  
P2[5]  
P2[3]  
P2[1]  
P4[7]  
P4[5]  
P4[3]  
P4[1]  
SMP  
IO  
IO  
IO  
IO  
IO  
IO  
I
I
Direct switched capacitor block input.  
Direct switched capacitor block input.  
Power  
Switch Mode Pump (SMP) connection to  
external components required.  
P2[5]  
A, I,P2[3]  
A, I,P2[1]  
P4[7]  
1
2
3
4
5
6
33  
32  
31  
30  
29  
28  
27  
P2[4],ExternalAGND  
P2[2], A,I  
9
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
P2[0], A,I  
P4[6]  
10  
11  
12  
13  
14  
15  
16  
P4[4]  
P4[2]  
P4[0]  
P4[5]  
TQFP  
P4[3]  
P4[1]  
SMP  
P3[7]  
P3[5] 10  
P3[3] 11  
I2C Serial Clock (SCL).  
I2C Serial Data (SDA).  
7
8
9
XRES  
P3[6]  
26  
25  
24  
23  
P3[4]  
P3[2]  
Crystal Input (XTALin), I2C Serial Clock  
(SCL), ISSP-SCLK*.  
17  
18  
Power  
Vss  
Ground connection.  
IO  
IO  
P1[0]  
Crystal Output (XTALout), I2C Serial Data  
(SDA), ISSP-SDATA*.  
19  
P1[2]  
20  
21  
22  
23  
24  
25  
26  
IO  
IO  
IO  
IO  
IO  
IO  
P1[4]  
P1[6]  
P3[0]  
P3[2]  
P3[4]  
P3[6]  
XRES  
Optional External Clock Input (EXTCLK).  
Input  
Active high external reset with internal pull  
down.  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
P4[0]  
P4[2]  
P4[4]  
P4[6]  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Vdd  
I
I
Direct switched capacitor block input.  
Direct switched capacitor block input.  
External Analog Ground (AGND).  
External Voltage Reference (VRef).  
Analog column mux input.  
I
IO  
IO  
I
Analog column mux input and column output.  
Analog column mux input and column output.  
Analog column mux input.  
Power  
Supply voltage.  
IO  
IO  
IO  
IO  
IO  
I
P0[7]  
P0[5]  
P0[3]  
P0[1]  
P2[7]  
Analog column mux input.  
IO  
IO  
I
Analog column mux input and column output.  
Analog column mux input and column output.  
Analog column mux input.  
LEGEND: A = Analog, I = Input, and O = Output.  
* These are the ISSP pins, which are not High Z at POR (Power On Reset). See the PSoC Mixed-Signal Array Technical Reference Manual for details.  
October 26, 2006  
Document No. 38-12012 Rev. *K  
11  
[+] Feedback  
CY8C27x43 Final Data Sheet  
1. Pin Information  
1.1.5  
48-Pin Part Pinouts  
Table 1-5. 48-Pin Part Pinout (SSOP)  
Type  
CY8C27643 48-Pin PSoC Device  
Pin  
No.  
Pin  
Name  
Description  
Digital Analog  
1
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
P0[7]  
P0[5]  
P0[3]  
P0[1]  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
P4[7]  
P4[5]  
P4[3]  
P4[1]  
SMP  
Analog column mux input.  
A, I,P0[7]  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
Vdd  
A,IO,P0[5]  
A,IO,P0[3]  
A, I,P0[1]  
P2[7]  
2
IO  
IO  
I
Analog column mux input and column output.  
Analog column mux input and column output.  
Analog column mux input.  
P0[6], A,I  
P0[4],A,IO  
P0[2],A,IO  
P0[0], A,I  
P2[6],ExternalVRef  
P2[4],ExternalAGND  
P2[2], A,I  
P2[0], A,I  
P4[6]  
P4[4]  
P4[2]  
P4[0]  
XRES  
3
4
5
6
3
4
5
P2[5]  
6
A, I,P2[3]  
A, I,P2[1]  
P4[7]  
7
8
9
7
I
I
Direct switched capacitor block input.  
Direct switched capacitor block input.  
8
P4[5] 10  
9
P4[3]  
P4[1]  
SMP  
11  
10  
11  
12  
13  
12  
13  
14  
SSOP  
P3[7]  
Power  
Switch Mode Pump (SMP) connection to  
external components required.  
P3[5] 15  
P3[6]  
P3[3]  
P3[1]  
16  
17  
P3[4]  
P3[2]  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P5[3]  
P5[1]  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
P5[3] 18  
P5[1] 19  
I2CSCL,P1[7]  
P3[0]  
P5[2]  
P5[0]  
P1[6]  
20  
21  
I2CSDA,P1[5]  
P1[3]  
I2CSCL,XTALin,P1[1]  
Vss  
22  
23  
P1[4],EXTCLK  
P1[2]  
I2C Serial Clock (SCL).  
I2C Serial Data (SDA).  
24  
P1[0],XTALout,I2CSDA  
Crystal Input (XTALin), I2C Serial Clock  
(SCL), ISSP-SCLK*.  
24  
25  
Power  
Vss  
Ground connection.  
IO  
P1[0]  
Crystal Output (XTALout), I2C Serial Data  
(SDA), ISSP-SDATA.*  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
P1[2]  
P1[4]  
P1[6]  
P5[0]  
P5[2]  
P3[0]  
P3[2]  
P3[4]  
P3[6]  
XRES  
Optional External Clock Input (EXTCLK).  
Input  
Active high external reset with internal pull  
down.  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
P4[0]  
P4[2]  
P4[4]  
P4[6]  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Vdd  
I
I
Direct switched capacitor block input.  
Direct switched capacitor block input.  
External Analog Ground (AGND).  
External Voltage Reference (VRef).  
Analog column mux input.  
I
IO  
IO  
I
Analog column mux input and column output.  
Analog column mux input and column output.  
Analog column mux input.  
Power  
Supply voltage.  
LEGEND: A = Analog, I = Input, and O = Output.  
* These are the ISSP pins, which are not High Z at POR (Power On Reset). See the PSoC Mixed-Signal Array Technical Reference Manual for details.  
October 26, 2006  
Document No. 38-12012 Rev. *K  
12  
[+] Feedback  
CY8C27x43 Final Data Sheet  
1. Pin Information  
Table 1-6. 48-Pin Part Pinout (QFN*)  
Type  
CY8C27643 48-Pin PSoC Device  
Pin  
No.  
Pin  
Name  
Description  
Digital Analog  
1
2
3
4
5
6
7
IO  
IO  
IO  
IO  
IO  
IO  
I
I
P2[3]  
P2[1]  
P4[7]  
P4[5]  
P4[3]  
P4[1]  
SMP  
Direct switched capacitor block input.  
Direct switched capacitor block input.  
Power  
Switch Mode Pump (SMP) connection to  
external components required.  
P2[4],ExternalAGND  
P2[2], A,I  
A, I,P2[3]  
A, I,P2[1]  
P4[7]  
36  
35  
34  
33  
32  
31  
30  
1
2
8
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P5[3]  
P5[1]  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
3
4
5
6
P2[0], A,I  
P4[6]  
P4[4]  
9
P4[5]  
P4[3]  
10  
11  
12  
13  
14  
15  
16  
17  
P4[1]  
SMP  
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P5[3]  
QFN  
(Top View)  
P4[2]  
P4[0]  
7
8
9
10  
29  
28  
27  
26  
25  
XRES  
P3[6]  
P3[4]  
I2C Serial Clock (SCL).  
I2C Serial Data (SDA).  
P3[2]  
P3[0]  
11  
12  
Crystal Input (XTALin), I2C Serial Clock  
(SCL), ISSP-SCLK*.  
18  
19  
Power  
Vss  
Ground connection.  
IO  
P1[0]  
Crystal Output (XTALout), I2C Serial Data  
(SDA), ISSP-SDATA*.  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
P1[2]  
P1[4]  
P1[6]  
P5[0]  
P5[2]  
P3[0]  
P3[2]  
P3[4]  
P3[6]  
XRES  
Optional External Clock Input (EXTCLK).  
Input  
Active high external reset with internal pull  
down.  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
P4[0]  
P4[2]  
P4[4]  
P4[6]  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Vdd  
I
I
Direct switched capacitor block input.  
Direct switched capacitor block input.  
External Analog Ground (AGND).  
External Voltage Reference (VRef).  
Analog column mux input.  
I
IO  
IO  
I
Analog column mux input and column output.  
Analog column mux input and column output.  
Analog column mux input.  
Power  
Supply voltage.  
IO  
IO  
IO  
IO  
IO  
IO  
I
P0[7]  
P0[5]  
P0[3]  
P0[1]  
P2[7]  
P2[5]  
Analog column mux input.  
IO  
IO  
I
Analog column mux input and column output.  
Analog column mux input and column output.  
Analog column mux input.  
LEGEND: A = Analog, I = Input, and O = Output.  
* The QFN package has a center pad that must be connected to ground (Vss).  
* These are the ISSP pins, which are not High Z at POR (Power On Reset). See the PSoC Mixed-Signal Array Technical Reference Manual for details.  
October 26, 2006  
Document No. 38-12012 Rev. *K  
13  
[+] Feedback  
CY8C27x43 Final Data Sheet  
1. Pin Information  
1.1.6  
56-Pin Part Pinout  
The 56-pin SSOP part is for the CY8C27002 On-Chip Debug (OCD) PSoC device.  
Note This part is only used for in-circuit debugging. It is NOT available for production.  
Table 1-7. 56-Pin Part Pinout (SSOP)  
Type  
CY8C27002 56-Pin PSoC Device  
Pin  
No.  
Pin  
Name  
Description  
Digital Analog  
1
NC  
No connection.  
NC  
AI, P0[7]  
AIO, P0[5]  
AIO, P0[3]  
AI, P0[1]  
P2[7]  
56  
55  
54  
53  
1
2
3
4
5
6
Vdd  
2
IO  
IO  
I
I
I
I
P0[7]  
P0[5]  
P0[3]  
P0[1]  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
P4[7]  
P4[5]  
P4[3]  
P4[1]  
OCDE  
Analog column mux input.  
P0[6], AI  
P0[4], AIO  
3
Analog column mux input and column output.  
Analog column mux input and column output.  
Analog column mux input.  
P0[2], AIO  
P0[0], AI  
4
IO  
52  
51  
P2[6], External VRef  
P2[4], External AGND  
P2[2], AI  
P2[0], AI  
P4[6]  
5
IO  
P2[5]  
AI, P2[3]  
AI, P2[1]  
P4[7]  
7
8
9
50  
49  
48  
6
IO  
7
IO  
10  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
8
IO  
I
I
Direct switched capacitor block input.  
Direct switched capacitor block input.  
P4[5]  
P4[3]  
P4[4]  
11  
12  
13  
P4[2]  
P4[0]  
9
IO  
P4[1]  
10  
11  
12  
13  
14  
15  
16  
IO  
OCDE  
OCDO  
SMP  
14  
CCLK  
HCLK  
XRES  
P3[6]  
SSOP  
IO  
15  
16  
IO  
I
I
P3[7]  
17  
IO  
P3[5]  
P3[3]  
P3[4]  
P3[2]  
P3[0]  
P5[2]  
18  
19  
20  
OCD  
OCD  
OCD even data IO.  
P3[1]  
P5[3]  
OCDO OCD odd data output.  
21  
22  
23  
P5[1]  
P5[0]  
P1[6]  
Power  
SMP  
Switch Mode Pump (SMP) connection to  
required external components.  
I2C SCL, P1[7]  
I2C SDA, P1[5]  
NC  
P1[4], EXTCLK  
24  
25  
33  
32  
17  
18  
19  
20  
IO  
IO  
IO  
IO  
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P1[2]  
P1[3]  
SCLK, I2C SCL, XTALIn, P1[1]  
Vss  
26  
27  
28  
31  
30  
P1[0], XTALOut, I2C SDA, SDATA  
NC  
NC  
29  
21  
IO  
P5[3]  
Not for Production  
22  
23  
24  
25  
26  
27  
IO  
IO  
IO  
P5[1]  
P1[7]  
P1[5]  
NC  
I2C Serial Clock (SCL).  
I2C Serial Data (SDA).  
No connection.  
IO  
IO  
P1[3]  
P1[1]  
Crystal Input (XTALin), I2C Serial Clock  
(SCL), ISSP-SCLK*.  
28  
29  
30  
31  
Power  
Vdd  
NC  
Supply voltage.  
No connection.  
No connection..  
NC  
IO  
P1[0]  
Crystal Output (XTALout), I2C Serial Data  
(SDA), ISSP-SDATA*.  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
P1[2]  
P1[4]  
P1[6]  
P5[0]  
P5[2]  
P3[0]  
P3[2]  
P3[4]  
P3[6]  
XRES  
Optional External Clock Input (EXTCLK).  
Input  
Active high external reset with internal pull  
down.  
42  
43  
44  
45  
46  
47  
OCD  
OCD  
IO  
HCLK  
CCLK  
P4[0]  
P4[2]  
P4[4]  
P4[6]  
OCD high-speed clock output.  
OCD CPU clock output.  
IO  
IO  
IO  
October 26, 2006  
Document No. 38-12012 Rev. *K  
14  
[+] Feedback  
CY8C27x43 Final Data Sheet  
1. Pin Information  
Table 1-7. 56-Pin Part Pinout (SSOP)  
48  
49  
50  
51  
52  
53  
54  
55  
56  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
I
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Vdd  
Direct switched capacitor block input.  
Direct switched capacitor block input.  
External Analog Ground (AGND).  
External Voltage Reference (VRef).  
Analog column mux input.  
I
I
I
I
Analog column mux input and column output.  
Analog column mux input and column output.  
Analog column mux input.  
Power  
Supply voltage.  
LEGEND: A = Analog, I = Input, O = Output, and OCD = On-Chip Debug.  
* These are the ISSP pins, which are not High Z at POR (Power On Reset). See the PSoC Mixed-Signal Array Technical Reference Manual for details.  
October 26, 2006  
Document No. 38-12012 Rev. *K  
15  
[+] Feedback  
2. Register Reference  
This chapter lists the registers of the CY8C27x43 PSoC device. For detailed register information, reference the  
PSoC Mixed-Signal Array Technical Reference Manual.  
2.1  
Register Conventions  
2.2  
Register Mapping Tables  
The register conventions specific to this section are listed in the  
following table.  
The PSoC device has a total register address space of 512  
bytes. The register space is referred to as IO space and is  
divided into two banks. The XOI bit in the Flag register (CPU_F)  
determines which bank the user is currently in. When the XOI  
bit is set the user is in Bank 1.  
Convention  
Description  
R
W
L
Read register or bit(s)  
Write register or bit(s)  
Note In the following register mapping tables, blank fields are  
reserved and should not be accessed.  
Logical register or bit(s)  
Clearable register or bit(s)  
Access is bit specific  
C
#
October 26, 2006  
Document No. 38-12012 Rev. *K  
16  
[+] Feedback  
CY8C27x43 Final Data Sheet  
2. Register Reference  
Register Map Bank 0 Table: User Space  
PRT0DR  
PRT0IE  
PRT0GS  
PRT0DM2  
PRT1DR  
PRT1IE  
PRT1GS  
PRT1DM2  
PRT2DR  
PRT2IE  
PRT2GS  
PRT2DM2  
PRT3DR  
PRT3IE  
PRT3GS  
PRT3DM2  
PRT4DR  
PRT4IE  
PRT4GS  
PRT4DM2  
PRT5DR  
PRT5IE  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
ASC10CR0  
ASC10CR1  
ASC10CR2  
ASC10CR3  
ASD11CR0  
ASD11CR1  
ASD11CR2  
ASD11CR3  
ASC12CR0  
ASC12CR1  
ASC12CR2  
ASC12CR3  
ASD13CR0  
ASD13CR1  
ASD13CR2  
ASD13CR3  
ASD20CR0  
ASD20CR1  
ASD20CR2  
ASD20CR3  
ASC21CR0  
ASC21CR1  
ASC21CR2  
ASC21CR3  
ASD22CR0  
ASD22CR1  
ASD22CR2  
ASD22CR3  
ASC23CR0  
ASC23CR1  
ASC23CR2  
ASC23CR3  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
PRT5GS  
PRT5DM2  
I2C_CFG  
I2C_SCR  
I2C_DR  
I2C_MSCR  
INT_CLR0  
INT_CLR1  
RW  
#
RW  
#
RW  
RW  
INT_CLR3  
INT_MSK3  
RW  
RW  
DBB00DR0  
DBB00DR1  
DBB00DR2  
DBB00CR0  
DBB01DR0  
DBB01DR1  
DBB01DR2  
DBB01CR0  
DCB02DR0  
DCB02DR1  
DCB02DR2  
DCB02CR0  
DCB03DR0  
DCB03DR1  
DCB03DR2  
DCB03CR0  
DBB10DR0  
DBB10DR1  
DBB10DR2  
DBB10CR0  
DBB11DR0  
DBB11DR1  
DBB11DR2  
DBB11CR0  
DCB12DR0  
DCB12DR1  
DCB12DR2  
DCB12CR0  
DCB13DR0  
DCB13DR1  
DCB13DR2  
DCB13CR0  
#
AMX_IN  
RW  
INT_MSK0  
INT_MSK1  
INT_VC  
RES_WDT  
DEC_DH  
DEC_DL  
DEC_CR0  
DEC_CR1  
MUL_X  
RW  
RW  
RC  
W
RC  
RC  
RW  
RW  
W
W
R
R
RW  
RW  
RW  
RW  
W
RW  
#
ARF_CR  
CMP_CR0  
ASY_CR  
CMP_CR1  
RW  
#
#
#
W
RW  
#
RW  
#
W
RW  
#
MUL_Y  
MUL_DH  
MUL_DL  
ACC_DR1  
ACC_DR0  
ACC_DR3  
ACC_DR2  
#
W
RW  
#
#
ACB00CR3  
ACB00CR0  
ACB00CR1  
ACB00CR2  
ACB01CR3  
ACB01CR0  
ACB01CR1  
ACB01CR2  
ACB02CR3  
ACB02CR0  
ACB02CR1  
ACB02CR2  
ACB03CR3  
ACB03CR0  
ACB03CR1  
ACB03CR2  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RDI0RI  
RDI0SYN  
RDI0IS  
RDI0LT0  
RDI0LT1  
RDI0RO0  
RDI0RO1  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
W
RW  
#
#
W
RW  
#
CPU_F  
RL  
#
RDI1RI  
RDI1SYN  
RDI1IS  
RDI1LT0  
RDI1LT1  
RDI1RO0  
RDI1RO1  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
W
RW  
#
#
W
RW  
#
CPU_SCR1  
CPU_SCR0  
#
#
Blank fields are Reserved and should not be accessed.  
# Access is bit specific.  
October 26, 2006  
Document No. 38-12012 Rev. *K  
17  
[+] Feedback  
CY8C27x43 Final Data Sheet  
2. Register Reference  
Register Map Bank 1 Table: Configuration Space  
PRT0DM0  
PRT0DM1  
PRT0IC0  
PRT0IC1  
PRT1DM0  
PRT1DM1  
PRT1IC0  
PRT1IC1  
PRT2DM0  
PRT2DM1  
PRT2IC0  
PRT2IC1  
PRT3DM0  
PRT3DM1  
PRT3IC0  
PRT3IC1  
PRT4DM0  
PRT4DM1  
PRT4IC0  
PRT4IC1  
PRT5DM0  
PRT5DM1  
PRT5IC0  
PRT5IC1  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
ASC10CR0  
ASC10CR1  
ASC10CR2  
ASC10CR3  
ASD11CR0  
ASD11CR1  
ASD11CR2  
ASD11CR3  
ASC12CR0  
ASC12CR1  
ASC12CR2  
ASC12CR3  
ASD13CR0  
ASD13CR1  
ASD13CR2  
ASD13CR3  
ASD20CR0  
ASD20CR1  
ASD20CR2  
ASD20CR3  
ASC21CR0  
ASC21CR1  
ASC21CR2  
ASC21CR3  
ASD22CR0  
ASD22CR1  
ASD22CR2  
ASD22CR3  
ASC23CR0  
ASC23CR1  
ASC23CR2  
ASC23CR3  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
GDI_O_IN  
GDI_E_IN  
GDI_O_OU  
GDI_E_OU  
RW  
RW  
RW  
RW  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
OSC_GO_EN DD  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
OSC_CR4  
OSC_CR3  
OSC_CR0  
OSC_CR1  
OSC_CR2  
VLT_CR  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
DBB00FN  
DBB00IN  
DBB00OU  
RW  
RW  
RW  
CLK_CR0  
CLK_CR1  
ABF_CR0  
AMD_CR0  
RW  
RW  
RW  
RW  
DBB01FN  
DBB01IN  
DBB01OU  
RW  
RW  
RW  
VLT_CMP  
AMD_CR1  
ALT_CR0  
ALT_CR1  
CLK_CR2  
RW  
RW  
RW  
RW  
DCB02FN  
DCB02IN  
DCB02OU  
RW  
RW  
RW  
IMO_TR  
ILO_TR  
BDG_TR  
ECO_TR  
W
W
RW  
W
DCB03FN  
DCB03IN  
DCB03OU  
RW  
RW  
RW  
DBB10FN  
DBB10IN  
DBB10OU  
RW  
RW  
RW  
ACB00CR3  
ACB00CR0  
ACB00CR1  
ACB00CR2  
ACB01CR3  
ACB01CR0  
ACB01CR1  
ACB01CR2  
ACB02CR3  
ACB02CR0  
ACB02CR1  
ACB02CR2  
ACB03CR3  
ACB03CR0  
ACB03CR1  
ACB03CR2  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RDI0RI  
RDI0SYN  
RDI0IS  
RDI0LT0  
RDI0LT1  
RDI0RO0  
RDI0RO1  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
DBB11FN  
DBB11IN  
DBB11OU  
RW  
RW  
RW  
CPU_F  
RL  
DCB12FN  
DCB12IN  
DCB12OU  
RW  
RW  
RW  
RDI1RI  
RDI1SYN  
RDI1IS  
RDI1LT0  
RDI1LT1  
RDI1RO0  
RDI1RO1  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
DCB13FN  
DCB13IN  
DCB13OU  
RW  
RW  
RW  
CPU_SCR1  
CPU_SCR0  
#
#
Blank fields are Reserved and should not be accessed.  
# Access is bit specific.  
October 26, 2006  
Document No. 38-12012 Rev. *K  
18  
[+] Feedback  
3. Electrical Specifications  
This chapter presents the DC and AC electrical specifications of the CY8C27x43 PSoC device. For the most up to date electrical  
specifications, confirm that you have the most recent data sheet by going to the web at http://www.cypress.com/psoc.  
Specifications are valid for -40oC T 85oC and T 100oC, except where noted. Specifications for devices running at greater  
A
J
than 12 MHz are valid for -40oC T 70oC and T 82oC.  
A
J
5.25  
4.75  
3.00  
93 kHz  
12 MHz  
24 MHz  
CPUFrequency  
Figure 3-1. Voltage versus CPU Frequency  
The following table lists the units of measure that are used in this chapter.  
Table 3-1: Units of Measure  
Symbol  
Unit of Measure  
Symbol  
Unit of Measure  
o
degree Celsius  
µW  
microwatts  
C
dB  
fF  
decibels  
mA  
ms  
mV  
nA  
ns  
milli-ampere  
milli-second  
milli-volts  
femto farad  
hertz  
Hz  
KB  
1024 bytes  
1024 bits  
kilohertz  
nanoampere  
nanosecond  
nanovolts  
Kbit  
kHz  
kΩ  
nV  
kilohm  
ohm  
MHz  
MΩ  
µA  
megahertz  
megaohm  
microampere  
microfarad  
microhenry  
microsecond  
microvolts  
pA  
pF  
pp  
ppm  
ps  
picoampere  
picofarad  
peak-to-peak  
parts per million  
picosecond  
µF  
µH  
µs  
sps  
σ
samples per second  
sigma: one standard deviation  
volts  
µV  
µVrms  
microvolts root-mean-square  
V
October 26, 2006  
Document No. 38-12012 Rev. *K  
19  
[+] Feedback  
CY8C27x43 Final Data Sheet  
3. Electrical Specifications  
3.1  
Absolute Maximum Ratings  
Table 3-2. Absolute Maximum Ratings  
Symbol  
Description  
Min  
-55  
Typ  
Max  
+100  
Units  
Notes  
o
o
T
Storage Temperature  
25  
Higher storage temperatures will reduce data  
retention time. Recommended storage temper-  
STG  
C
o
o
ature is +25 C ± 25 C. Extended duration stor-  
o
age temperatures above 65 C will degrade  
reliability.  
T
Ambient Temperature with Power Applied  
-40  
+85  
A
C
Vdd  
Supply Voltage on Vdd Relative to Vss  
DC Input Voltage  
-0.5  
+6.0  
V
V
V
V
Vss- 0.5  
Vdd + 0.5  
IO  
DC Voltage Applied to Tri-state  
Vss - 0.5  
-25  
Vdd + 0.5  
+50  
V
IOZ  
I
Maximum Current into any Port Pin  
mA  
mA  
MIO  
MAIO  
I
Maximum Current into any Port Pin Configured as Analog  
Driver  
-50  
+50  
ESD  
LU  
Electro Static Discharge Voltage  
Latch-up Current  
2000  
V
Human Body Model ESD.  
200  
mA  
3.2  
Operating Temperature  
Table 3-3. Operating Temperature  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
o
T
Ambient Temperature  
Junction Temperature  
-40  
+85  
A
C
C
o
T
-40  
+100  
The temperature rise from ambient to junction is  
package specific. See “Thermal Impedances”  
on page 44. The user must limit the power con-  
sumption to comply with this requirement.  
J
October 26, 2006  
Document No. 38-12012 Rev. *K  
20  
[+] Feedback  
CY8C27x43 Final Data Sheet  
3. Electrical Specifications  
3.3  
DC Electrical Characteristics  
3.3.1  
DC Chip-Level Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only.  
Table 3-4. DC Chip-Level Specifications  
Symbol  
Description  
Min  
3.00  
Typ  
Max  
5.25  
Units  
Notes  
Vdd  
Supply Voltage  
Supply Current  
5
V
o
I
8
mA  
DD  
Conditions are Vdd = 5.0V, T = 25 C, CPU = 3  
A
MHz, SYSCLK doubler disabled. VC1 = 1.5  
MHz, VC2 = 93.75 kHz, VC3 = 93.75 kHz.  
o
I
Supply Current  
3.3  
6.0  
mA  
DD3  
Conditions are Vdd = 3.3V, T = 25 C, CPU = 3  
A
MHz, SYSCLK doubler disabled. VC1 = 1.5  
MHz, VC2 = 93.75 kHz, VC3 = 93.75 kHz.  
I
I
I
Sleep (Mode) Current with POR, LVD, Sleep Timer, and  
