CYII4SC6600AA-HAC [CYPRESS]

CMOS Sensor, 5fps, 0.50-2V, Square, Surface Mount, J-LEADED CERAMIC, 84 PIN;
CYII4SC6600AA-HAC
型号: CYII4SC6600AA-HAC
厂家: CYPRESS    CYPRESS
描述:

CMOS Sensor, 5fps, 0.50-2V, Square, Surface Mount, J-LEADED CERAMIC, 84 PIN

时钟 传感器 换能器
文件: 总63页 (文件大小:1259K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IBIS4-6600  
Datasheet  
IBIS4-6600  
High resolution 6.6 M Pixel  
Rolling shutter  
CMOS Image sensor  
Datasheet  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 1 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
Table of contents  
1
INTRODUCTION..................................................................................................4  
1.1  
OVERVIEW .......................................................................................................4  
KEY FEATURES.................................................................................................5  
PART NUMBER..................................................................................................5  
1.2  
1.3  
2
SPECIFICATIONS ................................................................................................6  
2.1  
2.2  
2.2.1  
2.2.2  
2.2.3  
GENERAL SPECIFICATIONS................................................................................6  
ELECTRO-OPTICAL SPECIFICATIONS .................................................................6  
Overview ..................................................................................................6  
Spectral response curve...........................................................................7  
Photo-voltaic response curve...................................................................8  
2.3  
2.4  
FEATURES AND GENERAL SPECIFICATIONS .......................................................8  
ELECTRICAL SPECIFICATIONS ...........................................................................9  
2.4.1  
2.4.2  
2.4.3  
Absolute maximum ratings.......................................................................9  
Recommended operating conditions........................................................9  
DC Electrical characteristics ................................................................10  
3
SENSOR ARCHITECTURE AND OPERATION..............................................11  
3.1  
FLOOR PLAN...................................................................................................11  
3.2.1PIXEALr.c..h..i.t.e..c..t.u..r..e.........................................................................................................................................................................................1122  
3.2  
3.2.2  
3.2.3  
3.2.4  
FPN and PRNU......................................................................................12  
Color filter array....................................................................................13  
Dark and dummy pixels .........................................................................14  
3.3  
3.4  
3.5  
PIXEL RATE ....................................................................................................14  
REGION-OF-INTEREST (ROI) READ OUT.........................................................15  
OUTPUT AMPLIFIER ........................................................................................15  
3.5.1  
Stage 1: Offset, FPN correction and multiplexing.................................16  
Stage 2: Programmable gain amplifier .................................................16  
Stage 3: Output drivers..........................................................................17  
Offset DACs ...........................................................................................18  
3.5.2  
3.5.3  
3.5.4  
3.6  
3.7  
3.8  
SUB-SAMPLING MODES...................................................................................19  
ELECTRONIC SHUTTER....................................................................................25  
HIGH DYNAMIC RANGE MODES.......................................................................26  
3.8.1  
3.8.2  
3.9  
3.9.1  
3.9.2  
3.9.3  
Double slope integration........................................................................26  
Non-destructive readout (NDR).............................................................27  
SEQUENCER....................................................................................................28  
Internal registers....................................................................................28  
Detailed description of registers............................................................30  
Serial to Parallel interface.....................................................................37  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 2 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
4
TIMING DIAGRAMS .........................................................................................39  
4.1  
SEQUENCER CONTROL SIGNALS......................................................................39  
BASIC FRAME AND LINE TIMING .....................................................................39  
4.2  
4.3  
4.3.1PIXETLwOoUToPuUtpTuTtsIM..I..N..G..........................................................................................................................................................................4400  
4.3.2  
4.3.3  
Multiplexing to one output.....................................................................41  
ADC timing ............................................................................................42  
5
6
PIN LIST ..............................................................................................................43  
NOTE ON POWER-ON BEHAVIOR.................................................................................45  
PAD POSITIONING AND PACKAGING..........................................................47  
6.1  
6.2  
BARE DIE........................................................................................................47  
BONDING PADS...............................................................................................48  
6.2.1  
6.2.2  
6.3  
6.3.1  
6.3.2  
6.4  
6.4.1  
6.4.2  
Probe pad positions ...............................................................................48  
Bonding pad positions............................................................................49  
PACKAGE DRAWING .......................................................................................51  
Technical drawing of the 68-pins LCC package....................................51  
Bonding of the IBIS4-6600 sensor in the 68-pins LCC package ...........54  
GLASS LID SPECIFICATIONS ............................................................................55  
Color sensor...........................................................................................55  
Monochrome sensor...............................................................................56  
7
8
BOUNDARY SCAN TEST STRUCTURES.......................................................57  
STORAGE AND HANDLING............................................................................58  
8.1  
8.2  
STORAGE CONDITIONS....................................................................................58  
HANDLING AND SOLDER PRECAUTIONS ..........................................................58  
9
ORDERING INFORMATION.............................................................................60  
APPENDIX A: IBIS4 EVALUATION KIT................................................................62  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 3 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
1 Introduction  
1.1 Overview  
The IBIS4-6600 is a solid state CMOS image sensor that integrates the functionality  
of complete analog image acquisition, digitizer and digital signal processing system  
on a single chip. The image sensor compromises a 6.6 MPixel resolution with  
2210x3002 active pixels. The image size is fully programmable to user-defined  
windows of interest. The pixels are on a 3.5 µm pitch. The sensor is available in a  
Monochrome version or Bayer (RGB) patterned color filter array.  
User programmable row and column start/stop positions allow windowing down to  
2x1 pixel window for digital zoom. Sub sampling reduces resolution while  
maintaining the constant field of view. The analog video output of the pixel array is  
processed by an on-chip analog signal pipeline. Double Sampling (DS) eliminates the  
fixed pattern noise. The programmable gain and offset amplifier maps the signal  
swing to the ADC input range. A 10-bit ADC converts the analog data to a 10-bit  
digital word stream. The sensor uses a 3-wire Serial-Parallel (SPI) interface. It  
operates with a single 2.5V power supply and requires only one master clock for  
operation up to 40 MHz. It is housed in a 68-pin ceramic LCC package.  
The IBIS4-6600 is designed taking into consideration interfacing requirements to  
standard video encoders. In addition to the 10-bit pixel data stream, the sensor outputs  
the valid frame, line and pixel sync signals needed for encoding.  
This datasheet allows the user to develop a camera system based on the described  
timing and interfacing.  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 4 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
1.2 Key features  
6.6 Mpixel resolution: 2210 x 3002 active pixels – progressive scan.  
3.5 µm pitch square pixels (based on the high-fill factor active pixel sensor  
technology of FillFactory (US patent No. 6,225,670 and others)).  
Monochrome or Bayer (RGB) color filters.  
Single 2.5V supply; Single master clock.  
High pixel rate of 40 MHz using a 40 MHz system clock.  
10-bit digital output.  
61 dB dynamic range.  
High optical dynamic range with double slope integration and Non Destructive  
Read out (NDR) modes.  
Electronic rolling shutter.  
Pixel addressability to support Region-of-Interest windowing and sub  
sampling.  
On-chip Double Sampling FPN correction.  
Digital programmable using a 3-wire Serial-to-Parallel Interface (SPI).  
Programmable gain and offset amplifier.  
68-pins ceramic LCC package.  
1.3 Part number  
Part number  
Monochrome  
/ color die  
Package  
Glass lid  
IBIS4-6600-M-1  
84 pins  
JLCC *  
68 pins  
LCC  
84 pins  
JLCC  
68 pins  
LCC  
Monochrome Monochrome**  
Monochrome Monochrome  
CYII4SM6600AA-HBC – Preliminary  
IBIS4-6600-M-2  
CYII4SM6600AA-QBC – Preliminary  
IBIS4-6600-C-1  
Color  
Color  
Color***  
Color  
CYII4SC6600AA-HAC – Preliminary  
IBIS4-6600-C-2  
CYII4SC6600AA-QAC – Preliminary  
* JLCC package for use in evaluation kits only.  
** D263 is used as monochrome glass lid (see Figure 34 for spectral transmittance).  
*** S8612 is used as color glass lid (see Figure 33 for spectral transmittance).  
Other packaging combinations are available upon special request.  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 5 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
2 Specifications  
2.1 General specifications  
Table 1: General specifications  
Parameter  
Pixel  
Specification  
Remarks  
3T-pixel  
architecture  
Pixel size  
Resolution  
The resolution and pixel size results in a  
7,74 mm x 10,51 mm optical active area.  
Using a 40 MHz system clock and 1 or 2  
parallel outputs.  
3.5 µm x 3.5 µm  
2210 x3002  
Pixel rate  
40 MHz  
Electronic rolling  
shutter  
Shutter type  
Full frame  
rate  
Increases with ROI read out and/or sub  
sampling.  
5 frames/second  
2.2 Electro-optical specifications  
2.2.1 Overview  
Table 2: Electro-optical specifications  
Parameter  
FPN (local)  
PRNU (local)  
Specification  
<0.35 %  
Remarks  
RMS % of saturation signal.  
RMS of signal level.  
@ output (measured).  
<1.5%  
Conversion gain 37 uV/electron  
Output signal  
0.8V  
At nominal conditions.  
amplitude  
Saturation charge 21.500 e-  
283 V.m2/W.s  
Average white light.  
Sensitivity  
1.57 V/lux.s  
Visible band only (180 lx = 1 W/m2).  
Average QE*FF = 20% (visible range).  
Average SR*FF = 0.1 A/W (visible range).  
See spectral response curve.  
Light sensitive part of pixel.  
Typical value of average dark current of the  
whole pixel array.  
Peak QE * FF  
Peak SR * FF  
22.5 %  
0.12 A/W  
Fill factor  
50%  
Dark current (@ 6.29 mV/s  
21 °C)  
170 e-/s  
20 RMS e-  
1100:1  
Temporal noise  
Measured at digital output (in the dark).  
Full: 61 dB.  
Dynamic range  
940:1  
Linear: 59.5 dB.  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 6 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
Parameter  
Specification  
Remarks  
Spectral  
400 – 1000 nm  
sensitivity range  
15%  
4%  
To the first neighboring pixel.  
To the second neighboring pixel.  
