CYDD36S36V18-167BGXC [CYPRESS]

Dual-Port SRAM, 512KX72, 9ns, CMOS, PBGA484, 27 X 27 MM, 2.33 MM HEIGHT, 1 MM PITCH, LEAD FREE, PLASTIC, BGA-484;
CYDD36S36V18-167BGXC
型号: CYDD36S36V18-167BGXC
厂家: CYPRESS    CYPRESS
描述:

Dual-Port SRAM, 512KX72, 9ns, CMOS, PBGA484, 27 X 27 MM, 2.33 MM HEIGHT, 1 MM PITCH, LEAD FREE, PLASTIC, BGA-484

时钟 静态存储器 内存集成电路
文件: 总53页 (文件大小:2422K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FullFlex  
FullFlex™ Synchronous  
DDR Dual-Port SRAM  
— Selectable LVTTL (3.3V), Extended HSTL  
(1.4V–1.9V), 1.8V LVCMOS, or 2.5V LVCMOS I/O on  
each port  
Features  
• True dual-ported memory allows simultaneous access  
to the shared array from each port  
— Burst counters for sequential memory access  
— Mailbox with interrupt flags for message passing  
— Dual Chip Enables for easy depth expansion  
• Synchronous pipelined operation with selectable  
Double Data Rate (DDR) or Single Data Rate (SDR)  
operation on each port  
— DDR interface at 200 MHz  
Functional Description  
— SDR interface at 250 MHz  
The FullFlexDual-Port SRAM families consist of 4-Mbit,  
9-Mbit, 18-Mbit, and 36-Mbit synchronous, true dual-port static  
RAMs that are high-speed, low-power 1.8V/1.5V CMOS. Two  
ports are provided, allowing the array to be accessed simulta-  
neously. Simultaneous access to a location triggers determin-  
istic access control. For FullFlex72, these ports can operate  
independently in DDR mode with 36-bit bus widths or in SDR  
mode with 72-bit bus widths. For FullFlex36 and FullFlex18,  
the ports operate in DDR mode only. Each port can be  
independently configured for two pipelined stages for SDR  
mode or 2.5 stages in DDR mode. Each port can also be  
configured to operate in pipelined or flow-through mode in  
SDR mode.  
— Up to 36-Gb/s bandwidth (250 MHz * 72 bit * 2 ports)  
• Selectable pipelined or flow-through mode  
• 1.5V or 1.8V core power supply  
• Commercial and Industrial temperature ranges  
• IEEE 1149.1 JTAG boundary scan  
• Available in 484-ball PBGA Packages and 256-ball  
FBGA Packages  
• FullFlex72 family  
— 18 Mbit: 256K x 36 x 2 DDR or 256K x 72 SDR  
(CYDD18S72V18)  
Advanced features include built-in deterministic access  
control to manage address collisions during simultaneous  
access to the same memory location, Variable Impedance  
Matching (VIM) to improve data transmission by matching the  
output driver impedance to the line impedance, and echo  
clocks to improve data transfer.  
— 9 Mbit: 128K x 36 x 2 DDR or 128K x 72 SDR  
(CYDD09S72V18)  
— 4 Mbit: 64K x 36 x 2 DDR or 64 x 72 SDR  
(CYDD04S72V18)  
• FullFlex36 family  
To reduce the static power consumption, chip enables can be  
used to power down the internal circuitry. The number of  
cycles of latency before a change in CE0 or CE1 will enable  
or disable the databus matches the number of cycles of read  
latency selected for the device. In order for a valid write or read  
to occur, both chip enable inputs on a port must be active.  
— 36 Mbit: 512K x 36 x 2 DDR (CYDD36S36V18)  
— 18 Mbit: 256K x 36 x 2 DDR (CYDD18S36V18)  
— 9 Mbit: 128K x 36 x 2 DDR (CYDD09S36V18)  
— 4 Mbit: 64K x 36 x 2 DDR (CYDD04S36V18)  
• FullFlex18 family  
Each port contains an optional burst counter on the input  
address register. After externally loading the counter with the  
initial address, the counter will increment the address inter-  
nally.  
— 36 Mbit: 1M x 18 x 2 DDR (CYDD36S18V18)  
— 18 Mbit: 512K x 18 x 2 DDR (CYDD18S18V18)  
— 9 Mbit: 256K x 18 x 2 DDR (CYDD09S18V18)  
— 4 Mbit: 128K x 18 x 2 DDR (CYDD04S18V18)  
Additional features of this device include a mask register and  
a
mirror register to control counter increments and  
• Built-in deterministic access control to manage  
address collisions  
wrap-around. The counter-interrupt (CNTINT) flags notify the  
host that the counter will reach maximum count value on the  
next clock cycle. The host can read the burst-counter internal  
address, mask register address, and busy address on the  
address lines. The host can also load the counter with the  
address stored in the mirror register by utilizing the retransmit  
functionality. Mailbox interrupt flags can be used for message  
passing, and JTAG boundary scan and asynchronous Master  
Reset (MRST) are also available. The logic block diagram in  
Figure 1 displays these features.  
— Deterministic flag output upon collision detection  
— Collision detection on back-to-back clock cycles  
— First Busy Address readback  
• Advanced features for improved high-speed data  
transfer and flexibility  
— Variable Impedance Matching (VIM)  
— Echo clocks  
The FullFlex72 DDR family of devices is offered in a 484-ball  
plastic BGA package. The FullFlex36 and FullFlex18 DDR  
only families of devices are offered in both 484-ball and  
256-ball fine pitch BGA packages.  
Cypress Semiconductor Corporation  
Document #: 38-06072 Rev. *I  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised December 21, 2006  
FullFlex  
FTSEL  
FTSEL  
CQEN  
L
R
CQEN  
L
R
CONFIG Block  
CONFIG Block  
PORTSTD[1:0]  
PORTSTD[1:0]  
L
R
DDRON  
DDRON  
R
L
DQ [71:0]  
R
DQ[71:0]  
BE [7:0]  
L
BE [7:0]  
R
L
CE0  
CE1  
CE0  
R
L
IO  
Control  
IO  
Control  
CE1  
R
L
OE  
OE  
R
L
R/W  
R/W  
R
L
CQ0  
CQ0  
CQ0  
L
R
CQ0  
CQ1  
L
L
R
R
CQ1  
CQ1  
CQ1  
L
R
Dual Ported Array  
Collision Detection  
Logic  
BUSY  
BUSY  
L
R
A [19:0]  
A [19:0]  
L
R
CNT/MSK  
CNT/MSK  
L
R
ADS  
ADS  
L
R
CNTEN  
CNTEN  
R
L
Address &  
Counter Logic  
Address &  
Counter Logic  
CNTRST  
CNTRST  
RET  
R
L
R
RET  
L
CNTINT  
L
CNTINT  
R
C
C
L
R
C
L
C
R
WRP  
L
WRP  
R
TRST  
TMS  
TDI  
Mailboxes  
INT  
INT  
R
L
JTAG  
TDO  
TCK  
READY  
L
MRST  
READY  
LowSPD  
RESET  
LOGIC  
LowSPD  
L
R
ZQ0  
ZQ1  
R
L
L
ZQ0  
ZQ1  
R
R
Figure 1. Block Diagram[1,2,3]  
Notes:  
1. The CYDD36S18V18 device has 20 address bits. The CYDD36S36V18, and the CYDD18S18V18 devices have 19 address bits. The CYDD18S72V18,  
CYDD18S36V18, and the CYDD09S18V18 devices have 18 address bits. The CYDD09S72V18, CYDD04S18V18, and the CYDD09S36V18 devices have 17  
address bits. The CYDD04S36V18 and the CYDD04S72V18 devices have 16 address bits.  
2. The FullFlex72 family of devices has 72 data lines. The FullFlex36 family of devices has 36 data lines. The FullFlex18 family of devices has 18 data lines.  
3. The FullFlex72 family of devices has eight byte enables. The FullFlex36 family of devices has four byte enables. The FullFlex18 family of devices has two byte  
enables.  
Document #: 38-06072 Rev. *I  
Page 2 of 53  
FullFlex  
FullFlex72 SDR/DDR 484-ball BGA Pinout (Top View)  
20 21 22  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
DNU DQ34 DQ32 DQ30 DQ27 DQ60 DQ57 DQ54 DQ24 DQ21 DQ18 DQ18 DQ21 DQ24 DQ54 DQ57 DQ60 DQ27 DQ30 DQ32 DQ34 DNU  
A
B
C
L
L
L
L
L
L
L
L
L
L
R
R
R
R
R
R
R
R
R
R
DQ63 DQ35 DQ33 DQ31 DQ28 DQ61 DQ58 DQ55 DQ25 DQ22 DQ19 DQ19 DQ22 DQ25 DQ55 DQ58 DQ61 DQ28 DQ31 DQ33 DQ35 DQ63  
L
L
L
L
L
L
L
L
L
L
L
R
R
R
R
R
R
R
R
R
R
R
DQ65 DQ64 VSS VSS DQ29 DQ62 DQ59 DQ56 DQ26 DQ23 DQ20 DQ20 DQ23 DQ26 DQ56 DQ59 DQ62 DQ29 VSS VSS DQ64 DQ65  
L
L
L
L
L
L
L
L
L
R
R
R
R
R
R
R
R
R
DQ67 DQ66 VSS VSS VSS CQ1L CQ1L DDR LOW PORT ZQ0L BUSY CNTI PORT DNU CQ1R CQ1R VSS VSS VSS DQ66 DQ67  
[4]  
L
L
ONL SPDL STD0  
L
L
NTL STD1  
L
R
R
D
E
F
DQ69 DQ68 VDDI VSS VSS VDDI VDDI VDDI VDDI VDDI VTTL VTTL VTTL VDDI VDDI VDDI VDDI DNU VSS VDDI DQ68 DQ69  
OL OL OL OL OL OL OR OR OR OR OR  
L
L
R
R
DQ71 DQ70 CE1L CE0L VDDI VDDI VDDI VDDI VDDI VCO VCO VCO VCO VDDI VDDI VDDI VDDI VDDI CE0R CE1R DQ70 DQ71  
OL OL OL OL OL RE RE RE RE OR OR OR OR OR  
L
L
R
R
A0L A1L RETL BE2L VDDI VDDI VREF VSS VSS VSS VSS VSS VSS VSS VSS VREF VDDI VDDI BE2R RETR A1R A0R  
OL OL OR OR  
G
H
J
L
R
A2L A3L WRP BE6L VDDI VDDI VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI BE6R WRP A3R A2R  
OL OL OR OR  
L
R
A4L A5L READ BE3L VDDI VDDI VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI BE3R READ A5R A4R  
YL OL OL OR OR YR  
A6L A7L ZQ1L BE7L VTTL VCO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VDDI BE7R ZQ1R A7R A6R  
[4]  
[4]  
K
L
RE  
RE  
OR  
A8L A9L  
CL  
OEL VTTL VCO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VTTL OER CR A9R A8R  
RE RE  
A10L A11L CL BE5L VTTL VCO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VTTL BE5R CR A11R A10R  
RE RE  
M
N
A12L A13L ADSL BE1L VDDI VCO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VTTL BE1R ADSR A13R A12R  
OL RE RE  
A14L A15L CNT/ BE4L VDDI VDDI VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI BE4R CNT/ A15R A14R  
MSKL  
OL  
OL  
OR  
OR  
MSK  
R
P
R
T
A16L A17L CNTE BE0L VDDI VDDI VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI BE0R CNTE A17R A16R  
[7]  
[6]  
[6]  
[7]  
NL  
OL  
OL  
OR  
OR  
NR  
A18L DNU CNTR INTL VDDI VDDI VREF VSS VSS VSS VSS VSS VSS VSS VSS VREF VDDI VDDI INTR CNTR DNU A18R  
[5]  
[5]  
STL  
OL  
OL  
L
R
OR  
OR  
STR  
DQ53 DQ52 R/WL CQE VDDI VDDI VDDI VDDI VDDI VCO VCO VCO VCO VDDI VDDI VDDI VDDI VDDI CQE R/WR DQ52 DQ53  
U
V
L
L
NL OL OL OL OL OL RE RE RE RE OR OR OR OR OR NR  
R
R
DQ51 DQ50 FTSE VDDI DNU VDDI VDDI VDDI VDDI VTTL VTTL VTTL VDDI VDDI VDDI VDDI VDDI TRST VDDI FTSE DQ50 DQ51  
LL OL OL OL OL OL OR OR OR OR OR OR LR  
L
L
R
R
DQ49 DQ48 VSS MRST VSS CQ0L CQ0L DNU PORT CNTI BUSY ZQ0R PORT LOW DDR CQ0R CQ0R VSS TDI TDO DQ48 DQ49  
[4]  
L
L
STD1 NTR  
R
R
STD0 SPDR ONR  
R
R
R
W
Y
DQ47 DQ46 VSS VSS DQ11 DQ44 DQ41 DQ38 DQ8L DQ5L DQ2L DQ2R DQ5R DQ8R DQ38 DQ41 DQ44 DQ11 TMS TCK DQ46 DQ47  
L
L
L
L
L
L
R
R
R
R
R
R
DQ45 DQ17 DQ15 DQ13 DQ10 DQ43 DQ40 DQ37 DQ7L DQ4L DQ1L DQ1R DQ4R DQ7R DQ37 DQ40 DQ43 DQ10 DQ13 DQ15 DQ17 DQ45  
AA  
AB  
L
L
L
L
L
L
L
L
R
R
R
R
R
R
R
R
DNU DQ16 DQ14 DQ12 DQ9L DQ42 DQ39 DQ36 DQ6L DQ3L DQ0L DQ0R DQ3R DQ6R DQ36 DQ39 DQ42 DQ9R DQ12 DQ14 DQ16 DNU  
L
L
L
L
L
L
R
R
R
R
R
R
Notes:  
4. Leaving this pin DNU disables VIM  
5. Leave this ball unconnected for CYDD18S72V18, CYDD09S72V18 and CYDD04S72V18.  
6. Leave this ball unconnected for CYDD09S72V18 and CYDD04S72V18  
7. Leave this ball unconnected for CYDD04S72V18  
Document #: 38-06072 Rev. *I  
Page 3 of 53  
FullFlex  
FullFlex36 DDR 484-ball BGA Pinout (Top View)[8]  
20 21 22  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
DNU DNU DNU DNU DNU DQ33 DQ30 DQ27 DQ24 DQ21 DQ18 DQ18 DQ21 DQ24 DQ27 DQ30 DQ33 DNU DNU DNU DNU DNU  
A
B
C
L
L
L
L
L
L
R
R
R
R
R
R
DNU DNU DNU DNU DNU DQ34 DQ31 DQ28 DQ25 DQ22 DQ19 DQ19 DQ22 DQ25 DQ28 DQ31 DQ34 DNU DNU DNU DNU DNU  
L
L
L
L
L
L
R
R
R
R
R
R
DNU DNU VSS VSS DNU DQ35 DQ32 DQ29 DQ26 DQ23 DQ20 DQ20 DQ23 DQ26 DQ29 DQ32 DQ35 DNU VSS VSS DNU DNU  
L
L
L
L
L
L
R
R
R
R
R
R
DNU DNU VSS VSS VSS CQ1L CQ1L VDDI LOW PORT ZQ0L BUSY CNTI PORT DNU CQ1R CQ1R VSS VSS VSS DNU DNU  
[4]  
OL SPDL STD0  
L
L
NTL STD1  
L
D
E
F
DNU DNU VDDI VSS VSS VDDI VDDI VDDI VDDI VDDI VTTL VTTL VTTL VDDI VDDI VDDI VDDI DNU VSS VDDI DNU DNU  
OL OL OR OR OR OR OL OL OL OL OR  
DNU DNU CE1L CE0L VDDI VDDI VDDI VDDI VDDI VCO VCO VCO VCO VDDI VDDI VDDI VDDI VDDI CE0R CE1R DNU DNU  
OL OL OR OR OR RE RE RE RE OL OL OL OR OR  
A0L A1L RETL BE2L VDDI VDDI VREF VSS VSS VSS VSS VSS VSS VSS VSS VREF VDDI VDDI BE2R RETR A1R A0R  
OL OL OR OR  
G
H
J
L
R
A2L A3L WRP BE3L VDDI VDDI VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI BE3R WRP A3R A2R  
OL OL OR OR  
L
R
A4L A5L READ DNU VDDI VDDI VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI DNU READ A5R A4R  
YL OL OL OR OR YR  
A6L A7L ZQ1L DNU VTTL VCO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VDDI DNU ZQ1R A7R A6R  
[4]  
[4]  
K
L
RE  
RE  
OR  
A8L A9L  
CL  
OEL VTTL VCO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VTTL OER CR A9R A8R  
RE RE  
A10L A11L CL DNU VTTL VCO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VTTL DNU CR A11R A10R  
RE RE  
M
N
A12L A13L ADSL DNU VDDI VCO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VTTL DNU ADSR A13R A12R  
OL RE RE  
A14L A15L CNT/ BE1L VDDI VDDI VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI BE1R CNT/ A15R A14R  
MSKL  
OL  
OL  
OR  
OR  
MSK  
R
P
R
T
A16L A17L CNTE BE0L VDDI VDDI VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI BE0R CNTE A17R A16R  
NL OL OL OR OR NR  
A18L DNU CNTR INTL VDDI VDDI VREF VSS VSS VSS VSS VSS VSS VSS VSS VREF VDDI VDDI INTR CNTR DNU A18R  
STL OL OL OR OR STR  
L
R
DNU DNU R/WL CQE VDDI VDDI VDDI VDDI VDDI VCO VCO VCO VCO VDDI VDDI VDDI VDDI VDDI CQE R/WR DNU DNU  
NL OL OL OR OR OR RE RE RE RE OL OL OL OR OR NR  
U
V
DNU DNU VDDI VDDI DNU VDDI VDDI VDDI VDDI VTTL VTTL VTTL VDDI VDDI VDDI VDDI VDDI TRST VDDI VDDI DNU DNU  
OL OL OR OR OR OR OL OL OL OL OR OR OR  
DNU DNU VSS MRST VSS CQ0L CQ0L DNU PORT CNTI BUSY ZQ0R PORT LOW VDDI CQ0R CQ0R VSS TDI TDO DNU DNU  
[4]  
STD1 NTR  
R
R
STD0 SPDR OR  
R
W
Y
DNU DNU VSS VSS DNU DQ17 DQ14 DQ11 DQ8L DQ5L DQ2L DQ2R DQ5R DQ8R DQ11 DQ14 DQ17 DNU TMS TCK DNU DNU  
L
L
L
R
R
R
DNU DNU DNU DNU DNU DQ16 DQ13 DQ10 DQ7L DQ4L DQ1L DQ1R DQ4R DQ7R DQ10 DQ13 DQ16 DNU DNU DNU DNU DNU  
AA  
AB  
L
L
L
R
R
R
DNU DNU DNU DNU DNU DQ15 DQ12 DQ9L DQ6L DQ3L DQ0L DQ0R DQ3R DQ6R DQ9R DQ12 DQ15 DNU DNU DNU DNU DNU  
L
L
R
R
Note:  
8. Use this pinout only for device CYDD36S36V18 of the FullFlex36 family.  
Document #: 38-06072 Rev. *I  
Page 4 of 53  
FullFlex  
FullFlex18 DDR 484-ball BGA Pinout (Top View)[9]  
20 21 22  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
DNU DNU DNU DNU DNU DNU DNU DNU DQ15 DQ12 DQ9L DQ9R DQ12 DQ15 DNU DNU DNU DNU DNU DNU DNU DNU  
A
B
C
L
L
R
R
DNU DNU DNU DNU DNU DNU DNU DNU DQ16 DQ13 DQ10 DQ10 DQ13 DQ16 DNU DNU DNU DNU DNU DNU DNU DNU  
L
L
L
R
R
R
DNU DNU VSS VSS DNU DNU DNU DNU DQ17 DQ14 DQ11 DQ11 DQ14 DQ17 DNU DNU DNU DNU VSS VSS DNU DNU  
L
L
L
R
R
R
DNU DNU VSS VSS VSS CQ1L CQ1L VDDI LOW PORT ZQ0L BUSY CNTI PORT DNU CQ1R CQ1R VSS VSS VSS DNU DNU  
[4]  
OL SPDL STD0  
L
L
NTL STD1  
L
D
E
F
DNU DNU VDDI VSS VSS VDDI VDDI VDDI VDDI VDDI VTTL VTTL VTTL VDDI VDDI VDDI VDDI DNU VSS VDDI DNU DNU  
OL OL OR OR OR OR OL OL OL OL OR  
DNU DNU CE1L CE0L VDDI VDDI VDDI VDDI VDDI VCO VCO VCO VCO VDDI VDDI VDDI VDDI VDDI CE0R CE1R DNU DNU  
OL OL OR OR OR RE RE RE RE OL OL OL OR OR  
A0L A1L RETL BE1L VDDI VDDI VREF VSS VSS VSS VSS VSS VSS VSS VSS VREF VDDI VDDI BE1R RETR A1R A0R  
OL OL OR OR  
G
H
J
L
R
A2L A3L WRP DNU VDDI VDDI VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI DNU WRP A3R A2R  
OL OL OR OR  
L
R
A4L A5L READ DNU VDDI VDDI VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI DNU READ A5R A4R  
YL OL OL OR OR YR  
A6L A7L ZQ1L DNU VTTL VCO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VDDI DNU ZQ1R A7R A6R  
[4]  
[4]  
K
L
RE  
RE  
OR  
A8L A9L  
CL  
OEL VTTL VCO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VTTL OER CR A9R A8R  
RE RE  
A10L A11L CL DNU VTTL VCO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VTTL DNU CR A11R A10R  
RE RE  
M
N
A12L A13L ADSL DNU VDDI VCO VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO VTTL DNU ADSR A13R A12R  
OL RE RE  
A14L A15L CNT/ DNU VDDI VDDI VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI DNU CNT/ A15R A14R  
MSKL  
OL  
OL  
OR  
OR  
MSK  
R
P
R
T
A16L A17L CNTE BE0L VDDI VDDI VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI VDDI BE0R CNTE A17R A16R  
NL OL OL OR OR NR  
A18L A19L CNTR INTL VDDI VDDI VREF VSS VSS VSS VSS VSS VSS VSS VSS VREF VDDI VDDI INTR CNTR A19R A18R  
STL OL OL OR OR STR  
L
R
DNU DNU R/WL CQE VDDI VDDI VDDI VDDI VDDI VCO VCO VCO VCO VDDI VDDI VDDI VDDI VDDI CQE R/WR DNU DNU  
NL OL OL OR OR OR RE RE RE RE OL OL OL OR OR NR  
U
V
DNU DNU VDDI VDDI DNU VDDI VDDI VDDI VDDI VTTL VTTL VTTL VDDI VDDI VDDI VDDI VDDI TRST VDDI VDDI DNU DNU  
OL OL OR OR OR OR OL OL OL OL OR OR OR  
DNU DNU VSS MRST VSS CQ0L CQ0L DNU PORT CNTI BUSY ZQ0R PORT LOW VDDI CQ0R CQ0R VSS TDI TDO DNU DNU  
[4]  
STD1 NTR  
R
R
STD0 SPDR OR  
R
W
Y
DNU DNU VSS VSS DNU DNU DNU DNU DQ8L DQ5L DQ2L DQ2R DQ5R DQ8R DNU DNU DNU DNU TMS TCK DNU DNU  
DNU DNU DNU DNU DNU DNU DNU DNU DQ7L DQ4L DQ1L DQ1R DQ4R DQ7R DNU DNU DNU DNU DNU DNU DNU DNU  
DNU DNU DNU DNU DNU DNU DNU DNU DQ6L DQ3L DQ0L DQ0R DQ3R DQ6R DNU DNU DNU DNU DNU DNU DNU DNU  
AA  
AB  
Note:  
9. Use this pinout only for device CYDD36S18V18 of the FullFlex18 family.  
Document #: 38-06072 Rev. *I  
Page 5 of 53  
FullFlex  
FullFlex36 DDR 256 Ball BGA (Top View)  
10 11  
1
2
3
4
5
6
7
8
9
12  
13  
14  
15  
16  
DQ32L DQ30L DQ28L DQ26L DQ24L DQ22L DQ20L DQ18L DQ18R DQ20R DQ22R DQ24R DQ26R DQ28R DQ30R DQ32R  
A
B
C
D
E
F
DQ33L DQ31L DQ29L DQ27L DQ25L DQ23L DQ21L DQ19L DQ19R DQ21R DQ23R DQ25R DQ27R DQ29R DQ31R DQ33R  
[4]  
DQ34L DQ35L  
RETL  
INTL  
CQ1L  
CQ1L  
DNU  
TRST  
MRST ZQ0R  
CQ1R  
CQ1R  
INTR  
RETR  
DQ35R DQ34R  
A0L  
A2L  
A1L  
A3L  
WRPL VREFL VDDIOL LOWSP  
DL  
VSS  
VTTL  
VTTL VSS  
LOWSP VDDIO VREFR WRPR  
DR  
A1R  
A3R  
A0R  
A2R  
R
CE0L  
CE1L VDDIOL VDDIOL VDDIOL VCORE VCOR VDDIO VDDIO VDDIO  
CE1R  
CE0R  
E
R
R
R
A4L  
A5L  
CNTINTL BE3L VDDIOL VDDIOL  
[4]  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDDIO  
R
BE3R CNTINT  
R
A5R  
A4R  
A6L  
A7L  
BUSYL  
BE2L ZQ0L  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDDIO  
R
BE2R  
BUSYR  
A7R  
A6R  
G
H
J
A8L  
A9L  
CL  
VTTL VCORE  
VCORE VTTL  
CR  
A9R  
A8R  
A10L  
A12L  
A14L  
A11L  
A13L  
A15L  
CL  
PORTS VCORE  
TD1L  
VCORE PORTS  
TD1R  
CR  
A11R  
A13R  
A15R  
A10R  
A12R  
A14R  
OEL  
BE1L VDDIOL  
VDDIO  
R
BE1R  
OER  
ADSR  
K
L
ADSL  
BE0L VDDIOL  
VDDIO VDDIO  
R
BE0R  
R
[11]  
[10]  
[10]  
[11]  
A16L  
A17L  
DNU  
R/WL  
CQENL VDDIOL VDDIOL VDDIOL VCORE VCOR VDDIO VDDIO VDDIO CQENR  
R/WR A17R  
DNU  
A16R  
DNU  
M
N
P
R
T
E
R
R
R
[4]  
[4]  
DNU  
CNT/MS VREFL PORTS READY ZQ1L  
KL  
VTTL  
TMS  
VTTL ZQ1R  
READY PORTS VREFR CNT/MS  
TD0L  
L
R
TD0R  
KR  
DQ16L DQ17L CNTENL CNTRS CQ0L  
TL  
CQ0L  
TCK  
TDO  
DQ1R  
DQ0R  
TDI  
CQ0R  
CQ0R CNTRS CNTENR DQ17R DQ16R  
TR  
DQ15L DQ13L DQ11L  
DQ9L  
DQ7L  
DQ5L  
DQ4L  
DQ3L  
DQ2L  
DQ1L  
DQ0L  
DQ3R  
DQ2R  
DQ5R  
DQ4R  
DQ7R  
DQ9R  
DQ11R DQ13R DQ15R  
DQ14L DQ12L DQ10L  
DQ8L  
DQ6L  
DQ6R  
DQ8R  
DQ10R DQ12R DQ14R  
Notes:  
10. Leave this ball unconnected for CYDD09S36V18 and CYDD04S36V18.  
11. Leave this ball unconnected for CYDD04S36V18.  
Document #: 38-06072 Rev. *I  
Page 6 of 53  
FullFlex  
FullFlex18 DDR 256 Ball BGA (Top View)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
DNU  
DNU  
DNU  
DQ17L DQ16L DQ13L DQ12L  
DQ9L  
DQ9R DQ12R DQ13R DQ16R DQ17R  
DNU  
DNU  
DNU  
A
B
C
D
E
F
DNU  
DNU  
A0L  
DNU  
DNU  
A1L  
DNU  
DNU  
INTL  
DQ15L DQ14L DQ11L DQ10L DQ10R DQ11R DQ14R DQ15R  
[4]  
DNU  
INTR  
DNU  
DNU  
DNU  
A1R  
A3R  
DNU  
DNU  
A0R  
RETL  
CQ1L  
CQ1L  
DNU  
TRST  
MRST ZQ0R  
CQ1R  
CQ1R  
RETR  
WRPL VREFL VDDIOL LOWSP  
DL  
VSS  
VTTL  
VTTL VSS  
LOWSP VDDIOR VREFR WRPR  
DR  
A2L  
A3L  
CE0L  
CE1L VDDIOL VDDIOL VDDIOL VCORE VCORE VDDIOR VDDIOR VDDIOR CE1R  
CE0R  
A2R  
A4L  
A5L  
CNTINTL DNU VDDIOL VDDIOL  
[4]  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS VDDIOR DNU CNTINTR A5R  
A4R  
A6L  
A7L  
BUSYL  
DNU  
ZQ0L  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS VDDIOR DNU  
BUSYR  
CR  
A7R  
A9R  
A6R  
G
H
J
A8L  
A9L  
CL  
VTTL VCORE  
VSS  
VSS  
VCORE VTTL  
A8R  
A10L  
A12L  
A14L  
A11L  
A13L  
A15L  
CL  
PORTST VCORE  
D1L  
VCORE PORTST  
D1R  
CR  
A11R  
A13R  
A15R  
A10R  
A12R  
A14R  
A16R  
OEL  
BE1L VDDIOL  
VSS VDDIOR BE1R  
OER  
ADSR  
K
L
ADSL  
BE0L VDDIOL  
VSS VDDIOR VDDIOR BE0R  
[13]  
[13]  
A16L A17L  
[12]  
R/WL  
CQENL VDDIOL VDDIOL VDDIOL VCORE VCORE VDDIOR VDDIOR VDDIOR CQENR R/WR A17R  
M
N
P
R
T
[4]  
[4]  
[12]  
A18L  
DNU  
CNT/MS VREFL PORTST READYL ZQ1L  
KL  
VTTL  
TMS  
VTTL ZQ1R  
READY PORTST VREFR CNT/MS  
DNU A18R  
D0L  
R
D0R  
KR  
DNU  
DNU CNTENL CNTRST CQ0L  
L
CQ0L  
DQ5L  
DQ4L  
TCK  
TDO  
DQ1R  
DQ0R  
TDI  
CQ0R  
CQ0R CNTRST CNTENR DNU  
R
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DQ6L  
DQ2L  
DQ3L  
DQ1L  
DQ0L  
DQ2R  
DQ3R  
DQ5R  
DQ4R  
DQ6R  
DNU  
DNU  
DNU  
DNU  
DNU  
DQ8L  
DQ7L  
DQ7R  
DQ8R  
DNU  
DNU  
Table 1. Selection Guide  
–200  
250  
–167  
200  
Unit  
[14]  
SDR fMAX  
MHz  
MHz  
ns  
[15]  
DDR fMAX  
200  
167  
SDR Max. Access Time (Clock to Data)  
DDR Max. Access Time (Clock to Data)  
Typical Operating Current ICC  
2.64  
3.3  
0.50  
0.60  
ns  
800[16]  
210[16]]  
700[16]  
210[16]  
mA  
mA  
Typical Standby Current for ISB3 (Both Ports CMOS Level)  
Notes:  
12. Leave this ball unconnected for CYDD09S18V18 and CYDD04S18V18.  
13. Leave this ball unconnected for CYDD04S18V18.  
14. SDR mode with two pipelined stages.  
15. DDR mode with 2.5 pipelined stages.  
16. For 18-Mbit x36x2 DDR commercial configuration only, please refer to the electrical characteristics section for complete information.  
Document #: 38-06072 Rev. *I  
Page 7 of 53  
FullFlex  
Pin Definitions  
Left Port  
Right Port  
A[19:0]R  
DQ[71:0]R  
Description  
A[19:0]L  
DQ[71:0]L  
BE[7:0]L  
Address Inputs.[1]  
Data Bus Input/Output.[2]  
BE[7:0]R  
Byte Select Inputs.[3] Asserting these signals enables Read and Write operations to the  
corresponding bytes of the memory array.  
BUSYL  
C/CL  
BUSYR  
Port Busy Output. When there is an address match and both chip enables are active for  
both ports, an external BUSY signal is asserted on the fifth clock cycle from when the collision  
occurs.  
Clock Signal.[18] Maximum clock input rate is fMAX. Tie C to VSS when operating in SDR  
C/CR  
mode.  
CE0L  
CE0R  
Active LOW Chip Enable Input.  
CE1L  
CE1R  
Active HIGH Chip Enable Input.  
CQENL  
CQ0L  
CQENR  
CQ0R  
Echo Clock Enable Input. Assert HIGH to enable echo clocking on respective port.  
Echo Clock Signal Output for DQ[35:0] for FullFlex72 devices. Echo Clock Signal Output  
for DQ[17:0] for FullFlex36 devices. Echo Clock Signal Output for DQ[8:0] for FullFlex18  
devices.  
CQ0L  
CQ1L  
CQ1L  
CQ0R  
CQ1R  
CQ1R  
Inverted Echo Clock Signal Output for DQ[35:0] for FullFlex72 devices. Inverted Echo  
Clock Signal Output for DQ[17:0] for FullFlex36 devices. Inverted Echo Clock Signal Output  
for DQ[8:0] for FullFlex18 devices.  
Echo Clock Signal Output for DQ[71:36] for FullFlex72 devices. Echo Clock Signal  
Output for DQ[35:18] for FullFlex36 devices. Echo Clock Signal Output for DQ[17:9] for  
FullFlex18 devices.  
Inverted Echo Clock Signal Output for DQ[71:36] for FullFlex72 devices. Inverted Echo  
Clock Signal Output for DQ[35:18] for FullFlex36 devices. Inverted Echo Clock Signal Output  
for DQ[17:9] forFullFlex18 devices.  
[17]  
[17]  
DDRONL  
ZQ[1:0]L  
DDRONR  
ZQ[1:0]R  
DDR Enable Input. Assert HIGH to enable DDR clocking on respective port.  
VIM Output Impedance Matching Input. To use, connect a calibrating resistor between ZQ  
and ground. The resistor must be five times larger than the intended line impedance driven  
by the dual-port. Assert HIGH or leave DNU to disable Variable Impedance Matching.  
OEL  
INTL  
OER  
INTR  
Output Enable Input. This asynchronous signal must be asserted LOW to enable the DQ  
data pins during Read operations.  
Mailbox Interrupt Flag Output. The mailbox permits communications between ports. The  
upper two memory locations can be used for message passing. INTL is asserted LOW when  
the right port writes to the mailbox location of the left port, and vice versa. An interrupt to a  
port is deasserted HIGH when it reads the contents of its mailbox.  
LowSPDL  
LowSPDR  
Port Low Speed Select Input. Assert this pin LOW to disable the DLL. For operation at less  
than 100 MHz, assert this pin LOW.  
PORTSTD[1:0]L PORTSTD[1:0]R Port Clock/Address/Control/Data/Echo Clock/I/O Standard Select Input. Assert these  
[19]  
[19]  
pins LOW/LOW for LVTTL, LOW/HIGH for HSTL, HIGH/LOW for 2.5V LVCMOS, and  
HIGH/HIGH for 1.8V LVCMOS, respectively. These pins must be driven by VTTL referenced  
levels.  
R/WL  
R/WR  
Read/Write Enable Input. Assert this pin LOW to Write to, or HIGH to Read from the  
dual-port memory array.  
READYL  
READYR  
Port DLL Ready Output. This signal will be asserted LOW when the DLL and Variable  
Impedance Matching circuits have completed calibration. This is a wired OR capable output.  
CNT/MSKL  
ADSL  
CNT/MSKR  
ADSR  
Port Counter/Mask Select Input. Counter control input.  
Port Counter Address Load Strobe Input. Counter control input.  
Port Counter Enable Input. Counter control input.  
CNTENL  
CNTENR  
Notes:  
17. DDRON and DDRON needs to tie to the same voltage level for FullFlex36 and FullFlex18 Family.  
L
R
18. C and C are complimentary for DDR operation.  
19. PORTSTD[1:0] and PORTSTD[1:0] have internal pull-down resistors.  
L
R
Document #: 38-06072 Rev. *I  
Page 8 of 53  
FullFlex  
Pin Definitions (continued)  
Left Port  
CNTRSTL  
Right Port  
CNTRSTR  
Description  
Port Counter Reset Input. Counter control input.  
CNTINTL  
CNTINTR  
Port Counter Interrupt Output. This pin is asserted LOW one cycle before the unmasked  
portion of the counter is incremented to all “1s”.  
WRPL  
WRPR  
Port Counter Wrap Input. When the burst counter reaches the maximum count, on the next  
counter increment WRP can be set LOW to load the unmasked counter bits to 0 or set HIGH  
to load the counter with the value stored in the mirror register.  
RETL  
RETR  
Port Counter Retransmit Input. Assert this pin LOW to reload the initial address for  
repeated access to the same segment of memory.  
VREFL  
VREFR  
VDDIOR  
FTSELR  
Port External HSTL I/O Reference Input. This pin is left DNU when HSTL is not used.  
Port Data I/O Power Supply.  
VDDIOL  
FTSELL  
Port Flow-through Mode Select Input. Assert this pin LOW to select Flow-through mode.  
Assert this pin HIGH to select Pipelined mode. Selection for SDR only.  
MRST  
Master Reset Input. MRST is an asynchronous input signal and affects both ports. Asserting  
MRST LOW performs all of the reset functions as described in the text. A MRST operation  
is required at power-up. This pin must be driven by VDDIOL referenced levels.  
TMS  
TDI  
JTAG Test Mode Select Input. It controls the advance of JTAG TAP state machine. State  
machine transitions occur on the rising edge of TCK. Operation for LVTTL or 2.5V LVCMOS.  
JTAG Test Data Input. Data on the TDI input will be shifted serially into selected registers.  
Operation for LVTTL or 2.5V LVCMOS.  
TRST  
TCK  
JTAG Reset Input. Operation for LVTTL or 2.5V LVCMOS.  
JTAG Test Clock Input. Operation for LVTTL or 2.5V LVCMOS.  
TDO  
JTAG Test Data Output. TDO transitions occur on the falling edge of TCK. TDO is normally  
three-stated except when captured data is shifted out of the JTAG TAP. Operation for LVTTL  
or 2.5V LVCMOS.  
VSS  
VCORE  
VTTL  
Ground Inputs.  
Device Core Power Supply.  
LVTTL Power Supply.  
Selectable I/O Standard  
Clocking  
The FullFlex device families also offer the option of choosing  
one of four port standards for the device. Each port can  
independently select standards from single-ended HSTL class  
I, single-ended LVTTL, 2.5V LVCMOS, or 1.8V LVCMOS. The  
selection of the standard is determined by the PORTSTD pins  
for each port. These pins must be connected to a VTTL power  
supply. This will determine the input clock, address, control,  
data, and Echo clock standard for each port as shown in  
Table 2. Please note that only 1.8V LVCMOS and HSTL are  
supported for 4-Mbit, 9-Mbit, 18-Mbit devices running at  
250MHz SDR, and for 36-Mbit devices running at 200 MHz  
SDR.  
Separate clocks synchronize the operations on each port.  
Each port has two clock inputs C and C. In SDR mode only the  
C input clock is used and C should be tied to VSS. In this  
mode, all the transactions on the address, control, and data  
will be on the C rising edge. In DDR mode, both C and C will  
be used and these signals are complementary. In this mode,  
all transactions on the address and control, except for the byte  
enables, will occur on the C rising edge. Transactions on the  
data input, output, and byte enables will be on the C and C  
rising edges.  
Double Data Rate (DDR)  
In DDR mode with a x36 bus width, the input data is sampled  
on both edges of the input clock. During a write, on the rising  
edge of C, the first 36 bits (DQ[71:36]) will be latched into a  
register. On the rising edge of C, the next 36 bits (DQ[35:0])  
will be latched into a register. During a read, the first 36 bits  
are driven out first on the rising edge of C. The next 36 bits will  
be driven out on the rising edge of C. The internal bus width of  
the FullFlex72 family is still x72. All counter operation is based  
upon the x72 word width. The DDR option is set on a per port  
basis by the configuration of the DDRON pin. Table 3 shows  
the data assignment for SDR and DDR configuration. The  
column on the right (Data Pin Name) shows the pins on which  
data is presented on the data lines.  
Table 2. Port Standard Selection  
PORTSTD1  
VSS  
PORTSTD0  
VSS  
I/O Standard  
LVTTL  
VSS  
VTTL  
HSTL  
VTTL  
VSS  
2.5V LVCMOS  
1.8V LVCMOS  
VTTL  
VTTL  
Document #: 38-06072 Rev. *I  
Page 9 of 53  
FullFlex  
Table 3. Data Pin Assignment for SDR and DDR Configuration  
x72 SDR Mode  
x36 DDR Mode  
BE Pin Name for BE Pin Name for  
Related Rising Edge  
Related Rising Edge Data Pin  
DDR  
BE[3]  
BE[3]  
BE[3]  
BE[3]  
BE[3]  
BE[3]  
BE[3]  
BE[3]  
BE[3]  
BE[3]  
BE[3]  
BE[3]  
BE[3]  
BE[3]  
BE[3]  
BE[3]  
BE[3]  
BE[3]  
BE[2]  
BE[2]  
BE[2]  
BE[2]  
BE[2]  
BE[2]  
BE[2]  
BE[2]  
BE[2]  
BE[2]  
BE[2]  
BE[2]  
BE[2]  
BE[2]  
BE[2]  
BE[2]  
BE[2]  
BE[2]  
BE[1]  
BE[1]  
BE[1]  
BE[1]  
SDR  
BE[7]  
BE[3]  
BE[7]  
BE[3]  
BE[7]  
BE[3]  
BE[7]  
BE[3]  
BE[7]  
BE[3]  
BE[7]  
BE[3]  
BE[7]  
BE[3]  
BE[7]  
BE[3]  
BE[7]  
BE[3]  
BE[6]  
BE[2]  
BE[6]  
BE[2]  
BE[6]  
BE[2]  
BE[6]  
BE[2]  
BE[6]  
BE[2]  
BE[6]  
BE[2]  
BE[6]  
BE[2]  
BE[6]  
BE[2]  
BE[6]  
BE[2]  
BE[5]  
BE[1]  
BE[5]  
BE[1]  
Data Pin Name  
DQ[71]  
DQ[35]  
DQ[70]  
DQ[34]  
DQ[69]  
DQ[33]  
DQ[68]  
DQ[32]  
DQ[67]  
DQ[31]  
DQ[66]  
DQ[30]  
DQ[65]  
DQ[29]  
DQ[64]  
DQ[28]  
DQ[63]  
DQ[27]  
DQ[62]  
DQ[26]  
DQ[61]  
DQ[25]  
DQ[60]  
DQ[24]  
DQ[59]  
DQ[23]  
DQ[58]  
DQ[22]  
DQ[57]  
DQ[21]  
DQ[56]  
DQ[20]  
DQ[55]  
DQ[19]  
DQ[54]  
DQ[18]  
DQ[53]  
DQ[17]  
DQ[52]  
DQ[16]  
Clock for Write  
Clock for Read  
Name  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
DQ[35]  
DQ[34]  
DQ[33]  
DQ[32]  
DQ[31]  
DQ[30]  
DQ[29]  
DQ[28]  
DQ[27]  
DQ[26]  
DQ[25]  
DQ[24]  
DQ[23]  
DQ[22]  
DQ[21]  
DQ[20]  
DQ[19]  
DQ[18]  
DQ[17]  
DQ[16]  
Document #: 38-06072 Rev. *I  
Page 10 of 53  
FullFlex  
Table 3. Data Pin Assignment for SDR and DDR Configuration (continued)  
x72 SDR Mode  
x36 DDR Mode  
BE Pin Name for BE Pin Name for  
Related Rising Edge  
Related Rising Edge Data Pin  
DDR  
BE[1]  
BE[1]  
BE[1]  
BE[1]  
BE[1]  
BE[1]  
BE[1]  
BE[1]  
BE[1]  
BE[1]  
BE[1]  
BE[1]  
BE[1]  
BE[1]  
BE[0]  
BE[0]  
BE[0]  
BE[0]  
BE[0]  
BE[0]  
BE[0]  
BE[0]  
BE[0]  
BE[0]  
BE[0]  
BE[0]  
BE[0]  
BE[0]  
BE[0]  
BE[0]  
BE[0]  
BE[0]  
SDR  
BE[5]  
BE[1]  
BE[5]  
BE[1]  
BE[5]  
BE[1]  
BE[5]  
BE[1]  
BE[5]  
BE[1]  
BE[5]  
BE[1]  
BE[5]  
BE[1]  
BE[4]  
BE[0]  
BE[4]  
BE[0]  
BE[4]  
BE[0]  
BE[4]  
BE[0]  
BE[4]  
BE[0]  
BE[4]  
BE[0]  
BE[4]  
BE[0]  
BE[4]  
BE[0]  
BE[4]  
BE[0]  
Data Pin Name  
DQ[51]  
DQ[15]  
DQ[50]  
DQ[14]  
DQ[49]  
DQ[13]  
DQ[48]  
DQ[12]  
DQ[47]  
DQ[11]  
DQ[46]  
DQ[10]  
DQ[45]  
DQ[9]  
Clock for Write  
Clock for Read  
Name  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
DQ[15]  
DQ[14]  
DQ[13]  
DQ[12]  
DQ[11]  
DQ[10]  
DQ[9]  
DQ[8]  
DQ[7]  
DQ[6]  
DQ[5]  
DQ[4]  
DQ[3]  
DQ[2]  
DQ[1]  
DQ[0]  
DQ[44]  
DQ[8]  
DQ[43]  
DQ[7]  
DQ[42]  
DQ[6]  
DQ[41]  
DQ[5]  
DQ[40]  
DQ[4]  
DQ[39]  
DQ[3]  
DQ[38]  
DQ[2]  
DQ[37]  
DQ[1]  
DQ[36]  
DQ[0]  
Selectable Pipelined/Flow-through Mode  
DLL  
To meet data rate and throughput requirements, the FullFlex  
families offer selectable pipelined or flow-through mode.  
Flow-through mode is only supported in the FullFlex72  
devices when the port is configured in SDR mode. Echo clocks  
are not supported in flow-through mode and the DLL must be  
disabled.  
The FullFlex families of devices have an on-chip DLL.  
Enabling the DLL reduces the clock to data valid (tCD) time  
allowing more setup time for the receiving device. For  
operation at or below 100 MHz, the DLL must be disabled. This  
is selectable by strapping LowSPD LOW.  
Whenever the operating frequency is altered beyond the Clock  
Input Cycle to Cycle Jitter spec, the DLL is required to be reset  
followed by 1024 clocks before any valid operation.  
Flow-through mode is selected by the FTSEL pin. Strapping  
this pin HIGH selects pipelined mode. Strapping this pin LOW  
selects flow-through mode.  
LowSPD pins can be used to reset the DLL(s) for a single port  
independent of all other circuitry. MRST can be used to reset  
Document #: 38-06072 Rev. *I  
Page 11 of 53  
FullFlex  
all DLLs on the chip, for information on DLL lock and reset  
time, please see the Master Reset section below.  
Deterministic Access Control  
Deterministic Access Control is provided for ease of design.  
The circuitry detects when both ports are accessing the same  
location and provides an external BUSY flag to the port on  
which data may be corrupted. The collision detection logic  
saves the address in conflict (Busy Address) to a readable  
register. In the case of multiple collisions, the first Busy  
address will be written to the Busy Address register.  
Echo Clocking  
As the speed of data increases, on-board delays caused by  
parasitics make providing accurate clock trees extremely  
difficult. To counter this problem, the FullFlex families incor-  
porate Echo Clocks. Echo Clocks are enabled on a per port  
basis. The dual-port receives input clocks (C and C for DDR  
mode, C for SDR mode) that are used to clock in the address  
and control signals for a read operation. The dual-port  
retransmits the input clocks relative to the data output. The  
buffered clocks are provided on the CQ1, CQ1, CQ0, and CQ0  
outputs. Each port has two pairs of Echo clocks. Each clock is  
associated with half the data bits. The output clock will match  
the corresponding ports I/O configuration.  
If both ports are accessing the same location at the same time  
and only one port is doing a write, if tCCS is met, then the data  
being written to and read from the address is valid data. For  
example, if the right port is reading and the left port is writing  
and the left ports clock meets tCCS, then the data being read  
from the address by the right port will be the old data. In the  
same case, if the right ports clock meets tCCS, then the data  
being read out of the address from the right port will be the new  
data. In the above case, if tCCS is violated by the either ports  
clock with respect to the other port and the right port gets the  
external BUSY flag, the data from the right port is corrupted.  
Table 4 shows the tCCS timing that must be met to guarantee  
the data.  
To enable Echo clock outputs, tie CQEN HIGH. To disable  
Echo clock outputs, tie CQEN LOW.  
Input Clock  
Data Out  
Table 5 shows that in the case of the left port writing and the  
right port reading, when an external BUSY flag is asserted on  
the right port, the data read out of the device will not be  
guaranteed.  
Echo Clock  
Echo Clock  
The value in the busy address register can be read back to the  
address lines. The required input control signals for this  
function are shown in Table 8. The value in the busy address  
register will be read out to the address lines tCA after the same  
amount of latency as a data read operation in SDR mode. In  
DDR mode, the address latency is only 2 cycles instead of 2.5  
which is the data latency. After an initial address match, the  
address under contention is saved in the busy address  
register. All following address matches cause the BUSY flag  
to be generated, however, none of the addresses are saved  
into the busy address register. Once a busy readback is  
performed, the address of the first match which happens at  
least two clock cycles after the busy readback is saved into the  
busy address register.  
Figure 2. SDR Echo Clock Delay  
Input Clock  
Input Clock  
Data Out  
Echo Clock  
Echo Clock  
Figure 3. DDR Echo Clock Delay  
Document #: 38-06072 Rev. *I  
Page 12 of 53  
FullFlex  
Table 4. tCCS Timing for All Operating Modes  
Port A – Early Arriving Port Port B – Late Arriving Port  
tCCS C/C Rise to Opposite C/C Rise Set-up Time  
for Non-corrupt Data  
Mode  
SDR  
SDR  
DDR  
DDR  
Active Edge  
Mode  
SDR  
DDR  
SDR  
DDR  
Active Edge  
Unit  
ns  
C
C
C
C
C
C
C
C
tCYC(min) – 0.5  
tCYC(min) – 0.5  
ns  
0.55 * tCYC + tCYC(min) – 1  
0.55 * tCYC + tCYC(min) – 1  
ns  
ns  
Table 5. Deterministic Access Control Winning Port  
Clock Timing  
Left Port  
Read  
Right Port Left Clock  
Right Clock  
BUSYL  
BUSYR  
Description  
Read  
Read  
X
X
0
H
H
H
H
H
H
H
H
H
H
L
H
H
H
H
L
No Collision  
Write  
>tCCS  
0
Read OLD Data  
>tCCS  
0
Read NEW Data  
Read OLD Data  
<tCCS  
Data Not Guaranteed  
Read NEW Data  
Data Not Guaranteed  
Read NEW Data  
Read OLD Data  
0
<tCCS  
H
L
Read  
Write  
Write  
Write  
>tCCS  
0
0
>tCCS  
0
H
H
H
H
H
H
L
<tCCS  
Read NEW Data  
Data Not Guaranteed  
Read OLD Data  
0
<tCCS  
H
L
Data Not Guaranteed  
Array Data Corrupted  
0
0
>–tCCS & <tCCS  
L
>tCCS  
0
L
H
L
Array Stores Right Port Data  
Array Stores Left Port Data  
>tCCS  
H
Variable Impedance Matching (VIM)  
Table 6. Variable Impedance Matching Parameters  
Parameter  
RQ Value  
Min. Max.  
Unit  
Tolerance  
±2%  
Each port contains a Variable Impedance Matching circuit to  
set the impedance of the I/O driver to match the impedance of  
the on-board traces. The impedance is set for all outputs  
except JTAG and is done on a per port basis. To take  
advantage of the VIM feature, connect a calibrating resistor  
(RQ) that is five times the value of the intended line impedance  
from the ZQ pin to VSS. The output impedance is then  
adjusted to account for drifts in supply voltage and temper-  
ature every 1024 clock cycles. If a port’s clock is suspended,  
the VIM circuit will retain its last setting until the clock is  
restarted. On restart, it will then resume periodic adjustment.  
In the case of a significant change in device temperature or  
supply voltage, recalibration will happen every 1024 clock  
cycles. A Master Reset will initialize the VIM circuitry. Table 6  
shows the VIM parameters and Table 7 describes the VIM  
operation modes.  
100  
20  
275  
55  
Output Impedance  
Reset Time  
±15%  
N/A  
N/A 1024 Cycles  
N/A 1024 Cycles  
Update Time  
N/A  
Table 7. Variable Impedance Matching Operation  
RQ Connection Output Configuration  
100–275to Output Driver Impedance = RQ/5 ± 15% at  
VSS  
Vout = VDDIO/2  
ZQ to VDDIO  
VIM Disabled. Rout < 20at Vout =  
VDDIO/2  
Address Counter and Mask Register Operations[1]  
In order to disable VIM, the ZQ pin must be connected to  
VDDIO of the relative supply for the I/Os before a Master  
Reset.  
Each port of the FullFlex families contains a programmable  
burst address counter. The burst counter contains four  
registers: a counter register, a mask register, a mirror register,  
and a busy address register.  
The counter register contains the address used to access the  
RAM array. It is changed only by the master reset (MRST),  
Counter Reset, Counter Load, Retransmit, and Counter  
Increment operations.  
Document #: 38-06072 Rev. *I  
Page 13 of 53  
FullFlex  
The mask register value affects the Counter Increment and  
Counter Reset operations by preventing the corresponding  
bits of the counter register from changing. It also affects the  
counter interrupt output (CNTINT). The mask register is only  
changed by Mask Reset, Mask Load, and MRST. The Mask  
Load operation loads the value of the address bus into the  
mask register. The mask register defines the counting range  
of the counter register. The mask register is divided into two or  
three consecutive regions. Zero or more “0s” define the  
masked region and one or more “1s” define the unmasked  
portion of the counter register. The counter register may only  
be divided into up to three regions. The region containing the  
least significant bits must be no more than two “0s”. Bits one  
and zero may be “10” respectively, masking the least signif-  
icant counter bit and causing the counter to increment by two  
instead of one. If bits one and zero are “00”, the two least  
significant bits are masked and the counter will increment by  
four instead of one. For example, in the case of a 256Kx72  
configuration, a mask register value of 003FC divides the  
mask register into three regions. With bit 0 being the least  
significant bit and bit 17 being the most significant bit, the two  
least significant bits are masked, the next eight bits are  
unmasked, and the remaining bits are masked.  
Counter Load Operation[1]  
The address counter and mirror registers are both loaded with  
the address value presented on the address lines. This value  
ranges from 0 to FFFFF.  
Mask Load Operation[1]  
The mask register is loaded with the address value presented  
on the address bus. This value ranges from 0 to FFFFF though  
not all values permit correct increment operations. Permitted  
values are in the form of 2n–1, 2n–2, or 2n–4. The counter  
register can only be segmented in up to three regions. From  
the most significant bit to the least significant bit, permitted  
values have zero or more “0s”, one or more “1s”, and the least  
significant two bits can be “11”, “10”, or “00”. Thus FFFFE,  
7FFFF, and 03FFC are permitted values but 2FFFF, 03FFA,  
and 7FFE4 are not.  
Counter Readback Operation  
The internal value of the counter register can be read out on  
the address lines. The address will be valid tCA after the  
selected number of latency cycles configured by FTSEL. This  
is the same as data in SDR mode and one half cycle earlier  
than data latency for DDR mode. The data bus (DQ) is  
tri-stated on the cycle that the address is presented on the  
address lines. Figure 4 shows a block diagram of the logic.  
The mirror register is used to reload the counter register on  
retransmit operations (see “retransmit” below) and wrap  
functions (see “counter increment” below). The last value  
loaded into the counter register is stored in the mirror register.  
The mirror register is only changed by master reset (MRST),  
Counter Reset, and Counter Load.  
Mask Readback Operation  
The internal value of the mask register can be read out on the  
address lines. The address will be valid tCA after the selected  
number of latency cycles configured by FTSEL. For pipelined  
SDR and DDR mode this is two cycles. The data bus (DQ) is  
tri-stated on the cycle that the address is presented on the  
address lines. Figure 4 shows a block diagram of the  
operation.  
Table 8 summarizes the operations of these registers and the  
required input control signals. All signals except MRST are  
synchronized to the ports clock.  
Table 8. Burst Counter and Mask Register Control Operation (Any Port) [20,21]  
C
MRST CNTRST CNT/MSK CNTEN ADS RET  
Operation  
Description  
X
L
X
X
X
X
X
Master Reset  
Reset address counter to all 0s, mask register  
to all 1s, and busy address to all 0’s.  
H
L
H
X
X
X
Counter Reset  
Reset counter and mirror unmasked portion to  
all 0s.  
H
H
L
L
X
L
X
L
X
X
Mask Reset  
Reset mask register to all 1s.  
H
H
Counter Load  
Load burst counter and mirror with external  
address value presented on address lines.  
H
H
L
L
L
X
Mask Load  
Retransmit  
Load mask register with value presented on the  
address lines.  
H
H
H
H
H
H
L
L
H
H
L
Load counter with value in the mirror register  
H
Counter  
Internally increment address counter value.  
Increment  
H
H
H
H
H
H
H
H
L
H
H
H
H
L
L
H
H
H
Counter Hold  
Constantly hold the address value for multiple  
clock cycles.  
Counter  
Readback  
Read out counter internal value on address  
lines.  
Mask Readback Read out mask register value on address lines.  
Notes:  
20. X” = “Don’t Care”, “H” = HIGH, “L” = LOW.  
21. Counter operation and mask register operation is independent of chip enables.  
Document #: 38-06072 Rev. *I  
Page 14 of 53  
FullFlex  
Table 8. Burst Counter and Mask Register Control Operation (Any Port) (continued)[20,21]  
C
MRST CNTRST CNT/MSK CNTEN ADS RET  
Operation  
Description  
H
H
L
H
H
L
Busy Address  
Readback  
Read out first busy address after last busy  
address readback  
H
H
H
H
H
H
H
H
H
H
L
L
L
H
H
H
H
H
L
X
L
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
L
H
L
H
L
H
H
H
L
Counter Reset Operation  
operation is useful in applications where wait states are  
needed, or when address is available a few cycles ahead of  
data in a shared bus interface.  
All unmasked bits of the counter are reset to “0”. All masked  
bits remain unchanged. The new burst counter value is loaded  
into the mirror registers. A mask reset followed by a counter  
reset will reset the counter and mirror registers to 00000.  
Retransmit  
Retransmit allows repeated access to the same block of  
memory without the need to reload the initial address. An  
internal mirror register stores the address counter value last  
loaded. While RET is asserted low, the counter will continue to  
wrap back to the value in the mirror register independent of the  
state of WRP.  
Mask Reset Operation  
The mask register is reset to all “1s”, which unmasks every bit  
of the burst counter.  
Increment Operation[1]  
Once the address counter is initially loaded with an external  
address, the counter can internally increment the address  
value and address the entire memory array. Only the  
unmasked bits of the counter register are incremented. In  
order for a counter bit to change, the corresponding bit in the  
mask register must be “1”. If the two least significant bits of the  
mask register are “11”, the burst counter will increment by one.  
If the two least significant bits are “10”, the burst counter will  
increment by two, and if they are “00”, the burst counter will  
increment by four. If all unmasked counter bits are incre-  
mented to “1” and WRP is deasserted, the next increment will  
wrap the counter back to the initially loaded value. The cycle  
before the increment that results in all unmasked counter bits  
to become “1s”, a counter interrupt flag (CNTINT) is asserted  
if the counter is incremented again. This increment will cause  
the counter to reach its maximum value and the next increment  
will return the counter register to its initial value that was stored  
in the mirror register if WRP is deasserted. If WRP is asserted,  
the unmasked portion of the counter is filled with “0” instead.  
The example shown in Figure 5 shows an example of the  
CYDD36S18V18 device with the mask register loaded with a  
mask value of 0007F unmasking the seven least significant  
bits. Setting the mask register to this value allows the counter  
to access the entire memory space. The address counter is  
then loaded with an initial value of 00005 assuming WRP is  
deasserted. The base address bits (in this case, the seventh  
address through the twentieth address) do not increment once  
the counter is configured for increment operation. The counter  
address will start at address 00005 and will increment its  
internal address value until it reaches the mask register value  
of 0007F. The counter wraps around the memory block to  
location 00005 at the next count. CNTINT is issued when the  
counter reaches the maximum –1 count.  
Counter Interrupt  
The counter interrupt (CNTINT) is asserted LOW one clock  
cycle before an increment operation that results in the  
unmasked portion of the counter register being all “1s”. It is  
deasserted by counter reset, counter load, mask reset, mask  
load, counter increment, re-transmit, and MRST.  
Counting by Two  
When the two least significant bits of the mask register are  
“10,” the counter increments by two.  
Counting by Four  
When the two least significant bits of the mask register are  
“00,” the counter increments by four.  
Mailbox Interrupts  
The upper two memory locations can be used for message  
passing and permit communications between ports. Table 9  
shows the interrupt operation for both ports. The highest  
memory location is the mailbox for the right port and the  
maximum address–1 is the mailbox for the left port.  
When one port Writes to the other ports mailbox, the INT flag  
of the port that the mailbox belongs to is asserted LOW. The  
INT flag remains asserted until the mailbox location is read by  
the other port. When a port reads it’s mailbox, the INT flag is  
deasserted HIGH after one cycle of latency with respect to the  
input clock of the port to which the mailbox belongs and is  
independent of OE.  
Table 9 shows that in order to set the INTR flag, a Write  
operation by the left port to address FFFFF will assert INTR  
LOW. A valid Read of the FFFFF location by the right port will  
reset INTR HIGH after one cycle of latency with respect to the  
Hold Operation  
The value of all three registers can be constantly maintained  
unchanged for an unlimited number of clock cycles. Such  
Document #: 38-06072 Rev. *I  
Page 15 of 53  
FullFlex  
right port’s clock. At least one byte enable has to be activated  
to set or reset the mailbox interrupt.  
CNT/MSK  
CNTEN  
Decode  
Logic  
A
CNTRST  
RET  
MRST  
A
C
Mask  
Register  
Counter/  
Address  
Register  
Address  
Decode  
RAM  
Array  
Load/Increment  
19  
19  
From  
Address  
Lines  
Mirror  
Counter  
To Readback  
and Address  
Decode  
1
0
1
0
From  
Increment  
Logic  
Mask  
Register  
19  
Wrap  
19  
19  
19  
From  
Mask  
Bit 0  
and 1  
From  
Counter  
+1  
+2  
+4  
Wrap  
Detect  
Wrap  
To  
1
0
19  
1
0
Counter  
Figure 4. Counter, Mask, and Mirror Logic Block Diagram[1]  
Document #: 38-06072 Rev. *I  
Page 16 of 53  
FullFlex  
CNTINT  
H
Example:  
Load  
Counter-Mask  
0
0
0s  
1
1
1
1
1
1
1
0
Register = 00007F  
219 218  
26 25 24 23 22 21 20  
Unmasked Address  
27  
Masked Address  
Mask  
Register  
LSB  
Load  
Address  
Counter = 000005  
H
L
X
X
Xs  
Xs  
Xs  
0
0
0
0
1
0
1
X
X
219 218  
26 25 24 23 22 21 20  
Address  
Counter  
LSB  
27  
27  
27  
Max  
Address  
Value  
X
X
1
1
1
1
1 1  
1
219 218  
26 25 24 23 22 21 20  
Max + 1  
Address  
Value  
H
X
X
0
0
0
0
1
0
1
X
219 218  
26 25 24 23 22 21 20  
Figure 5. Programmable Counter-Mask Register Operation with WRP deasserted[1,25]  
Table 9. Interrupt Operation Example [1, 20, 22, 23, 24]  
Left Port  
A0L–19L  
Right Port  
A0R–19R  
Function  
Set Right INTR Flag  
Reset Right INTR Flag  
Set Left INTL Flag  
R/WL  
CEL  
L
INTL  
X
R/WR  
CER  
X
INTR  
L
L
X
X
H
Max. Address  
X
H
L
X
X
X
X
L
Max. Address  
Max. Address–1  
X
H
X
X
L
L
X
Reset Left INTL Flag  
L
Max. Address–1  
H
X
X
X
Master Reset  
OR capable output with a strong pull-up and weak pull-down.  
Up to four outputs may be connected together. For faster  
pull-down of the signal, connect a 250-resistor to VSS. If the  
DLL and VIM circuits are disabled for a port, the port will be  
operational within five clock cycles. However, the READY will  
be asserted within 160 clock cycles.  
The FullFlex family of dual-ports undergo a complete reset  
when MRST is asserted. MRST must be driven by VDDIOL  
referenced levels. The MRST can be asserted asynchronously  
to the clocks and must remain asserted for at least tRS. Once  
asserted MRST deasserts READY, initializes the internal burst  
counters, internal mirror registers, and internal Busy  
Addresses to zero, and initializes the internal mask register to  
all “1s”. All mailbox interrupts (INT), Busy Address Outputs  
(BUSY), and burst counter interrupts (CNTINT) are  
deasserted upon master reset. Additionally, MRST must not  
be released until all power supplies including VREF are fully  
ramped, all port clocks and mode select inputs (LOWSPD, ZQ,  
CQEN, DDRON, FTSEL, and PORTSTD) are valid and stable.  
This begins calibration of the DLL and VIM circuits. READY  
will be asserted within 1024 clock cycles. READY is a wired  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The FullFlex families incorporate an IEEE 1149.1 serial  
boundary scan test access port (TAP). The TAP operates  
using JEDEC-standard 3.3V or 2.5V I/O logic levels depending  
on the VTTL power supply. It is composed of four input  
connections and one output connection required by the test  
logic defined by the standard.  
Notes:  
22. CE is internal signal. CE = LOW if CE = LOW and CE = HIGH. For a single Read operation, CE only needs to be asserted once at the rising edge of the C and  
0
1
can be deasserted after that. Data will be out after the following C edge and will be tri-stated after the next C edge.  
23. OE is “Don’t Care” for mailbox operation.  
24. At least one of BE0, BE1, BE2, BE3, BE4, BE5, BE6, or BE7 must be LOW.  
25. The “X” in this diagram represents the counter’s upper bits.  
Document #: 38-06072 Rev. *I  
Page 17 of 53  
FullFlex  
Table 10.JTAG IDCODE Register Definitions  
Table 11.Scan Registers Sizes  
Part Number  
CYDD36S36V18  
CYDD36S18V18  
CYDD18S72V18  
CYDD18S36V18  
CYDD18S18V18  
CYDD09S72V18  
CYDD09S36V18  
CYDD09S18V18  
CYDD04S72V18  
CYDD04S36V18  
CYDD04S18V18  
Configuration  
512Kx72  
1024Kx36  
256Kx72  
256Kx72  
512Kx36  
128Kx72  
128Kx72  
256Kx36  
64Kx72  
Value  
Register Name  
Instruction  
Bit Size  
0C041069h  
0C042069h  
0C043069h  
0C044069h  
0C045069h  
0C046069h  
0C047069h  
0C048069h  
0C049069h  
0C04A069h  
0C04B069h  
4
1
Bypass  
Identification  
Boundary Scan  
32  
n[26]  
64Kx72  
128Kx36  
Table 12.Instruction Identification Codes  
Instruction Code  
EXTEST  
Description  
0000  
1111  
1011  
0111  
Captures the Input/Output ring contents. Places the BSR between the TDI and TDO.  
Places the BYR between TDI and TDO.  
BYPASS  
IDCODE  
HIGHZ  
Loads the IDR with the vendor ID code and places the register between TDI and TDO.  
Places BYR between TDI and TDO. Forces all FullFlex72 and FullFlex36 output drivers  
to a High-Z state.  
CLAMP  
0100  
Controls boundary to 1/0. Places BYR between TDI and TDO.  
SAMPLE/PRELOAD 1000  
Captures the input/output ring contents. Places BSR between TDI and TDO.  
RESERVED  
All other codes Other combinations are reserved. Do not use other than the above.  
Note:  
26. Details of the boundary scan length can be found in the BSDL file for the device.  
Document #: 38-06072 Rev. *I  
Page 18 of 53  
FullFlex  
Maximum Ratings  
Operating Range  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Range  
Ambient Temperature  
VCORE  
Commercial  
0°C to +70°C  
1.8V ± 100 mV  
1.5V ± 80 mV  
Storage Temperature ................................ –65°C to + 150°C  
Ambient Temperature with  
Power Applied............................................55°C to + 125°C  
Industrial  
–40°C to +85°C  
1.8V ± 100 mV  
1.5V ± 80 mV  
Supply Voltage to Ground Potential.............. –0.5V to + 4.1V  
Power Supply Requirements  
DC Voltage Applied to  
Outputs in High-Z State.......................–0.5V to VDDIO + 0.5V  
Min.  
Typ.  
Max.  
3.6V  
2.7V  
1.9V  
1.9V  
3.6V  
2.7V  
0.95V  
LVTTL VDDIO  
2.5V LVCMOS VDDIO  
HSTL VDDIO  
3.0V  
2.3V  
1.4V  
1.7V  
3.0V  
2.3V  
0.68V  
3.3V  
2.5V  
1.5V  
1.8V  
3.3V  
2.5V  
0.75V  
DC Input Voltage.................................–0.5V to VDDIO + 0.5V  
Output Current into Outputs (LOW) ............................ 20 mA  
Static Discharge Voltage...........................................> 2200V  
(JEDEC JESD8-6, JESD8-B)  
1.8V LVCMOS VDDIO  
3.3V VTTL  
Latch-up Current.....................................................> 200 mA  
2.5V VTTL  
HSTL VREF  
Electrical Characteristics Over the Operating Range  
All Speed Bins[27]  
Typ.  
Parameter  
Description  
Output HIGH Voltage  
Configuration  
Min.  
2.4[28]  
Max.  
Unit  
VOH  
LVTTL  
V
(VDDIO = Min., IOH = –8 mA)  
(VDDIO = Min., IOH = –4 mA)  
(VDDIO= Min., IOH = –4 mA)  
(VDDIO = Min., IOH = –6 mA)  
(VDDIO = Min., IOH = –4 mA)  
HSTL(DC)[29]  
HSTL(AC)[29]  
2.5V LVCMOS  
1.8V LVCMOS  
LVTTL  
VDDIO – 0.4[28]  
VDDIO – 0.5[28]  
1.7[28]  
V
V
V
V
V
VDDIO – 0.45[28]  
VOL  
Output HIGH Voltage  
0.4[28]  
(VDDIO = Min., IOL = 8 mA)  
(VDDIO = Min., IOL = 4 mA)  
(VDDIO = Min., IOL = 4 mA)  
(VDDIO = Min., IOL = 6 mA)  
(VDDIO = Min., IOL = 4 mA)  
Input HIGH Voltage  
HSTL(DC)[29]  
HSTL(AC)[29]  
2.5V LVCMOS  
1.8V LVCMOS  
LVTTL  
HSTL(DC)[29]  
2.5V LVCMOS  
1.8V LVCMOS  
LVTTL  
0.4[28]  
0.5[28]  
0.7[28]  
V
V
V
V
V
V
V
V
V
V
V
V
0.45[28]  
VIH  
2
VREF + 0.1  
1.7  
VDDIO + 0.3  
VDDIO + 0.3  
1.26  
VIL  
Input LOW Voltage  
–0.3  
0.8  
HSTL(DC)[29]  
2.5V LVCMOS  
1.8V LVCMOS  
–0.3  
VREF – 0.1  
0.7  
0.36  
Notes:  
27. LVTTL and 2.5V LVCMOS are not available for 4-Mbit, 9-Mbit, 18-Mbit devices running at 250 MHz SDR and 36-Mbit devices running at 200 MHz SDR.  
28. These parameters are met with VIM disabled.  
29. The (DC) specifications are measured under steady state conditions. The (AC) specifications are measured while switching at speed. AC VIH/VIL in HSTL mode  
are measured with 1V/ns input edge rates  
Document #: 38-06072 Rev. *I  
Page 19 of 53  
FullFlex  
Electrical Characteristics Over the Operating Range (continued)  
READY  
VOH  
Output HIGH Voltage  
(VDDIO = Min., IOH = –24 mA)  
LVTTL  
2.7[28]  
V
(VDDIO = Min., IOH = –12 mA)  
(VDDIO = Min., IOH = –12 mA)  
(VDDIO = Min., IOH = –15 mA)  
(VDDIO = Min., IOH = –12 mA)  
HSTL(DC)[29]  
HSTL(AC)[29]  
2.5V LVCMOS  
1.8V LVCMOS  
LVTTL  
VDDIO – 0.4[28]  
VDDIO – 0.5[28]  
2.0[28]  
V
V
V
V
VDDIO – 0.45[28]  
READY  
VOL  
Output HIGH Voltage  
0.4[28]  
V
(VDDIO = Min., IOL = 0.12 mA)  
(VDDIO = Min., IOL = 0.12 mA)  
(VDDIO = Min., IOL = 0.12 mA)  
(VDDIO = Min., IOL = 0.15 mA)  
(VDDIO = Min., IOL = 0.08 mA)  
Output Leakage Current  
HSTL(DC)[29]  
HSTL(AC)[29]  
2.5V LVCMOS  
1.8V LVCMOS  
0.4[28]  
0.5[28]  
0.7[28]  
0.45[28]  
10  
V
V
V
V
IOZ  
IIX1  
IIX2  
–10  
–10  
µA  
µA  
µA  
Input Leakage Current  
10  
Input Leakage Current TDI, TMS, MRST,  
TRST, TCK  
–300  
10  
IIX3  
Input Leakage Current PORTSTD,  
DDRON  
–10  
300  
µA  
Document #: 38-06072 Rev. *I  
Page 20 of 53  
FullFlex  
Electrical Characteristics Over the Operating Range  
–200[27]  
Typ.  
–167[27]  
Typ.  
–133  
Max. Unit  
Parameter  
Description  
Configuration  
Max.  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
1140  
N/A  
980  
N/A  
800  
N/A  
930  
N/A  
790  
N/A  
640  
N/A  
880  
N/A  
740  
N/A  
590  
N/A  
Max.  
1800  
N/A  
1620  
N/A  
1350  
N/A  
980  
1030  
880  
930  
720  
780  
790  
830  
700  
740  
570  
600  
740  
770  
650  
680  
520  
530  
Typ.  
1280  
1330  
1120  
1170  
930  
980  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
ICC  
Operating Current  
(VCORE = Max.,IOUT = 0 mA)  
Outputs Disabled  
512Kx72 Com.  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
930  
N/A  
800  
N/A  
640  
N/A  
770  
N/A  
640  
N/A  
540  
N/A  
740  
N/A  
620  
N/A  
510  
N/A  
1440  
N/A  
1280  
N/A  
1050  
N/A  
800  
820  
700  
730  
570  
590  
640  
660  
560  
580  
470  
490  
620  
630  
540  
550  
450  
460  
1620  
1730  
1430  
1550  
1220  
1330  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
SDR[30]  
Ind.  
512Kx36x2 Com.  
DDR  
Ind.  
1024Kx18x2 Com.  
DDR  
Ind.  
256Kx72 Com.  
SDR[30]  
Ind.  
256Kx36x2 Com.  
DDR  
Ind.  
512Kx18x2 Com.  
DDR  
Ind.  
128Kx72 Com.  
SDR[30]  
Ind.  
128Kx36x2 Com.  
DDR  
Ind.  
256Kx18x2 Com.  
DDR  
Ind.  
64Kx72  
SDR[30]  
Com.  
Ind.  
64Kx36x2 Com.  
DDR  
Ind.  
128Kx18x2 Com.  
DDR  
Ind.  
Note:  
30. Use this number if any one of the two ports is operating in SDR mode.  
Document #: 38-06072 Rev. *I  
Page 21 of 53  
FullFlex  
Electrical Characteristics Over the Operating Range (continued)  
–200[27]  
Typ.  
–167[27]  
Typ.  
–133  
Max. Unit  
Parameter  
Description  
Standby Current  
Configuration  
Max.  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
700  
N/A  
630  
N/A  
570  
N/A  
560  
N/A  
490  
N/A  
440  
N/A  
520  
N/A  
450  
N/A  
400  
N/A  
Max.  
1250  
N/A  
1160  
N/A  
1050  
N/A  
630  
680  
580  
630  
530  
580  
490  
540  
450  
490  
400  
430  
450  
480  
400  
430  
360  
370  
Typ.  
920  
970  
830  
880  
740  
790  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
ISB1  
512Kx72 Com.  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
570  
N/A  
500  
N/A  
460  
N/A  
460  
N/A  
400  
N/A  
380  
N/A  
440  
N/A  
380  
N/A  
360  
N/A  
1000  
N/A  
920  
N/A  
820  
N/A  
500  
530  
460  
490  
410  
440  
400  
420  
360  
380  
340  
360  
380  
390  
340  
350  
320  
330  
1160  
1260  
1060  
1170  
960  
1080  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
(Both Ports TTL Level)  
CEL and CER VIH,  
f = fMAX  
SDR[30]  
Ind.  
512Kx36x2 Com.  
DDR  
Ind.  
1024Kx18x2 Com.  
DDR  
Ind.  
256Kx72 Com.  
SDR[30]  
Ind.  
256Kx36x2 Com.  
DDR  
Ind.  
512Kx18x2 Com.  
DDR  
Ind.  
128Kx72 Com.  
SDR[30]  
Ind.  
128Kx36x2 Com.  
DDR  
Ind.  
256Kx18x2 Com.  
DDR  
Ind.  
64Kx72  
SDR[30]  
Com.  
Ind.  
64Kx36x2 Com.  
DDR  
Ind.  
128Kx18x2 Com.  
DDR  
Ind.  
Document #: 38-06072 Rev. *I  
Page 22 of 53  
FullFlex  
Electrical Characteristics Over the Operating Range (continued)  
–200[27]  
Typ.  
–167[27]  
Typ.  
–133  
Max. Unit  
Parameter  
Description  
Standby Current  
Configuration  
Max.  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
890  
N/A  
790  
N/A  
670  
N/A  
730  
N/A  
630  
N/A  
530  
N/A  
680  
N/A  
580  
N/A  
480  
N/A  
Max.  
1570  
N/A  
1410  
N/A  
1210  
N/A  
790  
840  
710  
760  
610  
670  
630  
670  
560  
610  
470  
500  
580  
610  
510  
550  
420  
440  
Typ.  
1160  
1210  
1020  
1070  
870  
920  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
ISB2  
512Kx72 Com.  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
760  
N/A  
650  
N/A  
550  
N/A  
620  
N/A  
520  
N/A  
460  
N/A  
590  
N/A  
500  
N/A  
440  
N/A  
1300  
N/A  
1160  
N/A  
980  
N/A  
650  
680  
580  
610  
490  
520  
520  
550  
460  
480  
400  
430  
500  
510  
440  
450  
380  
390  
1410  
1520  
1260  
1370  
1100  
1210  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
(One Port TTL or CMOS  
Level)  
CEL | CER VIH,  
f = fMAX  
SDR[30]  
Ind.  
512Kx36x2 Com.  
DDR  
Ind.  
1024Kx18x2 Com.  
DDR  
Ind.  
256Kx72 Com.  
SDR[30]  
Ind.  
256Kx36x2 Com.  
DDR  
Ind.  
512Kx18x2 Com.  
DDR  
Ind.  
128Kx72 Com.  
SDR[30]  
Ind.  
128Kx36x2 Com.  
DDR  
Ind.  
256Kx18x2 Com.  
DDR  
Ind.  
64Kx72  
SDR[30]  
Com.  
Ind.  
64Kx36x2 Com.  
DDR  
Ind.  
128Kx18x2 Com.  
DDR  
Ind.  
Document #: 38-06072 Rev. *I  
Page 23 of 53  
FullFlex  
Electrical Characteristics Over the Operating Range (continued)  
All Speed Bins[27]  
Typ.  
Parameter  
ISB3  
Description  
Standby Current  
(Both Ports CMOS Level)  
CEL and CER VCORE – 0.2V,  
f = 0  
Configuration  
Max.  
590  
700  
590  
700  
590  
700  
300  
350  
300  
350  
300  
350  
200  
220  
200  
220  
200  
220  
150  
170  
150  
170  
150  
170  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
512Kx72  
Com.  
Ind.  
410  
460  
410  
460  
410  
460  
210  
230  
210  
230  
210  
230  
150  
170  
150  
170  
150  
170  
130  
140  
130  
140  
130  
140  
SDR[30]  
512Kx36x2  
DDR  
Com.  
Ind.  
1024Kx18x2  
DDR  
Com.  
Ind.  
256Kx72  
SDR[30]  
Com.  
Ind.  
256Kx36x2  
DDR  
Com.  
Ind.  
512Kx18x2  
DDR  
Com.  
Ind.  
128Kx72  
SDR[30]  
Com.  
Ind.  
128Kx36x2  
DDR  
Com.  
Ind.  
256Kx18x2  
DDR  
Com.  
Ind.  
64Kx72  
SDR[30]  
Com.  
Ind.  
64Kx36x2  
DDR  
Com.  
Ind.  
128Kx18x2  
DDR  
Com.  
Ind.  
Table 13.Capacitance  
Signals  
Packages  
CYDD18S72V18  
CYDD09S72V18  
CYDD04S72V18  
CYDD18S36V18  
CYDD09S36V18  
CYDD04S36V18  
CYDD18S18V18  
CYDD09S18V18  
CYDD04S18V18  
CYDD36S36V18  
CYDD36S18V18  
OE  
12 pF  
10 pF  
10 pF  
12 pF  
18 pF  
10 pF  
20 pF  
16 pF  
16 pF  
20 pF  
30 pF  
16 pF  
BE, DQ  
All other signals  
Document #: 38-06072 Rev. *I  
Page 24 of 53  
FullFlex  
AC Test Load and Waveforms  
V R E F = N C  
V R E F  
50 O hm  
50 O h m  
O utput  
T e st P o int  
R = 250 O h m  
C = 10 pF  
V T H  
R E A D Y Z Q  
D e vice und er  
test  
R Q = 250 O hm  
V T H = 1.5V for LV T T L  
V T H = 50 % V D D IO for 2.5 V C M O S  
V T H = 50 % V D D IO for 1.8 V C M O S  
Figure 6. Output Test Load for LVTTL/CMOS  
V
=
0 .7 5 V  
5 0 O h m  
R E F  
V
R E F  
5 0 O h m  
O u tp u t  
T e s t P o i n t  
R = 2 5 0 O h m  
V T H  
R E A D Y  
Z Q  
C = 0 p F fo r D D R  
C = 1 0 p F fo r S D R  
D e v i c e u n d e r  
te s t  
R Q = 2 5 0 O h m  
V T H  
= 5 0 % V D D IO  
Figure 7. Output Test Load for HSTL  
Figure 8. HSTL Input Waveform  
Document #: 38-06072 Rev. *I  
Page 25 of 53  
FullFlex  
Switching Characteristics Over the Operating Range  
Table 14.DDR Mode with 2.5 Pipelined Stages and DLL Enabled (LOWSPD-HIGH)[33]  
–200  
–167  
–133  
Parameter  
fMAX  
Description  
Maximum Operating Frequency  
C/C Clock Cycle Time  
Min.  
Max.  
200  
6.3  
Min.  
127  
6.00[34]  
Max.  
167  
Min.  
100  
7.50[34]  
Max.  
133  
Unit  
MHz  
ns  
159  
5.00[34]  
tCYC  
7.88  
10.00  
tCH  
C/C Clock HIGH Time  
2.00  
2.40  
3.00  
ns  
tCL  
C/C Clock LOW Time  
2.00  
2.40  
3.00  
ns  
tCHCH  
tSD  
C/C Clock Rise to C/C Clock Rise  
2.20  
0.45[32]  
2.70  
0.55[32]  
3.38  
0.75[32]  
ns  
Data Input Set-up Time to HSTL  
ns  
C/C Rise  
1.8V LVCMOS  
2.5V LVCMOS 0.65[32]  
3.3V LVTTL  
0.75[32]  
0.95[32]  
ns  
tHD  
Data Input Hold Time after C/C Rise  
Byte enable Set-up Time to HSTL  
0.45  
0.45[32]  
0.55  
0.55[32,]  
0.75  
0.65[32]  
ns  
ns  
tSBE  
C/C Rise  
1.8V LVCMOS  
2.5V LVCMOS 0.65[32]  
3.3V LVTTL  
0.75[32]  
0.85[32]  
ns  
tHBE  
tSAC  
Byte enable Hold Time after C/C Rise  
0.45  
1.50[34]  
0.55  
1.70[34]  
0.65  
1.80[34]  
ns  
ns  
Address & Control Input HSTL  
except BE Set-up Time to C 1.8V LVCMOS  
Rise  
2.5V LVCMOS 1.75[34]  
3.3V LVTTL  
1.95[34]  
0.60  
2.05[34]  
0.70  
ns  
ns  
tHAC  
tOE  
Address & Control Input except BEHoldTime  
after C Rise  
0.50  
Output Enable to Data Valid  
OE to Low Z  
4.40[32,34]  
5.00[32,34]  
5.50[32,34] ns  
ns  
5.50[32,34] ns  
0.85[32] ns  
[31]  
tOLZ  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
[31]  
tOHZ  
OE to High Z  
4.40[32,34]  
0.65[32]  
5.00[32,34]  
0.75[32]  
[35]  
tCD  
C/C Rise to DQ Valid  
HSTL  
1.8V LVCMOS  
2.5V LVCMOS  
3.3V LVTTL  
0.65[32]  
0.75[32]  
0.85[32] ns  
[35]  
tDC  
DQ Output Hold after C/C HSTL  
–0.65  
–0.65  
–0.75  
–0.75  
–0.85  
–0.85  
ns  
ns  
Rise  
1.8V LVCMOS  
2.5V LVCMOS  
3.3V LVTTL  
[35]  
tCCQ  
C/C Rise to CQ/CQ Rise  
HSTL  
1.8V LVCMOS  
2.5V LVCMOS –0.65[36]  
3.3V LVTTL  
–0.65[36]  
0.65  
0.60  
–0.75[36]  
–0.75[36]  
0.75  
0.70  
–0.85[36]  
–0.85[36]  
0.85  
0.80  
ns  
ns  
[35]  
tCQHQV  
Echo Clock (CQ/CQ) High HSTL  
to Output Valid 1.8V LVCMOS  
0.35[32]  
0.45[32]  
0.40[32]  
0.50[32]  
0.50[32] ns  
0.60[32] ns  
2.5V LVCMOS  
3.3V LVTTL  
Notes:  
31. Parameters specified with the load capacitance in Figure 6 and Figure 7.  
32. For the x18 devices, add 200 ps to this parameter in the table above.  
33. Test conditions assume a signal transition time of 2 V/ns.  
34. Add 15% to this parameter if a VCORE of 1.5V is used.  
35. This parameter assumes input clock cycle to cycle jitter of +/- 0ps.  
36. For the x18 devices, subtract 200ps from this parameter in the table above.  
Document #: 38-06072 Rev. *I  
Page 26 of 53  
FullFlex  
Table 14.DDR Mode with 2.5 Pipelined Stages and DLL Enabled (LOWSPD-HIGH)[33]  
–200 –167  
–133  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
[35]  
tCQHQX  
Echo Clock (CQ/CQ) High HSTL  
–0.35[36]  
–0.40[36]  
–0.50[36]  
ns  
to Output Hold  
1.8V LVCMOS  
2.5V LVCMOS –0.50[36]  
3.3V LVTTL  
–0.55[36]  
–0.65[36]  
ns  
[31,35]  
tCKHZ  
C Rise to DQ Output High Z HSTL  
1.8V LVCMOS  
0.65[32]  
0.65[32]  
0.75[32]  
0.75[32]  
0.85[32] ns  
2.5V LVCMOS  
3.3V LVTTL  
0.85[32] ns  
[31,35]  
tCKLZ  
C Rise to DQ Output Low Z HSTL  
–0.65  
–0.65  
–0.75  
–0.75  
–0.85  
–0.85  
ns  
ns  
1.8V LVCMOS  
2.5V LVCMOS  
3.3V LVTTL  
tCA  
tAC  
C Rise to Address Readback Valid  
5.00[34]  
5.00[34]  
6.00[34]  
6.00[34]  
7.50[34] ns  
ns  
7.50[34] ns  
Address Output Hold after C Rise  
C Rise to Address Output High Z  
C Rise to Address Output Low Z  
C Rise to CNTINT Low  
1.00  
1.00  
1.00  
1.00  
1.00  
0.50  
0.50  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
0.50  
0.50  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
0.50  
0.50  
1.00  
[31]  
tCKHZA  
[31]  
tCKLZA  
ns  
tSCINT  
tRCINT  
tSINT  
tRINT  
tBSY  
3.30[34]  
3.30[34]  
7.00[34]  
7.00[34]  
3.30[34]  
+/- 200  
4.00[34]  
4.00[34]  
8.00[34]  
8.00[34]  
4.00[34]  
+/- 200  
5.00[34] ns  
5.00[34] ns  
9.00[34] ns  
9.00[34] ns  
5.00[34] ns  
C Rise to CNTINT High  
C Rise to INT Low  
C Rise to INT High  
C Rise to BUSY Valid  
tJIT  
Clock Input Cycle to Cycle Jitter  
+/- 200  
ps  
Table 15.SDR Mode with Flow-Through Mode  
–200[27]  
–167[27]  
–133  
Parameter  
fMAX  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
Maximum Operating Frequency for  
100  
77  
66.7  
MHz  
(FLOW-THROUGH) Flow-through Mode  
tCYC  
C Clock Cycle Time for Flow-through 10.00[34]  
13.00[34]  
15.00[34]  
ns  
(FLOW-THROUGH) mode  
tCD1  
C Rise to DQ Valid for Flow-through  
Mode (LowSPD = 1)  
7.20[32,34]  
7.20[34]  
9.00[32,34]  
9.00[34]  
11.00[32, ns  
34]  
tCA1  
C Rise to Address Readback Valid for  
Flow-through Mode  
11.00[34] ns  
[31]  
tCKHZ1  
C Rise to DQ Output High Z in  
Flow-through Mode  
1.00  
1.00  
1.00  
7.20[32,34]  
1.00  
1.00  
1.00  
9.00[32,34]  
1.00  
1.00  
1.00  
11.00[32, ns  
34]  
[31]  
tCKLZ1  
C Rise to DQ Output Low Z in  
Flow-through Mode  
ns  
[31]  
tCKHZA1  
C Rise to Address Output High Z for  
Flow-through Mode  
7.20[34]  
9.00[34]  
11.00[34] ns  
Table 16.SDR Mode with Pipeline Mode, DLL Enabled (LOWSPD-HIGH)[33]  
–200[27]  
–167[27]  
–133  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
fMAX (PIPELINED) Maximum Operating Frequency for  
Pipelined Mode  
100  
250  
100  
200  
100  
167  
MHz  
Document #: 38-06072 Rev. *I  
Page 27 of 53  
FullFlex  
Table 16.SDR Mode with Pipeline Mode, DLL Enabled (LOWSPD-HIGH)[33] (continued)  
–200[27] –167[27]  
–133  
Parameter  
Description  
Min.  
Max.  
10.00  
55  
Min.  
5.00[34]  
45  
Max.  
10.00  
55  
Min.  
6.00[34]  
45  
Max.  
10.00  
55  
Unit  
ns  
tCYC (PIPELINED) C Clock Cycle Time for Pipelined Mode 4.00[34]  
tCKD  
tSD  
C Clock Duty Time  
45  
1.20[32,34]  
%
Data Input Set-up HSTL  
1.50[32,34]  
1.70[32,34]  
ns  
Time to C Rise  
1.8V LVCMOS  
2.5V LVCMOS  
3.3V LVTTL  
1.45[32,34]  
1.75[32,34]  
1.95[32,34]  
ns  
tHD  
Data Input Hold Time after C Rise  
0.50  
1.20[32,34]  
0.50  
1.50[32,34]  
0.50  
1.70[32,34]  
ns  
ns  
tSAC  
Address & Control HSTL  
Input Set-up Time 1.8V LVCMOS  
to C Rise  
2.5V LVCMOS  
3.3V LVTTL  
1.45[32,34]  
0.50  
1.75[32,34]  
0.50  
1.95[32,34]  
0.60  
ns  
ns  
tHAC  
tOE  
Address & Control Input Hold Time  
after C Rise  
Output Enable to Data Valid  
OE to Low Z  
3.40[32,34]  
4.40[32,34]  
5.00[32,34] ns  
ns  
5.00[32,34] ns  
4.00[32,34] ns  
[31]  
tOLZ  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
[31]  
tOHZ  
OE to High Z  
3.40[32,34]  
2.64[32,34]  
4.40[32,34]  
3.30[32,34]  
[35]  
tCD2  
C Rise to DQ Valid for Pipelined Mode  
(LowSPD = 1)  
tCA2  
C Rise to Address Readback Valid for  
Pipelined Mode  
4.00[34]  
5.00[34]  
6.00[34] ns  
[35]  
tDC  
DQ Output Hold after C Rise  
C Rise to CQ Rise  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
ns  
4.00[34] ns  
0.80[32] ns  
[35]  
tCCQ  
2.64[34]  
0.60[32]  
3.30[34]  
0.70[32]  
[35]  
tCQHQV  
Echo Clock (CQ) HSTL  
High to Output Valid 1.8V LVCMOS  
2.5V LVCMOS  
3.3V LVTTL  
0.70[32]  
0.80[32]  
0.90[32] ns  
[35]  
tCQHQX  
Echo Clock (CQ) HSTL  
High to Output Hold 1.8V LVCMOS  
–0.60  
–0.75  
1.00  
–0.70  
–0.85  
1.00  
–0.80  
–0.95  
1.00  
ns  
2.5V LVCMOS  
3.3V LVTTL  
ns  
4.00[32,34] ns  
ns  
[31,35]  
tCKHZ2  
C Rise to DQ Output High Z in  
Pipelined Mode  
2.64 [32,  
3.30[32,34]  
34]  
[31,35]  
tCKLZ2  
tAC  
C Rise to DQ Output Low Z in  
Pipelined Mode  
1.00  
1.00  
1.00  
Address Output Hold after C Rise  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
ns  
[31]  
tCKHZA2  
C Rise to Address Output High Z for  
Pipelined Mode  
4.00[34]  
5.00[34]  
6.00[34] ns  
[31]  
tCKLZA  
tSCINT  
tRCINT  
tSINT  
tRINT  
tBSY  
C Rise to Address Output Low Z  
C Rise to CNTINT Low  
C Rise to CNTINT High  
C Rise to INT Low  
1.00  
1.00  
1.00  
0.50  
0.50  
1.00  
1.00  
1.00  
1.00  
0.50  
0.50  
1.00  
1.00  
1.00  
1.00  
0.50  
0.50  
1.00  
ns  
4.00[34] ns  
4.00[34] ns  
8.00[34] ns  
8.00[34] ns  
4.00[34] ns  
2.64[34]  
2.64[34]  
6.00[34]  
6.00[34]  
2.64[34]  
+/- 200  
3.30[34]  
3.30[34]  
7.00[34]  
7.00[34]  
3.30[34]  
+/- 200  
C Rise to INT High  
C Rise to BUSY Valid  
tJIT  
Clock Input Cycle to Cycle Jitter  
+/- 200  
ps  
Document #: 38-06072 Rev. *I  
Page 28 of 53  
FullFlex  
Table 17.SDR Mode with Pipeline Mode, DLL Disabled (LOWSPD-LOW)[33]  
All Speed Bins  
Parameter  
fMAX (PIPELINED)  
tCYC (PIPELINED)  
tCKD  
Description  
Maximum Operating Frequency for Pipelined Mode  
C Clock Cycle Time for Pipelined Mode  
C Clock Duty Time  
Min.  
Max.  
Unit  
MHz  
ns  
100  
10.00[34]  
45  
55  
%
tSD  
Data Input Set-up Time to C Rise HSTL  
1.8V LVCMOS  
1.80[32,34]  
ns  
2.5V LVCMOS  
3.3V LVTTL  
2.05[32,34]  
ns  
tHD  
Data Input Hold Time after C Rise  
0.50  
1.80[32,34]  
ns  
ns  
tSAC  
Address & Control Input Set-up  
Time to C Rise  
HSTL  
1.8V LVCMOS  
2.5V LVCMOS  
3.3V LVTTL  
2.05[32,34]  
0.70  
ns  
tHAC  
tOE  
Address & Control Input Hold Time after C Rise  
Output Enable to Data Valid  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5.50[32,34]  
[31]  
tOLZ  
OE to Low Z  
1.00  
1.00  
[31]  
tOHZ  
OE to High Z  
5.50[32,34]  
6.00[32,34]  
7.50[34]  
[35]  
tCD2  
C Rise to DQ Valid for Pipelined Mode (LowSPD = 0)  
C Rise to Address Readback Valid for Pipelined Mode  
DQ Output Hold after C Rise  
tCA2  
[35]  
tDC  
1.00  
1.00  
[35]  
tCCQ  
C Rise to CQ Rise  
6.00[34]  
0.90[32]  
[35]  
tCQHQV  
Echo Clock (CQ) High to Output HSTL  
Valid  
1.8V LVCMOS  
2.5V LVCMOS  
3.3V LVTTL  
1.00[32]  
ns  
ns  
ns  
[35]  
tCQHQX  
Echo Clock (CQ) High to Output HSTL  
Hold 1.8V LVCMOS  
–0.90  
–1.05  
2.5V LVCMOS  
3.3V LVTTL  
[31,35]  
tCKHZ2  
C Rise to DQ Output High Z in Pipelined Mode  
C Rise to DQ Output Low Z in Pipelined Mode  
Address Output Hold after C Rise  
C Rise to Address Output High Z for Pipelined Mode  
C Rise to Address Output Low Z  
C Rise to CNTINT Low  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
0.50  
0.50  
1.00  
6.00[32,34]  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
[31,35]  
tCKLZ2  
tAC  
[31]  
tCKHZA2  
7.50[34]  
[31]  
tCKLZA  
tSCINT  
tRCINT  
tSINT  
tRINT  
tBSY  
4.50[34]  
4.50[34]  
8.50[34]  
8.50[34]  
4.50[34]  
C Rise to CNTINT High  
C Rise to INT Low  
C Rise to INT High  
C Rise to BUSY Valid  
Table 18.Master Reset Timing  
–200[27]  
Min. Max.  
–167[27]  
Min. Max.  
–133  
Parameter  
tPUP  
tRS  
Description  
Min.  
Max.  
Unit  
ms  
Power-up Time  
1
5
1
5
1
5
Master Reset Pulse Width  
cycles  
Document #: 38-06072 Rev. *I  
Page 29 of 53  
FullFlex  
Table 18.Master Reset Timing  
–200[27]  
–167[27]  
–133  
Max.  
Parameter  
tRSR  
tRSF  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Unit  
cycles  
ns  
Master Reset Recovery Time  
Master Reset to Outputs Inactive/Hi-Z  
Master Reset Release to Port Ready  
C Rise to Port Ready  
5
5
5
12  
15  
18  
[37]  
tRDY  
tCORDY  
1024  
8[34]  
1024  
9.5[34]  
1024  
11[34]  
cycles  
ns  
[38]  
Table 19.JTAG Timing  
–200[27]  
–167[27]  
–133  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
MHz  
ns  
fJTAG  
tTCYC  
tTH  
JTAG TAP Controller Frequency  
TCK Cycle Time  
20  
20  
20  
50  
20  
20  
10  
10  
10  
10  
50  
20  
20  
10  
10  
10  
10  
50  
20  
20  
10  
10  
10  
10  
TCK High Time  
ns  
tTL  
TCK Low Time  
ns  
tTMSS  
tTMSH  
tTDIS  
tTDIH  
tTDOV  
tTDOX  
tJXZ  
TMS Set-up to TCK Rise  
TMS Hold to TCK Rise  
TDI Set-up to TCK Rise  
TDI Hold to TCK Rise  
TCK Low to TDO Valid  
TCK Low to TDO Invalid  
TCK Low to TDO hi-Z  
TCK Low to TDO Active  
ns  
ns  
ns  
ns  
10  
10  
10  
ns  
0
0
0
ns  
15  
15  
15  
15  
15  
15  
ns  
tJZX  
ns  
Notes:  
37. READY is a wired OR capable output with a weak pull-down. For a decreased falling delay, connect a 250 resistor to VSS.  
38. Add this propagation delay after t for all Master Reset Operations  
RDY  
Document #: 38-06072 Rev. *I  
Page 30 of 53  
FullFlex  
Switching Waveforms  
JTAG Timing  
tTH  
tTL  
Test Clock  
TCK  
tTCYC  
tTMSS  
tTMSH  
Test Mode Select  
TMS  
tTDIS  
tTDIH  
Test Data-In  
TDI  
Test Data-Out  
TDO  
tTDOX  
tTDOV  
Master Reset[37]  
~
~
V
CORE  
t
t
RS  
PUP  
MRST  
C
~
t
t
RDY  
CORDY  
~
~
t
READY  
RSF  
All Address  
& Data  
t
RSR  
All Other  
Inputs  
~
Document #: 38-06072 Rev. *I  
Page 31 of 53  
FullFlex  
Switching Waveforms (continued)  
READ Cycle for Pipelined Mode, DDRON = LOW  
t
CYC  
C
t
t
HAC  
SAC  
R/W  
A
A
A
A
A
A
A
n+6  
n
n+1  
x
n+2  
n
n+3  
n+4  
n+5  
A
2 pipelined stages  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
n+4  
x-1  
n+1  
n+2  
n+3  
DQ  
t
DC  
t
CD  
WRITE Cycle for Pipelined and Flow-through Modes, DDRON = LOW  
t
CYC  
C
R/W  
A
A
A
A
A
A
A
n+6  
n
n+1  
n+2  
n+3  
n+4  
n+5  
A
2 pipelined stages  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
n+5  
n+6  
DQ  
n
n+1  
n+3  
n+4  
n+2  
tSD tHD  
Document #: 38-06072 Rev. *I  
Page 32 of 53  
FullFlex  
Switching Waveforms (continued)  
READ with Address Counter Advance for Pipelined Mode, DDRON = LOW  
t
CYC  
C
A
A
n
Internal  
Address  
A
A
n+1  
A
A
n
n+2  
n+3  
ADS  
CNTEN  
DQ  
DQ  
DQ  
DQ  
DQ  
n+1  
x-1  
x
n
DQ  
DQ  
n+3  
n+2  
READ with Address Counter Advance for Flow-through Mode, DDRON = LOW  
tCYC  
C
tSAC tHAC  
A
An  
ADS  
CNTEN  
DQ  
tSAC tHAC  
tCD1  
DQx  
DQn  
DQn + 1  
DQn + 2  
DQn + 3  
DQn + 4  
tDC  
READ EXTERNAL ADDRESS  
READ W ITH COUNTER  
COUNTER HOLD  
READ W ITH COUNTER  
Document #: 38-06072 Rev. *I  
Page 33 of 53  
FullFlex  
Switching Waveforms (continued)  
Mailbox Interrupt Output, DDRON = LOW  
tCYC  
C
L
AL  
AMAX  
R/WL  
DQL  
INTR  
tSINT  
tRINT  
CR  
AMAX  
AR  
R/WR  
DQR  
DQMAX  
Document #: 38-06072 Rev. *I  
Page 34 of 53  
FullFlex  
Switching Waveforms (continued)  
Port-to-Port WRITE–READ for Pipelined Mode, DDRON = LOW  
t
CYC  
Left Port  
C
L
A
A
L
n
R/W  
DQ  
L
DQ  
L
n
Right Port  
t
CCS  
C
R
t
CYC  
A
A
R
n
R/W  
R
t
t
SAC HAC  
DQ  
DQ  
R
n
t
t
DC  
CD2  
Chip Enable READ for Pipelined Mode, DDRON = LOW  
t
CYC  
C
CE0  
CE1  
R/W  
A
t
t
SAC HAC  
A
A
A
A
A
A
A
n+6  
n
n+1  
n+2  
n+3  
n+4  
n+5  
DQ  
DQ  
DQ  
n+3  
n
t
t
CKLZ2  
t
CKHZ2  
CD2  
Document #: 38-06072 Rev. *I  
Page 35 of 53  
FullFlex  
Switching Waveforms (continued)  
OE Controlled WRITE for Pipelined Mode, DDRON = LOW  
t
CYC  
C
A
A
A
A
A
A
A
A
n+3  
x+1  
x+2  
x+3  
n
n+1  
n+2  
R/W  
OE  
t
OHZ  
DQ  
x+1  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
n+3  
x-1  
x
n
n+1  
n+2  
DQ  
OE Controlled WRITE for Flow-through Mode, DDRON = LOW  
t
CYC  
C
A
A
A
A
A
A
A
A
n+3  
x+1  
x+2  
x+3  
n
n+1  
n+2  
R/W  
OE  
tOHZ  
DQ  
x+2  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
n+3  
DQ  
x
x+1  
n
n+1  
n+2  
Document #: 38-06072 Rev. *I  
Page 36 of 53  
FullFlex  
Switching Waveforms (continued)  
Byte-Enable READ for Pipelined Mode, DDRON = LOW  
tCYC  
C
A
A
A
A
n
n+1  
n+2  
n+3  
A
R/W  
BE7  
BE6  
BE5  
BE4  
BE3  
BE2  
BE1  
BE0  
tCKLZ2  
tCKHZ2  
DQn+1(63:71)  
DQ  
63:71  
DQn+1(54:62)  
DQ  
DQ  
DQ  
54:62  
DQn+2(45:53)  
45:53  
36:44  
DQn+2(36:44)  
DQn+1(27:35)  
DQ  
DQ  
27:35  
DQn+2(18:26)  
18:26  
DQn+3(9:17)  
DQ  
DQ  
9:17  
0:8  
DQn+3(0:8)  
Document #: 38-06072 Rev. *I  
Page 37 of 53  
FullFlex  
Switching Waveforms (continued)  
Port-to-Port WRITE-to-READ for Flow-through Mode, DDRON = LOW  
CL  
R/W L  
tSAC  
tHAC  
NO MATCH  
AL  
MATCH  
tSD  
tHD  
VALID  
DQL  
tCCS  
`
CR  
tCD1  
R/W R  
tHAC  
tSAC  
NO MATCH  
AR  
MATCH  
tCD1  
DQR  
VALID  
VALID  
tDC  
tDC  
BUSY Address Readback for Pipelined and Flow-through Modes, DDRON = CNT/MSK = RET = LOW[39]  
t
CYC  
~
~
C
Internal  
Address  
Amatch+2  
Amatch+3  
Amatch+4  
BUSY  
~
~
CNTEN  
ADS  
~
~
External  
Address  
Amatch  
Pipelined  
tAC  
tCA2  
External  
Amatch  
Address  
Flow-through  
tAC  
tCA1  
Note:  
39. A  
is the matching address which will be reported on the address bus of the losing port. The counter operation selected for reporting the address is “Busy  
match  
Address Readback.”  
Document #: 38-06072 Rev. *I  
Page 38 of 53  
FullFlex  
Switching Waveforms (continued)  
Read Cycle for Flow-through Mode, DDRON = LOW  
tCYC  
C
CE0  
CE1  
tSAC  
tHAC  
BEn  
R/W  
tSAC  
tHAC  
A
An  
An + 1  
An + 2  
An + 3  
tCKHZ1  
tCD1  
tDC  
DQ  
DQn  
DQn + 1  
DQn + 2  
tDC  
tCKLZ1  
tOLZ  
tOHZ  
OE  
tOE  
READ-to-WRITE for Pipelined Mode, DDRON = LOW (OE = VIL)[40, 41, 42]  
tCYC  
tCL  
C
tCH  
A
A
x
A
A
A
n
n+1  
n+2  
tSAC tHAC  
tSAC tHAC  
R/W  
DQ  
DQ  
DQ  
DQ  
x
DQ  
x-2  
x-1  
DQ  
n+2  
DQ  
n+1  
n
tDC  
tCD2  
tCKHZ2  
tSD tHD  
Notes:  
40. When OE = V , the last read operation is allowed to complete before the DQ bus is tri-stated and the user is allowed to drive write data.  
IL  
41. Two dummy writes should be issued to accomplish bus turnaround. The third instruction is the first valid write.  
42. Chip enable or all byte enables should be held inactive during the two dummy writes to avoid data corruption.  
Document #: 38-06072 Rev. *I  
Page 39 of 53  
FullFlex  
Switching Waveforms (continued)  
READ-to-WRITE for Pipelined Mode, DDRON = LOW (OE Controlled)[43, 44]  
tCYC  
C
A
A
A
A
A
A
A
n+3  
x
x+1  
x+2  
n
n+1  
n+2  
A
tSAC tHAC  
R/W  
OE  
DQ  
tOHZ  
tSD tHD  
DQ  
x
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
n+3  
x-2  
x-1  
n
n+1  
n+2  
READ-to-WRITE-to-READ for DDR, DDRON = HIGH[40,41,45,46]  
tCH tCL  
C
tCYC  
C
tSAC  
tCHCH tCHCH  
tHAC  
A
A
A
n+2  
A
x
n
A
n+1  
tSAC tHAC  
R/W  
DQ  
tCKHZ  
DQn[1] DQn[0]  
DQx-2[0]  
DQ [0]  
DQ [0]  
n+2  
DQ [1]  
DQ [0]  
n+1  
DQ [1]  
x-1  
x
DQ [0]  
x
x-1  
DQ [1]  
DQ [1]  
n+1  
n+2  
DQ [1]  
n+2  
tCD  
tDC  
tSD tHD  
Notes:  
43. OE should be deasserted and t  
allowed to elapse before the first write operation is issued.  
OHZ  
44. Any write scheduled to complete after OE is deasserted will be preempted.  
45. The address should be held constant during the two dummy writes and first valid write to avoid data corruption.  
46. D[1]/Q [1] contains data [71:36]; D[0]/Q[0] contains data [35:0].  
Document #: 38-06072 Rev. *I  
Page 40 of 53  
FullFlex  
Switching Waveforms (continued)  
Read-to-Write-to-Read for Flow-through Mode, DDRON = LOW (OE = LOW)  
tCYC  
C
tSAC tHAC  
CE0  
CE1  
BEn  
tSAC  
tHAC  
R/W  
A
An  
An + 1  
An + 2  
An + 2  
An + 3  
An + 4  
tSD  
tHD  
DQIN  
DQn + 2  
tCD1  
tCD1  
tCD1  
tCD1  
DQn  
tDC  
DQOUT  
DQn + 1  
DQn + 3  
tCKHZ1  
tCKLZ1  
tDC  
READ  
NOP  
W RITE  
READ  
Document #: 38-06072 Rev. *I  
Page 41 of 53  
FullFlex  
Switching Waveforms (continued)  
Read-to-Write-to-Read for Flow-through Mode, DDRON = LOW (OE Controlled)  
tCYC  
C
tHAC  
tSAC  
CE0  
CE1  
BEn  
tHAC  
tSAC  
R/W  
A
An  
An + 1  
An + 2  
tHD  
An + 3  
An + 4  
An + 5  
tSD  
DQIN  
DQn + 2  
DQn + 3  
tOE  
tCD1  
tCD1  
tDC  
tCD1  
DQOUT  
DQn  
DQn + 4  
tDC  
tCKLZ1  
tOHZ  
OE  
READ  
W RITE  
READ  
Document #: 38-06072 Rev. *I  
Page 42 of 53  
FullFlex  
Switching Waveforms (continued)  
BUSY Timing, WRITE-WRITE Collision for Pipelined and Flow-through Modes, Clock Timing Violates tCCS. (Flag Both  
Ports)  
Port A  
C
A
R/W  
BUSY  
C
tBSY  
tBSY  
< tCCS  
Port B  
A
R/W  
tBSY  
tBSY  
BUSY  
BUSY Timing, WRITE-WRITE Collision for Pipelined and Flow-through Modes, Clock Timing Meets tCCS. (Flag Losing  
Port)  
Losing Port  
C
A
R/W  
tccs  
tBSY  
BUSY  
tBSY  
Winning Port  
C
A
Match  
R/W  
BUSY  
Document #: 38-06072 Rev. *I  
Page 43 of 53  
FullFlex  
Switching Waveforms (continued)  
Read with Echo Clock for Pipelined Mode (CQEN = HIGH)  
C
t
t
HAC  
SAC  
R/W  
A
A
A
A
A
A
A
A
n
n+1  
n+2  
n+3  
n+4  
n+5  
n+6  
CQ0  
CQ0  
CQ1  
t
CCQ  
CQ1  
DQ  
t
CQHQX  
t
CQHQV  
DQ  
DQ  
DQ  
DQ  
DQ  
n+4  
DQ  
DQ  
x
n
n+1  
n+2  
n+3  
x-1  
Document #: 38-06072 Rev. *I  
Page 44 of 53  
FullFlex  
Ordering Information  
256K  
×
72/256K  
×
36  
× 2 (18 Mbit) 1.8V/1.5V Synchronous CYDD18S72V18 Dual-Port SRAM (SDR and DDR I/O)  
Speed  
(MHz)  
Package  
Name  
Operating  
Range  
Ordering Code  
Package Type  
200 CYDD18S72V18-200BGXC BY484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Lead-Free) Commercial  
CYDD18S72V18-200BGC BG484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Leaded) Commercial  
167 CYDD18S72V18-167BGXC BY484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Lead-Free) Commercial  
CYDD18S72V18-167BGC  
CYDD18S72V18-167BGXI  
CYDD18S72V18-167BGI  
BG484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Leaded) Commercial  
BY484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Lead-Free) Industrial  
BG484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Leaded) Industrial  
128K  
×
72/128K  
×
36  
× 2 (9 Mbit) 1.8V/1.5V Synchronous CYDD09S72V18 Dual-Port SRAM (SDR and DDR I/O)  
Speed  
(MHz)  
Package  
Name  
Operating  
Range  
Ordering Code  
Package Type  
200 CYDD09S72V18-200BGXC BY484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Lead-Free) Commercial  
CYDD09S72V18-200BGC BG484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Leaded) Commercial  
167 CYDD09S72V18-167BGXC BY484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Lead-Free) Commercial  
CYDD09S72V18-167BGC  
CYDD09S72V18-167BGXI  
CYDD09S72V18-167BGI  
BG484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Leaded) Commercial  
BY484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Lead-Free) Industrial  
BG484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Leaded) Industrial  
64K  
×
72/64K  
×
36  
×
2 (4 Mbit) 1.8V/1.5V Synchronous CYDD04S72V18 Dual-Port SRAM (SDR and DDR I/O)  
Package  
Speed  
(MHz)  
Operating  
Range  
Ordering Code  
Name  
Package Type  
200 CYDD04S72V18-200BGXC BY484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Lead-Free) Commercial  
CYDD04S72V18-200BGC BG484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Leaded) Commercial  
167 CYDD04S72V18-167BGXC BY484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Lead-Free) Commercial  
CYDD04S72V18-167BGC  
CYDD04S72V18-167BGXI  
CYDD04S72V18-167BGI  
BG484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Leaded) Commercial  
BY484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Lead-Free) Industrial  
BG484A 484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (Leaded) Industrial  
1024K  
×
36  
×
2 (36 Mbit) 1.8V/1.5V Synchronous CYDD36S36V18 Dual-Port SRAM (DDR only I/O)  
Package  
Speed  
(MHz)  
Operating  
Range  
Ordering Code  
Name  
Package Type  
167 CYDD36S36V18-167BGXC BY484S 484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Lead-Free) Commercial  
CYDD36S36V18-167BGC BG484S 484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Leaded) Commercial  
133 CYDD36S36V18-133BGXC BY484S 484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Lead-Free) Commercial  
CYDD36S36V18-133BGC  
CYDD36S36V18-133BGXI  
CYDD36S36V18-133BGI  
BG484S 484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Leaded) Commercial  
BY484S 484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Lead-Free) Industrial  
BG484S 484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Leaded) Industrial  
Document #: 38-06072 Rev. *I  
Page 45 of 53  
FullFlex  
Ordering Information (continued)  
512K  
×
36  
×
2 (18 Mbit) 1.8V/1.5V Synchronous CYDD18S36V18 Dual-Port SRAM (DDR only I/O)  
Package  
Speed  
(MHz)  
Operating  
Range  
Ordering Code  
Name  
Package Type  
200 CYDD18S36V18-200BBXC BW256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Lead-Free) Commercial  
CYDD18S36V18-200BBC BB256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Leaded) Commercial  
167 CYDD18S36V18-167BBXC BW256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Lead-Free) Commercial  
CYDD18S36V18-167BBC  
CYDD18S36V18-167BBXI  
CYDD18S36V18-167BBI  
BB256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Leaded) Commercial  
BW256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Lead-Free) Industrial  
BB256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Leaded) Industrial  
256K  
×
36  
×
2 (9 Mbit) 1.8V/1.5V Synchronous CYDD09S36V18 Dual-Port SRAM (DDR only I/O)  
Package  
Speed  
(MHz)  
Operating  
Range  
Ordering Code  
Name  
Package Type  
200 CYDD09S36V18-200BBXC BW256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free) Commercial  
CYDD09S36V18-200BBC BB256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded) Commercial  
167 CYDD09S36V18-167BBXC BW256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free) Commercial  
CYDD09S36V18-167BBC  
CYDD09S36V18-167BBXI  
CYDD09S36V18-167BBI  
BB256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded) Commercial  
BW256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free) Industrial  
BB256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded) Industrial  
128K × 36 × 2 (4 Mbit) 1.8V/1.5V Synchronous CYDD04S36V18 Dual-Port SRAM (DDR only I/O)  
Speed  
(MHz)  
Package  
Name  
Operating  
Range  
Ordering Code  
Package Type  
200 CYDD04S36V18-200BBXC BW256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free) Commercial  
CYDD04S36V18-200BBC BB256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded) Commercial  
167 CYDD04S36V18-167BBXC BW256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free) Commercial  
CYDD04S36V18-167BBC  
CYDD04S36V18-167BBXI  
CYDD04S36V18-167BBI  
BB256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded) Commercial  
BW256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free) Industrial  
BB256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded) Industrial  
2048K  
×
18  
×
2 (36 Mbit) 1.8V/1.5V Synchronous CYDD36S18V18 Dual-Port SRAM (DDR only I/O)  
Package  
Speed  
(MHz)  
Operating  
Range  
Ordering Code  
Name  
Package Type  
167 CYDD36S18V18-167BGXC BY484S 484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Lead-Free) Commercial  
CYDD36S18V18-167BGC BG484S 484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Leaded) Commercial  
133 CYDD36S18V18-133BGXC BY484S 484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Lead-Free) Commercial  
CYDD36S18V18-133BGC  
CYDD36S18V18-133BGXI  
CYDD36S18V18-133BGI  
BG484S 484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Leaded) Commercial  
BY484S 484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Lead-Free) Industrial  
BG484S 484-ball Grid Array 27 mm x 27 mm with 1.0 mm pitch (Leaded) Industrial  
1024K  
×
18  
×
2 (18 Mbit) 1.8V/1.5V Synchronous CYDD18S18V18 Dual-Port SRAM (DDR only I/O)  
Package  
Speed  
(MHz)  
Operating  
Range  
Ordering Code  
Name  
Package Type  
200 CYDD18S18V18-200BBXC BW256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Lead-Free) Commercial  
CYDD18S18V18-200BBC BB256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Leaded) Commercial  
167 CYDD18S18V18-167BBXC BW256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Lead-Free) Commercial  
CYDD18S18V18-167BBC  
CYDD18S18V18-167BBXI  
CYDD18S18V18-167BBI  
BB256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Leaded) Commercial  
BW256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Lead-Free) Industrial  
BB256C 256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (Leaded) Industrial  
Document #: 38-06072 Rev. *I  
Page 46 of 53  
FullFlex  
Ordering Information (continued)  
512K  
×
18  
×
2 (9 Mbit) 1.8V/1.5V Synchronous CYDD09S18V18 Dual-Port SRAM (DDR only I/O)  
Package  
Speed  
(MHz)  
Operating  
Range  
Ordering Code  
Name  
Package Type  
200 CYDD09S18V18-200BBXC BW256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free) Commercial  
CYDD09S18V18-200BBC BB256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded) Commercial  
167 CYDD09S18V18-167BBXC BW256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free) Commercial  
CYDD09S18V18-167BBC  
CYDD09S18V18-167BBXI  
CYDD09S18V18-167BBI  
BB256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded) Commercial  
BW256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free) Industrial  
BB256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded) Industrial  
256K  
×
18  
×
2 (4 Mbit) 1.8V/1.5V Synchronous CYDD04S18V18 Dual-Port SRAM (DDR only I/O)  
Package  
Speed  
(MHz)  
Operating  
Range  
Ordering Code  
Name  
Package Type  
200 CYDD04S18V18-200BBXC BW256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free) Commercial  
CYDD04S18V18-200BBC BB256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded) Commercial  
167 CYDD04S18V18-167BBXC BW256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free) Commercial  
CYDD04S18V18-167BBC  
CYDD04S18V18-167BBXI  
CYDD04S18V18-167BBI  
BB256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded) Commercial  
BW256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Lead-Free) Industrial  
BB256E 256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (Leaded) Industrial  
Document #: 38-06072 Rev. *I  
Page 47 of 53  
FullFlex  
Package Diagrams  
256-ball Lead-Free FBGA (17 x 17 mm) BW256  
256-ball Leaded FBGA (17 x 17 mm) BB256  
TOP VIEW  
BOTTOM VIEW  
Ø0.05 M C  
Ø0.25 M C A B  
PIN 1 CORNER  
Ø0.45 0.05(256X)ꢀCPꢁD DEVICES (37K & 39K)  
PIN 1 CORNER  
+0.10  
Ø0.50 (256X)ꢀAꢁꢁ OTHER DEVICES  
ꢀ0.05  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
A
B
C
D
E
F
F
G
H
J
G
H
J
K
K
M
N
P
R
T
M
N
P
R
T
1.00  
B
7.50  
15.00  
A
17.00 0.10  
A
SEATING PꢁANE  
0.20(4X)  
A1  
C
REFERENCE JEDEC MOꢀ192  
A1 0.36 0.56  
1.40 MAX. 1.70 MAX.  
51-85108-*F  
A
Document #: 38-06072 Rev. *I  
Page 48 of 53  
FullFlex  
Package Diagrams (continued)  
256-ball Lead-Free FBGA (19 x 19 x 1.7 mm) BW256  
256-ball Leaded FBGA (19 x 19 x 1.7 mm) BB256  
BOTTOM VIEW  
TOP VIEW  
A1 CORNER  
Ø0.05 M C  
Ø0.25 M C A B  
Ø0.50 (256 X)  
1
3
PIN A1 CORNER  
13  
13  
1
9
11  
15  
15  
11  
9
8
5
5
3
7
7
12  
14  
16  
16  
14  
12  
2
6
10  
10  
6
2
4
8
4
A
B
C
D
E
A
B
C
D
E
F
F
G
H
J
G
H
J
K
K
M
N
P
R
T
M
N
P
R
T
1.00 (REF)  
ꢀBꢀ  
15.00 (REF)  
19.00 +/ꢀ 0.10  
ꢀAꢀ  
0.15(4X)  
Package Weight ꢀ 1.1 grams  
Jedec Outline ꢀ Design Guide 4.14  
ꢀCꢀ  
SEATING PꢁANE  
001-00915-*A  
Document #: 38-06072 Rev. *I  
Page 49 of 53  
FullFlex  
Package Diagrams (continued)  
484-ball Lead-Free PBGA (23 mm x 23 mm x 2.03 mm) BY484  
484-ball Leaded PBGA (23 mm x 23 mm x 2.03 mm) BG484  
Ø0.50~Ø0.70(484X)  
PIN #1 CORNER  
9
1
11  
7
3
1
3
5
7
9
21  
20 22  
13  
5
11  
13 15 17 19  
10 12 14 16 18  
21  
17 15  
19  
2
4
6
8
22 20 18 16 14 12 10  
8
6
4
2
Ø1.00(3X) REF.  
A
B
A
B
C
C
D
E
D
E
F
F
G
H
J
G
H
J
K
K
M
N
P
M
N
P
R
R
T
T
U
V
U
V
W
Y
W
Y
AA  
AB  
AA  
AB  
1.00  
ꢀBꢀ  
21.00  
3.20*45°(4x)  
20.00 REF.  
ꢀAꢀ  
23.00 0.20  
0.20(4X)  
30° TYP.  
Package Weight ꢀ 2.0 grams  
Jedec Outline ꢀ Design Guide 4.14  
ꢀCꢀ  
SEATING PꢁANE  
51-85218-**  
Document #: 38-06072 Rev. *I  
Page 50 of 53  
FullFlex  
Package Diagrams (continued)  
484-ball Lead-Free PBGA (27 mm x 27 mm x 2.33 mm) BY484S  
484-ball Leaded PBGA (27 mm x 27 mm x 2.33 mm) BG484S  
001-07825-**  
FullFlex is a trademark of Cypress Semiconductor Corporation. All product and company names mentioned in this document are  
trademarks of their respective holders.  
Document #: 38-06072 Rev. *I  
Page 51 of 53  
© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
FullFlex  
Document History Page  
Document Title: FullFlex™ Synchronous DDR Dual-Port SRAM  
Document Number: 38-06072  
Issue  
Date  
Orig. of  
Change  
REV.  
**  
ECN NO.  
Description of Change  
274729 See ECN  
294239 See ECN  
SPN  
SPN  
New data sheet  
*A  
Updated VIM section  
Added notes 7  
Added timing for 100 MHz with DLL Disabled  
Removed tPS  
*B  
*C  
301331 See ECN  
318834 See ECN  
SPN  
SPN  
Added note 19  
Updates Selectable I/O Standard Section  
Updated Block Diagram  
Updated 484 pinouts, changed pins D11, W12, K3, K20  
Added note 4 - Leaving pin DNU disables VIM  
Updated 256 pinout, changed pins C10, G5, N7, N10  
Added note 18, 19, 20, 21  
Updated parameters in table 16  
Updated note 1  
*D  
386692 See ECN  
SPN  
Updated ordering information  
Added statement about no echo clocks for flow-through mode  
Updated electrical characteristics  
Added note 27 (timing for x18 devices)  
Updated address readback latency to 2 cycles for DDR mode  
Updated DDR timing numbers for tCD, tDC, tCCQ, tCQHQV, tCQHQX, tCKHZ, tCKLZ  
Updated input edge rate  
Removed -133 speed bin electrical characteristics and timing columns  
Updated Table 5 on collision detection to be the same as the one found in the EROS  
Added description of busy readback in collision detection section  
Changed dummy write descriptions  
Updated PORTSTD[1:0] connection details  
Updated ZQ pins connection details  
Updated address count notes  
Updated note 17, BO to BEO  
Added power supply requirements to MRST and VC_SEL  
Updated 484 ball package  
Changed name from FLEX72-E, FLEX36-E, AND FLEX18-E to FullFlex72,  
FullFlex36, and FullFlex18  
*E  
401662 See ECN  
KGH  
Updated READY description to include Wired OR note  
Updated master reset to include wired OR note for READY  
Updated electrical characteristics to include IOH and IOL values  
Updated electrical characteristics to include READY  
Added IIX3  
Updated maximum input capacitance  
Added note 29  
Updated Pin Definitions for CQ0, CQ0, CQ1, and CQ1  
Changed voltage name from VDDQ to VDDIO  
Changed voltage name from VDD to VCORE  
Updated the Package Type for the CYDXXS36V18 parts  
Updated the Package Type for the CYDXXS18V18 parts  
Included the Package Diagram for the 256-Ball FBGA (19 x 19 mm) BW256  
Included an OE Controlled Write for Flow-through Mode Switching Waveform  
Included a Read with Echo Clock Switching Waveform  
Included a Unit column for Table 5  
Removed Switching Characteristic tCA from chart  
Included tOHZ in Switching Waveform OE Controlled Write for Pipelined Mode  
Included tCKLZ2 in Waveform Read-to-Write-to-Read for Flow-through Mode  
Updated AC Test Load and Waveforms  
Included FullFlex36 DDR 484-ball BGA Pinout (Top View)  
Included FullFlex18 DDR 484-ball BGA Pinout (Top View) Included Timing  
Parameter tCORDY  
Document #: 38-06072 Rev. *I  
Page 52 of 53  
FullFlex  
Document Title: FullFlex™ Synchronous DDR Dual-Port SRAM  
Document Number: 38-06072  
Issue  
Date  
Orig. of  
Change  
REV.  
ECN NO.  
Description of Change  
*F  
458129 SEE ECN  
YDT  
Changed ordering information with lead-free part numbers  
Removed VC_SEL  
Added I/O and core voltage adders  
Removed references to bin drop for LVTTL/2.5V LVCMOS and 1.5V core modes  
Updated Cin and Cout  
Updated ICC, ISB1, ISB2 and ISB3 tables  
Updated device widths information on first page  
Updated busy address read back timing diagram  
Added HTSL input waveform  
Removed HSTL (AC) from DC tables  
Added 484-ball 27mmx27mmx2.33mm PBGA package  
*G  
470037 SEE ECN  
YDT  
Changed VOL of 1.8V LVCMOS to 0.45V and VOH to VDDIO - 0.45V  
Updated tRSF  
VREF is left DNU when HSTL is not used  
Changed LVTTL/LVCMOS adder for DDR  
Formatted pin description table  
Changed VDDIO pins for 36Mx36 and 36Mx18  
Changed 36Mx72 JTAG IDCODE  
*H  
*I  
499993 SEE ECN  
627539 SEE ECN  
YDT  
QSL  
DLL Change, added Clock Input Cycle to Cycle Jitter  
Modified DLL description  
Changed Input Capaciance Table  
Changed tCCS number  
Added note 34  
change all NC to DNU  
corrected switching waveform for (CQEN = High) from both Pipeline and  
Flowthrough mode to only pipeline mode  
Added note 17 to DDRON restriction  
Modified Master Reset Description  
Created a new table for flow-through mode only  
changed note 29 description  
Modified tSD, tHD, tSBE, tHBE, tCD, tDC, tCCQ, tCQHQV, tCQHQX, tCKHZ, and  
tCKLZ timing parameter  
Removed all instances of CYDD36S72V18  
Document #: 38-06072 Rev. *I  
Page 53 of 53  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY