CYDD18S72V18-200BBXC [CYPRESS]

Dual-Port SRAM, 256KX72, 9ns, CMOS, PBGA484, 23 X 23 MM, 2.03 MM HEIGHT, 1 MM PITCH, LEAD FREE, PLASTIC, BGA-484;
CYDD18S72V18-200BBXC
型号: CYDD18S72V18-200BBXC
厂家: CYPRESS    CYPRESS
描述:

Dual-Port SRAM, 256KX72, 9ns, CMOS, PBGA484, 23 X 23 MM, 2.03 MM HEIGHT, 1 MM PITCH, LEAD FREE, PLASTIC, BGA-484

静态存储器
文件: 总48页 (文件大小:1053K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
FullFlex™ Synchronous  
DDR Dual-Port SRAM  
— Selectable LVTTL (3.3V), Extended HSTL  
(1.4V–1.9V), 1.8V LVCMOS, or 2.5V LVCMOS I/O on  
each port  
Features  
• True dual-ported memory allows simultaneous access  
to the shared array from each port  
— Burst counters for sequential memory access  
— Mailbox with interrupt flags for message passing  
— Dual Chip Enables for easy depth expansion  
• Synchronous pipelined operation with selectable  
Double Data Rate (DDR) or Single Data Rate (SDR)  
operation on each port  
— DDR SRAM interface (data transferred at 400 Mbps)  
Functional Description  
@ 200 MHz  
The FullFlex Dual-Port SRAM families consist of 4-Mbit,  
9-Mbit, 18-Mbit, and 36-Mbit synchronous, true dual-port static  
RAMs that are high-speed, low-power 1.8V/1.5V CMOS. Two  
ports are provided, allowing the array to be accessed simulta-  
neously. Simultaneous access to a location triggers determin-  
istic access control. For FullFlex72, these ports can operate  
independently in DDR mode with 36-bit bus widths or in SDR  
mode with 72-bit bus widths. For FullFlex36 and FullFlex18,  
the ports operate in DDR mode only. Each port can be  
independently configured for two pipeline stages for SDR  
mode or 2.5 stages in DDR mode. Each port can also be  
configured to operate in pipeline or flow-through mode in SDR  
mode.  
Advanced features include built-in deterministic access  
control to manage address collisions during simultaneous  
access to the same memory location, variable impedance  
Matching (VIM) to improve data transmission by matching the  
output driver impedance to the line impedance, and echo  
clocks to improve data transfer.  
— SDR interface at 250 MHz  
— Up to 36-Gb/s bandwidth (250 MHz * 72 bit * 2 ports)  
• Selectable pipeline or flow-through mode  
• Selectable 1.5V or 1.8V core power supply  
• Commercial and Industrial temperature ranges  
• IEEE 1149.1 JTAG boundary scan  
• Available in 484-ball PBGA Packages and 256-ball  
FBGA Packages  
• FullFlex72 family  
— 36 Mbit: 512K x 72 (CYDD36S72V18)  
— 18 Mbit: 256K x 72 (CYDD18S72V18)  
— 9 Mbit: 128K x 72 (CYDD09S72V18)  
— 4 Mbit: 64K x 72 (CYDD04S72V18)  
• FullFlex36 family  
— 36 Mbit: 512K x 72 (CYDD36S36V18)  
— 18 Mbit: 256K x 72 (CYDD18S36V18)  
— 9 Mbit: 128K x 72 (CYDD09S36V18)  
— 4 Mbit: 64K x 72 (CYDD04S36V18)  
• FullFlex18 family  
— 36 Mbit: 1M x 36 (CYDD36S18V18)  
— 18 Mbit: 512K x 36 (CYDD18S18V18)  
— 9 Mbit: 256K x 36 (CYDD09S18V18)  
— 4 Mbit: 128K x 36 (CYDD04S18V18)  
To reduce the static power consumption, chip enables can be  
used to power down the internal circuitry. The number of  
cycles of latency before a change in CE0 or CE1 will enable  
or disable the databus matches the number of cycles of read  
latency selected for the device. In order for a valid write or read  
to occur, both chip enable inputs on a port must be active.  
Each port contains an optional burst counter on the input  
address register. After externally loading the counter with the  
initial address, the counter will increment the address inter-  
nally.  
Additional features of this device include a mask register and  
a
mirror register to control counter increments and  
• Built-in deterministic access control to manage  
wrap-around, counter-interrupt (CNTINT) flags to notify that  
the counter will reach the maximum value on the next clock  
cycle, readback of the burst-counter internal address, mask  
register address, and BUSY address on the address lines,  
retransmit functionality, mailbox interrupt flags for message  
passing, JTAG for boundary scan, and asynchronous Master  
Reset (MRST). The logic block diagram in Figure 1 displays  
these features.  
address collisions  
— Deterministic flag output upon collision detection  
— Collision detection on back-to-back clock cycles  
— First Busy Address readback  
• Advanced features for improved high-speed data  
transfer and flexibility  
— Variable impedance Matching (VIM)  
— Echo clocks  
The FullFlex72 DDR family of devices is offered in a 484-ball  
plastic BGA package. The FullFlex36 and FullFlex18 DDR  
only families of devices are offered in a 256-ball fine pitch BGA  
package.  
Cypress Semiconductor Corporation  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Document #: 38-06072 Rev. *E  
Revised October 11, 2005  
PRELIMINARY  
FullFlex  
FTSEL  
CQEN  
L
FTSEL  
CQEN  
L
R
R
CONFIG Block  
CONFIG Block  
PORTSTD[1:0]  
PORTSTD[1:0]  
L
R
DQ [71:0]  
R
DQ[71:0]  
L
BE [7:0]  
R
BE [7:0]  
L
CE0  
CE0  
R
L
L
IO  
Control  
IO  
Control  
CE1  
CE1  
R
OE  
R
OE  
L
R/W  
R/W  
R
R
L
L
CQ0  
CQ0  
CQ0  
CQ0  
L
R
CQ1  
CQ1  
L
R
CQ1  
CQ1  
L
R
VC_SEL  
Dual Ported Array  
Collision Detection  
Logic  
BUSY  
BUSY  
L
R
A [19:0]  
A [19:0]  
L
L
R
R
CNT/MSK  
CNT/MSK  
ADS  
ADS  
R
L
CNTEN  
CNTEN  
R
L
Address &  
Counter Logic  
Address &  
Counter Logic  
CNTRST  
CNTRST  
L
R
RET  
L
RET  
R
CNTINT  
L
CNTINT  
R
C
L
C
R
C
L
C
R
WRP  
L
WRP  
R
TRST  
TMS  
TDI  
Mailboxes  
INT  
INT  
R
L
JTAG  
TDO  
TCK  
READY  
L
MRST  
RESET  
LOGIC  
LowSPD  
READY  
R
L
LowSPD  
ZQ0  
ZQ1  
R
L
L
ZQ0  
ZQ1  
R
R
Figure 1. Block Diagram[1,2,3]  
Notes:  
1. The CYDD36S18V18 device has 20 address bits. The CYDD36S36V18, CYDD36S72V18, and the CYDD18S18V18 devices have 19 address bits. The  
CYDD18S72V18, CYDD18S36V18, and the CYDD09S18V18 devices have 18 address bits. The CYDD09S72V18, CYDD04S18V18, and the CYDD09S36V18  
devices have 17 address bits. The CYDD04S36V18 and the CYDD04S72V18 devices have 16 address bits.  
2. The FullFlex72 family of devices has 72 data lines. The FullFlex36 family of devices has 36 data lines. The FullFlex18 family of devices has 18 data lines.  
3. The FullFlex72 family of devices has eight byte enables. The FullFlex36 family of devices has four byte enables. The FullFlex18 family of devices has two byte  
enables.  
Document #: 38-06072 Rev. *E  
Page 2 of 48  
FullFlex  
PRELIMINARY  
Document #: 38-06072 Rev. *E  
Page 3 of 48  
PRELIMINARY  
FullFlex  
FullFlex36 DDR 484-ball BGA Pinout (Top View)[8]  
20 21 22  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
NC DQ34 DQ32 DQ30 DQ27 NC  
NC  
NC DQ24 DQ21 DQ18 DQ18 DQ21 DQ24 NC  
NC  
NC DQ27 DQ30 DQ32 DQ34 NC  
A
B
C
L
L
L
L
L
L
L
R
R
R
R
R
R
R
NC DQ35 DQ33 DQ31 DQ28 NC  
LNC  
NC  
NC  
NC DQ25 DQ22 DQ19 DQ19 DQ22 DQ25 NC  
NC  
NC  
NC DQ28 DQ31 DQ33 DQ35 NC  
L
L
L
L
L
L
R
R
R
R
R
R
R
NC  
NC VSS VSS DQ29 NC  
L
NC DQ26 DQ23 DQ20 DQ20 DQ23 DQ26 NC  
NC DQ29 VSS VSS NC  
R
NC  
NC  
L
L
L
R
R
R
[
NC  
NC VSS VSS VSS CQ1L CQ1L  
LOW PORT ZQ0L BUSY CNTI PORT NC CQ1R CQ1R VSS VSS VSS NC  
4]  
DDR  
ONL  
SPDL STD0  
L
L
NTL STD1  
L
D
E
F
NC  
NC  
NC VDDI VSS VSS VDDI VDDI VDDI VDDI VDDI VTTL VTTL VTTL VDDI VDDI VDDI VDDI NC VSS VDDI NC  
OL OL OL OL OL OL OR OR OR OR OR  
NC  
NC  
NC CE1L CE0L VDDI VDDI VDDI VDDI VDDI VCO VCO VCO VCO VDDI VDDI VDDI VDDI VDDI CE0R CE1R NC  
OL OL OL OL OL RE RE RE RE OR OR OR OR OR  
A0L A1L RETL BE2L VDDI VDDI VREF VSS VSS VSS VSS VSS VSS VSS VSS VREF VDDI VDDI BE2R RETR A1R A0R  
OL OL OR OR  
G
H
J
L
R
A2L A3L WRP NC VDDI VDDI VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI NC WRP A3R A2R  
OL OL OR OR  
L
R
A4L A5L READ BE3L VDDI VDDI VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI BE3R READ A5R A4R  
YL OL OL OR OR YR  
[
A6L A7L ZQ1L NC VTTL VCO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VDDI NC ZQ1R A7R A6R  
4]  
[4]  
K
L
RE  
RE  
OR  
A8L A9L  
CL  
OEL VTTL VCO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VTTL OER CR A9R A8R  
RE RE  
A10L A11L CL  
NC VTTL VCO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VTTL NC  
RE RE  
CR A11R A10R  
M
N
A12L A13L ADSL BE1L VDDI VCO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VTTL BE1R ADSR A13R A12R  
OL RE RE  
A14L A15L CNT NC VDDI VDDI VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI NC CNT A15R A14R  
MSKL  
OL  
OL  
OR  
OR  
MSK  
R
P
R
T
A16L A17L CNTE BE0L VDDI VDDI VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI BE0R CNTE A17R A16R  
NL OL OL OR OR NR  
A18L NC CNTR INTL VDDI VDDI VREF VSS VSS VSS VSS VSS VSS VSS VSS VREF VDDI VDDI INTR CNTR NC A18R  
STL OL OL OR OR STR  
L
R
NC  
NC  
NC  
NC R/WL CQE VDDI VDDI VDDI VDDI VDDI VCO VCO VCO VCO VDDI VDDI VDDI VDDI VDDI CQE R/WR NC  
NL OL OL OL OL OL RE RE RE RE OR OR OR OR OR NR  
NC  
NC  
NC  
U
V
NC FTSE VDDI NC VDDI VDDI VDDI VDDI VTTL VTTL VTTL VDDI VDDI VDDI VDDI VDDI TRST VDDI FTSE NC  
LL OL OL OL OL OL OR OR OR OR OR OR LR  
NC VSS MRST VSS CQ0L CQ0L VC_S PORT CNTI BUSY ZQ0R PORT LOW DDR CQ0R CQ0R VSS TDI TDO NC  
[4]  
EL STD1 NTR  
R
R
STD0 SPDR ONR  
R
W
Y
NC  
NC VSS VSS DQ11 NC  
L
NC  
NC  
NC  
NC DQ8L DQ5L DQ2L DQ2R DQ5R DQ8R NC  
NC DQ7L DQ4L DQ1L DQ1R DQ4R DQ7R NC  
NC DQ6L DQ3L DQ0L DQ0R DQ3R DQ6R NC  
NC  
NC  
NC  
NC DQ11 TMS TCK NC  
R
NC  
NC DQ17 DQ15 DQ13 DQ10 NC  
NC DQ10 DQ13 DQ15 DQ17 NC  
AA  
L
L
L
L
R
R
R
R
NC DQ16 DQ14 DQ12 DQ9L NC  
NC DQ9R DQ12 DQ14 DQ16 NC  
AB  
L
L
L
R
R
R
Note:  
8. Use this pinout only for device CYDD36S36V18 of the FullFlex36 famiy.  
Document #: 38-06072 Rev. *E  
Page 4 of 48  
PRELIMINARY  
FullFlex™ Synchronous  
DDR Dual-Port SRAM  
FullFlex18 DDR 484-ball BGA Pinout (Top View)  
20 21 22  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC DQ15 DQ12 DQ9L DQ9R DQ12 DQ15 NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
A
B
C
L
L
R
R
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC DQ16 DQ13 DQ10 DQ10 DQ13 DQ16 NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
L
L
L
R
R
R
NC VSS VSS NC  
NC DQ17 DQ14 DQ11 DQ11 DQ14 DQ17 NC  
NC VSS VSS NC  
L
L
L
R
R
R
[
NC VSS VSS VSS CQ1L CQ1L  
LOW PORT ZQ0L BUSY CNTI PORT NC CQ1R CQ1R VSS VSS VSS NC  
4]  
DDR  
ONL  
SPDL STD0  
L
L
NTL STD1  
L
D
E
F
NC  
NC  
NC VDDI VSS VSS VDDI VDDI VDDI VDDI VDDI VTTL VTTL VTTL VDDI VDDI VDDI VDDI NC VSS VDDI NC  
OL OL OL OL OL OL OR OR OR OR OR  
NC  
NC  
NC CE1L CE0L VDDI VDDI VDDI VDDI VDDI VCO VCO VCO VCO VDDI VDDI VDDI VDDI VDDI CE0R CE1R NC  
OL OL OL OL OL RE RE RE RE OR OR OR OR OR  
A0L A1L RETL BE1L VDDI VDDI VREF VSS VSS VSS VSS VSS VSS VSS VSS VREF VDDI VDDI BE1R RETR A1R A0R  
OL OL OR OR  
G
H
J
L
R
A2L A3L WRP NC VDDI VDDI VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI NC WRP A3R A2R  
OL OL OR OR  
L
R
A4L A5L READ NC VDDI VDDI VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI NC READ A5R A4R  
YL OL OL OR OR YR  
[
A6L A7L ZQ1L NC VTTL VCO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VDDI NC ZQ1R A7R A6R  
4]  
[4]  
K
L
RE  
RE  
OR  
A8L A9L  
CL  
OEL VTTL VCO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VTTL OER CR A9R A8R  
RE RE  
A10L A11L CL  
NC VTTL VCO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VTTL NC  
RE RE  
CR A11R A10R  
M
N
A12L A13L ADSL NC VDDI VCO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VTTL NC ADSR A13R A12R  
OL RE RE  
A14L A15L CNT NC VDDI VDDI VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI NC CNT A15R A14R  
MSKL  
OL  
OL  
OR  
OR  
MSK  
R
P
R
T
A16L A17L CNTE BE0L VDDI VDDI VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI BE0R CNTE A17R A16R  
NL OL OL OR OR NR  
A18L A19L CNTR INTL VDDI VDDI VREF VSS VSS VSS VSS VSS VSS VSS VSS VREF VDDI VDDI INTR CNTR A19R A18R  
STL OL OL OR OR STR  
L
R
A20L NC R/WL CQE VDDI VDDI VDDI VDDI VDDI VCO VCO VCO VCO VDDI VDDI VDDI VDDI VDDI CQE R/WR NC A20R  
NL OL OL OL OL OL RE RE RE RE OR OR OR OR OR NR  
U
V
NC  
NC FTSE VDDI NC VDDI VDDI VDDI VDDI VTTL VTTL VTTL VDDI VDDI VDDI VDDI VDDI TRST VDDI FTSE NC  
LL OL OL OL OL OL OR OR OR OR OR OR LR  
NC  
NC  
NC VSS MRST VSS CQ0L CQ0L VC_S PORT CNTI BUSY ZQ0R PORT LOW DDR CQ0R CQ0R VSS TDI TDO NC  
NC  
[4]  
EL STD1 NTR  
R
R
STD0 SPDR ONR  
R
W
Y
NC  
NC  
NC  
NC VSS VSS NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC DQ8L DQ5L DQ2L DQ2R DQ5R DQ8R NC  
NC DQ7L DQ4L DQ1L DQ1R DQ4R DQ7R NC  
NC DQ6L DQ3L DQ0L DQ0R DQ3R DQ6R NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC TMS TCK NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
AA  
AB  
Cypress Semiconductor Corporation  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Document #: 38-06072 Rev. *E  
Revised October 11, 2005  
PRELIMINARY  
FullFlex  
FullFlex36 DDR 256 Ball BGA (Top View)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
DQ32L DQ30L DQ28L DQ26L DQ24L DQ22L DQ20L DQ18L DQ18R DQ20R DQ22R DQ24R DQ26R DQ28R DQ30R DQ32R  
A
B
C
D
E
F
DQ33L DQ31L DQ29L DQ27L DQ25L DQ23L DQ21L DQ19L DQ19R DQ21R DQ23R DQ25R DQ27R DQ29R DQ31R DQ33R  
[4]  
DQ34L DQ35L  
RETL  
WRPL  
CE0L  
INTL  
CQ1L  
CQ1L VC_SEL TRST  
MRST ZQ0R  
VTTL VSS  
CQ1R  
CQ1R  
INTR  
VREF  
CE1R  
RETR DQ35R DQ34R  
A0L  
A2L  
A1L  
A3L  
VREF VDDIOL LOWSP  
DL  
VSS  
VTTL  
LOWSP VDDIO  
DR  
WRPR  
CE0R  
A1R  
A3R  
A0R  
A2R  
R
CE1L VDDIOL VDDIOL VDDIOL VCORE VCORE VDDIO VDDIO VDDIO  
R
R
R
A4L  
A5L  
CNINTL BE3L VDDIOL VDDIOL  
[4]  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDDIO  
R
BE3R CNINTR  
BE2R BUSYR  
A5R  
A4R  
A6L  
A7L  
BUSYL  
BE2L  
ZQ0L  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDDIO  
R
A7R  
A6R  
G
H
J
A8L  
A9L  
CL  
VTTL VCORE  
VCORE VTTL  
CR  
CR  
A9R  
A8R  
A10L  
A12L  
A14L  
A11L  
A13L  
A15L  
CL  
PORTS VCORE  
TD1L  
VCORE PORTS  
TD1R  
A11R  
A13R  
A15R  
A10R  
A12R  
A14R  
OEL  
BE1L VDDIOL  
VDDIO  
R
BE1R  
OER  
ADSR  
K
L
ADSL  
BE0L VDDIOL  
VDDIO VDDIO  
BE0R  
R
R
[10]  
[9]  
[9]  
[10]  
A16L  
A17L  
NC  
RWL  
CQENL VDDIOL VDDIOL VDDIOL VCORE VCORE VDDIO VDDIO VDDIO CQENR RWR  
A17R  
NC  
A16R  
NC  
M
N
P
R
T
R
R
R
[4]  
[4]  
NC  
CNTMS VREF PORTS READY ZQ1L  
VTTL  
TMS  
VTTL ZQ1R  
READY PORTS VREF CNTMS  
KL  
TD0L  
L
R
TD0R  
KR  
DQ16L DQ17L CNTEN CNTRS CQ0L  
CQ0L  
TCK  
TDO  
DQ1R  
DQ0R  
TDI  
CQ0R  
CQ0R CNTRS CNTEN DQ17R DQ16R  
TR  
L
TL  
R
DQ15L DQ13L DQ11L  
DQ9L  
DQ7L  
DQ6L  
DQ5L  
DQ4L  
DQ3L  
DQ2L  
DQ1L  
DQ0L  
DQ3R  
DQ2R  
DQ5R  
DQ4R  
DQ7R  
DQ9R DQ11R DQ13R DQ15R  
DQ14L DQ12L DQ10L  
DQ8L  
DQ6R  
DQ8R DQ10R DQ12R DQ14R  
Notes:  
9. Leave this ball unconnected for CYDD09S36V18 and CYDD04S36V18.  
10. Leave this ball unconnected for CYDD04S36V18.  
Document #: 38-06072 Rev. *E  
Page 6 of 48  
PRELIMINARY  
FullFlex  
FullFlex18 DDR 256 Ball BGA (Top View)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
NC  
NC  
NC  
DQ17L DQ16L DQ13L DQ12L  
DQ9L  
DQ9R DQ12R DQ13R DQ16R DQ17R  
NC  
NC  
NC  
A
B
C
D
E
F
NC  
NC  
NC  
NC  
NC  
NC  
DQ15L DQ14L DQ11L DQ10L DQ10R DQ11R DQ14R DQ15R  
[4]  
NC  
NC  
RETR  
WRPR  
CE0R  
CNINTR  
BUSYR  
CR  
NC  
NC  
NC  
NC  
RETL  
INTL  
CQ1L  
CQ1L VC_SEL TRST  
MRST ZQ0R  
VTTL VSS  
CQ1R  
CQ1R  
INTR  
A0L  
A2L  
A4L  
A6L  
A8L  
A10L  
A12L  
A14L  
A1L  
A3L  
A5L  
A7L  
A9L  
A11L  
A13L  
A15L  
WRPL  
VREF VDDIOL LOWSP  
DL  
VSS  
VTTL  
LOWSP VDDIOR VREF  
DR  
A1R  
A3R  
A5R  
A7R  
A9R  
A11R  
A13R  
A15R  
A0R  
A2R  
A4R  
A6R  
A8R  
A10R  
A12R  
A14R  
A16R  
CE0L  
CE1L VDDIOL VDDIOL VDDIOL VCORE VCORE VDDIOR VDDIOR VDDIOR CE1R  
CNINTL  
NC  
NC  
VDDIOL VDDIOL  
[4]  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS VDDIOR  
VSS VDDIOR  
NC  
NC  
BUSYL  
ZQ0L  
VSS  
VSS  
VSS  
VSS  
VSS  
G
H
J
CL  
VTTL VCORE  
VSS  
VSS  
VCORE VTTL  
CL  
PORTST VCORE  
D1L  
VCORE PORTST  
D1R  
CR  
OEL  
BE1L VDDIOL  
VSS VDDIOR BE1R  
OER  
K
L
ADSL  
BE0L VDDIOL  
VSS VDDIOR VDDIOR BE0R  
ADSR  
[12]  
[12]  
A16L A17L  
[11]  
RWL  
CQENL VDDIOL VDDIOL VDDIOL VCORE VCORE VDDIOR VDDIOR VDDIOR CQENR RWR A17R  
M
N
P
R
T
[4]  
[4]  
[11]  
A18L  
NC  
NC  
NC  
NC  
NC  
CNTMS VREF PORTST READYL ZQ1L  
VTTL  
TMS  
VTTL ZQ1R  
READY PORTST VREF CNTMS  
NC  
A18R  
KL  
D0L  
R
D0R  
KR  
CNTENL CNTRST CQ0L  
L
CQ0L  
DQ5L  
DQ4L  
TCK  
TDO  
DQ1R  
DQ0R  
TDI  
CQ0R  
CQ0R CNTRST CNTEN  
NC  
NC  
NC  
NC  
NC  
NC  
R
R
NC  
NC  
NC  
DQ6L  
DQ2L  
DQ3L  
DQ1L  
DQ0L  
DQ2R  
DQ3R  
DQ5R  
DQ4R  
DQ6R  
DQ7R  
NC  
NC  
NC  
NC  
DQ8L  
DQ7L  
DQ8R  
NC  
Note:  
11. Leave this ball unconnected for CYDD09S18V18 and CYDD04S18V18.  
12. Leave this ball unconnected for CYDD04S18V18.  
Table 1. Selection Guide  
-200[13,14,16,17  
]
-250[13,15,17]  
250  
-167[13,14]  
167  
Unit  
MHz  
ns  
fMAX  
200  
3.3  
0.50  
TBD  
TBD  
SDR Max. Access Time (Clock to Data)  
DDR Max. Access Time (Clock to Data)  
Typical Operating Current ICC  
2.64  
0.50  
TBD  
TBD  
4.0  
0.50  
ns  
TBD  
TBD  
mA  
mA  
Typical Standby Current for ISB3 (Both Ports CMOS Level)  
Notes:  
13. SDR mode with two pipeline stages.  
14. DDR mode with 2.5 pipeline stages.  
15. In SDR mode, these parameters apply for the 1.8V LVCMOS and HSTL.  
16. In DDR mode, these parameters apply for the 1.8V LVCMOS and HSTL.  
17. There is a speed bin drop for a 1.5V Core voltage.  
18. These parameters apply for the 1.5V Core voltage only.  
Document #: 38-06072 Rev. *E  
Page 7 of 48  
PRELIMINARY  
FullFlex  
Pin Definitions  
Left Port  
A[20:0]L  
DQ0L–DQ71L  
BE0L–BE7L  
Right Port  
A[20:0]R  
DQ0R–DQ71R  
BE0R–BE7R  
Description  
Address Inputs.[1]  
Data Bus Input/Output.[2]  
Byte Select Inputs.[3] Asserting these signals enables Read and Write operations to the  
corresponding bytes of the memory array.  
BUSYL  
C/CL  
BUSYR  
C/CR  
Port Busy Output. When there is an address match and both chip enables are active for  
both ports, an external BUSY signal is asserted on the fifth clock cycle from when the collision  
occurs.  
Clock Signal.[19] Maximum clock input rate is fMAX. Tie C to VSS when operating in SDR  
mode.  
CE0L  
CE0R  
Active LOW Chip Enable Input.  
CE1L  
CE1R  
Active HIGH Chip Enable Input.  
CQENL  
CQ0L, CQ0L  
CQENR  
CQ0R, CQ0R  
Echo Clock Enable Input. Assert HIGH to enable echo clocking on respective port.  
Echo Clock Signal Output for DQ[35:0] for FullFlex72 devices. Echo Clock Signal Output  
for DQ[17:0] for FullFlex36 devices. Echo Clock Signal Output for DQ[8:0] for FullFlex18  
devices.  
CQ1L, CQ1L  
CQ1R, CQ1R  
Echo Clock Signal Output for DQ[71:36] for FullFlex72 devices. Echo Clock Signal  
Output for DQ[35:18] for FullFlex36 devices. Echo Clock Signal Output for DQ[17:9] for  
FullFlex18 devices.  
DDRONL  
ZQ<1:0>L  
DDRONR  
ZQ<1:0>R  
DDR Enable Input. Assert HIGH to enable DDR clocking on respective port.  
VIM Output Impedance Matching Input. To use, connect a calibrating resistor between ZQ  
and ground. The resistor must be five times larger than the intended line impedance driven  
by the dual-port. Assert HIGH to disable Variable Impedance Matching.  
OEL  
INTL  
OER  
INTR  
Output Enable Input. This asynchronous signal must be asserted LOW to enable the DQ  
data pins during Read operations.  
Mailbox Interrupt Flag Output. The mailbox permits communications between ports. The  
upper two memory locations can be used for message passing. INTL is asserted LOW when  
the right port writes to the mailbox location of the left port, and vice versa. An interrupt to a  
port is deasserted HIGH when it reads the contents of its mailbox.  
LowSPDL  
LowSPDR  
Port Low Speed Select Input. Assert this pin LOW to disable the DLL. For operation at less  
than 100 MHz, assert this pin LOW.  
PORTSTD[1:0]L PORTSTD[1:0]R Port Clock/Address/Control/Data/Echo Clock/ I/O Standard Select Input. Assert these  
[20]  
[20]  
pins LOW/LOW for LVTTL, LOW/HIGH for HSTL, HIGH/LOW for 2.5V LVCMOS, and  
HIGH/HIGH for 1.8V LVCMOS, respectively. Connect these pins to a VTTL supply.  
R/WL  
R/WR  
Read/Write Enable Input. Assert this pin LOW to Write to, or HIGH to Read from the  
dual-port memory array.  
READYL  
READYR  
Port DLL Ready Output. This signal will be asserted LOW when the DLL and Variable  
Impedance Matching circuits have completed calibration. This is a wired OR capable output.  
CNT/MSKL  
ADSL  
CNTENL  
CNTRSTL  
CNTINTL  
CNT/MSKR  
ADSR  
CNTENR  
CNTRSTR  
CNTINTR  
Port Counter/Mask Select Input. Counter control input.  
Port Counter Address Load Strobe Input. Counter control input.  
Port Counter Enable Input. Counter control input.  
Port Counter Reset Input. Counter control input.  
Port Counter Interrupt Output. This pin is asserted LOW one cycle before the unmasked  
portion of the counter is incremented to all “1s”.  
WRPL  
WRPR  
RETR  
Port Counter Wrap Input. When the burst counter reaches the maximum count, on the next  
counter increment WRP can be set LOW to load the unmasked counter bits to 0 or set HIGH  
to load the counter with the value stored in the mirror register.  
RETL  
Port Counter Retransmit Input. Assert this pin LOW to reload the initial address for  
repeated access to the same segment of memory.  
Notes:  
19. C and C are complimentary for DDR operation.  
20. Pins D14 and W9 of the FullFlex72 have an internal pull-down resistor.  
Document #: 38-06072 Rev. *E  
Page 8 of 48  
PRELIMINARY  
FullFlex  
Pin Definitions (continued)  
Left Port  
VREFL  
VDDIOL  
FTSELL  
Right Port  
VREFR  
VDDIOR  
FTSELR  
Description  
Port External HSTL I/O Reference Input.  
Port Data I/O Power Supply.  
Port Flow-Through Mode Select Input. Assert this pin LOW to select Flow-Through mode.  
Assert this pin HIGH to select Pipeline mode. Selection for SDR only.  
MRST  
Master Reset Input. MRST is an asynchronous input signal and affects both ports. Asserting  
MRST LOW performs all of the reset functions as described in the text. A MRST operation  
is required at power-up. This pin must be driven by VDDIO referenced levels.  
VC_SEL  
TMS  
Core Power Supply Select. Assert this pin LOW to select 1.8V Core operation. Assert this  
pin HIGH to select 1.5V Core operation. This pin must be driven by VTTL referenced levels.  
JTAG Test Mode Select Input. It controls the advance of JTAG TAP state machine. State  
machine transitions occur on the rising edge of TCK. Operation for LVTTL or 2.5V LVCMOS.  
TDI  
JTAG Test Data Input. Data on the TDI input will be shifted serially into selected registers.  
Operation for LVTTL or 2.5V LVCMOS.  
TRST  
TCK  
JTAG Reset Input. Operation for LVTTL or 2.5V LVCMOS.  
JTAG Test Clock Input. Operation for LVTTL or 2.5V LVCMOS.  
TDO  
JTAG Test Data Output. TDO transitions occur on the falling edge of TCK. TDO is normally  
three-stated except when captured data is shifted out of the JTAG TAP. Operation for LVTTL  
or 2.5V LVCMOS.  
VSS  
VCORE  
VTTL  
Ground Inputs.  
Device Core Power Supply.  
LVTTL Power Supply.  
Selectable I/O Standard  
Clocking  
The FullFlex families of devices also offer the option of  
choosing one of four port standards for the device. Each port  
can independently select standards from single-ended HSTL  
class I, single-ended LVTTL, 2.5V LVCMOS, or 1.8V  
LVCMOS. The selection of the standard is determined by the  
PORTSTD pins for each port. These pins must be connected  
to a VTTL power supply. This will determine the input clock,  
address, control, data, and Echo clock standard for each port  
as shown in Table 2.  
Separate clocks synchronize the operations on each port.  
Each port has two clock inputs C and C. In SDR mode only the  
C input clock is used and C should be tied to VSS. In this  
mode, all the transactions on the address, control, and data  
will be on the C rising edge. In DDR mode, both C and C will  
be used and these signals are complementary. In this mode,  
all transactions on the address and control, except for the byte  
enables, will occur on the C rising edge. Transactions on the  
data input, output, and byte enables will be on the C and C  
rising edges.  
Table 2. Port Standard Selection  
Double Data Rate (DDR)  
PORTSTD1  
VSS  
PORTSTD0  
VSS  
I/O Standard  
LVTTL  
In DDR mode with a x36 bus width, the input data is sampled  
on both edges of the input clock. During a write, on the rising  
edge of C, the first 36 bits (DQ[71:36]) will be latched into a  
register. On the rising edge of C, the next 36 bits (DQ[35:0])  
will be latched into a register. During a read, the first 36 bits  
are driven out first on the rising edge of C. The next 36 bits will  
be driven out on the rising edge of C. The internal bus width of  
the FullFlex72 family is still x72. All counter operation is based  
upon the x72 word width. The DDR option is set on a per port  
basis by the configuration of the DDRON pin. Table 4 shows  
the data assignment for SDR and DDR configuration. The  
column on the right (Data Pin Name) shows the pins on which  
data is presented on the data lines.  
VSS  
VTTL  
HSTL  
VTTL  
VTTL  
VSS  
VTTL  
2.5V LVCMOS  
1.8V LVCMOS  
Operating mode with different IO standards combined with  
different core power supply will result in different maximum  
speed as shown in Table 3.  
Document #: 38-06072 Rev. *E  
Page 9 of 48  
PRELIMINARY  
FullFlex  
Table 3. Operating Mode vs. Speed, I/O Standard and Pipeline Stages  
Operating Mode Maximum Speed (MHz) Core Voltage (V)  
I/O Standard  
Latency Cycles  
SDR  
SDR  
SDR  
250  
200  
200  
1.8  
1.8  
1.5  
HSTL/1.8V LVCMOS  
LVTTL/2.5V LVCMOS  
HSTL/LVTTL/2.5V LVCMOS/1.8V  
LVCMOS  
2
2
2
DDR  
DDR  
200  
167  
1.8  
1.5  
HSTL/1.8V LVCMOS  
2.5  
2.5  
HSTL/LVTTL/2.5V LVCMOS/1.8V  
LVCMOS  
Table 4. Data Pin Assignment for SDR and DDR Configuration  
x72 SDR Mode  
x36 DDR Mode  
BE Pin Name for BE Pin Name for  
Related Rising Edge  
Related Rising Edge Data Pin  
DDR  
BE[3]  
BE[3]  
BE[3]  
BE[3]  
BE[3]  
BE[3]  
BE[3]  
BE[3]  
BE[3]  
BE[3]  
BE[3]  
BE[3]  
BE[3]  
BE[3]  
BE[3]  
BE[3]  
BE[3]  
BE[3]  
BE[2]  
BE[2]  
BE[2]  
BE[2]  
BE[2]  
BE[2]  
BE[2]  
BE[2]  
BE[2]  
BE[2]  
BE[2]  
BE[2]  
BE[2]  
BE[2]  
SDR  
BE[7]  
BE[3]  
BE[7]  
BE[3]  
BE[7]  
BE[3]  
BE[7]  
BE[3]  
BE[7]  
BE[3]  
BE[7]  
BE[3]  
BE[7]  
BE[3]  
BE[7]  
BE[3]  
BE[7]  
BE[3]  
BE[6]  
BE[2]  
BE[6]  
BE[2]  
BE[6]  
BE[2]  
BE[6]  
BE[2]  
BE[6]  
BE[2]  
BE[6]  
BE[2]  
BE[6]  
BE[2]  
Data Pin Name  
DQ[71]  
DQ[35]  
DQ[70]  
DQ[34]  
DQ[69]  
DQ[33]  
DQ[68]  
DQ[32]  
DQ[67]  
DQ[31]  
DQ[66]  
DQ[30]  
DQ[65]  
DQ[29]  
DQ[64]  
DQ[28]  
DQ[63]  
DQ[27]  
DQ[62]  
DQ[26]  
DQ[61]  
DQ[25]  
DQ[60]  
DQ[24]  
DQ[59]  
DQ[23]  
DQ[58]  
DQ[22]  
DQ[57]  
DQ[21]  
DQ[56]  
DQ[20]  
Clock for Write  
Clock for Read  
Name  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
DQ[35]  
DQ[34]  
DQ[33]  
DQ[32]  
DQ[31]  
DQ[30]  
DQ[29]  
DQ[28]  
DQ[27]  
DQ[26]  
DQ[25]  
DQ[24]  
DQ[23]  
DQ[22]  
DQ[21]  
DQ[20]  
Document #: 38-06072 Rev. *E  
Page 10 of 48  
PRELIMINARY  
FullFlex  
Table 4. Data Pin Assignment for SDR and DDR Configuration (continued)  
x72 SDR Mode  
x36 DDR Mode  
BE Pin Name for BE Pin Name for  
Related Rising Edge  
Related Rising Edge Data Pin  
DDR  
BE[2]  
BE[2]  
BE[2]  
BE[2]  
BE[1]  
BE[1]  
BE[1]  
BE[1]  
BE[1]  
BE[1]  
BE[1]  
BE[1]  
BE[1]  
BE[1]  
BE[1]  
BE[1]  
BE[1]  
BE[1]  
BE[1]  
BE[1]  
BE[1]  
BE[1]  
BE[0]  
BE[0]  
BE[0]  
BE[0]  
BE[0]  
BE[0]  
BE[0]  
BE[0]  
BE[0]  
BE[0]  
BE[0]  
BE[0]  
BE[0]  
BE[0]  
BE[0]  
BE[0]  
BE[0]  
BE[0]  
SDR  
BE[6]  
BE[2]  
BE[6]  
BE[2]  
BE[5]  
BE[1]  
BE[5]  
BE[1]  
BE[5]  
BE[1]  
BE[5]  
BE[1]  
BE[5]  
BE[1]  
BE[5]  
BE[1]  
BE[5]  
BE[1]  
BE[5]  
BE[1]  
BE[5]  
BE[1]  
BE[4]  
BE[0]  
BE[4]  
BE[0]  
BE[4]  
BE[0]  
BE[4]  
BE[0]  
BE[4]  
BE[0]  
BE[4]  
BE[0]  
BE[4]  
BE[0]  
BE[4]  
BE[0]  
BE[4]  
BE[0]  
Data Pin Name  
DQ[55]  
DQ[19]  
DQ[54]  
DQ[18]  
DQ[53]  
DQ[17]  
DQ[52]  
DQ[16]  
DQ[51]  
DQ[15]  
DQ[50]  
DQ[14]  
DQ[49]  
DQ[13]  
DQ[48]  
DQ[12]  
DQ[47]  
DQ[11]  
DQ[46]  
DQ[10]  
DQ[45]  
DQ[9]  
Clock for Write  
Clock for Read  
Name  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
DQ[19]  
DQ[18]  
DQ[17]  
DQ[16]  
DQ[15]  
DQ[14]  
DQ[13]  
DQ[12]  
DQ[11]  
DQ[10]  
DQ[9]  
DQ[8]  
DQ[7]  
DQ[6]  
DQ[5]  
DQ[4]  
DQ[3]  
DQ[2]  
DQ[1]  
DQ[0]  
DQ[44]  
DQ[8]  
DQ[43]  
DQ[7]  
DQ[42]  
DQ[6]  
DQ[41]  
DQ[5]  
DQ[40]  
DQ[4]  
DQ[39]  
DQ[3]  
DQ[38]  
DQ[2]  
DQ[37]  
DQ[1]  
DQ[36]  
DQ[0]  
Document #: 38-06072 Rev. *E  
Page 11 of 48  
PRELIMINARY  
FullFlex  
Selectable Pipeline/Flow-Through Mode  
If both ports are accessing the same location at the same time  
and only one port is doing a write, if tCCS is met, then the data  
being written to and read from the address is valid data. For  
example, if the right port is reading and the left port is writing  
and the left ports clock meets tCCS, then the data being read  
from the address by the right port will be the old data. In the  
same case, if the right ports clock meets tCCS, then the data  
being read out of the address from the right port will be the new  
data. In the above case, if tCCS is violated by the either ports  
clock with respect to the other port and the right port gets the  
external BUSY flag, the data from the right port is corrupted.  
Table 5 shows the tCCS timing that must be met to guarantee  
the data.  
To meet data rate and throughput requirements, the FullFlex  
families offer selectable pipeline or flow-through mode.  
Flow-through mode is only supported in the FullFlex72  
devices when the port is configured in SDR mode. Echo clocks  
are not supported in flow-through mode and the DLL must be  
disabled.  
Flow-Through mode is selected by the FTSEL pin. Strapping  
this pin HIGH selects pipeline mode. Strapping this pin LOW  
selects flow-through mode.  
DLL  
The FullFlex families of devices have an on-chip DLL.  
Enabling the DLL reduces the clock to data valid time allowing  
more setup time for the receiving device. For operation at or  
below 100 MHz, the DLL must be disabled. This is selectable  
by strapping LowSPD LOW. For information on DLL lock and  
reset time, please see the Master Reset section below.  
Table 6 shows that in the case of the left port writing and the  
right port reading, when an external BUSY flag is asserted on  
the right port, the data read out of the device will not be  
guaranteed.  
The value in the busy address register can be read back to the  
address lines. The required input control signals for this  
function are shown in Table 9. The value in the busy address  
register will be read out to the address lines tCA after the same  
amount of latency as a data read operation in SDR mode. In  
DDR mode, the address latency is only 2 cycles instead of 2.5  
which is the data latency. After an initial address match, the  
address under contention is saved in the busy address  
register. All following address matches cause the BUSY flag  
to be generated, however, none of the addresses are saved  
into the busy address register. Once a busy readback is  
performed, the address of the first match which happens at  
least two clock cycles after the busy readback, is saved into  
the busy address register.  
Echo Clocking  
As the speed of data increases, on-board delays caused by  
parasitics make providing accurate clock trees extremely  
difficult. To counter this problem, the FullFlex families incor-  
porate Echo Clocks. Echo Clocks are enabled on a per port  
basis. The dual-port receives input clocks (C and C for DDR  
mode, C for SDR mode) that are used to clock in the address  
and control signals for a read operation. The dual-port  
retransmits the input clocks relative to the data output. The  
buffered clocks are provided on the CQ1, CQ1, CQ0, and CQ0  
outputs. Each port has two pairs of Echo clocks. Each clock is  
associated with half the data bits. The output clock will match  
the corresponding ports I/O configuration.  
To enable Echo clock outputs, tie CQEN HIGH. To disable  
Echo clock outputs, tie CQEN LOW.  
Input Clock  
Data Out  
Echo Clock  
Figure 2. SDR Echo Clock Delay  
Input Clock  
Input Clock  
Data Out  
Echo Clock  
Echo Clock  
Figure 3. DDR Echo Clock Delay  
Deterministic Access Control  
Deterministic Access Control is provided for ease of design.  
The circuitry detects when both ports are accessing the same  
location and provides an external BUSY flag to the port on  
which data may be corrupted. The collision detection logic  
saves the address in conflict (Busy Address) to a readable  
register. In the case of multiple collisions, the first Busy  
address will be written to the Busy Address register.  
Document #: 38-06072 Rev. *E  
Page 12 of 48  
PRELIMINARY  
FullFlex  
Table 5. tCCS Timing for All Operating Modes  
Port A – Early Arriving Port Port B – Late Arriving Port  
tCCS C/C Rise to Opposite C/C Rise Set-up Time  
for Non-corrupt Data  
Mode  
SDR  
SDR  
DDR  
DDR  
Active Edge  
Mode  
SDR  
DDR  
SDR  
DDR  
Active Edge  
Unit  
ns  
ns  
ns  
ns  
C
C
C
C
C
C
C
C
tCYC(min) – 1  
tCYC(min) – 1  
0.55 * tCYC + tCYC(min) – 1  
0.55 * tCYC + tCYC(min) – 1  
Table 6. Deterministic Access Control Winning Port  
Clock Timing  
Left Port  
Read  
Right Port Left Clock  
Right Clock  
BUSYL  
BUSYR  
Description  
Read  
X
X
H
H
H
H
H
H
H
H
H
H
L
H
L
L
L
H
H
H
H
H
L
No Collision  
Write  
Read  
>tCCS  
0
<tCCS  
0
Read OLD Data  
Read NEW Data  
Read OLD Data  
>tCCS  
0
Data Not Guaranteed  
Read NEW Data  
Data Not Guaranteed  
Read NEW Data  
Read OLD Data  
Read NEW Data  
Data Not Guaranteed  
Read OLD Data  
Data Not Guaranteed  
Array Data Corrupted  
Array Stores Right Port Data  
Array Stores Left Port Data  
0
<tCCS  
H
L
Read  
Write  
Write  
Write  
>tCCS  
0
<tCCS  
0
>tCCS  
0
H
H
H
H
H
H
L
0
<tCCS  
0
0
>–tCCS & <tCCS  
>tCCS  
0
H
L
>tCCS  
Variable Impedance Matching (VIM)  
Table 7. Variable Impedance Matching Parameters  
Parameter  
RQ Value  
Output Impedance  
Reset Time  
Min. Max.  
Unit  
Tolerance  
±2%  
±15%  
N/A  
Each port contains a Variable Impedance Matching circuit to  
set the impedance of the I/O driver to match the impedance of  
the on board traces. The impedance is set for all outputs  
except JTAG and is done on a per port basis. To take  
advantage of the VIM feature, connect a calibrating resistor  
(RQ) that is five times the value of the intended line impedance  
from the ZQ pin to VSS. The output impedance is then  
adjusted to account for drifts in supply voltage and temper-  
ature every 1024 clock cycles. If a port’s clock is suspended,  
the VIM circuit will retain its last setting until the clock is  
restarted where it will then resume periodic adjustment. In the  
case of a significant change in device temperature or supply  
voltage, the recalibration period is multiples of 1024 clock  
cycles. A Master Reset will initialize the VIM circuitry. Table 7  
shows the VIM parameters and Table 8 describes the VIM  
operation modes.  
100  
275  
20  
55  
N/A 1024 Cycles  
N/A 1024 Cycles  
Update Time  
N/A  
Table 8. Variable Impedance Matching Operation  
RQ Connection Output Configuration  
100 –275  
to Output Driver Impedance = RQ/5 ± 15% at  
Vout = VDDIO/2  
VSS  
ZQ to VDDIO  
VIM Disabled. Rout < 20  
at Vout =  
VDDIO/2  
Address Counter and Mask Register Operations[1]  
In order to disable VIM, the ZQ pin must be connected to  
VDDIO of the relative supply for the I/Os before a Master  
Reset.  
Each port of the FullFlex families contains a programmable  
burst address counter. The burst counter contains four  
registers: a counter register, a mask register, a mirror register,  
and a busy address register.  
The counter register contains the address used to access the  
RAM array. It is changed only by the master reset (MRST),  
Counter Reset, Counter Load, Retransmit, and Counter  
Increment operations.  
Document #: 38-06072 Rev. *E  
Page 13 of 48  
PRELIMINARY  
FullFlex  
The mask register value affects the Counter Increment and  
Counter Load Operation[1]  
Counter Reset operations by preventing the corresponding  
bits of the counter register from changing. It also affects the  
counter interrupt output (CNTINT). The mask register is only  
changed by Mask Reset, Mask Load, and MRST. The Mask  
Load operation loads the value of the address bus into the  
mask register. The mask register defines the counting range  
of the counter register. It divides the counter register into two  
or three consecutive regions. Zero or more “0s” define the  
masked region and one or more “1s” define the unmasked  
portion of the counter register. The counter register may only  
be divided into up to three regions. The region containing the  
least significant bits must be no more than two bits. Bits one  
and zero may be “10” respectively, masking the least signif-  
icant counter bit and causing the counter to increment by two  
instead of one. If bits one and zero are “00”, the two least  
significant bits are masked and the counter will increment by  
four instead of one. For example, in the case of a 256Kx72  
configuration, a mask register value of 003FC divides the  
mask register into three regions. With bit 0 being the least  
significant bit and bit 17 being the most significant bit, the two  
least significant bits are masked, the next eight bits are  
unmasked, and the remaining bits are masked.  
The mirror register is used to reload the counter register on  
retransmit operations (see “retransmit” below) and wrap  
functions (see “counter increment” below). The last value  
loaded into the counter register is stored in the mirror register.  
The mirror register is only changed by master reset (MRST),  
Counter Reset, and Counter Load.  
Table 9 summarizes the operations of these registers and the  
required input control signals. All signals except MRST are  
synchronized to the ports clock.  
The address counter and mirror registers are both loaded with  
the address value presented on the address lines. This value  
ranges from 0 to FFFFF.  
Mask Load Operation[1]  
The mask register is loaded with the address value presented  
on the address bus. This value ranges from 0 to FFFFF though  
not all values permit correct increment operations. Permitted  
values are in the form of 2n–1, 2n–2, or 2n–4. The counter  
register can only be segmented in up to three regions. From  
the most significant bit to the least significant bit, permitted  
values have zero or more “0s”, one or more “1s”, and the least  
significant two bits can be “11”, “10”, or “00”. Thus FFFFE,  
7FFFF, and 03FFC are permitted values but 2FFFF, 03FFA,  
and 7FFE4 are not.  
Counter Readback Operation  
The internal value of the counter register can be read out on  
the address lines. The address will be valid tCA after the  
selected number of latency cycles configured by FTSEL. This  
is the same as data in SDR mode and one half cycle earlier  
than data latency for DDR mode. The data bus (DQ) is  
tri-stated on the cycle that the address is presented on the  
address lines. Figure 4 shows a block diagram of the  
operation.  
Mask Readback Operation  
The internal value of the mask register can be read out on the  
address lines. The address will be valid tCA after the selected  
number of latency cycles configured by FTSEL. For pipelined  
SDR and DDR mode this is two cycles. The data bus (DQ) is  
tri-stated on the cycle that the address is presented on the  
address lines. Figure 4 shows a block diagram of the  
operation.  
Table 9. Burst Counter and Mask Register Control Operation (Any Port) [21,22]  
C
MRST CNTRST CNT/MSK CNTEN ADS RET  
Operation  
Description  
X
L
X
X
X
X
X
Master Reset  
Reset address counter to all 0s, mask register  
to all 1s, and BUSY address to all 0’s.  
H
L
H
X
X
X
Counter Reset  
Reset counter and mirror unmasked portion to  
all 0s.  
H
H
L
L
X
L
X
L
X
X
Mask Reset  
Reset mask register to all 1s.  
H
H
Counter Load  
Load burst counter and mirror with external  
address value presented on address lines.  
H
H
L
L
L
X
Mask Load  
Retransmit  
Load mask register with value presented on the  
address lines.  
H
H
H
H
H
H
L
L
H
H
L
Load counter with value in the mirror register  
Internally increment address counter value.  
H
Counter  
Increment  
H
H
H
H
H
H
H
H
L
H
H
H
H
L
L
H
H
H
Counter Hold  
Constantly hold the address value for multiple  
clock cycles.  
Counter  
Read out counter internal value on address  
Readback  
lines.  
Mask Readback Read out mask register value on address lines.  
Notes:  
21. X” = “Don’t Care,” “H” = HIGH, “L” = LOW.  
22. Counter operation and mask register operation is independent of chip enables.  
Document #: 38-06072 Rev. *E  
Page 14 of 48  
PRELIMINARY  
Table 9. Burst Counter and Mask Register Control Operation (Any Port) (continued)[21,22]  
FullFlex  
C
MRST CNTRST CNT/MSK CNTEN ADS RET  
Operation  
Description  
H
H
L
H
H
L
Busy Address  
Read out first busy address after last busy  
Readback  
address readback  
H
H
H
H
H
H
H
H
H
H
L
L
L
H
H
H
H
H
L
X
L
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
L
H
L
H
L
H
H
H
L
Counter Reset Operation  
Hold Operation  
All unmasked bits of the counter are reset to “0”. All masked  
bits remain unchanged. The new burst counter value is loaded  
into the mirror registers. A mask reset followed by a counter  
reset will reset the counter and mirror registers to 00000.  
The value of all three registers can be constantly maintained  
unchanged for an unlimited number of clock cycles. Such  
operation is useful in applications where wait states are  
needed, or when address is available a few cycles ahead of  
data in a shared bus interface.  
Mask Reset Operation  
Retransmit  
The mask register is reset to all “1s”, which unmasks every bit  
of the burst counter.  
Retransmit allows repeated access to the same block of  
memory without the need to reload the initial address. An  
internal mirror register stores the address counter value last  
loaded. When the burst counter reaches its maximum value  
set by the mask register, it wraps back to the initial value stored  
in the mirror register as long as WRP is deasserted. The  
unmasked counter bits will be loaded with “0” if WRP is  
asserted. If the counter is configured to continuously be in  
increment mode, it increments once again to the maximum  
value and wraps back to the value initially stored in the mirror  
register as long as WRP is deasserted. While RET is asserted  
low, the counter will continue to wrap back to the value in the  
mirror register independent of the state of WRP.  
Increment Operation[1]  
Once the address counter is initially loaded with an external  
address, the counter can internally increment the address  
value and address the entire memory array. Only the  
unmasked bits of the counter register are incremented. In  
order for a counter bit to change, the corresponding bit in the  
mask register must be “1”. If the two least significant bits of the  
mask register are “11”, the burst counter will increment by one.  
If the two least significant bits are “10”, the burst counter will  
increment by two, and if they are “00”, the burst counter will  
increment by four. If all unmasked counter bits are incre-  
mented to “1” and WRP is deasserted, the next increment will  
wrap the counter back to the initially loaded value. The cycle  
before an increment will result in the unmasked counter bits  
being “1s”, a counter interrupt flag (CNTINT) is asserted if the  
counter is continuously incrementing. The next increment will  
cause the counter to reach its maximum value and the second  
increment will return the counter register to its initial value  
which was stored in the mirror register when WRP is  
deasserted. When WRP is asserted, the second increment  
after CNTINT is asserted will load the unmasked counter bits  
with “0”. The example shown in Figure 5 shows an example of  
the CYDD36S18V18 device with the mask register loaded with  
a mask value of 0007F unmasking the seven least significant  
bits. Setting the mask register to this value allows the counter  
to access the entire memory space. The address counter is  
then loaded with an initial value of 00005 assuming WRP is  
deasserted. The base address bits (in this case, the seventh  
address through the twentieth address) do not increment once  
the counter is configured for increment operation. The counter  
address will start at address 00005 and will increment its  
internal address value until it reaches the mask register value  
of 0007F. The counter wraps around the memory block to  
location 00005 at the next count. CNTINT is issued when the  
counter reaches the maximum –1 count.  
Counter Interrupt  
The counter interrupt (CNTINT) is asserted LOW one clock  
cycle before an increment operation that results in the  
unmasked portion of the counter register being all “1s”. It is  
deasserted by counter reset, counter load, mask reset, mask  
load, counter increment, re-transmit, and MRST.  
Counting by Two  
When the two least significant bits of the mask register are  
“10,” the counter increments by two.  
Counting by Four  
When the two least significant bits of the mask register are  
“00,” the counter increments by four.  
Mailbox Interrupts  
The upper two memory locations can be used for message  
passing and permit communications between ports. Table 10  
shows the interrupt operation for both ports. The highest  
memory location is the mailbox for the right port and the  
maximum address–1 is the mailbox for the left port.  
When one port Writes to the other ports mailbox, the INT flag  
of the port that the mailbox belongs to is asserted LOW. The  
INT flag remains asserted until the mailbox location is read by  
the other port. When a port reads it’s mailbox, the INT flag is  
Document #: 38-06072 Rev. *E  
Page 15 of 48  
PRELIMINARY  
FullFlex  
deasserted HIGH after one cycle of latency with respect to the  
input clock of the port to which the mailbox belongs and is  
independent of OE.  
LOW. A valid Read of the FFFFF location by the right port will  
reset INTR HIGH after one cycle of latency with respect to the  
right port’s clock. At least one byte enable has to be activated  
to set or reset the mailbox interrupt.  
Table 10 shows that in order to set the INTR flag, a Write  
operation by the left port to address FFFFF will assert INTR  
CNT/MSK  
CNTEN  
Decode  
Logic  
A
CNTRST  
RET  
MRST  
Bidirectional  
Address  
Lines  
Mask  
Register  
Counter/  
Address  
Register  
Address  
Decode  
RAM  
Array  
C
Load/Increment  
21  
21  
From  
Address  
Lines  
Mirror  
Counter  
To Readback  
and Address  
Decode  
1
0
1
0
From  
Increment  
Logic  
Mask  
21  
Wrap  
Register  
21  
21  
21  
From  
Mask  
From  
Counter  
Bit 0  
and 1  
+1  
+2  
+4  
Wrap  
Wrap  
To  
1
0
Detect  
21  
1
0
Counter  
Figure 4. Counter, Mask, and Mirror Logic Block Diagram[1]  
Document #: 38-06072 Rev. *E  
Page 16 of 48  
PRELIMINARY  
FullFlex  
CNTINT  
H
Example:  
Load  
Counter-Mask  
0
0
0s  
1
1
1
1
1
1
1
0
Register = 00007F  
219 218  
26 25 24 23 22 21 20  
Unmasked Address  
27  
Masked Address  
Mask  
Register  
LSB  
Load  
Address  
H
L
X
X
Xs  
Xs  
Xs  
0
0
0
0
1
0
1
X
Counter = 000005  
219 218  
26 25 24 23 22 21 20  
Address  
Counter  
LSB  
27  
27  
27  
Max  
Address  
Value  
X
X
1
1
1
1
1 1  
1
X
219 218  
26 25 24 23 22 21 20  
Max + 1  
Address  
Value  
H
X
X
0
0
0
0
1
0
1
X
219 218  
26 25 24 23 22 21 20  
Figure 5. Programmable Counter-Mask Register Operation[1,26]  
Table 10.Interrupt Operation Example [1, 22, 23, 24, 25]  
Left Port  
A0L–19L  
Right Port  
A0R–19R  
Function  
Set Right INTR Flag  
Reset Right INTR Flag  
Set Left INTL Flag  
R/WL  
CEL  
L
INTL  
X
R/WR  
CER  
X
INTR  
L
H
X
X
L
X
X
H
Max. Address  
X
H
L
X
X
X
L
X
X
X
L
H
L
L
X
Max. Address  
Max. Address–1  
X
Reset Left INTL Flag  
Max. Address–1  
X
Master Reset  
connected together. For faster pull-down of the signal, connect  
a 250-Ohm resistor to VSS. If the DLL and VIM circuits are  
disabled for a port, the port will be operational within five clock  
cycles. However, the READY will be asserted within 160 clock  
cycles.  
The FullFlex family of dual-ports undergo a complete reset by  
asserting MRST. MRST must be connected to VDDIO. The  
MRST can be asserted asynchronously to the clocks and must  
remain asserted for at least tRS. Once asserted MRST  
deasserts READY, initializes the internal burst counters,  
internal mirror registers, and internal Busy Addresses to zero,  
and initializes the internal mask register to all “1s”. All mailbox  
interrupts (INT), Busy Address Outputs (BUSY), and burst  
counter interrupts (CNTINT) are deasserted upon master  
reset. Releasing MRST also signifies that the power supplies  
and all port clocks are stable. This begins calibration of the  
DLL and VIM circuits. READY will be asserted within 1024  
clock cycles. READY is a wired OR capable output with a  
strong pull-up and weak pull-down. Up to four outputs may be  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The FullFlex families incorporate an IEEE 1149.1 serial  
boundary scan test access port (TAP). The TAP operates  
using JEDEC-standard 3.3V or 2.5V I/O logic levels depending  
on the VTTL power supply. It is composed of four input  
connections and one output connection required by the test  
logic defined by the standard.  
Notes:  
23. CE is internal signal. CE = LOW if CE = LOW and CE = HIGH. For a single Read operation, CE only needs to be asserted once at the rising edge of the C and  
0
1
can be deasserted after that. Data will be out after the following C edge and will be tri-stated after the next C edge.  
24. OE is “Don’t Care” for mailbox operation.  
25. At least one of BE0, BE1, BE2, BE3, BE4, BE5, BE6, or BE7 must be LOW.  
26. The “X” in this diagram represents the counter upper bits.  
Document #: 38-06072 Rev. *E  
Page 17 of 48  
PRELIMINARY  
FullFlex  
Table 11.Identification Register Definitions  
Table 12.Scan Registers Sizes  
Register Name  
Instruction  
Bypass  
Identification  
Boundary Scan  
Part Number  
CYDD36S72V18  
CYDD36S36V18  
CYDD36S18V18  
CYDD18S72V18  
CYDD18S36V18  
CYDD18S18V18  
CYDD09S72V18  
CYDD09S36V18  
CYDD09S18V18  
CYDD04S72V18  
CYDD04S36V18  
CYDD04S18V18  
Configuration  
512Kx72  
512Kx72  
1024Kx36  
256Kx72  
256Kx72  
512Kx36  
128Kx72  
128Kx72  
256Kx36  
64Kx72  
Value  
Bit Size  
0C040069h  
0C041069h  
0C042069h  
0C043069h  
0C044069h  
0C045069h  
0C046069h  
0C047069h  
0C048069h  
0C049069h  
0C04A069h  
0C04B069h  
4
1
32  
n[27]  
64Kx72  
128Kx36  
Table 13.Instruction Identification Codes  
Instruction Code  
EXTEST  
Description  
0000  
1111  
1011  
0111  
Captures the Input/Output ring contents. Places the BSR between the TDI and TDO.  
BYPASS  
IDCODE  
HIGHZ  
Places the BYR between TDI and TDO.  
Loads the IDR with the vendor ID code and places the register between TDI and TDO.  
Places BYR between TDI and TDO. Forces all FullFlex72 and FullFlex36 output drivers  
to a High-Z state.  
CLAMP  
0100  
Controls boundary to 1/0. Places BYR between TDI and TDO.  
SAMPLE/PRELOAD 1000  
Captures the input/output ring contents. Places BSR between TDI and TDO.  
RESERVED  
All other codes Other combinations are reserved. Do not use other than the above.  
Note:  
27. Details of the boundary scan length can be found in the BSDL file for the device.  
Document #: 38-06072 Rev. *E  
Page 18 of 48  
PRELIMINARY  
FullFlex  
Maximum Ratings  
Operating Range  
(Above which the useful life may be impaired. For user guide-  
Range  
Commercial  
Ambient Temperature  
VCORE  
lines, not tested.)  
0°C to +70°C  
1.8V  
±
100 mV  
Storage Temperature ................................ –65°C to + 150°C  
1.5V  
±
80 mV  
Ambient Temperature with  
Industrial  
–40°C to +85°C  
1.8V  
±
100 mV  
80 mV  
Power Applied............................................55°C to + 125°C  
1.5V  
±
Supply Voltage to Ground Potential.............. –0.5V to + 4.1V  
Power Supply Requirements  
DC Voltage Applied to  
Min.  
Typ.  
3.3V  
2.5V  
1.5V  
1.8V  
3.3V  
2.5V  
Max.  
3.6V  
2.7V  
1.9V  
1.9V  
3.6V  
2.7V  
0.95V  
Outputs in High-Z State......................–0.5V to VCORE + 0.5V  
LVTTL VDDIO  
2.5V LVCMOS VDDIO  
HSTL VDDIO  
1.8V LVCMOS VDDIO  
3.3V VTTL  
3.0V  
2.3V  
1.4V  
1.7V  
3.0V  
2.3V  
0.68V  
DC Input Voltage............................... –0.5V to VCORE + 0.5V  
Output Current into Outputs (LOW) ............................ 20 mA  
Static Discharge Voltage...........................................> 2200V  
(JEDEC JESD8-6, JESD8-B)  
Latch-up Current.....................................................> 200 mA  
2.5V VTTL  
HSTL VREF  
0.75V  
Electrical Characteristics Over the Operating Range  
-250[15,17]  
-200[16,17]  
Parameter  
VOH  
Description  
Configuration  
Min.  
Typ. Max.  
Min.  
Typ. Max. Unit  
Output HIGH Voltage  
LVTTL  
2.4[28]  
2.4[28]  
V
(VCORE = Min., IOH = –8 mA)  
(VCORE = Min., IOH = –4 mA) HSTL (DC)[29] VDDIO – 0.4[28]  
(VCORE = Min., IOH = –4 mA) HSTL (AC)[29] VDDIO – 0.5[28]  
VDDIO – 0.4[28]  
VDDIO – 0.5[28]  
1.7[28]  
V
V
V
V
(VCORE = Min., IOH = –6 mA) 2.5V LVCMOS  
(VCORE = Min., IOH = –4 mA) 1.8V LVCMOS  
1.7[28]  
1.6[28]  
1.6[28]  
VOL  
Output HIGH Voltage  
LVTTL  
0.4[28]  
0.4[28]  
V
(VCORE = Min., IOL = 8 mA)  
(VCORE = Min., IOL = 4 mA)  
(VCORE = Min., IOL = 4 mA)  
(VCORE = Min., IOL = 6 mA) 2.5V LVCMOS  
(VCORE = Min., IOL = 4 mA) 1.8V LVCMOS  
Input HIGH Voltage  
Input LOW Voltage  
HSTL (DC)  
HSTL (AC)  
0.4[28]  
0.5[28]  
0.7[28]  
0.2[28]  
VDDIO  
+ 0.3  
VDDIO  
+ 0.3  
0.4[28]  
0.5[28]  
0.7[28]  
0.2[28]  
VDDIO  
+ 0.3  
VDDIO  
+ 0.3  
V
V
V
V
V
VIH  
LVTTL  
2
2
HSTL (DC)  
VREF + 0.1  
VREF + 0.1  
V
HSTL (AC)  
2.5V LVCMOS  
1.8V LVCMOS  
LVTTL  
VREF + 0.2  
1.7  
VREF + 0.2  
1.7  
V
V
V
V
V
1.26  
–0.3  
–0.3  
1.26  
–0.3  
–0.3  
VIL  
0.8  
VREF –  
0.1  
0.8  
VREF  
– 0.1  
HSTL (DC)  
HSTL (AC)  
VREF –  
0.2  
VREF  
– 0.2  
V
2.5V LVCMOS  
1.8V LVCMOS  
0.7  
0.36  
0.7  
0.36  
V
V
Notes:  
28. These parameters are met with VIM disabled.  
29. The (DC) specifications are measured under steady state conditions. The (AC) specifications are measured while switching at speed.  
Document #: 38-06072 Rev. *E  
Page 19 of 48  
PRELIMINARY  
FullFlex  
Electrical Characteristics Over the Operating Range (continued)  
-250[15,17]  
-200[16,17]  
Parameter  
Description  
Configuration  
Min.  
Typ. Max.  
Min.  
Typ. Max. Unit  
READY  
Output HIGH Voltage  
LVTTL  
2.7[28]  
2.7[28]  
V
VOH  
(VCORE = Min., IOH = –24 mA)  
(VCORE = Min., IOH = –12 mA) HSTL (DC)[29] VDDIO – 0.4[28]  
(VCORE = Min., IOH = –12 mA) HSTL (AC)[29] VDDIO – 0.5[28]  
VDDIO – 0.4[28]  
VDDIO – 0.5[28]  
2.0[28]  
V
V
V
V
(VCORE = Min., IOH = –15 mA) 2.5V LVCMOS  
(VCORE = Min., IOH = –12 mA) 1.8V LVCMOS VDDIO – 0.45[28]  
2.0[28]  
VDDIO –  
0.45[28]  
READY  
VOL  
Output HIGH Voltage  
LVTTL  
0.4[28]  
0.4[28]  
V
(VCORE = Min., IOL = 0.12 mA)  
(VCORE = Min., IOL = 0.12 mA) HSTL (DC)  
(VCORE = Min., IOL = 0.12 mA) HSTL (AC)  
(VCORE = Min., IOL = 0.15 mA) 2.5V LVCMOS  
(VCORE = Min., IOL = 0.08 mA) 1.8V LVCMOS  
Output Leakage Current  
Input Leakage Current  
Input Leakage Current TDI,  
TMS, MRST, TRST, TCK  
0.4[28]  
0.5[28]  
0.7[28]  
0.2[28]  
10  
0.4[28]  
0.5[28]  
0.7[28]  
0.2[28]  
10  
V
V
V
V
A
A
A
IOZ  
IIX1  
IIX2  
–10  
–10  
–300  
–10  
–10  
–300  
µ
µ
µ
10  
10  
10  
10  
IIX3  
Input Leakage Current  
PORTSTD, DDRON,  
VC_SEL  
–10  
300  
–10  
300  
µ
A
ICC  
Operating Current  
512Kx72  
1024Kx36  
256Kx72  
512Kx36  
128Kx72  
256Kx36  
64Kx72  
128Kx36  
512Kx72  
1024Kx36  
256Kx72  
512Kx36  
128Kx72  
256Kx36  
64Kx72  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
(VCORE = Max.,IOUT = 0 mA)  
Outputs Disabled  
ISB1  
Standby Current  
(Both Ports TTL Level)  
CEL and CER VIH,  
f = fMAX  
128Kx36  
Document #: 38-06072 Rev. *E  
Page 20 of 48  
PRELIMINARY  
FullFlex  
Electrical Characteristics Over the Operating Range (continued)  
-250[15,17]  
Typ. Max.  
-200[16,17]  
Parameter  
Description  
Configuration  
512Kx72  
1024Kx36  
256Kx72  
512Kx36  
128Kx72  
256Kx36  
64Kx72  
Min.  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Min.  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Typ. Max. Unit  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
TBD TBD mA  
ISB2  
Standby Current  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
(One Port TTL Level)  
CEL | CER VIH,  
f = fMAX  
128Kx36  
512Kx72  
1024Kx36  
256Kx72  
512Kx36  
128Kx72  
256Kx36  
64Kx72  
ISB3  
Standby Current  
(Both Ports CMOS Level)  
CEL and CER VCORE  
0.2V, f = 0  
128Kx36  
512Kx72  
1024Kx36  
256Kx72  
512Kx36  
128Kx72  
256Kx36  
64Kx72  
ISB4  
Standby Current  
(One Port CMOS Level)  
CEL | CER VIH,  
f = fMAX  
128Kx36  
Document #: 38-06072 Rev. *E  
Page 21 of 48  
PRELIMINARY  
FullFlex  
Electrical Characteristics Over the Operating Range (continued)  
-167  
Typ.  
Parameter  
VOH  
Description  
Configuration  
Min.  
Max.  
Unit  
V
Output HIGH Voltage  
LVTTL  
2.4[28]  
(VCORE = Min., IOH = –8 mA)  
(VCORE = Min., IOH = –4 mA)  
(VCORE = Min., IOH = –4 mA)  
(VCORE = Min., IOH = –6 mA)  
(VCORE = Min., IOH = –4 mA)  
HSTL (DC)  
HSTL (AC)  
2.5V LVCMOS  
1.8V LVCMOS  
LVTTL  
VDDIO – 0.4[28]  
VDDIO – 0.5[28]  
1.7[28]  
V
V
V
V
V
1.6[28]  
VOL  
Output HIGH Voltage  
0.4[28]  
(VCORE = Min., IOL = 8 mA)  
(VCORE = Min., IOL = 4 mA)  
(VCORE = Min., IOL = 4 mA)  
(VCORE = Min., IOL = 6 mA)  
(VCORE = Min., IOL = 4 mA)  
Input HIGH Voltage  
HSTL (DC)  
HSTL (AC)  
2.5V LVCMOS  
1.8V LVCMOS  
LVTTL  
HSTL (DC)  
HSTL (AC)  
2.5V LVCMOS  
1.8V LVCMOS  
LVTTL  
HSTL (DC)  
HSTL (AC)  
2.5V LVCMOS  
1.8V LVCMOS  
LVTTL  
0.4[28]  
0.5[28]  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
0.7[28]  
0.2[28]  
VIH  
2
VREF + 0.1  
VREF + 0.2  
1.7  
VDDIO + 0.3  
VDDIO + 0.3  
1.26  
–0.3  
–0.3  
VIL  
Input LOW Voltage  
0.8  
VREF – 0.1  
VREF – 0.2  
0.7  
0.36  
2.7[28]  
READY VOH  
Output HIGH Voltage  
(VCORE = Min., IOH = –24 mA)  
(VCORE = Min., IOH = –12 mA)  
(VCORE = Min., IOH = –12 mA)  
(VCORE = Min., IOH = –15 mA)  
(VCORE = Min., IOH = –12 mA)  
HSTL (DC)[29]  
HSTL (AC)[29]  
2.5V LVCMOS  
1.8V LVCMOS  
LVTTL  
VDDIO – 0.4[28]  
VDDIO – 0.5[28]  
2.0[28]  
V
V
V
V
V
VDDIO – 0.45[28]  
READY VOL  
Output HIGH Voltage  
0.4[28]  
(VCORE = Min., IOL = 0.12 mA)  
(VCORE = Min., IOL = 0.12 mA)  
(VCORE = Min.,IOL = 0.12 mA)  
(VCORE = Min., IOL = 0.15 mA)  
(VCORE = Min., IOL = 0.08 mA)  
Output Leakage Current  
Input Leakage Current  
Input Leakage Current TDI,  
TMS, MRST, TRST, TCK  
HSTL (DC)  
HSTL (AC)  
2.5V LVCMOS  
1.8V LVCMOS  
0.4[28]  
0.5[28]  
0.7[28]  
0.2[28]  
10  
V
V
V
V
A
A
A
IOZ  
IIX1  
IIX2  
–10  
–10  
–300  
µ
µ
µ
10  
10  
IIX3  
Input Leakage Current  
PORTSTD, DDRON,  
VC_SEL  
–10  
300  
µ
A
Document #: 38-06072 Rev. *E  
Page 22 of 48  
PRELIMINARY  
FullFlex  
Electrical Characteristics Over the Operating Range (continued) (continued)  
-167  
Typ.  
Parameter  
ICC  
Description  
Configuration  
512Kx72  
1024Kx36  
256Kx72  
512Kx36  
128Kx72  
256Kx36  
64Kx72  
128Kx36  
512Kx72  
1024Kx36  
256Kx72  
512Kx36  
128Kx72  
256Kx36  
64Kx72  
128Kx36  
512Kx72  
1024Kx36  
256Kx72  
512Kx36  
128Kx72  
256Kx36  
64Kx72  
128Kx36  
512Kx72  
1024Kx36  
256Kx72  
512Kx36  
128Kx72  
256Kx36  
64Kx72  
Min.  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Max.  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Operating Current  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
(VCORE = Max.,IOUT = 0 mA)  
Outputs Disabled  
ISB1  
ISB2  
ISB3  
ISB4  
Standby Current  
(Both Ports TTL Level)  
CEL and CER VIH, f = fMAX  
Standby Current  
(One Port TTL Level)  
CEL | CER VIH, f = fMAX  
Standby Current  
(Both Ports CMOS Level)  
CEL and CER VCORE – 0.2V,  
f = 0  
128Kx36  
512Kx72  
1024Kx36  
256Kx72  
512Kx36  
128Kx72  
256Kx36  
64Kx72  
Standby Current  
(One Port CMOS Level)  
CEL | CER VIH, f = fMAX  
128Kx36  
Document #: 38-06072 Rev. *E  
Page 23 of 48  
PRELIMINARY  
FullFlex  
Table 14.Capacitance  
Parameter  
Description  
Input Capacitance  
Output Capacitance  
Test Conditions  
Max.  
10  
12  
Unit  
pF  
pF  
[30]  
CIN  
TA = 25°C, f = 1MHz,  
V
DD = 3V[32]  
[30, 31]  
COUT  
AC Test Load and Waveforms  
V R E F = 0V  
V R E F  
50 O hm  
5 0 O hm  
O u tput  
T est P oint  
R = 250 O hm  
C = 10pF  
V T H  
R E A D Y Z Q  
D evice und er  
te st  
R Q = 25 0 O h m  
V T H = 1.5V for LV T T L  
V T H = 5 0% V D D IO for 2.5V C M O S  
V T H = 5 0% V D D IO for 1.8V C M O S  
Figure 6. Output Test Load for LVTTL/CMOS  
V
=
E F  
0 . 7 5 V  
5 0 O h m  
R
V
R
E F  
5 0 O h m  
O u t p u t  
T e s t P o in t  
V T H  
R = 2 5 0 O h m  
R E A D Y  
Z Q  
C = 0 p F f o r D D R  
C = 1 0 p F f o r S D R  
D e v ic e u n d e r  
t e s t  
R Q = 2 5 0 O h m  
V T H  
= 5 0 % V D D I O  
Figure 7. Output Test Load for HSTL  
Notes:  
30. Capacitance for the 36M x18 device is 20 pF, capacitance for all other 36M or x18 devices is 12 pF.  
31. C also references to C  
.
I/O  
out  
32. Input and Output switch from 0V to 3V or from 3V to 0V.  
Document #: 38-06072 Rev. *E  
Page 24 of 48  
PRELIMINARY  
FullFlex  
Switching Characteristics Over the Operating Range  
Table 15.DDR Mode with 2.5 Pipeline Stages and DLL Enabled (LOWSPD-HIGH)[36]  
-200[16,17,34]  
-167[17]  
Parameter  
fMAX  
tCYC  
tCH  
tCL  
tCHCH  
tSD  
Description  
Maximum Operating Frequency  
C/C Clock Cycle Time  
C/C Clock HIGH Time  
C/C Clock LOW Time  
C/C Clock Rise to C/C Clock Rise  
Data Input Set-up Time to C/C Rise  
Data Input Hold Time after C/C Rise  
Byte enable Set-up Time to C/C Rise  
Byte enable Hold Time after C/C Rise  
Address & Control Input except BE Set-up Time to C Rise  
Address & Control Input except BE Hold Time after C Rise  
Output Enable to Data Valid  
OE to Low Z  
OE to High Z  
C/C Rise to DQ Valid  
DQ Output Hold after C/C Rise  
C/C Rise to CQ/CQ Rise  
Echo Clock (CQ/CQ) High to Output Valid, SC = LOW  
Echo Clock (CQ/CQ) High to Output Hold, SC = LOW  
C Rise to DQ Output High Z  
C Rise to DQ Output Low Z  
C Rise to Address Readback Valid  
Address Output Hold after C Rise  
C Rise to Address Output High Z  
C Rise to Address Output Low Z  
C Rise to CNTINT Low  
Min.  
159  
5.00  
2.00  
2.00  
Max.  
200  
6.3  
Min.  
127  
6.00  
2.40  
2.40  
Max.  
167  
7.88  
Unit  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.20  
2.70  
0.40[35]  
0.40[35]  
0.40[35]  
0.40[35]  
1.50  
0.50[35]  
0.50[35]  
0.50[35]  
0.50[35]  
1.70  
tHD  
tSBE  
tHBE  
tSAC  
tHAC  
tOE  
0.50  
0.60  
4.40[35]  
5.00[35]  
[33]  
tOLZ  
1.00  
1.00  
tOHZ  
1.00[35] 4.40[35] 1.00[35] 5.00[35]  
[33]  
tCD  
tDC  
tCCQ  
tCQHQV  
0.50[35]  
0.60[35]  
–0.50  
–0.50  
–0.60  
–0.60  
0.50  
0.35[35]  
0.60  
0.40[35]  
tCQHQX  
–0.35  
–0.50  
–0.40  
–0.60  
[33]  
tCKHZ  
tCKLZ  
0.50[35]  
5.00  
0.60[35]  
6.00  
[33]  
tCA  
tAC  
tCKHZA  
1.00  
1.00  
1.00  
1.00  
1.00  
0.50  
0.50  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
0.50  
0.50  
1.00  
[33]  
5.00  
6.00  
[33]  
tCKLZA  
tSCINT  
tRCINT  
tSINT  
tRINT  
tBSY  
3.30  
3.30  
7.00  
7.00  
3.30  
4.00  
4.00  
8.00  
8.00  
4.00  
C Rise to CNTINT High  
C Rise to INT Low  
C Rise to INT High  
C Rise to BUSY Valid  
Notes:  
33. Parameters specified with the load capacitance in Figure 6 and Figure 7.  
34. These parameters apply for the HSTL and 1.8V LVCMOS standards.  
35. For the x18 devices, add 200 ps to this parameter in the table above.  
36. Test conditions assume a signal transition time of 2 V/ns  
Document #: 38-06072 Rev. *E  
Page 25 of 48  
PRELIMINARY  
FullFlex  
Table 16.SDR Mode with DLL Enabled (LOWSPD-HIGH) [36]  
-250[15,17]  
-200[15,17]  
-167[17]  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max. Unit  
fMAX (PIPELINED)  
Maximum Operating Frequency for  
100  
250  
100  
200  
100  
167  
MHz  
Pipelined Mode  
fMAX  
Maximum Operating Frequency for  
Flow-through Mode  
100  
77  
66.7  
MHz  
(FLOW-THROUGH)  
tCYC (PIPELINED)  
C Clock Cycle Time for Pipelined mode  
4.00  
10.00  
10.00  
5.00  
13.00  
10.00  
6.00  
15.00  
10.00  
ns  
ns  
tCYC  
C Clock Cycle Time for Flow-through  
(FLOW-THROUGH)  
mode  
tCKD  
tCHCH  
tSD  
tHD  
tSAC  
C Clock Duty Time  
45  
N/A  
1.20[35]  
0.50[35]  
1.20  
55  
45  
N/A  
1.50[35]  
0.50[35]  
1.50  
55  
45  
N/A  
1.70[35]  
0.50[35]  
1.70  
55  
%
ns  
ns  
ns  
ns  
C/C Clock Rise to C/C Clock Rise  
Data Input Set-up Time to C Rise  
Data Input Hold Time after C Rise  
Address & Control Input Set-up Time to C  
Rise  
tHAC  
Address & Control Input Hold Time after  
C Rise  
Output Enable to Data Valid  
OE to Low Z  
0.50  
0.50  
0.60  
ns  
tOE  
tOLZ  
3.40[35]  
4.40[35]  
5.00[35] ns  
ns  
[33]  
1.00  
1.00  
1.00  
1.00[35] 3.40 [35] 1.00[35] 4.40[35] 1.00[35] 5.00[35] ns  
[33]  
tOHZ  
OE to High Z  
tCD1  
tCD2  
tCA1  
tCA2  
C Rise to DQ Valid for Flow-through Mode  
7.20  
2.6 [35]  
7.20  
9.00  
3.30[35]  
9.00  
11.00  
ns  
(LowSPD = 1)  
C Rise to DQ Valid for Pipelined Mode  
(LowSPD = 1)  
4.00[35] ns  
C Rise to Address Readback Valid for  
11.00  
6.00  
ns  
ns  
Flow-through Mode  
C Rise to Address Readback Valid for  
Pipelined Mode  
4.00  
5.00  
tDC  
tCCQ  
tCQHQV  
tCQHQX  
tCKHZ1  
DQ Output Hold after C Rise  
C Rise to CQ Rise  
Echo Clock (CQ) High to Output Valid  
Echo Clock (CQ) High to Output Hold  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
ns  
ns  
2.64  
3.30  
4.00  
0.70[35]  
0.76[35]  
0.80[35] ns  
ns  
–0.66  
1.00  
–0.72  
1.00  
–0.76  
1.00  
[33]  
C Rise to DQ Output High Z in  
7.20  
9.00  
11.00  
ns  
Flow-through Mode  
[33]  
tCKLZ1  
C Rise to DQ Output Low Z in  
Flow-Through Mode  
1.00  
1.00  
1.00  
ns  
[33]  
tCKHZ2  
C Rise to DQ Output High Z in  
1.00[35] 2.64 [35] 1.00[35] 3.30[35] 1.00[35] 4.00[35]  
Flow-through Mode  
[33]  
tCKLZ2  
C Rise to DQ Output Low Z in  
Flow-Through Mode  
1.00  
1.00  
1.00  
tAC  
tCKHZA1  
Address Output Hold after C Rise  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
ns  
ns  
[33]  
C Rise to Address Output High Z for  
7.20  
4.00  
9.00  
5.00  
11.00  
6.00  
flow-through mode  
[33]  
tCKHZA2  
C Rise to Address Output High Z for  
pipelined mode  
C Rise to Address Output Low Z  
C Rise to CNTINT Low  
1.00  
1.00  
1.00  
ns  
[33]  
tCKLZA  
tSCINT  
tRCINT  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
ns  
ns  
ns  
2.64  
2.64  
3.30  
3.30  
4.00  
4.00  
C Rise to CNTINT High  
Document #: 38-06072 Rev. *E  
Page 26 of 48  
PRELIMINARY  
Table 16.SDR Mode with DLL Enabled (LOWSPD-HIGH) (continued)[36]  
FullFlex  
-250[15,17]  
-200[15,17]  
-167[17]  
Parameter  
tSINT  
tRINT  
tBSY  
Description  
C Rise to INT Low  
C Rise to INT High  
Min.  
0.50  
0.50  
1.00  
Max.  
6.00  
6.00  
2.64  
Min.  
Max.  
7.00  
7.00  
3.30  
Min.  
0.50  
0.50  
1.00  
Max. Unit  
0.50  
0.50  
1.00  
8.00  
8.00  
4.00  
ns  
ns  
ns  
C Rise to BUSY Valid  
Table 17.SDR Mode with DLL Disabled (LOWSPD-LOW)[36]  
-100  
Parameter  
Description  
Min.  
Max.  
Unit  
fMAX (PIPELINED)  
fMAX (FLOW-THROUGH)  
tCYC (PIPELINED)  
tCYC (FLOW-THROUGH)  
tCKD  
tCHCH  
tSD  
Maximum Operating Frequency for Pipelined mode  
Maximum Operating Frequency for Flow-through mode  
C Clock Cycle Time for Pipelined mode  
C Clock Cycle Time for Flow-through mode  
C Clock Duty Time  
C/C Clock Rise to C/C Clock Rise  
Data Input Set-up Time to C Rise  
Data Input Hold Time after C Rise  
Address & Control Input Set-up Time to C Rise  
Address & Control Input Hold Time after C Rise  
Output Enable to Data Valid  
100  
55.6  
10.00  
MHz  
MHz  
ns  
ns  
%
7.00  
18.00  
45  
55  
N/A  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1.80[35]  
0.50[35]  
1.80  
tHD  
tSAC  
tHAC  
tOE  
0.70  
5.50[35]  
[33]  
tOLZ  
OE to Low Z  
OE to High Z  
1.00  
1.00[35]  
tOHZ  
5.50[35]  
13.00  
6.00[35]  
13.00  
7.50  
[33]  
tCD1  
tCD2  
tCA1  
tCA2  
C Rise to DQ Valid for Flow-through Mode (LowSPD = 0)  
C Rise to DQ Valid for Pipelined Mode (LowSPD = 0)  
C Rise to Address Readback Valid for Flow-through Mode  
C Rise to Address Readback Valid for Pipelined Mode  
DQ Output Hold after C Rise  
tDC  
1.00  
1.00  
tCCQ  
tCQHQV  
tCQHQX  
C Rise to CQ Rise  
6.00  
0.90[35]  
Echo Clock (CQ) High to Output Valid  
Echo Clock (CQ) High to Output Hold  
C Rise to DQ Output High Z in Flow-through Mode  
C Rise to DQ Output Low Z in Flow-Through Mode  
C Rise to DQ Output High Z in Flow-through Mode  
C Rise to DQ Output Low Z in Flow-Through Mode  
Address Output Hold after C Rise  
C Rise to Address Output High Z for flow-through mode  
C Rise to Address Output High Z for pipelined mode  
C Rise to Address Output Low Z  
–0.90  
1.00  
1.00  
1.00[35]  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
0.50  
0.50  
1.00  
[33]  
tCKHZ1  
tCKLZ1  
tCKHZ2  
tCKLZ2  
13.00  
[33]  
6.00[35]  
[33]  
[33]  
tAC  
tCKHZA1  
tCKHZA2  
tCKLZA  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
[33]  
13.00  
7.50  
[33]  
[33]  
tSCINT  
tRCINT  
tSINT  
tRINT  
tBSY  
C Rise to CNTINT Low  
C Rise to CNTINT High  
C Rise to INT Low  
C Rise to INT High  
4.50  
4.50  
8.50  
8.50  
4.50  
C Rise to BUSY Valid  
Document #: 38-06072 Rev. *E  
Page 27 of 48  
PRELIMINARY  
FullFlex  
Table 18.Master Reset Timing  
-250[15,17]  
-200[16,17]  
-167  
Max.  
Parameter  
tPUP  
tRS  
Description  
Power-up Time  
Min.  
Max.  
Min.  
Max.  
Min.  
Unit  
ms  
cycles  
cycles  
ns  
1
5
5
1
5
5
1
5
5
Master Reset Pulse Width  
Master Reset Recovery Time  
Master Reset to Outputs Inactive/Hi-Z  
Master Reset Release to Port Ready  
C Rise to Port Ready  
tRSR  
tRSF  
tRDY  
10  
1024  
8
10  
1024  
9.5  
10  
1024  
11  
[37]  
[38]  
cycles  
ns  
tCORDY  
Table 19.JTAG Timing  
-250[15,17]  
-200[16,17]  
-167[17]  
Parameter  
Description  
JTAG TAP Controller Frequency  
TCK Cycle Time  
TCK High Time  
Min.  
Max.  
20  
Min.  
Max.  
20  
Min.  
Max.  
20  
Unit  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
fJTAG  
tTCYC  
tTH  
50  
20  
20  
10  
10  
10  
10  
50  
20  
20  
10  
10  
10  
10  
50  
20  
20  
10  
10  
10  
10  
tTL  
TCK Low Time  
tTMSS  
tTMSH  
tTDIS  
tTDIH  
tTDOV  
tTDOX  
tJXZ  
TMS Set-up to TCK Rise  
TMS Hold to TCK Rise  
TDI Set-up to TCK Rise  
TDI Hold to TCK Rise  
TCK Low to TDO Valid  
TCK Low to TDO Invalid  
TCK Low to TDO hi-Z  
TCK Low to TDO Active  
10  
10  
10  
0
0
0
15  
15  
15  
15  
15  
15  
tJZX  
Notes:  
37. READY is a wired OR capable output with a weak pull-down. For a decreased falling delay, connect a 250 Ohm resistor to VSS.  
38. Add this propagation delay after t  
for all Master Reset Operations  
RDY  
Document #: 38-06072 Rev. *E  
Page 28 of 48  
PRELIMINARY  
FullFlex  
Switching Waveforms (continued)  
READ Cycle for Pipelined Mode, DDRON = LOW  
t
CYC  
C
t
t
HAC  
SAC  
R/W  
A
A
A
A
A
A
A
n+6  
n
n+1  
x
n+2  
n
n+3  
n+4  
n+5  
A
2 pipeline stages  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
n+4  
x-1  
n+1  
n+2  
n+3  
DQ  
t
DC  
t
CD  
WRITE Cycle for Pipelined and Flow-Through Modes, DDRON = LOW  
t
CYC  
C
R/W  
A
A
A
A
A
A
A
n+6  
n
n+1  
n+2  
n+3  
n+4  
n+5  
A
2 pipeline stages  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
n+5  
n+6  
DQ  
n
n+1  
n+3  
n+4  
n+2  
tSD tHD  
Document #: 38-06072 Rev. *E  
Page 30 of 48  
PRELIMINARY  
FullFlex  
Switching Waveforms (continued)  
READ with Address Counter Advance for Pipelined Mode, DDRON = LOW  
t
CYC  
C
A
A
n
Internal  
Address  
A
A
n+1  
A
A
n
n+2  
n+3  
ADS  
CNTEN  
DQ  
DQ  
DQ  
DQ  
DQ  
n+1  
x-1  
x
n
DQ  
DQ  
n+3  
n+2  
READ with Address Counter Advance for Flow-Through Mode, DDRON = LOW  
tCYC  
C
tSAC tHAC  
A
An  
ADS  
CNTEN  
DQ  
tSAC tHAC  
tCD1  
DQx  
DQn  
DQn + 1  
DQn + 2  
DQn + 3  
DQn + 4  
tDC  
READ EXTERNAL ADDRESS  
READ WITH COUNTER  
COUNTER HOLD  
READ W ITH COUNTER  
Document #: 38-06072 Rev. *E  
Page 31 of 48  
PRELIMINARY  
FullFlex  
Switching Waveforms (continued)  
Mailbox Interrupt Output, DDRON = LOW  
tCYC  
C
L
AL  
AMAX  
R/WL  
DQL  
INTR  
tSINT  
tRINT  
CR  
AMAX  
AR  
R/WR  
DQR  
DQMAX  
Document #: 38-06072 Rev. *E  
Page 32 of 48  
PRELIMINARY  
FullFlex  
Switching Waveforms (continued)  
Port-to-Port WRITE–READ for Pipelined Mode, DDRON = LOW  
t
CYC  
Left Port  
C
L
A
A
L
n
R/W  
DQ  
L
DQ  
L
n
Right Port  
t
CCS  
C
R
t
CYC  
A
A
R
n
R/W  
R
t
t
SAC HAC  
DQ  
DQ  
R
n
t
t
DC  
CD2  
Chip Enable READ for Pipelined Mode, DDRON = LOW  
t
CYC  
C
CE0  
CE1  
R/W  
A
t
t
SAC HAC  
A
A
A
A
A
A
A
n+6  
n
n+1  
n+2  
n+3  
n+4  
n+5  
DQ  
DQ  
DQ  
n+3  
n
t
t
CKLZ2  
t
CKHZ2  
CD2  
Document #: 38-06072 Rev. *E  
Page 33 of 48  
PRELIMINARY  
FullFlex  
Switching Waveforms (continued)  
OE Controlled WRITE for Pipelined Mode, DDRON = LOW  
t
CYC  
C
A
A
A
A
A
A
A
A
n+3  
x+1  
x+2  
x+3  
n
n+1  
n+2  
R/W  
OE  
t
OHZ  
DQ  
x+1  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
n+3  
x-1  
x
n
n+1  
n+2  
DQ  
OE Controlled WRITE for Flow-Through Mode, DDRON = LOW  
t
CYC  
C
A
A
A
A
A
A
A
A
n+3  
x+1  
x+2  
x+3  
n
n+1  
n+2  
R/W  
OE  
tOHZ  
DQ  
x+2  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
n+3  
DQ  
x
x+1  
n
n+1  
n+2  
Document #: 38-06072 Rev. *E  
Page 34 of 48  
PRELIMINARY  
FullFlex  
Switching Waveforms (continued)  
Byte-Enable READ for Pipelined Mode, DDRON = LOW  
tCYC  
C
A
A
A
A
n
n+1  
n+2  
n+3  
A
R/W  
BE7  
BE6  
BE5  
BE4  
BE3  
BE2  
BE1  
BE0  
tCKLZ2  
tCKHZ2  
DQn+1(63:71)  
DQ  
63:71  
DQn+1(54:62)  
DQ  
DQ  
DQ  
54:62  
DQn+2(45:53)  
DQn+2(36:44)  
45:53  
36:44  
DQn+1(27:35)  
DQ  
DQ  
27:35  
DQn+2(18:26)  
18:26  
DQn+3(9:17)  
DQ  
DQ  
9:17  
0:8  
DQn+3(0:8)  
Document #: 38-06072 Rev. *E  
Page 35 of 48  
PRELIMINARY  
FullFlex  
Switching Waveforms (continued)  
Port-to-Port WRITE-to-READ for Flow-Through Mode, DDRON = LOW  
CL  
R/WL  
tSAC  
tHAC  
tHD  
NO MATCH  
AL  
MATCH  
tSD  
VALID  
DQL  
tCCS  
`
CR  
tCD1  
R/WR  
tHAC  
tSAC  
NO MATCH  
AR  
MATCH  
tCD1  
DQR  
VALID  
VALID  
tDC  
tDC  
Busy Address Readback for Pipelined and Flow-Through Modes, DDRON = LOW[39]  
t
CYC  
~
~
C
Internal  
Address  
Amatch+2  
Amatch+3  
Amatch+4  
~
~
BUSY  
CNTEN  
~
~
ADS  
External  
Address  
Amatch  
tAC  
tCA  
Note:  
39. A  
is the matching address which will be reported on the address bus of the losing port. The counter operation selected for reporting the address is “Busy  
match  
Address Readback.”  
Document #: 38-06072 Rev. *E  
Page 36 of 48  
PRELIMINARY  
FullFlex  
Switching Waveforms (continued)  
Read Cycle for Flow-Through Mode, DDRON = LOW  
tCYC  
C
CE0  
CE1  
tSAC tHAC  
BEn  
R/W  
tSAC  
tHAC  
A
An  
An + 1  
An + 2  
An + 3  
tCKHZ1  
tCD1  
tDC  
DQ  
DQn  
DQn + 1  
DQn + 2  
tCKLZ1  
tDC  
tOLZ  
tOHZ  
OE  
tOE  
READ-to-WRITE for Pipelined Mode, DDRON = LOW (OE = VIL)[40, 41, 42]  
tCYC  
tCL  
C
tCH  
A
A
x
A
A
n+2  
A
n
n+1  
tSAC tHAC  
tSAC tHAC  
R/W  
DQ  
DQ  
DQ  
DQ  
x
DQ  
x-2  
x-1  
DQ  
n+2  
DQ  
n+1  
n
tDC  
tCD2  
tCKHZ2  
tSD tHD  
Notes:  
40. When OE = V , the last read operation is allowed to complete before the DQ bus is tri-stated and the user is allowed to drive write data.  
IL  
41. Two dummy writes should be issued to accomplish bus turnaround. The third instruction is the first valid write.  
42. Chip enable or all byte enables should be held inactive during the two dummy writes to avoid data corruption.  
Document #: 38-06072 Rev. *E  
Page 37 of 48  
PRELIMINARY  
FullFlex  
Switching Waveforms (continued)  
READ-to-WRITE for Pipelined Mode, DDRON = LOW (OE Controlled)[43, 44]  
tCYC  
C
A
A
A
A
A
A
A
n+3  
x
x+1  
x+2  
n
n+1  
n+2  
A
tSAC tHAC  
R/W  
OE  
DQ  
tOHZ  
tSD tHD  
DQ  
DQ  
x
DQ  
DQ  
DQ  
DQ  
DQ  
n+3  
x-2  
x-1  
n
n+1  
n+2  
READ-to-WRITE-to-READ for DDR, DDRON = HIGH[40,41,45,46]  
tCH tCL  
C
tCYC  
C
tSAC  
tCHCH tCHCH  
tHAC  
A
A
A
n+2  
A
x
n
A
n+1  
tSAC tHAC  
R/W  
DQ  
tCKHZ  
DQn[1] DQn[0]  
DQx-2[0]  
DQ [0]  
DQ [0]  
n+2  
DQ [1]  
DQ [0]  
n+1  
DQ [1]  
x-1  
x
DQ [0]  
x
x-1  
DQ [1]  
DQ [1]  
n+1  
n+2  
DQ [1]  
n+2  
tCD  
tDC  
tSD tHD  
Notes:  
43. OE should be deasserted and t  
allowed to elapse before the first write operation is issued.  
OHZ  
44. Any write scheduled to complete after OE is deasserted will be preempted.  
45. The address should be held constant during the two dummy writes and first valid write to avoid data corruption.  
46. D[1] / Q [1] contains data [71:36]; D[0] / Q[0] contains data [35:0].  
Document #: 38-06072 Rev. *E  
Page 38 of 48  
PRELIMINARY  
FullFlex  
Switching Waveforms (continued)  
Read-to-Write-to-Read for Flow-Through Mode, DDRON = LOW (OE = LOW)  
tCYC  
C
tSAC tHAC  
CE0  
CE1  
BEn  
tSAC  
tHAC  
R/W  
A
An  
An + 1  
An + 2  
An + 2  
An + 3  
An + 4  
tSD  
tHD  
DQIN  
DQn + 2  
tCD1  
tCD1  
tCD1  
tCD1  
DQn  
tDC  
DQOUT  
DQn + 1  
DQn + 3  
tCKHZ1  
tCKLZ1  
tDC  
READ  
NOP  
WRITE  
READ  
Document #: 38-06072 Rev. *E  
Page 39 of 48  
PRELIMINARY  
FullFlex  
Switching Waveforms (continued)  
Read-to-Write-to-Read for Flow-Through Mode, DDRON = LOW (OE Controlled)  
tCYC  
C
tHAC  
tSAC  
CE0  
CE1  
BEn  
tHAC  
tSAC  
R/W  
A
An  
An + 1  
An + 2  
tHD  
An + 3  
An + 4  
An + 5  
tSD  
DQIN  
DQn + 2  
DQn + 3  
tOE  
tCD1  
tCD1  
tDC  
tCD1  
DQOUT  
DQn  
DQn + 4  
tDC  
tCKLZ1  
tOHZ  
OE  
READ  
WRITE  
READ  
Document #: 38-06072 Rev. *E  
Page 40 of 48  
PRELIMINARY  
FullFlex  
Switching Waveforms (continued)  
BUSY Timing, WRITE-WRITE Collision for Pipelined and Flow-Through Modes, Clock Timing Violates tCCS. (Flag Both  
Ports)  
Port A  
C
A
R/W  
BUSY  
C
tBSY  
tBSY  
< tCCS  
Port B  
A
R/W  
tBSY  
tBSY  
BUSY  
BUSY Timing, WRITE-WRITE Collision for Pipelined and Flow-Through Modes, Clock Timing Meets tCCS. (Flag Losing  
Port)  
Losing Port  
C
A
R/W  
tccs  
tBSY  
BUSY  
tBSY  
Winning Port  
C
A
Match  
R/W  
BUSY  
Document #: 38-06072 Rev. *E  
Page 41 of 48  
PRELIMINARY  
FullFlex  
Switching Waveforms (continued)  
Read with Echo Clock for Pipelined and Flow-Through Modes (CQEN = HIGH)  
C
t
t
HAC  
SAC  
R/W  
A
A
A
A
A
A
A
A
n
n+1  
n+2  
n+3  
n+4  
n+5  
n+6  
CQ0  
CQ0  
CQ1  
t
CCQ  
CQ1  
DQ  
t
CQHQX  
t
CQHQV  
DQ  
DQ  
DQ  
DQ  
DQ  
n+4  
DQ  
DQ  
x
n
n+1  
n+2  
n+3  
x-1  
Document #: 38-06072 Rev. *E  
Page 42 of 48  
PRELIMINARY  
FullFlex  
Ordering Information  
512K  
×
72 (36 Mbit) 1.8V Synchronous CYDD36S72V18 Dual-Port SRAM (SDR and DDR I/O)  
Speed  
Package  
Operating  
Range  
(MHz)  
Ordering Code  
Name  
BY484  
BY484  
BY484  
BY484  
Package Type  
200 CYDD36S72V18-200BBC  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Commercial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Industrial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Commercial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Industrial  
CYDD36S72V18-200BBI  
167 CYDD36S72V18-167BBC  
CYDD36S72V18-167BBi  
256K  
×
72 (18 Mbit) 1.8V Synchronous CYDD18S72V18 Dual-Port SRAM (SDR and DDR I/O)  
Package  
Speed  
Operating  
Range  
(MHz)  
Ordering Code  
Name  
BY484  
BY484  
BY484  
BY484  
BY484  
Package Type  
250 CYDD18S72V18-250BBC  
200 CYDD18S72V18-200BBC  
CYDD18S72V18-200BBI  
167 CYDD18S72V18-167BBC  
CYDD18S72V18-167BBI  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Commercial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Commercial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Industrial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Commercial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Industrial  
128K  
×
72 (9 Mbit) 1.8V Synchronous CYDD09S72V18 Dual-Port SRAM (SDR and DDR I/O)  
Package  
Speed  
Operating  
Range  
(MHz)  
Ordering Code  
Name  
BY484  
BY484  
BY484  
BY484  
Package Type  
200 CYDD09S72V18-200BBC  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Commercial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Industrial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Commercial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Industrial  
CYDD09S72V18-200BBI  
167 CYDD09S72V18-167BBC  
CYDD09S72V18-167BBI  
64K  
× 72 (4 Mbit) 1.8V Synchronous CYDD04S72V18 Dual-Port SRAM (SDR and DDR I/O)  
Speed  
Package  
Operating  
Range  
(MHz)  
Ordering Code  
Name  
Package Type  
250 CYDD04S72V18-250BBC  
200 CYDD04S72V18-200BBC  
CYDD04S72V18-200BBI  
167 CYDD04S72V18-167BBC  
CYDD04S72V18-167BBI  
BY484  
BY484  
BY484  
BY484  
BY484  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Commercial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Commercial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Industrial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Commercial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Industrial  
1024K  
×
36 (36 Mbit) 1.8V Synchronous CYDD36S36V18 Dual-Port SRAM (DDR only I/O)  
Package  
Speed  
Operating  
Range  
(MHz)  
Ordering Code  
Name  
BY484  
BY484  
BY484  
Package Type  
200 CYDD36S36V18-200BBC  
167 CYDD36S36V18-167BBC  
CYDD36S36V18-167BBI  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Commercial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Commercial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Industrial  
512K  
×
36 (18 Mbit) 1.8V Synchronous CYDD18S36V18 Dual-Port SRAM (DDR only I/O)  
Package  
Speed  
Operating  
Range  
(MHz)  
Ordering Code  
Name  
Package Type  
200 CYDD18S36V18-200BBC BW256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (FBGA) Commercial  
167 CYDD18S36V18-167BBC BW256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (FBGA) Commercial  
CYDD18S36V18-167BBI BW256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (FBGA) Industrial  
Document #: 38-06072 Rev. *E  
Page 43 of 48  
PRELIMINARY  
FullFlex  
Ordering Information (continued)  
256K  
×
36 (9 Mbit) 1.8V Synchronous CYDD09S36V18 Dual-Port SRAM (DDR only I/O)  
Speed  
Package  
Operating  
Range  
(MHz)  
Ordering Code  
Name  
BB256  
BB256  
BB256  
Package Type  
200 CYDD09S36V18-200BBC  
167 CYDD09S36V18-167BBC  
CYDD09S36V18-167BBI  
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA) Commercial  
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA) Commercial  
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA) Industrial  
128K  
×
36 (4 Mbit) 1.8V Synchronous CYDD04S36V18 Dual-Port SRAM (DDR only I/O)  
Package  
Speed  
Operating  
Range  
(MHz)  
Ordering Code  
Name  
BB256  
BB256  
BB256  
Package Type  
200 CYDD04S36V18-200BBC  
167 CYDD04S36V18-167BBC  
CYDD04S36V18-167BBI  
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA) Commercial  
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA) Commercial  
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA) Industrial  
2048K  
×
18 (36 Mbit) 1.8V Synchronous CYDD36S18V18 Dual-Port SRAM (DDR only I/O)  
Package  
Speed  
Operating  
Range  
(MHz)  
Ordering Code  
Name  
BY484  
BY484  
BY484  
Package Type  
200 CYDD36S18V18-200BBC  
167 CYDD36S18V18-167BBC  
CYDD36S18V18-167BBI  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Commercial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Commercial  
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA) Industrial  
1024K  
×
18 (18 Mbit) 1.8V Synchronous CYDD18S18V18 Dual-Port SRAM (DDR only I/O)  
Package  
Speed  
Operating  
Range  
(MHz)  
Ordering Code  
Name  
Package Type  
200 CYDD18S18V18-200BBC BW256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (FBGA) Commercial  
167 CYDD18S18V18-167BBC BW256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (FBGA) Commercial  
CYDD18S18V18-167BBI BW256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (FBGA) Industrial  
512K  
×
18 (9 Mbit) 1.8V Synchronous CYDD09S18V18 Dual-Port SRAM (DDR only I/O)  
Package  
Speed  
Operating  
Range  
(MHz)  
Ordering Code  
Name  
BB256  
BB256  
BB256  
Package Type  
200 CYDD09S18V18-200BBC  
167 CYDD09S18V18-167BBC  
CYDD09S18V18-167BBI  
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA) Commercial  
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA) Commercial  
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA) Industrial  
256K  
×
18 (4 Mbit) 1.8V Synchronous CYDD04S18V18 Dual-Port SRAM (DDR only I/O)  
Package  
Speed  
Operating  
Range  
(MHz)  
Ordering Code  
Name  
BB256  
BB256  
BB256  
Package Type  
200 CYDD04S18V18-200BBC  
167 CYDD04S18V18-167BBC  
CYDD04S18V18-167BBI  
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA) Commercial  
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA) Commercial  
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA) Industrial  
Document #: 38-06072 Rev. *E  
Page 44 of 48  
PRELIMINARY  
FullFlex  
Package Diagrams  
256-Ball FBGA (17 x 17 mm) BB256  
TOP VIEW  
BOTTOM VIEW  
Ø0.05 M C  
Ø0.25 M C A B  
PIN 1 CORNER  
Ø0.45 0.05(256X)ꢀCPꢁD DEVICES (37K & 39K)  
PIN 1 CORNER  
+0.10  
Ø0.50 (256X)ꢀAꢁꢁ OTHER DEVICES  
ꢀ0.05  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
A
B
C
D
E
F
F
G
H
J
G
H
J
K
K
M
N
P
R
T
M
N
P
R
T
1.00  
B
7.50  
15.00  
A
17.00 0.10  
A
SEATING PꢁANE  
0.20(4X)  
A1  
C
REFERENCE JEDEC MOꢀ192  
A1 0.36 0.56  
1.40 MAX. 1.70 MAX.  
51-85108-*F  
A
Document #: 38-06072 Rev. *E  
Page 45 of 48  
PRELIMINARY  
FullFlex  
Package Diagrams (continued)  
256 FBGA (19 x 19 x 1.7 mm) BW256C  
BOTTOM VIEW  
TOP VIEW  
A1 CORNER  
Ø0.05 M C  
Ø0.25 M C A B  
Ø0.50 (256 X)  
1
3
PIN A1 CORNER  
13  
13  
1
9
11  
15  
15  
11  
9
8
5
5
3
7
7
12  
14  
16  
16  
14  
12  
2
6
10  
10  
6
2
4
8
4
A
B
C
D
E
A
B
C
D
E
F
F
G
H
J
G
H
J
K
L
K
L
M
N
P
R
T
M
N
P
R
T
1.00 (REF)  
-B-  
15.00 (REF)  
19.00 +/- 0.10  
-A-  
0.15(4X)  
Package Weight - 1.1 grams  
Jedec Outline - Design Guide 4.14  
-C-  
SEATING PLANE  
001-00915-*A  
Document #: 38-06072 Rev. *E  
Page 46 of 48  
PRELIMINARY  
FullFlex  
Package Diagrams (continued)  
484-ball PBGA (23 mm x 23 mm x 2.03 mm) BY484  
Ø0.50~Ø0.70(484X)  
PIN #1 CORNER  
9
1
11  
7
3
1
3
5
7
9
13  
5
11  
13 15 17 19  
10 12 14 16 18  
21  
20 22  
21  
17 15  
19  
2
4
6
8
22 20 18 16 14 12 10  
8
6
4
2
Ø1.00(3X) REF.  
A
B
A
B
C
C
D
E
D
E
F
F
G
H
J
G
H
J
K
K
L
L
M
N
P
M
N
P
R
R
T
T
U
V
U
V
W
Y
W
Y
AA  
AB  
AA  
AB  
1.00  
-B-  
21.00  
3.20*45°(4x)  
20.00 REF.  
-A-  
23.00 0.20  
0.20(4X)  
30° TYP.  
Package Weight - 2.0 grams  
Jedec Outline - Design Guide 4.14  
-C-  
SEATING PLANE  
51-85218-**  
FullFlex is a trademark of Cypress Semiconductor Corporation. All product and company names mentioned in this document are  
trademarks of their respective holders.  
Document #: 38-06072 Rev. *E  
Page 47 of 48  
© Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
PRELIMINARY  
FullFlex  
Document History Page  
Document Title: FullFlex™ Synchronous DDR Dual-Port SRAM  
Document Number: 38-06072  
Issue  
Date  
274729 See ECN  
Orig. of  
Change  
SPN  
REV.  
**  
ECN NO.  
Description of Change  
New data sheet  
*A  
294239 See ECN  
SPN  
Updated VIM section  
Added notes 7  
Added timing for 100 MHz with DLL Disabled  
Removed tPS  
*B  
*C  
301331 See ECN  
318834 See ECN  
SPN  
SPN  
Added note 19  
Updates Selectable I/O Standard Section  
Updated Block Diagram  
Updated 484 pinouts, changed pins D11, W12, K3, K20  
Added note 4 - Leaving pin NC disables VIM  
Updated 256 pinout, changed pins C10, G5, N7, N10  
Added note 18, 19, 20, 21  
Updated parameters in table 16  
Updated note 1  
*D  
386692 See ECN  
SPN  
Updated ordering information  
Added statement about no echo clocks for flow-through mode  
Updated electrical characteristics  
Added note 27 (timing for x18 devices)  
Updated address readback latency to 2 cycles for DDR mode  
Updated DDR timing numbers for tCD, tDC, tCCQ, tCQHQV, tCQHQX, tCKHZ, tCKLZ  
Updated input edge rate  
Removed -133 speed bin electrical characteristics and timing columns  
Updated Table 5 on collision detection to be the same as the one found in the EROS  
Added description of busy readback in collision detection section  
Changed dummy write descriptions  
Updated PORTSTD[1:0] connection details  
Updated ZQ pins connection details  
Updated address count notes  
Updated note 17, BO to BEO  
Added power supply requirements to MRST and VC_SEL  
Updated 484 ball package  
Changed name from FLEX72-E, FLEX36-E, AND FLEX18-E to FullFlex72,  
FullFlex36, and FullFlex18  
*E  
401662 See ECN  
KGH  
Updated READY description to include Wired OR note  
Updated master reset to include wired OR note for READY  
Updated electrical characteristics to include IOH and IOL values  
Updated electrical characteristics to include READY  
Added IIX3  
Updated maximum input capacitance  
Added note 29  
Updated Pin Definitions for CQ0, CQ0, CQ1, and CQ1  
Changed voltage name from VDDQ to VDDIO  
Changed voltage name from VDD to VCORE  
Updated the Package Type for the CYDXXS36V18 parts  
Updated the Package Type for the CYDXXS18V18 parts  
Included the Package Diagram for the 256-Ball FBGA (19 x 19 mm) BW256  
Included an OE Controlled Write for Flow-Through Mode Switching Waveform  
Included a Read with Echo Clock Switching Waveform  
Included a Unit column for Table 5  
Removed Switching Characteristic tCA from chart  
Included tOHZ in Switching Waveform OE Controlled Write for Pipelined Mode  
Included tCKLZ2 in Waveform Read-to-Write-to-Read for Flow-Through Mode  
Updated AC Test Load and Waveforms  
Included FullFlex36 DDR 484-ball BGA Pinout (Top View)  
Included FullFlex18 DDR 484-ball BGA Pinout (Top View)Included Timing  
Parameter tCORDY  
Document #: 38-06072 Rev. *E  
Page 48 of 48  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY