CYDM128B16-40BVXC [CYPRESS]

Dual-Port SRAM, 8KX16, 40ns, CMOS, PBGA100, 6 X 6 MM, 1 MM HEIGHT, 0.50 MM PITCH, LEAD FREE, MO-195C, VFBGA-100;
CYDM128B16-40BVXC
型号: CYDM128B16-40BVXC
厂家: CYPRESS    CYPRESS
描述:

Dual-Port SRAM, 8KX16, 40ns, CMOS, PBGA100, 6 X 6 MM, 1 MM HEIGHT, 0.50 MM PITCH, LEAD FREE, MO-195C, VFBGA-100

静态存储器 内存集成电路
文件: 总25页 (文件大小:517K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CYDM256B16  
CYDM128B16  
CYDM064B16  
1.8V 4K/8K/16K x 16  
MoBL® Dual-Port Static RAM  
• Full asynchronous operation  
• Automatic power-down  
Features  
• True dual-ported memory cells that allow simultaneous  
• Pin select for Master or Slave  
access of the same memory location  
• Expandable data bus to 32 bits with Master/Slave chip  
• 4/8/16K × 16 organization  
• High-speed access: 40 ns  
• Ultra Low operating power  
— Active: ICC = 15 mA (typical) at 55 ns  
— Active: ICC = 25 mA (typical) at 40 ns  
— Standby: ISB3 = 2 µA (typical)  
select when using more than one device  
• On-chip arbitration logic  
• Semaphores included to permit software handshaking  
between ports  
• Input Read Registers and Output Drive Registers  
• INT flag for port-to-port communication  
• Separate upper-byte and lower-byte control  
• Industrial temperature ranges  
• Small footprint: Available in a 6x6 mm 100-pin  
Lead(Pb)-free fBGA  
• Port-independent 1.8V, 2.5V, and 3.0V I/Os  
Selection Guide for VCC = 1.8V  
CYDM256B16, CYDM128B16,  
CYDM256B16, CYDM128B16,  
CYDM064B16  
-40  
CYDM064B16  
-55  
Port I/O Voltages (P1-P2)  
Maximum Access Time  
Typical Operating Current  
Typical Standby Current for ISB1  
Typical Standby Current for ISB3  
1.8V-1.8V  
1.8V-1.8V  
Unit  
ns  
mA  
µA  
40  
25  
2
55  
15  
2
2
2
µA  
Selection Guide for VCC = 2.5V  
CYDM256B16, CYDM128B16,  
CYDM256B16, CYDM128B16,  
CYDM064B16  
-40  
CYDM064B16  
-55  
Port I/O Voltages (P1-P2)  
Maximum Access Time  
Typical Operating Current  
Typical Standby Current for ISB1  
Typical Standby Current for ISB3  
2.5V-2.5V  
2.5V-2.5V  
Unit  
ns  
mA  
µA  
40  
39  
6
55  
28  
6
4
4
µA  
Selection Guide for VCC = 3.0V  
CYDM256B16, CYDM128B16,  
CYDM256B16, CYDM128B16,  
CYDM064B16  
-40  
CYDM064B16  
-55  
Port I/O Voltages (P1-P2)  
Maximum Access Time  
Typical Operating Current  
Typical Standby Current for ISB1  
Typical Standby Current for ISB3  
3.0V-3.0V  
3.0V-3.0V  
Unit  
ns  
mA  
µA  
40  
49  
7
55  
42  
7
6
6
µA  
Cypress Semiconductor Corporation  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Document #: 001-00217 Rev. *D  
Revised February 15, 2006  
CYDM256B16  
CYDM128B16  
CYDM064B16  
I/O[15:0]R  
I/O[15:0]L  
UBR  
LBR  
UBL  
LBL  
IO  
IO  
Control  
Control  
16K X 16  
Dual Ported Array  
Address Decode  
Address Decode  
A[13:0]L  
CE L  
A [13:0]R  
CE R  
Interrupt  
OE L  
R/W L  
SEML  
OE  
Arbitration  
R/WRR  
SEMR  
Semaphore  
BUSY R  
BUSY L  
M/S  
INTL  
Mailboxes  
INTR  
Input Read  
Register and  
Output Drive  
Register  
CEL  
OEL  
R/WL  
CE R  
OE R  
R/W R  
IRR0 ,IRR1  
ODR0 - ODR4  
SFEN  
Figure 1. Top Level Block Diagram[1, 2]  
Notes:  
1. A –A for 4K devices; A –A for 8K devices; A –A for 16K devices.  
0
11  
0
12  
0
13  
2. BUSY is an output in master mode and an input in slave mode.  
Document #: 001-00217 Rev. *D  
Page 2 of 25  
 
 
CYDM256B16  
CYDM128B16  
CYDM064B16  
Pin Configurations [3, 4, 5, 6, 7]  
100-Ball 0.5-mm Pitch BGA  
Top View  
CYDM064B16/CYDM128B16/CYDM256B16  
1
2
3
4
5
6
7
8
9
10  
A5R  
A3R  
A0R  
A8R  
A11R  
UBR  
VSS  
SEMR I/O15R I/O12R I/O10R  
VSS  
A
B
C
D
E
F
A4R  
A1R  
A7R  
A2R  
A9R  
A6R  
CER  
LBR  
A10R  
VSS  
R/WR  
OER  
I/O14R I/O11R  
I/O13R I/O8R  
VDDIOR I/O9R  
I/O6R  
VSS  
IRR1[6]  
I/O7R  
I/O5R  
[3]  
ODR4 ODR2 BUSYR INTR  
A12R  
I/O2R  
VSS  
VSS  
M/S  
ODR3  
INTL  
A1L  
VSS  
VSS  
I/O4R VDDIOR I/O1R  
I/O3R I/O0R  
I/O11L I/O12L I/O14L I/O13L  
SFEN ODR1 BUSYL  
VCC  
I/O15L VDDIOL  
[3]  
ODR0  
A0L  
A2L  
A4L  
A7L  
A5L  
A9L  
A12L  
OEL  
CEL  
VCC  
I/O3L  
I/O1L  
VSS  
G
H
J
NC[7]  
I/O6L  
NC[7]  
I/O8L  
LBL  
VDDIOL  
I/O4L  
I/O10L  
I/O9L  
IRR0[5]  
A3L  
A10L  
A6L  
A8L  
A11L  
UBL  
SEML R/WL  
I/O0L  
I/O2L  
I/O5L  
I/O7L  
K
1
2
3
4
5
6
7
8
9
10  
Notes:  
3. A12L and A12R are NC pins for CYDM064B16.  
4. IRR functionality is not supported for the CYDM256B16 device.  
5. This pin is A13L for CYDM256B16 device.  
6. This pin is A13R for CYDM256B16 device.  
7. Leave this pin unconnected. No trace or power component can be connected to this pin.  
Document #: 001-00217 Rev. *D  
Page 3 of 25  
 
 
 
CYDM256B16  
CYDM128B16  
CYDM064B16  
Pin Definitions  
Left Port  
CEL  
Right Port  
CER  
Description  
Chip Enable  
R/WL  
OEL  
R/WR  
OER  
Read/Write Enable  
Output Enable  
A0L–A13L  
I/O0L–I/O15L  
SEML  
UBL  
LBL  
A0R–A13R  
I/O0R–I/O15R  
SEMR  
UBR  
LBR  
INTR  
Address (A0–A11 for 4K devices; A0–A12 for 8K devices; A0–A13 for 16K devices).  
Data Bus Input/Output for x16 devices  
Semaphore Enable  
Upper Byte Select (I/O8–I/O15).  
Lower Byte Select (I/O0–I/O7).  
Interrupt Flag  
INTL  
BUSYL  
BUSYR  
Busy Flag  
IRR0, IRR1  
Input Read Register for CYDM064B16, CYDM128B16.  
A13L, A13R for CYDM256B16.  
ODR0-ODR4  
SFEN  
M/S  
Output Drive Register; These outputs are Open Drain.  
Special Function Enable  
Master or Slave Select  
VCC  
Core Power  
GND  
Ground  
VDDIOL  
VDDIOR  
NC  
Left Port I/O Voltage  
Right Port I/O Voltage  
No Connect. Leave this pin Unconnected.  
The CYDM256B16, CYDM128B16, CYDM064B16 are  
available in 100-ball 0.5-mm pitch Ball Grid Array (BGA)  
Functional Description  
The CYDM256B16, CYDM128B16, CYDM064B16 are  
low-power CMOS 4K, 8K,16K x 16 dual-port static RAMs.  
Arbitration schemes are included on the devices to handle  
situations when multiple processors access the same piece of  
data. Two ports are provided, permitting independent,  
asynchronous access for reads and writes to any location in  
memory. The devices can be utilized as standalone 16-bit  
dual-port static RAMs or multiple devices can be combined in  
order to function as a 32-bit or wider master/slave dual-port  
static RAM. An M/S pin is provided for implementing 32-bit or  
wider memory applications without the need for separate  
master and slave devices or additional discrete logic. Appli-  
cation areas include interprocessor/multiprocessor designs,  
packages.  
Power Supply  
The core voltage (VCC) can be 1.8V, 2.5V or 3.3V, as long as  
it is lower than or equal to the I/O voltage.  
Each port can operate on independent I/O voltages. This is  
determined by what is connected to the VDDIOL and VDDIOR  
pins. The supported I/O standards are 1.8V/2.5V LVCMOS  
and 3.0V LVTTL.  
Write Operation  
Data must be set up for a duration of tSD before the rising edge  
of R/W in order to guarantee a valid write. A write operation is  
controlled by either the R/W pin (see Write Cycle No. 1  
waveform) or the CE pin (see Write Cycle No. 2 waveform).  
Required inputs for non-contention operations are summa-  
rized in Table 1.  
If a location is being written to by one port and the opposite  
port attempts to read that location, a port-to-port flowthrough  
delay must occur before the data is read on the output;  
otherwise the data read is not deterministic. Data will be valid  
on the port tDDD after the data is presented on the other port.  
communications  
status  
buffering,  
and  
dual-port  
video/graphics memory.  
Each port has independent control pins: Chip Enable (CE),  
Read or Write Enable (R/W), and Output Enable (OE). Two  
flags are provided on each port (BUSY and INT). BUSY  
signals that the port is trying to access the same location  
currently being accessed by the other port. The Interrupt flag  
(INT) permits communication between ports or systems by  
means of a mail box. The semaphores are used to pass a flag,  
or token, from one port to the other to indicate that a shared  
resource is in use. The semaphore logic is comprised of eight  
shared latches. Only one side can control the latch  
(semaphore) at any time. Control of a semaphore indicates  
that a shared resource is in use. An automatic power-down  
feature is controlled independently on each port by a Chip  
Enable (CE) pin.  
Read Operation  
When reading the device, the user must assert both the OE  
and CE pins. Data will be available tACE after CE or tDOE after  
OE is asserted. If the user wishes to access a semaphore flag,  
Document #: 001-00217 Rev. *D  
Page 4 of 25  
CYDM256B16  
CYDM128B16  
CYDM064B16  
then the SEM pin must be asserted instead of the CE pin, and  
OE must also be asserted.  
The inputs will be 1.8V/2.5V LVCMOS or 3.0V LVTTL,  
depending on the core voltage supply (VCC). Refer to Table 3  
for Input Read Register operation.  
Interrupts  
IRR is not available in the CYDM256B16, as the IRR pins are  
The upper two memory locations may be used for message  
passing. The highest memory location (FFF for the  
CYDM064B16, 1FFF for the CYDM128B16, 3FFF for the  
CYDM256B16) is the mailbox for the right port and the  
second-highest memory location (FFE for the CYDM064B16,  
1FFE for the CYDM128B16, 3FFE for the CYDM256B16) is the  
mailbox for the left port. When one port writes to the other  
port’s mailbox, an interrupt is generated to the owner. The  
interrupt is reset when the owner reads the contents of the  
mailbox. The message is user-defined.  
Each port can read the other port’s mailbox without resetting  
the interrupt. The active state of the busy signal (to a port)  
prevents the port from setting the interrupt to the winning port.  
Also, an active busy to a port prevents that port from reading  
its own mailbox and, thus, resetting the interrupt to it.  
used as extra address pins A13L and A13R  
.
Output Drive Register  
The Output Drive Register (ODR) determines the state of up  
to five external binary state devices by providing a path to VSS  
for the external circuit. These outputs are Open Drain.  
The five external devices can operate at different voltages  
(1.5V VDDIO 3.5V) but the combined current cannot exceed  
40 mA (8 mA max for each external device). The status of the  
ODR bits are set using standard write accesses from either  
port to address x0001 with a “1” corresponding to on and “0”  
corresponding to off.  
The status of the ODR bits can be read with a standard read  
access to address x0001. When SFEN = VIL, the ODR is active  
and address x0001 is not available for memory accesses.  
When SFEN = VIH, the ODR is inactive and address x0001 can  
be used for standard accesses.  
If an application does not require message passing, do not  
connect the interrupt pin to the processor’s interrupt request  
input pin. On power up, an initialization program should be run  
and the interrupts for both ports must be read to reset them.  
During reads and writes to ODR DQ<4:0> are valid and  
DQ<15:5> are don’t care. Refer to Table 4 for Output Drive  
Register operation.  
The operation of the interrupts and their interaction with Busy  
are summarized in Table 2.  
Semaphore Operation  
Busy  
The CYDM256B16, CYDM128B16, CYDM064B16 provide  
eight semaphore latches, which are separate from the  
dual-port memory locations. Semaphores are used to reserve  
resources that are shared between the two ports. The state of  
the semaphore indicates that a resource is in use. For  
example, if the left port wants to request a given resource, it  
sets a latch by writing a zero to a semaphore location. The left  
port then verifies its success in setting the latch by reading it.  
After writing to the semaphore, SEM or OE must be  
deasserted for tSOP before attempting to read the semaphore.  
The semaphore value will be available tSWRD + tDOE after the  
rising edge of the semaphore write. If the left port was  
successful (reads a zero), it assumes control of the shared  
resource, otherwise (reads a one) it assumes the right port has  
control and continues to poll the semaphore. When the right  
side has relinquished control of the semaphore (by writing a  
one), the left side will succeed in gaining control of the  
semaphore. If the left side no longer requires the semaphore,  
a one is written to cancel its request.  
Semaphores are accessed by asserting SEM LOW. The SEM  
pin functions as a chip select for the semaphore latches (CE  
must remain HIGH during SEM LOW). A0–2 represents the  
semaphore address. OE and R/W are used in the same  
manner as a normal memory access. When writing or reading  
a semaphore, the other address pins have no effect.  
When writing to the semaphore, only I/O0 is used. If a zero is  
written to the left port of an available semaphore, a one will  
appear at the same semaphore address on the right port. That  
semaphore can now only be modified by the side showing zero  
(the left port in this case). If the left port now relinquishes  
control by writing a one to the semaphore, the semaphore will  
be set to one for both sides. However, if the right port had  
requested the semaphore (written a zero) while the left port  
had control, the right port would immediately own the  
semaphore as soon as the left port released it. Table 5 shows  
sample semaphore operations.  
The CYDM256B16, CYDM128B16, CYDM064B16 provide  
on-chip arbitration to resolve simultaneous memory location  
access (contention). If both ports’ CEs are asserted and an  
address match occurs within tPS of each other, the busy logic  
will determine which port has access. If tPS is violated, one port  
will definitely gain permission to the location, but it is not  
predictable which port will get that permission. BUSY will be  
asserted tBLA after an address match or tBLC after CE is taken  
LOW.  
Master/Slave  
A M/S pin is provided in order to expand the word width by  
configuring the device as either a master or a slave. The BUSY  
output of the master is connected to the BUSY input of the  
slave. This will allow the device to interface to a master device  
with no external components. Writing to slave devices must be  
delayed until after the BUSY input has settled (tBLC or tBLA),  
otherwise, the slave chip may begin a write cycle during a  
contention situation. When tied HIGH, the M/S pin allows the  
device to be used as a master and, therefore, the BUSY line  
is an output. BUSY can then be used to send the arbitration  
outcome to a slave.  
Input Read Register  
The Input Read Register (IRR) captures the status of two  
external input devices that are connected to the Input Read  
pins.  
The contents of the IRR read from address x0000 from either  
port. During reads from the IRR, DQ0 and DQ1 are valid bits  
and DQ<15:2> are don’t care. Writes to address x0000 are not  
allowed from either port.  
Address x0000 is not available for standard memory accesses  
when SFEN = VIL. When SFEN = VIH, address x0000 is  
available for memory accesses.  
Document #: 001-00217 Rev. *D  
Page 5 of 25  
CYDM256B16  
CYDM128B16  
CYDM064B16  
When reading a semaphore, all sixteen data lines output the  
semaphore value. The read value is latched in an output  
register to prevent the semaphore from changing state during  
a write from the other port. If both ports attempt to access the  
semaphore within tSPS of each other, the semaphore will  
definitely be obtained by one side or the other, but there is no  
guarantee which side will control the semaphore. On  
power-up, both ports should write “1” to all eight semaphores.  
I/O and address lines, and control signals (CE, OE, R/W).  
These control pins permit independent access for reads or  
writes to any location in memory. To handle simultaneous  
writes/reads to the same location, a BUSY pin is provided on  
each port. Two Interrupt (INT) pins can be utilized for  
port-to-port communication. Two Semaphore (SEM) control  
pins are used for allocating shared resources. With the M/S  
pin, the devices can function as a master (BUSY pins are  
outputs) or as a slave (BUSY pins are inputs). The devices  
also have an automatic power-down feature controlled by CE.  
Each port is provided with its own output enable control (OE),  
which allows data to be read from the device.  
Architecture  
The CYDM256B16, CYDM128B16, CYDM064B16 consist of  
an array of 4K, 8K, or 16K words of 16 dual-port RAM cells,  
Table 1. Non-Contending Read/Write  
Inputs  
Outputs  
CE  
H
X
L
L
L
L
L
L
X
H
X
H
X
L
R/W  
X
X
L
L
OE  
X
X
X
X
X
L
L
L
H
L
L
UB  
X
H
L
H
L
L
H
L
X
X
H
X
H
L
LB  
X
H
H
L
L
H
L
SEM  
H
H
H
H
H
H
H
H
X
L
L
L
L
I/O8I/O15  
High Z  
High Z  
Data In  
High Z  
Data In  
Data Out  
High Z  
Data Out  
High Z  
Data Out  
Data Out  
Data In  
Data In  
I/O0I/O7  
High Z  
High Z  
Operation  
Deselected: Power-down  
Deselected: Power-down  
Write to Upper Byte Only  
Write to Lower Byte Only  
Write to Both Bytes  
Read Upper Byte Only  
Read Lower Byte Only  
Read Both Bytes  
High Z  
Data In  
Data In  
High Z  
Data Out  
Data Out  
High Z  
Data Out  
Data Out  
Data In  
Data In  
L
H
H
H
X
H
H
L
X
X
H
X
H
X
L
Outputs Disabled  
Read Data in Semaphore Flag  
Read Data in Semaphore Flag  
Write DIN0 into Semaphore Flag  
Write DIN0 into Semaphore Flag  
Not Allowed  
X
X
X
X
X
X
L
L
L
X
Not Allowed  
Table 2. Interrupt Operation Example (Assumes BUSYL = BUSYR = HIGH)[8]  
Left Port  
Right Port  
Function  
R/WL CEL  
OEL  
X
X
X
L
A0L–13L  
3FFF[11]  
X
INTL R/WR CER OER  
A0R–13R  
X
3FFF[11]  
3FFE[11]  
X
INTR  
L[10]  
H[9]  
X
Set Right INTR Flag  
Reset Right INTR Flag  
Set Left INTL Flag  
Reset Left INTL Flag  
L
X
X
X
L
X
X
L
X
X
L[9]  
H[10]  
X
X
L
X
L
L
X
L
X
X
X
3FFE[11]  
X
X
X
Notes:  
8. See Interrupts Functional Description for specific highest memory locations by device.  
9. If BUSY = L, then no change.  
R
10. If BUSY = L, then no change.  
L
11. See Functional Description for specific addresses by device.  
Document #: 001-00217 Rev. *D  
Page 6 of 25  
 
 
 
 
CYDM256B16  
CYDM128B16  
CYDM064B16  
Table 3. Input Read Register Operation[12, 15]  
SFEN  
H
L
CE  
L
L
R/W  
H
H
OE  
L
L
UB  
L
X
LB  
L
L
ADDR  
I/O0I/O1 I/O2I/O15  
Mode  
x0000-Max VALID[13] VALID[13] Standard Memory Access  
x0000  
VALID[14]  
X
IRR Read  
Table 4. Output Drive Register [16]  
SFEN  
CE  
L
L
R/W  
H
L
OE  
X[17]  
X
UB  
L[13]  
X
LB  
L[13]  
L
ADDR  
I/O0I/O4 I/O5I/O15  
Mode  
H
L
L
x0000-Max VALID[13] VALID[13] Standard Memory Access  
x0001  
x0001  
VALID[14]  
VALID[14]  
X
X
ODR Write[16, 18]  
ODR Read[16]  
L
H
L
X
L
Table 5. Semaphore Operation Example  
Function I/O0I/O15 Left I/O0I/O15 Right  
Status  
No action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore-free  
Left port writes 0 to semaphore  
Right port writes 0 to semaphore  
Left port writes 1 to semaphore  
Left port writes 0 to semaphore  
Right port writes 1 to semaphore  
Left port writes 1 to semaphore  
Right port writes 0 to semaphore  
Right port writes 1 to semaphore  
Left port writes 0 to semaphore  
Left Port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore-free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore-free  
Left port writes 1 to semaphore  
Notes:  
12. SFEN = V for IRR reads  
IL  
13. UB or LB = V . If LB = V , then DQ<7:0> are valid. If UB = V then DQ<15:8> are valid.  
IL  
IL  
IL  
IL  
14. LB must be active (LB = V ) for these bits to be valid.  
15. SFEN active when either CE = V or CE = V . It is inactive when CE = CE = V .  
IH  
L
IL  
R
IL  
L
R
16. SFEN = V for ODR reads and writes.  
IL  
17. Output enable must be low (OE = V ) during reads for valid data to be output.  
IL  
18. During ODR writes data will also be written to the memory.  
Document #: 001-00217 Rev. *D  
Page 7 of 25  
 
 
 
 
 
 
 
CYDM256B16  
CYDM128B16  
CYDM064B16  
Maximum Ratings[19]  
Output Current into Outputs (LOW)............................. 90 mA  
Static Discharge Voltage.......................................... > 2000V  
Latch-up Current.................................................... > 200 mA  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Storage Temperature .................................65°C to +150°C  
Operating Range  
Ambient Temperature with  
Range  
Ambient Temperature  
VCC  
Power Applied.............................................55°C to +125°C  
Commercial  
0°C to +70°C  
1.8V ± 100 mV  
2.5V ± 100 mV  
3.0V ± 300 mV  
1.8V ± 100 mV  
2.5V ± 100 mV  
3.0V ± 300 mV  
Supply Voltage to Ground Potential............... –0.5V to +3.3V  
DC Voltage Applied to  
Outputs in High-Z State..........................–0.5V to VCC + 0.5V  
Industrial  
–40°C to +85°C  
DC Input Voltage[20] ...............................–0.5V to VCC + 0.5V  
Electrical Characteristics for VCC = 1.8V Over the Operating Range  
CYDM256B16,  
CYDM256B16,  
CYDM128B16,  
CYDM064B16  
CYDM128B16,  
CYDM064B16  
-40  
-55  
P1 I/O  
P2 I/O  
Parameter  
Description  
Voltage Voltage Min.  
Typ. Max. Min.  
Typ. Max. Unit  
VOH  
Output HIGH Voltage (IOH = –100 µA)  
1.8V (any port)  
VDDIO  
– 0.2  
VDDIO  
V
– 0.2  
Output HIGH Voltage (IOH = –2 mA)  
Output HIGH Voltage (IOH = –2 mA)  
Output LOW Voltage (IOL = 100 µA)  
Output HIGH Voltage (IOL = 2 mA)  
Output HIGH Voltage (IOL = 2 mA)  
2.5V (any port)  
3.0V (any port)  
1.8V (any port)  
2.5V (any port)  
3.0V (any port)  
2.0  
2.1  
2.0  
2.1  
V
V
VOL  
0.2  
0.4  
0.4  
0.2  
0.2  
0.2  
VDDIO  
+ 0.2  
VDDIO  
+ 0.3  
0.2  
0.4  
0.4  
0.2  
0.2  
0.2  
VDDIO  
+ 0.2  
VDDIO  
+ 0.3  
V
V
V
V
V
V
V
VOL ODR ODR Output LOW Voltage (IOL = 8 mA) 1.8V (any port)  
2.5V (any port)  
3.0V (any port)  
1.8V (any port)  
2.5V (any port)  
3.0V (any port)  
VIH  
Input HIGH Voltage  
1.2  
1.7  
2.0  
1.2  
1.7  
2.0  
V
V
VDDIO  
+ 0.2  
VDDIO  
+ 0.2  
VIL  
Input LOW Voltage  
1.8V (any port)  
2.5V (any port)  
3.0V (any port)  
–0.2  
–0.3  
–0.2  
–1  
–1  
–1  
–1  
–1  
–1  
0.4  
0.6  
0.7  
1
1
1
1
1
1
–0.2  
–0.3  
–0.2  
–1  
–1  
–1  
–1  
–1  
–1  
0.4  
0.6  
0.7  
1
1
1
1
1
1
V
V
V
µA  
µA  
µA  
µA  
µA  
µA  
IOZ  
Output Leakage Current  
1.8V  
2.5V  
3.0V  
1.8V  
2.5V  
3.0V  
1.8V  
2.5V  
3.0V  
1.8V  
2.5V  
3.0V  
ICEX ODR ODR Output Leakage Current.  
OUT = VDDIO  
V
Notes:  
19. The voltage on any input or I/O pin can not exceed the power pin during power-up.  
20. Pulse width < 20 ns.  
Document #: 001-00217 Rev. *D  
Page 8 of 25  
 
 
CYDM256B16  
CYDM128B16  
CYDM064B16  
Electrical Characteristics for VCC = 1.8V (continued) Over the Operating Range  
CYDM256B16,  
CYDM128B16,  
CYDM064B16  
CYDM256B16,  
CYDM128B16,  
CYDM064B16  
-40  
-55  
P1 I/O  
P2 I/O  
Parameter  
IIX  
Description  
Input Leakage Current  
Voltage Voltage Min.  
Typ. Max. Min.  
Typ. Max. Unit  
1.8V  
2.5V  
3.0V  
1.8V  
1.8V  
2.5V  
3.0V  
1.8V  
–1  
–1  
–1  
1
1
1
–1  
–1  
–1  
1
1
1
µA  
µA  
µA  
mA  
ICC  
Operating Current (VCC = Max.,  
IOUT = 0 mA) Outputs Disabled  
Standby Current (Both Ports TTL Ind.  
Level) CEL and CER VCC – 0.2,  
SEML = SEMR = VCC – 0.2, f = fMAX  
Ind.  
25  
2
40  
15  
2
25  
ISB1  
1.8V  
1.8V  
6
6
µA  
ISB2  
ISB3  
Standby Current (One Port TTL  
Ind.  
1.8V  
1.8V  
1.8V  
1.8V  
8.5  
2
18  
6
8.5  
2
14  
6
mA  
Level) CEL | CER VIH, f = fMAX  
Standby Current (Both Ports  
Ind.  
µA  
CMOS Level) CEL & CER  
V
CC 0.2V, SEML and SEMR >  
VCC – 0.2V, f = 0  
ISB4  
Standby Current (One Port CMOS Ind.  
1.8V  
1.8V  
8.5  
18  
8.5  
14  
mA  
[21]  
Level) CEL | CER VIH, f = fMAX  
Notes:  
21. f  
= 1/t = All inputs cycling at f = 1/t (except output enable). f = 0 means no address or control lines change. This applies only to inputs at CMOS level  
RC RC  
MAX  
standby I  
.
SB3  
Document #: 001-00217 Rev. *D  
Page 9 of 25  
 
CYDM256B16  
CYDM128B16  
CYDM064B16  
Electrical Characteristics for VCC = 2.5V Over the Operating Range  
CYDM256B16,  
CYDM256B16,  
CYDM128B16,  
CYDM064B16  
CYDM128B16,  
CYDM064B16  
-40  
-55  
P1 I/O  
P2 I/O  
Parameter  
Description  
Voltage Voltage Min.  
Typ. Max. Min.  
Typ. Max. Unit  
VOH  
Output HIGH Voltage (IOH = –2 mA)  
2.5V (any port)  
3.0V (any port)  
2.5V (any port)  
3.0V (any port)  
2.0  
2.1  
2.0  
2.1  
V
V
VOL  
Output LOW Voltage (IOL = 2 mA)  
0.4  
0.4  
0.2  
0.2  
0.4  
0.4  
0.2  
0.2  
V
V
V
V
V
VOL ODR ODR Output LOW Voltage (IOL = 8 mA) 2.5V (any port)  
3.0V (any port)  
2.5V (any port)  
VIH  
Input HIGH Voltage  
1.7  
2.0  
VDDIO  
1.7  
2.0  
VDDIO  
+ 0.3  
+ 0.3  
3.0V (any port)  
VDDIO  
+ 0.2  
VDDIO  
+ 0.2  
V
VIL  
IOZ  
Input LOW Voltage  
2.5V (any port)  
3.0V (any port)  
–0.3  
–0.2  
–1  
–1  
–1  
–1  
–1  
–1  
0.6  
0.7  
1
1
1
1
1
1
55  
–0.3  
–0.2  
–1  
–1  
–1  
–1  
–1  
–1  
0.6  
0.7  
1
1
1
1
1
1
40  
V
V
Output Leakage Current  
2.5V  
3.0V  
2.5V  
3.0V  
2.5V  
3.0V  
2.5V  
2.5V  
3.0V  
2.5V  
3.0V  
2.5V  
3.0V  
2.5V  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
ICEX ODR ODR Output Leakage Current.  
VOUT = VCC  
IIX  
Input Leakage Current  
ICC  
Operating Current (VCC = Max.,  
Ind.  
39  
6
28  
6
I
OUT = 0 mA) Outputs Disabled  
ISB1  
Standby Current (Both Ports TTL Ind.  
Level) CEL and CER VCC – 0.2,  
SEML= SEMR = VCC – 0.2, f = fMAX  
2.5V  
2.5V  
8
8
µA  
ISB2  
ISB3  
Standby Current (One Port TTL  
Ind.  
2.5V  
2.5V  
2.5V  
2.5V  
21  
4
30  
6
18  
4
25  
6
mA  
Level) CEL | CER VIH, f = fMAX  
Standby Current (Both Ports  
Ind.  
µA  
CMOS Level) CEL & CER  
V
CC 0.2V, SEML and SEMR >  
VCC – 0.2V, f = 0  
ISB4  
Standby Current (One Port CMOS Ind.  
2.5V  
2.5V  
21  
30  
18  
25  
mA  
[21]  
Level) CEL | CER VIH, f = fMAX  
Document #: 001-00217 Rev. *D  
Page 10 of 25  
CYDM256B16  
CYDM128B16  
CYDM064B16  
Electrical Characteristics for 3.0V Over the Operating Range  
CYDM256B16,  
CYDM128B16,  
CYDM064B16  
CYDM256B16,  
CYDM128B16,  
CYDM064B16  
-40  
-55  
P1 I/O  
P2 I/O  
Parameter  
VOH  
VOL  
V
VIH  
Description  
Output HIGH Voltage (IOH = –2 mA)  
Output LOW Voltage (IOL = 2 mA)  
Voltage Voltage Min.  
Typ. Max. Min.  
Typ. Max. Unit  
3.0V (any port)  
3.0V (any port)  
2.1  
2.0  
2.1  
V
0.4  
0.2  
0.4  
0.2  
V
V
V
OL ODR ODR Output LOW Voltage (IOL = 8 mA) 3.0V (any port)  
Input HIGH Voltage  
3.0V (any port)  
VDDIO  
2.0  
VDDIO  
+ 0.2  
+ 0.2  
VIL  
IOZ  
Input LOW Voltage  
Output Leakage Current  
3.0V (any port)  
–0.2  
–1  
–1  
0.7  
1
1
–0.2  
–1  
–1  
0.7  
1
1
V
µA  
µA  
3.0V  
3.0V  
3.0V  
3.0V  
ICEX ODR ODR Output Leakage Current.  
VOUT = VCC  
IIX  
ICC  
Input Leakage Current  
Operating Current (VCC = Max.,  
OUT = 0 mA) Outputs Disabled  
Standby Current (Both Ports TTL Ind.  
Level) CEL and CER VCC – 0.2,  
SEML = SEMR = VCC – 0.2, f = fMAX  
3.0V  
3.0V  
3.0V  
3.0V  
–1  
1
70  
–1  
1
60  
µA  
mA  
Ind.  
49  
7
42  
7
I
ISB1  
3.0V  
3.0V  
10  
10  
µA  
ISB2  
ISB3  
Standby Current (One Port TTL  
Ind.  
3.0V  
3.0V  
3.0V  
3.0V  
28  
6
40  
8
25  
6
35  
8
mA  
Level) CEL | CER VIH, f = fMAX  
Standby Current (Both Ports  
Ind.  
µA  
CMOS Level) CEL & CER  
V
CC 0.2V, SEML and SEMR >  
VCC – 0.2V, f = 0  
ISB4  
Standby Current (One Port CMOS Ind.  
3.0V  
3.0V  
28  
40  
25  
35  
mA  
[21]  
Level) CEL | CER VIH, f = fMAX  
Capacitance[22]  
Parameter  
Description  
Input Capacitance  
Output Capacitance  
Test Conditions  
TA = 25°C, f = 1 MHz,  
CC = 3.0V  
Max.  
9
10  
Unit  
pF  
pF  
CIN  
COUT  
V
Note:  
22. Tested initially and after any design or process changes that may affect these parameters.  
Document #: 001-00217 Rev. *D  
Page 11 of 25  
 
CYDM256B16  
CYDM128B16  
CYDM064B16  
7
AC Test Loads and Waveforms  
3.0V/2.5V/1.8V  
3.0V/2.5V/1.8V  
R1  
RTH = 6 kΩ  
R1  
OUTPUT  
C = 30 pF  
OUTPUT  
OUTPUT  
C = 5 pF  
C = 30 pF  
R2  
R2  
VTH = 0.8V  
(a) Normal Load  
(c) Three-State Delay (Load 2)  
(Used for tLZ, tHZ, tHZWE, and tLZWE  
including scope and jig)  
(b) Thévenin Equivalent (Load 1)  
ALL INPUT PULSES  
3.0V/2.5V  
1022Ω  
1.8V  
13500Ω  
10800Ω  
1.8V  
GND  
R1  
R2  
90%  
90%  
10%  
3 ns  
10%  
792Ω  
3 ns  
Switching Characteristics for VCC = 1.8V Over the Operating Range[23]  
CYDM256B16,  
CYDM128B16,  
CYDM064B16  
CYDM256B16,  
CYDM128B16,  
CYDM064B16  
-40  
-55  
Parameter  
Read Cycle  
Description  
Read Cycle Time  
Address to Data Valid  
Output Hold From Address Change  
CE LOW to Data Valid  
OE LOW to Data Valid  
OE Low to Low Z  
OE HIGH to High Z  
CE LOW to Low Z  
CE HIGH to High Z  
CE LOW to Power-Up  
CE HIGH to Power-Down  
Byte Enable Access Time  
Min.  
40  
5
Max.  
Min.  
55  
5
Max.  
Unit  
tRC  
tAA  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
40  
55  
tOHA  
[24]  
tACE  
tDOE  
tLZOE  
40  
25  
55  
30  
[25, 26, 27]  
[25, 26, 27]  
5
5
0
5
5
0
tHZOE  
tLZCE  
15  
15  
25  
25  
[25, 26, 27]  
[25, 26, 27]  
tHZCE  
[27]  
[27]  
tPU  
tPD  
40  
40  
55  
55  
[24]  
tABE  
Write Cycle  
tWC  
Write Cycle Time  
40  
30  
30  
0
55  
45  
45  
0
ns  
ns  
ns  
ns  
[24]  
tSCE  
tAW  
tHA  
CE LOW to Write End  
Address Valid to Write End  
Address Hold From Write End  
Notes:  
23. Test conditions assume signal transition time of 3 ns or less, timing reference levels of V /2, input pulse levels of 0 to V , and output loading of the specified  
CC  
CC  
I
/I and 30-pF load capacitance.  
OI OH  
24. To access RAM, CE = L, UB = L, SEM = H. To access semaphore, CE = H and SEM = L. Either condition must be valid for the entire t  
time.  
SCE  
25. At any given temperature and voltage condition for any given device, t  
26. Test conditions used are Load 3.  
is less than t  
and t  
is less than t  
.
LZOE  
HZCE  
LZCE  
HZOE  
27. This parameter is guaranteed but not tested. For information on port-to-port delay through RAM cells from writing port to reading port, refer to Read Timing with  
Busy waveform  
Document #: 001-00217 Rev. *D  
Page 12 of 25  
 
 
 
 
 
 
 
CYDM256B16  
CYDM128B16  
CYDM064B16  
Switching Characteristics for VCC = 1.8V Over the Operating Range[23] (continued)  
CYDM256B16,  
CYDM128B16,  
CYDM064B16  
CYDM256B16,  
CYDM128B16,  
CYDM064B16  
-40  
-55  
Parameter  
Description  
Address Set-up to Write Start  
Write Pulse Width  
Data Set-up to Write End  
Data Hold From Write End  
R/W LOW to High Z  
R/W HIGH to Low Z  
Write Pulse to Data Delay  
Write Data Valid to Read Data Valid  
Min.  
0
25  
20  
0
Max.  
Min.  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
[24]  
tSA  
tPWE  
tSD  
0
40  
30  
0
tHD  
[26, 27]  
tHZWE  
tLZWE  
tWDD  
tDDD  
15  
25  
[26, 27]  
0
0
[28]  
55  
45  
80  
65  
[28]  
Busy Timing[29]  
tBLA  
tBHA  
tBLC  
tBHC  
BUSY LOW from Address Match  
BUSY HIGH from Address Mismatch  
BUSY LOW from CE LOW  
BUSY HIGH from CE HIGH  
Port Set-up for Priority  
R/W HIGH after BUSY (Slave)  
R/W HIGH after BUSY HIGH (Slave)  
BUSY HIGH to Data Valid  
30  
30  
30  
30  
45  
45  
45  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
[30]  
tPS  
5
0
20  
5
0
35  
tWB  
tWH  
tBDD  
[31]  
30  
40  
Interrupt Timing[29]  
tINS  
tINR  
INT Set Time  
INT Reset Time  
35  
35  
45  
45  
ns  
ns  
Semaphore Timing  
tSOP  
tSWRD  
tSPS  
SEM Flag Update Pulse (OE or SEM)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
SEM Address Access Time  
10  
10  
10  
15  
10  
10  
ns  
ns  
ns  
ns  
tSAA  
40  
55  
Notes:  
28. For information on port-to-port delay through RAM cells from writing port to reading port, refer to Read Timing with Busy waveform.  
29. Test conditions used are Load 2.  
30. Add 2ns to this parameter if V and V  
are <1.8V, and V  
is >2.5V at temperature <0°C.  
CC  
DDIOR  
DDIOL  
PWE  
31. t  
is a calculated parameter and is the greater of t  
– t  
(actual) or t  
– t (actual).  
BDD  
WDD  
DDD SD  
Document #: 001-00217 Rev. *D  
Page 13 of 25  
 
 
 
 
CYDM256B16  
CYDM128B16  
CYDM064B16  
Switching Characteristics for VCC = 2.5V Over the Operating Range  
CYDM256B16,  
CYDM128B16,  
CYDM064B16  
CYDM256B16,  
CYDM128B16,  
CYDM064B16  
-40  
-55  
Parameter  
Read Cycle  
Description  
Read Cycle Time  
Address to Data Valid  
Output Hold From Address Change  
CE LOW to Data Valid  
OE LOW to Data Valid  
OE Low to Low Z  
OE HIGH to High Z  
CE LOW to Low Z  
CE HIGH to High Z  
CE LOW to Power-Up  
CE HIGH to Power-Down  
Byte Enable Access Time  
Min.  
40  
5
Max.  
Min.  
Max.  
Unit  
tRC  
tAA  
55  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
40  
55  
tOHA  
[24]  
tACE  
tDOE  
tLZOE  
40  
25  
55  
30  
[25, 26, 27]  
[25, 26, 27]  
2
2
0
2
2
0
tHZOE  
tLZCE  
15  
15  
25  
25  
[25, 26, 27]  
[25, 26, 27]  
tHZCE  
[27]  
[27]  
tPU  
tPD  
40  
40  
55  
55  
[24]  
tABE  
Write Cycle  
tWC  
Write Cycle Time  
CE LOW to Write End  
40  
30  
30  
0
55  
45  
45  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
[24]  
tSCE  
tAW  
tHA  
Address Valid to Write End  
Address Hold From Write End  
Address Set-up to Write Start  
Write Pulse Width  
Data Set-up to Write End  
Data Hold From Write End  
R/W LOW to High Z  
R/W HIGH to Low Z  
Write Pulse to Data Delay  
Write Data Valid to Read Data Valid  
[24]  
tSA  
tPWE  
tSD  
0
0
25  
20  
0
40  
30  
0
tHD  
[26, 27]  
tHZWE  
tLZWE  
tWDD  
tDDD  
15  
25  
[26, 27]  
0
0
[28]  
55  
45  
80  
65  
[28]  
Busy Timing[29]  
tBLA  
tBHA  
tBLC  
tBHC  
BUSY LOW from Address Match  
BUSY HIGH from Address Mismatch  
BUSY LOW from CE LOW  
BUSY HIGH from CE HIGH  
Port Set-up for Priority  
R/W HIGH after BUSY (Slave)  
R/W HIGH after BUSY HIGH (Slave)  
BUSY HIGH to Data Valid  
30  
30  
30  
30  
45  
45  
45  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
[30]  
tPS  
5
0
20  
5
0
35  
tWB  
tWH  
tBDD  
[31]  
30  
40  
Interrupt Timing[29]  
tINS  
tINR  
INT Set Time  
INT Reset Time  
35  
35  
45  
45  
ns  
ns  
Document #: 001-00217 Rev. *D  
Page 14 of 25  
CYDM256B16  
CYDM128B16  
CYDM064B16  
Switching Characteristics for VCC = 2.5V Over the Operating Range (continued)  
CYDM256B16,  
CYDM128B16,  
CYDM064B16  
CYDM256B16,  
CYDM128B16,  
CYDM064B16  
-40  
-55  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Unit  
Semaphore Timing  
tSOP  
tSWRD  
tSPS  
SEM Flag Update Pulse (OE or SEM)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
SEM Address Access Time  
10  
10  
10  
15  
10  
10  
ns  
ns  
ns  
ns  
tSAA  
40  
55  
Switching Characteristics for VCC = 3.0V Over the Operating Range  
CYDM256B16,  
CYDM128B16,  
CYDM064B16  
CYDM256B16,  
CYDM128B16,  
CYDM064B16  
-40  
-55  
Parameter  
Read Cycle  
Description  
Read Cycle Time  
Address to Data Valid  
Output Hold From Address Change  
CE LOW to Data Valid  
OE LOW to Data Valid  
OE Low to Low Z  
OE HIGH to High Z  
CE LOW to Low Z  
CE HIGH to High Z  
CE LOW to Power-Up  
CE HIGH to Power-Down  
Byte Enable Access Time  
Min.  
40  
5
Max.  
Min.  
Max.  
Unit  
tRC  
tAA  
55  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
40  
55  
tOHA  
[24]  
tACE  
tDOE  
tLZOE  
40  
25  
55  
30  
[25, 26, 27]  
[25, 26, 27]  
1
1
0
1
1
0
tHZOE  
tLZCE  
15  
15  
25  
25  
[25, 26, 27]  
[25, 26, 27]  
tHZCE  
[27]  
tPU  
tPD  
[27]  
40  
40  
55  
55  
[24]  
tABE  
Write Cycle  
tWC  
Write Cycle Time  
CE LOW to Write End  
40  
30  
30  
0
55  
45  
45  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
[24]  
tSCE  
tAW  
tHA  
Address Valid to Write End  
Address Hold From Write End  
Address Set-up to Write Start  
Write Pulse Width  
Data Set-up to Write End  
Data Hold From Write End  
R/W LOW to High Z  
R/W HIGH to Low Z  
Write Pulse to Data Delay  
Write Data Valid to Read Data Valid  
[24]  
tSA  
tPWE  
tSD  
0
0
25  
20  
0
40  
30  
0
tHD  
[26, 27]  
tHZWE  
tLZWE  
tWDD  
tDDD  
15  
25  
[26, 27]  
0
0
[28]  
55  
45  
80  
65  
[28]  
Document #: 001-00217 Rev. *D  
Page 15 of 25  
CYDM256B16  
CYDM128B16  
CYDM064B16  
Switching Characteristics for VCC = 3.0V Over the Operating Range (continued)  
CYDM256B16,  
CYDM128B16,  
CYDM064B16  
CYDM256B16,  
CYDM128B16,  
CYDM064B16  
-40  
-55  
Parameter  
Busy Timing[29]  
Description  
Min.  
Max.  
Min.  
Max.  
Unit  
tBLA  
tBHA  
tBLC  
tBHC  
BUSY LOW from Address Match  
BUSY HIGH from Address Mismatch  
BUSY LOW from CE LOW  
BUSY HIGH from CE HIGH  
Port Set-up for Priority  
R/W HIGH after BUSY (Slave)  
R/W HIGH after BUSY HIGH (Slave)  
BUSY HIGH to Data Valid  
30  
30  
30  
30  
45  
45  
45  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
[30]  
tPS  
5
0
20  
5
0
35  
tWB  
tWH  
tBDD  
[31]  
30  
40  
Interrupt Timing[29]  
tINS  
tINR  
INT Set Time  
INT Reset Time  
35  
35  
45  
45  
ns  
ns  
Semaphore Timing  
tSOP  
tSWRD  
tSPS  
SEM Flag Update Pulse (OE or SEM)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
SEM Address Access Time  
10  
10  
10  
15  
10  
10  
ns  
ns  
ns  
ns  
tSAA  
40  
55  
Document #: 001-00217 Rev. *D  
Page 16 of 25  
CYDM256B16  
CYDM128B16  
CYDM064B16  
Switching Waveforms  
Read Cycle No.1 (Either Port Address Access)[32, 33, 34]  
t
RC  
ADDRESS  
DATA OUT  
t
AA  
t
t
OHA  
OHA  
PREVIOUS DATAVALID  
DATA VALID  
Read Cycle No.2 (Either Port CE/OE Access)[32, 35, 36]  
t
ACE  
CE and  
LB or UB  
t
HZCE  
t
DOE  
OE  
t
HZOE  
t
LZOE  
DATA VALID  
DATA OUT  
t
LZCE  
t
PU  
t
PD  
ICC  
CURRENT  
ISB  
Read Cycle No. 3 (Either Port)[32, 34, 37, 38]  
t
RC  
ADDRESS  
t
AA  
t
OHA  
UB or LB  
t
t
HZCE  
t
t
LZCE  
LZCE  
t
ABE  
CE  
HZCE  
t
ACE  
DATA OUT  
Notes:  
32. R/W is HIGH for read cycles.  
33. Device is continuously selected CE = V and UB or LB = V . This waveform cannot be used for semaphore reads.  
IL  
IL  
34. OE = V  
.
IL  
35. Address valid prior to or coincident with CE transition LOW.  
36. To access RAM, CE = V , UB or LB = V , SEM = V . To access semaphore, CE = V , SEM = V .  
IL  
IL  
IL  
IH  
IH  
37. R/W must be HIGH during all address transitions.  
38. A write occurs during the overlap (t or t ) of a LOW CE or SEM and a LOW UB or LB.  
SCE  
PWE  
Document #: 001-00217 Rev. *D  
Page 17 of 25  
 
 
 
 
 
CYDM256B16  
CYDM128B16  
CYDM064B16  
Switching Waveforms (continued)  
Write Cycle No.1: R/W Controlled Timing[37, 38, 39, 40, 41, 42]  
t
WC  
ADDRESS  
OE  
[43]  
t
HZOE  
t
AW  
[41, 42]  
CE  
[40]  
PWE  
t
t
t
HA  
SA  
R/W  
DATA OUT  
DATA IN  
[43]  
HZWE  
t
t
LZWE  
NOTE 44  
NOTE 44  
t
t
HD  
SD  
Write Cycle No. 2: CE Controlled Timing[37, 38, 39, 44]  
t
WC  
ADDRESS  
t
AW  
[41, 42]  
CE  
t
t
t
HA  
SA  
SCE  
R/W  
t
t
HD  
SD  
DATA IN  
Notes:  
39. t is measured from the earlier of CE or R/W or (SEM or R/W) going HIGH at the end of write cycle.  
HA  
40. If OE is LOW during a R/W controlled write cycle, the write pulse width must be the larger of t  
or (t  
+ t ) to allow the I/O drivers to turn off and data to  
HZWE SD  
PWE  
be placed on the bus for the required t . If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short  
SD  
as the specified t  
.
PWE  
41. To access RAM, CE = V , SEM = V  
.
IH  
IL  
42. To access upper byte, CE = V , UB = V , SEM = V .  
IH  
IL  
IL  
IL  
To access lower byte, CE = V , LB = V , SEM = V .  
IH  
IL  
43. Transition is measured ±0 mV from steady state with a 5-pF load (including scope and jig). This parameter is sampled and not 100% tested.  
44. During this period, the I/O pins are in the output state, and input signals must not be applied.  
Document #: 001-00217 Rev. *D  
Page 18 of 25  
 
 
 
 
 
 
CYDM256B16  
CYDM128B16  
CYDM064B16  
Switching Waveforms (continued)  
Semaphore Read After Write Timing, Either Side[45, 46]  
t
t
OHA  
SAA  
A0–A2  
VALID ADRESS  
VALID ADRESS  
t
AW  
t
ACE  
t
HA  
SEM  
t
t
SOP  
SCE  
t
SD  
I/O0  
DATAIN VALID  
DATAOUT VALID  
t
HD  
t
t
PWE  
SA  
R/W  
OE  
t
t
DOE  
SWRD  
t
SOP  
WRITE CYCLE  
READ CYCLE  
Timing Diagram of Semaphore Contention[47, 48]  
A0L–A2L  
MATCH  
R/WL  
SEML  
t
SPS  
A0R–A2R  
MATCH  
R/WR  
SEMR  
Notes:  
45. If the CE or SEM LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the high-impedance state.  
46. CE = HIGH for the duration of the above timing (both write and read cycle).  
47. I/O = I/O = LOW (request semaphore); CE = CE = HIGH.  
0R  
SPS  
0L  
R
L
48. If t  
is violated, the semaphore will definitely be obtained by one side or the other, but which side will get the semaphore is unpredictable.  
Document #: 001-00217 Rev. *D  
Page 19 of 25  
 
 
CYDM256B16  
CYDM128B16  
CYDM064B16  
Switching Waveforms (continued)  
Timing Diagram of Read with BUSY (M/S = HIGH)[49]  
t
WC  
ADDRESSR  
R/WR  
MATCH  
t
PWE  
t
t
HD  
SD  
DATA INR  
VALID  
t
PS  
ADDRESSL  
MATCH  
t
BLA  
t
BHA  
BUSYL  
t
BDD  
t
DDD  
DATAOUTL  
VALID  
t
WDD  
Write Timing with Busy Input (M/S = LOW)  
t
PWE  
R/W  
t
t
WH  
WB  
BUSY  
Note:  
49. CE = CE = LOW.  
L
R
Document #: 001-00217 Rev. *D  
Page 20 of 25  
 
CYDM256B16  
CYDM128B16  
CYDM064B16  
Switching Waveforms (continued)  
Busy Timing Diagram No.1 (CE Arbitration)  
CEL Valid First[50]  
ADDRESSL,R  
ADDRESS MATCH  
CEL  
t
PS  
CER  
t
t
BHC  
BLC  
BUSYR  
CEL Valid First  
ADDRESSL,R  
ADDRESS MATCH  
CER  
CEL  
t
PS  
t
t
BHC  
BLC  
BUSYL  
Busy Timing Diagram No.2 (Address Arbitration)[50]  
Left Address Valid First  
t
or t  
WC  
RC  
ADDRESSL  
ADDRESSR  
ADDRESS MATCH  
ADDRESS MISMATCH  
t
PS  
t
t
BHA  
BLA  
BUSYR  
Right Address Valid First  
t
or t  
WC  
RC  
ADDRESSR  
ADDRESS MATCH  
ADDRESS MISMATCH  
t
PS  
ADDRESSL  
BUSYL  
t
t
BHA  
BLA  
Note:  
50. If t is violated, the busy signal will be asserted on one side or the other, but there is no guarantee to which side BUSY will be asserted.  
PS  
Document #: 001-00217 Rev. *D  
Page 21 of 25  
 
CYDM256B16  
CYDM128B16  
CYDM064B16  
Switching Waveforms (continued)  
Interrupt Timing Diagrams  
Left Side Sets INTR:  
t
WC  
ADDRESSL  
CEL  
WRITE 1FFF (OR 1/3FFF)  
[51]  
t
HA  
R/WL  
INTR  
[52]  
t
INS  
Right Side Clears INTR:  
t
RC  
READ 1FFF  
ADDRESSR  
CER  
(OR 1/3FFF)  
[52]  
t
INR  
R/WR  
OER  
INTR  
Right Side Sets INTL:  
t
WC  
ADDRESSR  
CER  
WRITE 1FFE (OR 1/3FFE)  
[51]  
t
HA  
R/WR  
INTL  
[52]  
INS  
t
Left Side Clears INTL:  
t
RC  
READ 1FFE  
ADDRESSL  
OR 1/3FFE)  
CEL  
[52]  
t
INR  
R/WL  
OEL  
INTL  
Notes:  
51. t depends on which enable pin (CE or R/W ) is deasserted first.  
HA  
L
L
52. t  
or t  
depends on which enable pin (CE or R/W ) is asserted last.  
INR L L  
INS  
Document #: 001-00217 Rev. *D  
Page 22 of 25  
 
 
CYDM256B16  
CYDM128B16  
CYDM064B16  
Ordering Information  
16K x16 1.8V Asynchronous Dual-Port SRAM  
Speed  
Package  
Operating  
Range  
Commercial  
Commercial  
Industrial  
(ns)  
Ordering Code  
CYDM256B16-40BVXC  
CYDM256B16-55BVXC  
CYDM256B16-55BVXI  
Name  
BZ100  
BZ100  
BZ100  
Package Type  
40  
55  
55  
100-ball Lead-free 0.5-mm Pitch BGA  
100-ball Lead-free 0.5-mm Pitch BGA  
100-ball Lead-free 0.5-mm Pitch BGA  
8K x16 1.8V Asynchronous Dual-Port SRAM  
Speed  
Package  
Name  
BZ100  
BZ100  
BZ100  
Operating  
Range  
Commercial  
Commercial  
Industrial  
(ns)  
40  
Ordering Code  
CYDM128B16-40BVXC  
CYDM128B16-55BVXC  
CYDM128B16-55BVXI  
Package Type  
100-ball Lead-free 0.5-mm Pitch BGA  
100-ball Lead-free 0.5-mm Pitch BGA  
100-ball Lead-free 0.5-mm Pitch BGA  
55  
55  
4K x16 1.8V Asynchronous Dual-Port SRAM  
Speed  
Package  
Name  
BZ100  
BZ100  
BZ100  
Operating  
Range  
Commercial  
Commercial  
Industrial  
(ns)  
40  
Ordering Code  
CYDM064B16-40BVXC  
CYDM064B16-55BVXC  
CYDM064B16-55BVXI  
Package Type  
100-ball Lead-free 0.5-mm Pitch BGA  
100-ball Lead-free 0.5-mm Pitch BGA  
100-ball Lead-free 0.5-mm Pitch BGA  
55  
55  
Document #: 001-00217 Rev. *D  
Page 23 of 25  
CYDM256B16  
CYDM128B16  
CYDM064B16  
Package Diagram  
100 VFBGA (6 x 6 x 1.0 mm) BZ100A  
"/44/- 6)%7  
!ꢀ #/2.%2  
4/0 6)%7  
Œꢁꢂꢁꢃ - #  
Œꢁꢂꢀꢃ - # ! "  
!ꢀ #/2.%2  
Œꢁꢂꢄꢁ¼ꢁꢂꢁꢃꢅꢀꢁꢁ8ꢆ  
ꢈ ꢄ ꢇ ꢃ ꢊ ꢎ ꢉ ꢌ ꢀꢁ  
ꢀꢁ  
ꢎ ꢊ ꢃ ꢇ ꢄ ꢈ ꢀ  
!
!
"
#
$
%
"
#
$
%
&
&
'
'
(
(
*
*
+
+
ꢈꢂꢈꢃ  
!
!
ꢁꢂꢃꢁ  
ꢇꢂꢃꢁ  
"
ꢊꢂꢁꢁ¼ꢁꢂꢀꢁ  
"
ꢊꢂꢁꢁ¼ꢁꢂꢀꢁ  
ꢁꢂꢀꢃꢅꢇ8ꢆ  
2%&%2%.#% *%$%# -/ꢋꢀꢌꢃ#  
0+'7%)'(44"$ ꢅ.%7 0+'ꢂꢆ  
3%!4).' 0,!.%  
#
51-85209-*B  
MoBL is a registered trademark of Cypress Semiconductor Corporation. All product and company names mentioned in this  
document are the trademarks of their respective holders.  
Document #: 001-00217 Rev. *D  
Page 24 of 25  
© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
CYDM256B16  
CYDM128B16  
CYDM064B16  
Document History Page  
Document Title: CYDM064B16/CYDM128B16/CYDM256B16 1.8V 4K/8K/16K x 16 Dual-Port Static RAM  
Document Number: 001-00217  
Orig. of  
REV.  
**  
ECN NO. Issue Date Change  
Description of Change  
369423  
SEE ECN  
YDT  
New data sheet  
*A  
381721  
SEE ECN  
YDT  
Updated 2.5V/3.0V ICC, ISB1, ISB2, ISB4  
Updated VOL ODR to 0.2V  
*B  
*C  
396697  
404777  
SEE ECN  
SEE ECN  
KGH  
KGH  
Updated ISB2 and ISB4 typo to mA.  
Updated tINS and tINR for -55 to 31ns.  
Updated IOH and IOL values for the 1.8V, 2.5V and 3.0V parameters VOH and  
VOL  
Replaced -35 speed bin with -40  
Updated Switching Characteristics for VCC = 2.5V and VCC = 3.0V  
Included note 35  
*D  
426637  
SEE ECN  
KGH  
Removed part numbers CYDM128B08 and CYDM064B08  
Document #: 001-00217 Rev. *D  
Page 25 of 25  
© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  

相关型号:

CYDM128B16-55BVXC

1.8V 4K/8K/16K x 16 and 8K/16K x 8 MoBL® Dual-Port Static RAM
CYPRESS

CYDM128B16-55BVXC

8KX16 DUAL-PORT SRAM, 55ns, PBGA100, 6 X 6 MM, 1 MM HEIGHT, 0.50 MM PITCH, LEAD FREE, MO-195C, VFBGA-100
ROCHESTER

CYDM128B16-55BVXI

1.8V 4K/8K/16K x 16 and 8K/16K x 8 MoBL Dual-Port Static RAM
CYPRESS

CYDM128B16-55BVXI

8KX16 DUAL-PORT SRAM, 55ns, PBGA100, 6 X 6 MM, 1 MM HEIGHT, 0.50 MM PITCH, LEAD FREE, MO-195C, VFBGA-100
ROCHESTER
CYPRESS

CYDM256A16

1.8V 4K/8K/16K x 16 and 8K/16K x 8 MoBL㈢ Dual-Port Static RAM
CYPRESS

CYDM256A16-35BVXC

1.8V 4K/8K/16K x 16 and 8K/16K x 8 MoBL㈢ Dual-Port Static RAM
CYPRESS

CYDM256A16-55BVXC

1.8V 4K/8K/16K x 16 and 8K/16K x 8 MoBL㈢ Dual-Port Static RAM
CYPRESS

CYDM256A16-55BVXI

1.8V 4K/8K/16K x 16 and 8K/16K x 8 MoBL㈢ Dual-Port Static RAM
CYPRESS

CYDM256B16

1.8V 4K/8K/16K x 16 MoBL㈢ Dual-Port Static RAM
CYPRESS

CYDM256B16-40BVXC

Dual-Port SRAM, 16KX16, 40ns, CMOS, PBGA100, 6 X 6 MM, 1 MM HEIGHT, 0.50 MM PITCH, LEAD FREE, MO-195C, VFBGA-100
CYPRESS

CYDM256B16-55BVXC

1.8V 4K/8K/16K x 16 and 8K/16K x 8 MoBL Dual-Port Static RAM
CYPRESS