3
4
4
6.5  
25  
µA  
µA  
µA  
Conditions are with internal slow speed oscilla-  
SB  
a
o
o
WDT.  
tor, Vdd = 3.3V, -40 C T 55 C.  
A
Sleep (Mode) Current with POR, LVD, Sleep Timer, and  
Conditions are with internal slow speed oscilla-  
SBH  
SBXTL  
a
o
o
WDT at high temperature.  
tor, Vdd = 3.3V, 55 C < T 85 C.  
A
Sleep (Mode) Current with POR, LVD, Sleep Timer, WDT,  
7.5  
Conditions are with properly loaded, 1 µW max,  
a
o
and external crystal.  
32.768 kHz crystal. Vdd = 3.3V, -40 C T  
A
o
55 C.  
I
Sleep (Mode) Current with POR, LVD, Sleep Timer, WDT,  
5
26  
µA  
Conditions are with properly loaded, 1 µW max,  
SBXTLH  
a
o
and external crystal at high temperature.  
32.768 kHz crystal. Vdd = 3.3V, 55 C < T 85  
A
o
C.  
b
V
V
1.275  
1.280  
1.300  
1.300  
1.325  
1.320  
V
V
Trimmed for appropriate Vdd.  
Trimmed for appropriate Vdd.  
REF  
Reference Voltage (Bandgap) for Silicon A  
b
REF  
Reference Voltage (Bandgap) for Silicon B  
a. Standby current includes all functions (POR, LVD, WDT, Sleep Time) needed for reliable system operation. This should be compared with devices that have similar functions  
enabled.  
b. Refer to the Ordering Information chapter on page 48.  
3.3.2  
DC General Purpose IO Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only.  
Table 3-5. DC GPIO Specifications  
Symbol  
Description  
Min  
Typ  
5.6  
Max  
Units  
kΩ  
Notes  
R
Pull up Resistor  
4
4
8
8
PU  
PD  
OH  
R
Pull down Resistor  
High Output Level  
5.6  
kΩ  
V
V
Vdd - 1.0  
V
IOH = 10 mA, Vdd = 4.75 to 5.25V (8 total loads,  
4 on even port pins (for example, P0[2], P1[4]),  
4 on odd port pins (for example, P0[3], P1[5])).  
Low Output Level  
0.75  
0.8  
V
IOL = 25 mA, Vdd = 4.75 to 5.25V (8 total loads,  
4 on even port pins (for example, P0[2], P1[4]),  
4 on odd port pins (for example, P0[3], P1[5])).  
OL  
V
V
V
I
Input Low Level  
Input High Level  
Input Hysterisis  
V
Vdd = 3.0 to 5.25.  
Vdd = 3.0 to 5.25.  
IL  
IH  
H
2.1  
V
60  
1
mV  
nA  
pF  
pF  
Input Leakage (Absolute Value)  
Capacitive Load on Pins as Input  
Capacitive Load on Pins as Output  
Gross tested to 1 µA.  
IL  
o
C
C
3.5  
3.5  
10  
10  
IN  
Package and pin dependent. Temp = 25 C.  
o
OUT  
Package and pin dependent. Temp = 25 C.  
October 26, 2006  
Document No. 38-12012 Rev. *K  
21  
[+] Feedback  
CY8C27x43 Final Data Sheet  
3. Electrical Specifications  
3.3.3  
DC Operational Amplifier Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only.  
The Operational Amplifier is a component of both the Analog Continuous Time PSoC blocks and the Analog Switched Cap PSoC  
blocks. The guaranteed specifications are measured in the Analog Continuous Time PSoC block. Typical parameters apply to 5V at  
25°C and are for design guidance only.  
Table 3-6. 5V DC Operational Amplifier Specifications  
Symbol  
Description  
Input Offset Voltage (absolute value)  
Power = Low, Opamp Bias = High  
Power = Medium, Opamp Bias = High  
Power = High, Opamp Bias = High  
Average Input Offset Voltage Drift  
Min  
Typ  
Max  
Units  
Notes  
V
OSOA  
1.6  
10  
8
mV  
1.3  
1.2  
7.0  
mV  
mV  
7.5  
o
TCV  
I
35.0  
OSOA  
µV/ C  
Input Leakage Current (Port 0 Analog Pins)  
Input Capacitance (Port 0 Analog Pins)  
Common Mode Voltage Range  
20  
pA  
Gross tested to 1 µA.  
EBOA  
o
C
4.5  
9.5  
pF  
V
INOA  
Package and pin dependent. Temp = 25 C.  
V
0.0  
0.5  
Vdd  
The common-mode input voltage range is mea-  
sured through an analog output buffer. The  
specification includes the limitations imposed  
by the characteristics of the analog output  
buffer.  
CMOA  
Common Mode Voltage Range (high power or high  
opamp bias)  
Vdd - 0.5  
CMRR  
Common Mode Rejection Ratio  
Power = Low  
dB  
dB  
Specification is applicable at high power. For all  
other bias modes (except high power, high  
opamp bias), minimum is 60 dB.  
OA  
60  
60  
60  
Power = Medium  
Power = High  
G
Open Loop Gain  
Specification is applicable at high power. For all  
other bias modes (except high power, high  
opamp bias), minimum is 60 dB.  
OLOA  
Power = Low  
60  
60  
80  
Power = Medium  
Power = High  
V
High Output Voltage Swing (internal signals)  
Power = Low  
OHIGHOA  
OLOWOA  
SOA  
Vdd - 0.2  
Vdd - 0.2  
Vdd - 0.5  
V
V
V
Power = Medium  
Power = High  
V
Low Output Voltage Swing (internal signals)  
Power = Low  
0.2  
0.2  
0.5  
V
V
V
Power = Medium  
Power = High  
I
Supply Current (including associated AGND buffer)  
Power = Low, Opamp Bias = Low  
Power = Low, Opamp Bias = High  
Power = Medium, Opamp Bias = Low  
Power = Medium, Opamp Bias = High  
Power = High, Opamp Bias = Low  
Power = High, Opamp Bias = High  
Supply Voltage Rejection Ratio  
150  
300  
600  
1200  
2400  
4600  
200  
400  
800  
1600  
3200  
6400  
µA  
µA  
µA  
µA  
µA  
µA  
dB  
PSRR  
60  
Vss VIN (Vdd - 2.25) or (Vdd - 1.25V) VIN  
Vdd.  
OA  
October 26, 2006  
Document No. 38-12012 Rev. *K  
22  
[+] Feedback  
CY8C27x43 Final Data Sheet  
3. Electrical Specifications  
Table 3-7. 3.3V DC Operational Amplifier Specifications  
Symbol  
Description  
Input Offset Voltage (absolute value)  
Power = Low, Opamp Bias = High  
Power = Medium, Opamp Bias = High  
High Power is 5 Volts Only  
Min  
Typ  
Max  
Units  
Notes  
V
OSOA  
1.65  
10  
8
mV  
mV  
1.32  
o
TCV  
I
Average Input Offset Voltage Drift  
7.0  
20  
4.5  
35.0  
OSOA  
µV/ C  
Input Leakage Current (Port 0 Analog Pins)  
Input Capacitance (Port 0 Analog Pins)  
Common Mode Voltage Range  
pA  
Gross tested to 1 µA.  
EBOA  
o
C
9.5  
pF  
V
INOA  
Package and pin dependent. Temp = 25 C.  
V
0.2  
Vdd - 0.2  
The common-mode input voltage range is  
measured through an analog output buffer.  
The specification includes the limitations  
imposed by the characteristics of the analog  
output buffer.  
CMOA  
CMRR  
Common Mode Rejection Ratio  
Power = Low  
dB  
dB  
Specification is applicable at high power. For  
all other bias modes (except high power, high  
opamp bias), minimum is 60 dB.  
OA  
50  
50  
50  
Power = Medium  
Power = High  
G
Open Loop Gain  
Specification is applicable at high power. For  
all other bias modes (except high power, high  
opamp bias), minimum is 60 dB.  
OLOA  
Power = Low  
60  
60  
80  
Power = Medium  
Power = High  
V
V
High Output Voltage Swing (internal signals)  
Power = Low  
OHIGHOA  
OLOWOA  
SOA  
Vdd - 0.2  
Vdd - 0.2  
Vdd - 0.2  
V
V
V
Power = Medium  
Power = High is 5V only  
Low Output Voltage Swing (internal signals)  
Power = Low  
0.2  
0.2  
0.2  
V
V
V
Power = Medium  
Power = High  
I
Supply Current (including associated AGND buffer)  
Power = Low, Opamp Bias = Low  
Power = Low, Opamp Bias = High  
Power = Medium, Opamp Bias = Low  
Power = Medium, Opamp Bias = High  
Power = High, Opamp Bias = Low  
Power = High, Opamp Bias = High  
Supply Voltage Rejection Ratio  
150  
300  
600  
1200  
2400  
4600  
80  
200  
400  
800  
1600  
3200  
6400  
µA  
µA  
µA  
µA  
µA  
µA  
dB  
PSRR  
50  
Vss VIN (Vdd - 2.25) or (Vdd - 1.25V) ≤  
VIN Vdd.  
OA  
3.3.4  
DC Low Power Comparator Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V at 25°C and are for design guidance only.  
Table 3-8. DC Low Power Comparator Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
V
I
Low power comparator (LPC) reference voltage range  
0.2  
Vdd - 1  
V
REFLPC  
LPC supply current  
LPC voltage offset  
10  
40  
30  
µA  
SLPC  
V
2.5  
mV  
OSLPC  
October 26, 2006  
Document No. 38-12012 Rev. *K  
23  
[+] Feedback  
CY8C27x43 Final Data Sheet  
3. Electrical Specifications  
3.3.5  
DC Analog Output Buffer Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only.  
Table 3-9. 5V DC Analog Output Buffer Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
mV  
Notes  
V
Input Offset Voltage (Absolute Value)  
3
12  
OSOB  
TCV  
Average Input Offset Voltage Drift  
Common-Mode Input Voltage Range  
+6  
µV/°C  
OSOB  
CMOB  
V
0.5  
Vdd - 1.0  
V
R
Output Resistance  
Power = Low  
OUTOB  
1
1
Power = High  
V
High Output Voltage Swing (Load = 32 ohms to Vdd/2)  
Power = Low  
OHIGHOB  
OLOWOB  
SOB  
0.5 x Vdd + 1.3  
0.5 x Vdd + 1.3  
V
V
Power = High  
V
Low Output Voltage Swing (Load = 32 ohms to Vdd/2)  
Power = Low  
Power = High  
0.5 x Vdd - 1.3  
0.5 x Vdd - 1.3  
V
V
I
Supply Current Including Bias Cell (No Load)  
Power = Low  
1.1  
2.6  
64  
5.1  
8.8  
mA  
mA  
dB  
Power = High  
PSRR  
Supply Voltage Rejection Ratio  
60  
OB  
Table 3-10. 3.3V DC Analog Output Buffer Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
V
Input Offset Voltage (Absolute Value)  
3
12  
mV  
µV/°C  
V
OSOB  
TCV  
Average Input Offset Voltage Drift  
Common-Mode Input Voltage Range  
+6  
-
OSOB  
CMOB  
V
0.5  
Vdd - 1.0  
R
Output Resistance  
OUTOB  
Power = Low  
1
1
Power = High  
V
High Output Voltage Swing (Load = 1k ohms to Vdd/2)  
OHIGHOB  
OLOWOB  
SOB  
Power = Low  
Power = High  
0.5 x Vdd + 1.0  
0.5 x Vdd + 1.0  
V
V
V
Low Output Voltage Swing (Load = 1k ohms to Vdd/2)  
Power = Low  
Power = High  
0.5 x Vdd - 1.0  
0.5 x Vdd - 1.0  
V
V
I
Supply Current Including Bias Cell (No Load)  
Power = Low  
0.8  
2.0  
64  
2.0  
4.3  
mA  
mA  
dB  
Power = High  
PSRR  
Supply Voltage Rejection Ratio  
60  
OB  
October 26, 2006  
Document No. 38-12012 Rev. *K  
24  
[+] Feedback  
CY8C27x43 Final Data Sheet  
3. Electrical Specifications  
3.3.6  
DC Switch Mode Pump Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only.  
Table 3-11. DC Switch Mode Pump (SMP) Specifications  
Symbol  
Description  
Min  
4.75  
Typ  
5.0  
Max  
5.25  
Units  
Notes  
a
V
V
5V  
5V Output Voltage  
3V Output Voltage  
V
V
PUMP  
PUMP  
PUMP  
Configuration of footnote. Average, neglecting  
ripple. SMP trip voltage is set to 5.0V.  
a
3V  
3.00  
3.25  
3.60  
Configuration of footnote. Average, neglecting  
ripple. SMP trip voltage is set to 3.25V.  
a
I
Available Output Current  
Configuration of footnote.  
V
V
= 1.5V, V  
= 1.8V, V  
= 3.25V  
= 5.0V  
8
5
mA  
mA  
BAT  
BAT  
PUMP  
PUMP  
SMP trip voltage is set to 3.25V.  
SMP trip voltage is set to 5.0V.  
a
V
V
V
5V  
Input Voltage Range from Battery  
1.8  
5.0  
V
BAT  
Configuration of footnote. SMP trip voltage is  
set to 5.0V.  
a
3V  
Input Voltage Range from Battery  
1.0  
3.3  
V
BAT  
Configuration of footnote. SMP trip voltage is  
set to 3.25V.  
a
Minimum Input Voltage from Battery to Start Pump  
1.1  
5
V
BATSTART  
Configuration of footnote.  
a
V  
V  
V  
Line Regulation (over V  
Load Regulation  
range)  
%V  
PUMP_Line  
PUMP_Load  
PUMP_Ripple  
BAT  
O
O
Configuration of footnote.  
V
is the “Vdd Value  
O
for PUMP Trip” specified by the VM[2:0] setting  
in the DC POR and LVD Specification, Table 3-  
17 on page 28.  
a
5
%V  
Configuration of footnote.  
V
is the “Vdd Value  
O
for PUMP Trip” specified by the VM[2:0] setting  
in the DC POR and LVD Specification, Table 3-  
17 on page 28.  
a
Output Voltage Ripple (depends on capacitor/load)  
Efficiency  
100  
50  
mVpp  
%
Configuration of footnote. Load is 5mA.  
a
E
35  
3
Configuration of footnote. Load is 5 mA. SMP  
trip voltage is set to 3.25V.  
F
Switching Frequency  
Switching Duty Cycle  
1.3  
50  
MHz  
%
PUMP  
DC  
PUMP  
a. L1 = 2 µH inductor, C1 = 10 µF capacitor, D1 = Schottky diode. See Figure 3-2.  
D1  
Vdd  
VPUMP  
L1  
C1  
SMP  
Vss  
+
VBAT  
Battery  
TM  
PSoC  
Figure 3-2. Basic Switch Mode Pump Circuit  
October 26, 2006  
Document No. 38-12012 Rev. *K  
25  
[+] Feedback  
CY8C27x43 Final Data Sheet  
3. Electrical Specifications  
3.3.7  
DC Analog Reference Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only.  
The guaranteed specifications are measured through the Analog Continuous Time PSoC blocks. The power levels for AGND refer to  
the power of the Analog Continuous Time PSoC block. The power levels for RefHi and RefLo refer to the Analog Reference Control  
register. The limits stated for AGND include the offset error of the AGND buffer local to the Analog Continuous Time PSoC block.  
Reference control power is high.  
Table 3-12. Silicon Revision A – 5V DC Analog Reference Specifications  
Symbol  
Description  
Bandgap Voltage Reference  
Min  
Typ  
Max  
Units  
BG  
1.274  
1.30  
1.326  
V
V
a
Vdd/2 - 0.030  
2 x BG - 0.043  
P2[4] - 0.013  
BG - 0.009  
Vdd/2 - 0.004  
2 x BG - 0.010  
P2[4]  
Vdd/2 + 0.003  
2 x BG + 0.024  
P2[4] + 0.014  
BG + 0.009  
AGND = Vdd/2  
AGND = 2 x BandGap  
a
V
V
V
V
V
a
AGND = P2[4] (P2[4] = Vdd/2)  
a
BG  
AGND = BandGap  
a
1.6 x BG - 0.018  
-0.034  
1.6 x BG  
0.000  
1.6 x BG + 0.018  
0.034  
AGND = 1.6 x BandGap  
a
AGND Block to Block Variation (AGND = Vdd/2)  
RefHi = Vdd/2 + BandGap  
V
V
V
V
V
V
V
V
V
V
V
Vdd/2 + BG - 0.140  
3 x BG - 0.112  
Vdd/2 + BG - 0.018  
3 x BG - 0.018  
Vdd/2 + BG + 0.103  
3 x BG + 0.076  
RefHi = 3 x BandGap  
RefHi = 2 x BandGap + P2[6] (P2[6] = 1.3V)  
RefHi = P2[4] + BandGap (P2[4] = Vdd/2)  
2 x BG + P2[6] - 0.113  
P2[4] + BG - 0.130  
P2[4] + P2[6] - 0.133  
3.2 x BG - 0.112  
2 x BG + P2[6] - 0.018  
P2[4] + BG - 0.016  
P2[4] + P2[6] - 0.016  
3.2 x BG  
2 x BG + P2[6] + 0.077  
P2[4] + BG + 0.098  
P2[4] + P2[6] + 0.100  
3.2 x BG + 0.076  
RefHi = P2[4] + P2[6] (P2[4] = Vdd/2, P2[6] = 1.3V)  
RefHi = 3.2 x BandGap  
RefLo = Vdd/2 – BandGap  
Vdd/2 - BG - 0.051  
BG - 0.082  
Vdd/2 - BG + 0.024  
BG + 0.023  
Vdd/2 - BG + 0.098  
BG + 0.129  
RefLo = BandGap  
RefLo = 2 x BandGap - P2[6] (P2[6] = 1.3V)  
RefLo = P2[4] – BandGap (P2[4] = Vdd/2)  
RefLo = P2[4]-P2[6] (P2[4] = Vdd/2, P2[6] = 1.3V)  
2 x BG - P2[6] - 0.084  
P2[4] - BG - 0.056  
P2[4] - P2[6] - 0.057  
2 x BG - P2[6] + 0.025  
P2[4] - BG + 0.026  
P2[4] - P2[6] + 0.026  
2 x BG - P2[6] + 0.134  
P2[4] - BG + 0.107  
P2[4] - P2[6] + 0.110  
a. AGND tolerance includes the offsets of the local buffer in the PSoC block.  
Table 3-13. Silicon Revision B – 5V DC Analog Reference Specifications  
Symbol  
Description  
Bandgap Voltage Reference  
Min  
Typ  
1.30  
Max  
1.32  
Units  
BG  
1.28  
V
V
a
Vdd/2 - 0.030  
2 x BG - 0.043  
P2[4] - 0.011  
BG - 0.009  
Vdd/2  
Vdd/2 + 0.007  
AGND = Vdd/2  
AGND = 2 x BandGap  
a
2 x BG  
P2[4]  
2 x BG + 0.024  
P2[4] + 0.011  
BG + 0.009  
1.6 x BG + 0.018  
0.034  
V
V
V
V
V
a
AGND = P2[4] (P2[4] = Vdd/2)  
a
BG  
AGND = BandGap  
a
1.6 x BG - 0.018  
-0.034  
1.6 x BG  
0.000  
AGND = 1.6 x BandGap  
a
AGND Block to Block Variation (AGND = Vdd/2)  
RefHi = Vdd/2 + BandGap  
V
V
V
V
V
V
V
V
V
V
V
Vdd/2 + BG - 0.1  
3 x BG - 0.06  
Vdd/2 + BG - 0.01  
3 x BG - 0.01  
Vdd/2 + BG + 0.1  
3 x BG + 0.06  
RefHi = 3 x BandGap  
RefHi = 2 x BandGap + P2[6] (P2[6] = 1.3V)  
RefHi = P2[4] + BandGap (P2[4] = Vdd/2)  
2 x BG + P2[6] - 0.06  
P2[4] + BG - 0.06  
P2[4] + P2[6] - 0.06  
3.2 x BG - 0.06  
2 x BG + P2[6] - 0.01  
P2[4] + BG - 0.01  
P2[4] + P2[6] - 0.01  
3.2 x BG - 0.01  
2 x BG + P2[6] + 0.06  
P2[4] + BG + 0.06  
P2[4] + P2[6] + 0.06  
3.2 x BG + 0.06  
RefHi = P2[4] + P2[6] (P2[4] = Vdd/2, P2[6] = 1.3V)  
RefHi = 3.2 x BandGap  
RefLo = Vdd/2 – BandGap  
Vdd/2 - BG - 0.051  
BG - 0.06  
Vdd/2 - BG + 0.01  
BG + 0.01  
Vdd/2 - BG + 0.06  
BG + 0.06  
RefLo = BandGap  
RefLo = 2 x BandGap - P2[6] (P2[6] = 1.3V)  
RefLo = P2[4] – BandGap (P2[4] = Vdd/2)  
RefLo = P2[4]-P2[6] (P2[4] = Vdd/2, P2[6] = 1.3V)  
2 x BG - P2[6] - 0.04  
P2[4] - BG - 0.056  
P2[4] - P2[6] - 0.056  
2 x BG - P2[6] + 0.01  
P2[4] - BG + 0.01  
P2[4] - P2[6] + 0.01  
2 x BG - P2[6] + 0.04  
P2[4] - BG + 0.056  
P2[4] - P2[6] + 0.056  
a. AGND tolerance includes the offsets of the local buffer in the PSoC block.  
October 26, 2006  
Document No. 38-12012 Rev. *K  
26  
[+] Feedback  
CY8C27x43 Final Data Sheet  
3. Electrical Specifications  
Table 3-14. Silicon Revision A – 3.3V DC Analog Reference Specifications  
Symbol  
BG  
Description  
Bandgap Voltage Reference  
Min  
Typ  
Max  
Units  
1.274  
1.30  
1.326  
V
V
a
Vdd/2 - 0.027  
Vdd/2 - 0.003  
Vdd/2 + 0.002  
AGND = Vdd/2  
AGND = 2 x BandGap  
a
Not Allowed  
P2[4] - 0.008  
BG - 0.009  
AGND = P2[4] (P2[4] = Vdd/2)  
P2[4] + 0.001  
BG  
P2[4] + 0.009  
BG + 0.009  
V
V
a
AGND = BandGap  
a
1.6 x BG - 0.018  
-0.034  
1.6 x BG  
0.000  
1.6 x BG + 0.018  
0.034  
V
V
AGND = 1.6 x BandGap  
a
AGND Block to Block Variation (AGND = Vdd/2)  
RefHi = Vdd/2 + BandGap  
Not Allowed  
RefHi = 3 x BandGap  
Not Allowed  
RefHi = 2 x BandGap + P2[6] (P2[6] = 0.5V)  
RefHi = P2[4] + BandGap (P2[4] = Vdd/2)  
Not Allowed  
Not Allowed  
RefHi = P2[4] + P2[6] (P2[4] = Vdd/2, P2[6] = 0.5V)  
RefHi = 3.2 x BandGap  
P2[4] + P2[6] - 0.075  
Not Allowed  
P2[4] + P2[6] - 0.009  
P2[4] + P2[6] + 0.057  
V
V
RefLo = Vdd/2 - BandGap  
Not Allowed  
RefLo = BandGap  
Not Allowed  
RefLo = 2 x BandGap - P2[6] (P2[6] = 0.5V)  
RefLo = P2[4] – BandGap (P2[4] = Vdd/2)  
RefLo = P2[4]-P2[6] (P2[4] = Vdd/2, P2[6] = 0.5V)  
Not Allowed  
Not Allowed  
P2[4] - P2[6] - 0.048  
P2[4] - P2[6] + 0.022  
P2[4] - P2[6] + 0.092  
a. AGND tolerance includes the offsets of the local buffer in the PSoC block.  
Note See Application Note AN2012 “Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation” for information on trimming for operation at 3.3V.  
Table 3-15. Silicon Revision B – 3.3V DC Analog Reference Specifications  
Symbol  
BG  
Description  
Bandgap Voltage Reference  
Min  
Typ  
Max  
Units  
1.28  
1.30  
1.32  
V
V
a
Vdd/2 - 0.027  
Vdd/2  
Vdd/2 + 0.005  
AGND = Vdd/2  
AGND = 2 x BandGap  
a
Not Allowed  
P2[4] - 0.008  
BG - 0.009  
AGND = P2[4] (P2[4] = Vdd/2)  
P2[4]  
BG  
P2[4] + 0.009  
BG + 0.009  
V
V
a
AGND = BandGap  
a
1.6 x BG - 0.018  
-0.034  
1.6 x BG  
0.000  
1.6 x BG + 0.018  
0.034  
V
AGND = 1.6 x BandGap  
a
mV  
AGND Block to Block Variation (AGND = Vdd/2)  
RefHi = Vdd/2 + BandGap  
Not Allowed  
RefHi = 3 x BandGap  
Not Allowed  
RefHi = 2 x BandGap + P2[6] (P2[6] = 0.5V)  
RefHi = P2[4] + BandGap (P2[4] = Vdd/2)  
Not Allowed  
Not Allowed  
RefHi = P2[4] + P2[6] (P2[4] = Vdd/2, P2[6] = 0.5V)  
RefHi = 3.2 x BandGap  
P2[4] + P2[6] - 0.06  
Not Allowed  
P2[4] + P2[6] - 0.01  
P2[4] + P2[6] + 0.057  
V
RefLo = Vdd/2 - BandGap  
Not Allowed  
RefLo = BandGap  
Not Allowed  
RefLo = 2 x BandGap - P2[6] (P2[6] = 0.5V)  
RefLo = P2[4] – BandGap (P2[4] = Vdd/2)  
RefLo = P2[4]-P2[6] (P2[4] = Vdd/2, P2[6] = 0.5V)  
Not Allowed  
Not Allowed  
P2[4] - P2[6] - 0.048  
P2[4] - P2[6] + 0.01  
P2[4] - P2[6] + 0.048  
V
a. AGND tolerance includes the offsets of the local buffer in the PSoC block.  
Note See Application Note AN2012 “Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation” for information on trimming for operation at 3.3V.  
October 26, 2006  
Document No. 38-12012 Rev. *K  
27  
[+] Feedback  
CY8C27x43 Final Data Sheet  
3. Electrical Specifications  
3.3.8  
DC Analog PSoC Block Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only.  
Table 3-16. DC Analog PSoC Block Specifications  
Symbol  
Description  
Min  
Typ  
12.2  
80  
Max  
Units  
kΩ  
fF  
Notes  
R
C
Resistor Unit Value (Continuous Time)  
CT  
SC  
Capacitor Unit Value (Switch Cap)  
3.3.9  
DC POR and LVD Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only.  
Note The bits PORLEV and VM in the table below refer to bits in the VLT_CR register. See the PSoC Mixed-Signal Array Technical  
Reference Manual for more information on the VLT_CR register.  
Table 3-17. DC POR and LVD Specifications  
Symbol  
Description  
Vdd Value for PPOR Trip (positive ramp)  
PORLEV[1:0] = 00b  
Min  
Typ  
Max  
Units  
Notes  
Vdd must be greater than or equal to 2.5V  
during startup, reset from the XRES pin, or  
reset from Watchdog.  
V
V
V
PPOR0R  
PPOR1R  
PPOR2R  
2.91  
V
V
V
PORLEV[1:0] = 01b  
4.39  
4.55  
PORLEV[1:0] = 10b  
Vdd Value for PPOR Trip (negative ramp)  
PORLEV[1:0] = 00b  
V
V
V
PPOR0  
PPOR1  
PPOR2  
2.82  
4.39  
4.55  
V
V
V
PORLEV[1:0] = 01b  
PORLEV[1:0] = 10b  
PPOR Hysteresis  
PORLEV[1:0] = 00b  
PORLEV[1:0] = 01b  
PORLEV[1:0] = 10b  
V
V
V
PH0  
PH1  
PH2  
92  
0
mV  
mV  
mV  
0
Vdd Value for LVD Trip  
VM[2:0] = 000b  
VM[2:0] = 001b  
VM[2:0] = 010b  
VM[2:0] = 011b  
VM[2:0] = 100b  
VM[2:0] = 101b  
VM[2:0] = 110b  
VM[2:0] = 111b  
V
V
V
V
V
V
V
V
a
2.86  
2.96  
3.07  
3.92  
4.39  
4.55  
4.63  
4.72  
2.92  
3.02  
3.13  
4.00  
4.48  
4.64  
4.73  
4.81  
LVD0  
LVD1  
LVD2  
LVD3  
LVD4  
LVD5  
LVD6  
LVD7  
V
V
V
V
V
V
V
V
V
2.98  
3.08  
3.20  
4.08  
4.57  
b
4.74  
4.82  
4.91  
Vdd Value for PUMP Trip  
VM[2:0] = 000b  
VM[2:0] = 001b  
VM[2:0] = 010b  
VM[2:0] = 011b  
VM[2:0] = 100b  
VM[2:0] = 101b  
VM[2:0] = 110b  
VM[2:0] = 111b  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
2.96  
3.03  
3.18  
4.11  
4.55  
4.63  
4.72  
4.90  
3.02  
3.10  
3.25  
4.19  
4.64  
4.73  
4.82  
5.00  
3.08  
3.16  
3.32  
4.28  
4.74  
4.82  
4.91  
5.10  
PUMP0  
PUMP1  
PUMP2  
PUMP3  
PUMP4  
PUMP5  
PUMP6  
PUMP7  
a. Always greater than 50 mV above PPOR (PORLEV = 00) for falling supply.  
b. Always greater than 50 mV above PPOR (PORLEV = 10) for falling supply.  
October 26, 2006  
Document No. 38-12012 Rev. *K  
28  
[+] Feedback  
CY8C27x43 Final Data Sheet  
3. Electrical Specifications  
3.3.10  
DC Programming Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only.  
Table 3-18. DC Programming Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
mA  
Notes  
I
Supply Current During Programming or Verify  
5
25  
0.8  
DDP  
V
Input Low Voltage During Programming or Verify  
Input High Voltage During Programming or Verify  
V
ILP  
IHP  
V
2.2  
V
I
I
Input Current when Applying Vilp to P1[0] or P1[1] During  
Programming or Verify  
0.2  
mA  
Driving internal pull-down resistor.  
Driving internal pull-down resistor.  
ILP  
Input Current when Applying Vihp to P1[0] or P1[1] During  
Programming or Verify  
1.5  
mA  
IHP  
V
V
Output Low Voltage During Programming or Verify  
Output High Voltage During Programming or Verify  
Vss + 0.75  
Vdd  
V
V
OLV  
Vdd - 1.0  
OHV  
Flash  
Flash  
Flash  
Flash Endurance (per block)  
50,000  
1,800,000  
10  
Erase/write cycles per block.  
Erase/write cycles.  
ENPB  
ENT  
DR  
a
Flash Endurance (total)  
Flash Data Retention  
Years  
a. A maximum of 36 x 50,000 block endurance cycles is allowed. This may be balanced between operations on 36x1 blocks of 50,000 maximum cycles each, 36x2 blocks of  
25,000 maximum cycles each, or 36x4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36x50,000 and that no single block ever sees more than  
50,000 cycles).  
For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to  
the Flash APIs Application Note AN2015 at http://www.cypress.com under Application Notes for more information.  
October 26, 2006  
Document No. 38-12012 Rev. *K  
29  
[+] Feedback  
CY8C27x43 Final Data Sheet  
3. Electrical Specifications  
3.4  
AC Electrical Characteristics  
3.4.1  
AC Chip-Level Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only.  
Table 3-19. AC Chip-Level Specifications  
Symbol  
IMO  
Description  
Min  
23.4  
Typ  
Max  
Units  
MHz  
Notes  
a
F
F
F
F
Internal Main Oscillator Frequency  
24  
24  
12  
48  
Trimmed. Utilizing factory trim values.  
24.6  
a,b  
CPU Frequency (5V Nominal)  
CPU Frequency (3.3V Nominal)  
Digital PSoC Block Frequency  
0.93  
0.93  
0
MHz  
MHz  
MHz  
Trimmed. Utilizing factory trim values.  
Trimmed. Utilizing factory trim values.  
CPU1  
CPU2  
48M  
24.6  
12.3  
49.2  
b,c  
a,b,d  
Refer to the AC Digital Block Specifications  
below.  
b, d  
F
F
F
Digital PSoC Block Frequency  
Internal Low Speed Oscillator Frequency  
External Crystal Oscillator  
0
24  
32  
MHz  
kHz  
kHz  
24M  
24.6  
64  
15  
32K1  
32K2  
32.768  
Accuracy is capacitor and crystal dependent.  
50% duty cycle.  
F
PLL Frequency  
23.986  
MHz  
Multiple (x732) of crystal frequency.  
PLL  
Jitter24M2  
24 MHz Period Jitter (PLL)  
PLL Lock Time  
600  
10  
ps  
T
0.5  
ms  
PLLSLEW  
T
PLL Lock Time for Low Gain Setting  
0.5  
50  
ms  
PLLSLEWS-  
LOW  
T
External Crystal Oscillator Startup to 1%  
1700  
2800  
ms  
ms  
OS  
2620  
3800  
T
External Crystal Oscillator Startup to 100 ppm  
The crystal oscillator frequency is within 100 ppm of its  
OSACC  
final value by the end of the T  
period. Correct  
osacc  
operation assumes a properly loaded 1 uW maximum  
drive level 32.768 kHz crystal. 3.0V Vdd 5.5V, -40  
o
o
C T 85 C.  
A
Jitter32k  
32 kHz Period Jitter  
100  
ns  
T
External Reset Pulse Width  
10  
µs  
XRST  
DC24M  
24 MHz Duty Cycle  
40  
50  
60  
%
Step24M  
Fout48M  
24 MHz Trim Step Size  
48 MHz Output Frequency  
50  
kHz  
MHz  
a,c  
46.8  
48.0  
Trimmed. Utilizing factory trim values.  
49.2  
Jitter24M1  
24 MHz Period Jitter (IMO)  
600  
ps  
F
T
Maximum frequency of signal on row input or row output.  
12.3  
MHz  
MAX  
Supply Ramp Time  
0
µs  
RAMP  
a. 4.75V < Vdd < 5.25V.  
b. Accuracy derived from Internal Main Oscillator with appropriate trim for Vdd range.  
c. 3.0V < Vdd < 3.6V. See Application Note AN2012 “Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation” for information on trimming for operation at 3.3V.  
d. See the individual user module data sheets for information on maximum frequencies for user modules.  
PLL  
Enable  
T
24 MHz  
PLLSLEW  
FPLL  
PLL  
Gain  
0
Figure 3-3. PLL Lock Timing Diagram  
October 26, 2006  
Document No. 38-12012 Rev. *K  
30  
[+] Feedback  
CY8C27x43 Final Data Sheet  
3. Electrical Specifications  
PLL  
Enable  
T
24 MHz  
PLLSLEWLOW  
FPLL  
PLL  
1
Gain  
Figure 3-4. PLL Lock for Low Gain Setting Timing Diagram  
32K  
Select  
32 kHz  
T
OS  
F32K2  
Figure 3-5. External Crystal Oscillator Startup Timing Diagram  
Jitter24M1  
F24M  
Figure 3-6. 24 MHz Period Jitter (IMO) Timing Diagram  
Jitter32k  
F32K2  
Figure 3-7. 32 kHz Period Jitter (ECO) Timing Diagram  
October 26, 2006  
Document No. 38-12012 Rev. *K  
31  
[+] Feedback  
CY8C27x43 Final Data Sheet  
3. Electrical Specifications  
3.4.2  
AC General Purpose IO Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only.  
Table 3-20. AC GPIO Specifications  
Symbol  
Description  
GPIO Operating Frequency  
Min  
Typ  
Max  
Units  
MHz  
Notes  
Normal Strong Mode  
F
0
12  
GPIO  
TRiseF  
TFallF  
TRiseS  
TFallS  
Rise Time, Normal Strong Mode, Cload = 50 pF  
Fall Time, Normal Strong Mode, Cload = 50 pF  
Rise Time, Slow Strong Mode, Cload = 50 pF  
Fall Time, Slow Strong Mode, Cload = 50 pF  
3
18  
18  
ns  
ns  
ns  
ns  
Vdd = 4.5 to 5.25V, 10% - 90%  
Vdd = 4.5 to 5.25V, 10% - 90%  
Vdd = 3 to 5.25V, 10% - 90%  
Vdd = 3 to 5.25V, 10% - 90%  
2
10  
10  
27  
22  
90%  
GPIO  
Pin  
Output  
Voltage  
10%  
TRiseF  
TRiseS  
TFallF  
TFallS  
Figure 3-8. GPIO Timing Diagram  
October 26, 2006  
Document No. 38-12012 Rev. *K  
32  
[+] Feedback  
CY8C27x43 Final Data Sheet  
3. Electrical Specifications  
3.4.3  
AC Operational Amplifier Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only.  
Settling times, slew rates, and gain bandwidth are based on the Analog Continuous Time PSoC block.  
Power = High and Opamp Bias = High is not supported at 3.3V.  
Table 3-21. 5V AC Operational Amplifier Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
T
Rising Settling Time from 80% of V to 0.1% of V (10 pF  
load, Unity Gain)  
ROA  
Power = Low, Opamp Bias = Low  
Power = Medium, Opamp Bias = High  
Power = High, Opamp Bias = High  
3.9  
µs  
0.72  
0.62  
µs  
µs  
T
Falling Settling Time from 20% of V to 0.1% of V (10 pF  
load, Unity Gain)  
SOA  
Power = Low, Opamp Bias = Low  
5.9  
µs  
µs  
µs  
Power = Medium, Opamp Bias = High  
Power = High, Opamp Bias = High  
0.92  
0.72  
SR  
SR  
Rising Slew Rate (20% to 80%)(10 pF load, Unity Gain)  
Power = Low, Opamp Bias = Low  
ROA  
FOA  
0.15  
1.7  
V/µs  
V/µs  
V/µs  
Power = Medium, Opamp Bias = High  
Power = High, Opamp Bias = High  
6.5  
Falling Slew Rate (20% to 80%)(10 pF load, Unity Gain)  
Power = Low, Opamp Bias = Low  
0.01  
0.5  
V/µs  
V/µs  
V/µs  
Power = Medium, Opamp Bias = High  
Power = High, Opamp Bias = High  
4.0  
BW  
Gain Bandwidth Product  
OA  
Power = Low, Opamp Bias = Low  
0.75  
3.1  
5.4  
MHz  
Power = Medium, Opamp Bias = High  
Power = High, Opamp Bias = High  
MHz  
MHz  
E
Noise at 1 kHz (Power = Medium, Opamp Bias = High)  
100  
nV/rt-Hz  
NOA  
Table 3-22. 3.3V AC Operational Amplifier Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
T
Rising Settling Time from 80% of V to 0.1% of V (10 pF  
load, Unity Gain)  
ROA  
Power = Low, Opamp Bias = Low  
Power = Low, Opamp Bias = High  
3.92  
0.72  
µs  
µs  
T
Falling Settling Time from 20% of V to 0.1% of V (10 pF  
load, Unity Gain)  
SOA  
Power = Low, Opamp Bias = Low  
5.41  
0.72  
µs  
µs  
Power = Medium, Opamp Bias = High  
Rising Slew Rate (20% to 80%)(10 pF load, Unity Gain)  
Power = Low, Opamp Bias = Low  
SR  
SR  
ROA  
FOA  
0.31  
2.7  
V/µs  
V/µs  
Power = Medium, Opamp Bias = High  
Falling Slew Rate (20% to 80%)(10 pF load, Unity Gain)  
Power = Low, Opamp Bias = Low  
0.24  
1.8  
V/µs  
V/µs  
Power = Medium, Opamp Bias = High  
Gain Bandwidth Product  
BW  
OA  
Power = Low, Opamp Bias = Low  
0.67  
2.8  
MHz  
Power = Medium, Opamp Bias = High  
Noise at 1 kHz (Power = Medium, Opamp Bias = High)  
MHz  
E
100  
nV/rt-Hz  
NOA  
October 26, 2006  
Document No. 38-12012 Rev. *K  
33  
[+] Feedback  
CY8C27x43 Final Data Sheet  
3. Electrical Specifications  
When bypassed by a capacitor on P2[4], the noise of the analog ground signal distributed to each block is reduced by a factor of up  
to 5 (14 dB). This is at frequencies above the corner frequency defined by the on-chip 8.1k resistance and the external capacitor.  
dBV/rtHz  
10000  
0
0.01  
0.1  
1.0  
10  
1000  
100  
0.001  
0.01  
0.1 Freq (kHz)  
1
10  
100  
Figure 3-9. Typical AGND Noise with P2[4] Bypass  
At low frequencies, the opamp noise is proportional to 1/f, power independent, and determined by device geometry. At high frequen-  
cies, increased power level reduces the noise spectrum level.  
nV/rtHz  
10000  
PH_BH  
PH_BL  
PM_BL  
PL_BL  
1000  
100  
10  
0.001  
0.01  
0.1  
1
10  
100  
Freq (kHz)  
Figure 3-10. Typical Opamp Noise  
October 26, 2006  
Document No. 38-12012 Rev. *K  
34  
[+] Feedback  
CY8C27x43 Final Data Sheet  
3. Electrical Specifications  
3.4.4  
AC Low Power Comparator Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V at 25°C and are for design guidance only.  
Table 3-23. AC Low Power Comparator Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
µs  
Notes  
T
LPC response time  
50  
50 mV overdrive comparator reference set  
RLPC  
within V  
.
REFLPC  
3.4.5  
AC Digital Block Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only.  
Table 3-24. AC Digital Block Specifications  
Function  
Description  
Maximum Block Clocking Frequency (> 4.75V)  
Maximum Block Clocking Frequency (< 4.75V)  
Capture Pulse Width  
Min  
Typ  
Max  
49.2  
Units  
Notes  
4.75V < Vdd < 5.25V.  
All  
Functions  
Timer  
24.6  
3.0V < Vdd < 4.75V.  
a
ns  
50  
Maximum Frequency, No Capture  
Maximum Frequency, With Capture  
Enable Pulse Width  
49.2  
24.6  
MHz  
MHz  
ns  
4.75V < Vdd < 5.25V.  
a
Counter  
50  
Maximum Frequency, No Enable Input  
Maximum Frequency, Enable Input  
49.2  
24.6  
MHz  
MHz  
4.75V < Vdd < 5.25V.  
Dead Band Kill Pulse Width:  
Asynchronous Restart Mode  
20  
50  
ns  
ns  
a
a
Synchronous Restart Mode  
Disable Mode  
ns  
50  
Maximum Frequency  
49.2  
49.2  
MHz  
MHz  
4.75V < Vdd < 5.25V.  
4.75V < Vdd < 5.25V.  
CRCPRS  
Maximum Input Clock Frequency  
(PRS Mode)  
CRCPRS  
(CRC Mode)  
Maximum Input Clock Frequency  
Maximum Input Clock Frequency  
24.6  
8.2  
MHz  
MHz  
SPIM  
SPIS  
Maximum data rate at 4.1 MHz due to 2 x over  
clocking.  
Maximum Input Clock Frequency  
4.1  
ns  
ns  
a
Width of SS_ Negated Between Transmissions  
50  
b
Transmitter  
Maximum Input Clock Frequency  
16.4  
24.6  
49.2  
MHz  
MHz  
MHz  
Maximum data rate at 2.05 MHz due to 8 x over  
clocking.  
Silicon A  
Silicon B  
Maximum data rate at 3.08 MHz due to 8 x over  
clocking.  
Silicon B Maximum Input Clock Frequency with Vdd ≥  
4.75V, 2 Stop Bits  
Maximum data rate at 6.15 MHz due to 8 x over  
clocking.  
b
Receiver  
Maximum Input Clock Frequency  
16.4  
24.6  
49.2  
MHz  
MHz  
MHz  
Maximum data rate at 2.05 MHz due to 8 x over  
clocking.  
Silicon A  
Maximum data rate at 3.08 MHz due to 8 x over  
clocking.  
Silicon B  
Maximum data rate at 6.15 MHz due to 8 x over  
clocking.  
Silicon B Maximum Input Clock Frequency with Vdd ≥  
4.75V, 2 Stop Bits  
a. 50 ns minimum input pulse width is based on the input synchronizers running at 24 MHz (42 ns nominal period).  
b. Refer to the Ordering Information chapter on page 48.  
October 26, 2006  
Document No. 38-12012 Rev. *K  
35  
[+] Feedback  
CY8C27x43 Final Data Sheet  
3. Electrical Specifications  
3.4.6  
AC Analog Output Buffer Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only.  
Table 3-25. 5V AC Analog Output Buffer Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
T
Rising Settling Time to 0.1%, 1V Step, 100pF Load  
ROB  
Power = Low  
2.5  
µs  
Power = High  
2.5  
µs  
T
Falling Settling Time to 0.1%, 1V Step, 100pF Load  
SOB  
Power = Low  
2.2  
2.2  
µs  
µs  
Power = High  
SR  
SR  
Rising Slew Rate (20% to 80%), 1V Step, 100pF Load  
ROB  
FOB  
Power = Low  
0.65  
0.65  
V/µs  
V/µs  
Power = High  
Falling Slew Rate (80% to 20%), 1V Step, 100pF Load  
Power = Low  
Power = High  
0.65  
0.65  
V/µs  
V/µs  
BW  
BW  
Small Signal Bandwidth, 20mV , 3dB BW, 100pF Load  
pp  
OB  
OB  
0.8  
0.8  
MHz  
MHz  
Power = Low  
Power = High  
Large Signal Bandwidth, 1V , 3dB BW, 100pF Load  
pp  
300  
300  
kHz  
kHz  
Power = Low  
Power = High  
Table 3-26. 3.3V AC Analog Output Buffer Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
T
Rising Settling Time to 0.1%, 1V Step, 100pF Load  
ROB  
Power = Low  
3.8  
3.8  
µs  
µs  
Power = High  
T
Falling Settling Time to 0.1%, 1V Step, 100pF Load  
SOB  
Power = Low  
2.6  
2.6  
µs  
µs  
Power = High  
SR  
SR  
Rising Slew Rate (20% to 80%), 1V Step, 100pF Load  
ROB  
FOB  
Power = Low  
0.5  
0.5  
V/µs  
V/µs  
Power = High  
Falling Slew Rate (80% to 20%), 1V Step, 100pF Load  
Power = Low  
Power = High  
0.5  
0.5  
V/µs  
V/µs  
BW  
BW  
Small Signal Bandwidth, 20mV , 3dB BW, 100pF Load  
pp  
OB  
OB  
0.7  
0.7  
MHz  
MHz  
Power = Low  
Power = High  
Large Signal Bandwidth, 1V , 3dB BW, 100pF Load  
pp  
200  
200  
kHz  
kHz  
Power = Low  
Power = High  
October 26, 2006  
Document No. 38-12012 Rev. *K  
36  
[+] Feedback  
CY8C27x43 Final Data Sheet  
3. Electrical Specifications  
3.4.7  
AC External Clock Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only.  
Table 3-27. 5V AC External Clock Specifications  
Symbol  
Description  
Min  
0.093  
Typ  
Max  
24.6  
Units  
MHz  
Notes  
F
Frequency  
OSCEXT  
High Period  
Low Period  
20.6  
20.6  
150  
5300  
ns  
ns  
µs  
Power Up IMO to Switch  
Table 3-28. 3.3V AC External Clock Specifications  
Symbol  
OSCEXT  
OSCEXT  
Description  
Min  
Typ  
Max  
Units  
Notes  
a
F
F
0.093  
0.186  
12.3  
24.6  
MHz  
MHz  
Frequency with CPU Clock divide by 1  
b
Frequency with CPU Clock divide by 2 or greater  
High Period with CPU Clock divide by 1  
Low Period with CPU Clock divide by 1  
Power Up IMO to Switch  
41.7  
41.7  
150  
5300  
ns  
ns  
µs  
a. Maximum CPU frequency is 12 MHz at 3.3V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements.  
b. If the frequency of the external clock is greater than 12 MHz, the CPU clock divider must be set to 2 or greater. In this case, the CPU clock divider will ensure that the fifty per-  
cent duty cycle requirement is met.  
3.4.8  
AC Programming Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only.  
Table 3-29. AC Programming Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
ns  
Notes  
T
Rise Time of SCLK  
Fall Time of SCLK  
1
20  
20  
RSCLK  
FSCLK  
SSCLK  
HSCLK  
SCLK  
T
T
T
F
T
T
T
T
1
ns  
Data Set up Time to Falling Edge of SCLK  
Data Hold Time from Falling Edge of SCLK  
Frequency of SCLK  
40  
40  
0
ns  
ns  
8
MHz  
ms  
ms  
ns  
Flash Erase Time (Block)  
10  
10  
ERASEB  
WRITE  
DSCLK  
DSCLK3  
Flash Block Write Time  
Data Out Delay from Falling Edge of SCLK  
Data Out Delay from Falling Edge of SCLK  
45  
50  
Vdd > 3.6  
ns  
3.0 Vdd 3.6  
October 26, 2006  
Document No. 38-12012 Rev. *K  
37  
[+] Feedback  
CY8C27x43 Final Data Sheet  
3. Electrical Specifications  
2
3.4.9  
AC I C Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and  
are for design guidance only.  
Table 3-30. AC Characteristics of the I2C SDA and SCL Pins  
Standard Mode  
Min Max  
100  
Fast Mode  
Min Max  
Symbol  
SCLI2C  
Description  
Units  
kHz  
Notes  
F
T
SCL Clock Frequency  
0
0
400  
Hold Time (repeated) START Condition. After this period, the 4.0  
first clock pulse is generated.  
0.6  
µs  
HDSTAI2C  
T
T
T
T
T
T
T
T
LOW Period of the SCL Clock  
4.7  
4.0  
4.7  
0
1.3  
0.6  
0.6  
0
µs  
µs  
µs  
µs  
ns  
µs  
µs  
ns  
LOWI2C  
HIGH Period of the SCL Clock  
HIGHI2C  
SUSTAI2C  
HDDATI2C  
SUDATI2C  
SUSTOI2C  
BUFI2C  
Set-up Time for a Repeated START Condition  
Data Hold Time  
a
Data Set-up Time  
250  
4.0  
4.7  
100  
0.6  
Set-up Time for STOP Condition  
Bus Free Time Between a STOP and START Condition  
Pulse Width of spikes are suppressed by the input filter.  
1.3  
0
50  
SPI2C  
a. A Fast-Mode I2C-bus device can be used in a Standard-Mode I2C-bus system, but the requirement tSU;DAT 250 ns must then be met. This will automatically be the case if  
the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line  
trmax + tSU;DAT = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.  
SDA  
TSPI2C  
T
LOWI2C  
TSUDATI2C  
THDSTAI2C  
TBUFI2C  
SCL  
TSUSTOI2C  
TSUSTAI2C  
THDDATI2C  
THDSTAI2C  
THIGHI2C  
S
Sr  
P
S
Figure 3-11. Definition for Timing for Fast/Standard Mode on the I2C Bus  
October 26, 2006  
Document No. 38-12012 Rev. *K  
38  
[+] Feedback  
4. Packaging Information  
This chapter illustrates the packaging specifications for the CY8C27x43 PSoC device, along with the thermal impedances for each  
package and the typical package capacitance on crystal pins.  
Important Note Emulation tools may require a larger area on the target PCB than the chip’s footprint. For a detailed description of  
the emulation tools’ dimensions, refer to the document titled PSoC Emulator Pod Dimensions at  
http://www.cypress.com/design/MR10161.  
4.1  
Packaging Dimensions  
51-85075 *A  
Figure 4-1. 8-Lead (300-Mil) PDIP  
October 26, 2006  
Document No. 38-12012 Rev. *K  
39  
[+] Feedback  
CY8C27x43 Final Data Sheet  
4. Packaging Information  
51-85077 *C  
Figure 4-2. 20-Lead (210-Mil) SSOP  
51-85024 *C  
Figure 4-3. 20-Lead (300-Mil) Molded SOIC  
Document No. 38-12012 Rev. *K  
October 26, 2006  
40  
[+] Feedback  
CY8C27x43 Final Data Sheet  
4. Packaging Information  
51-85014 *D  
Figure 4-4. 28-Lead (300-Mil) Molded DIP  
51-85079 *C  
Figure 4-5. 28-Lead (210-Mil) SSOP  
Document No. 38-12012 Rev. *K  
October 26, 2006  
41  
[+] Feedback  
CY8C27x43 Final Data Sheet  
4. Packaging Information  
51-85026 *D  
Figure 4-6. 28-Lead (300-Mil) Molded SOIC  
51-85064 *C  
Figure 4-7. 44-Lead TQFP  
October 26, 2006  
Document No. 38-12012 Rev. *K  
42  
[+] Feedback  
CY8C27x43 Final Data Sheet  
4. Packaging Information  
51-85061 *C  
Figure 4-8. 48-Lead (300-Mil) SSOP  
0.08  
C
6.90  
7.10  
1.00 MAX.  
0.0ꢀ MAX.  
0.20 REF.  
X
0.80 MAX.  
6.70  
6.80  
0.23 0.0ꢀ  
PIN1 ID  
0.20 R.  
N
N
1
1
2
2
0.4ꢀ  
0.80 DIA.  
6.90  
7.10  
6.70  
6.80  
ꢀ.4ꢀ  
ꢀ.ꢀꢀ  
Y
0.30-0.4ꢀ  
0.42 0.18  
(4X)  
0°-12°  
0.ꢀ0  
ꢀ.4ꢀ  
ꢀ.ꢀꢀ  
C
SEATING  
PLANE  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
51-85152 - *B  
DIMENSIONS IN mm MIN.  
MAX.  
Figure 4-9. 48-Lead (7x7 mm) QFN  
Important Note For information on the preferred dimensions for mounting QFN packages, see the following Application Note at  
http://www.amkor.com/products/notes_papers/MLFAppNote.pdf.  
October 26, 2006  
Document No. 38-12012 Rev. *K  
43  
[+] Feedback  
CY8C27x43 Final Data Sheet  
4. Packaging Information  
4.2  
Thermal Impedances  
Table 4-1. Thermal Impedances per Package  
Package  
8 PDIP  
Typical θJA  
*
o
120 C/W  
o
20 SSOP  
20 SOIC  
28 PDIP  
28 SSOP  
28 SOIC  
44 TQFP  
48 SSOP  
48 QFN  
116 C/W  
o
79 C/W  
o
67 C/W  
o
95 C/W  
o
68 C/W  
o
61 C/W  
o
69 C/W  
o
18 C/W  
* T = T + POWER x θJA  
J
A
4.3  
Capacitance on Crystal Pins  
Table 4-2: Typical Package Capacitance on Crystal Pins  
Package  
8 PDIP  
Package Capacitance  
2.8 pF  
20 SSOP  
20 SOIC  
28 PDIP  
28 SSOP  
28 SOIC  
44 TQFP  
48 SSOP  
48 QFN  
2.6 pF  
2.5 pF  
3.5 pF  
2.8 pF  
2.7 pF  
2.6 pF  
3.3 pF  
2.3 pF  
4.4  
Solder Reflow Peak Temperature  
Following is the minimum solder reflow peak temperature to achieve good solderability.  
Table 4-3. Solder Reflow Peak Temperature  
Silicon A*  
Silicon B*  
Package  
Minimum Peak  
Temperature**  
Maximum Peak  
Temperature  
Minimum Peak  
Temperature*  
Maximum Peak  
Temperature  
o
o
o
o
8 PDIP  
20 SSOP  
20 SOIC  
28 PDIP  
28 SSOP  
28 SOIC  
44 TQFP  
48 SSOP  
48 QFN  
220 C  
240 C  
240 C  
260 C  
o
o
o
o
220 C  
240 C  
240 C  
260 C  
o
o
o
o
220 C  
240 C  
220 C  
260 C  
o
o
o
o
220 C  
240 C  
240 C  
260 C  
o
o
o
o
220 C  
240 C  
240 C  
260 C  
o
o
o
o
220 C  
240 C  
220 C  
260 C  
o
o
o
o
220 C  
240 C  
220 C  
260 C  
o
o
o
o
220 C  
240 C  
220 C  
260 C  
o
o
o
o
220 C  
240 C  
240 C  
260 C  
*Refer to the Ordering Information chapter on page 48.  
**Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220 ± 5oC with Sn-  
Pb or 245 ± 5oC with Sn-Ag-Cu paste. Refer to the solder manufacturer specifications.  
October 26, 2006  
Document No. 38-12012 Rev. *K  
44  
[+] Feedback  
5. Development Tool Selection  
This chapter presents the development tools available for all current PSoC device families including the CY8C27x43 family.  
5.1  
Software  
5.2  
Development Kits  
All development kits can be purchased from the Cypress Online  
Store.  
5.1.1  
PSoC Designer™  
At the core of the PSoC development software suite is PSoC  
Designer. Utilized by thousands of PSoC developers, this  
robust software has been facilitating PSoC designs for half a  
decade. PSoC Designer is available free of charge at http://  
www.cypress.com under DESIGN RESOURCES >> Software  
and Drivers.  
5.2.1  
CY3215-DK Basic Development Kit  
The CY3215-DK is for prototyping and development with PSoC  
Designer. This kit supports in-circuit emulation and the software  
interface allows users to run, halt, and single step the processor  
and view the content of specific memory locations. Advance  
emulation features also supported through PSoC Designer. The  
kit includes:  
5.1.2  
PSoC Express™  
PSoC Designer Software CD  
As the newest addition to the PSoC development software  
suite, PSoC Express is the first visual embedded system design  
tool that allows a user to create an entire PSoC project and  
generate a schematic, BOM, and data sheet without writing a  
single line of code. Users work directly with application objects  
such as LEDs, switches, sensors, and fans. PSoC Express is  
available free of charge at http://www.cypress.com/psocex-  
press.  
ICE-Cube In-Circuit Emulator  
ICE Flex-Pod for CY8C29x66 Family  
Cat-5 Adapter  
Mini-Eval Programming Board  
110 ~ 240V Power Supply, Euro-Plug Adapter  
iMAGEcraft C Compiler (Registration Required)  
ISSP Cable  
5.1.3  
PSoC Programmer  
USB 2.0 Cable and Blue Cat-5 Cable  
2 CY8C29466-24PXI 28-PDIP Chip Samples  
Flexible enough to be used on the bench in development, yet  
suitable for factory programming, PSoC Programmer works  
either as a standalone programming application or it can oper-  
ate directly from PSoC Designer or PSoC Express. PSoC Pro-  
grammer software is compatible with both PSoC ICE-Cube In-  
Circuit Emulator and PSoC MiniProg. PSoC programmer is  
available free ofcharge at http://www.cypress.com/psocpro-  
grammer.  
5.1.4  
CY3202-C iMAGEcraft C Compiler  
CY3202 is the optional upgrade to PSoC Designer that enables  
the iMAGEcraft C compiler. It can be purchased from the  
Cypress Online Store. At http://www.cypress.com, click the  
Online Store shopping cart icon at the bottom of the web page,  
and click PSoC (Programmable System-on-Chip) to view a cur-  
rent list of available items.  
October 26, 2006  
Document No. 38-12012 Rev. *K  
45  
[+] Feedback  
CY8C27x43 Final Data Sheet  
5. Development Tool Selection  
5.2.2  
CY3210-ExpressDK PSoC Express  
Development Kit  
5.3.3  
CY3214-PSoCEvalUSB  
The CY3214-PSoCEvalUSB evaluation kit features a develop-  
ment board for the CY8C24794-24LFXI PSoC device. Special  
features of the board include both USB and capacitive sensing  
development and debugging support. This evaluation board  
also includes an LCD module, potentiometer, LEDs, an enunci-  
ator and plenty of bread boarding space to meet all of your eval-  
uation needs. The kit includes:  
The CY3210-ExpressDK is for advanced prototyping and devel-  
opment with PSoC Express (may be used with ICE-Cube In-Cir-  
cuit Emulator). It provides access to I2C buses, voltage  
reference, switches, upgradeable modules and more. The kit  
includes:  
PSoC Express Software CD  
Express Development Board  
4 Fan Modules  
PSoCEvalUSB Board  
LCD Module  
MIniProg Programming Unit  
Mini USB Cable  
2 Proto Modules  
MiniProg In-System Serial Programmer  
MiniEval PCB Evaluation Board  
Jumper Wire Kit  
PSoC Designer and Example Projects CD  
Getting Started Guide  
Wire Pack  
USB 2.0 Cable  
Serial Cable (DB9)  
5.4  
Device Programmers  
110 ~ 240V Power Supply, Euro-Plug Adapter  
2 CY8C24423A-24PXI 28-PDIP Chip Samples  
2 CY8C27443-24PXI 28-PDIP Chip Samples  
2 CY8C29466-24PXI 28-PDIP Chip Samples  
All device programmers can be purchased from the Cypress  
Online Store.  
5.4.1  
CY3216 Modular Programmer  
5.3  
Evaluation Tools  
The CY3216 Modular Programmer kit features a modular pro-  
grammer and the MiniProg1 programming unit. The modular  
programmer includes three programming module cards and  
supports multiple Cypress products. The kit includes:  
All evaluation tools can be purchased from the Cypress Online  
Store.  
Modular Programmer Base  
3 Programming Module Cards  
MiniProg Programming Unit  
PSoC Designer Software CD  
Getting Started Guide  
5.3.1  
CY3210-MiniProg1  
The CY3210-MiniProg1 kit allows a user to program PSoC  
devices via the MiniProg1 programming unit. The MiniProg is a  
small, compact prototyping programmer that connects to the PC  
via a provided USB 2.0 cable. The kit includes:  
USB 2.0 Cable  
MiniProg Programming Unit  
MiniEval Socket Programming and Evaluation Board  
28-Pin CY8C29466-24PXI PDIP PSoC Device Sample  
28-Pin CY8C27443-24PXI PDIP PSoC Device Sample  
PSoC Designer Software CD  
5.4.2  
CY3207ISSP In-System Serial  
Programmer (ISSP)  
The CY3207ISSP is a production programmer. It includes pro-  
tection circuitry and an industrial case that is more robust than  
the MiniProg in a production-programming environment.  
Note: CY3207ISSP needs special software and is not compati-  
ble with PSoC Programmer. The kit includes:  
Getting Started Guide  
USB 2.0 Cable  
5.3.2  
CY3210-PSoCEval1  
CY3207 Programmer Unit  
PSoC ISSP Software CD  
The CY3210-PSoCEval1 kit features an evaluation board and  
the MiniProg1 programming unit. The evaluation board includes  
an LCD module, potentiometer, LEDs, and plenty of bread-  
boarding space to meet all of your evaluation needs. The kit  
includes:  
110 ~ 240V Power Supply, Euro-Plug Adapter  
USB 2.0 Cable  
Evaluation Board with LCD Module  
MiniProg Programming Unit  
28-Pin CY8C29466-24PXI PDIP PSoC Device Sample (2)  
PSoC Designer Software CD  
Getting Started Guide  
USB 2.0 Cable  
October 26, 2006  
Document No. 38-12012 Rev. *K  
46  
[+] Feedback  
CY8C27x43 Final Data Sheet  
5. Development Tool Selection  
5.5  
Accessories (Emulation and  
Programming)  
Table 5-1. Emulation and Programming Accessories  
a
b
c
Part #  
Pin  
Package  
Flex-Pod Kit  
Foot Kit  
Adapter  
CY8C27143 8 PDIP  
-24PXI  
CY3250-27XXX CY3250-  
8PDIP-FK  
CY8C27243 20 SSOP  
-24PVXI  
CY3250-27XXX CY3250-  
20SSOP-FK  
CY8C27243 20 SOIC  
-24SXI  
CY3250-27XXX CY3250-  
20SOIC-FK  
CY8C27443 28 PDIP  
-24PXI  
CY3250-27XXX CY3250-  
28PDIP-FK  
Adapters can be  
found at http://  
CY8C27443 28 SSOP  
-24PVXI  
CY3250-27XXX CY3250-  
28SSOP-FK www.emula-  
tion.com.  
CY8C27443 28 SOIC  
-24SXI  
CY3250-27XXX CY3250-  
28SOIC-FK  
CY8C27543 44 TQFP  
-24AXI  
CY3250-27XXX CY3250-  
44TQFP-FK  
CY8C27643 48 SSOP  
-24PVXI  
CY3250-27XXX CY3250-  
48SSOP-FK  
CY8C27643 48 QFN  
-24LFXI  
CY3250-  
27XXXQFN  
CY3250-  
48QFN-FK  
a. Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two  
flex-pods.  
b. Foot kit includes surface mount feet that can be soldered to the target PCB.  
c. Programming adapter converts non-DIP package to DIP footprint. Specific  
details and ordering information for each of the adapters can be found at  
http://www.emulation.com.  
5.6  
3rd-Party Tools  
Several tools have been specially designed by the following  
3rd-party vendors to accompany PSoC devices during develop-  
ment and production. Specific details for each of these tools can  
be found at http://www.cypress.com under DESIGN  
RESOURCES >> Evaluation Boards.  
5.7  
Build a PSoC Emulator into  
Your Board  
For details on how to emulate your circuit before going to vol-  
ume production using an on-chip debug (OCD) non-production  
PSoC device, see Application Note “Debugging - Build a PSoC  
Emulator into Your Board - AN2323” at http://www.cypress.com/  
an2323.  
October 26, 2006  
Document No. 38-12012 Rev. *K  
47  
[+] Feedback  
6. Ordering Information  
The following table lists the CY8C27x43 PSoC device’s key package features and ordering codes.  
Table 6-1. CY8C27x43 PSoC Device Key Features and Ordering Information  
Ordering  
Package  
Code  
CY8C27x43 Silicon B – These parts are lead free and offer the following improvements. The DEC_CR1 register selections are enhanced to allow  
any digital block to be the decimator clock source, the ECO EX and ECO EXW bits in the CPU_SCR1 register are readable, and the accuracy of  
the analog reference is enhanced (see the Electrical Specifications chapter). All silicon A errata are fixed in silicon B.  
8 Pin (300 Mil) DIP  
CY8C27143-24PXI  
CY8C27243-24PVXI  
16K  
16K  
256  
256  
No  
-40C to +85C  
-40C to +85C  
8
8
12  
12  
6
4
8
4
4
No  
20 Pin (210 Mil) SSOP  
Yes  
16  
Yes  
20 Pin (210 Mil) SSOP  
(Tape and Reel)  
CY8C27243-24PVXIT  
CY8C27243-24SXI  
CY8C27243-24SXIT  
16K  
256  
256  
256  
Yes  
Yes  
Yes  
-40C to +85C  
-40C to +85C  
-40C to +85C  
8
8
8
12  
12  
12  
16  
16  
16  
8
8
8
4
4
4
Yes  
Yes  
Yes  
20 Pin (300 Mil) SOIC  
16K  
16K  
20 Pin 300 Mil) SOIC  
(Tape and Reel)  
28 Pin (300 Mil) DIP  
CY8C27443-24PXI  
CY8C27443-24PVXI  
16K  
16K  
16K  
256  
256  
Yes  
Yes  
-40C to +85C  
-40C to +85C  
8
8
12  
12  
24  
24  
12  
12  
4
4
Yes  
Yes  
28 Pin (210 Mil) SSOP  
28 Pin (210 Mil) SSOP  
(Tape and Reel)  
CY8C27443-24PVXIT  
CY8C27443-24SXI  
CY8C27443-24SXIT  
CY8C27543-24AXI  
CY8C27543-24AXIT  
CY8C27643-24PVXI  
CY8C27643-24PVXIT  
CY8C27643-24LFXI  
CY8C27643-24LFXIT  
CY8C27002-24PVXIa  
256  
256  
256  
256  
256  
256  
256  
256  
256  
256  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-40C to +85C  
-40C to +85C  
-40C to +85C  
-40C to +85C  
-40C to +85C  
-40C to +85C  
-40C to +85C  
-40C to +85C  
-40C to +85C  
-40C to +85C  
8
8
8
8
8
8
8
8
8
8
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
24  
24  
24  
40  
40  
44  
44  
44  
44  
44  
12  
12  
12  
12  
12  
12  
12  
12  
12  
14  
4
4
4
4
4
4
4
4
4
4
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
28 Pin (300 Mil) SOIC  
16K  
16K  
28 Pin (300 Mil) SOIC  
(Tape and Reel)  
44 Pin TQFP  
16K  
16K  
44 Pin TQFP  
(Tape and Reel)  
48 Pin (300 Mil) SSOP  
16K  
16K  
48 Pin (300 Mil) SSOP  
(Tape and Reel)  
48 Pin (7x7) QFN  
16K  
16K  
16K  
48 Pin (7x7) QFN  
(Tape and Reel)  
56 Pin OCD SSOP  
CY8C27x43 Silicon A – Silicon A is not recommended for new designs.  
8 Pin (300 Mil) DIP  
CY8C27143-24PI  
CY8C27243-24PVI  
16K  
16K  
16K  
256  
256  
No  
-40C to +85C  
-40C to +85C  
8
8
12  
12  
6
4
8
4
4
No  
20 Pin (210 Mil) SSOP  
Yes  
16  
Yes  
20 Pin (210 Mil) SSOP  
(Tape and Reel)  
CY8C27243-24PVIT  
CY8C27243-24SI  
CY8C27243-24SIT  
CY8C27443-24PI  
256  
256  
256  
256  
Yes  
Yes  
Yes  
Yes  
-40C to +85C  
-40C to +85C  
-40C to +85C  
-40C to +85C  
8
8
8
8
12  
12  
12  
12  
16  
16  
16  
24  
8
8
4
4
4
4
Yes  
Yes  
Yes  
Yes  
20 Pin (300 Mil) SOIC  
16K  
16K  
20 Pin 300 Mil) SOIC  
(Tape and Reel)  
8
28 Pin (300 Mil) DIP  
16K  
12  
October 26, 2006  
Document No. 38-12012 Rev. *K  
48  
[+] Feedback  
CY8C27x43 Final Data Sheet  
6. Ordering Information  
Table 6-1. CY8C27x43 PSoC Device Key Features and Ordering Information (continued)  
Ordering  
Package  
Code  
28 Pin (210 Mil) SSOP  
CY8C27443-24PVI  
CY8C27443-24PVIT  
CY8C27443-24SI  
CY8C27443-24SIT  
CY8C27543-24AI  
CY8C27543-24AIT  
CY8C27643-24PVI  
CY8C27643-24PVIT  
CY8C27643-24LFI  
CY8C27643-24LFIT  
16K  
16K  
256  
256  
256  
256  
256  
256  
256  
256  
256  
256  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-40C to +85C  
-40C to +85C  
-40C to +85C  
-40C to +85C  
-40C to +85C  
-40C to +85C  
-40C to +85C  
-40C to +85C  
-40C to +85C  
-40C to +85C  
8
8
8
8
8
8
8
8
8
8
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
24  
24  
24  
24  
40  
40  
44  
44  
44  
44  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
4
4
4
4
4
4
4
4
4
4
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
28 Pin (210 Mil) SSOP  
(Tape and Reel)  
28 Pin (300 Mil) SOIC  
16K  
16K  
28 Pin (300 Mil) SOIC  
(Tape and Reel)  
44 Pin TQFP  
16K  
16K  
44 Pin TQFP  
(Tape and Reel)  
48 Pin (300 Mil) SSOP  
16K  
16K  
48 Pin (300 Mil) SSOP  
(Tape and Reel)  
48 Pin (7x7) MLF  
16K  
16K  
48 Pin (7x7) MLF  
(Tape and Reel)  
a. This part may be used for in-circuit debugging. It is NOT available for production  
6.1  
Ordering Code Definitions  
CY 8 C 27 xxx-SPxx  
Package Type:  
Thermal Rating:  
C = Commercial  
I = Industrial  
PX = PDIP Pb-Free  
SX = SOIC Pb-Free  
PVX = SSOP Pb-Free  
LFX/LKX = QFN Pb-Free  
AX = TQFP Pb-Free  
E = Extended  
Speed: 24 MHz  
Part Number  
Family Code  
Technology Code: C = CMOS  
Marketing Code: 8 = Cypress PSoC  
Company ID: CY = Cypress  
October 26, 2006  
Document No. 38-12012 Rev. *K  
49  
[+] Feedback  
7. Sales and Service Information  
Cypress Semiconductor  
198 Champion Court  
San Jose, CA 95134  
408.943.2600  
Web Sites:  
Company Information – http://www.cypress.com  
Sales – http://www.cypress.com/aboutus/sales_locations.cfm  
Technical Support – http://www.cypress.com/support/login.cfm  
7.1  
Revision History  
Table 7-1. CY8C27x43 Data Sheet Revision History  
Document Title:  
CY8C27143, CY8C27243, CY8C27443, CY8C27543, and CY8C27643 PSoC Mixed-Signal Array Final Data Sheet  
Document Number: 38-12012  
Revision  
**  
ECN #  
127087  
128780  
Issue Date Origin of Change  
Description of Change  
7/01/2003 New Silicon.  
New document (Revision **).  
*A  
7/29/2003 Engineering and  
NWJ.  
New electrical spec additions, fix of Core Architecture links, corrections to some text,  
tables, drawings, and format.  
*B  
128992  
8/14/2003 NWJ  
Interrupt controller table fixed, refinements to Electrical Spec section and Register chap-  
ter.  
*C  
*D  
129283  
129442  
8/28/2003 NWJ  
9/09/2003 NWJ  
Significant changes to the Electrical Specifications section.  
Changes made to Electrical Spec section. Added 20/28-Lead SOIC packages and  
pinouts.  
*E  
*F  
*G  
130129  
130651  
131298  
10/13/2003 NWJ  
10/28/2003 NWJ  
11/18/2003 NWJ  
Revised document for Silicon Revision A.  
Refinements to Electrical Specification section and I2C chapter.  
Revisions to GDI, RDI, and Digital Block chapters. Revisions to AC Digital Block Spec  
and miscellaneous register changes.  
*H  
229416  
See ECN SFV  
New data sheet format and organization. Reference the PSoC Mixed-Signal Array Tech-  
nical Reference Manual for additional information. Title change.  
*I  
247529  
355555  
See ECN SFV  
See ECN HMT  
Added Silicon B information to this data sheet.  
*J  
Add DS standards, update device table, swap 48-pin SSOP 45 and 46, add Reflow Peak  
Temp. table. Add new color and logo. Re-add pinout ISSP notation. Add URL to pre-  
ferred dimensions for mounting MLF packages. Update Transmitter and Receiver AC  
Digital Block Electrical Specifications.  
*K  
523233  
See ECN HMT  
Add Low Power Comparator (LPC) AC/DC electrical spec. tables. Add new Dev. Tool  
section. Add CY8C20x34 to PSoC Device Characteristics table. Add OCD pinout and  
package diagram. Add ISSP note to pinout tables. Update package diagram revisions.  
Update typical and recommended Storage Temperature per industrial specs. Update CY  
branding and QFN convention. Update copyright and trademarks.  
Distribution: External Public  
Posting: None  
October 26, 2006  
© CypressSemiconductor Corp. 2002 - 2006 — Document No. 38-12012 Rev. *K  
50  
[+] Feedback  
CY8C27x43 Final Data Sheet  
7. Sales and Service Information  
7.2  
Copyrights and Code Protection  
Copyrights  
© Cypress Semiconductor Corp. 2002-2006. All rights reserved. PSoC Designer™, Programmable System-on-Chip™, and PSoC Express are trademarks and PSoC® is  
a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are property of the respective corporations.  
The information contained herein is subject to change without notice. Cypress Semiconductor assumes no responsibility for the use of any circuitry other than circuitry  
embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products  
for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of  
Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress  
Semiconductor against all charges. Cypress Semiconductor products are not warranted nor intended to be used for medical, life-support, life-saving, critical control or safety  
applications, unless pursuant to an express written agreement with Cypress Semiconductor.  
Flash Code Protection  
Note the following details of the Flash code protection features on Cypress Semiconductor PSoC devices.  
Cypress Semiconductor products meet the specifications contained in their particular data sheets. Cypress Semiconductor believes that its family of products is one of the  
most secure families of its kind on the market today, regardless of how they are used. There may be methods, unknown to Cypress Semiconductor, that can breach the  
code protection features. Any of these methods, to our knowledge, would be dishonest and possibly illegal. Neither Cypress Semiconductor nor any other semiconductor  
manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."  
Cypress Semiconductor is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly evolving. We at Cypress  
Semiconductor are committed to continuously improving the code protection features of our products.  
Cypress Semiconductor is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly evolving. We at Cypress  
Semiconductor are committed to continuously improving the code protection features of our products.  
October 26, 2006  
Document No. 38-12012 Rev. *K  
51  
[+] Feedback  

相关型号:

CY8C27143_09

PSoC Programmable System-on-Chip
CYPRESS

CY8C27143_13

PSoC® Programmable System-on-Chip™
CYPRESS

CY8C27243

PSoC Mixed Signal Array
CYPRESS

CY8C27243-12PVXE

PSoC㈢ Mixed-Signal Array
CYPRESS

CY8C27243-12PVXET

PSoC㈢ Mixed-Signal Array
CYPRESS

CY8C27243-24PVI

PSoC Mixed Signal Array
CYPRESS

CY8C27243-24PVIT

PSoC Mixed Signal Array
CYPRESS

CY8C27243-24PVXI

PSoC Mixed Signal Array
CYPRESS

CY8C27243-24PVXIT

PSoC Mixed Signal Array
CYPRESS

CY8C27243-24SI

PSoC Mixed Signal Array
CYPRESS

CY8C27243-24SIT

PSoC Mixed Signal Array
CYPRESS

CY8C27243-24SXI

PSoC Mixed Signal Array
CYPRESS