Optical cross talk  
Power  
190 mWatt  
Typical (with ADC’s).  
dissipation  
2.2.2 Spectral response curve  
0.14  
QE 30%  
QE 20%  
0.12  
0.1  
QE 10%  
0.08  
0.06  
0.04  
0.02  
0
400  
500  
600  
700  
800  
900  
1000  
Wavelenght [nm]  
Figure 1: Spectral response curve  
Figure 1 shows the spectral response characteristic. The curve is measured directly on  
the pixels. It includes effects of non-sensitive areas in the pixel, e.g. interconnection  
lines. The sensor is light sensitive between 400 and 1000 nm. The peak QE * FF is  
22.5% approximately between 500 and 700 nm. In view of a fill factor of 50%, the  
QE is thus close to 50% between 500 and 700 nm.  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 7 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
2.2.3 Photo-voltaic response curve  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
5000  
10000  
15000  
20000  
25000  
30000  
number of electrons  
Figure 2: Photo-voltaic response curve  
Figure 2 shows the pixel response curve in linear response mode. This curve is the  
relation between the electrons detected in the pixel and the output signal. The  
resulting voltage-electron curve is independent of any parameters (integration time,  
etc). The voltage to electrons conversion gain is 37 µV/electron.  
2.3 Features and general specifications  
Table 3: Features and general specifications  
Feature  
Specification/Description  
Electronic shutter type  
Integration time control  
Windowing (ROI)  
Sub-sampling modes:  
Rolling shutter.  
60 us – 1/frame period.  
Randomly programmable ROI read out.  
Several sub sample modes can be programmed (see 3.6)  
Dual slope (up to 90 dB optical dynamic range) and  
non-destructive read out mode.  
Extended dynamic range  
The output rate of 40 Mpixels/s can be achieved with 2  
analog outputs each working at 20 Mpixel/s.  
2 on-chip 10-bit ADC’s @ 20 Msamples/s are  
multiplexed to 1 digital 10 bit output @ 40 Msamples/s.  
Nominal 2.5V (some supplies require 3.3V for extended  
dynamic range).  
Analog output  
Digital output  
Supply voltage VDD  
Logic levels  
2.5V.  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 8 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
Feature  
Specification/Description  
Serial-to Parallel Interface (SPI).  
68-pins LCC.  
Interface  
Package  
2.4 Electrical specifications  
2.4.1 Absolute maximum ratings  
Table 4: Absolute maximum ratings  
Symbol  
VDD  
VIN  
Parameter  
Value  
Unit  
V
V
DC supply voltage  
DC input voltage  
DC output voltage  
-0.5 to 3.3  
-0.5 to (VDC +0.5)  
-0.5 to (VDC + 0.5)  
V
VOUT  
DC current drain per pin; any single input  
± 50  
350  
mA  
°C  
IIO  
TL  
or output.  
Lead temperature (5 seconds soldering).  
Absolute Ratings are those values beyond which damage to the device may occur.  
VDD = VDDD = VDDA (VDDD is supply to digital circuit, VDDA to analog circuit).  
2.4.2 Recommended operating conditions  
Table 5: Recommended operating conditions  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
DC supply voltage  
2.5  
2.5  
3.3  
V
VDD  
Commercial operating  
0
24  
50  
°C (@ 15% RH)  
TA  
temperature.  
0
24  
38  
°C (@ 86% RH)  
RH = Relative Humidity  
All parameters are characterized for DC conditions after thermal equilibrium has been  
established.  
Unused inputs must always be tied to an appropriate logic level, e.g. either VDD or GND.  
This device contains circuitry to protect the inputs against damage due to high static voltages  
or electric fields; however it is recommended that normal precautions be taken to avoid  
application of any voltages higher than the maximum rated voltages to this high impedance  
circuit.  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 9 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
2.4.3 DC Electrical characteristics  
Table 6: DC electrical characteristics  
Symbol Characteristic  
Condition  
Min  
Max  
Unit  
V
V
µA  
V
V
Input high voltage  
Input low voltage  
Input leakage current  
Output high voltage  
Output low voltage  
VDD-0.5  
VIH  
VIL  
IIN  
0.6  
+10  
VIN = VDD or GND  
VDD=min; IOH= -100mA  
VDD=min; IOH= 100mA  
-10  
VDD-0.5  
VOH  
VOL  
0.5  
80  
Maximum operating  
System clock <= 40MHz  
70  
mA  
IDD  
current  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
Page 10 of 63  
IBIS4-6600  
Datasheet  
3 Sensor architecture and operation  
In this part of the document some of the more important specifications will be  
discussed more detail.  
3.1 Floor plan  
SENSOR  
IMAGE CORE  
pixel array  
2210 x 3002  
(excl. dark +  
dummy pixels)  
Pixel (0,0)  
column amplifiers  
address &  
data bus  
clk_x  
addressable x-shift register + sub-sampling  
sync_x  
Dig. logic  
Dig. logic  
DAC  
SPI  
DAC in  
analog output (2)  
Figure 3: Block diagram of the IBIS4-6600 CMOS image sensor  
Figure 3 shows the architecture of the image sensor that has been designed. It consists  
basically of the pixel array, shift registers for the readout in x and y direction, parallel  
analog output amplifiers, and column amplifiers that correct for the fixed pattern  
noise caused by threshold voltage non-uniformities. Reading out the pixel array starts  
by applying a y clock pulse to select a new row, followed by a calibration sequence to  
calibrate the column amplifiers (row blanking time). Depending on external bias  
resistors and timing, typically this sequence takes about 7 µs per line (baseline). This  
sequence is necessary to remove the Fixed Pattern Noise of the pixel and of the  
column amplifiers themselves (by means of a Double Sampling technique). Pixels can  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 11 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
also be read out in a non-destructive manner. Two DACs have been added to make  
the offset level of the pixel values adjustable and equal for the two output busses. A  
third DAC is used to connect the busses to a stable voltage during the row blanking  
period (or to the reset busses continuously in case of non-destructive readout). Two  
10-bit ADCs running at 20 Msamples/s will convert the analog pixel values. The  
digital outputs will be multiplexed to 1 digital 10-bit output at 40 Msamples/s. Note  
that these blocks are electrically completely isolated from the sensor part (except for  
the multiplexer for which the settings are uploaded through the shared address and  
data bus).  
The x and y shift registers do have a programmable starting point. The starting points  
possibilities are limited due to limitations imposed by sub-sampling requirements.  
The upload of the start address is done through the serial to parallel interface.  
Most of the signals for the image core in Figure 3 are generated on chip by the  
sequencer. This sequencer also allows running the sensor in basic modes, not fully  
autonomously.  
3.2 Pixel  
3.2.1 Architecture  
The pixel architecture is the classical three-transistor pixel as shown in Figure 4. The  
pixel has been implemented using the high fill factor technique as patented by  
FillFactory (US patent No. 6,225,670 and others).  
Vdd  
reset  
M1  
select  
M3  
M2  
output  
(column)  
Figure 4: Architecture of the 3T-pixel  
3.2.2 FPN and PRNU  
Fixed Pattern Noise correction is done on chip. Raw images taken by the sensor  
typically feature a residual (local) FPN of 0.35 % RMS of the saturation voltage.  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 12 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
The Photo Response Non Uniformity (PRNU), caused by mismatch of photodiode  
node capacitances, is not corrected on chip. Measurements indicate that the typical  
PRNU is about 1.5 % RMS of the signal level.  
3.2.3 Color filter array  
The IBIS4-6600 can also be processed with a Bayer RGB color pattern. Pixel (0,0)  
has a green filter and is situated on a green-red row.  
Figure 5: Color filter arrangement on the pixels. Green1 and green2 are separately processed color  
filters and have a different spectral response. Green1 pixels are located on a blue-green row, green2  
pixels are located on a green-red row.  
Figure 6 below shows the response of the color filter array as function of the  
wavelength. Note that this response curve includes the optical cross talk and the NIR  
filter of the color glass lid as well (see chapter 6.4.1 for response of the color glass  
lid).  
Figure 6: Color filters response curve  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 13 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
3.2.4 Dark and dummy pixels  
Figure 7 shows a plan of the pixel array. The sensor has been designed in “portrait”  
orientation. A ring of dummy pixels surrounds the active pixels. Black pixels are  
implemented as “optical” black pixels.  
Dummy ring of pixels,  
surrounding complete pixel  
array. not read  
Ring of dummy pixels,  
covered with black layer,  
readable  
Ring of 2 dummy pixels,  
illuminated, readable  
array of active pixels, read  
3002x 2210  
2222  
2210  
Figure 7: Floor plan pixel array  
3.3 Pixel rate  
The pixel rate for this sensor is high enough to support a frame rate of >75 Hz for a  
window size of 640 x 480 pixels (VGA format) + 23 pixels over scan in both  
directions. Taking into account a row blanking time of 7.2 µs (as baseline, see also  
3.9.2.a.7.), this requires a minimum pixel rate of nearly 40 MHz. The final bandwidth  
of the column amplifiers, output stage etc. is determined by external bias resistors.  
Taken into account a pixel rate of 40 MHz a full frame rate of a little more than 5  
frames/s will be obtained.  
The frame period of the IBIS4-6600 sensor can be calculated as follows:  
=> Frame period = (Nr. Lines * (RBT + pixel period * Nr. Pixels))  
with: Nr. Lines: Number of Lines read out each frame (Y).  
Nr. Pixels: Number of pixels read out each line (X).  
RBT: Row Blanking Time = 7.2 µs (typical).  
Pixel period: 1/40 MHz = 25 ns.  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 14 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
Example: read out time of the full resolution at nominal speed (40 MHz pixel rate):  
=> Frame period = (3002 * (7.2 µs + 25 ns * 2210)) = 187.5 ms => 5.33 fps.  
3.4 Region-Of-Interest (ROI) read out  
Windowing can easily be achieved by uploading the starting point of the x- and y-  
shift registers in the sensor registers (see 3.10). This downloaded starting point  
initiates the shift register in the x- and y-direction triggered by the Y_START (initiates  
the Y-shift register) and the Y_CLK (initiates the X-shift register) pulse. The  
minimum step size for the x-address is 24 (only even start addresses can be chosen)  
and 1 for the Y-address (every line can be addressed). The frame rate increases almost  
linearly when fewer pixels are read out. Table 7 gives an overview of the achievable  
frame rates with ROI read out.  
Table 7: Frame rate vs. resolution  
Image Resolution  
(Y*X)  
Frame rate Frame readout  
[frames/s] time [ms]  
Comment  
3002 x 2210  
1501 x 1104  
640 x 480  
5
187.5  
67  
Full resolution.  
ROI read out.  
ROI read out.  
14  
89  
11  
3.5 Output amplifier  
The output amplifier subtracts the reset and signal voltages from each other to cancel  
FPN as much as possible (Figure 8). The DAC that is used for offset adjustment  
consists of 2 DACs. One is used for the main offset (DAC_raw) and the other allows  
for fine tuning to compensate the offset difference between the signal paths arriving at  
the two amplifiers A1 and A2 (DAC_fine). With the analog multiplexer the signals S1  
and S2 from the two busses can be combined to one pixel output at full pixel rate (40  
MHz). The two analog signals S1 and S2 can, however, also be available on two  
separate output pins to allow a higher pixel rate.  
The third DAC (DAC_dark) puts its value on the busses during the calibration of the  
output amplifier. In case of non-destructive readout (no double sampling), bus1_R  
and bus2_R are continuously connected to the output of the DAC_fine to provide a  
reference for the signals on bus1_S and bus2_S.  
The complete output amplifier can be put in standby by setting the corresponding bit  
in the AMPLIFIER register.  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 15 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
programmable  
gain amplifiers  
output  
drivers  
bus1_S  
Pixel output 1  
Pixel output 2  
+
S1  
S2  
1
A1  
A2  
bus1_R  
analog  
multiplexer  
bus2_S  
bus2_R  
+
1
Stage 1  
Stage 2  
Stage 3  
DAC_raw /  
DAC_fine  
DAC_dark  
Figure 8: Output amplifier architecture  
3.5.1 Stage 1: Offset, FPN correction and multiplexing  
In the first stage, the signals from the busses are subtracted and the offset from the  
DACs is added. After a system reset, the analog multiplexer is configured for two  
outputs (see bit settings of the AMPLIFIER register). In case ONE_OUT is set to 1, the  
two signals S1 and S2 are multiplexed to one output (output 1). The amplifiers of  
stage 2 and stage 3 of the second output path are then put in standby. The speed and  
power consumption of the first stage is controllable through the resistor connected to  
CMD_OUT_1.  
3.5.2 Stage 2: Programmable gain amplifier  
The second stage provides the gain which will be adjustable between 1.36 and 17.38  
in steps of roughly 20.25 (~1.2). An overview of the gain settings is given in Table 8  
and Figure 9. The speed and power consumption of the second stage is controllable  
through the resistor connected to CMD_OUT_2.  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 16 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
Table 8: Overview gain settings  
bits  
DC gain  
1.36  
1.64  
1.95  
2.35  
2.82  
3.32  
3.93  
4.63  
bits  
DC gain  
5.40  
6.35  
7.44  
8.79  
10.31  
12.36  
14.67  
17.38  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Figure 9: Overview of the gain for each gain setting  
3.5.3 Stage 3: Output drivers  
The speed and power consumption of the third stage is controllable through the  
resistor connected to CMD_OUT_3. The output drivers are designed to drive a 20 pF  
output load at 40 Msamples/s with a bias resistor of 100 k.  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 17 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
3.5.4 Offset DACs  
Figure 10 shows how the DAC registers influence the black reference voltages of the  
two different channels. The offset is mainly given through DAC_raw. DAC_fine can  
be used to shift the reference voltage of bus 2 up or down to compensate for different  
offsets in the two channels.  
blackref  
10K  
bus1  
DAC_raw  
rcal  
DAC_RAW_REG<0:7>  
out  
200K  
RCAL  
pad RCAL_DAC_OUT  
VDDA  
+
blackref  
bus2  
VCAL  
10K  
50K  
50K  
DAC_fine  
rcal  
200K  
DAC_FINE_REG<0:7>  
out  
GNDA  
floating  
Figure 10: Offset for the two channels through DAC_raw and DAC_fine  
Assume that Voutfull is the voltage that depends on the bit values that are applied to the  
DAC and ranges from  
1
Voutfull : 0 (bit values00000000) VDDA(1) (bit values11111111)  
28  
Externally, the output range of DAC_raw can be changed by connecting a resistor Rcal  
to RCAL_DAC_OUT and applying a voltage Vcal. The output voltage Vout of DAC_raw  
follows relation (R = 10 k)  
R + Rcal  
2R + Rcal  
R
Vout  
Special case: Rcal = ∞  
=
Voutfull  
+
Vcal  
2R + Rcal  
then Vout = Voutfull (e.g. for DAC_fine)  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 18 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
Rcal = 0, Vcal = GND  
then Vout = Voutfull/2  
A similar relation holds for the output range of DAC_DARK (RCAL_DAC_DARK can be  
used to tune the output range of this DAC).  
3.6 Sub-sampling modes  
To increase the frame rate for lower resolution and/or regions of interest, a number of  
sub sampling modes have been implemented. The following modes are foreseen  
(Table 9). The bits can be programmed in the IMAGE_CORE register (see 3.9).  
Table 9: Overview sub sample modes  
Mode Bits  
Read Step  
A
B
C
D
E
000  
001  
010  
011  
1xx  
2
2
2
2
2
2
4
Default mode  
(Skip 2)  
6
(Skip 4)  
8
(Skip 6)  
12  
(Skip 10)  
To preserve the color information, 2 adjacent pixels are read in any mode, while the  
number of pixels that is not read, varies from mode to mode. This will be designed as  
a repeated block of 24 pixels wide, which is the lowest common multiple of the  
modes described above. Including the dummy pixels and the two additional  
rows/columns, the number of starting coordinates for the x and y shift register is thus  
99 in the X and 138 in the Y direction. The total number of pixels, excluding dummy  
pixels, is a multiple of 24, and two additional pixels to have the same window edges  
independently of the sub-sampling mode. In the X direction, two columns are always  
addressed at the same moment since the signals from the odd and even columns must  
be put simultaneously on the corresponding bus. In the Y direction, the rows are  
addressed one by one. This results in slightly different implementations of the sub-  
sampling modes for the two directions (Figure 11 and Figure 12).  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 19 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
24 column amplifiers  
bus1_S  
bus1_R  
bus2_S  
bus2_R  
scan direction  
A
B
C
D
E
Figure 11: X sub-sampling  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 20 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
E
D
C
B
A
Figure 12: Y sub-sampling  
Table 10 lists the frame rates of the sensor in various sub-sampling modes (see also  
chapter 3.4).  
Table 10: Frame rate in the various sub sampling modes  
Mode  
Ratio  
1:1  
Resolution (Y*X) Frame time [ms] Frame rate [fr/s]  
A
3002 x 2210  
1502 x 1106  
1002 x 738  
752 x 554  
502 x 370  
640 x 480  
663 x 503  
480 x 640  
187.4  
52.3  
25.7  
15.8  
8.2  
5.3  
19.1  
38.9  
63.2  
121.2  
81.5  
76.4  
89.9  
B
1:4  
C
D
1:9  
1:16  
1:36  
E
VGA (p)  
VGA (p) + 23  
VGA (l)  
12.3  
13.1  
11.1  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
Page 21 of 63  
IBIS4-6600  
Datasheet  
Mode  
VGA(l) + 23  
Ratio  
Resolution (Y*X) Frame time [ms] Frame rate [fr/s]  
503 x 663  
11.9  
83.7  
Figure 13 shows the pixels read out in each color sub-sampling mode.  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
mode A  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
Page 22 of 63  
IBIS4-6600  
Datasheet  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
mode B  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
mode C  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 23 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
mode D  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
mode E  
Figure 13: Pixels read out in the various sub-sampling modes  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 24 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
3.7 Electronic shutter  
A curtain like (rolling) electronic shutter has been implemented on chip. As can be  
seen in Figure 14, there are two Y shift registers. One of them points to the row that is  
currently being read out. The other shift register points to the row that is currently  
being reset. Both pointers are shifted by the same Y-clock and move over the focal  
plane. The integration time is set by the delay between both pointers.  
Readout  
pointer  
Reset  
pointer  
Figure 14: Operation of the electronic shutter  
In case of a mechanical shutter, the two shift registers can be combined to apply the  
pulses from both sides of the pixel array simultaneously. This is to halve the influence  
of the parasitic RC times of the reset and select lines in the pixel array (which can  
result in a reduction of the row blanking time). This is the case when FAST_RESET in  
the SEQUENCER register is set to 1 or in the non-destructive readout modes 1 and 2.  
Reset sequence  
Line number  
Time axis  
Frame time  
Integration time  
Figure 15: Rolling shutter operation  
In Figure 15, we schematically indicate the relative shift of the integration times of  
different lines during the rolling shutter operation. Each line is read and reset in a  
sequential way. The integration time is the same for all lines, but shifted in time. The  
integration time can be varied through the INT_TIME register (in number of lines).  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 25 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
3.8 High dynamic range modes  
3.8.1 Double slope integration  
The IBIS4-6600 has a feature to increase the optical dynamic range of the sensor;  
called double slope integration. The pixel response can be extended over a larger  
range of light intensities by using a “dual slope integration” (patents pending). This is  
obtained by the addition of charge packets from a long and a short integration time in  
the pixel during the same exposure time.  
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
Dual slope operation  
0.4  
0.2  
0
Long integration time  
Short integration time  
Relative exposure (arbitrary scale)  
0%  
10%  
20%  
30%  
40%  
50%  
60%  
70%  
80%  
90%  
100%  
Figure 16: Double slope response curve  
Figure 16 shows the response curve of a pixel in dual slope integration mode. The  
curve also shows the response of the same pixel in linear integration mode, with a  
long and short integration time, at the same light levels.  
Dual slope integration is obtained by:  
Feeding a lower supply voltage to VDD_RESET_DS (e.g. apply 2.0V to  
2.5V). Note that for normal (single slope operation VDD_RESET_DS should  
have the same value as VDD_RESET. The difference between  
VDD_RESET_DS and VDD_RESET determines the range of the high  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 26 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
sensitivity, thus the output signal level at which the transition between high  
and low sensitivity occurs.  
Put the amplifier gain to the lowest value where the analog output swing  
covers the ADC’s digital input swing. Increasing the amplification too much  
will likely boost the high sensitivity part over the whole ADC range.  
The electronic shutter determines the ratio of integration times of the two  
slopes. The high sensitivity ramp corresponds to “no electronic shutter”, thus  
maximal integration time (frame read out time). The low sensitivity ramp  
corresponds to the electronic shutter value that would have been obtained in  
normal operation.  
Examples of the double slope (high dynamic range) mode can be found at  
http://www.fillfactory.be/htm/technology/htm/dual-slope.htm.  
3.8.2 Non-destructive readout (NDR)  
The default mode of operation of the sensor is with FPN correction (double  
sampling). However, the sensor can also be read out in a non-destructive way. After a  
pixel is initially reset, it can be read multiple times, without resetting. The initial reset  
level and all intermediate signals can be recorded. High light levels will saturate the  
pixels quickly, but a useful signal is obtained from the early samples. For low light  
levels, one has to use the later or latest samples.  
time  
Figure 17. Principle of non-destructive readout.  
Essentially an active pixel array is read multiple times, and reset only once. The  
external system intelligence takes care of the interpretation of the data. Table 11  
summarizes the advantages and disadvantages of non-destructive readout.  
Table 11: Advantages and disadvantages of non-destructive readout.  
Advantages  
Low noise – as it is true CDS. In the System memory required to record the  
order of 10 e- or below. reset level and the intermediate samples.  
High sensitivity – as the conversion Requires multiples readings of each pixel,  
capacitance is kept rather low. thus higher data throughput.  
Disadvantages  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 27 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
Advantages  
Disadvantages  
High dynamic range – as the results Requires system level digital calculations.  
includes signal for short and long  
integrations times.  
3.9 Sequencer  
Figure 3 showed a number of control signals that are needed to operate the sensor in a  
particular sub-sampling mode, with a certain integration time, output amplifier gain,  
etc. Most of these signals are generated on chip by the sequencer that uses only a few  
control signals. These control signals should be generated by the external system:  
SYS_CLOCK, which defines the pixel rate (nominal 40 MHz),  
Y_START pulse, which indicates the start of a new frame,  
Y_CLOCK, which selects a new row and will start the row blanking sequence,  
including the synchronization and loading of the X-register.  
The relative position of the pulses will be determined by a number of data bits that are  
uploaded in internal registers through a Serial to Parallel interface (SPI).  
3.9.1 Internal registers  
Table 12 shows a list of the internal registers with a short description. In the next  
section, the registers are explained in more detail.  
Table 12: List of internal registers  
Register Bit  
Name  
Description  
0 (0000)  
11:0  
SEQUENCER register  
Selection of mode, granularity of the  
sequencer clock, calibration, …  
X
Default value <11:0>:”000100000000”  
Mode of readout:  
0
NDR  
NDR = 0: normal readout (double sampling)  
NDR = 1: non-destructive readout  
1:2  
3
NDR_mode  
4 different modes of non-destructive readout (no  
influence if NDR = 0)  
0 = normal operation  
1 = reset of pixels before readout  
0 = electronic shutter operation  
1 = addressing from both sides  
0 = fast  
RESET_BLACK  
FAST_RESET  
4
5
FRAME_CAL_MODE  
LINE_CAL_MODE  
CONT_CHARGE  
1 = slow  
6
0 = fast  
1 = slow  
7
0 = normal mode  
1 = ‘continuous precharge’  
Granularity of the X sequencer clock  
8
9
GRAN_X_SEQ_LSB  
GRAN_X_SEQ_MSB  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 28 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
Register Bit  
Name  
Description  
10  
BLACK  
0 = normal mode  
1 = disconnects column amplifiers from busses,  
output of amplifier equals dark reference level  
0 = normal mode  
11  
RESET_ALL  
1 = continuous reset of all pixels  
Number of pixels to count (X direction).  
Max. 2222/2 (2210 real + 12 dummy pixels).  
Default value <10:0>:”01000000000”  
Number of lines to count (Y direction).  
Max. 3014 (3002 real + 12 dummy pixels).  
Default value <11:0>:”101111000110”  
Integration time.  
1 (0001)  
2 (0010)  
10:0  
NROF_PIXELS  
11:0  
NROF_LINES  
3 (0011)  
4 (0100)  
11:0  
7:0  
INT_TIME  
DELAY  
Default value <11:0>:”000000000001”  
Delay of sequencer pulses  
Default value <7:0>:”00000011”  
Delay of PIX_VALID pulse  
0:3  
4:7  
6:0  
DELAY_PIX_VALID  
DELAY_EOL/EOF  
X_REG  
Delay of EOL/EOF pulses  
5 (0101)  
6 (0110)  
7 (0111)  
X start position (0 to 98).  
Default value <6:0>:”0000000”  
Y start position (0 to 137).  
7:0  
Y_REG  
Default value <7:0>:”00000000”  
Default value <7:0>:”00000000”  
LSB: odd, MSB: even  
7:0  
1:0  
IMAGE CORE register  
TEST_mode  
0 = normal operation  
4:2  
7:5  
9:0  
3:0  
4
X_SUBSAMPLE  
Y_SUBSAMPLE  
AMPLIFIER register  
GAIN<3:0>  
sub-sampling mode in X-direction  
sub-sampling mode in X-direction  
Default value <9:0>:”0000010000”  
Output amplifier gain setting  
8 (1000)  
UNITY  
0 = gain setting by GAIN<3:0>  
1 = unity gain setting  
5
6
ONE_OUT  
STANDBY  
0 = two analog outputs  
1 = multiplexing to one output (out_1)  
0 = normal operation  
1 = amplifier in standby mode.  
Delay of pixel clock to output amplifier.  
Amplifier DAC raw offset.  
7:9  
7:0  
DELAY_CLK_AMP  
DAC_RAW_REG  
9 (1001)  
10 (1010)  
11 (1011)  
12 (1100)  
Default value <7:0>:”10000000”  
Amplifier DAC fine offset.  
7:0  
7:0  
DAC_FINE_REG  
DAC_DARK_REG  
Default value <7:0>:”10000000”  
DAC dark reference on output bus.  
Default value <7:0>:”10000000”  
Default value <10:0>:”00000000000”  
0 = normal operation  
10:0  
0
ADC register  
STANDBY_1  
1 = ADC in standby  
1
2
STANDBY_2  
ONE  
0 = multiplexing of two ADC outputs  
1 = disable multiplexing  
3
SWITCH  
if ONE = 0: delay of output with one  
(EXT_CLK = 0) or half (EXT_CLK = 1) clock  
cycle  
if ONE = 1: switch between two ADCs  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 29 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
Register Bit  
Name  
Description  
0 = internal clock (same as clock to X shift  
register and output amplifier)  
1 = external clock  
4
EXT_CLK  
5
TRISTATE  
0 = normal operation  
1 = outputs in tristate mode  
Delay of clock to ADCs and digital multiplexer  
0 = linear conversion  
6:8  
9
DELAY_CLK_ADC  
GAMMA  
1 = ‘gamma’ law conversion  
0 = no inversion of bits  
10  
BITINVERT  
1 = inversion of bits  
13 (1101)  
14 (1110)  
15 (1111)  
Reserved.  
Reserved.  
Reserved.  
3.9.2 Detailed description of registers  
3.9.2.a  
3.9.2.a.1 NDR (bit 0)  
SEQUENCER register  
In normal operation (NDR = 0), the sensor operates in double sampling mode. At the  
start of each row readout, the signals from the pixels are sampled, the row is reset and  
the signals from the pixels are sampled again. The values are subtracted in the output  
amplifier.  
When NDR is set to 1, the sensor operates in non-destructive readout (NDR) mode  
(see 3.8.2).  
3.9.2.a.2 NDR_mode (bit 1 and 2)  
These bits only influence the operation of the sensor in case NDR (bit 0) is set to 1.  
There are basically two modes for non-destructive readout (mode 1 and 2). Each  
mode needs two different frame readouts (setting 1 and 2 for mode 1, setting 3 and 4  
for mode 2). First a reset/readout sequence (called reset_seq hereafter) and then one  
or several pure readout sequences (called read_seq hereafter). Table 13 shows an  
overview of the different NDR modes.  
Table 13: Overview of NDR modes.  
Setting Bits NDR mode sequence  
1
2
3
4
00  
01  
10  
11  
1
1
2
2
reset  
read  
reset  
read  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 30 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
MODE 1  
In this mode, the sensor is readout in the same way as for non-destructive readout.  
However, electronic shutter control is not possible in this case, i.e. the minimal  
(integration) time between two readings is equal to the number of lines that has to be  
read out (frame read time). The row lines are clocked simultaneously (left and right  
clock pulses are equal).  
MODE 2  
In mode 2, it is possible to have a shorter integration time than the frame read time.  
Rows are alternating read out with the left and right pointer. These two pointers can  
point to two different rows (see INT_TIME register). The (integration) time between  
two readings of the same row is equal to the number of lines that is set in the  
INT_TIME register times 2 plus 1 and is minimal 1 line read time. In setting 3, the row  
that is read out by the left pointer is reset and read out (first Y_CLOCK), the row that is  
read out by the right pointer is read out without resetting (second Y_CLOCK). In  
setting 4, both rows are read out without resetting (on the first Y_CLOCK the row is  
read out by the left pointer; on the second Y_CLOCK the row is read out by the right  
pointer).  
For both modes, the signals are read out through the same path as with destructive  
readout (double sampling) but the busses that are carrying the reset signals in  
destructive readout, are in non-destructive readout set to the voltage given by  
DAC_DARK.  
3.9.2.a.3 Reset_black (bit 3)  
If RESET_BLACK is set to 1, each line is reset before it is read out (except for the row  
that is read out by the right pointer in NDR mode 2). This might be useful to obtain  
black pixels.  
3.9.2.a.4 Fast_reset (bit 4)  
The fast reset option (FAST_RESET = 1) might be useful in case a camera shutter is  
used. The fast reset is done on a row-by-row basis, not by a global reset. A global  
reset means charging all the pixels at the same time, which may result in a huge peak  
current. Therefore, the rows can be scanned rapidly while the left and right shift  
registers are both controlled identically, so that the reset lines over the pixel array are  
driven from both sides. This reduces the reset (row blanking) time (when FAST_RESET  
= 1 the smallest X-granularity can be used). After the row blanking time the row is  
reset and Y_CLOCK can be asserted to reset the next row.  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 31 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
After a certain integration time, the read out can be done in a similar way. The Y shift  
registers are again synchronized to the first row. Both shift registers are driven  
identically, and all rows & columns are scanned for (destructive) readout.  
FAST_RESET = 1 puts the sequencer in such mode that the left and right shift registers  
are both controlled identically.  
3.9.2.a.5 Output amplifier calibration (bit 5 and 6)  
Bits FRAME_CAL_MODE and LINE_CAL_MODE define the calibration mode of the  
output amplifier.  
During every row-blanking period, a calibration is done of the output amplifier.  
There are 2 calibration modes. The FAST mode (= 0) can force a calibration in one  
cycle but is not so accurate and suffers from kTC noise, while the SLOW mode (= 1)  
can only make incremental adjustments and is noise free. Approximately 200 or more  
“slow” calibrations will have the same effect as 1 “fast” calibration.  
Different calibration modes can be set at the beginning of the frame  
(FRAME_CAL_MODE bit) and for every subsequent row that is read (LINE_CAL_MODE  
bit).  
3.9.2.a.6 Continuous charge (bit 7)  
For some applications it might be necessary to use continuous charging of the pixel  
columns instead of a precharge on every row sample operation.  
Setting bit CONT_CHARGE to 1 will activate this function. The resistor connected to  
pin CMD_COL is used to control the current level on every pixel column.  
3.9.2.a.7 Internal clock granularities  
The system clock is divided several times on chip.  
The X-shift-register that controls the column/pixel read out, is clocked by half the  
system clock rate. Odd and even pixel columns are switched to 2 separate buses. In  
the output amplifier the pixel signals on the 2 busses can be combined to one pixel  
stream at 40 MHz.  
The clock that drives the X-sequencer can be a multiple of 2, 4, 8 or 16 times the  
system clock. Table 14 shows the settings for the granularity of the X-sequencer clock  
and the corresponding row blanking time (for NDR = 0). A row blanking time of 7.18  
µs is the baseline for almost all applications.  
Table 14: Granularity of X-sequencer clock and corresponding row blanking time (for NDR = 0).  
X-sequencer  
Row blanking  
Row blanking time  
Gran_x_seq_msb/lsb  
00  
2 x sys_clock  
142 x TSYS_CLOCK  
3.55  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 32 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
01  
10  
11  
4 x sys_clock  
8 x sys_clock  
16 x sys_clock  
282 x TSYS_CLOCK  
562 x TSYS_CLOCK  
1122 x  
7.05  
14.05  
28.05  
3.9.2.a.8 Black (bit 10)  
In case BLACK is set to 1, the internal black signal will be held high continuously. As  
a consequence, the column amplifiers are disconnected from the busses, the busses are  
set to the voltage given by DAC_DARK and the output of the amplifier equals the  
voltages from the offset DACs.  
3.9.2.a.9 Reset_all (bit 11)  
In case RESET_ALL is set to 1, all the pixels are simultaneously put in a ‘reset’ state. In  
this state, the pixels behave logarithmically with light intensity. If this state is  
combined with one of the NDR modes, the sensor can be used in a non-integrating,  
logarithmic mode with high dynamic range.  
3.9.2.b  
NROF_PIXELS register  
After the internal X_SYNC is generated (start of the pixel readout of a particular row),  
the PIXEL_VALID signal goes high. The PIXEL_VALID signal goes low when the pixel  
counter reaches the value loaded in the NROF_PIXEL register and an EOL pulse is  
generated. Due to the fact that 2 pixels are addressed at each internal clock cycle the  
amount of pixels read out in one row = 2*(NROF_PIXEL + 1).  
3.9.2.c  
NROF_LINES register  
After the internal YL_SYNC is generated (start of the frame readout with Y_START),  
the line counter increases with each Y_CLOCK pulse until it reaches the value loaded  
in the NROF_LINES register and an EOF pulse is generated. In NDR mode 2, the line  
counter increments only every two Y_CLOCK pulses and the EOF pulse shows up only  
after the readout of the row indicated by the right shift register.  
3.9.2.d INT_TIME register  
When the Y_START pulse is applied (start of the frame readout), the sequencer will  
generate the YL_SYNC pulse for the left Y-shift register. This loads the left Y-shift  
register with the pointer loaded in Y_REG register. At each Y_CLOCK pulse, the  
pointer shifts to the next row and the integration time counter increases (increment  
only every two Y_CLOCK pulses in NDR mode 2) until it reaches the value loaded in  
the INT_TIME register. At that moment, the YR_SYNC pulse for the right Y-shift  
register is generated which loads the right Y-shift register with the pointer loaded in  
Y_REG  
register  
(Figure  
18).  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
Page 33 of 63  
IBIS4-6600  
Datasheet  
Sync of left  
Last line, followed by sync  
of left shift-register  
Sync of right  
shift-register  
shift-register  
Sync  
Treg_int  
Line n  
Tint  
Figure 18: Syncing of the Y-shift registers.  
T
reg_int Difference between left and right pointer = integration counter until value “n”  
of INT_TIME register is reached = INT_TIME register.  
In case of NDR = 0, the actual integration time Tint is given by  
Tint Integration time [# lines] = NROF_LINES register - INT_TIME register + 1  
In case of NDR = 1, NDR mode 1, the time Tint between two readings of the same row  
is given by  
Tint  
Integration time [# lines] = NROF_LINES register + 1  
In case of NDR = 1, NDR mode 2, the times Tint1 and Tint2 between two readings of  
the same row (alternatingly) are given by  
Tint1 Integration time [# lines] = 2 * INT_TIME register + 1  
Tint2 Integration time [# lines]  
= 2 * (NROF_LINES register + 1) – (2 * INT_TIME register + 1)  
3.9.2.e DELAY register  
The DELAY register can be used to delay the PIXEL_VALID pulse (bits 0:3) and the  
EOL/EOF pulses (bits 4:7) to synchronize them to the real pixel values at the analog  
output or the ADC output (which give additional delays depending on their settings).  
The bit settings and corresponding delay is indicated in Table 15.  
Table 15: Delay added by changing the settings of the DELAY register  
bits  
Delay [# SYS_CLOCK periods] bits  
Delay [# SYS_CLOCK periods]  
0000  
0001  
0010  
0011  
0100  
0101  
0
0
0
1
2
3
1000  
1001  
1010  
1011  
1100  
1101  
6
7
8
9
10  
11  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 34 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
bits  
Delay [# SYS_CLOCK periods] bits  
Delay [# SYS_CLOCK periods]  
0110  
0111  
4
5
1110  
1111  
12  
13  
3.9.2.f  
X_REG register  
The X_REG register determines the start position of the window in the X-direction. In  
this direction, there are 2208 + 2 + 12 readable pixels. In the active pixel array sub-  
sampling blocks are 24 pixels wide and the columns are read two by two and  
therefore, the number of start positions equals 2208/24 +2/2 +12/2 = 92 + 1 + 6 = 99.  
3.9.2.g Y_REG register  
The Y_REG register determines the start position of the window in the Y-direction. In  
this direction, there are 3000 + 2 + 12 readable pixels. In the active pixel array sub-  
sampling blocks are 24 pixels wide and the rows are read one by one and therefore,  
the number of start positions equals 3000/24 + 2/2 +12 = 125 + 1 + 12 = 138.  
3.9.2.h  
IMAGE_CORE register  
Bits 0:1 of the IMAGE_CORE register defines the several test modes of the image core.  
Setting 00 is the default and normal operation mode. In case the bit is set to 1, the odd  
(bit 0) or even (bit 1) columns are tight to VDD. These test modes can be used to tune  
the sampling point of the ADC’s to an optimal position.  
Bits 2:7 of the IMAGE_CORE register define the sub-sampling mode in the X-direction  
(bits 2:4) and in the Y-direction (bits 5:7). The sub-sampling modes and  
corresponding bit setting are given in 3.6.  
3.9.2.i  
AMPLIFIER register  
3.9.2.i.1 Gain (bits 0:3)  
The gain bits determine the gain setting of the output amplifier. They are only  
effective if UNITY = 0. The gains and corresponding bit setting are given in Table 8 in  
3.5.2.  
3.9.2.i.2 Unity (bit 4)  
In case UNITY = 1, the gain setting of GAIN is bypassed and the gain amplifier is put  
in unity feedback.  
3.9.2.i.3 One_out  
If ONE_OUT = 0, the two output amplifiers are active. If ONE_OUT = 1, the signals  
from the two busses are multiplexed to output OUT1. The gain amplifier and output  
driver of the second path are put in standby.  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 35 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
3.9.2.i.4 Standby  
If STANDBY = 1, the complete output amplifier is put in standby (this reduces the  
power consumption significantly)  
3.9.2.i.5 Delay_clk_amp  
The clock that acts on the output amplifier can be delayed to compensate for any  
delay that is introduced in the path from shift register, column selection logic, column  
amplifier and busses to the output amplifier. Setting ‘000’ is used as a baseline.  
Table 16: Delay added by changing the settings of the DELAY_CLK_AMP bits  
bits Delay [ns] bits  
Delay [ns]  
000  
001  
010  
011  
1.7  
2.9  
4.3  
6.1  
100 Inversion + 8.3  
101 Inversion + 9.7  
110 Inversion + 11.1  
111 Inversion + 12.3  
3.9.2.j  
DAC_RAW_REG and DAC_FINE_REG register  
These registers determine the black reference level at the output of the output  
amplifier. Bit setting 11111111 for DAC_RAW_REG register gives the highest offset  
voltage; bit setting 00000000 for DAC_RAW_REG register gives the lowest offset  
voltage. Ideally, if the two output paths have no offset mismatch, the DAC_FINE_REG  
register must be set to 10000000. Deviation from this value can be used to  
compensate the internal mismatch (see 3.5.4).  
3.9.2.k  
DAC_RAW_DARK register  
This register determines the voltage level that is put on the internal busses during  
calibration of the output stage. This voltage level is also continuously put on the reset  
busses in case of non-destructive readout (as a reset level for the double sampling  
FPN correction).  
3.9.2.l  
ADC register  
3.9.2.l.1 Standby_1 and standby_2  
In case only one or none of the ADCs is used, the other or both ADCs can be put in  
standby by setting the bit to 1 (this reduces the power consumption significantly).  
3.9.2.l.2 One  
In case OUT1 and OUT2 are both used and connected to ADC_IN1 and ADC_IN2  
respectively, ONE must be 0 to use both ADCs and to multiplex their output to  
ADC_D<9:0>. If ONE = 1, the multiplexing is disabled.  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 36 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
3.9.2.l.3 Switch  
In case the two ADCs are used (ONE = 0) and internal pixel clock (EXT_CLK = 0), the  
ADC output is delayed with one system clock cycle if SWITCH = 1. In case the two  
ADCs are used (ONE = 0) and an external ADC clock (EXT_CLK = 1) is applied, the  
ADC output is delayed with half ADC clock cycle if SWITCH = 1.  
In case only one ADC is used, the digital multiplexing is disabled by ONE = 1, but  
SWITCH selects which ADC output is on ADC_D<9:0> (SWITCH = 0: ADC_1,  
SWITCH = 1: ADC_2).  
3.9.2.l.4 Ext_clk  
In case EXT_CLK = 0, the internal pixel clock (that drives the X-shift registers and  
output amplifier, i.e. half the system clock) is used as input for the ADC clock. In case  
EXT_CLK = 1, an external clock must be applied to pin ADC_CLK_EXT (pin 46).  
3.9.2.l.5 Tristate  
In case TRISTATE = 1, the ADC_D<9:0> outputs are in tri-state mode.  
3.9.2.l.6 Delay_clk_adc  
The clock that finally acts on the ADCs can be delayed to compensate for any delay  
that is introduced in the path from the analog outputs to the input stage of the ADCs.  
The same settings apply as for the delay that can be given to the clock acting on the  
output amplifier (see Table 16). The best setting will also depend on the delay of the  
output amplifier clock and the load of the output amplifier. It must be used to  
optimize the sampling moment of the ADCs with respect to the analog pixel input  
signals. Setting ‘000’ is used as a baseline.  
3.9.2.l.7 Gamma  
If GAMMA is set to 0, the ADC input to output conversion is linear, otherwise the  
conversion follows a ‘gamma’ law (more contrast in dark parts of the window, lower  
contrast in the bright parts).  
3.9.2.l.8 Bitinvert  
If BITINVERT = 0, 0000000000 is the conversion of the lowest possible input voltage,  
otherwise the bits are inverted.  
3.9.3 Serial to Parallel interface  
To upload the sequencer registers a dedicated serial to parallel interface (SPI) is  
implemented. 16 bits (4 address bits + 12 data bits) must be uploaded serially. The  
address must be uploaded first (MSB first), then the data (also MSB first).  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 37 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
The elementary unit cell is shown in Figure 18. 16 of these cells connected in series,  
having a common SPI_CLK form the entire uploadable parameter block, where Dout of  
one cell is connected to SPI_DATA of the next cell (max. speed 20 MHz). The  
uploaded settings on the address/data bus are loaded into the correct register of the  
sensor on the rising edge of signal REG_CLOCK and become effective immediately.  
16 outputs to address/data bus  
SPI_DATA  
SPI_CLK  
D
Q
Q
REG_CLOCK  
C
Entire uploadable address block  
To address/data bus  
Dout  
REG_CLOCK  
D
SPI_DATA  
SPI_CLK  
SPI_CLK  
C
SPI_DATA  
A3  
A2  
A1  
D0  
Unity Cell  
REG_CLOCK  
Internal register  
upload  
Figure 19: Schematic and timing of the SPI interface  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
Page 38 of 63  
IBIS4-6600  
Datasheet  
4 Timing diagrams  
4.1 Sequencer control signals  
There are 3 control signals that operate the image sensor:  
SYS_CLOCK  
Y_CLOCK  
Y_START  
These control signals should be generated by the external system with following time  
constraints to SYS_CLOCK (rising edge = active edge):  
TSETUP >7.5 ns.  
THOLD > 7.5 ns.  
It is important that these signals are free of any glitches.  
Figure 20: Relative timing of the 3 sequencer control signals  
Figure 21 shows the recommended schematic for generating the control signals and to  
avoid any timing problems.  
Y_CLOCK  
FF  
Y_START  
SYS_CLOCK_N  
SYS_CLOCK  
Figure 21: Recommended schematic for generating control signals  
4.2 Basic frame and line timing  
The basic frame and line timing of the IBIS4-6600 sensor is shown in Figure 21.  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 39 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
Figure 22: Basic frame and line timing.  
The pulse width of Y_CLOCK should be minimum 1 clock cycle and 3 clock cycles for  
Y_START. As long as Y_CLOCK is applied, the sequencer stays in a suspended state.  
T1  
Row blanking time: During this period, the X-sequencer generates the control  
signals to sample the pixel signal and pixel reset levels, and start the readout  
of one line. It depends on the granularity of the X-sequencer clock (see Table  
14).  
T2  
Pixels counted by pixel counter until the value of NROF_PIXELS register is  
reached. PIXEL_VALID goes high when the internal X_SYNC signal is  
generated, in other words when the readout of the pixels is started.  
PIXEL_VALID goes low when the pixel counter reaches the value loaded in the  
NROF_PIXELS register. EOL goes high SYS_CLOCK cycle after the falling edge  
of PIXEL_VALID.  
T3  
EOF goes high when the line counter reaches the value loaded in the  
NROF_LINES register and the line is read (PIXEL_VALID goes low).  
Both EOF and EOL can be tied to Y_START (EOF) and Y_CLOCK (EOL) if both signals  
are delayed with at least 2 SYS_CLOCK periods to let the sensor run in a fully  
automatic way.  
4.3 Pixel output timing  
4.3.1 Two outputs  
The pixel signal at the OUT1 (OUT2) output becomes valid after 4 SYS_CLOCK cycles  
when the internal X_SYNC (= start of PIXEL_VALID output) has appeared (see Figure  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 40 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
22). The PIXEL_VALID and EOL / EOF pulses can be delayed by the user through the  
DELAY register.  
T1  
T2  
Row blanking time (see Table 14)  
4 SYS_CLOCK cycles.  
N-1  
Figure 23: Pixel output timing (two outputs).  
4.3.2 Multiplexing to one output  
The pixel signal at the OUT1 output becomes valid after 5 SYS_CLOCK cycles when  
the internal X_SYNC (= start of PIXEL_VALID output) has appeared (see Figure 23).  
The PIXEL_VALID and EOL / EOF pulses can be delayed by the user through the DELAY  
register.  
T1  
T2  
Row blanking time  
5 SYS_CLOCK cycles.  
Figure 24: Pixel output timing (one output)  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 41 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
4.3.3 ADC timing  
4.3.3.a Two analog outputs  
Figure 25: ADC timing using two analog outputs  
Figure 25 shows the timing of the ADC using two analog outputs. Internally, the  
ADCs sample on the falling edge of the ADC_CLOCK (in case of internal clock, the  
clock is half the SYS_CLOCK).  
T1  
Each ADC has a pipeline delay of 2 ADC_CLOCK cycles. This results in a total  
pipeline delay of 4 pixels.  
4.3.3.b One analog output  
Figure 26: ADC timing with using analog output  
Figure 26 shows the timing of the ADC using one analog output. Internally, the ADC  
samples on the falling edge of the ADC_CLOCK.  
T1  
The ADC has a pipeline delay of 2 ADC_CLOCK cycles.  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 42 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
5 Pin list  
Table 17 is a list of all the pins and their function. In total, there are 68 pins. All pins  
with the same name can be connected together.  
Table 17: Pin list  
Pin  
Expected  
Pin Pin name  
Pin description  
type  
Voltage [V]  
Biasing of columns (ctu). Decouple  
with 100 nF to GNDA.  
Biasing of columns. Connect to VDDA  
with R = 10 kand decouple to GNDA  
with C = 100 nF.  
1
CMD_COL_CTU  
Input  
0
2
CMD_COL  
Input  
1.08  
Biasing of column amplifiers. Connect  
to VDDA with R = 100 kand  
decouple to GNDA with C = 100 nF.  
Biasing of column amplifiers. Connect  
to VDDA with R = 10 Mand  
decouple to GNDA with C = 100 nF.  
Biasing of DAC for dark reference.  
Can be used to set output range of  
DAC.  
3
4
CMD_COLAMP  
Input  
0.66  
0.37  
CMD_COLAMP_CTU Input  
1.27 @ code  
128  
5
6
RCAL_DAC_DARK  
RCAL_DAC_OUT  
Input  
Input  
DAC_DARK  
reg  
Default: decouple to GNDA with C =  
100 nF.  
Biasing of DAC for output dark level.  
Can be used to set output range of  
DAC. Default: connect to GNDA.  
VDD of analog part [2.5 V].  
GND (&substrate) of analog part.  
VDD of digital part [2.5 V].  
GND (&substrate) of digital part.  
Biasing of first stage output amplifiers.  
Connect to VDDAMP with R = 50 kΩ  
and decouple to GNDAMP with C =  
100 nF.  
Biasing of second stage output  
amplifiers. Connect to VDDAMP with  
R = 25 kand decouple to GNDAMP  
with C = 100 nF.  
Biasing of third stage output amplifiers.  
Connect to VDDAMP with R = 100 kΩ  
and decouple to GNDAMP with C =  
100 nF.  
Clock of digital parameter upload.  
Shifts on rising edge.  
0
7
8
9
VDDA  
GNDA  
VDDD  
Power  
Power  
Power  
Power  
2.5  
0
2.5  
0
10 GNDD  
11 CMD_OUT_1  
Input  
Input  
Input  
0.78  
0.97  
0.67  
12 CMD_OUT_2  
13 CMD_OUT_3  
14 SPI_CLK  
15 SPI_DATA  
16 VDDAMP  
Input  
Input  
Power  
-
Serial address and data input. 16 bit  
word. Address first. MSB first.  
VDD of analog output [2.5 V] (Can be  
connected to VDDA).  
-
2.5  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 43 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
Pin  
Expected  
Pin Pin name  
Pin description  
type  
Voltage [V]  
Biasing of first stage ADC. Connect to  
VDDA_ADC with R = 50 kand  
decouple to GNDA_ADC with C = 100  
nF.  
Biasing of second stage ADC. Connect  
to VDDA_ADC with R = 50 kand  
decouple to GNDA_ADC.  
17 CMD_FS_ADC  
Input  
Input  
0.73  
0.73  
0.59  
18 CMD_SS_ADC  
Biasing of input stage ADC. Connect to  
VDDA_ADC with R = 180 kand  
decouple to GNDA_ADC with C = 100  
nF.  
19 CMD_AMP_ADC  
20 GNDAMP  
21 OUT1  
input  
Ground  
Output  
0
GND (&substrate) of analog output.  
Black level: 1  
@ code 190  
DAC_RAW reg.  
Analog output 1.  
22 ADC_IN1  
23 VDDAMP  
Input  
See OUT1.  
2.5  
Analog input ADC 1.  
VDD of analog output [2.5 V] (Can be  
connected to VDDA).  
Power  
Black level: 1  
24 OUT2  
Output @ code 190  
DAC_RAW reg.  
Analog output 2.  
25 ADC_IN2  
26 VDDD  
27 GNDD  
28 GNDA  
29 VDDA  
Input  
See OUT2.  
Analog input ADC 2.  
Power  
Power  
Power  
Power  
2.5  
0
VDD of digital part [2.5 V].  
GND (&substrate) of digital part.  
GND (&substrate) of analog part.  
VDD of analog part [2.5 V].  
Register clock. Data on internal bus is  
copied to corresponding registers on  
rising edge.  
0
2.5  
30 REG_CLOCK  
Input  
-
31 SYS_CLOCK  
32 SYS_RESET  
33 Y_CLK  
Input  
-
System clock defining the pixel rate.  
Global system reset.  
Input  
-
Input  
-
Line clock.  
34 Y_START  
35 GNDD_ADC  
36 VDDD_ADC  
37 GNDA_ADC  
38 VDDA_ADC  
Input  
-
Start frame readout.  
Power  
Power  
Power  
Power  
0
GND (&substrate) of digital part ADC.  
VDD of digital part [2.5 V] ADC.  
GND (&substrate) of analog part.  
VDD of analog part [2.5 V].  
ADC high reference voltage (e.g.  
connect to VDDA_ADC with R = 144  
and decouple to GNDA_ADC with C  
= 100 nF.  
2.5  
0
2.5  
39 VHIGH_ADC  
Input  
2.37  
0.59  
ADC low reference voltage (e.g.  
connect to GNDA_ADC with R = 59 Ω  
and decouple to GNDA_ADC with C =  
100 nF.  
GND (&substrate) of analog part.  
VDD of analog part [2.5 V].  
GND (&substrate) of digital part ADC.  
VDD of digital part [2.5 V] ADC.  
40 VLOW_ADC  
Input  
41 GNDA_ADC  
42 VDDA_ADC  
43 GNDD_ADC  
44 VDDD_ADC  
Power  
Power  
Power  
Power  
0
2.5  
0
2.5  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 44 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
Pin  
Expected  
Pin Pin name  
Pin description  
type  
Voltage [V]  
2.5 (for no  
dual slope)  
-
45 VDD_RESET_DS  
46 ADC_CLK_EXT  
47 EOL  
Power  
Variable reset voltage (dual slope).  
Input  
External ADC clock.  
Diagnostic end of line signal (produced  
by sequencer), can be used as Y_CLK.  
Diagnostic end of frame signal  
(produced by sequencer), can be used  
as Y_START.  
Output  
-
-
-
-
48 EOF  
Output  
Output  
Output  
Diagnostic signal. High during pixel  
readout.  
Temperature measurement. Output  
voltage varies linearly with  
temperature.  
49 PIX_VALID  
50 TEMP  
51 ADC_D<9>  
52 VDD_PIX  
Output  
Power  
-
2.5  
ADC data output (MSB).  
VDD of pixel core [2.5 V].  
Anti-blooming ground. Set to 1 V for  
improved anti-blooming behavior.  
ADC data output.  
53 GND_AB  
Power  
0
54 ADC_D<8>  
55 ADC_D<7>  
56 ADC_D<6>  
57 ADC_D<5>  
58 ADC_D<4>  
59 ADC_D<3>  
Output  
Output  
Output  
Output  
Output  
Output  
-
-
-
-
-
-
ADC data output.  
ADC data output.  
ADC data output.  
ADC data output.  
ADC data output.  
Reset voltage [2.5 V]. Highest voltage  
to the chip. 3.3 V for extended dynamic  
range or ‘hard reset’.  
60 VDD_RESET  
Power  
2.5  
61 ADC_D<2>  
62 ADC_D<1>  
63 ADC_D<0>  
Output  
Output  
Output  
-
-
-
ADC data output.  
ADC data output.  
ADC data output (LSB).  
Boundary scan (allows debugging of  
internal nodes): reset.  
64 BS_RESET  
65 BS_CLOCK  
66 BS_DIN  
Input  
Input  
Input  
Output  
-
-
-
-
Boundary scan (allows debugging of  
internal nodes): clock.  
Boundary scan (allows debugging of  
internal nodes): in.  
Boundary scan (allows debugging of  
internal nodes): bus.  
67 BS_BUS  
Biasing of X and Y decoder. Connect  
to VDDD with R = 50 kand decouple  
to GNDD with C = 100 nF.  
68 CMD_DEC  
Input  
0.74  
Note on power-on behavior  
At power-on, the chip is in an undefined state. It is advised that the power-on is  
accompanied by the assertion of the SYS_CLOCK and a SYS_RESET pulse that puts all  
internal registers in their default state (all bits are set to 0). The X-shift registers are in  
a defined state after the first X_SYNC which occurs a few microseconds after the first  
Y_START and Y_CLOCK pulse. Prior to this X_SYNC, the chip may draw more current  
from the analog power supply VDDA. It is therefore favorable to have separate analog  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 45 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
and digital supplies. The current spike (if there will be any) may also be avoided by a  
slower ramp-up of the analog power supply or by disconnecting the resistor on pin 3  
(CMD_COLAMP) at start-up.  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 46 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
6 Pad positioning and packaging  
6.1 Bare die  
The IBIS4-6600 image sensor has 68 pins, 17 pins on each side. The die size from  
pad-edge to pad-edge (without scribe-line) is  
9120.10 µm (X) by 11960.10 µm (Y)  
Scribe lines will take about 100 to 150 µm extra on each side.  
Pin 1 is located in the middle of the left side, indicated by a “1” on the layout.  
A logo and some identification tags can be found on the lower right of the die (see  
Figure 25).  
Pad 60  
Pad 44  
Bonding  
Probe  
Pad 61  
Pad 43  
7777.00 µm  
(2222 * 3.5)  
10549.00 µm  
(3014 * 3.5)  
11960.10µm  
4404.47 µm  
Pixel array center  
Pad 1  
Test diodes  
Origin  
(0,0)  
Bonding  
Probe  
6427.00 µm  
Probe  
Identification  
Pad 27  
Bonding  
Pixel 0,0  
Pad 9  
Probe  
Bonding  
Pad 10  
Pad 26  
9120.10µm  
Figure 27: Layout of the IBIS4-6600 sensor  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 47 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
6.2 Bonding pads  
The pad size is 100 µm by 100 µm.  
Every pin has double bonding pads, one for bonding, the other for wafer probing:  
-
Horizontal pads on the top and bottom:  
o Horizontal pitch is 537.5 µm.  
o Left pad for wafer probing on the bottom, right pad on the top.  
o Right pad for bonding on the bottom, left pad on the top.  
-
Vertical pads on the left and the right:  
o Vertical pitch is 715 µm.  
o Upper pad is for wafer probing on the right, lower pad on the left.  
o Lower pad is for bonding on the right, upper pad on the left.  
The origin of all coordinates in the tables is located in the centre of the pad at pin  
location 1. The distance between the centre of the probe pad and the centre of the  
bonding pad of the same pin equals 120 µm.  
6.2.1 Probe pad positions  
Table 18 shows the position of the pads for wafer probing.  
Table 18: Probe pad positions  
Probe pad  
Pin  
1
X (µm)  
Y (µm)  
Pin  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
X (µm)  
Y (µm)  
0
0
0
0
0
0
0
0
0
0
9010.1  
-120  
2
-715  
-1430  
9010.1  
9010.1  
595  
1310  
3
4
-2145  
9010.1  
2025  
-2860  
9010.1  
2740  
5
6
-3575  
9010.1  
3455  
7
-4290  
9010.1  
4170  
8
-5005  
9010.1  
4885  
9
-5720  
9010.1  
5600  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
145.05  
682.55  
-5985.05  
-5985.05  
-5985.05  
-5985.05  
-5985.05  
-5985.05  
-5985.05  
-5985.05  
-5985.05  
-5985.05  
-5985.05  
8865.05  
8327.55  
7790.05  
7252.55  
6715.05  
6177.55  
5640.05  
5102.55  
4565.05  
4027.55  
3490.05  
5865.05  
5865.05  
5865.05  
5865.05  
5865.05  
5865.05  
5865.05  
5865.05  
5865.05  
5865.05  
5865.05  
1220.05  
1757.55  
2295.05  
2832.55  
3370.05  
3907.55  
4445.05  
4982.55  
5520.05  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
Page 48 of 63  
IBIS4-6600  
Datasheet  
Probe pad  
Y (µm) Pin  
Pin  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
X (µm)  
X (µm)  
Y (µm)  
6057.55  
6595.05  
7132.55  
7670.05  
8207.55  
8745.05  
9010.1  
9010.1  
9010.1  
9010.1  
9010.1  
9010.1  
9010.1  
9010.1  
-5985.05  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
2952.55  
5865.05  
-5985.05  
-5985.05  
-5985.05  
-5985.05  
-5985.05  
-5840  
2415.05  
5865.05  
5865.05  
5865.05  
5865.05  
5865.05  
5720  
1877.55  
1340.05  
802.55  
265.05  
0
0
0
0
0
0
0
0
-5125  
5005  
-4410  
4290  
-3695  
3575  
-2980  
2860  
-2265  
2145  
-1550  
1430  
-835  
715  
6.2.2 Bonding pad positions  
Table 199 shows the position of the pads for bonding.  
Table 19: Bonding pad positions  
Bonding pad  
Pin  
1
X (µm)  
Y (µm)  
Pin  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
X (µm)  
Y (µm)  
0
0
0
0
0
0
0
0
0
0
9010.1  
9010.1  
120  
835  
2
-715  
-1430  
3
9010.1  
1550  
4
-2145  
9010.1  
2265  
5
-2860  
9010.1  
2980  
6
-3575  
9010.1  
3695  
7
-4290  
9010.1  
4410  
8
-5005  
9010.1  
5125  
9
-5720  
9010.1  
5840  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
265.05  
802.55  
-5865.05  
-5865.05  
-5865.05  
-5865.05  
-5865.05  
-5865.05  
-5865.05  
-5865.05  
-5865.05  
-5865.05  
-5865.05  
-5865.05  
-5865.05  
-5865.05  
-5865.05  
-5865.05  
8745.05  
8207.55  
7670.05  
7132.55  
6595.05  
6057.55  
5520.05  
4982.55  
4445.05  
3907.55  
3370.05  
2832.55  
2295.05  
1757.55  
1220.05  
682.55  
5985.05  
5985.05  
5985.05  
5985.05  
5985.05  
5985.05  
5985.05  
5985.05  
5985.05  
5985.05  
5985.05  
5985.05  
5985.05  
5985.05  
5985.05  
5985.05  
1340.05  
1877.55  
2415.05  
2952.55  
3490.05  
4027.55  
4565.05  
5102.55  
5640.05  
6177.55  
6715.05  
7252.55  
7790.05  
8327.55  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
Page 49 of 63  
IBIS4-6600  
Datasheet  
Bonding pad  
Y (µm) Pin  
Pin  
X (µm)  
X (µm)  
Y (µm)  
26  
27  
28  
29  
30  
31  
32  
33  
34  
8865.05  
-5865.05  
-5600  
-4885  
-4170  
-3455  
-2740  
-2025  
-1310  
-595  
60  
61  
62  
63  
64  
65  
66  
67  
68  
145.05  
5985.05  
9010.1  
9010.1  
9010.1  
9010.1  
9010.1  
9010.1  
9010.1  
9010.1  
0
0
0
0
0
0
0
0
5720  
5005  
4290  
3575  
2860  
2145  
1430  
715  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
Page 50 of 63  
IBIS4-6600  
Datasheet  
6.3 Package drawing  
6.3.1 Technical drawing of the 68-pins LCC package  
Figure 28: Top view (all dimensions in inch).  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 51 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
Figure 29: Side view (all dimensions in inch).  
Table 20: Side view dimensions.  
(inch)  
(mm)  
Typ  
Dimension  
Description  
Min  
Typ  
Max  
Min  
Max  
A
B
C
D
Glass (thickness)  
0.037  
0.039  
0.029  
0.004  
0.004  
0.041  
0.950  
1.000  
0.740  
0.060  
0.070  
1.050  
Die – Si (thickness)  
Die attach-bondline (thickness)  
Glass attach-bondline  
0.002  
0.002  
0.006  
0.006  
0.030  
0.030  
0.090  
0.110  
(thickness)  
E
F
G
Imager to lid-outer surface  
Imager to lid-inner surface  
Imager to seating plane of pkg  
0.081  
0.039  
0.061  
2.048  
0.978  
1.562  
D- Glass lid sealing thickness  
A
E
F
G
C- Die attach thickness  
B - Die  
Figure 30: Side view dimensions.  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 52 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
Figure 31: Back view (all dimensions in inch).  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 53 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
6.3.2 Bonding of the IBIS4-6600 sensor in the 68-pins LCC package  
Figure 32. Bonding scheme.  
The middle of the die corresponds with the middle of the package cavity (± 50 µm).  
Pixel 0,0 is located at x = -4023 um , y = -4806 um (mechanical centre of the  
die/package is x = 0, y = 0).  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 54 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
6.4 Glass lid specifications  
6.4.1 Color sensor  
A STD-1 glass lid will be used as NIR cut-off filter on top of the IBIS4-6600-C color  
image sensor. Figure 26 shows the transmission characteristics of the STD-1 glass lid.  
Figure 33: Transmission characteristics of the S8612 glass used as NIR cut-off filter.  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 55 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
6.4.2 Monochrome sensor  
A D263 glass will be used as protection glass lid on top of the IBIS4-6600  
monochrome sensors. The refraction index of the D263 glass lid is 1.52. Figure 33  
shows the transmission characteristics of the D263 glass.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
400  
500  
600  
700  
800  
900  
Wavelength [nm]  
Figure 34: Transmission characteristics of the D263 glass lid.  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
Page 56 of 63  
IBIS4-6600  
Datasheet  
7 Boundary scan test structures  
Table 20 summarizes the pins that can be used to scan through internal nodes. In case  
testing is not needed, these pins can be left floating.  
Table 21: Boundary scan pins  
Boundary scan pins  
64  
65  
66  
67  
BS_RESET  
BS_CLOCK  
BS_DIN  
input  
input  
input  
output  
Boundary scan: reset  
Boundary scan: clock  
Boundary scan: in  
BS_BUS  
Boundary scan: bus  
The following signals can be connected to the bus (make sure to have only one 1 in  
the scan registers at any time) (see Table 220).  
Table 22: Internal signals that can be connected to the boundary scan bus.  
Internal signals  
1
2
eos_yl_shift 16  
sub_y<3>  
sub_y<4>  
sub_y<5>  
31  
32  
33  
data<3>  
data<2>  
clk_x_seq  
sync_x_seq  
clk_y_seq  
17  
18  
data<1>  
3
4
19 address<3> 34  
data<0>  
5
sync_yl_seq 20 address<2> 35  
eos_yr_shift  
eos_x_shift  
sync_yr_shift  
tri_r_seq  
6
reset_seq  
tri_l_seq  
21 address<1> 36  
22 address<0> 37  
7
8
select_seq  
sub_x<1>  
sub_x<2>  
sub_x<3>  
sub_x<4>  
sub_x<5>  
sub_y<1>  
sub_y<2>  
23  
24  
25  
26  
27  
28  
29  
30  
data<11>  
data<10>  
data<9>  
data<8>  
data<7>  
data<6>  
data<5>  
data<4>  
38  
39  
40  
41  
cal_seq  
slowfast_seq  
black_seq  
9
10  
11  
12  
13  
14  
15  
42 precharge_seq  
43 sample_S_seq  
44 sample_R_seq  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 57 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
8 Storage and handling  
8.1 Storage conditions  
Description  
Temperature  
Temperature  
Minimum  
-10  
Maximum  
Units  
°C  
°C  
Conditions  
@ 15% RH  
@ 86% RH  
66  
38  
-10  
Note: RH = Relative Humidity  
8.2 Handling and solder precautions  
Special care should be given when soldering image sensors with color filter arrays  
(RGB color filters), onto a circuit board, since color filters are sensitive to high  
temperatures. Prolonged heating at elevated temperatures may result in deterioration  
of the performance of the sensor. The following recommendations are made to ensure  
that sensor performance is not compromised during end-users’ assembly processes.  
Board Assembly:  
Device placement onto boards should be done in accordance with strict ESD controls  
for Class 0, JESD22 Human Body Model, and Class A, JESD22 Machine Model  
devices. Assembly operators should always wear all designated and approved  
grounding equipment; grounded wrist straps at ESD protected workstations are  
recommended including the use of ionized blowers. All tools should be ESD  
protected.  
Manual Soldering:  
When a soldering iron is used the following conditions should be observed:  
Use a soldering iron with temperature control at the tip.  
The soldering iron tip temperature should not exceed 350°C.  
The soldering period for each pin should be less than 5 seconds.  
Reflow Soldering:  
Figure 34 shows the maximum recommended thermal profile for a reflow soldering  
system. If the temperature/time profile exceeds these recommendations damage to the  
image sensor may occur.  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 58 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
Figure 35: Reflow soldering temperature profile  
Precautions and cleaning:  
Avoid spilling solder flux on the cover glass; bare glass and particularly glass with  
antireflection filters may be adversely affected by the flux. Avoid mechanical or  
particulate damage to the cover glass.  
It is recommended that isopropyl alcohol (IPA) is used as a solvent for cleaning the  
image sensor glass lid. When using other solvents, it should be confirmed beforehand  
whether the solvent will dissolve the package and/or the glass lid or not.  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 59 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
9 Ordering Information  
Table 23: FillFactory and Cypress part numbers  
FillFactory Part Number  
Cypress Semiconductor Part Number  
IBIS4-6600-M-1  
CYII4SM6600AA-HBC – Preliminary  
IBIS4-6600-M-2  
IBIS4-6600-C-1  
IBIS4-6600-C-2  
CYII4SM6600AA-QBC – Preliminary  
CYII4SC6600AA-HAC – Preliminary  
CYII4SC6600AA-QAC – Preliminary  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 60 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
Disclaimer  
The IBIS4-6600 sensor is only to be used for non-low vision aid applications. A strict  
exclusivity agreement prevents us to sell the IBIS4-6600 sensor to customers who  
intend to use it for the above specified applications.  
FillFactory image sensors are only warranted to meet the specifications as described  
in the production data sheet. FillFactory reserves the right to change any information  
contained herein without notice.  
Please contact info@FillFactory.com for more information.  
Revision changes  
No.  
1.0  
1.1  
Date  
Description of revision  
18-Dec-03  
25-Mar-04  
Origination.  
1.3 Part numbers updated.  
2.2.1 Fill factor and dark current value updated.  
2.2.2 The QE is thus … sentence updated.  
2.4.3 DC electrical conditions updated.  
6.3.1 Package drawings updated.  
8.2 Reflow soldering recommendations added.  
Figure 20, 22, 23, 23 and 24 redrawn.  
3.2.3 Color filter response updated.  
3.4 Minimum step size X-direction is 24.  
3.9.1 Internal sequencer. Default values added.  
4.2 Both EOL and EOF can be… sentence updated.  
4.3.1 Figure 23 updated.  
1.2  
1.3  
16-Sep-04  
04-Jan-05  
4.3.3 ADC timing updated.  
5 Pin list. Description of pin 1 updated.  
6.4 Refraction index of cover glass lids added.  
6.4.1 Response curve of color cover glass lid updated.  
8.2 Reflow soldering: note deleted.  
Added Cypress equivalent part number, ordering  
information.  
Restricted use information added in disclaimer.  
Added Cypress Document # 38-05708 Rev ** in the  
document footer.  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 61 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
APPENDIX A: IBIS4 Evaluation Kit  
For evaluating purposes an IBIS4 evaluation kit is available.  
The IBIS4 evaluation kit consists of a multifunctional digital board (memory,  
sequencer and IEEE 1394 Fire Wire interface) and an analog image sensor board.  
Visual Basic software (under Win 2000 or XP) allows the grabbing and display of  
images and movies from the sensor. All acquired images and movies can be stored in  
different file formats (8 or 16-bit). All setting can be adjusted on the fly to evaluate  
the sensors specs. Default register values can be loaded to start the software in a  
desired state.  
Figure 36: Content of the IBIS4 evaluation kit  
Please contact Fillfactory (info@Fillfactory.com) if you want any more information  
on the evaluation kit.  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 62 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  
IBIS4-6600  
Datasheet  
Document History Page  
Document Title:  
IBIS4-6600 High Resolution 6.6MPixel Rolling Shutter CMOS Image  
Sensor  
Document Number: 38-05708  
Rev.  
ECN  
Issue Date  
Orig. of  
Change  
SIL  
Description  
of Change  
Initial  
No.  
**  
310213  
See ECN  
Cypress  
release  
(EOD)  
Cypress Semiconductor Corporation 3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Page 63 of 63  
Contact: info@Fillfactory.com Document #: 38-05708 Rev.**(Revision 1.3 )  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY