CYW4343WKUBGT [CYPRESS]

Telecom Circuit, 1-Func, PBGA74, WLBGA-74;
CYW4343WKUBGT
型号: CYW4343WKUBGT
厂家: CYPRESS    CYPRESS
描述:

Telecom Circuit, 1-Func, PBGA74, WLBGA-74

电信 电信集成电路
文件: 总103页 (文件大小:1176K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CYW4343W  
Single-Chip 802.11 b/g/n MAC/Baseband/Radio  
with Bluetooth 4.1  
The Cypress CYW4343W is a highly integrated single-chip solution and offers the lowest RBOM in the industry for wearables, Internet  
of Things (IoT) gateways, home automation, and a wide range of other portable devices. The chip includes a 2.4 GHz WLAN IEEE  
802.11 b/g/n MAC/baseband/radio and Bluetooth 4.1 support. In addition, it integrates a power amplifier (PA) that meets the output  
power requirements of most handheld systems, a low-noise amplifier (LNA) for best-in-class receiver sensitivity, and an internal  
transmit/receive (iTR) RF switch, further reducing the overall solution cost and printed circuit board area.  
The WLAN host interface supports SDIO v2.0 mode, providing a raw data transfer rate up to 200 Mbps when operating in 4-bit mode  
at a 50 MHz bus frequency. An independent, high-speed UART is provided for the Bluetooth host interface.Using advanced design  
techniques and process technology to reduce active and idle power, the CYW4343W is designed to address the needs of highly mobile  
devices that require minimal power consumption and compact size. It includes a power management unit that simplifies the system  
power topology and allows for operation directly from a rechargeable mobile platform battery while maximizing battery life.  
The CYW4343W implements the world’s most advanced Enhanced Collaborative Coexistence algorithms and hardware mechanisms,  
allowing for an extremely collaborative WLAN and Bluetooth coexistence.  
Cypress Part Numbering Scheme  
Cypress is converting the acquired IoT part numbers from Broadcom to the Cypress part numbering scheme. Due to this conversion,  
there is no change in form, fit, or function as a result of offering the device with Cypress part number marking. The table provides  
Cypress ordering part number that matches an existing IoT part number.  
Table 1. Mapping Table for Part Number between Broadcom and Cypress  
Broadcom Part Number  
Cypress Part Number  
BCM4343W  
CYW4343W  
BCM4343WKUBG  
CYW4343WKUBG  
OneDriver™ software architecture for easy migration from  
existing embedded WLAN and Bluetooth devices as well as to  
future devices.  
Features  
IEEE 802.11x Key Features  
Bluetooth Features  
Single-band 2.4 GHz IEEE 802.11b/g/n.  
Complies with Bluetooth Core Specification Version 4.1 with  
provisions for supporting future specifications.  
Support for 2.4 GHz Cypress TurboQAM® data rates (256-  
QAM) and 20 MHz channel bandwidth.  
Bluetooth Class 1 or Class 2 transmitter operation.  
Integrated iTR switch supports a single 2.4 GHz antenna  
shared between WLAN and Bluetooth.  
Supports extended Synchronous Connections (eSCO), for  
enhanced voice quality by allowing for retransmission of  
dropped packets.  
Supports explicit IEEE 802.11n transmit beamforming  
Tx and Rx Low-density Parity Check (LDPC) support for  
improved range and power efficiency.  
Adaptive Frequency Hopping (AFH) for reducing radio  
frequency interference.  
Supports standard SDIO v2.0 host interface.  
Interface support — Host Controller Interface (HCI) using a  
high-speed UART interface and PCM for audio data.  
Supports Space-Time Block Coding (STBC) in the receiver.  
IntegratedARM Cortex-M3 processor and on-chip memory for  
complete WLAN subsystem functionality, minimizing the need  
to wake up the applications processor for standard WLAN  
functions. This allows for further minimization of power  
consumption, while maintaining the ability to field-upgrade with  
future features. On-chip memory includes 512 KB SRAM and  
640 KB ROM.  
Low-power consumption improves battery life of handheld  
devices.  
Supports multiple simultaneous Advanced Audio Distribution  
Profiles (A2DP) for stereo sound.  
Automatic frequency detection for standard crystal and TCXO  
values.  
Cypress Semiconductor Corporation  
Document Number: 002-14797 Rev. *I  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised March 28, 2017  
CYW4343W  
General Features  
153-bump WLCSP package (115 μm bump diameter, 180 μm  
bump pitch).  
Supports a battery voltage range from 3.0V to 4.8V with an  
internal switching regulator.  
Security:  
WPA and WPA2 (Personal) support for powerful encryption  
and authentication.  
Programmable dynamic power management.  
4 Kbit One-Time Programmable (OTP) memory for storing  
board parameters.  
AES in WLAN hardware for faster data encryption and IEEE  
802.11i compatibility.  
Reference WLAN subsystem provides Cisco Compatible Ex-  
tensions (CCX, CCX 2.0, CCX 3.0, CCX 4.0, CCX 5.0).  
Can be routed on low-cost 1 x 1 PCB stack-ups.  
Reference WLAN subsystem provides Wi–Fi Protected Set-  
up (WPS).  
74-ball[4343W+43CS4343W1]74-ball 63-ball WLBGA  
package (4.87 mm × 2.87 mm, 0.4 mm pitch).  
Worldwide regulatory support: Global products supported with  
worldwide homologated design.  
Figure 1. CYW4343W System Block Diagram  
VDDIO VBAT  
WL_REG_ON  
WLAN  
Host I/F  
WL_IRQ  
SDIO  
2.4 GHz WLAN +  
Bluetooth TX/RX  
CLK_REQ  
BT_REG_ON  
PCM  
BPF  
CYW4343W  
Bluetooth  
Host I/F  
BT_DEV_WAKE  
BT_HOST_WAKE  
UART  
Document Number: 002-14797 Rev. *I  
Page 2 of 103  
 
CYW4343W  
Contents  
7.2.8 Local Oscillator Generation ....................25  
7.2.9 Calibration ..............................................25  
1. Overview............................................................ 5  
1.1 Overview ............................................................. 5  
1.2 Features .............................................................. 6  
1.3 Standards Compliance ........................................ 7  
8. Bluetooth Baseband Core.............................. 26  
8.1 Bluetooth 4.1 Features .......................................26  
8.2 Link Control Layer ..............................................26  
8.3 Test Mode Support .............................................27  
2. Power Supplies and Power Management....... 8  
2.1 Power Supply Topology ...................................... 8  
2.2 CYW4343W PMU Features ................................ 8  
2.3 WLAN Power Management ............................... 11  
2.4 PMU Sequencing .............................................. 11  
2.5 Power-Off Shutdown ......................................... 12  
2.6 Power-Up/Power-Down/Reset Circuits ............. 12  
8.4 Bluetooth Power Management Unit ...................27  
8.4.1 RF Power Management ..........................27  
8.4.2 Host Controller Power Management ......27  
8.5 BBC Power Management ...................................29  
8.5.1 Wideband Speech ..................................29  
8.6 Packet Loss Concealment .................................29  
8.6.1 Codec Encoding .....................................30  
8.6.2 Multiple Simultaneous A2DP Audio  
3. Frequency References ................................... 13  
3.1 Crystal Interface and Clock Generation ............ 13  
3.2 TCXO ................................................................ 13  
3.3 External 32.768 kHz Low-Power Oscillator ....... 15  
Streams ..................................................30  
8.7 Adaptive Frequency Hopping .............................30  
8.8 Advanced Bluetooth/WLAN Coexistence ...........30  
8.9 Fast Connection (Interlaced Page and Inquiry  
Scans) ................................................................30  
4. WLAN System Interfaces ............................... 16  
4.1 SDIO v2.0 .......................................................... 16  
4.1.1 SDIO Pin Descriptions ........................... 16  
9. Microprocessor and Memory Unit for Bluetooth  
31  
5. Wireless LAN MAC and PHY.......................... 17  
9.1 RAM, ROM, and Patch Memory .........................31  
9.2 Reset ..................................................................31  
5.1 MAC Features ................................................... 17  
5.1.1 MAC Description .................................... 17  
Figure 9..PSM ...................................................... 18  
Figure 9..WEP ...................................................... 18  
Figure 9..TXE ....................................................... 18  
Figure 9..RXE ...................................................... 18  
Figure 9..IFS ........................................................ 19  
Figure 9..TSF ....................................................... 19  
Figure 9..NAV ...................................................... 19  
Figure 9..MAC-PHY Interface .............................. 19  
10.Bluetooth Peripheral Transport Unit............. 32  
10.1 PCM Interface ....................................................32  
10.1.1 Slot Mapping ...........................................32  
10.1.2 Frame Synchronization ...........................32  
10.1.3 Data Formatting ......................................32  
10.1.4 Wideband Speech Support .....................32  
10.1.5 PCM Interface Timing .............................33  
10.1.5.Short Frame Sync, Master Mode ...............33  
Table 7..Short Frame Sync, Slave Mode ..............34  
Table 8..Long Frame Sync, Master Mode .............35  
Table 9..Long Frame Sync, Slave Mode ...............36  
5.2 PHY Description ................................................ 19  
5.2.1 PHY Features ........................................ 20  
6. WLAN Radio Subsystem................................ 21  
6.1 Receive Path ..................................................... 22  
6.2 Transmit Path .................................................... 22  
6.3 Calibration ......................................................... 22  
10.2 UART Interface ..................................................37  
10.3 I2S Interface .......................................................38  
10.3.1 I2S Timing ...............................................39  
11.CPU and Global Functions ............................ 41  
11.1 WLAN CPU and Memory Subsystem ................41  
11.2 One-Time Programmable Memory .....................41  
11.3 GPIO Interface ...................................................41  
7. Bluetooth Subsystem Overview.................... 23  
7.1 Features ............................................................ 23  
7.2 Bluetooth Radio ................................................. 24  
7.2.1 Transmit ................................................. 24  
7.2.2 Digital Modulator .................................... 24  
7.2.3 Digital Demodulator and Bit  
11.4 External Coexistence Interface ..........................41  
11.4.1 2-Wire Coexistence ................................42  
11.4.2 3-Wire and 4-Wire Coexistence  
Synchronizer .......................................... 24  
7.2.4 Power Amplifier ..................................... 24  
7.2.5 Receiver ................................................ 25  
7.2.6 Digital Demodulator and Bit Synchronizer 25  
7.2.7 Receiver Signal Strength Indicator ........ 25  
Interfaces ................................................42  
11.5 JTAG Interface ..................................................43  
11.6 UART Interface .................................................43  
Document Number: 002-14797 Rev. *I  
Page 3 of 103  
CYW4343W  
12.WLAN Software Architecture......................... 44  
12.1 Host Software Architecture ............................... 44  
12.2 Device Software Architecture ............................ 44  
12.3 Remote Downloader ......................................... 44  
12.4 Wireless Configuration Utility ............................ 44  
16.Bluetooth RF Specifications.......................... 78  
17.Internal Regulator Electrical Specifications. 84  
17.1 Core Buck Switching Regulator .........................84  
17.2 3.3V LDO (LDO3P3) ..........................................85  
17.3 CLDO .................................................................86  
17.4 LNLDO ...............................................................87  
13.Pinout and Signal Descriptions..................... 45  
13.1 Ball Map ............................................................ 45  
13.2 WLBGA Ball List in Ball Number Order with X-Y  
Coordinates ....................................................... 47  
18.System Power Consumption......................... 88  
18.1 WLAN Current Consumption ..............................88  
18.1.1 2.4 GHz Mode ........................................88  
13.3 WLCSP Bump List in Bump Order with X-Y  
Coordinates ....................................................... 49  
18.2 Bluetooth Current Consumption .........................89  
19.Interface Timing and AC Characteristics ..... 90  
19.1 SDIO Default Mode Timing ................................90  
19.2 SDIO High-Speed Mode Timing .........................91  
19.3 JTAG Timing ......................................................92  
13.4 WLBGA Ball List Ordered By Ball Name ........... 54  
13.5 WLCSP Bump List Ordered By Name .............. 55  
13.6 Signal Descriptions ........................................... 57  
13.7 WLAN GPIO Signals and Strapping Options .... 65  
13.8 Chip Debug Options .......................................... 65  
13.9 I/O States .......................................................... 66  
20.Power-Up Sequence and Timing................... 93  
20.1 Sequencing of Reset and Regulator Control  
Signals ...............................................................93  
20.1.1 Description of Control Signals ................93  
20.1.2 Control Signal Timing Diagrams .............94  
14.DC Characteristics.......................................... 68  
14.1 Absolute Maximum Ratings .............................. 68  
14.2 Environmental Ratings ...................................... 68  
14.3 Electrostatic Discharge Specifications .............. 69  
21.Package Information ...................................... 96  
21.1 Package Thermal Characteristics ......................96  
21.1.1 Junction Temperature Estimation and  
PSI Versus Thetajc ..................................96  
14.4 Recommended Operating Conditions and DC  
Characteristics .................................................. 69  
15.WLAN RF Specifications................................ 71  
15.1 2.4 GHz Band General RF Specifications ......... 71  
15.2 WLAN 2.4 GHz Receiver Performance  
22.Mechanical Information.................................. 97  
23.Ordering Information.................................... 101  
24.Additional Information ................................. 101  
24.1 Acronyms and Abbreviations ...........................101  
24.2 IoT Resources ..................................................101  
Document History Page............................................... 102  
Sales, Solutions, and Legal Information .................... 103  
Specifications .................................................... 72  
15.3 WLAN 2.4 GHz Transmitter Performance  
Specifications .................................................... 75  
15.4 General Spurious Emissions Specifications ...... 77  
Document Number: 002-14797 Rev. *I  
Page 4 of 103  
CYW4343W  
1. Overview  
1.1 Overview  
The Cypress CYW4343W provides the highest level of integration for a mobile or handheld wireless system, with integrated IEEE 802.11 b/g/n. It provides a small form-factor  
solution with minimal external components to drive down cost for mass volumes and allows for handheld device flexibility in size, form, and function. The CYW4343W is  
designed to address the needs of highly mobile devices that require minimal power consumption and reliable operation.  
Figure 2 shows the interconnection of all the major physical blocks in the CYW4343W and their associated external interfaces, which are described in greater detail in  
subsequent sections.  
Figure 2. CYW4343W Block Diagram  
C o rte x  
D e b u g  
M 3  
A H B  
A H B to A P B  
B r id g e  
R A M  
R O M  
A P B  
P a tc h  
In te rC tr l  
D M A  
W D T im e r  
S W T im e r  
B P L  
B u ffe r  
A P U  
M o d e m  
R F  
B u s A rb  
A R M IP  
G P IO  
C tr l  
D ig ita l  
D e m o d .  
&
B it  
S y n c  
JT A G su p p o r te d o v e r S D IO o r B T P C M  
S D IO  
B T C lo c k /  
H o p p e r  
P A  
B lu e R F  
In te r fa c e  
S W R E G  
L D O x 2  
L P O  
X T A L O S C .  
P O R  
P o w e r  
S u p p ly  
S le e p C L K  
X T A L  
U A R T  
D ig ita l  
M o d .  
P M U  
C o n tro l  
L C U  
S D IO  
W L _ R E G _ O N  
D e b u g  
U A R T  
R X / T X  
B u ffe r  
A R M  
C M 3  
W D T  
O T P  
D ig ita l  
I/ O  
I2 S /P C M  
G P IO  
U A R T  
JT A G *  
G P IO  
U A R T  
R A M  
R O M  
S u p p o rte d o v e r S D IO o r B T P C M  
B T P H Y  
G P IO  
IF  
P L L  
B T W L A N  
E C I  
W a k e /  
B T C lo c k C o n tr o l  
C lo c k  
2 .4 G H z  
P A  
Sle e pC trl  
S le e p ‐  
tim e  
K e e p in g  
P M U  
C tr l  
P M U  
M a n a g e m e n t  
S h a re d L N A  
B P F  
W iM a x  
C o e x .  
X O  
B u ffe r  
L P O  
P O R  
W L A N  
P T U  
*
V ia G P IO c o n fig u ra tio n , JT A G is s u p p o rte d o v e r S D IO o r B T P C M  
Document No. 002-14797 Rev. *I  
Page 5 of 103  
 
 
CYW4343W  
1.2 Features  
The CYW4343W supports the following WLAN and Bluetooth features:  
IEEE 802.11b/g/n single-band radio with an internal power amplifier, LNA, and T/R switch  
Bluetooth v4.1 with integrated Class 1 PA  
Concurrent Bluetooth, and WLAN operation  
On-chip WLAN driver execution capable of supporting IEEE 802.11 functionality  
Simultaneous BT/WLAN reception with a single antenna  
WLAN host interface options:  
SDIO v2.0, including default and high-speed timing.  
BT UART (up to 4 Mbps) host digital interface that can be used concurrently with the above WLAN host interfaces.  
ECI—enhanced coexistence support, which coordinates BT SCO transmissions around WLAN receptions.  
I2S/PCM for BT audio  
HCI high-speed UART (H4 and H5) transport support  
Wideband speech support (16 bits, 16 kHz sampling PCM, through I2S and PCM interfaces)  
Bluetooth SmartAudio® technology improves voice and music quality to headsets.  
Bluetooth low power inquiry and page scan  
Bluetooth Low Energy (BLE) support  
Bluetooth Packet Loss Concealment (PLC)  
Document No. 002-14797 Rev. *I  
Page 6 of 103  
CYW4343W  
1.3 Standards Compliance  
The CYW4343W supports the following standards:  
Bluetooth 2.1 + EDR  
Bluetooth 3.0  
Bluetooth 4.1 (Bluetooth Low Energy)  
IEEE 802.11n—Handheld Device Class (Section 11)  
IEEE 802.11b  
IEEE 802.11g  
IEEE 802.11d  
IEEE 802.11h  
IEEE 802.11i  
The CYW4343W will support the following future drafts/standards:  
IEEE 802.11r — Fast Roaming (between APs)  
IEEE 802.11k — Resource Management  
IEEE 802.11w — Secure Management Frames  
IEEE 802.11 Extensions:  
IEEE 802.11e QoS Enhancements (as per the WMM® specification is already supported)  
IEEE 802.11i MAC Enhancements  
IEEE 802.11r Fast Roaming Support  
IEEE 802.11k Radio Resource Measurement  
The CYW4343W supports the following security features and proprietary protocols:  
Security:  
WEP  
WPAPersonal  
WPA2Personal  
WMM  
WMM-PS (U-APSD)  
WMM-SA  
WAPI  
AES (Hardware Accelerator)  
TKIP (host-computed)  
CKIP (SW Support)  
Proprietary Protocols:  
CCXv2  
CCXv3  
CCXv4  
CCXv5  
IEEE 802.15.2 Coexistence Compliance — on silicon solution compliant with IEEE 3-wire requirements.  
Document No. 002-14797 Rev. *I  
Page 7 of 103  
CYW4343W  
2. Power Supplies and Power Management  
2.1 Power Supply Topology  
One Buck regulator, multiple LDO regulators, and a power management unit (PMU) are integrated into the CYW4343W. All regulators  
are programmable via the PMU. These blocks simplify power supply design for Bluetooth and WLAN functions in embedded designs.  
A single VBAT (3.0V to 4.8V DC maximum) and VDDIO supply (1.8V to 3.3V) can be used, with all additional voltages being provided  
by the regulators in the CYW4343W.  
Two control signals, BT_REG_ON and WL_REG_ON, are used to power up the regulators and take the respective circuit blocks out  
of reset. The CBUCK CLDO and LNLDO power up when any of the reset signals are deasserted. All regulators are powered down  
only when both BT_REG_ON and WL_REG_ON are deasserted. The CLDO and LNLDO can be turned on and off based on the  
dynamic demands of the digital baseband.  
The CYW4343W allows for an extremely low power-consumption mode by completely shutting down the CBUCK, CLDO, and LNLDO  
regulators. When in this state, LPLDO1 provides the CYW4343W with all required voltage, further reducing leakage currents.  
Note: VBAT should be connected to the LDO_VDDBAT5V and SR_VDDBAT5V pins of the device.  
Note: VDDIO should be connected to the SYS_VDDIO and WCC_VDDIO pins of the device.  
2.2 CYW4343W PMU Features  
The PMU supports the following:  
VBAT to 1.35Vout (170 mA nominal, 370 mA maximum) Core-Buck (CBUCK) switching regulator  
VBAT to 3.3Vout (250 mA nominal, 450 mA maximum 800 mA peak maximum) LDO3P3  
1.35V to 1.2Vout (100 mA nominal, 150 mA maximum) LNLDO  
1.35V to 1.2Vout (80 mA nominal, 200 mA maximum) CLDO with bypass mode for deep sleep  
Additional internal LDOs (not externally accessible)  
PMU internal timer auto-calibration by the crystal clock for precise wake-up timing from extremely low power-consumption mode.  
PMU input supplies automatic sensing and fast switching to support A4WP operations.  
Figure 3 and Figure 4 show the typical power topology of the CYW4343W.  
Document No. 002-14797 Rev. *I  
Page 8 of 103  
CYW4343W  
Figure 3. Typical Power Topology (1 of 2)  
SR_VDDBAT5V  
W L RF— TX M ixer and PA  
VBAT  
(not all versions)  
CYW4343W  
M ini PM U  
Internal VCOLDO  
1.2V  
1.2V  
1.2V  
1.2V  
W L RF— LOGEN  
W L RF— RX LNA  
W L RF— ADC REF  
W L RF— TX  
80 m A (NM OS)  
Internal RXLDO  
10 m A (NM OS)  
VBAT:  
Operational:  
Perform ance:  
3.0— 4.8V  
3.0— 4.8V  
VDD1P35  
Internal ADCLDO  
10 m A (NM OS)  
Absolute M axim um : 5.5V  
VDDIO  
Operational:  
Internal TXLDO  
80 m A (PM OS)  
1.2V  
1.2V  
1.8— 3.3V  
1.35V  
Internal AFELDO  
80 m A (NM OS)  
W L RF— AFE and TIA  
Core Buck  
Regulator  
10 m A average,  
> 10 m A at startup  
W L RF— RFPLL PFD and M M D  
SR_VLX  
M ini PM U is placed  
in W L radio  
Int_SR_VBAT  
Peak: 370 m A  
W LRF_XTAL_  
VDD1P2  
Avg: 170 m A  
2.2 uH  
(320 m A)  
SW 1  
600 @  
0603  
100 M Hz  
W L RF— XTAL  
1.2V  
LDO_VDD_1P5  
LNLDO  
SR_VBAT5V  
(100 m A)  
VBAT  
G ND  
4.7 uF  
0402  
VOUT_LNLDO  
0.1 uF  
0201  
SR_PVSS  
2.2 uF  
0402  
PM U_VSS  
W CC_VDDIO  
SYS_VDDIO  
W CC_VDDIO  
LPLDO1  
(5 m A)  
1.1V  
(40 m A)  
VSEL1  
W LAN/BT/CLB/Top, Alw ays On  
W L OTP  
SYS_VDDIO  
W PT_1P8  
VDDC1  
VDDC2  
(40 m A)  
(40 m A)  
W PT_1P8  
1.3V, 1.2V,  
or 0.95V  
(AVS)  
CL LDO  
Peak: 200 m A  
Avg: 80 m A  
(Bypass in deep‐  
sleep)  
o_w pt_resetb  
W PTLDO  
(40 m A)  
1.3V  
2.2 uF  
0402  
VOUT_CLDO  
W L Digital and PHY  
W L_REG_ON  
BT_REG_ON  
o_w l_resetb  
o_bt_resetb  
W L VDDM (SROM s & AOS)  
Power switch  
No power switch  
Supply ball  
Ground ball  
Supply bum p/pad  
Ground bum p/pad  
External to chip  
BT VDDM  
BT Digital  
No dedicated power switch, but internal power  
down m odes and blockspecific power switches  
BT/W LAN reset  
balls  
Document No. 002-14797 Rev. *I  
Page 9 of 103  
 
CYW4343W  
Figure 4. Typical Power Topology (2 of 2)  
CYW4343W  
6.4 mA  
1.8V, 2.5V, and 3.3V  
WL BBPLL/DFLL  
WL OTP 3.3V  
LDO3P3 with  
BackPower  
VOUT_3P3  
WLRF_PA_VDD  
480 to 800 mA  
6.4 mA  
VBAT  
Protection  
WL RF—PA (2.4 GHz)  
LDO_  
VDDBAT5V  
1 uF  
0201  
4.7 uF  
0402  
(Peak 450800 mA  
200 mA Average) 3.3V  
2.5V Capless  
LNLDO  
WL RF—ADC, AFE, LOGEN,  
LNA, NMOS MiniPMU LDOs  
22  
ohm  
(10 mA)  
SW2  
Peak: 92 mA  
Average: 75 mA  
Resistance: 1 ohm  
Placed inside WL Radio  
WPT_3P3  
Peak: 70 mA  
BT_PAVDD  
Average: 15 mA  
BT Class 1 PA  
1 uF  
0201  
Power switch  
No power switch  
External to chip  
Supply ball  
No dedicated power switch, but internal power‐  
down modes and blockspecific power switches  
Document No. 002-14797 Rev. *I  
Page 10 of 103  
 
CYW4343W  
2.3 WLAN Power Management  
The CYW4343W has been designed with the stringent power consumption requirements of mobile devices in mind. All areas of the  
chip design are optimized to minimize power consumption. Silicon processes and cell libraries were chosen to reduce leakage current  
and supply voltages. Additionally, the CYW4343W integrated RAM is a high volatile memory with dynamic clock control. The dominant  
supply current consumed by the RAM is leakage current only. Additionally, the CYW4343W includes an advanced WLAN power  
management unit (PMU) sequencer. The PMU sequencer provides significant power savings by putting the CYW4343W into various  
power management states appropriate to the operating environment and the activities that are being performed. The power  
management unit enables and disables internal regulators, switches, and other blocks based on a computation of the required  
resources and a table that describes the relationship between resources and the time needed to enable and disable them. Power-up  
sequences are fully programmable. Configurable, free-running counters (running at the 32.768 kHz LPO clock) in the PMU sequencer  
are used to turn on/turn off individual regulators and power switches. Clock speeds are dynamically changed (or gated altogether) for  
the current mode. Slower clock speeds are used wherever possible.  
The CYW4343W WLAN power states are described as follows:  
Active mode— All WLAN blocks in the CYW4343W are powered up and fully functional with active carrier sensing and frame  
transmission and receiving. All required regulators are enabled and put in the most efficient mode based on the load current. Clock  
speeds are dynamically adjusted by the PMU sequencer.  
Doze mode—The radio, analog domains, and most of the linear regulators are powered down. The rest of the CYW4343W remains  
powered up in an IDLE state. All main clocks (PLL, crystal oscillator) are shut down to reduce active power to the minimum. The  
32.768 kHz LPO clock is available only for the PMU sequencer. This condition is necessary to allow the PMU sequencer to wake  
up the chip and transition to Active mode. In Doze mode, the primary power consumed is due to leakage current.  
Deep-sleep mode—Most of the chip, including analog and digital domains, and most of the regulators are powered off. Logic states  
in the digital core are saved and preserved to retention memory in the always-on domain before the digital core is powered off. To  
avoid lengthy hardware reinitialization, the logic states in the digital core are restored to their pre-deep-sleep settings when a wake-  
up event is triggered by an external interrupt, a host resume through the SDIO bus, or by the PMU timers.  
Power-down mode—The CYW4343W is effectively powered off by shutting down all internal regulators. The chip is brought out of  
this mode by external logic re-enabling the internal regulators.  
2.4 PMU Sequencing  
The PMU sequencer is used to minimize system power consumption. It enables and disables various system resources based on a  
computation of required resources and a table that describes the relationship between resources and the time required to enable and  
disable them.  
Resource requests can derive from several sources: clock requests from cores, the minimum resources defined in the ResourceMin  
register, and the resources requested by any active resource request timers. The PMU sequencer maps clock requests into a set of  
resources required to produce the requested clocks.  
Each resource is in one of the following four states:  
enabled  
disabled  
transition_on  
transition_off  
The timer value is 0 when the resource is enabled or disabled and nonzero during state transition. The timer is loaded with the time_on  
or time_off value of the resource when the PMU determines that the resource must be enabled or disabled. That timer decrements  
on each 32.768 kHz PMU clock. When it reaches 0, the state changes from transition_off to disabled or transition_on to enabled. If  
the time_on value is 0, the resource can transition immediately from disabled to enabled. Similarly, a time_off value of 0 indicates that  
the resource can transition immediately from enabled to disabled. The terms enable sequence and disable sequence refer to either  
the immediate transition or the timer load-decrement sequence.  
During each clock cycle, the PMU sequencer performs the following actions:  
Computes the required resource set based on requests and the resource dependency table.  
Decrements all timers whose values are nonzero. If a timer reaches 0, the PMU clears the ResourcePending bit for the resource  
and inverts the ResourceState bit.  
Compares the request with the current resource status and determines which resources must be enabled or disabled.  
Initiates a disable sequence for each resource that is enabled, no longer being requested, and has no powered-up dependents.  
Initiates an enable sequence for each resource that is disabled, is being requested, and has all of its dependencies enabled.  
Document No. 002-14797 Rev. *I  
Page 11 of 103  
CYW4343W  
2.5 Power-Off Shutdown  
The CYW4343W provides a low-power shutdown feature that allows the device to be turned off while the host, and any other devices  
in the system, remain operational. When the CYW4343W is not needed in the system, VDDIO_RF and VDDC are shut down while  
VDDIO remains powered. This allows the CYW4343W to be effectively off while keeping the I/O pins powered so that they do not  
draw extra current from any other devices connected to the I/O.  
During a low-power shutdown state, provided VDDIO remains applied to the CYW4343W, all outputs are tristated, and most input  
signals are disabled. Input voltages must remain within the limits defined for normal operation. This is done to prevent current paths  
or create loading on any digital signals in the system, and enables the CYW4343W to be fully integrated in an embedded device and  
to take full advantage of the lowest power-savings modes.  
When the CYW4343W is powered on from this state, it is the same as a normal power-up, and the device does not retain any  
information about its state from before it was powered down.  
2.6 Power-Up/Power-Down/Reset Circuits  
The CYW4343W has two signals (see Table 2) that enable or disable the Bluetooth and WLAN circuits and the internal regulator  
blocks, allowing the host to control power consumption. For timing diagrams of these signals and the required power-up sequences,  
see Section 20.: “Power-Up Sequence and Timing” .  
Table 2. Power-Up/Power-Down/Reset Control Signals  
Signal  
Description  
This signal is used by the PMU (with BT_REG_ON) to power-up the WLAN section. It is also OR-gated with the  
BT_REG_ON input to control the internal CYW4343W regulators. When this pin is high, the regulators are enabled  
and the WLAN section is out of reset. When this pin is low, the WLAN section is in reset. If BT_REG_ON and  
WL_REG_ON are both low, the regulators are disabled. This pin has an internal 200 kpull-down resistor that is  
enabled by default. It can be disabled through programming.  
WL_REG_ON  
This signal is used by the PMU (with WL_REG_ON) to decide whether or not to power down the internal  
CYW4343W regulators. If BT_REG_ON and WL_REG_ON are low, the regulators will be disabled. This pin has  
an internal 200 kpull-down resistor that is enabled by default. It can be disabled through programming.  
BT_REG_ON  
Document No. 002-14797 Rev. *I  
Page 12 of 103  
 
CYW4343W  
3. Frequency References  
An external crystal is used for generating all radio frequencies and normal operation clocking. As an alternative, an external frequency  
reference driven by a temperature-compensated crystal oscillator (TCXO) signal may be used. No software settings are required to  
differentiate between the two. In addition, a low-power oscillator (LPO) is provided for lower power mode timing.  
3.1 Crystal Interface and Clock Generation  
The CYW4343W can use an external crystal to provide a frequency reference. The recommended configuration for the crystal  
oscillator, including all external components, is shown in Figure 5. Consult the reference schematics for the latest configuration.  
Figure 5. Recommended Oscillator Configuration  
C
WLRF_XTAL_XOP  
12 – 27 pF  
C
WLRF_XTAL_XON  
R
12 – 27 pF  
Note: Resistor value determined by crystal drive level.  
See reference schematics for details.  
The CYW4343W uses a fractional-N synthesizer to generate the radio frequencies, clocks, and data/packet timing so that it can  
operate using numerous frequency references. The frequency reference can be an external source such as a TCXO or a crystal  
interfaced directly to the CYW4343W.  
The default frequency reference setting is a 37.4 MHz crystal or TCXO. The signal requirements and characteristics for the crystal  
interface are shown in Table 3.  
Note: Although the fractional-N synthesizer can support many reference frequencies, frequencies other than the default require  
support to be added in the driver, plus additional extensive system testing. Contact Broadcom for further details.  
3.2 TCXO  
As an alternative to a crystal, an external precision TCXO can be used as the frequency reference, provided that it meets the phase  
noise requirements listed in Table 3.  
If the TCXO is dedicated to driving the CYW4343W, it should be connected to the WLRF_XTAL_XOP pin through an external capacitor  
with value ranges from 200 pF to 1000 pF as shown in Figure 6.  
Figure 6. Recommended Circuit to Use with an External Dedicated TCXO  
200 pF – 1000 pF  
TCXO  
WLRF_XTAL_XOP  
WLRF_XTAL_XON  
NC  
Document No. 002-14797 Rev. *I  
Page 13 of 103  
 
 
CYW4343W  
Table 3. Crystal Oscillator and External Clock Requirements and Performance  
Crystal  
Min. Typ.  
External Frequency  
Reference  
Parameter  
Frequency  
Conditions/Notes  
Max.  
Min. Typ. Max.  
Units  
MHz  
pF  
37.4a  
Crystal load capacitance  
ESR  
12  
60  
External crystal must be able to tolerate  
this drive level.  
Drive level  
200  
μW  
Resistive  
10k  
100k  
7
Input Impedance (WLRF_X-  
TAL_XOP)  
Capacitive  
pF  
WLRF_XTAL_XOP input  
voltage  
AC-coupled analog signal  
DC-coupled digital signal  
DC-coupled digital signal  
400b  
1260  
0.2  
mVp-p  
V
WLRF_XTAL_XOP input low  
level  
0
WLRF_XTAL_XOPinputhigh  
level  
1.0  
–20  
1.26  
20  
V
Frequency tolerance  
Initial + over temperature  
–20  
20  
ppm  
Duty cycle  
37.4 MHz clock  
40  
50  
60  
%
Phase Noisec, d, e  
(IEEE 802.11 b/g)  
37.4 MHz clock at 10 kHz offset  
37.4 MHz clock at 100 kHz offset  
37.4 MHz clock at 10 kHz offset  
37.4 MHz clock at 100 kHz offset  
37.4 MHz clock at 10 kHz offset  
37.4 MHz clock at 100 kHz offset  
–129  
–136  
–134  
–141  
–140  
–147  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Phase Noisec, d, e  
(IEEE 802.11n, 2.4 GHz)  
Phase Noisec, d, e  
(256-QAM)  
a. The frequency step size is approximately 80 Hz. The CYW4343W does not auto-detect the reference clock frequency; the frequency is  
specified in the software and/or NVRAM file.  
b. To use 256-QAM, a 800 mV minimum voltage is required.  
c. For a clock reference other than 37.4 MHz, 20 × log10(f/37.4) dB should be added to the limits, where f = the reference clock frequency in  
MHz.  
d. Phase noise is assumed flat above 100 kHz.  
e. The CYW4343W supports a 26 MHz reference clock sharing option. See the phase noise requirement in the table.  
Document No. 002-14797 Rev. *I  
Page 14 of 103  
CYW4343W  
3.3 External 32.768 kHz Low-Power Oscillator  
The CYW4343W uses a secondary low-frequency sleep clock for low-power mode timing. Either the internal low-precision LPO or an  
external 32.768 kHz precision oscillator is required. The internal LPO frequency range is approximately 33 kHz ± 30% over process,  
voltage, and temperature, which is adequate for some applications. However, one trade-off caused by this wide LPO tolerance is a  
small current consumption increase during power save mode that is incurred by the need to wake up earlier to avoid missing beacons.  
Whenever possible, the preferred approach is to use a precision external 32.768 kHz clock that meets the requirements listed in Table  
4.  
Note: The CYW4343W will auto-detect the LPO clock. If it senses a clock on the EXT_SLEEP_CLK pin, it will use that clock. If it  
doesn't sense a clock, it will use its own internal LPO.  
To use the internal LPO: Tie EXT_SLEEP_CLK to ground. Do not leave this pin floating.  
To use an external LPO: Connect the external 32.768 kHz clock to EXT_SLEEP_CLK.  
Table 4. External 32.768 kHz Sleep-Clock Specifications  
Parameter  
LPO Clock  
Units  
Nominal input frequency  
Frequency accuracy  
Duty cycle  
32.768  
±200  
kHz  
ppm  
%
30–70  
Input signal amplitude  
Signal type  
200–3300  
mV, p-p  
Square wave or sine wave  
>100  
<5  
kΩ  
Input impedancea  
Clock jitter  
pF  
<10,000  
ppm  
a. When power is applied or switched off.  
Document No. 002-14797 Rev. *I  
Page 15 of 103  
 
CYW4343W  
4. WLAN System Interfaces  
4.1 SDIO v2.0  
The CYW4343W WLAN section supports SDIO version 2.0. for both 1-bit (25 Mbps) and 4-bit modes (100 Mbps), as well as high  
speed 4-bit mode (50 MHz clocks—200 Mbps). It has the ability to map the interrupt signal on a GPIO pin. This out-of-band interrupt  
signal notifies the host when the WLAN device wants to turn on the SDIO interface. The ability to force control of the gated clocks  
from within the WLAN chip is also provided.  
SDIO mode is enabled using the strapping option pins. See Table 20 for details.  
Three functions are supported:  
Function 0 standard SDIO function. The maximum block size is 32 bytes.  
Function 1 backplane function to access the internal System-on-a-Chip (SoC) address space. The maximum block size is 64 bytes.  
Function 2 WLAN function for efficient WLAN packet transfer through DMA. The maximum block size is 512 bytes.  
4.1.1 SDIO Pin Descriptions  
Table 5. SDIO Pin Descriptions  
SD 4-Bit Mode  
Data line 0  
SD 1-Bit Mode  
Data line  
DATA0  
DATA1  
DATA2  
DATA3  
CLK  
DATA  
IRQ  
NC  
Data line 1 or Interrupt  
Data line 2  
Interrupt  
Not used  
Not used  
Clock  
Data line 3  
NC  
Clock  
CLK  
CMD  
CMD  
Command line  
Command line  
Figure 7. Signal Connections to SDIO Host (SD 4-Bit Mode)  
CLK  
CMD  
CYW4343W  
SD Host  
DAT[3:0]  
Figure 8. Signal Connections to SDIO Host (SD 1-Bit Mode)  
CLK  
CMD  
CYW4343W  
SD Host  
DATA  
IRQ  
Document No. 002-14797 Rev. *I  
Page 16 of 103  
CYW4343W  
5. Wireless LAN MAC and PHY  
5.1 MAC Features  
The CYW4343W WLAN MAC supports features specified in the IEEE 802.11 base standard, and amended by IEEE 802.11n. The  
salient features are listed below:  
Transmission and reception of aggregated MPDUs (A-MPDU).  
Support for power management schemes, including WMM power-save, power-save multipoll (PSMP) and multiphase PSMP  
operation.  
Support for immediate ACK and Block-ACK policies.  
Interframe space timing support, including RIFS.  
Support for RTS/CTS and CTS-to-self frame sequences for protecting frame exchanges.  
Back-off counters in hardware for supporting multiple priorities as specified in the WMM specification.  
Timing synchronization function (TSF), network allocation vector (NAV) maintenance, and target beacon transmission time (TBTT)  
generation in hardware.  
Hardware off-load for AES-CCMP, legacy WPA TKIP, legacy WEP ciphers, WAPI, and support for key management.  
Support for coexistence with Bluetooth and other external radios.  
Programmable independent basic service set (IBSS) or infrastructure basic service set functionality  
Statistics counters for MIB support.  
5.1.1 MAC Description  
The CYW4343W WLAN MAC is designed to support high throughput operation with low-power consumption. It does so without  
compromising on Bluetooth coexistence policies, thereby enabling optimal performance over both networks. In addition, several  
power-saving modes that have been implemented allow the MAC to consume very little power while maintaining network-wide timing  
synchronization. The architecture diagram of the MAC is shown in Figure 9.  
Figure 9. WLAN MAC Architecture  
Embedded CPU Interface  
Host Registers, DMA Engines  
TXFIFO  
32 KB  
RXFIFO  
10 KB  
PSM  
PMQ  
PSM  
UCODE  
Memory  
IFS  
Backoff, BTCX  
WEP  
WEP, TKIP, AES  
TSF  
SHM  
BUS  
IHR  
NAV  
BUS  
Shared Memory  
6 KB  
RXE  
RX AMPDU  
TXE  
TX AMPDU  
EXTIHR  
MAC  
PHY Interface  
Document No. 002-14797 Rev. *I  
Page 17 of 103  
 
CYW4343W  
The following sections provide an overview of the important modules in the MAC.  
PSM  
The programmable state machine (PSM) is a microcoded engine that provides most of the low-level control to the hardware to  
implement the IEEE 802.11 specification. It is a microcontroller that is highly optimized for flow-control operations, which are predom-  
inant in implementations of communication protocols. The instruction set and fundamental operations are simple and general, which  
allows algorithms to be optimized until very late in the design process. It also allows for changes to the algorithms to track evolving  
IEEE 802.11 specifications.  
The PSM fetches instructions from the microcode memory. It uses the shared memory to obtain operands for instructions, as a data  
store, and to exchange data between both the host and the MAC data pipeline (via the SHM bus). The PSM also uses a scratch-pad  
memory (similar to a register bank) to store frequently accessed and temporary variables.  
The PSM exercises fine-grained control over the hardware engines by programming internal hardware registers (IHR). These IHRs  
are collocated with the hardware functions they control and are accessed by the PSM via the IHR bus.  
The PSM fetches instructions from the microcode memory using an address determined by the program counter, an instruction literal,  
or a program stack. For ALU operations, the operands are obtained from shared memory, scratch-pad memory, IHRs, or instruction  
literals, and the results are written into the shared memory, scratch-pad memory, or IHRs.  
There are two basic branch instructions: conditional branches and ALU-based branches. To better support the many decision points  
in the IEEE 802.11 algorithms, branches can depend on either readily available signals from the hardware modules (branch condition  
signals are available to the PSM without polling the IHRs) or on the results of ALU operations.  
WEP  
The wired equivalent privacy (WEP) engine encapsulates all the hardware accelerators to perform the encryption and decryption, as  
well as the MIC computation and verification. The accelerators implement the following cipher algorithms: legacy WEP, WPA TKIP,  
and WPA2 AES-CCMP.  
Based on the frame type and association information, the PSM determines the appropriate cipher algorithm to be used. It supplies  
the keys to the hardware engines from an on-chip key table. The WEP interfaces with the transmit engine (TXE) to encrypt and  
compute the MIC on transmit frames and the receive engine (RXE) to decrypt and verify the MIC on receive frames. WAPI is also  
supported.  
TXE  
The transmit engine (TXE) constitutes the transmit data path of the MAC. It coordinates the DMA engines to store the transmit frames  
in the TXFIFO. It interfaces with WEP module to encrypt frames and transfers the frames across the MAC-PHY interface at the  
appropriate time determined by the channel access mechanisms.  
The data received from the DMA engines are stored in transmit FIFOs. The MAC supports multiple logical queues to support traffic  
streams that have different QoS priority requirements. The PSM uses the channel access information from the IFS module to schedule  
a queue from which the next frame is transmitted. Once the frame is scheduled, the TXE hardware transmits the frame based on a  
precise timing trigger received from the IFS module.  
The TXE module also contains the hardware that allows the rapid assembly of MPDUs into anA-MPDU for transmission. The hardware  
module aggregates the encrypted MPDUs by adding appropriate headers and pad delimiters as needed.  
RXE  
The receive engine (RXE) constitutes the receive data path of the MAC. It interfaces with the DMAengine to drain the received frames  
from the RX FIFO. It transfers bytes across the MAC-PHY interface and interfaces with the WEP module to decrypt frames. The  
decrypted data is stored in the RX FIFO.  
The RXE module contains programmable filters that are programmed by the PSM to accept or filter frames based on several criteria  
such as receiver address, BSSID, and certain frame types.  
The RXE module also contains the hardware required to detect A-MPDUs, parse the headers of the containers, and disaggregate  
them into component MPDUS.  
Document No. 002-14797 Rev. *I  
Page 18 of 103  
CYW4343W  
IFS  
The IFS module contains the timers required to determine interframe space timing including RIFS timing. It also contains multiple  
back-off engines required to support prioritized access to the medium as specified by WMM.  
The interframe spacing timers are triggered by the cessation of channel activity on the medium, as indicated by the PHY. These timers  
provide precise timing to the TXE to begin frame transmission. The TXE uses this information to send response frames or perform  
transmit frame-bursting (RIFS or SIFS separated, as within a TXOP).  
The back-off engines (for each access category) monitor channel activity, in each slot duration, to determine whether to continue or  
pause the back-off counters. When the back-off counters reach 0, the TXE gets notified so that it may commence frame transmission.  
In the event of multiple back-off counters decrementing to 0 at the same time, the hardware resolves the conflict based on policies  
provided by the PSM.  
The IFS module also incorporates hardware that allows the MAC to enter a low-power state when operating under the IEEE power-  
saving mode. In this mode, the MAC is in a suspended state with its clock turned off. A sleep timer, whose count value is initialized  
by the PSM, runs on a slow clock and determines the duration over which the MAC remains in this suspended state. Once the timer  
expires, the MAC is restored to its functional state. The PSM updates the TSF timer based on the sleep duration, ensuring that the  
TSF is synchronized to the network.  
The IFS module also contains the PTA hardware that assists the PSM in Bluetooth coexistence functions.  
TSF  
The timing synchronization function (TSF) module maintains the TSF timer of the MAC. It also maintains the target beacon trans-  
mission time (TBTT). The TSF timer hardware, under the control of the PSM, is capable of adopting timestamps received from beacon  
and probe response frames in order to maintain synchronization with the network.  
The TSF module also generates trigger signals for events that are specified as offsets from the TSF timer, such as uplink and downlink  
transmission times used in PSMP.  
NAV  
The network allocation vector (NAV) timer module is responsible for maintaining the NAV information conveyed through the duration  
field of MAC frames. This ensures that the MAC complies with the protection mechanisms specified in the standard.  
The hardware, under the control of the PSM, maintains the NAV timer and updates the timer appropriately based on received frames.  
This timing information is provided to the IFS module, which uses it as a virtual carrier-sense indication.  
MAC-PHY Interface  
The MAC-PHY interface consists of a data path interface to exchange RX/TX data from/to the PHY. In addition, there is a programming  
interface, which can be controlled either by the host or the PSM to configure and control the PHY.  
5.2 PHY Description  
The CYW4343W WLAN digital PHY is designed to comply with IEEE 802.11b/g/n single stream to provide wireless LAN connectivity  
supporting data rates from 1 Mbps to 96 Mbps for low-power, high-performance handheld applications.  
The PHY has been designed to meet specification requirements in the presence of interference, radio nonlinearity, and impairments.  
It incorporates efficient implementations of the filters, FFT, and Viterbi decoder algorithms. Efficient algorithms have been designed  
to achieve maximum throughput and reliability, including algorithms for carrier sense/rejection, frequency/phase/timing acquisition  
and tracking, and channel estimation and tracking. The PHY receiver also contains a robust IEEE 802.11b demodulator. The PHY  
carrier sense has been tuned to provide high throughput for IEEE 802.11g/IEEE 802.11b hybrid networks with Bluetooth coexistence.  
Document No. 002-14797 Rev. *I  
Page 19 of 103  
CYW4343W  
5.2.1 PHY Features  
Supports the IEEE 802.11b/g/n single-stream standards.  
Explicit IEEE 802.11n transmit beamforming.  
Supports optional Greenfield mode in TX and RX.  
Tx and Rx LDPC for improved range and power efficiency.  
Supports IEEE 802.11h/d for worldwide operation.  
Algorithms achieving low power, enhanced sensitivity, range, and reliability.  
Algorithms to maximize throughput performance in the presence of Bluetooth signals.  
Automatic gain control scheme for blocking and nonblocking application scenarios for cellular applications.  
Closed-loop transmit power control.  
Designed to meet FCC and other regulatory requirements.  
Support for 2.4 GHz Broadcom TurboQAM data rates and 20 MHz channel bandwidth.  
Figure 10. WLAN PHY Block Diagram  
CCK/DSSS  
Demodulate  
Filters  
and  
Radio  
Comp  
Frequency  
and Timing  
Synch  
Descramble  
and  
Deframe  
OFDM  
Demodulate  
Viterbi  
Decoder  
Carrier Sense,  
AGC, and Rx  
FSM  
Buffers  
Radio  
Control  
Block  
MAC  
Interface  
FFT/IFFT  
AFE  
and  
Radio  
Modulation  
and Coding  
Tx FSM  
Frame and  
Scramble  
Filters and  
Radio Comp  
Modulate/  
Spread  
PA Comp  
COEX  
The PHY is capable of fully calibrating the RF front-end to extract the highest performance. On power-up, the PHY performs a full  
calibration suite to correct for IQ mismatch and local oscillator leakage. The PHY also performs periodic calibration to compensate  
for any temperature related drift, thus maintaining high-performance over time. A closed-loop transmit control algorithm maintains the  
output power at its required level and can control TX power on a per-packet basis.  
Document No. 002-14797 Rev. *I  
Page 20 of 103  
CYW4343W  
6. WLAN Radio Subsystem  
The CYW4343W includes an integrated WLAN RF transceiver that has been optimized for use in 2.4 GHz Wireless LAN systems. It  
is designed to provide low power, low cost, and robust communications for applications operating in the globally available 2.4 GHz  
unlicensed ISM band. The transmit and receive sections include all on-chip filtering, mixing, and gain control functions. Improvements  
to the radio design include shared TX/RX baseband filters and high immunity to supply noise.  
Figure 11 shows the radio functional block diagram.  
Figure 11. Radio Functional Block Diagram  
WL DAC  
WL TXLPF  
WL DAC  
WL PA  
WL PGA  
WL TX GMixer WL TXLPF  
Voltage  
Regulators  
WLAN BB  
WLRF_2G_RF  
WLRF_2G_eLG  
4 ~ 6 nH  
Recommend  
Q = 40  
WL ADC  
WL ADC  
10 pF  
WL RXLPF  
SLNA  
WL GLNA12  
WL RXLPF  
WL RX GMixer  
WL ATX  
WL ARX  
WL GTX  
WL GRX  
Gm  
BT LNA GM  
CLB  
WL LOGEN  
WL PLL  
BT PLL  
Shared XO  
BT RX  
BT TX  
BT LOGEN  
LPO/Ext LPO/RCAL  
BT ADC  
BT ADC  
BT RXLPF  
BT LNA Load  
BT PA  
BT RX Mixer  
BT RXLPF  
BT BB  
BT  
BT DAC  
BT DAC  
BT TX Mixer  
BT TXLPF  
Document No. 002-14797 Rev. *I  
Page 21 of 103  
 
CYW4343W  
6.1 Receive Path  
The CYW4343W has a wide dynamic range, direct conversion receiver. It employs high-order on-chip channel filtering to ensure  
reliable operation in the noisy 2.4 GHz ISM band.  
6.2 Transmit Path  
Baseband data is modulated and upconverted to the 2.4 GHz ISM band. A linear on-chip power amplifier is included, which is capable  
of delivering high output powers while meeting IEEE 802.11b/g/n specifications without the need for an external PA. This PAis supplied  
by an internal LDO that is directly supplied by VBAT, thereby eliminating the need for a separate PALDO. Closed-loop output power  
control is integrated.  
6.3 Calibration  
The CYW4343W features dynamic on-chip calibration, eliminating process variation across components. This enables the  
CYW4343W to be used in high-volume applications because calibration routines are not required during manufacturing testing. These  
calibration routines are performed periodically during normal radio operation. Automatic calibration examples include baseband filter  
calibration for optimum transmit and receive performance and LOFT calibration for leakage reduction. In addition, I/Q calibration, R  
calibration, and VCO calibration are performed on-chip.  
Document No. 002-14797 Rev. *I  
Page 22 of 103  
CYW4343W  
7. Bluetooth Subsystem Overview  
The Cypress CYW4343W is a Bluetooth 4.1-compliant, baseband processor and 2.4 GHz transceiver. It features the highest level of  
integration and eliminates all critical external components, thus minimizing the footprint, power consumption, and system cost of a  
Bluetooth.  
The CYW4343W is the optimal solution for any Bluetooth voice and/or data application. The Bluetooth subsystem presents a standard  
Host Controller Interface (HCI) via a high speed UART and PCM interface for audio. The CYW4343W incorporates all Bluetooth 4.1  
features including secure simple pairing, sniff subrating, and encryption pause and resume.  
The CYW4343W Bluetooth radio transceiver provides enhanced radio performance to meet the most stringent mobile phone  
temperature applications and the tightest integration into mobile handsets and portable devices. It is fully compatible with any of the  
standard TCXO frequencies and provides full radio compatibility to operate simultaneously with GPS, WLAN, NFC, and cellular radios.  
The Bluetooth transmitter also features a Class 1 power amplifier with Class 2 capability.  
7.1 Features  
Major Bluetooth features of the CYW4343W include:  
Supports key features of upcoming Bluetooth standards  
Fully supports Bluetooth Core Specification version 4.1 plus enhanced data rate (EDR) features:  
Adaptive Frequency Hopping (AFH)  
Quality of Service (QoS)  
Extended Synchronous Connections (eSCO)—voice connections  
Fast connect (interlaced page and inquiry scans)  
Secure Simple Pairing (SSP)  
Sniff Subrating (SSR)  
Encryption Pause Resume (EPR)  
Extended Inquiry Response (EIR)  
Link Supervision Timeout (LST)  
UART baud rates up to 4 Mbps  
Supports all Bluetooth 4.1 packet types  
Supports maximum Bluetooth data rates over HCI UART  
Multipoint operation with up to seven active slaves  
Maximum of seven simultaneous active ACL links  
Maximum of three simultaneous active SCO and eSCO connections with scatternet support  
Trigger Beacon fast connect (TBFC)  
Narrowband and wideband packet loss concealment  
Scatternet operation with up to four active piconets with background scan and support for scatter mode  
High-speed HCI UART transport support with low-power out-of-band BT_DEV_WAKE and BT_HOST_WAKE signaling (see “Host  
Controller Power Management” )  
Channel-quality driven data rate and packet type selection  
Standard Bluetooth test modes  
Extended radio and production test mode features  
Full support for power savings modes  
Bluetooth clock request  
Bluetooth standard sniff  
Deep-sleep modes and software regulator shutdown  
TCXO input and auto-detection of all standard handset clock frequencies. Also supports a low-power crystal, which can be used  
during power save mode for better timing accuracy.  
Document No. 002-14797 Rev. *I  
Page 23 of 103  
 
CYW4343W  
7.2 Bluetooth Radio  
The CYW4343W has an integrated radio transceiver that has been optimized for use in 2.4 GHz Bluetooth wireless systems. It has  
been designed to provide low-power, low-cost, robust communications for applications operating in the globally available 2.4 GHz  
unlicensed ISM band. It is fully compliant with the Bluetooth Radio Specification and EDR specification and meets or exceeds the  
requirements to provide the highest communication link quality of service.  
7.2.1 Transmit  
The CYW4343W features a fully integrated zero-IF transmitter. The baseband transmit data is GFSK-modulated in the modem block  
and upconverted to the 2.4 GHz ISM band in the transmitter path. The transmitter path has signal filters, an I/Q upconverter, an output  
power amplifier, and RF filters. The transmitter path also incorporates /4–DQPSK for 2 Mbps and 8–DPSK for 3 Mbps to support  
EDR. The transmitter section is compatible with the Bluetooth Low Energy specification. The transmitter PA bias can also be adjusted  
to provide Bluetooth Class 1 or Class 2 operation.  
7.2.2 Digital Modulator  
The digital modulator performs the data modulation and filtering required for the GFSK, /4–DQPSK, and 8–DPSK signal. The fully  
digital modulator minimizes any frequency drift or anomalies in the modulation characteristics of the transmitted signal and is much  
more stable than direct VCO modulation schemes.  
7.2.3 Digital Demodulator and Bit Synchronizer  
The digital demodulator and bit synchronizer take the low-IF received signal and perform an optimal frequency tracking and bit-  
synchronization algorithm.  
7.2.4 Power Amplifier  
The fully integrated PA supports Class 1 or Class 2 output using a highly linearized, temperature-compensated design. This provides  
greater flexibility in front-end matching and filtering. Due to the linear nature of the PAcombined with some integrated filtering, external  
filtering is required to meet the Bluetooth and regulatory harmonic and spurious requirements. For integrated mobile handset appli-  
cations in which Bluetooth is integrated next to the cellular radio, external filtering can be applied to achieve near-thermal noise levels  
for spurious and radiated noise emissions. The transmitter features a sophisticated on-chip transmit signal strength indicator (TSSI)  
block to keep the absolute output power variation within a tight range across process, voltage, and temperature.  
Document No. 002-14797 Rev. *I  
Page 24 of 103  
CYW4343W  
7.2.5 Receiver  
The receiver path uses a low-IF scheme to downconvert the received signal for demodulation in the digital demodulator and bit  
synchronizer. The receiver path provides a high degree of linearity, an extended dynamic range, and high-order on-chip channel  
filtering to ensure reliable operation in the noisy 2.4 GHz ISM band. The front-end topology with built-in out-of-band attenuation  
enables the CYW4343W to be used in most applications with minimal off-chip filtering. For integrated handset operation, in which the  
Bluetooth function is integrated close to the cellular transmitter, external filtering is required to eliminate the desensitization of the  
receiver by the cellular transmit signal.  
7.2.6 Digital Demodulator and Bit Synchronizer  
The digital demodulator and bit synchronizer take the low-IF received signal and perform an optimal frequency tracking and bit  
synchronization algorithm.  
7.2.7 Receiver Signal Strength Indicator  
The radio portion of the CYW4343W provides a Receiver Signal Strength Indicator (RSSI) signal to the baseband so that the controller  
can take part in a Bluetooth power-controlled link by providing a metric of its own receiver signal strength to determine whether the  
transmitter should increase or decrease its output power.  
7.2.8 Local Oscillator Generation  
Local Oscillator (LO) generation provides fast frequency hopping (1600 hops/second) across the 79 maximum available channels.  
The LO generation subblock employs an architecture for high immunity to LO pulling during PA operation. The CYW4343W uses an  
internal RF and IF loop filter.  
7.2.9 Calibration  
The CYW4343W radio transceiver features an automated calibration scheme that is self contained in the radio. No user interaction  
is required during normal operation or during manufacturing to optimize performance. Calibration optimizes the performance of all the  
major blocks within the radio to within 2% of optimal conditions, including filter gain and phase characteristics, matching between key  
components, and key gain blocks. This takes into account process variation and temperature variation. Calibration occurs transpar-  
ently during normal operation during the settling time of the hops and calibrates for temperature variations as the device cools and  
heats during normal operation in its environment.  
Document No. 002-14797 Rev. *I  
Page 25 of 103  
CYW4343W  
8. Bluetooth Baseband Core  
The Bluetooth Baseband Core (BBC) implements all of the time-critical functions required for high-performance Bluetooth operation.  
The BBC manages the buffering, segmentation, and routing of data for all connections. It also buffers data that passes through it,  
handles data flow control, schedules SCO/ACLTX/RX transactions, monitors Bluetooth slot usage, optimally segments and packages  
data into baseband packets, manages connection status indicators, and composes and decodes HCI packets. In addition to these  
functions, it independently handles HCI event types and HCI command types.  
The following transmit and receive functions are also implemented in the BBC hardware to increase the reliability and security of data  
before sending and receiving it over the air:  
Symbol timing recovery, data deframing, forward error correction (FEC), header error control (HEC), cyclic redundancy check (CRC),  
data decryption, and data dewhitening in the receiver.  
Data framing, FEC generation, HEC generation, CRC generation, key generation, data encryption, and data whitening in the  
transmitter.  
8.1 Bluetooth 4.1 Features  
The BBC supports all Bluetooth 4.1 features, with the following benefits:  
Dual-mode classic Bluetooth and classic Low Energy (BT and BLE) operation.  
Low energy physical layer  
Low energy link layer  
Enhancements to HCI for low energy  
Low energy direct test mode  
128 AES-CCM secure connection for both BT and BLE  
Note: The CYW4343W is compatible with the Bluetooth Low Energy operating mode, which provides a dramatic reduction in the  
power consumption of the Bluetooth radio and baseband. The primary application for this mode is to provide support for low data rate  
devices, such as sensors and remote controls.  
8.2 Link Control Layer  
The link control layer is part of the Bluetooth link control functions that are implemented in dedicated logic in the link control unit (LCU).  
This layer contains the command controller that takes commands from the software, and other controllers that are activated or  
configured by the command controller, to perform the link control tasks. Each task performs a different state in the Bluetooth link  
controller.  
Major states:  
Standby  
Connection  
Substates:  
Page  
Page Scan  
Inquiry  
Inquiry Scan  
Sniff  
BLE Adv  
BLE Scan/Initiation  
Document No. 002-14797 Rev. *I  
Page 26 of 103  
CYW4343W  
8.3 Test Mode Support  
The CYW4343W fully supports Bluetooth Test mode as described in Part I:1 of the Specification of the Bluetooth System Version 3.0.  
This includes the transmitter tests, normal and delayed loopback tests, and reduced hopping sequence.  
In addition to the standard Bluetooth Test Mode, the CYW4343W also supports enhanced testing features to simplify RF debugging  
and qualification as well as type-approval testing. These features include:  
Fixed frequency carrier-wave (unmodulated) transmission  
Simplifies some type-approval measurements (Japan)  
Aids in transmitter performance analysis  
Fixed frequency constant receiver mode  
Receiver output directed to an I/O pin  
Allows for direct BER measurements using standard RF test equipment  
Facilitates spurious emissions testing for receive mode  
Fixed frequency constant transmission  
Eight-bit fixed pattern or PRBS-9  
Enables modulated signal measurements with standard RF test equipment  
8.4 Bluetooth Power Management Unit  
The Bluetooth Power Management Unit (PMU) provides power management features that can be invoked by either software through  
power management registers or packet handling in the baseband core. The power management functions provided by the  
CYW4343W are:  
RF Power Management  
Host Controller Power Management  
BBC Power Management  
8.4.1 RF Power Management  
The BBC generates power-down control signals for the transmit path, receive path, PLL, and power amplifier to the 2.4 GHz trans-  
ceiver. The transceiver then processes the power-down functions accordingly.  
8.4.2 Host Controller Power Management  
When running in UART mode, the CYW4343W can be configured so that dedicated signals are used for power management  
handshaking between the CYW4343W and the host. The basic power saving functions supported by those handshaking signals  
include the standard Bluetooth defined power savings modes and standby modes of operation.  
Table 6 describes the power-control handshake signals used with the UART interface.  
Table 6. Power Control Pin Description  
Signal  
Type  
Description  
Bluetooth device wake-up signal: Signal from the host to the CYW4343W indicating that the host  
requires attention.  
BT_DEV_WAKE  
I
Asserted: The Bluetooth device must wake up or remain awake.  
Deasserted: The Bluetooth device may sleep when sleep criteria are met.  
The polarity of this signal is software configurable and can be asserted high or low.  
Host wake-up signal. Signal from the CYW4343W to the host indicating that the CYW4343W requires  
attention.  
BT_HOST_WAKE  
CLK_REQ  
O
O
Asserted: Host device must wake up or remain awake.  
Deasserted: Host device may sleep when sleep criteria are met.  
The polarity of this signal is software configurable and can be asserted high or low.  
The CYW4343W asserts CLK_REQ when Bluetooth or WLAN directs the host to turn on the  
reference clock. The CLK_REQ polarity is active-high. Add an external 100 kpull-down resistor to  
ensure the signal is deasserted when the CYW4343W powers up or resets when VDDIO is present.  
Note: Pad function Control Register is set to 0 for these pins.  
Document No. 002-14797 Rev. *I  
Page 27 of 103  
 
 
 
CYW4343W  
Figure 12. Startup Signaling Sequence  
LPO  
Host IOs unconfigured  
Host IOs configured  
VDDIO  
T1  
HostResetX  
BT_GPIO_0  
(BT_DEV_WAKE)  
T2  
BTH IOs unconfiguredBTH IOs configured  
BT_REG_ON  
BT_GPIO_1  
(BT_HOST_WAKE)  
T3  
Host side drives  
this line low  
BT_UART_CTS_N  
BT_UART_RTS_N  
BTH device drives this  
line low indicating  
transport is ready  
T4  
CLK_REQ_OUT  
Notes :  
T5  
Driven  
Pulled  
T1 is the time for host to settle it’s IOs after a reset.  
T2 is the time for host to drive BT_REG_ON high after the Host IOs are configured.  
T3 is the time for BTH (Bluetooth) device to settle its IOs after a reset and reference clock settling time has  
elapsed.  
T4 is the time for BTH device to drive BT_UART_RTS_N low after the host drives BT_UART_CTS_N low. This  
assumes the BTH device has already completed initialization.  
T5 is the time for BTH device to drive CLK_REQ_OUT high after BT_REG_ON goes high. Note this pin is used for  
designs that use an external reference clock source from the Host. This pin is irrelevant for Crystal reference  
clock based designs where the BTH device generates it’s own reference clock from an external crystal connected  
to it’s oscillator circuit.  
Timing diagram assumes VBAT is present.  
Document No. 002-14797 Rev. *I  
Page 28 of 103  
CYW4343W  
8.5 BBC Power Management  
The following are low-power operations for the BBC:  
Physical layer packet-handling turns the RF on and off dynamically within transmit/receive packets.  
Bluetooth-specified low-power connection modes: sniff and hold. While in these modes, the CYW4343W runs on the low-power  
oscillator and wakes up after a predefined time period.  
Alow-powershutdownfeatureallowsthedevicetobeturnedoffwhilethehostandanyotherdevicesinthesystemremainoperational.  
When the CYW4343W is not needed in the system, the RF and core supplies are shut down while the I/O remains powered. This  
allows the CYW4343W to effectively be off while keeping the I/O pins powered, so they do not draw extra current from any other I/  
O-connected devices.  
During the low-power shut-down state, provided VDDIO remains applied to the CYW4343W, all outputs are tristated, and most input  
signals are disabled. Input voltages must remain within the limits defined for normal operation. This is done to prevent current paths  
or create loading on digital signals in the system and enables the CYW4343W to be fully integrated in an embedded device to take  
full advantage of the lowest power-saving modes.  
Two CYW4343W input signals are designed to be high-impedance inputs that do not load the driving signal even if the chip does not  
have VDDIO power supplied to it: the frequency reference input (WRF_TCXO_IN) and the 32.768 kHz input (LPO). When the  
CYW4343W is powered on from this state, it is the same as a normal power-up, and the device does not contain any information  
about its state from the time before it was powered down.  
8.5.1 Wideband Speech  
The CYW4343W provides support for wideband speech (WBS) technology. The CYW4343W can perform subband-codec (SBC), as  
well as mSBC, encoding and decoding of linear 16 bits at 16 kHz (256 kbps rate) transferred over the PCM bus.  
8.6 Packet Loss Concealment  
Packet Loss Concealment (PLC) improves the apparent audio quality for systems with marginal link performance. Bluetooth messages  
are sent in packets. When a packet is lost, it creates a gap in the received audio bit-stream. Packet loss can be mitigated in several  
ways:  
Fill in zeros.  
Ramp down the output audio signal toward zero (this is the method used in current Bluetooth headsets).  
Repeat the last frame (or packet) of the received bit-stream and decode it as usual (frame repeat).  
These techniques cause distortion and popping in the audio stream. The CYW4343W uses a proprietary waveform extension  
algorithm to provide dramatic improvement in the audio quality. Figure 13 and Figure 14 show audio waveforms with and without  
Packet Loss Concealment. Cypress PLC/BEC algorithms also support wideband speech.  
Figure 13. CVSD Decoder Output Waveform Without PLC  
Packet losses causes ramp-down  
Document No. 002-14797 Rev. *I  
Page 29 of 103  
 
CYW4343W  
Figure 14. CVSD Decoder Output Waveform After Applying PLC  
8.6.1 Codec Encoding  
The CYW4343W can support SBC and mSBC encoding and decoding for wideband speech.  
8.6.2 Multiple Simultaneous A2DP Audio Streams  
The CYW4343W has the ability to take a single audio stream and output it to multiple Bluetooth devices simultaneously. This allows  
a user to share his or her music (or any audio stream) with a friend.  
8.7 Adaptive Frequency Hopping  
The CYW4343W gathers link quality statistics on a channel by channel basis to facilitate channel assessment and channel map  
selection. The link quality is determined using both RF and baseband signal processing to provide a more accurate frequency-hop  
map.  
8.8 Advanced Bluetooth/WLAN Coexistence  
The CYW4343W includes advanced coexistence technologies that are only possible with a Bluetooth/WLAN integrated die solution.  
These coexistence technologies are targeted at small form-factor platforms, such as cell phones and media players, including appli-  
cations such as VoWLAN + SCO and Video-over-WLAN + High Fidelity BT Stereo.  
Support is provided for platforms that share a single antenna between Bluetooth and WLAN. Dual-antenna applications are also  
supported. The CYW4343W radio architecture allows for lossless simultaneous Bluetooth and WLAN reception for shared antenna  
applications. This is possible only via an integrated solution (shared LNAand joint AGC algorithm). It has superior performance versus  
implementations that need to arbitrate between Bluetooth and WLAN reception.  
The CYW4343W integrated solution enables MAC-layer signaling (firmware) and a greater degree of sharing via an enhanced  
coexistence interface. Information is exchanged between the Bluetooth and WLAN cores without host processor involvement.  
The CYW4343W also supports Transmit Power Control (TPC) on the STA together with standard Bluetooth TPC to limit mutual  
interference and receiver desensitization. Preemption mechanisms are utilized to prevent AP transmissions from colliding with  
Bluetooth frames. Improved channel classification techniques have been implemented in Bluetooth for faster and more accurate  
detection and elimination of interferers (including non-WLAN 2.4 GHz interference).  
The Bluetooth AFH classification is also enhanced by the WLAN core’s channel information.  
8.9 Fast Connection (Interlaced Page and Inquiry Scans)  
The CYW4343W supports page scan and inquiry scan modes that significantly reduce the average inquiry response and connection  
times. These scanning modes are compatible with the Bluetooth version 2.1 page and inquiry procedures.  
Document No. 002-14797 Rev. *I  
Page 30 of 103  
CYW4343W  
9. Microprocessor and Memory Unit for Bluetooth  
The Bluetooth microprocessor core is based on the ARM Cortex-M3 32-bit RISC processor with embedded ICE-RT debug and JTAG  
interface units. It runs software from the link control (LC) layer up to the host controller interface (HCI).  
The ARM core is paired with a memory unit that contains 576 KB of ROM for program storage and boot ROM, and 160 KB of RAM  
for data scratch-pad and patch RAM code. The internal ROM allows for flexibility during power-on reset (POR) to enable the same  
device to be used in various configurations. At power-up, the lower-layer protocol stack is executed from the internal ROM memory.  
External patches may be applied to the ROM-based firmware to provide flexibility for bug fixes or feature additions. These patches  
may be downloaded from the host to the CYW4343W through the UART transports.  
9.1 RAM, ROM, and Patch Memory  
The CYW4343W Bluetooth core has 160 KB of internal RAM which is mapped between general purpose scratch-pad memory and  
patch memory, and 576 KB of ROM used for the lower-layer protocol stack, test mode software, and boot ROM. The patch memory  
is used for bug fixes and feature additions to ROM memory code.  
9.2 Reset  
The CYW4343W has an integrated power-on reset circuit that resets all circuits to a known power-on state. The BT POR circuit is out  
of reset after BT_REG_ON goes high. If BT_REG_ON is low, then the POR circuit is held in reset.  
Document No. 002-14797 Rev. *I  
Page 31 of 103  
CYW4343W  
10. Bluetooth Peripheral Transport Unit  
10.1 PCM Interface  
The CYW4343W supports two independent PCM interfaces that share pins with the I2S interfaces. The PCM interface on the  
CYW4343W can connect to linear PCM codec devices in master or slave mode. In master mode, the CYW4343W generates the  
PCM_CLK and PCM_SYNC signals, and in slave mode, these signals are provided by another master on the PCM interface and are  
inputs to the CYW4343W. The configuration of the PCM interface may be adjusted by the host through the use of vendor-specific HCI  
commands.  
10.1.1 Slot Mapping  
The CYW4343W supports up to three simultaneous full-duplex SCO or eSCO channels through the PCM interface. These three  
channels are time-multiplexed onto the single PCM interface by using a time-slotting scheme where the 8 kHz or 16 kHz audio sample  
interval is divided into as many as 16 slots. The number of slots is dependent on the selected interface rate of 128 kHz, 512 kHz, or  
1024 kHz. The corresponding number of slots for these interface rates is 1, 2, 4, 8, and 16, respectively. Transmit and receive PCM  
data from an SCO channel is always mapped to the same slot. The PCM data output driver tristates its output on unused slots to allow  
other devices to share the same PCM interface signals. The data output driver tristates its output after the falling edge of the PCM  
clock during the last bit of the slot.  
10.1.2 Frame Synchronization  
The CYW4343W supports both short- and long-frame synchronization in both master and slave modes. In short-frame synchronization  
mode, the frame synchronization signal is an active-high pulse at the audio frame rate that is a single-bit period in width and is  
synchronized to the rising edge of the bit clock. The PCM slave looks for a high on the falling edge of the bit clock and expects the  
first bit of the first slot to start at the next rising edge of the clock. In long-frame synchronization mode, the frame synchronization  
signal is again an active-high pulse at the audio frame rate; however, the duration is three bit periods and the pulse starts coincident  
with the first bit of the first slot.  
10.1.3 Data Formatting  
The CYW4343W may be configured to generate and accept several different data formats. For conventional narrowband speech  
mode, the CYW4343W uses 13 of the 16 bits in each PCM frame. The location and order of these 13 bits can be configured to support  
various data formats on the PCM interface. The remaining three bits are ignored on the input and may be filled with 0’s, 1’s, a sign  
bit, or a programmed value on the output. The default format is 13-bit 2’s complement data, left justified, and clocked MSB first.  
10.1.4 Wideband Speech Support  
When the host encodes Wideband Speech (WBS) packets in transparent mode, the encoded packets are transferred over the PCM  
bus for an eSCO voice connection. In this mode, the PCM bus is typically configured in master mode for a 4 kHz sync rate with 16-  
bit samples, resulting in a 64 kbps bit rate. The CYW4343W also supports slave transparent mode using a proprietary rate-matching  
scheme. In SBC-code mode, linear 16-bit data at 16 kHz (256 kbps rate) is transferred over the PCM bus.  
Document No. 002-14797 Rev. *I  
Page 32 of 103  
CYW4343W  
10.1.5 PCM Interface Timing  
Short Frame Sync, Master Mode  
Figure 15. PCM Timing Diagram (Short Frame Sync, Master Mode)  
1
2
3
PCM_BCLK  
4
PCM_SYNC  
PCM_OUT  
8
High Impedance  
7
5
6
PCM_IN  
Table 7. PCM Interface Timing Specifications (Short Frame Sync, Master Mode)  
Ref No. Characteristics  
Minimum  
Typical  
Maximum  
Unit  
MHz  
ns  
1
PCM bit clock frequency  
PCM bit clock low  
PCM bit clock high  
PCM_SYNC delay  
PCM_OUT delay  
PCM_IN setup  
41  
41  
0
12  
2
3
4
5
6
7
ns  
25  
25  
ns  
0
ns  
8
ns  
PCM_IN hold  
8
ns  
Delay from rising edge of PCM_BCLK during last bit period to  
PCM_OUT becoming high impedance  
8
0
25  
ns  
Document No. 002-14797 Rev. *I  
Page 33 of 103  
CYW4343W  
Short Frame Sync, Slave Mode  
Figure 16. PCM Timing Diagram (Short Frame Sync, Slave Mode)  
1
2
3
PCM_BCLK  
4
5
PCM_SYNC  
PCM_OUT  
9
High Impedance  
8
6
7
PCM_IN  
Table 8. PCM Interface Timing Specifications (Short Frame Sync, Slave Mode)  
Ref No. Characteristics  
Minimum Typical Maximum  
Unit  
MHz  
ns  
1
PCM bit clock frequency  
PCM bit clock low  
PCM bit clock high  
PCM_SYNC setup  
PCM_SYNC hold  
PCM_OUT delay  
PCM_IN setup  
41  
41  
8
12  
2
3
4
5
6
7
8
ns  
ns  
8
ns  
0
25  
ns  
8
ns  
PCM_IN hold  
8
ns  
Delay from rising edge of PCM_BCLK during last bit period to  
PCM_OUT becoming high impedance  
9
0
25  
ns  
Document No. 002-14797 Rev. *I  
Page 34 of 103  
CYW4343W  
Long Frame Sync, Master Mode  
Figure 17. PCM Timing Diagram (Long Frame Sync, Master Mode)  
1
2
3
PCM_BCLK  
4
PCM_SYNC  
PCM_OUT  
8
High Impedance  
7
Bit 0  
Bit 0  
Bit 1  
Bit 1  
5
6
PCM_IN  
Table 9. PCM Interface Timing Specifications (Long Frame Sync, Master Mode)  
Ref No. Characteristics  
Minimum  
Typical  
Maximum  
Unit  
MHz  
ns  
1
PCM bit clock frequency  
PCM bit clock low  
PCM bit clock high  
PCM_SYNC delay  
PCM_OUT delay  
PCM_IN setup  
41  
41  
0
12  
2
3
4
5
6
7
ns  
25  
25  
ns  
0
ns  
8
ns  
PCM_IN hold  
8
ns  
Delay from rising edge of PCM_BCLK during last bit period to  
PCM_OUT becoming high impedance  
8
0
25  
ns  
Document No. 002-14797 Rev. *I  
Page 35 of 103  
CYW4343W  
Long Frame Sync, Slave Mode  
Figure 18. PCM Timing Diagram (Long Frame Sync, Slave Mode)  
1
2
3
PCM_BCLK  
4
5
PCM_SYNC  
9
PCM_OUT  
PCM_IN  
Bit 0  
Bit 0  
HIGH IMPEDANCE  
8
Bit 1  
6
7
Bit 1  
Table 10. PCM Interface Timing Specifications (Long Frame Sync, Slave Mode)  
Ref No. Characteristics  
Minimum  
Typical  
Maximum  
Unit  
MHz  
ns  
1
PCM bit clock frequency  
PCM bit clock low  
PCM bit clock high  
PCM_SYNC setup  
PCM_SYNC hold  
PCM_OUT delay  
PCM_IN setup  
41  
41  
8
12  
2
3
4
5
6
7
8
ns  
ns  
8
ns  
0
25  
ns  
8
ns  
PCM_IN hold  
8
ns  
Delay from rising edge of PCM_BCLK during last bit period to  
PCM_OUT becoming high impedance  
9
0
25  
ns  
Document No. 002-14797 Rev. *I  
Page 36 of 103  
CYW4343W  
10.2 UART Interface  
The CYW4343W uses UART for Bluetooth HCI. The UART is a standard 4-wire interface (RX, TX, RTS, and CTS) with adjustable  
baud rates from 9600 bps to 4.0 Mbps. The interface features an automatic baud rate detection capability that returns a baud rate  
selection. Alternatively, the baud rate may be selected through a vendor-specific UART HCI command.  
The UART has a 1040-byte receive FIFO and a 1040-byte transmit FIFO to support EDR. Access to the FIFOs is conducted through  
the Advanced High Performance Bus (AHB) interface through either DMA or the CPU. The UART supports the Bluetooth 4.1 UART  
HCI specification: H4 and H5. The default baud rate is 115.2 Kbaud.  
The UART supports the 3-wire H5 UART transport as described in the Bluetooth specification (Three-wire UART Transport Layer).  
Compared to H4, the H5 UART transport reduces the number of signal lines required by eliminating the CTS and RTS signals.  
The CYW4343W UART can perform XON/XOFF flow control and includes hardware support for the Serial Line Input Protocol (SLIP).  
It can also perform a wake-on activity function. For example, activity on the RX or CTS inputs can wake the chip from a sleep state.  
Normally, the UART baud rate is set by a configuration record downloaded after device reset or by automatic baud rate detection, and  
the host does not need to adjust the baud rate. Support for changing the baud rate during normal HCI UART operation is included  
through a vendor-specific command that allows the host to adjust the contents of the baud rate registers. The CYW4343W UARTs  
operate correctly with the host UART as long as the combined baud rate error of the two devices is within ±2% (see Table 11).  
Table 11. Example of Common Baud Rates  
Desired Rate  
4000000  
3692000  
3000000  
2000000  
1500000  
1444444  
921600  
460800  
230400  
115200  
57600  
Actual Rate  
4000000  
3692308  
3000000  
2000000  
1500000  
1454544  
923077  
461538  
230796  
115385  
57692  
Error (%)  
0.00  
0.01  
0.00  
0.00  
0.00  
0.70  
0.16  
0.16  
0.17  
0.16  
0.16  
0.00  
0.16  
0.00  
0.16  
0.00  
38400  
38400  
28800  
28846  
19200  
19200  
14400  
14423  
9600  
9600  
UART timing is defined in Figure 19 and Table 12.  
Document No. 002-14797 Rev. *I  
Page 37 of 103  
 
CYW4343W  
Figure 19. UART Timing  
UART_CTS_N  
UART_TXD  
1
2
Midpoint of STOP bit  
Midpoint of STOP bit  
UART_RXD  
3
UART_RTS_N  
Table 12. UART Timing Specifications  
Ref No. Characteristics  
Minimum  
Typical  
Maximum  
Unit  
1
Delay time, UART_CTS_N low to UART_TXD valid  
1.5  
Bit periods  
Setup time, UART_CTS_N high before midpoint  
of stop bit  
2
3
0.5  
0.5  
Bit periods  
Bit periods  
Delay time, midpoint of stop bit to UART_RTS_N high  
2
10.3 I S Interface  
The CYW4343W supports an independent I2S digital audio port for high-fidelity Bluetooth audio. The I2S interface supports both  
master and slave modes. The I2S signals are:  
I2S Clock: I2S SCK  
I2S Word Select: I2S WS  
I2S Data Out: I2S SDO  
I2S Data In: I2S SDI  
I2S SCK and I2S WS become outputs in master mode and inputs in slave mode, while I2S SDO is always an output. The channel  
word length is 16 bits and the data is justified so that the MSB of the left-channel data is aligned with the MSB of the I2S bus, per the  
I2S specification. The MSB of each data word is transmitted one bit-clock cycle after the I2S WS transition, synchronous with the falling  
edge of the bit clock. Left-channel data is transmitted when I2S WS is low, and right-channel data is transmitted when I2S WS is high.  
Data bits sent by the CYW4343W are synchronized with the falling edge of I2S_SCK and should be sampled by the receiver on the  
rising edge of I2S_SSCK.  
The clock rate in master mode is either of the following:  
48 kHz x 32 bits per frame = 1.536 MHz  
48 kHz x 50 bits per frame = 2.400 MHz  
The master clock is generated from the input reference clock using an N/M clock divider.  
In slave mode, clock rates up to 3.072 MHz are supported.  
Document No. 002-14797 Rev. *I  
Page 38 of 103  
 
 
CYW4343W  
10.3.1 I2S Timing  
Note: Timing values specified in Table 13 are relative to high and low threshold levels  
Table 13. Timing for I2S Transmitters and Receivers  
Transmitter  
Receiver  
Lower Limit Upper Limit  
Min. Max.  
Lower LImit  
Min. Max.  
Upper Limit  
Min. Max.  
Notes  
Min.  
Max.  
T
T
1
Clock period T  
tr  
r
Master mode: Clock generated by transmitter or receiver.  
0.35T  
0.35T  
0.35T  
0.35T  
2
2
High tHC  
Low tLC  
tr  
tr  
tr  
tr  
Slave mode: Clock accepted by transmitter or receiver.  
0.35T  
0.35T  
0.35T  
0.35T  
3
3
4
High tHC  
tr  
tr  
tr  
Low tLC  
tr  
0.15T  
Rise time tRC  
tr  
Transmitter  
Delay tdtr  
0
0.8T  
5
4
Hold time thtr  
Receiver  
0.2T  
6
6
Setup time tsr  
Hold time thr  
r
0
Note:  
The system clock period T must be greater than Ttr and Tr because both the transmitter and receiver have to be able to handle the  
data transfer rate.  
At all data rates in master mode, the transmitter or receiver generates a clock signal with a fixed mark/space ratio. For this reason,  
tHC and tLC are specified with respect to T.  
In slave mode, the transmitter and receiver need a clock signal with minimum high and low periods so that they can detect the signal.  
As long as the minimum periods are greater than 0.35Tr, any clock that meets the requirements can be used.  
Because the delay (tdtr) and the maximum transmitter speed (defined by Ttr) are related, a fast transmitter driven by a slow clock  
edge can result in tdtr not exceeding tRC, which means thtr becomes zero or negative. Therefore, the transmitter has to guarantee  
that thtr is greater than or equal to zero, as long as the clock rise-time, tRC, does not exceed tRCmax, where tRCmax is not less than  
0.15Ttr.  
To allow data to be clocked out on a falling edge, the delay is specified with respect to the rising edge of the clock signal and T,  
always giving the receiver sufficient setup time.  
The data setup and hold time must not be less than the specified receiver setup and hold time.  
Note: The time periods specified in Figure 20 and Figure 21 are defined by the transmitter speed. The receiver specifications must  
match transmitter performance.  
Document No. 002-14797 Rev. *I  
Page 39 of 103  
 
CYW4343W  
Figure 20. I2S Transmitter Timing  
T
tRC*  
tLC > 0.35T  
tHC > 0.35T  
VH = 2.0V  
VL = 0.8V  
SCK  
thtr > 0  
tdtr < 0.8T  
SD and WS  
T = Clock period  
Ttr = Minimum allowed clock period for transmitter  
T = Ttr  
* tRC is only relevant for transmitters in slave mode.  
Figure 21. I2S Receiver Timing  
T
tLC > 0.35T  
tHC > 0.35  
VH = 2.0V  
VL = 0.8V  
SCK  
tsr > 0.2T  
thr > 0  
SD and WS  
T = Clock period  
Tr = Minimum allowed clock period for transmitter  
T > Tr  
Document No. 002-14797 Rev. *I  
Page 40 of 103  
CYW4343W  
11. CPU and Global Functions  
11.1 WLAN CPU and Memory Subsystem  
The CYW4343W includes an integrated ARM Cortex-M3 processor with internal RAM and ROM. The ARM Cortex-M3 processor is  
a low-power processor that features low gate count, low interrupt latency, and low-cost debugging. It is intended for deeply embedded  
applications that require fast interrupt response features. The processor implements the ARM architecture v7-M with support for the  
Thumb-2 instruction set. ARM Cortex-M3 provides a 30% performance gain over ARM7TDMI.  
At 0.19 µW/MHz, the Cortex-M3 is the most power efficient general purpose microprocessor available, outperforming 8- and 16-bit  
devices on MIPS/µW. It supports integrated sleep modes.  
ARM Cortex-M3 uses multiple technologies to reduce cost through improved memory utilization, reduced pin overhead, and reduced  
silicon area. ARM Cortex-M3 supports independent buses for code and data access (ICode/DCode and system buses). ARM Cortex-  
M3 supports extensive debug features including real-time tracing of program execution.  
On-chip memory for the CPU includes 512 KB SRAM and 640 KB ROM.  
11.2 One-Time Programmable Memory  
Various hardware configuration parameters may be stored in an internal 4096-bit One-Time Programmable (OTP) memory, which is  
read by system software after a device reset. In addition, customer-specific parameters, including the system vendor ID and the MAC  
address, can be stored, depending on the specific board design.  
The initial state of all bits in an unprogrammed OTP device is 0. After any bit is programmed to a 1, it cannot be reprogrammed to 0.  
The entire OTP array can be programmed in a single write cycle using a utility provided with the Broadcom WLAN manufacturing test  
tools. Alternatively, multiple write cycles can be used to selectively program specific bytes, but only bits which are still in the 0 state  
can be altered during each programming cycle.  
Prior to OTP memory programming, all values should be verified using the appropriate editable nvram.txt file, which is provided with  
the reference board design package. Documentation on the OTP development process is available on the Broadcom customer  
support portal (http://www.broadcom.com/support).  
11.3 GPIO Interface  
Five general purpose I/O (GPIO) pins are available on the CYW4343W that can be used to connect to various external devices.  
GPIOs are tristated by default. Subsequently, they can be programmed to be either input or output pins via the GPIO control register.  
They can also be programmed to have internal pull-up or pull-down resistors.  
GPIO_0 is normally used as a WL_HOST_WAKE signal.  
The CYW4343W supports 2-wire, 3-wire, and 4-wire coexistence configurations using GPIO_1 through GPIO_4. The signal functions  
of GPIO_1 through GPIO_4 are programmable to support the three coexistence configurations.  
11.4 External Coexistence Interface  
The CYW4343W supports 2-wire, 3-wire, and 4-wire coexistence interfaces to enable signaling between the device and an external  
colocated wireless device in order to manage wireless medium sharing for optimal performance. The external colocated device can  
be any of the following ICs: GPS, WiMAX, LTE, or UWB. An LTE IC is used in this section for illustration.  
Document No. 002-14797 Rev. *I  
Page 41 of 103  
CYW4343W  
11.4.1 2-Wire Coexistence  
Figure 22 shows a 2-wire LTE coexistence example. The following definitions apply to the GPIOs in the figure:  
GPIO_1: WLAN_SECI_TX output to an LTE IC.  
GPIO_2: WLAN_SECI_RX input from an LTE IC.  
Figure 22. 2-Wire Coexistence Interface to an LTE IC  
GPIO_1  
GPIO_2  
WLAN_SECI_TX  
WLAN_SECI_RX  
UART_IN  
WLAN  
UART_OUT  
Coexistence  
Interface  
BT  
CYW4343W  
LTE/IC  
Notes:  
OR’ing to generate ISM_RX_PRIORITY for ERCX_TXCONF or BT_RX_PRIORITY is achieved by  
setting the GPIO mask registers appropriately.  
WLAN_SECI_OUT and WLAN_SECI_IN are multiplexed on the GPIOs.  
See Figure 19 and Table 12: “UART Timing Specifications” for UART timing.  
11.4.2 3-Wire and 4-Wire Coexistence Interfaces  
Figure 23 and Figure 24 show 3-wire and 4-wire LTE coexistence examples, respectively. The following definitions apply to the GPIOs  
in the figures:  
For the 3-wire coexistence interface:  
GPIO_2: WLAN priority output to an LTE IC.  
GPIO_3: LTE_RX input from an LTE IC.  
GPIO_4: LTE_TX input from an LTE IC.  
For the 4-wire coexistence interface:  
GPIO_1: WLAN priority output to an LTE IC.  
GPIO_2: LTE frame sync input from an LTE IC. This GPIO applies only to the 4-wire coexistence interface.  
GPIO_3: LTE_RX input from an LTE IC.  
GPIO_4: LTE_TX input from an LTE IC.  
Document No. 002-14797 Rev. *I  
Page 42 of 103  
 
CYW4343W  
Figure 23. 3-Wire Coexistence Interface to an LTE IC  
GPIO_2  
W LAN  
W LAN Priority  
GPIO_3  
Coexistence  
Interface  
LTE_RX  
LTE_TX  
GPIO_4  
BT  
CYW4343W  
LTE/IC  
Note: OR’ing to generate W CN_PRIORITY for ERCX_TXCONF or BT_RX_PRIORITY is achieved by  
setting the GPIO mask registers appropriately.  
Figure 24. 4-Wire Coexistence Interface to an LTE IC  
GPIO_1  
WLAN Priority  
WLAN  
GPIO_2  
LTE_Frame_Sync  
Coexistence  
GPIO_3  
Interface  
LTE_RX  
LTE_TX  
GPIO_4  
BT  
CYW4343W  
LTE/IC  
Note: OR’ing to generate WCN_PRIORITY for ERCX_TXCONF or BT_RX_PRIORITY is achieved by  
setting the GPIO mask registers appropriately.  
11.5 JTAG Interface  
The CYW4343W supports the IEEE 1149.1 JTAG boundary scan standard over SDIO for performing device package and PCB  
assembly testing during manufacturing. In addition, the JTAG interface allows Cypress to assist customers by using proprietary debug  
and characterization test tools during board bring-up. Therefore, it is highly recommended to provide access to the JTAG pins by  
means of test points or a header on all PCB designs.  
11.6 UART Interface  
One UART interface can be enabled by software as an alternate function on the JTAG pins. UART_RX is available on the JTAG_TDI  
pin, and UART_TX is available on the JTAG_TDO pin.  
The UART is primarily for debugging during development. By adding an external RS-232 transceiver, this UART enables the  
CYW4343W to operate as RS-232 data termination equipment (DTE) for exchanging and managing data with other serial devices. It  
is compatible with the industry standard 16550 UART, and it provides a FIFO size of 64 × 8 in each direction.  
Document No. 002-14797 Rev. *I  
Page 43 of 103  
CYW4343W  
12. WLAN Software Architecture  
12.1 Host Software Architecture  
The host driver (DHD) provides a transparent connection between the host operating system and the CYW4343W media (for example,  
WLAN) by presenting a network driver interface to the host operating system and communicating with the CYW4343W over a SDIO  
interface-specific bus to:  
Forward transmit and receive frames between the host network stack and the CYW4343W device.  
Pass control requests from the host to the CYW4343W device, returning the CYW4343W device responses.  
The driver communicates with the CYW4343W over the bus using a control channel and a data channel to pass control messages  
and data messages. The actual message format is based on the BDC protocol.  
12.2 Device Software Architecture  
The wireless device, protocol, and bus drivers are run on the embedded ARM processor using a Cypress defined operating system  
called HNDRTE, which transfers data over a propriety Cypress format over the SDIO interface between the host and device (BDC/  
LMAC). The data portion of the format consists of IEEE 802.11 frames wrapped in a Cypress encapsulation. The host architecture  
provides all missing functionality between a network device and the Cypress device interface. The host can also be customized to  
provide functionality between the Cypress device interface and a full network device interface.  
This transfer requires a message-oriented (framed) interconnect between the host and device. The SDIO bus is an addressed bus—  
each host-initiated bus operation contains an explicit device target address—and does not natively support a higher-level data frame  
concept. Broadcom has implemented a hardware/software message encapsulation scheme that ignores the bus operation code  
address and prefixes each frame with a 4-byte length tag for framing. The device presents a packet-level interface over which data,  
control, and asynchronous event (from the device) packets are supported.  
The data and control packets received from the bus are initially processed by the bus driver and then passed on to the protocol driver.  
If the packets are data packets, they are transferred to the wireless device driver (and out through its medium), and a data packet  
received from the device medium follows the same path in the reverse direction. If the packets are control packets, the protocol header  
is decoded by the protocol driver. If the packets are wireless IOCTL packets, the IOCTLAPI of the wireless driver is called to configure  
the wireless device. The microcode running in the D11 core processes all time-critical tasks.  
12.3 Remote Downloader  
When the CYW4343W powers up, the DHD initializes and downloads the firmware to run in the device.  
Figure 25. WLAN Software Architecture  
DHD Host Driver  
SPI  
BDC/LMAC Protocol  
Wireless Device Driver  
D11 Core  
12.4 Wireless Configuration Utility  
The device driver that supports the Cypress IEEE 802.11 family of wireless solutions provides an input/output control (IOCTL) interface  
for making advanced configuration settings. The IOCTL interface makes it possible to make settings that are normally not possible  
when using just the native operating system-specific IEEE 802.11 configuration mechanisms. The utility uses IOCTLs to query or set  
a number of different driver/chip operating properties.  
Document No. 002-14797 Rev. *I  
Page 44 of 103  
 
CYW4343W  
13. Pinout and Signal Descriptions  
13.1 Ball Map  
Figure 26 shows the 74-ball WLBGA ball map. Figure 27 shows the 153-bump WLCSP.  
Figure 26. 74-Ball WLBGA Ball Map (Bottom View)  
A
B
C
D
E
F
G
H
J
K
L
M
BT_UART_ BT_DEV_ BT_HOST_  
BT_VCO_V  
DD  
WLRF_2G_ WLRF_2G_  
WLRF_PA_  
VDD  
FM_RF_IN  
BT_IF_VDD BT_PAVDD  
1
2
3
4
5
6
7
1
2
3
4
5
6
7
RXD  
WAKE  
WAKE  
eLG  
RF  
WLRF_GE  
NERAL_GN  
D
WLRF_VD  
D_  
1P35  
BT_UART_ BT_UART_  
FM_RF_VD BTFM_PLL BTFM_PLL  
WLRF_LNA  
_GND  
WLRF_PA_  
GND  
FM_OUT1 FM_OUT2  
BT_IF_VSS  
TXD  
CTS_N  
D
_VDD  
_VSS  
WLRF_XTA  
L_  
VDD1P2  
BT_I2S_  
WS  
BT_UART_  
VDDC  
FM_RF_VS  
S
BT_VCO_V WLRF_GPI  
WLRF_VC  
O_GND  
BT_I2S_DO  
RTS_N  
SS  
O
BT_I2S_CL BT_PCM_O BT_PCM_I  
UT  
WLRF_AFE  
_GND  
WLRF_XTA WLRF_XTA  
VSSC  
BT_GPIO_3  
VDDC  
GPIO_3  
GPIO_4  
K
N
L_GND  
L_XOP  
BT_PCM_C BT_PCM_S SYS_VDDI  
WLRF_XTA  
L_XON  
WPT_1P8 WPT_3P3  
LPO_IN BT_GPIO_4 BT_GPIO_5  
VSSC  
GPIO_2  
LK  
YNC  
O
PMU_AVS VOUT_CLD VOUT_LNL BT_REG_O WCC_VDDI WL_REG_  
SDIO_DAT  
A_0  
SR_VLX  
GPIO_1  
GPIO_0  
SDIO_CMD CLK_REQ  
S
O
DO  
N
O
ON  
SR_VDDB LDO_VDD1  
LDO_VDD  
BAT5V  
SDIO_DAT SDIO_DAT  
SDIO_DAT  
SDIO_CLK  
A_2  
SR_PVSS  
VOUT_3P3  
AT5V  
P5  
A_1  
A_3  
A
B
C
D
E
F
G
H
J
K
L
M
Document No. 002-14797 Rev. *I  
Page 45 of 103  
 
CYW4343W  
Figure 27. 153-Bump WLCSP (Top View)  
Document No. 002-14797 Rev. *I  
Page 46 of 103  
CYW4343W  
13.2 WLBGA Ball List in Ball Number Order with X-Y Coordinates  
Table 14 provides ball numbers and names in ball number order. The table includes the X and Y coordinates for a top view with a (0,0)  
center.  
Table 14. CYW4343W WLBGA Ball List — Ordered By Ball Number  
Ball Number  
A1  
Ball Name  
BT_UART_RXD  
X Coordinate  
–1200.006  
–799.992  
–399.996  
0
Y Coordinate  
2199.996  
2199.996  
2199.996  
2199.996  
2199.996  
2199.978  
2199.978  
1800  
A2  
A3  
A4  
A5  
A6  
A7  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
D2  
D3  
D4  
D5  
D6  
E1  
E2  
E3  
E5  
E6  
E7  
F1  
F2  
F4  
F5  
BT_UART_TXD  
BT_I2S_WS or BT_PCM_SYNC  
BT_I2S_CLK or BT_PCM_CLK  
BT_PCM_CLK or BT_I2S_CLK  
SR_VLX  
399.996  
799.992  
1199.988  
–1200.006  
–799.992  
–399.996  
0
SR_PVSS  
BT_DEV_WAKE  
BT_UART_CTS_N  
BT_I2S_DO or BT_PCM_OUT  
BT_PCM_OUT or BT_I2S_DO  
BT_PCM_SYNC or BT_I2S_WS  
PMU_AVSS  
1800  
1800  
1800  
399.996  
799.992  
1199.988  
–1200.006  
–799.992  
–399.996  
0
1800  
1799.982  
1799.982  
1399.995  
1399.986  
1399.995  
1399.995  
1399.986  
1399.986  
1399.986  
999.99  
SR_VBAT5V  
BT_HOST_WAKE  
FM_OUT1  
BT_UART_RTS_N  
BT_PCM_IN or BT_I2S_DI  
SYS_VDDIO  
399.996  
799.992  
1199.988  
–799.992  
–399.996  
0
VOUT_CLDO  
LDO_VDD15V  
FM_OUT2  
VDDC  
999.999  
999.999  
999.99  
VSSC  
WPT_1P8  
399.996  
799.992  
–1199.988  
–799.992  
–399.996  
399.996  
799.992  
1199.988  
–1199.988  
–799.992  
0
VOUT_LNLDO  
FM_RF_IN  
999.99  
599.994  
599.994  
599.994  
599.994  
599.994  
599.994  
199.998  
199.998  
199.998  
199.998  
FM_RF_VDD  
FM_RF_VSS  
WPT_3P3  
BT_REG_ON  
VOUT_3P3  
BT_VCO_VDD  
BTFM_PLL_VDD  
BT_GPIO_3  
LPO_IN  
399.996  
Document No. 002-14797 Rev. *I  
Page 47 of 103  
 
CYW4343W  
Table 14. CYW4343W WLBGA Ball List — Ordered By Ball Number (Cont.)  
Ball Number  
F6  
Ball Name  
X Coordinate  
800.001  
1199.988  
–1199.988  
–799.992  
0
Y Coordinate  
WCC_VDDIO  
LDO_VBAT5V  
BT_IF_VDD  
199.998  
199.998  
F7  
G1  
G2  
G4  
G5  
G6  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
J1  
–199.998  
–199.998  
–199.998  
–199.998  
–199.998  
–599.994  
–599.994  
–599.994  
–599.994  
–599.994  
–599.994  
–599.994  
–999.99  
BTFM_PLL_VSS  
VDDC  
BT_GPIO_4  
399.996  
800.001  
–1199.988  
–799.992  
–399.996  
0
WL_REG_ON  
BT_PAVDD  
BT_IF_VSS  
BT_VCO_VSS  
WLRF_AFE_GND  
BT_GPIO_5  
399.996  
800.001  
1200.006  
–1199.988  
–799.992  
–399.996  
399.996  
800.001  
1200.006  
–1199.988  
–799.992  
0
GPIO_1  
SDIO_DATA_1  
WLRF_2G_eLG  
WLRF_LNA_GND  
WLRF_GPIO  
VSSC  
J2  
–999.99  
J3  
–999.99  
J5  
–999.999  
–999.999  
–999.999  
–1399.986  
–1399.986  
–1399.995  
–1399.995  
–1399.995  
–1799.982  
–1799.982  
–1799.982  
–1799.991  
–1799.991  
–1799.991  
–2199.978  
–2199.978  
–2199.978  
–2199.978  
–2199.978  
–2199.996  
J6  
GPIO_0  
J7  
SDIO_DATA_3  
WLRF_2G_RF  
WLRF_GENERAL_GND  
GPIO_3  
K1  
K2  
K4  
K5  
K6  
L2  
GPIO_4  
399.996  
800.001  
–799.992  
–399.996  
0
SDIO_DATA_0  
WLRF_PA_GND  
WLRF_VCO_GND  
WLRF_XTAL_GND  
GPIO_2  
L3  
L4  
L5  
399.996  
800.001  
1200.006  
–1199.988  
–799.992  
–399.996  
0
L6  
SDIO_CMD  
L7  
SDIO_DATA_2  
WLRF_PA_VDD  
WLRF_VDD_1P35  
WLRF_XTAL_VDD1P2  
WLRF_XTAL_XOP  
WLRF_XTAL_XON  
CLK_REQ  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
399.996  
800.001  
SDIO_CLK  
1200.006  
–2199.996  
Document No. 002-14797 Rev. *I  
Page 48 of 103  
CYW4343W  
13.3 WLCSP Bump List in Bump Order with X-Y Coordinates  
Table 15. CYW4343W WLCSP Bump List — Ordered By Bump Number  
Bump View  
(0,0 Center of Die)  
Top View  
(0,0 Center of Die)  
Bump  
Bump Name  
BT_UART_RXD  
Number  
X Coordinate  
Y Coordinate  
2133.594  
2195.919  
2275.020  
2275.020  
2133.594  
2133.594  
1992.168  
1992.168  
1992.168  
1992.168  
1850.742  
1850.742  
1850.742  
1850.742  
1850.742  
1717.578  
1709.316  
1709.316  
1709.316  
1567.890  
1567.890  
1567.890  
1426.464  
1426.464  
1285.038  
1189.863  
860.760  
X Coordinate  
Y Coordinate  
2133.594  
2195.919  
2275.020  
2275.020  
2133.594  
2133.594  
1992.168  
1992.168  
1992.168  
1992.168  
1850.742  
1850.742  
1850.742  
1850.742  
1850.742  
1717.578  
1709.316  
1709.316  
1709.316  
1567.890  
1567.890  
1567.890  
1426.464  
1426.464  
1285.038  
1189.863  
860.760  
1
1228.248  
944.082  
238.266  
–327.438  
662.544  
379.692  
1086.822  
521.118  
–44.586  
–327.438  
1228.248  
945.396  
662.544  
379.692  
–186.012  
516.501  
1086.822  
238.266  
–327.438  
662.544  
96.840  
–1228.248  
–944.082  
–238.266  
327.438  
2
BT_VDDC_ISO_2  
BT_PCM_CLK or BT_I2S_CLK  
BT_TM1  
3
4
5
BT_GPIO_3  
–662.544  
–379.692  
–1086.822  
–521.118  
44.586  
6
BT_DEV_WAKE  
BT_UART_RTS_N  
BT_GPIO_4  
7
8
9
BT_VDDC_ISO_1  
BT_GPIO_5  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
327.438  
BT_HOST_WAKE  
BT_UART_TXD  
BT_GPIO_2  
–1228.248  
–945.396  
–662.544  
–379.692  
186.012  
BT_VDDC  
BT_I2S_CLK or BT_PCM_CLK  
BT_VDDC  
–516.501  
–1086.822  
–238.266  
327.438  
BT_PCM_SYNC or BT_I2S_WS  
BT_I2S_WS or BT_PCM_SYNC  
BT_PCM_OUT or BT_I2S_DO  
BT_PCM_IN or BT_I2S_DI  
VSSC  
–662.544  
–96.840  
BT_UART_CTS_N  
BT_I2S_DI or BT_PCM_IN  
BT_I2S_DO or BT_PCM_OUT  
VSSC  
–186.012  
238.266  
–327.438  
96.840  
186.012  
–238.266  
327.438  
–96.840  
BT_VDDC  
518.391  
238.266  
–44.586  
110.286  
–327.438  
521.118  
238.266  
–44.586  
229.986  
1185.471  
–875.142  
–518.391  
–238.266  
44.586  
VSSC  
BT_VDDC  
719.334  
719.334  
VSSC  
561.303  
–110.286  
327.438  
561.303  
VSSC  
436.482  
436.482  
BT_VDDC  
436.473  
–521.118  
–238.266  
44.586  
436.473  
VSSC  
153.630  
153.630  
VSSC  
153.630  
153.630  
BT_VDDC  
–185.976  
–455.270  
–836.352  
–229.986  
–1185.471  
875.142  
–185.976  
–455.270  
–836.352  
BT_PAVSS  
VSSC  
Document No. 002-14797 Rev. *I  
Page 49 of 103  
CYW4343W  
Table 15. CYW4343W WLCSP Bump List — Ordered By Bump Number (Cont.)  
Bump View  
Top View  
(0,0 Center of Die)  
Bump  
(0,0 Center of Die)  
Bump Name  
Number  
X Coordinate  
Y Coordinate  
1443.096  
1443.096  
1275.098  
1243.098  
1243.098  
1043.100  
960.593  
X Coordinate  
Y Coordinate  
1443.096  
1443.096  
1275.098  
1243.098  
1243.098  
1043.100  
960.593  
37  
FM_DAC_VOUT1  
1243.031  
1043.033  
820.485  
1243.031  
1043.033  
1252.220  
820.485  
1120.383  
1274.787  
1172.988  
972.990  
772.304  
1276.551  
686.628  
886.626  
1185.471  
1185.462  
781.893  
781.893  
429.885  
1185.471  
786.393  
429.885  
583.250  
1262.642  
1082.642  
1206.990  
628.713  
986.531  
451.188  
799.992  
612.878  
986.531  
1249.686  
1069.686  
274.613  
75.519  
–1243.031  
–1043.033  
–820.485  
–1243.031  
–1043.033  
–1252.220  
–820.485  
–1120.383  
–1274.787  
–1172.988  
–972.990  
–772.304  
–1276.551  
–686.628  
–886.626  
–1185.471  
–1185.462  
–781.893  
–781.893  
–429.885  
–1185.471  
–786.393  
–429.885  
–583.250  
–1262.642  
–1082.642  
–1206.990  
–628.713  
–986.531  
–451.188  
–799.992  
–612.878  
–986.531  
–1249.686  
–1069.686  
–274.613  
–75.519  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
FM_DAC_AVSS  
FM_PLLAVSS  
FM_DAC_VOUT2  
FM_DAC_AVDD  
FM_VCOVSS  
FM_PLLDVDD1P2  
FM_VCOVDD1P2  
FM_RFVDD1P2  
FM_RFVSS  
892.373  
892.373  
764.213  
764.213  
563.990  
563.990  
FM_IFVSS  
563.990  
563.990  
FM_IFDVDD1P2  
FM_RFINMAIN  
BT_DVSS  
563.990  
563.990  
383.225  
383.225  
160.911  
160.911  
BT_IFVDD1P2  
148.775  
148.775  
BT_AGPIO  
–55.274  
–55.274  
BT_PAVDD2P5  
BT_LNAVDD1P2  
BT_LNAVSS  
–255.272  
–263.768  
–463.766  
–499.995  
–655.268  
–663.764  
–699.993  
–999.990  
–1006.290  
–1006.290  
–1458.198  
–1590.210  
–1649.615  
–1682.370  
–1729.224  
–1800.135  
–1829.615  
–2016.945  
–2016.945  
–2086.677  
–2106.621  
–2298.978  
–255.272  
–263.768  
–463.766  
–499.995  
–655.268  
–663.764  
–699.993  
–999.990  
–1006.290  
–1006.290  
–1458.198  
–1590.210  
–1649.615  
–1682.370  
–1729.224  
–1800.135  
–1829.615  
–2016.945  
–2016.945  
–2086.677  
–2106.621  
–2298.978  
BT_PLLVSS  
BT_VCOVDD1P2  
BT_VCOVSS  
BT_PLLVDD1P2  
WRF_AFE_GND  
WRF_RFIN_ELG_2G  
WRF_RX2G_GND  
WRF_RFIO_2G  
WRF_GENERAL_GND  
WRF_PA_GND3P3  
WRF_VCO_GND  
WRF_GPAIO_OUT  
WRF_PMU_VDD1P35  
WRF_PA_GND3P3  
WRF_PA_VDD3P3  
WRF_PA_VDD3P3  
WRF_XTAL_GND1P2  
WRF_XTAL_VDD1P2  
WRF_XTAL_XOP  
311.126  
–311.126  
Document No. 002-14797 Rev. *I  
Page 50 of 103  
CYW4343W  
Table 15. CYW4343W WLCSP Bump List — Ordered By Bump Number (Cont.)  
Bump View  
Top View  
(0,0 Center of Die)  
Bump  
(0,0 Center of Die)  
Bump Name  
Number  
X Coordinate  
Y Coordinate  
–2298.978  
2133.594  
2133.594  
1850.742  
1002.186  
436.482  
X Coordinate  
Y Coordinate  
–2298.978  
2133.594  
2133.594  
1850.742  
1002.186  
436.482  
75  
WRF_XTAL_XON  
131.126  
96.840  
–131.126  
–96.840  
186.012  
–96.813  
44.586  
76  
LPO_IN  
77  
WCC_VDDIO  
VSSC  
–186.012  
96.813  
78  
79  
WCC_VDDIO  
GPIO_12  
GPIO_11  
GPIO_9  
–44.586  
80  
–1299.420  
–1157.994  
–1016.568  
–1299.420  
–1157.994  
–186.012  
–468.864  
–1299.420  
–610.290  
–1157.994  
–44.586  
1299.420  
1157.994  
1016.568  
1299.420  
1157.994  
186.012  
468.864  
1299.420  
610.290  
1157.994  
44.586  
81  
295.056  
295.056  
82  
153.630  
153.630  
83  
GPIO_10  
GPIO_8  
153.630  
153.630  
84  
12.204  
12.204  
85  
VSSC  
–129.222  
–129.222  
–129.222  
–270.648  
–270.648  
–412.074  
–412.074  
–553.500  
–553.500  
–553.500  
–694.926  
–694.926  
–694.926  
–836.352  
–977.778  
–977.778  
–1119.204  
–1120.266  
–1260.630  
–1260.630  
–1268.568  
–1402.056  
–1543.482  
–1543.482  
–1551.420  
–1551.420  
–1682.775  
–1684.908  
–129.222  
–129.222  
–129.222  
–270.648  
–270.648  
–412.074  
–412.074  
–553.500  
–553.500  
–553.500  
–694.926  
–694.926  
–694.926  
–836.352  
–977.778  
–977.778  
–1119.204  
–1120.266  
–1260.630  
–1260.630  
–1268.568  
–1402.056  
–1543.482  
–1543.482  
–1551.420  
–1551.420  
–1682.775  
–1684.908  
86  
VDDC  
87  
GPIO_7  
88  
VSSC  
89  
GPIO_6  
90  
VSSC  
91  
GPIO_4  
–1299.420  
96.840  
1299.420  
–96.840  
186.012  
1157.994  
44.586  
92  
VSSC  
93  
VDDC  
–186.012  
–1157.994  
–44.586  
94  
GPIO_5  
95  
VDDC  
96  
WL_VDDP_ISO  
GPIO_2  
–733.716  
–1299.420  
–1157.994  
–1016.568  
–1299.420  
–1157.994  
–720.954  
–1016.568  
–1299.420  
–137.700  
–841.113  
–1016.568  
–1299.420  
109.152  
733.716  
1299.420  
1157.994  
1016.568  
1299.420  
1157.994  
720.954  
1016.568  
1299.420  
137.700  
841.113  
1016.568  
1299.420  
–109.152  
173.700  
843.237  
1157.994  
97  
98  
GPIO_3  
99  
WCC_VDDIO  
GPIO_0  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
GPIO_1  
VSSC  
WCC_VDDIO  
SDIO_CMD  
GPIO_14  
VSSC  
VDDC  
SDIO_CLK  
GPIO_15  
PACKAGEOPTION_0  
VSSC  
–173.700  
–843.237  
–1157.994  
SDIO_DATA_0  
Document No. 002-14797 Rev. *I  
Page 51 of 103  
CYW4343W  
Table 15. CYW4343W WLCSP Bump List — Ordered By Bump Number (Cont.)  
Bump View  
Top View  
(0,0 Center of Die)  
Bump  
(0,0 Center of Die)  
Bump Name  
Number  
X Coordinate  
Y Coordinate  
–1692.846  
–1826.334  
–1826.334  
–1834.272  
–1834.272  
–1967.760  
–2056.131  
–2109.186  
–2109.186  
–2250.612  
2274.984  
2274.984  
2133.563  
2133.563  
2133.563  
1992.141  
1992.141  
1992.141  
1850.720  
1850.720  
1709.298  
1567.877  
1567.877  
1426.455  
1285.034  
1285.034  
1285.034  
1143.612  
1143.612  
1002.191  
1002.191  
1002.191  
860.769  
X Coordinate  
Y Coordinate  
–1692.846  
–1826.334  
–1826.334  
–1834.272  
–1834.272  
–1967.760  
–2056.131  
–2109.186  
–2109.186  
–2250.612  
2274.984  
2274.984  
2133.563  
2133.563  
2133.563  
1992.141  
1992.141  
1992.141  
1850.720  
1850.720  
1709.298  
1567.877  
1567.877  
1426.455  
1285.034  
1285.034  
1285.034  
1143.612  
1143.612  
1002.191  
1002.191  
1002.191  
860.769  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
PACKAGEOPTION_1  
–32.274  
–1016.568  
–1299.420  
109.152  
32.274  
1016.568  
1299.420  
–109.152  
173.700  
1157.994  
232.227  
1016.568  
1299.420  
1157.994  
739.130  
1021.973  
597.708  
880.551  
1163.394  
739.130  
1021.973  
1304.816  
597.708  
880.551  
1021.973  
880.551  
1163.394  
739.130  
597.708  
880.551  
1163.394  
739.130  
1304.816  
597.708  
880.551  
1163.394  
739.130  
1021.973  
1304.816  
597.708  
880.551  
875.142  
VDDC  
SDIO_DATA_1  
PACKAGEOPTION_2  
JTAG_SEL  
–173.700  
–1157.994  
–232.227  
–1016.568  
–1299.420  
–1157.994  
–739.130  
–1021.973  
–597.708  
–880.551  
–1163.394  
–739.130  
–1021.973  
–1304.816  
–597.708  
–880.551  
–1021.973  
–880.551  
–1163.394  
–739.130  
–597.708  
–880.551  
–1163.394  
–739.130  
–1304.816  
–597.708  
–880.551  
–1163.394  
–739.130  
–1021.973  
–1304.816  
–597.708  
–880.551  
–875.142  
SDIO_DATA_2  
GPIO_13  
WCC_VDDIO  
VSSC  
SDIO_DATA_3  
SR_PVSS  
SR_PVSS  
VSSC  
SR_VLX  
SR_VLX  
SR_VLX  
SR_VDDBAT5V  
SR_VDDBAT5V  
PMU_AVSS  
SR_VDDBAT5V  
LDO_VDD1P5  
VOUT_CLDO  
LDO_VDD1P5  
VOUT_CLDO  
WCC_VDDIO  
VOUT_LNLDO  
VOUT_3P3  
SYS_VDDIO  
LDO_VDDBAT5V  
VSSC  
VOUT_3P3_SENSE  
VOUT_3P3  
WPT_1P8  
WPT_3P3  
860.769  
860.769  
LDO_VDDBAT5V  
WL_REG_ON  
BT_REG_ON  
WL_VDDM_ISO  
860.769  
860.769  
719.348  
719.348  
719.348  
719.348  
12.204  
12.204  
Document No. 002-14797 Rev. *I  
Page 52 of 103  
CYW4343W  
Table 15. CYW4343W WLCSP Bump List — Ordered By Bump Number (Cont.)  
Bump View  
Top View  
(0,0 Center of Die)  
Bump  
(0,0 Center of Die)  
Bump Name  
Number  
X Coordinate  
Y Coordinate  
–985.716  
X Coordinate  
Y Coordinate  
-985.716  
151  
152  
153  
PLL_VSSC  
PLL_VDDC  
CLK_REQ  
–116.586  
29.286  
116.586  
–29.286  
–238.266  
–1130.076  
1992.168  
–1130.076  
1992.168  
238.266  
Document No. 002-14797 Rev. *I  
Page 53 of 103  
CYW4343W  
13.4 WLBGA Ball List Ordered By Ball Name  
Table 16 provides the ball numbers and names in ball name order.  
Table 16. CYW4343W WLBGA Ball List — Ordered By Ball Name  
Ball Name  
Ball Number  
Ball Name  
BT_DEV_WAKE  
Ball Number  
LPO_IN  
F5  
B1  
F4  
G5  
H5  
C1  
A4  
B3  
A3  
G1  
H2  
H1  
A5  
C4  
B4  
B5  
E6  
B2  
C3  
A1  
A2  
F1  
H3  
F2  
G2  
M6  
C2  
D2  
E1  
E2  
E3  
J6  
PMU_AVSS  
SDIO_CLK  
SDIO_CMD  
B6  
M7  
L6  
BT_GPIO_3  
BT_GPIO_4  
BT_GPIO_5  
SDIO_DATA_0  
SDIO_DATA_1  
SDIO_DATA_2  
SDIO_DATA_3  
SR_PVSS  
K6  
H7  
L7  
BT_HOST_WAKE  
BT_I2S_CLK or BT_PCM_CLK  
BT_I2S_DO or BT_PCM_OUT  
BT_I2S_WS or BT_PCM_SYNC  
BT_IF_VDD  
J7  
A7  
B7  
A6  
C5  
D3  
G4  
E7  
C6  
D6  
D4  
J5  
SR_VDDBAT5V  
SR_VLX  
BT_IF_VSS  
BT_PAVDD  
SYS_VDDIO  
BT_PCM_CLK or BT_I2S_CLK  
BT_PCM_IN or BT_I2S_DI  
BT_PCM_OUT or BT_I2S_DO  
BT_PCM_SYNC or BT_I2S_WS  
BT_REG_ON  
VDDC  
VDDC  
VOUT_3P3  
VOUT_CLDO  
VOUT_LNLDO  
VSSC  
BT_UART_CTS_N  
BT_UART_RTS_N  
BT_UART_RXD  
BT_UART_TXD  
BT_VCO_VDD  
VSSC  
WCC_VDDIO  
WL_REG_ON  
WLRF_2G_eLG  
WLRF_2G_RF  
WLRF_AFE_GND  
WLRF_GENERAL_GND  
WLRF_GPIO  
WLRF_LNA_GND  
WLRF_PA_GND  
WLRF_PA_VDD  
WLRF_VCO_GND  
WLRF_VDD_1P35  
WLRF_XTAL_GND  
WLRF_XTAL_VDD1P2  
WLRF_XTAL_XON  
WLRF_XTAL_XOP  
WPT_1P8  
F6  
G6  
J1  
BT_VCO_VSS  
K1  
H4  
K2  
J3  
BTFM_PLL_VDD  
BTFM_PLL_VSS  
CLK_REQ  
FM_OUT1  
J2  
FM_OUT2  
L2  
FM_RF_IN  
M1  
L3  
FM_RF_VDD  
FM_RF_VSS  
M2  
L4  
GPIO_0  
GPIO_1  
H6  
L5  
M3  
M5  
M4  
D5  
E5  
GPIO_2  
GPIO_3  
K4  
K5  
C7  
F7  
GPIO_4  
LDO_VDD1P5  
WPT_3P3  
LDO_VDDBAT5V  
Document No. 002-14797 Rev. *I  
Page 54 of 103  
 
CYW4343W  
13.5 WLCSP Bump List Ordered By Name  
Table 17 provides the bump numbers and names in bump name order.  
Table 17. CYW4343W WLCSP Bump List — Ordered By Bump Name  
Bump Name  
FM_IFDVDD1P2  
Bump Number(s)  
Bump Name  
Bump Number(s)  
52  
48  
BT_AGPIO  
FM_IFVSS  
47  
BT_DEV_WAKE  
BT_DVSS  
6
FM_PLLAVSS  
FM_PLLDVDD1P2  
FM_RFINMAIN  
FM_RFVDD1P2  
FM_RFVSS  
FM_VCOVDD1P2  
FM_VCOVSS  
GPIO_0  
39  
50  
43  
BT_GPIO_2  
13  
49  
BT_GPIO_3  
5
45  
BT_GPIO_4  
8
46  
BT_GPIO_5  
10  
44  
BT_HOST_WAKE  
BT_I2S_CLK or BT_PCM_CLK  
BT_I2S_DI or BT_PCM_IN  
BT_I2S_DO or BT_PCM_OUT  
BT_I2S_WS or BT_PCM_SYNC  
BT_IFVDD1P2  
11  
42  
15  
100  
101  
97  
23  
GPIO_1  
24  
GPIO_2  
18  
GPIO_3  
98  
51  
GPIO_4  
91  
BT_LNAVDD1P2  
BT_LNAVSS  
54  
GPIO_5  
94  
55  
GPIO_6  
89  
BT_PAVDD2P5  
53  
GPIO_7  
87  
BT_PAVSS  
35  
GPIO_8  
84  
BT_PCM_CLK or BT_I2S_CLK  
BT_PCM_IN or BT_I2S_DI  
BT_PCM_OUT or BT_I2S_DO  
BT_PCM_SYNC or BT_I2S_WS  
BT_PLLVDD1P2  
BT_PLLVSS  
3
GPIO_9  
82  
20  
GPIO_10  
83  
19  
GPIO_11  
81  
17  
GPIO_12  
80  
59  
GPIO_13  
119  
105  
109  
117  
133, 135  
141, 147  
76  
56  
GPIO_14  
BT_REG_ON  
149  
GPIO_15  
BT_TM1  
4
JTAG_SEL  
LDO_VDD1P5  
LDO_VDDBAT5V  
LPO_IN  
BT_UART_CTS_N  
BT_UART_RTS_N  
BT_UART_RXD  
22  
7
1
BT_UART_TXD  
12  
PACKAGEOPTION_0  
PACKAGEOPTION_1  
PACKAGEOPTION_2  
PLL_VDDC  
PLL_VSSC  
PMU_AVSS  
SDIO_CLK  
SDIO_CMD  
SDIO_DATA_0  
SDIO_DATA_1  
110  
113  
116  
152  
151  
131  
108  
104  
112  
115  
BT_VCOVDD1P2  
BT_VCOVSS  
57  
58  
BT_VDDC  
14, 16, 26, 28, 31, 34  
BT_VDDC_ISO_1  
BT_VDDC_ISO_2  
CLK_REQ  
9
2
153  
41  
38  
37  
40  
FM_DAC_AVDD  
FM_DAC_AVSS  
FM_DAC_VOUT1  
FM_DAC_VOUT2  
Document No. 002-14797 Rev. *I  
Page 55 of 103  
 
CYW4343W  
Bump Name  
SDIO_DATA_2  
Bump Number(s)  
118  
SDIO_DATA_3  
SR_PVSS  
122  
123, 124  
129, 130, 132  
126, 127, 128  
140  
SR_VDDBAT5V  
SR_VLX  
SYS_VDDIO  
VDDC  
86, 93, 95, 107, 114  
139, 144  
143  
VOUT_3P3  
VOUT_3P3_SENSE  
VOUT_CLDO  
VOUT_LNLDO  
134, 136  
138  
21, 25, 27, 29, 30, 32,  
33, 36, 78, 85, 88, 90,  
92, 102, 106, 111, 121,  
125, 142  
VSSC  
77, 79, 99, 103, 120,  
137  
WCC_VDDIO  
WL_REG_ON  
148  
WL_VDDM_ISO  
WL_VDDP_ISO  
150  
96  
WPT_1P8  
145  
WPT_3P3  
146  
WRF_AFE_GND  
WRF_GENERAL_GND  
WRF_GPAIO_OUT  
WRF_PA_GND3P3  
WRF_PMU_VDD1P35  
WRF_RFIN_ELG_2G  
WRF_RFIO_2G  
60  
64  
67  
65, 69, 70, 71  
68  
61  
63  
62  
66  
72  
73  
75  
74  
WRF_RX2G_GND  
WRF_VCO_GND  
WRF_XTAL_GND1P2  
WRF_XTAL_VDD1P2  
WRF_XTAL_XON  
WRF_XTAL_XOP  
Document No. 002-14797 Rev. *I  
Page 56 of 103  
CYW4343W  
13.6 Signal Descriptions  
Table 18 provides the WLBGA package signal descriptions.  
Table 18. WLBGA Signal Descriptions  
Signal Name  
WLBGA Ball Type  
Description  
RF Signal Interface  
WLRF_2G_RF  
K1  
O
2.4 GHz BT and WLAN RF output port  
SDIO Bus Interface  
SDIO clock input  
SDIO_CLK  
M7  
L6  
K6  
H7  
L7  
J7  
I
SDIO_CMD  
I/O  
I/O  
I/O  
I/O  
I/O  
SDIO command line  
SDIO data line 0  
SDIO_DATA_0  
SDIO_DATA_1  
SDIO_DATA_2  
SDIO_DATA_3  
SDIO data line 1.  
SDIO data line 2. Also used as a strapping option (see Table 22).  
SDIO data line 3  
Note: Per Section 6 of the SDIO specification, 10 to 100 kpull-ups are required on the four DATA lines and the CMD line. This  
requirement must be met during all operating states by using external pull-up resistors or properly programming internal SDIO host  
pull-ups.  
WLAN GPIO Interface  
WLRF_GPIO  
J3  
I/O  
Test pin. Not connected in normal operation.  
Clocks  
WLRF_XTAL_XON  
WLRF_XTAL_XOP  
M5  
M4  
O
I
XTAL oscillator output  
XTAL oscillator input  
External system clock request—Used when the system clock is not provided  
by a dedicated crystal (for example, when a shared TCXO is used). Asserted  
to indicate to the host that the clock is required. Shared by BT, and WLAN.  
CLK_REQ  
LPO_IN  
M6  
F5  
O
I
External sleep clock input (32.768 kHz). If an external 32.768 kHz clock  
cannot be provided, pull this pin low. However, BLE will be always on and  
cannot go to deep sleep.  
FM Receiver  
FM_OUT1  
FM_OUT2  
FM_RF_IN  
FM_RF_VDD  
C2  
D2  
E1  
E2  
O
O
I
FM analog output 1  
FM analog output 2  
FM radio antenna port  
FM power supply  
Bluetooth PCM  
I
BT_PCM_CLK or  
BT_I2S_CLK  
2
A5  
C4  
B4  
I/O  
I
PCM or I S clock; can be master (output) or slave (input)  
2
BT_PCM_IN or BT_I2S_DI  
PCM or I S data input sensing  
BT_PCM_OUT or  
BT_I2S_DO  
2
O
PCM or I S data output  
BT_PCM_SYNC or  
BT_I2S_WS  
B5  
I/O  
PCM SYNC or I2S_WS; can be master (output) or slave (input)  
Bluetooth GPIO  
BT_GPIO_3  
BT_GPIO_4  
BT_GPIO_5  
F4  
G5  
H5  
I/O  
I/O  
I/O  
WPT_INTb to wireless charging PMU.  
BSC_SDA to/from wireless charging PMU.  
BSC_SCL from wireless charging PMU.  
Document No. 002-14797 Rev. *I  
Page 57 of 103  
 
CYW4343W  
Table 18. WLBGA Signal Descriptions (Cont.)  
Signal Name  
WLBGA Ball Type  
Bluetooth UART and Wake  
Description  
UART clear-to-send. Active-low clear-to-send signal for the HCI UART  
interface.  
BT_UART_CTS_N  
BT_UART_RTS_N  
B2  
C3  
I
UART request-to-send. Active-low request-to-send signal for the HCI UART  
interface.  
O
BT_UART_RXD  
BT_UART_TXD  
BT_DEV_WAKE  
BT_HOST_WAKE  
A1  
A2  
B1  
C1  
I
UART serial input. Serial data input for the HCI UART interface.  
UART serial output. Serial data output for the HCI UART interface.  
DEV_WAKE or general-purpose I/O signal.  
O
I/O  
I/O  
HOST_WAKE or general-purpose I/O signal.  
Note: By default, the Bluetooth BT WAKE signals provide GPIO/WAKE functionality, and the UART pins provide UART functionality.  
Through software configuration, the PCM interface can also be routed over the BT_WAKE/UART signals as follows:  
PCM_CLK on the UART_RTS_N pin  
PCM_OUT on the UART_CTS_N pin  
PCM_SYNC on the BT_HOST_WAKE pin  
PCM_IN on the BT_DEV_WAKE pin  
In this case, the BT HCI transport included sleep signaling will operate using UART_RXD and UART_TXD; that is, using a 3-Wire  
UART Transport.  
Bluetooth/FM I2S  
BT_I2S_CLK or BT_PC-  
M_CLK  
2
A4  
B3  
A3  
I/O  
I/O  
I/O  
I S or PCM clock; can be master (output) or slave (input)  
BT_I2S_DO or BT_PC-  
M_OUT  
2
I S or PCM data output  
BT_I2S_WS or BT_PC-  
M_SYNC  
2
I S WS or PCM sync; can be master (output) or slave (input)  
Miscellaneous  
Used by PMU to power up or power down the internal regulators used by the  
WLAN section. Also, when deasserted, this pin holds the WLAN section in  
reset. This pin has an internal 200 kpull-down resistor that is enabled by  
default. It can be disabled through programming.  
WL_REG_ON  
BT_REG_ON  
G6  
E6  
I
I
Used by PMU to power up or power down the internal regulators used by the  
Bluetooth/FM section. Also, when deasserted, this pin holds the Bluetooth/  
FM section in reset. This pin has an internal 200 kpull-down resistor that  
is enabled by default. It can be disabled through programming.  
WPT_3P3  
WPT_1P8  
E5  
D5  
N/A  
N/A  
Not used. Do not connect to this pin.  
Not used. Do not connect to this pin.  
Programmable GPIO pins. This pin becomes an output pin when it is used  
as WLAN_HOST_WAKE/out-of-band signal.  
GPIO_0  
J6  
I/O  
GPIO_1  
H6  
L5  
K4  
K5  
J1  
I/O  
I/O  
I/O  
I/O  
I
Programmable GPIO pins  
GPIO_2  
Programmable GPIO pins  
GPIO_3  
Programmable GPIO pins  
GPIO_4  
Programmable GPIO pins  
WLRF_2G_eLG  
Connect to an external inductor. See the reference schematic for details.  
Document No. 002-14797 Rev. *I  
Page 58 of 103  
CYW4343W  
Table 18. WLBGA Signal Descriptions (Cont.)  
Signal Name WLBGA Ball Type  
Integrated Voltage Regulators  
SR VBAT input power supply  
Description  
SR_VDDBAT5V  
B7  
A6  
I
CBUCK switching regulator output. See Table 37 for details of the inductor  
and capacitor required on this output.  
SR_VLX  
O
LDO_VDDBAT5V  
LDO_VDD1P5  
VOUT_LNLDO  
VOUT_CLDO  
F7  
C7  
D6  
C6  
I
LDO VBAT  
I
LNLDO input  
O
O
Output of low-noise LNLDO  
Output of core LDO  
Bluetooth Power Supplies  
Bluetooth PA power supply  
Bluetooth IF block power supply  
Bluetooth RF PLL power supply  
Bluetooth RF power supply  
Power Supplies  
BT_PAVDD  
H1  
G1  
F2  
F1  
I
I
I
I
BT_IF_VDD  
BTFM_PLL_VDD  
BT_VCO_VDD  
WLRF_XTAL_VDD1P2  
WLRF_PA_VDD  
WCC_VDDIO  
SYS_VDDIO  
M3  
I
XTAL oscillator supply  
M1  
I
Power amplifier supply  
F6  
I
VDDIO input supply. Connect to VDDIO.  
VDDIO input supply. Connect to VDDIO.  
LNLDO input supply  
C5  
I
WLRF_VDD_1P35  
VDDC  
M2  
I
D3, G4  
E7  
I
Core supply for WLAN and BT.  
3.3V output supply. See the reference schematic for details.  
Ground  
VOUT_3P3  
O
BT_IF_VSS  
H2  
G2  
H3  
E3  
B6  
A7  
D4, J5  
H4  
J2  
I
I
I
I
I
I
I
I
I
I
I
I
I
1.2V Bluetooth IF block ground  
Bluetooth/FM RF PLL ground  
1.2V Bluetooth RF ground  
FM RF ground  
BTFM_PLL_VSS  
BT_VCO_VSS  
FM_RF_VSS  
PMU_AVSS  
Quiet ground  
SR_PVSS  
Switcher-power ground  
Core ground for WLAN and BT  
AFE ground  
VSSC  
WLRF_AFE_GND  
WLRF_LNA_GND  
WLRF_GENERAL_GND  
WLRF_PA_GND  
WLRF_VCO_GND  
WLRF_XTAL_GND  
2.4 GHz internal LNA ground  
Miscellaneous RF ground  
2.4 GHz PA ground  
K2  
L2  
L3  
VCO/LO generator ground  
XTAL ground  
L4  
Table 19 provides the WLCSP package signal descriptions.  
Document No. 002-14797 Rev. *I  
Page 59 of 103  
CYW4343W  
Table 19. WLCSP Signal Descriptions  
Signal Name  
WLCSP Bump  
Type  
Description or Instruction  
RF Signal Interface  
Connect to an external inductor. See the  
reference schematic for details.  
WRF_RFIN_ELG_2G  
WRF_RFIO_2G  
61  
63  
I
I/O  
2.4 GHz BT and WLAN RF input/output port  
SDIO Bus Interface  
SDIO_CLK  
108  
104  
112  
115  
I
SDIO clock input  
SDIO_CMD  
I/O  
I/O  
I/O  
SDIO command line  
SDIO data line 0  
SDIO data line 1.  
SDIO_DATA_0  
SDIO_DATA_1  
SDIO data line 2. Also used as a strapping option (see  
Table 22).  
SDIO_DATA_2  
SDIO_DATA_3  
118  
122  
I/O  
I/O  
SDIO data line 3  
Note: Per Section 6 of the SDIO specification, 10 to 100 kpull-ups are required on the four DATA lines and the CMD line. This  
requirement must be met during all operating states by using external pull-up resistors or properly programming internal SDIO host  
pull-ups.  
WLAN GPIO Interface  
WRF_GPAIO_OUT  
67  
O
Test pin. Not connected in normal operation.  
Clocks  
WRF_XTAL_XON  
WRF_XTAL_XOP  
75  
74  
O
I
XTAL oscillator output  
XTAL oscillator input  
External system clock request—Used when the system  
clock is not provided by a dedicated crystal (for example,  
when a shared TCXO is used). Asserted to indicate to the  
host that the clock is required. Shared by BT, and WLAN.  
CLK_REQ  
LPO_IN  
153  
76  
O
I
External sleep clock input (32.768 kHz). If an external  
32.768 kHz clock cannot be provided, pull this pin low.  
However, BLE will be always on and cannot go to deep  
sleep.  
FM  
FM_DAC_VOUT1  
FM_DAC_VOUT2  
FM_RFINMAIN  
37  
40  
49  
O
FM DAC output 1  
FM DAC output 2  
FM RF input  
O
I
Bluetooth PCM  
2
BT_PCM_CLK or BT_I2S_CLK  
BT_PCM_IN or BT_I2S_DI  
BT_PCM_OUT or BT_I2S_DO  
3
I/O  
I
PCM or I S clock; can be master (output) or slave (input)  
2
20  
19  
PCM or I S data input sensing  
2
O
PCM or I S data output  
PCM SYNC or I2S WS; can be master (output) or slave  
(input)  
BT_PCMM_SYNC or BT_I2S_WS  
17  
I/O  
Bluetooth GPIO  
BT_AGPIO  
BT_GPIO_2  
BT_GPIO_3  
BT_GPIO_4  
52  
13  
5
I/O  
I/O  
I/O  
I/O  
Bluetooth analog GPIO  
Bluetooth general purpose I/O  
WPT_INTb to wireless charging PMU.  
BSC_SDA to/from wireless charging PMU.  
8
Document No. 002-14797 Rev. *I  
Page 60 of 103  
CYW4343W  
Table 19. WLCSP Signal Descriptions (Cont.)  
Signal Name WLCSP Bump  
Type  
I/O  
I/O  
Description or Instruction  
BT_GPIO_5  
BT_TM1  
10  
4
BSC_SCL from wireless charging PMU  
ARM JTAG mode  
Bluetooth UART and Wake  
UART clear-to-send. Active-low clear-to-send signal for  
the HCI UART interface.  
BT_UART_CTS_N  
BT_UART_RTS_N  
BT_UART_RXD  
BT_UART_TXD  
22  
7
I
UARTrequest-to-send.Active-lowrequest-to-sendsignal  
for the HCI UART interface.  
O
I
UART serial input. Serial data input for the HCI UART  
interface.  
1
UART serial output. Serial data output for the HCI UART  
interface.  
12  
O
DEV_WAKE or general-purpose  
I/O signal  
BT_DEV_WAKE  
BT_HOST_WAKE  
6
I/O  
I/O  
11  
HOST_WAKE or general-purpose I/O signal  
Note: By default, the Bluetooth BT WAKE signals provide GPIO/WAKE functionality, and the UART pins provide UART functionality.  
Through software configuration, the PCM interface can also be routed over the  
BT_WAKE/UART signals as follows:  
PCM_CLK on the UART_RTS_N pin  
PCM_OUT on the UART_CTS_N pin  
PCM_SYNC on the BT_HOST_WAKE pin  
PCM_IN on the BT_DEV_WAKE pin  
In this case, the BT HCI transport included sleep signaling will operate using UART_RXD and UART_TXD; that is, using a 3-Wire  
UART Transport.  
Bluetooth/FM I2S  
2
BT_I2S_CLK or BT_PCM_CLK  
BT_I2S_DI or BT_PCM_IN  
BT_I2S_DO or BT_PCM_OUT  
15  
23  
24  
I/O  
I
I S or PCM clock; can be master (output) or slave (input)  
2
I S or PCM data input  
2
O
I S or PCM data output  
2
I S WS or PCM SYNC; can be master (output) or slave  
(input)  
BT_I2S_WS or BT_PCM_SYNC  
18  
I/O  
Miscellaneous  
Used by PMU to power up or power down the internal  
regulators used by the WLAN section. Also, when  
deasserted, this pin holds the WLAN section in reset. This  
pin has an internal 200 kpull-down resistor that is  
enabled by default. It can be disabled through  
programming.  
WL_REG_ON  
148  
I
I
Used by PMU to power up or power down the internal  
regulators used by the Bluetooth/FM section. Also, when  
deasserted, this pin holds the Bluetooth/FM section in  
reset. This pin has an internal 200 kpull-down resistor  
that is enabled by default. It can be disabled through  
programming.  
BT_REG_ON  
149  
WPT_3P3  
WPT_1P8  
146  
145  
N/A  
N/A  
Not used. Do not connect to this pin.  
Not used. Do not connect to this pin.  
Programmable GPIO pin. This pin becomes an output pin  
when it is used as WLAN_HOST_WAKE/out-of-band  
signal.  
GPIO_0  
100  
I/O  
GPIO_1  
GPIO_2  
101  
97  
I/O  
I/O  
Programmable GPIO pin  
Programmable GPIO pin  
Document No. 002-14797 Rev. *I  
Page 61 of 103  
CYW4343W  
Table 19. WLCSP Signal Descriptions (Cont.)  
Signal Name WLCSP Bump  
Type  
I/O  
Description or Instruction  
Programmable GPIO pin  
GPIO_3  
GPIO_4  
GPIO_5  
GPIO_6  
GPIO_7  
GPIO_8  
GPIO_9  
GPIO_10  
GPIO_11  
GPIO_12  
GPIO_13  
GPIO_14  
GPIO_15  
98  
91  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
Programmable GPIO pin  
VDDIO  
94  
89  
87  
84  
82  
83  
81  
80  
119  
105  
109  
110  
113  
116  
117  
PACKAGEOPTION_0  
PACKAGEOPTION_1  
PACKAGEOPTION_2  
JTAG_SEL  
I
Ground  
I
Ground  
I
JTAG select. Connect to ground.  
Integrated Voltage Regulators  
SR_VDDBAT5V  
SR_VLX  
129, 130, 132  
I
SR VBAT input power supply  
CBUCK switching regulator output. See Table 37 for  
details of the inductor and capacitor required on this  
output.  
126, 127, 128  
O
LDO_VDDBAT5V  
LDO_VDD1P5  
VOUT_LNLDO  
VOUT_CLDO  
141, 147  
133, 135  
138  
I
LDO VBAT  
I
LNLDO input  
O
O
Output of low-noise LDO (LNLDO)  
Output of core LDO  
134, 136  
Bluetooth Power Supplies  
BT_IFVDD1P2  
51  
54  
53  
59  
57  
PWR  
PWR  
PWR  
PWR  
PWR  
Bluetooth IF-block power supply  
BT_LNAVDD1P2  
BT_PAVDD2P5  
BT_PLLVDD1P2  
BT_VCOVDD1P2  
Bluetooth RF LNA power supply  
Bluetooth RF PA power supply  
Bluetooth RF PLL power supply  
Bluetooth RF power supply  
14, 16, 26, 28, 31,  
34  
BT_VDDC  
PWR  
Bluetooth core power supply  
BT_VDDC_ISO_1  
BT_VDDC_ISO_2  
9
2
PWR  
PWR  
Bluetooth core power supply  
Bluetooth core power supply  
Power Supplies  
PWR  
FM_DAC_AVDD  
FM_IFDVDD1P2  
FM_PLLDVDD1P2  
FM_RFVDD1P2  
FM_VCOVDD1P2  
41  
48  
43  
45  
44  
FM DAC power supply  
FM IF power supply  
FM PLL power supply  
FM RF power supply  
FM VCO power supply  
PWR  
PWR  
PWR  
PWR  
Document No. 002-14797 Rev. *I  
Page 62 of 103  
CYW4343W  
Table 19. WLCSP Signal Descriptions (Cont.)  
Signal Name WLCSP Bump  
Type  
PWR  
I
Description or Instruction  
Core PLL power supply  
PLL_VDDC  
152  
140  
SYS_VDDIO  
VDDIO input supply. Connect to VDDIO.  
86, 93, 95, 107,  
114  
VDDC  
I
Core supply for WLAN and BT  
3.3V output supply. See the reference schematic for  
details.  
VOUT_3P3  
139, 144  
143  
O
O
I
VOUT_3P3_SENSE  
WCC_VDDIO  
Voltage sense pin for LDO 3.3V output  
77, 79, 99, 103,  
120, 137  
VDDIO input supply. Connect to VDDIO.  
WL_VDDM_ISO  
150  
96  
I
Test pin. Not connected in normal operation.  
Test pin. Not connected in normal operation.  
XTAL oscillator supply  
WL_VDDP_ISO  
WRF_XTAL_VDD1P2  
WRF_PA_VDD3P3  
WRF_PMU_VDD1P35  
73  
70, 71  
68  
I
Power amplifier supply  
I
LNLDO input supply  
Document No. 002-14797 Rev. *I  
Page 63 of 103  
CYW4343W  
Table 19. WLCSP Signal Descriptions (Cont.)  
Signal Name WLCSP Bump  
Type  
Ground  
Description or Instruction  
BT_DVSS  
50  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I
Bluetooth digital ground  
BT_LNAVSS  
BT_PAVSS  
BT_PLLVSS  
BT_VCOVSS  
55  
Bluetooth LNA ground  
Bluetooth PA ground  
Bluetooth PLL ground  
Bluetooth VCO ground  
FM DAC analog ground  
FM IF-block ground  
FM PLL analog ground  
FM RF ground  
35  
56  
58  
FM_DAC_AVSS  
FM_IFVSS  
38  
47  
FM_PLLAVSS  
FM_RFVSS  
FM_VCOVSS  
PLL_VSSC  
39  
46  
42  
FM VCO ground  
151  
131  
123, 124  
PLL core ground  
PMU_AVSS  
SR_PVSS  
Quiet ground  
I
Switcher-power ground  
21, 25, 27, 29, 30,  
32, 33, 36, 78, 85,  
88, 90, 92, 102,  
106, 111, 121,  
125, 142  
VSSC  
I
Core ground for WLAN and BT  
WRF_AFE_GND  
60  
I
I
I
I
I
I
AFE ground  
WRF_RX2G_GND  
WRF_GENERAL_GND  
WRF_PA_GND3P3  
WRF_VCO_GND  
62  
2.4 GHz internal LNA ground  
Miscellaneous RF ground  
2.4 GHz PA ground  
VCO/LO generator ground  
XTAL ground  
64  
65, 69  
66  
WRF_XTAL_GND1P2  
72  
Document No. 002-14797 Rev. *I  
Page 64 of 103  
CYW4343W  
13.7 WLAN GPIO Signals and Strapping Options  
The pins listed in Table 20 are sampled at power-on reset (POR) to determine the various operating modes. Sampling occurs a few  
milliseconds after an internal POR or deassertion of the external POR. After the POR, each pin assumes the GPIO or alternative  
function specified in the signal descriptions table. Each strapping option pin has an internal pull-up (PU) or pull-down (PD) resistor  
that determines the default mode. To change the mode, connect an external PU resistor to VDDIO or a PD resistor to ground using  
a 10 kresistor or less.  
Note: Refer to the reference board schematics for more information.  
Table 20. GPIO Functions and Strapping Options  
Pin Name  
WLBGA Pin # Default  
L7  
Function  
Description  
WLAN host interface  
select  
This pin selects the WLAN host interface mode. The  
default is SDIO.  
SDIO_DATA_2  
1
13.8 Chip Debug Options  
The chip can be accessed for debugging via the JTAG interface, multiplexed on the SDIO_DATA_0 through SDIO_DATA_3 (and  
SDIO_CLK) I/O or the Bluetooth PCM I/O depending on the bootstrap state of GPIO_1 and GPIO_2.  
Table 21 shows the debug options of the device.  
Table 21. Chip Debug Options  
JTAG_SEL GPIO_2  
BT PCM I/O Pad  
Function  
GPIO_1  
Function  
Normal mode  
SDIO I/O Pad Function  
0
0
0
0
0
0
1
1
0
1
0
1
SDIO  
JTAG  
SDIO  
BT PCM  
JTAG over SDIO  
BT PCM  
JTAG  
JTAG over BT PCM  
SWD over GPIO_1/GPIO_2 SDIO  
BT PCM  
Document No. 002-14797 Rev. *I  
Page 65 of 103  
 
 
CYW4343W  
13.9 I/O States  
The following notations are used in Table 22:  
I: Input signal  
O: Output signal  
I/O: Input/Output signal  
PU = Pulled up  
PD = Pulled down  
NoPull = Neither pulled up nor pulled down  
Table 22. I/O Statesa  
Out-of-Reset;  
Out-of-Reset;  
(WL_REG_ON = 1 (WL_REG_ON = 0  
BT_REG_ON = 0) BT_REG_ON = 1)  
Power-Downc  
LowPowerState/Sleep WL_REG_ON = 0  
(WL_REG_ON = 1;  
BT_REG_ON =  
Do Not Care)  
Keeper  
b
Name  
I/O  
Active Mode  
(All Power Present)  
BT_REG_ON = 0  
VDDIOs Present  
VDDIOs Present  
Power Rail  
WL_REG_ON  
I
N
N
Y
Input; PD (pull-down  
can be disabled)  
Input; PD (pull-down  
can be disabled)  
Input; PD (of 200K)  
Input; PD (200k)  
Input; PD (200k)  
BT_REG_ON  
CLK_REQ  
I
Input; PD (pull down  
can be disabled)  
Input; PD (pull down  
can be disabled)  
Input; PD (of 200K)  
Input; PD (200k)  
Input; PD (200k)  
Input; PD (200k)  
I/O  
Open drain or push-pull Open drain or push-pull PD  
(programmable). Active (programmable). Active  
Open drain,  
active high.  
Open drain,  
active high.  
Open drain,  
active high.  
WCC_VDDIO  
high.  
high  
BT_HOST_  
WAKE  
I/O  
Y
Y
I/O; PU, PD, NoPull  
(programmable)  
I/O; PU, PD, NoPull  
(programmable)  
High-Z, NoPull  
High-Z, NoPull  
Input, PD  
Input, PD  
Output, Drive low  
Input, PD  
WCC_VDDIO  
WCC_VDDIO  
BT_DEV_WAK I/O  
E
I/O; PU, PD, NoPull  
(programmable)  
Input; PU, PD, NoPull  
(programmable)  
BT_UART_CTS  
BT_UART_RTS  
I
O
I
Y
Y
Y
Input; NoPull  
Output; NoPull  
Input; PU  
Input; NoPull  
Output; NoPull  
Input; NoPull  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
Input; PU  
Input; PU  
Input; PU  
Input, NoPull  
Output, NoPull  
Input, NoPull  
WCC_VDDIO  
WCC_VDDIO  
WCC_VDDIO  
BT_UART_RX  
D
BT_UART_TXD  
O
Y
N
Output; NoPull  
Output; NoPull  
High-Z, NoPull  
Input; PU  
Output, NoPull  
Input; PU  
WCC_VDDIO  
WCC_VDDIO  
SDIO_DATA_0 I/O  
SDIO_DATA_1 I/O  
SDIO_DATA_2 I/O  
SDIO_DATA_3 I/O  
SDIO MODE -> NoPull SDIO MODE -> NoPull SDIO MODE ->  
NoPull  
SDIO MODE -> PU  
SDIO MODE ->  
NoPull  
N
N
N
SDIO MODE -> NoPull SDIO MODE -> NoPull SDIO MODE ->  
NoPull  
SDIO MODE -> PU  
SDIO MODE -> PU  
SDIO MODE -> PU  
SDIO MODE ->  
NoPull  
Input; PU  
Input; PU  
Input; PU  
WCC_VDDIO  
WCC_VDDIO  
WCC_VDDIO  
SDIO MODE -> NoPull SDIO MODE -> NoPull SDIO MODE ->  
NoPull  
SDIO MODE ->  
NoPull  
SDIO MODE -> NoPull SDIO MODE -> NoPull SDIO MODE ->  
NoPull  
SDIO MODE ->  
NoPull  
Document No. 002-14797 Rev. *I  
Page 66 of 103  
 
 
CYW4343W  
Table 22. I/O Statesa (Cont.)  
Out-of-Reset;  
Out-of-Reset;  
(WL_REG_ON = 1 (WL_REG_ON = 0  
BT_REG_ON = 0) BT_REG_ON = 1)  
Power-Downc  
LowPowerState/Sleep WL_REG_ON = 0  
(WL_REG_ON = 1;  
BT_REG_ON =  
Do Not Care)  
Keeper  
b
Name  
I/O  
Active Mode  
(All Power Present)  
BT_REG_ON = 0  
VDDIOs Present  
VDDIOs Present  
Power Rail  
SDIO_CMD  
I/O  
N
N
SDIO MODE -> NoPull SDIO MODE -> NoPull SDIO MODE ->  
NoPull  
SDIO MODE -> PU  
SDIO MODE ->  
NoPull  
Input; PU  
WCC_VDDIO  
SDIO_CLK  
I
SDIO MODE -> NoPull SDIO MODE -> NoPull SDIO MODE ->  
NoPull  
SDIO MODE ->  
NoPull  
SDIO MODE ->  
NoPull  
Input  
WCC_VDDIO  
Input; NoPulld  
Input; NoPulld  
Input; NoPulld  
Input; NoPulld  
Input; NoPulld  
Input; NoPulld  
Input; NoPulld  
Input; NoPulld  
BT_PCM_CLK I/O  
BT_PCM_IN I/O  
Y
Y
Y
Y
High-Z, NoPull  
Input, PD  
Input, PD  
Input, PD  
Input, PD  
Input, PD  
Input, PD  
Input, PD  
Input, PD  
WCC_VDDIO  
WCC_VDDIO  
WCC_VDDIO  
WCC_VDDIO  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
BT_PCM_OUT I/O  
BT_PCM_SYN I/O  
C
Input; NoPulle  
Input; NoPulle  
Input; NoPulle  
Input; NoPulle  
BT_I2S_WS  
BT_I2S_CLK  
BT_I2S_DO  
I/O  
I/O  
I/O  
Y
Y
Y
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPull  
High-Z, NoPullf  
Input, PD  
Input, PD  
Input, PD  
PD  
Input, PD  
WCC_VDDIO  
WCC_VDDIO  
WCC_VDDIO  
Output, Drive low  
Input, PD  
Input; NoPulle  
Input; NoPulle  
PD  
JTAG_SEL  
GPIO_0  
I
Y
Y
PD  
Input, PD  
Input, PD  
WCC_VDDIO  
WCC_VDDIO  
I/O  
TBD  
Active mode  
Input, SDIO OOB Int, Active mode  
NoPull  
Input, NoPull  
High-Z, NoPullf  
High-Z, NoPullf  
GPIO_1  
GPIO_2  
I/O  
I/O  
Y
Y
TBD  
TBD  
Active mode  
Active mode  
Input, PD  
Active mode  
Active mode  
Input, Strap, PD  
WCC_VDDIO  
Input, GCI GPIO[7],  
NoPull  
Input, Strap, NoPull WCC_VDDIO  
High-Z, NoPullf  
High-Z, NoPullf  
High-Z, NoPullf  
High-Z, NoPullf  
High-Z, NoPullf  
High-Z, NoPullf  
High-Z, NoPullf  
GPIO_3  
GPIO_4  
GPIO_5  
GPIO_6  
GPIO_7  
GPIO_8  
GPIO_9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Y
Y
N
Y
Y
Y
Y
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Active mode  
Active mode  
Active mode  
Active mode  
Active mode  
Active mode  
Active mode  
Input, GCI GPIO[0],  
PU  
Active mode  
Active mode  
Active mode  
Active mode  
Input, PU  
Input, PU  
Input, PU  
Input, NoPull  
WCC_VDDIO  
WCC_VDDIO  
WCC_VDDIO  
WCC_VDDIO  
WCC_VDDIO  
WCC_VDDIO  
WCC_VDDIO  
Input, GCI GPIO[1],  
PU  
Input, GCI GPIO[2],  
PU  
Input, GCI GPIO[3],  
NoPull  
Output, WLAN UART Active mode  
RTS#, NoPull  
Output, NoPull,  
Low  
Input, WLAN UART  
CTS#, NoPull  
Active mode  
Input, NoPull  
Input, WLAN UART  
RX, NoPull  
Active mode  
Input, NoPull  
Document No. 002-14797 Rev. *I  
Page 67 of 103  
CYW4343W  
Table 22. I/O Statesa (Cont.)  
Out-of-Reset;  
Out-of-Reset;  
(WL_REG_ON = 1 (WL_REG_ON = 0  
BT_REG_ON = 0) BT_REG_ON = 1)  
Power-Downc  
LowPowerState/Sleep WL_REG_ON = 0  
(WL_REG_ON = 1;  
BT_REG_ON =  
Do Not Care)  
Keeper  
b
Name  
I/O  
Active Mode  
(All Power Present)  
BT_REG_ON = 0  
VDDIOs Present  
VDDIOs Present  
Power Rail  
High-Z, NoPullf  
GPIO_10  
I/O  
Y
TBD  
Active mode  
Output, WLAN UART Active mode  
TX, NoPull  
Output, NoPull,  
Low  
WCC_VDDIO  
High-Z, NoPullf  
High-Z, NoPullf  
GPIO_11  
GPIO_12  
I/O  
I/O  
Y
Y
TBD  
TBD  
Active mode  
Active mode  
Input, Low, NoPull  
Active mode  
Active mode  
Input, NoPull  
Input, NoPull  
WCC_VDDIO  
WCC_VDDIO  
Input, GCI GPIO[6],  
NoPull  
High-Z, NoPullf  
GPIO_13  
I/O  
Y
TBD  
Active mode  
Input, GCI GPIO[7],  
NoPull  
Active mode  
Input, NoPull  
WCC_VDDIO  
High-Z, NoPullf  
High-Z, NoPullf  
GPIO_14  
GPIO_15  
I/O  
I/O  
Y
Y
TBD  
TBD  
Active mode  
Active mode  
Input, PD  
Input, PD  
Active mode  
Active mode  
Input, PD  
Input, PD  
WCC_VDDIO  
WCC_VDDIO  
a. PU = pulled up, PD = pulled down.  
b. N = pad has no keeper. Y = pad has a keeper. Keeper is always active except in the power-down state. If there is no keeper, and it is an input and there is NoPull, then the pad should be  
driven to prevent leakage due to floating pad, for example, SDIO_CLK.  
c. In the Power-down state (xx_REG_ON = 0): High-Z; NoPull => The pad is disabled because power is not supplied.  
d. Depending on whether the PCM interface is enabled and the configuration is master or slave mode, it can be either an output or input.  
e. Depending on whether the I2S interface is enabled and the configuration is master or slave mode, it can be either an output or input.  
f. The GPIO pull states for the active and low-power states are hardware defaults. They can all be subsequently programmed as a pull-up or pull-down.  
Document No. 002-14797 Rev. *I  
Page 68 of 103  
CYW4343W  
14. DC Characteristics  
Note: Values in this data sheet are design goals and are subject to change based on the results of device characterization.  
14.1 Absolute Maximum Ratings  
Caution! The absolute maximum ratings in Table 23 indicate levels where permanent damage to the device can occur, even if these  
limits are exceeded for only a brief duration. Functional operation is not guaranteed under these conditions. Excluding VBAT,  
operation at the absolute maximum conditions for extended periods can adversely affect long-term reliability of the device.  
Table 23. Absolute Maximum Ratings  
Rating  
DC supply for VBAT and PA driver supply  
DC supply voltage for digital I/O  
Symbol  
Value  
a
Unit  
VBAT  
–0.5 to +6.0  
–0.5 to 3.9  
–0.5 to 3.9  
V
V
V
V
V
V
V
V
VDDIO  
DC supply voltage for RF switch I/Os  
DC input supply voltage for CLDO and LNLDO  
DC supply voltage for RF analog  
DC supply voltage for core  
VDDIO_RF  
–0.5 to 1.575  
–0.5 to 1.32  
–0.5 to 1.32  
–0.5  
VDDRF  
VDDC  
b
Maximum undershoot voltage for I/O  
V
undershoot  
overshoot  
b
Maximum overshoot voltage for I/O  
V
VDDIO + 0.5  
125  
Maximum junction temperature  
T
°C  
j
a. Continuous operation at 6.0V is supported.  
b. Duration not to exceed 25% of the duty cycle.  
14.2 Environmental Ratings  
The environmental ratings are shown in Table 24.  
Table 24. Environmental Ratings  
Characteristic  
Value  
Units  
Conditions/Comments  
a
Ambient temperature (T )  
–30 to +70°C  
C  
C  
%
Operation  
A
Storage temperature  
–40 to +125°C  
Less than 60  
Less than 85  
Storage  
Relative humidity  
%
Operation  
a. Functionality is guaranteed, but specifications require derating at extreme temperatures (see the specification tables for details).  
Document No. 002-14797 Rev. *I  
Page 69 of 103  
 
 
CYW4343W  
14.3 Electrostatic Discharge Specifications  
Extreme caution must be exercised to prevent electrostatic discharge (ESD) damage. Proper use of wrist and heel grounding straps  
to discharge static electricity is required when handling these devices. Always store unused material in its antistatic packaging.  
Table 25. ESD Specifications  
Pin Type  
Symbol  
Condition  
ESD Rating  
1000  
Unit  
ESD, Handling Reference:  
NQY00083, Section 3.4, Group ESD_HAND_HBM  
D9, Table B  
Human Body Model Contact Discharge per  
JEDEC EID/JESD22-A114  
V
Machine Model (MM)  
ESD_HAND_MM  
Machine Model Contact  
30  
V
V
Charged Device Model Contact Discharge  
per JEDEC EIA/JESD22-C101  
CDM  
ESD_HAND_CDM  
300  
14.4 Recommended Operating Conditions and DC Characteristics  
Functional operation is not guaranteed outside the limits shown in Table 26, and operation outside these limits for extended periods  
can adversely affect long-term reliability of the device.  
Table 26. Recommended Operating Conditions and DC Characteristics  
Value  
Element  
Symbol  
Unit  
Minimum  
Typical  
Maximum  
a
b
DC supply voltage for VBAT  
VBAT  
3.0  
4.8  
V
V
V
DC supply voltage for core  
VDD  
1.14  
1.14  
1.2  
1.26  
1.26  
DC supply voltage for RF blocks in chip  
VDDRF  
1.2  
VDDIO,  
VDDIO_SD  
DC supply voltage for digital I/O  
1.71  
3.63  
V
DC supply voltage for RF switch I/Os  
External TSSI input  
VDDIO_RF  
TSSI  
3.13  
0.15  
0.4  
3.3  
3.46  
0.95  
0.7  
V
V
V
Internal POR threshold  
Vth_POR  
SDIO Interface I/O Pins  
For VDDIO_SD = 1.8V:  
Input high voltage  
VIH  
VIL  
1.27  
V
V
V
V
Input low voltage  
0.58  
Output high voltage @ 2 mA  
Output low voltage @ 2 mA  
For VDDIO_SD = 3.3V:  
Input high voltage  
VOH  
VOL  
1.40  
0.45  
VIH  
0.625 × VDDIO  
V
V
V
V
0.25 ×  
VDDIO  
Input low voltage  
VIL  
Output high voltage @ 2 mA  
Output low voltage @ 2 mA  
VOH  
VOL  
0.75 × VDDIO  
0.125 ×  
VDDIO  
Other Digital I/O Pins  
For VDDIO = 1.8V:  
Input high voltage  
VIH  
VIL  
0.65 × VDDIO  
V
V
0.35 ×  
VDDIO  
Input low voltage  
Output high voltage @ 2 mA  
Output low voltage @ 2 mA  
VOH  
VOL  
VDDIO – 0.45  
V
V
0.45  
Document No. 002-14797 Rev. *I  
Page 70 of 103  
 
 
CYW4343W  
Table 26. Recommended Operating Conditions and DC Characteristics (Cont.)  
Element Symbol  
Value  
Unit  
Minimum  
Typical  
Maximum  
For VDDIO = 3.3V:  
Input high voltage  
Input low voltage  
VIH  
2.00  
V
V
V
V
VIL  
0.80  
Output high voltage @ 2 mA  
Output low Voltage @ 2 mA  
VOH  
VOL  
VDDIO – 0.4  
0.40  
RF Switch Control Output Pinsc  
For VDDIO_RF = 3.3V:  
Output high voltage @ 2 mA  
Output low voltage @ 2 mA  
Input capacitance  
VOH  
VOL  
VDDIO – 0.4  
0.40  
5
V
V
C
pF  
IN  
a. The CYW4343W is functional across this range of voltages. However, optimal RF performance specified in the data sheet is guaranteed only  
for 3.2V < VBAT < 4.8V.  
b. The maximum continuous voltage is 4.8V. Voltages up to 6.0V for up to 10 seconds, cumulative duration over the lifetime of the device are  
allowed. Voltages as high as 5.0V for up to 250 seconds, cumulative duration over the lifetime of the device are allowed.  
c. Programmable 2 mA to 16 mA drive strength. Default is 10 mA.  
Document No. 002-14797 Rev. *I  
Page 71 of 103  
CYW4343W  
15. WLAN RF Specifications  
The CYW4343W includes an integrated direct conversion radio that supports the 2.4 GHz band. This section describes the RF  
characteristics of the 2.4 GHz radio.  
Note: Values in this data sheet are design goals and may change based on device characterization results.  
Unless otherwise stated, the specifications in this section apply when the operating conditions are within the limits specified in  
Table 24: “Environmental Ratings” and Table 26: “Recommended Operating Conditions and DC Characteristics” . Functional  
operation outside these limits is not guaranteed.  
Typical values apply for the following conditions:  
VBAT = 3.6V.  
Ambient temperature +25°C.  
Figure 28. RF Port Location  
Chip  
Port  
C2  
TX  
RX  
Filter  
Antenna  
Port  
10 pF  
CYW4343W  
C1  
L1  
4.7 nH  
10 pF  
Note: All specifications apply at the chip port unless otherwise specified.  
15.1 2.4 GHz Band General RF Specifications  
Table 27. 2.4 GHz Band General RF Specifications  
Item  
Condition  
Including TX ramp down  
Including TX ramp up  
Minimum  
Typical  
Maximum  
Unit  
µs  
TX/RX switch time  
RX/TX switch time  
5
2
µs  
Document No. 002-14797 Rev. *I  
Page 72 of 103  
 
CYW4343W  
15.2 WLAN 2.4 GHz Receiver Performance Specifications  
Note: Unless otherwise specified, the specifications in Table 28 are measured at the chip port (for the location of the chip port, see  
Figure 28).  
Table 28. WLAN 2.4 GHz Receiver Performance Specifications  
Parameter  
Frequency range  
Condition/Notes  
Minimum  
2400  
Typical  
Maximum Unit  
2500  
MHz  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
1 Mbps DSSS  
2 Mbps DSSS  
5.5 Mbps DSSS  
11 Mbps DSSS  
6 Mbps OFDM  
9 Mbps OFDM  
12 Mbps OFDM  
18 Mbps OFDM  
24 Mbps OFDM  
36 Mbps OFDM  
48 Mbps OFDM  
54 Mbps OFDM  
–97.5  
–93.5  
–91.5  
–88.5  
–91.5  
–90.5  
–87.5  
–85.5  
–82.5  
–80.5  
–76.5  
–75.5  
–99.5  
–95.5  
–93.5  
–90.5  
–93.5  
–92.5  
–89.5  
–87.5  
–84.5  
–82.5  
–78.5  
–77.5  
RX sensitivity (8% PER for 1024  
a
octet PSDU)  
RX sensitivity (10% PER for 1000  
octet PSDU) at WLAN RF port  
a
20 MHz channel spacing for all MCS rates (Mixed mode)  
256-QAM, R = 5/6  
256-QAM, R = 3/4  
MCS7  
–67.5  
–69.5  
–71.5  
–73.5  
–74.5  
–79.5  
–82.5  
–84.5  
–86.5  
–90.5  
–69.5  
–71.5  
–73.5  
–75.5  
–76.5  
–81.5  
–84.5  
–86.5  
–88.5  
–92.5  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
RX sensitivity  
MCS6  
(10% PER for 4096 octet PSDU).  
Defined for default parameters:  
Mixed mode, 800 ns GI.  
MCS5  
MCS4  
MCS3  
MCS2  
MCS1  
MCS0  
Document No. 002-14797 Rev. *I  
Page 73 of 103  
 
 
CYW4343W  
Table 28. WLAN 2.4 GHz Receiver Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
Minimum  
Typical  
–13  
Maximum Unit  
704–716 MHz  
LTE  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
777–787 MHz  
776–794 MHz  
815–830 MHz  
816–824 MHz  
816–849 MHz  
824–849 MHz  
824–849 MHz  
824–849 MHz  
824–849 MHz  
830–845 MHz  
832–862 MHz  
880–915 MHz  
880–915 MHz  
880–915 MHz  
1710–1755 MHz  
1710–1755 MHz  
1710–1755 MHz  
1710–1785 MHz  
1710–1785 MHz  
1710–1785 MHz  
1850–1910 MHz  
1850–1910 MHz  
1850–1910 MHz  
1850–1910 MHz  
1850–1915 MHz  
1920–1980 MHz  
1920–1980 MHz  
1920–1980 MHz  
2300–2400 MHz  
2500–2570 MHz  
2570–2620 MHz  
5G  
LTE  
–13  
CDMA2000  
LTE  
–13.5  
–12.5  
–13.5  
–11.5  
–11.5  
–12.5  
–11.5  
–8  
CDMA2000  
LTE  
WCDMA  
CDMA2000  
LTE  
GSM850  
LTE  
–11.5  
–11.5  
–10  
LTE  
WCDMA  
LTE  
–12  
E-GSM  
WCDMA  
LTE  
–9  
–13  
Blocking level for 3 dB RX sensitivity  
degradation (without external  
filtering).  
–14.5  
–14.5  
–13  
b
CDMA2000  
WCDMA  
LTE  
–14.5  
–12.5  
–11.5  
–16  
GSM1800  
GSM1900  
CDMA2000  
WCDMA  
LTE  
–13.5  
–16  
LTE  
–17  
WCDMA  
CDMA2000  
LTE  
–17.5  
–19.5  
–19.5  
–44  
LTE  
LTE  
–43  
LTE  
–34  
WLAN  
>–4  
@ 1, 2 Mbps (8% PER, 1024 octets)  
@ 5.5, 11 Mbps (8% PER, 1024 octets)  
@ 6–54 Mbps (10% PER, 1000 octets)  
–6  
–12  
–15.5  
Maximum receive level  
@ 2.4 GHz  
Document No. 002-14797 Rev. *I  
Page 74 of 103  
CYW4343W  
Table 28. WLAN 2.4 GHz Receiver Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
Minimum  
Typical  
Maximum Unit  
Adjacent channel rejection-DSSS.  
(Difference between interfering and  
desired signal [25 MHz apart] at 8%  
PER for 1024 octet PSDU with  
desired signal level as specified in  
Condition/Notes.)  
11 Mbps DSSS  
–70 dBm  
35  
dB  
6 Mbps OFDM  
9 Mbps OFDM  
12 Mbps OFDM  
–79 dBm  
–78 dBm  
–76 dBm  
–74 dBm  
–71 dBm  
–67 dBm  
–63 dBm  
–62 dBm  
–61 dBm  
16  
15  
13  
11  
8
3
5
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Adjacent channel rejection-OFDM.  
(Difference between interfering and 18 Mbps OFDM  
desired signal (25 MHz apart) at 10%  
24 Mbps OFDM  
36 Mbps OFDM  
48 Mbps OFDM  
54 Mbps OFDM  
65 Mbps OFDM  
c
PER for 1000 octet PSDU with  
desired signal level as specified in  
Condition/Notes.)  
4
0
–1  
–2  
–3  
–5  
10  
Range –98 dBm to –75 dBm  
Range above –75 dBm  
d
RCPI accuracy  
Return loss  
Zo = 50across the dynamic range.  
a. Optimal RF performance, as specified in this data sheet, is guaranteed only for temperatures between –10°C and 55°C.  
b. The cellular standard listed for each band indicates the type of modulation used to generate the interfering signal in that band for the purpose  
of this test. It is not intended to indicate any specific usage of each band in any specific country.  
c. For 65 Mbps, the size is 4096.  
d. The minimum and maximum values shown have a 95% confidence level.  
Document No. 002-14797 Rev. *I  
Page 75 of 103  
CYW4343W  
15.3 WLAN 2.4 GHz Transmitter Performance Specifications  
Note: Unless otherwise specified, the specifications in Table 28 are measured at the chip port (for the location of the chip port, see  
Figure 28).  
Table 29. WLAN 2.4 GHz Transmitter Performance Specifications  
Parameter  
Condition/Notes  
Minimum Typical Maximum  
Unit  
Frequency range  
MHz  
776–794 MHz  
CDMA2000  
–167.5  
–163.5  
–154.5  
–152.5  
–149.5  
–145.5  
–143.5  
–140.5  
–138.5  
–139  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
869–960 MHz  
CDMAOne, GSM850  
DAB  
1450–1495 MHz  
1570–1580 MHz  
1592–1610 MHz  
1710–1800 MHz  
1805–1880 MHz  
1850–1910 MHz  
1910–1930 MHz  
1930–1990 MHz  
2010–2075 MHz  
2110–2170 MHz  
2305–2370 MHz  
2370–2400 MHz  
2496–2530 MHz  
2530–2560 MHz  
2570–2690 MHz  
5000–5900 MHz  
GPS  
GLONASS  
DSC-1800-Uplink  
GSM1800  
GSM1900  
Transmitted power in cellular  
and WLAN 5G bands (at 21  
dBm, 90% duty cycle,  
TDSCDMA, LTE  
GSM1900, CDMAOne, WCDMA  
TDSCDMA  
a
1 Mbps CCK).  
–127.5  
–124.5  
–104.5  
–81.5  
WCDMA  
LTE Band 40  
LTE Band 40  
LTE Band 41  
LTE Band 41  
LTE Band 41  
WLAN 5G  
–94.5  
–120.5  
–121.5  
–109.5  
dBm/  
MHz  
4.8–5.0 GHz  
2nd harmonic  
3rd harmonic  
–26.5  
–23.5  
–32.5  
Harmonic level (at 21 dBm  
dBm/  
MHz  
with 90% duty cycle, 1 Mbps 7.2–7.5 GHz  
CCK)  
dBm/  
MHz  
9.6–10 GHz  
4th harmonic  
EVM Does Not Exceed  
–9 dB  
IEEE 802.11b  
(DSSS/CCK)  
21  
dBm  
OFDM, BPSK  
–8 dB  
20.5  
20.5  
20.5  
dBm  
dBm  
dBm  
TX power at the chip port for  
OFDM, QPSK  
–13 dB  
–19 dB  
the highest power level  
setting at 25°C, VBA = 3.6V,  
OFDM, 16-QAM  
and spectral mask and EVM  
OFDM, 64-QAM  
b, c  
compliance  
(R = 3/4)  
–25 dB  
–27 dB  
–32 dB  
18  
17.5  
15  
dBm  
dBm  
dBm  
dB  
OFDM, 64-QAM  
(R = 5/6)  
OFDM, 256-QAM  
(R = 5/6)  
TX power control  
9
dynamic range  
Document No. 002-14797 Rev. *I  
Page 76 of 103  
 
CYW4343W  
Table 29. WLAN 2.4 GHz Transmitter Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
Minimum Typical Maximum  
Unit  
Closed loop TX power  
variation at highest power  
level setting  
Across full temperature and voltage range. Applies  
across 5 to 21 dBm output power range.  
±1.5  
dB  
Carrier suppression  
Gain control step  
Return loss  
15  
0.25  
6
dBc  
dB  
Zo = 50  
4
dB  
EVM degradation  
3.5  
±2  
15  
4
dB  
VSWR = 2:1.  
VSWR = 3:1.  
Output power variation  
ACPR-compliant power level  
EVM degradation  
dB  
Load pull variation for output  
power, EVM, and Adjacent  
Channel Power Ratio  
(ACPR)  
dBm  
dB  
Output power variation  
ACPR-compliant power level  
±3  
15  
dB  
dBm  
a. The cellular standards listed indicate only typical usages of that band in some countries. Other standards may also be used within those  
bands.  
b. TX power for channel 1 and channel 11 is specified separately by nonvolatile memory parameters to ensure band-edge compliance.  
c. Optimal RF performance, as specified in this data sheet, is guaranteed only for temperatures between –10°C and 55°C.  
15.4 General Spurious Emissions Specifications  
Table 30. General Spurious Emissions Specifications  
Parameter  
Condition/Notes  
Minimum  
2400  
General Spurious Emissions  
Typical  
Maximum  
2500  
Unit  
Frequency range  
MHz  
30 MHz < f < 1 GHz  
RBW = 100 kHz  
RBW = 1 MHz  
RBW = 1 MHz  
RBW = 1 MHz  
RBW = 100 kHz  
RBW = 1 MHz  
RBW = 1 MHz  
RBW = 1 MHz  
–99  
–44  
–68  
–88  
–99  
–54  
–88  
–88  
–96  
–41  
–65  
–85  
–96  
–51  
–85  
–85  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
1 GHz < f < 12.75 GHz  
1.8 GHz < f < 1.9 GHz  
5.15 GHz < f < 5.3 GHz  
30 MHz < f < 1 GHz  
TX emissions  
1 GHz < f < 12.75 GHz  
1.8 GHz < f < 1.9 GHz  
5.15 GHz < f < 5.3 GHz  
RX/standby  
emissions  
Note: The specifications in this table apply at the chip port.  
Document No. 002-14797 Rev. *I  
Page 77 of 103  
CYW4343W  
16. Bluetooth RF Specifications  
Note: Values in this data sheet are design goals and are subject to change based on the results of device characterization.  
Unless otherwise stated, limit values apply for the conditions specified in Table 24: “Environmental Ratings” and  
Table 26: “Recommended Operating Conditions and DC Characteristics” . Typical values apply for the following conditions:  
VBAT = 3.6V.  
Ambient temperature +25°C.  
Note: All Bluetooth specifications apply at the chip port. For the location of the chip port, see Figure 28: “RF Port Location,” on page  
71.  
Table 31. Bluetooth Receiver RF Specifications  
Parameter  
Conditions  
Minimum  
Typical  
Maximum  
Unit  
Note: The specifications in this table are measured at the chip output port unless otherwise specified.  
General  
Frequency range  
RX sensitivity  
2402  
2480  
MHz  
dBm  
GFSK, 0.1% BER, 1 Mbps  
–94  
/4–DQPSK, 0.01% BER,  
2 Mbps  
–96  
dBm  
8–DPSK, 0.01% BER, 3 Mbps  
–16  
–90  
dBm  
dBm  
dBm  
Input IP3  
Maximum input at antenna  
–20  
Interference Performancea  
C/I co-channel  
GFSK, 0.1% BER  
GFSK, 0.1% BER  
GFSK, 0.1% BER  
GFSK, 0.1% BER  
GFSK, 0.1% BER  
11  
0.0  
–30  
–40  
–9  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
C/I 1 MHz adjacent channel  
C/I 2 MHz adjacent channel  
C/I 3 MHz adjacent channel  
C/I image channel  
C/I 1 MHz adjacent to image channel GFSK, 0.1% BER  
–20  
13  
C/I co-channel  
/4–DQPSK, 0.1% BER  
C/I 1 MHz adjacent channel  
C/I 2 MHz adjacent channel  
C/I 3 MHz adjacent channel  
C/I image channel  
/4–DQPSK, 0.1% BER  
/4–DQPSK, 0.1% BER  
/4–DQPSK, 0.1% BER  
/4–DQPSK, 0.1% BER  
0.0  
–30  
–40  
–7  
C/I 1 MHz adjacent to image channel /4–DQPSK, 0.1% BER  
–20  
21  
C/I co-channel  
8–DPSK, 0.1% BER  
8–DPSK, 0.1% BER  
8–DPSK, 0.1% BER  
8–DPSK, 0.1% BER  
8–DPSK, 0.1% BER  
C/I 1 MHz adjacent channel  
C/I 2 MHz adjacent channel  
C/I 3 MHz adjacent channel  
C/I Image channel  
5.0  
–25  
–33  
0.0  
–13  
C/I 1 MHz adjacent to image channel 8–DPSK, 0.1% BER  
Out-of-Band Blocking Performance (CW)  
30–2000 MHz  
0.1% BER  
–10.0  
–27  
dBm  
dBm  
dBm  
2000–2399 MHz  
2498–3000 MHz  
0.1% BER  
0.1% BER  
–27  
Document No. 002-14797 Rev. *I  
Page 78 of 103  
CYW4343W  
Table 31. Bluetooth Receiver RF Specifications (Cont.)  
Parameter  
Conditions  
0.1% BER  
Minimum  
Typical  
Maximum  
Unit  
3000 MHz–12.75 GHz  
–10.0  
dBm  
Out-of-Band Blocking Performance, Modulated Interferer (LTE)  
GFSK (1 Mbps)  
2310 MHz  
2330 MHz  
2350 MHz  
2370 MHz  
2510 MHz  
2530 MHz  
2550 MHz  
2570 MHz  
LTE band40 TDD 20M BW  
LTE band40 TDD 20M BW  
LTE band40 TDD 20M BW  
LTE band40 TDD 20M BW  
LTE band7 FDD 20M BW  
LTE band7 FDD 20M BW  
LTE band7 FDD 20M BW  
LTE band7 FDD 20M BW  
–20  
–19  
–20  
–24  
–24  
–21  
–21  
–20  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
/4 DPSK (2 Mbps)  
2310 MHz  
2330 MHz  
2350 MHz  
2370 MHz  
2510 MHz  
2530 MHz  
2550 MHz  
2570 MHz  
LTE band40 TDD 20M BW  
LTE band40 TDD 20M BW  
LTE band40 TDD 20M BW  
LTE band40 TDD 20M BW  
LTE band7 FDD 20M BW  
LTE band7 FDD 20M BW  
LTE band7 FDD 20M BW  
LTE band7 FDD 20M BW  
–20  
–19  
–20  
–24  
–24  
–20  
–20  
–20  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
8DPSK (3 Mbps)  
2310 MHz  
2330 MHz  
2350 MHz  
2370 MHz  
2510 MHz  
2530 MHz  
2550 MHz  
2570 MHz  
LTE band40 TDD 20M BW  
LTE band40 TDD 20M BW  
LTE band40 TDD 20M BW  
LTE band40 TDD 20M BW  
LTE band7 FDD 20M BW  
LTE band7 FDD 20M BW  
LTE band7 FDD 20M BW  
LTE band7 FDD 20M BW  
–20  
–19  
–20  
–24  
–24  
–21  
–20  
–20  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
Out-of-Band Blocking Performance, Modulated Interferer (Non-LTE)  
a
GFSK (1 Mbps)  
698–716 MHz  
776–849 MHz  
824–849 MHz  
824–849 MHz  
880–915 MHz  
880–915 MHz  
1710–1785 MHz  
WCDMA  
WCDMA  
GSM850  
WCDMA  
E-GSM  
–12  
–12  
–12  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
–11  
WCDMA  
GSM1800  
Document No. 002-14797 Rev. *I  
Page 79 of 103  
CYW4343W  
Table 31. Bluetooth Receiver RF Specifications (Cont.)  
Parameter Conditions  
1710–1785 MHz  
Minimum  
Typical  
Maximum  
Unit  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
WCDMA  
GSM1900  
WCDMA  
1850–1910 MHz  
1850–1910 MHz  
1880–1920 MHz  
1920–1980 MHz  
2010–2025 MHz  
2500–2570 MHz  
–17  
–18  
–18  
–18  
–21  
TD-SCDMA  
WCDMA  
TD–SCDMA  
WCDMA  
a
/4 DPSK (2 Mbps)  
698–716 MHz  
WCDMA  
WCDMA  
GSM850  
WCDMA  
E-GSM  
–8  
–8  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
776–794 MHz  
824–849 MHz  
–9  
824–849 MHz  
–9  
880–915 MHz  
–8  
880–915 MHz  
WCDMA  
GSM1800  
WCDMA  
GSM1900  
WCDMA  
TD-SCDMA  
WCDMA  
TD-SCDMA  
WCDMA  
–8  
1710–1785 MHz  
1710–1785 MHz  
1850–1910 MHz  
1850–1910 MHz  
1880–1920 MHz  
1920–1980 MHz  
2010–2025 MHz  
2500–2570 MHz  
–14  
–14  
–15  
–14  
–16  
–15  
–17  
–21  
a
8DPSK (3 Mbps)  
698–716 MHz  
WCDMA  
WCDMA  
GSM850  
WCDMA  
E-GSM  
–11  
–11  
–11  
–12  
–11  
–11  
–16  
–15  
–17  
–17  
–17  
–17  
–18  
–21  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
776–794 MHz  
824–849 MHz  
824–849 MHz  
880–915 MHz  
880–915 MHz  
WCDMA  
GSM1800  
WCDMA  
GSM1900  
WCDMA  
TD-SCDMA  
WCDMA  
TD-SCDMA  
WCDMA  
1710–1785 MHz  
1710–1785 MHz  
1850–1910 MHz  
1850–1910 MHz  
1880–1920 MHz  
1920–1980 MHz  
2010–2025 MHz  
2500–2570 MHz  
RX LO Leakage  
2.4 GHz band  
–90.0  
–80.0  
dBm  
Document No. 002-14797 Rev. *I  
Page 80 of 103  
CYW4343W  
Table 31. Bluetooth Receiver RF Specifications (Cont.)  
Parameter Conditions  
Spurious Emissions  
Minimum  
Typical  
Maximum  
Unit  
30 MHz–1 GHz  
–95  
–70  
–62  
–47  
dBm  
1–12.75 GHz  
dBm  
869–894 MHz  
925–960 MHz  
1805–1880 MHz  
1930–1990 MHz  
2110–2170 MHz  
–147  
–147  
–147  
–147  
–147  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
a. The Bluetooth reference level for the required signal at the Bluetooth chip port is 3 dB higher than the typical sensitivity level.  
Table 32. LTE Specifications for Spurious Emissions  
Parameter  
Conditions  
Typical  
–147  
Unit  
2500–2570 MHz  
2300–2400 MHz  
2570–2620 MHz  
2545–2575 MHz  
Band 7  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
Band 40  
Band 38  
XGP Band  
–147  
–147  
–147  
Document No. 002-14797 Rev. *I  
Page 81 of 103  
CYW4343W  
Table 33. Bluetooth Transmitter RF Specificationsa  
Parameter Conditions  
General  
Minimum  
Typical  
Maximum  
Unit  
Frequency range  
2402  
12.0  
8.0  
8.0  
4
2480  
MHz  
dBm  
dBm  
dBm  
dB  
Basic rate (GFSK) TX power at Bluetooth  
QPSK TX power at Bluetooth  
2
8
8PSK TX power at Bluetooth  
Power control step  
–20 dBc BW  
GFSK In-Band Spurious Emissions  
EDR In-Band Spurious Emissions  
0.93  
1
MHz  
1.0 MHz < |M – N| < 1.5 MHz  
1.5 MHz < |M – N| < 2.5 MHz  
M – N = the frequency range for which  
the spurious emission is measured  
relative to the transmit center  
frequency.  
–38  
–31  
–43  
–26.0  
–20.0  
–40.0  
dBc  
dBm  
dBm  
b
|M – N| 2.5 MHz  
Out-of-Band Spurious Emissions  
c,d  
30 MHz to 1 GHz  
–36.0  
–30.0  
dBm  
dBm  
dBm  
dBm  
d,e,f  
1 GHz to 12.75 GHz  
1.8 GHz to 1.9 GHz  
5.15 GHz to 5.3 GHz  
–47.0  
–47.0  
GPS Band Spurious Emissions  
Spurious emissions  
–103  
dBm  
Out-of-Band Noise Floorg  
65–108 MHz  
FM RX  
–147  
–146  
–146  
–146  
–146  
–144  
–143  
–137  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
776–794 MHz  
869–960 MHz  
925–960 MHz  
1570–1580 MHz  
1805–1880 MHz  
1930–1990 MHz  
2110–2170 MHz  
CDMA2000  
cdmaOne, GSM850  
E-GSM  
GPS  
GSM1800  
GSM1900, cdmaOne, WCDMA  
WCDMA  
a. Unless otherwise specified, the specifications in this table apply at the chip output port, and output power specifications are with the temperature  
correction algorithm and TSSI enabled.  
b. Typically measured at an offset of ±3 MHz.  
c. The maximum value represents the value required for Bluetooth qualification as defined in the v4.1 specification.  
d. The spurious emissions during Idle mode are the same as specified in Table 33.  
e. Specified at the Bluetooth antenna port.  
f. Meets this specification using a front-end band-pass filter.  
g. Transmitted power in cellular and FM bands at the Bluetooth antenna port. See Figure 28 for location of the port.  
Document No. 002-14797 Rev. *I  
Page 82 of 103  
 
CYW4343W  
Table 34. LTE Specifications for Out-of-Band Noise Floor  
Parameter  
Conditions  
Typical  
–130  
Unit  
2500–2570 MHz  
2300–2400 MHz  
2570–2620 MHz  
2545–2575 MHz  
Band 7  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
Band 40  
Band 38  
XGP Band  
–130  
–130  
–130  
Table 35. Local Oscillator Performance  
Parameter  
Minimum  
Typical  
Maximum  
Unit  
LO Performance  
Lock time  
72  
s  
Initial carrier frequency tolerance  
±25  
±75  
kHz  
Frequency Drift  
DH1 packet  
DH3 packet  
DH5 packet  
Drift rate  
±8  
±8  
±8  
5
±25  
±40  
±40  
20  
kHz  
kHz  
kHz  
kHz/50 µs  
Frequency Deviation  
a
00001111 sequence in payload  
140  
115  
155  
140  
1
175  
kHz  
kHz  
MHz  
b
10101010 sequence in payload  
Channel spacing  
a. This pattern represents an average deviation in payload.  
b. Pattern represents the maximum deviation in payload for 99.9% of all frequency deviations.  
Table 36. BLE RF Specifications  
Parameter  
Frequency range  
Conditions  
Minimum  
Typical  
Maximum  
Unit  
MHz  
dBm  
dBm  
kHz  
%
2402  
2480  
a
RX sense  
GFSK, 0.1% BER, 1 Mbps  
–97  
8.5  
b
TX power  
Mod Char: delta f1 average  
225  
99.9  
0.8  
255  
275  
c
Mod Char: delta f2 max  
Mod Char: ratio  
0.95  
%
a. The Bluetooth tester is set so that Dirty TX is on.  
b. BLE TX power can be increased to compensate for front-end losses such as BPF, diplexer, switch, etc.). The output is capped at 12 dBm.  
The BLE TX power at the antenna port cannot exceed the 10 dBm specification limit.  
c. At least 99.9% of all delta F2 max. frequency values recorded over 10 packets must be greater than 185 kHz.  
Document No. 002-14797 Rev. *I  
Page 83 of 103  
CYW4343W  
17. Internal Regulator Electrical Specifications  
Note: Values in this data sheet are design goals and are subject to change based on device characterization results.  
Functional operation is not guaranteed outside of the specification limits provided in this section.  
17.1 Core Buck Switching Regulator  
Table 37. Core Buck Switching Regulator (CBUCK) Specifications  
Specification  
Notes  
Min.  
Typ.  
Max.  
Units  
a
Input supply voltage (DC)  
DC voltage range inclusive of disturbances.  
2.4  
3.6  
4.8  
V
PWM mode switching  
frequency  
CCM, load > 100 mA VBAT = 3.6V.  
4
MHz  
PWM output current  
Output current limit  
370  
mA  
mA  
1400  
Programmable, 30 mV steps.  
Default = 1.35V.  
Output voltage range  
1.2  
–4  
1.35  
1.5  
4
V
PWM output voltage  
DC accuracy  
Includes load and line regulation.  
Forced PWM mode.  
%
Measure with 20 MHz bandwidth limit.  
Static load, max. ripple based on VBAT = 3.6V,  
Vout = 1.35V,  
PWM ripple voltage, static  
7
20  
mVpp  
Fsw = 4 MHz, 2.2 μH inductor L > 1.05 μH, Cap + Board  
total-ESR < 20 m,  
C
> 1.9 μF, ESL<200 pH  
out  
Peak efficiency at 200 mAload, inductor DCR = 200 m,  
VBAT = 3.6V, VOUT = 1.35V  
PWM mode peak efficiency  
PFM mode efficiency  
85  
77  
%
%
10 mA load current, inductor DCR = 200 m, VBAT =  
3.6V, VOUT = 1.35V  
Start-up time from  
power down  
VDDIO already ON and steady.  
Time from REG_ON rising edge to CLDO reaching 1.2V  
400  
2.2  
4.7  
500  
µs  
µH  
µF  
0603 size, 2.2 μH ±20%,  
DCR = 0.2± 25%  
External inductor  
Ceramic, X5R, 0402,  
ESR <30 mat 4 MHz, 4.7 μF ±20%, 10V  
b
c
External output capacitor  
2.0  
10  
For SR_VDDBATP5V pin,  
ceramic, X5R, 0603,  
ESR < 30 mat 4 MHz, ±4.7 μF ±20%, 10V  
b
External input capacitor  
0.67  
40  
4.7  
µF  
µs  
Input supply voltage ramp-up time 0 to 4.3V  
a. The maximum continuous voltage is 4.8V. Voltages up to 6.0V for up to 10 seconds, cumulative duration, over the lifetime of the device are  
allowed. Voltages as high as 5.0V for up to 250 seconds, cumulative duration, over the lifetime of the device are allowed.  
b. Minimum capacitor value refers to the residual capacitor value after taking into account the part-to-part tolerance, DC-bias, temperature, and  
aging.  
c. Total capacitance includes those connected at the far end of the active load.  
Document No. 002-14797 Rev. *I  
Page 84 of 103  
CYW4343W  
17.2 3.3V LDO (LDO3P3)  
Table 38. LDO3P3 Specifications  
Specification  
Notes  
Min.  
Typ.  
Max.  
Units  
Min. = V + 0.2V = 3.5V dropout voltage requirement  
must be met under maximum load for performance  
specifications.  
o
a
Input supply voltage, V  
Output current  
3.1  
3.6  
4.8  
V
in  
0.001  
3.3  
450  
mA  
V
Nominal output voltage, V  
Dropout voltage  
Default = 3.3V.  
At max. load.  
o
200  
+5  
mV  
Output voltage DC accuracy  
Quiescent current  
Line regulation  
Includes line/load regulation.  
No load  
–5  
%
66  
85  
µA  
V
from (V + 0.2V) to 4.8V, max. load  
3.5  
0.3  
mV/V  
mV/mA  
in  
o
Load regulation  
load from 1 mA to 450 mA  
V
V + 0.2V,  
in  
o
PSRR  
V = 3.3V, C = 4.7 µF,  
20  
dB  
o
o
Max. load, 100 Hz to 100 kHz  
LDO turn-on time  
Chip already powered up.  
160  
4.7  
250  
µs  
µF  
Ceramic, X5R, 0402,  
(ESR: 5 m–240 m), ± 10%, 10V  
b
External output capacitor, C  
1.0  
5.64  
o
For SR_VDDBATA5V pin (shared with band gap)  
Ceramic, X5R, 0402,  
(ESR: 30m-200 m), ± 10%, 10V.  
Not needed if sharing VBAT capacitor 4.7 µF with  
SR_VDDBATP5V.  
External input capacitor  
4.7  
µF  
a. The maximum continuous voltage is 4.8V. Voltages up to 6.0V for up to 10 seconds, cumulative duration, over the lifetime of the device are  
allowed. Voltages as high as 5.0V for up to 250 seconds, cumulative duration, over the lifetime of the device are allowed.  
b. Minimum capacitor value refers to the residual capacitor value after taking into account the part-to-part tolerance, DC-bias, temperature, and  
aging.  
Document No. 002-14797 Rev. *I  
Page 85 of 103  
CYW4343W  
17.3 CLDO  
Table 39. CLDO Specifications  
Specification  
Notes  
Min. Typ. Max.  
Units  
V
Min. = 1.2 + 0.15V = 1.35V dropout voltage requirement  
must be met under maximum load.  
Input supply voltage, V  
Output current  
1.3  
0.2  
1.35  
1.5  
200  
1.26  
in  
mA  
V
Programmable in 10 mV steps.  
Default = 1.2.V  
Output voltage, V  
Dropout voltage  
0.95  
1.2  
o
At max. load  
–4  
150  
+4  
mV  
%
Output voltage DC accuracy  
Includes line/load regulation  
No load  
13  
1.24  
µA  
mA  
Quiescent current  
200 mA load  
V
from (V + 0.15V) to 1.5V,  
o
in  
Line regulation  
Load regulation  
5
mV/V  
maximum load  
Load from 1 mA to 300 mA  
Power down  
0.02 0.05  
mV/mA  
µA  
5
1
20  
3
Leakage current  
PSRR  
Bypass mode  
µA  
@1 kHz, Vin 1.35V, C = 4.7 µF  
20  
dB  
o
VDDIO up and steady. Time from the REG_ON rising edge  
to the CLDO  
reaching 1.2V.  
Start-up time of PMU  
LDO turn-on time  
700  
µs  
LDO turn-on time when rest of the  
chip is up.  
140  
2.2  
180  
µs  
µF  
a
External output capacitor, C  
Total ESR: 5 m–240 mΩ  
1.1  
o
Only use an external input capacitor  
at the VDD_LDO pin if it is not supplied  
from CBUCK output.  
External input capacitor  
1
2.2  
µF  
a. Minimum capacitor value refers to the residual capacitor value after taking into account the part-to-part tolerance, DC-bias, temperature, and  
aging.  
Document No. 002-14797 Rev. *I  
Page 86 of 103  
CYW4343W  
17.4 LNLDO  
Table 40. LNLDO Specifications  
Specification  
Notes  
Min. V = V + 0.15V = 1.35V  
Min.  
Typ.  
Max.  
Units  
IN  
O
Input supply voltage, Vin  
Output current  
(where V = 1.2V) dropout voltage requirement must be  
met under maximum load.  
1.3  
1.35  
1.5  
V
O
0.1  
1.1  
150  
mA  
V
Programmable in 25 mV steps.  
Default = 1.2V  
Output voltage, V  
1.2  
1.275  
o
Dropout voltage  
At maximum load  
Includes line/load regulation  
No load  
–4  
150  
+4  
mV  
%
Output voltage DC accuracy  
Quiescent current  
10  
970  
12  
µA  
µA  
Max. load  
990  
V
from (V + 0.15V) to 1.5V,  
o
in  
Line regulation  
5
mV/V  
200 mA load  
Load from 1 mA to 200 mA:  
Load regulation  
Leakage current  
Output noise  
0.025  
0.045  
20  
mV/mA  
µA  
V
(V + 0.12V)  
in  
o
Power-down, junction temp. = 85°C  
@30 kHz, 60–150 mA load C = 2.2 µF  
@100 kHz, 60–150 mA load C = 2.2 µF  
5
60  
35  
o
nV/ Hz  
o
PSRR  
@1 kHz, V (V + 0.15V), C = 4.7 µF  
20  
dB  
µs  
in  
o
o
LDO turn-on time  
LDO turn-on time when rest of chip is up  
140  
180  
Total ESR (trace/capacitor):  
5 m–240 mΩ  
a
External output capacitor, C  
0.5  
2.2  
4.7  
µF  
o
Only use an external input capacitor at the VDD_LDO pin  
if it is not supplied from CBUCK output.  
External input capacitor  
1
2.2  
µF  
Total ESR (trace/capacitor): 30 m–200 mΩ  
a. Minimum capacitor value refers to the residual capacitor value after taking into account the part-to-part tolerance, DC-bias, temperature, and  
aging.  
Document No. 002-14797 Rev. *I  
Page 87 of 103  
CYW4343W  
18. System Power Consumption  
Note: The values in this data sheet are design goals and are subject to change based on device characterization.Unless otherwise  
stated, these values apply for the conditions specified in Table 26: “Recommended Operating Conditions and DC Characteristics” .  
18.1 WLAN Current Consumption  
Table 41 shows typical currents consumed by the CYW4343W’s WLAN section. All values shown are with the Bluetooth core in Reset  
mode with Bluetooth off.  
18.1.1 2.4 GHz Mode  
Table 41. 2.4 GHz Mode WLAN Power Consumption  
VBAT = 3.6V, VDDIO = 1.8V, TA 25°C  
Mode  
Rate  
VBAT (mA)  
Vio (µA)  
Sleep Modes  
Leakage (OFF)  
N/A  
N/A  
0.0035  
0.08  
80  
a
Sleep (idle, unassociated)  
0.0058  
0.0058  
1.05  
b
Sleep (idle, associated, inter-beacons)  
Rate 1  
Rate 1  
Rate 1  
Rate 1  
Rate 1  
80  
c
IEEE Power Save PM1 DTIM1 (Avg.)  
IEEE Power Save PM1 DTIM3 (Avg.)  
IEEE Power Save PM2 DTIM1 (Avg.)  
IEEE Power Save PM2 DTIM3 (Avg.)  
74  
d
c
d
0.35  
86  
1.05  
74  
0.35  
86  
Active Modes  
e
Rx Listen Mode  
N/A  
37  
12  
12  
12  
12  
12  
15  
15  
15  
15  
Rate 1  
39  
Rate 11  
40  
f
Rx Active (at –50dBm RSSI)  
Rate 54  
40  
Rate MCS7  
41  
Rate 1 @ 20 dBm  
Rate 11 @ 18 dBm  
Rate 54 @ 15 dBm  
Rate MCS7 @ 15 dBm  
320  
290  
260  
260  
f
Tx  
a. Device is initialized in Sleep mode, but not associated.  
b. Device is associated, and then enters Power Save mode (idle between beacons).  
c. Beacon interval = 100 ms; beacon duration = 1 ms @ 1 Mbps (Integrated Sleep + wakeup + beacon).  
d. Beacon interval = 300 ms; beacon duration = 1 ms @ 1 Mbps (Integrated Sleep + wakeup + beacon).  
e. Carrier sense (CCA) when no carrier present.  
f. Tx output power is measured on the chip-out side; duty cycle =100%. Tx Active mode is measured in Packet Engine mode (pseudo-random  
data)  
Document No. 002-14797 Rev. *I  
Page 88 of 103  
 
 
CYW4343W  
18.2 Bluetooth Current Consumption  
The Bluetooth current consumption measurements are shown in Table 42.  
Note:  
The WLAN core is in reset (WLAN_REG_ON = low) for all measurements provided in Table 42.  
The BT current consumption numbers are measured based on GFSK TX output power = 10 dBm.  
Table 42. Bluetooth BLE Current Consumption  
VBAT (VBAT = 3.6V)  
Typical  
VDDIO (VDDIO = 1.8V)  
Operating Mode  
Units  
Typical  
150  
162  
172  
Sleep  
6
µA  
µA  
Standard 1.28s Inquiry Scan  
500 ms Sniff Master  
DM1/DH1 Master  
193  
305  
23.3  
28.4  
29.1  
25.1  
11.8  
187  
93  
µA  
mA  
mA  
mA  
mA  
mA  
µA  
DM3/DH3 Master  
DM5/DH5 Master  
3DH5/3DH5 Master  
SCO HV3 Master  
a
BLE Scan  
164  
163  
163  
BLE Adv. – Unconnectable 1.00 sec  
BLE Connected 1 sec  
µA  
71  
µA  
a. No devices present. A 1.28 second interval with a scan window of 11.25 ms.  
Document No. 002-14797 Rev. *I  
Page 89 of 103  
 
CYW4343W  
19. Interface Timing and AC Characteristics  
Note: Values in this data sheet are design goals and are subject to change based on the results of device characterization.  
Unless otherwise stated, the specifications in this section apply when the operating conditions are within the limits specified in Table  
24 and Table 26. Functional operation outside of these limits is not guaranteed.  
19.1 SDIO Default Mode Timing  
SDIO default mode timing is shown by the combination of Figure 29 and Table 43.  
Figure 29. SDIO Bus Timing (Default Mode)  
fPP  
tW L  
tW H  
SDIO_CLK  
tTHL  
tTLH  
tIH  
tISU  
Input  
Output  
tODLY  
tODLY  
(max)  
(m in)  
Table 43. SDIO Bus Timing a Parameters (Default Mode)  
Parameter  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
SDIO CLK (All values are referred to minimum VIH and maximum VILb)  
Frequency—Data Transfer mode  
Frequency—Identification mode  
Clock low time  
fPP  
fOD  
0
0
25  
400  
MHz  
kHz  
ns  
tWL  
tWH  
tTLH  
tTHL  
10  
10  
Clock high time  
ns  
Clock rise time  
10  
10  
ns  
Clock fall time  
ns  
Inputs: CMD, DAT (referenced to CLK)  
Input setup time  
Input hold time  
tISU  
tIH  
5
5
ns  
ns  
Outputs: CMD, DAT (referenced to CLK)  
Output delay time—Data Transfer mode  
Output delay time—Identification mode  
tODLY  
tODLY  
0
0
14  
50  
ns  
ns  
a. Timing is based on CL 40 pF load on command and data.  
b. min(Vih) = 0.7 × VDDIO and max(Vil) = 0.2 × VDDIO.  
Document No. 002-14797 Rev. *I  
Page 90 of 103  
 
 
CYW4343W  
19.2 SDIO High-Speed Mode Timing  
SDIO high-speed mode timing is shown by the combination of Figure 30 and Table 44.  
Figure 30. SDIO Bus Timing (High-Speed Mode)  
fPP  
tWL  
tWH  
50% VDD  
SDIO_CLK  
tTHL  
tTLH  
tIH  
tISU  
Input  
Output  
tODLY  
tOH  
Table 44. SDIO Bus Timing a Parameters (High-Speed Mode)  
Parameter Symbol  
SDIO CLK (all values are referred to minimum VIH and maximum VILb)  
Minimum  
Typical  
Maximum  
Unit  
Frequency – Data Transfer Mode  
Frequency – Identification Mode  
Clock low time  
fPP  
fOD  
0
0
7
7
50  
400  
MHz  
kHz  
ns  
tWL  
Clock high time  
tWH  
tTLH  
tTHL  
ns  
Clock rise time  
3
ns  
Clock fall time  
3
ns  
Inputs: CMD, DAT (referenced to CLK)  
Input setup time  
Input hold time  
tISU  
tIH  
6
2
ns  
ns  
Outputs: CMD, DAT (referenced to CLK)  
Output delay time – Data Transfer Mode  
Output hold time  
tODLY  
tOH  
2.5  
14  
ns  
ns  
pF  
Total system capacitance (each line)  
CL  
40  
a. Timing is based on CL 40 pF load on command and data.  
b. min(Vih) = 0.7 × VDDIO and max(Vil) = 0.2 × VDDIO.  
Document No. 002-14797 Rev. *I  
Page 91 of 103  
 
 
CYW4343W  
19.3 JTAG Timing  
Table 45. JTAG Timing Characteristics  
Signal Name  
Output  
Maximum  
Output  
Minimum  
Period  
Setup  
Hold  
TCK  
125 ns  
20 ns  
20 ns  
0 ns  
0 ns  
TDI  
TMS  
100 ns  
TDO  
0 ns  
JTAG_TRST  
250 ns  
Document No. 002-14797 Rev. *I  
Page 92 of 103  
CYW4343W  
20. Power-Up Sequence and Timing  
20.1 Sequencing of Reset and Regulator Control Signals  
The CYW4343W has two signals that allow the host to control power consumption by enabling or disabling the Bluetooth, WLAN, and  
internal regulator blocks. These signals are described below. Additionally, diagrams are provided to indicate proper sequencing of the  
signals for various operational states (see Figure 31 through Figure 34). The timing values indicated are minimum required values;  
longer delays are also acceptable.  
Note:  
The WL_REG_ON and BT_REG_ON signals are OR’ed in the CYW4343W. The diagrams show both signals going high at the  
same time (as would be the case if both REG signals were controlled by a single host GPIO). If two independent host GPIOs are  
used (one for WL_REG_ON and one for BT_REG_ON), then only one of the two signals needs to be high to enable the CYW4343W  
regulators.  
The CYW4343W has an internal power-on reset (POR) circuit. The device will be held in reset for a maximum of 110 ms after VDDC  
and VDDIO have both passed the POR threshold (see Table 26: “Recommended Operating Conditions and DC Characteristics” ).  
Wait at least 150 ms after VDDC and VDDIO are available before initiating SDIO accesses.  
VBAT and VDDIO should not rise faster than 40 µs. VBAT should be up before or at the same time as VDDIO. VDDIO should not  
be present first or be held high before VBAT is high.  
20.1.1 Description of Control Signals  
WL_REG_ON: Used by the PMU to power up the WLAN section. It is also OR-gated with the BT_REG_ON input to control the  
internal CYW4343W regulators. When this pin is high, the regulators are enabled and the WLAN section is out of reset. When this  
pin is low the WLAN section is in reset. If both the BT_REG_ON and WL_REG_ON pins are low, the regulators are disabled.  
BT_REG_ON: Used by the PMU (OR-gated with WL_REG_ON) to power up the internal CYW4343W regulators. If both the  
BT_REG_ON and WL_REG_ON pins are low, the regulators are disabled. When this pin is low and WL_REG_ON is high, the BT  
section is in reset.  
Note: For both the WL_REG_ON and BT_REG_ON pins, there should be at least a 10 ms time delay between consecutive toggles  
(where both signals have been driven low). This is to allow time for the CBUCK regulator to discharge. If this delay is not followed,  
then there may be a VDDIO in-rush current on the order of 36 mA during the next PMU cold start.  
Document No. 002-14797 Rev. *I  
Page 93 of 103  
CYW4343W  
20.1.2 Control Signal Timing Diagrams  
Figure 31. WLAN = ON, Bluetooth = ON  
32.678 kHz  
Sleep Clock  
VBAT  
90% of VH  
VDDIO  
~ 2 Sleep cycles  
WL_REG_ON  
BT_REG_ON  
Figure 32. WLAN = OFF, Bluetooth = OFF  
32.678 kHz  
Sleep Clock  
VBAT  
VDDIO  
WL_REG_ON  
BT_REG_ON  
Document No. 002-14797 Rev. *I  
Page 94 of 103  
CYW4343W  
Figure 33. WLAN = ON, Bluetooth = OFF  
32.678 kHz  
Sleep Clock  
VBAT  
90% of VH  
VDDIO  
~ 2 Sleep cycles  
WL_REG_ON  
BT_REG_ON  
Figure 34. WLAN = OFF, Bluetooth = ON  
32.678 kHz  
Sleep Clock  
VBAT  
90% of VH  
VDDIO  
~ 2 Sleep cycles  
WL_REG_ON  
BT_REG_ON  
Document No. 002-14797 Rev. *I  
Page 95 of 103  
CYW4343W  
21. Package Information  
21.1 Package Thermal Characteristics  
Table 46. Package Thermal Characteristicsa  
Characteristic  
Value in Still Air  
JA (°C/W)  
JB (°C/W)  
JC (°C/W)  
53.11  
13.14  
6.36  
0.04  
14.21  
125  
(°C/W)  
JT  
(°C/W)  
JB  
b
Maximum Junction Temperature T (°C)  
j
Maximum Power Dissipation (W)  
1.2  
a. No heat sink, TA = 70°C. This is an estimate based on a 4-layer PCB that conforms to EIA/JESD51–7  
(101.6 mm x 114.3 mm x 1.6 mm) and P = 1.2W continuous dissipation.  
b. Absolute junction temperature limits maintained through active thermal monitoring and dynamic TX duty cycle limiting.  
21.1.1 Junction Temperature Estimation and PSI Versus Thetajc  
Package thermal characterization parameter PSI-JT () yields a better estimation of actual junction temperature (T ) versus using  
JT  
J
the junction-to-case thermal resistance parameter Theta-J (JC). The reason for this is JC assumes that all the power is dissipated  
C
through the top surface of the package case. In actual applications, some of the power is dissipated through the bottom and sides of  
the package. takes into account power dissipated through the top, bottom, and sides of the package. The equation for calculating  
JT  
the device junction temperature is as follows:  
T = T + P   
J
T
JT  
Where:  
T = junction temperature at steady-state condition, °C  
J
T = package case top center temperature at steady-state condition, °C  
T
P = device power dissipation, Watts  
= package thermal characteristics (no airflow), °C/W  
JT  
Document No. 002-14797 Rev. *I  
Page 96 of 103  
CYW4343W  
22. Mechanical Information  
Figure 35 shows the mechanical drawing for the CYW4343W WLBGA package.  
Figure 35. 74-Ball WLBGA Mechanical Information  
Figure 36 shows the mechanical drawing for the CYW4343W WLCSP package. Figure 37 shows the WLCSP keep-out areas.  
Document No. 002-14797 Rev. *I  
Page 97 of 103  
 
CYW4343W  
Figure 36. 153-Bump WLCSP Mechanical Information  
Note: No top-layer metal is allowed in the keep-out areas  
Note: A DXF file containing WLBGA keep-outs can be imported into a layout program. Contact your Cypress FAE for more  
information.  
Document No. 002-14797 Rev. *I  
Page 98 of 103  
CYW4343W  
Figure 37. WLCSP Package Keep-Out Areas—Top View with the Bumps Facing Down  
Document No. 002-14797 Rev. *I  
Page 99 of 103  
CYW4343W  
Figure 38. WLBGA Package Keep-Out Areas—Top View with the Bumps Facing Down  
Document No. 002-14797 Rev. *I  
Page 100 of 103  
CYW4343W  
23. Ordering Information  
Table 47. Part Ordering Information  
Part Number a  
Operating Ambient  
Temperature  
Package  
Description  
74-ball WLBGA halogen-free package  
(4.87 mm x 2.87 mm, 0.40 pitch)  
2.4 GHz single-band WLAN  
IEEE 802.11n + BT 4.1  
CYW4343WKUBG  
CYW4343WKWBG  
–30°C to +70°C  
–30°C to +70°C  
2.4 GHz single-band WLAN  
IEEE 802.11n + BT 4.1  
153-bump WLCSP  
a. Add “T” to the end of the part number to specify “Tape and Reel.”  
24. Additional Information  
24.1 Acronyms and Abbreviations  
In most cases, acronyms and abbreviations are defined upon first use. For a more complete list of acronyms and other terms used in  
Cypress documents, go to: http://www.cypress.com/glossary.  
diagrams, product bill of materials, PCB layout information, and  
software updates. Customers can acquire technical documen-  
tation and software from the Cypress Support Community  
website  
24.2 IoT Resources  
Cypress provides a wealth of data at http://www.cypress.com/  
internet-things-iot to help you to select the right IoT device for  
your design, and quickly and effectively integrate the device into  
your design. Cypress provides customer access to a wide range  
of information, including technical documentation, schematic  
(http://community.cypress.com/).  
Document No. 002-14797 Rev. *I  
Page 101 of 103  
CYW4343W  
Document History Page  
Document Title: CYW4343W Single-Chip 802.11 b/g/n MAC/Baseband/Radio with Bluetooth 4.1  
Document Number: 002-14797  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
**  
-
-
-
-
-
-
-
-
03/10/2014 4343W-DS100-R  
Initial release  
*A  
*B  
*C  
*D  
*E  
*F  
-
-
-
-
-
-
04/18/2014 4343W-DS101-R  
Refer to the earlier release for detailed revision history.  
06/09/2014 4343W-DS102-R  
Refer to the earlier release for detailed revision history  
09/05/2014 4343W-DS103-R  
Refer to the earlier release for detailed revision history  
10/03/2014 4343W-DS104-R  
Refer to the earlier release for detailed revision history  
01/12/2015 4343W-DS105-R  
Refer to the earlier release for detailed revision history  
07/01/2015 4343W-DS106-R  
Updated:  
Table 22, “I/O States”.  
Table 25, “ESD Specifications”.  
Table 28, “WLAN 2.4 GHz Receiver Performance Specifications”.  
Table 29, “WLAN 2.4 GHz Transmitter Performance Specifications”.  
Table 41, “2.4 GHz Mode WLAN Power Consumption”.  
Table 47, “Part Ordering Information”  
*G  
-
-
08/24/15  
4343W-DS107-R  
Updated:  
Figure3: “Typical Power Topology (1 of 2), and  
Figure4: “Typical Power Topology (2 of 2),.  
Table 2:“Crystal Oscillator and External Clock Requirements and Performance”.  
Table23:“I/O States”.  
*H  
*I  
5445248  
5600195  
UTSV  
SGUP  
10/19/2016 Migrated to Cypress template format  
Added Cypress part numbering scheme  
01/12/2017 Removed FM Receiver and wireless Charging from the topic.  
Removed FM from Figure 1, Figure 2, Figure 3, Figure 4.  
Removed “8.4 Generic SPI mode” and “SPI Protocol”.  
Removed FM from Section 7: “Bluetooth Subsystem Overview” on page 23.  
Removed “8.5.1.FM power Management” and “8.6.3 FM over Bluetooth”.  
Updated Figure 25 (removed SPI).  
Removed Section 18: FM Receiver Specifications”.  
Removed FMRX from the Ordering Information.  
Document Number: 002-14797 Rev. *I  
Page 102 of 103  
CYW4343W  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
®
®
ARM Cortex Microcontrollers  
Automotive  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Forums | WICED IoT Forums | Projects | Video | Blogs |  
Training | Components  
Internet of Things  
Memory  
Technical Support  
cypress.com/memory  
cypress.com/mcu  
cypress.com/support  
Microcontrollers  
PSoC  
cypress.com/psoc  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless Connectivity  
cypress.com/wireless  
103  
© Cypress Semiconductor Corporation, 2014-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document,  
including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to  
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users  
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation  
of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent  
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any  
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is  
the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products  
are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or  
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the  
device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably  
expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,  
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other  
liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 002-14797 Rev. *I  
Revised March 28, 2017  
Page 103 of 103  

相关型号:

CYW4343WKWBG

Single-Chip IEEE 802.11 b/g/n MAC/ Baseband/Radio with Bluetooth 4.1,an FM Receiver, and Wireless Charging
CYPRESS

CYW4343X

Single-Chip IEEE 802.11 b/g/n MAC/ Baseband/Radio with Bluetooth 4.1,an FM Receiver, and Wireless Charging
CYPRESS

CYW4354

Single-Chip 5G Wi-Fi IEEE 802.11ac 2×2 MAC/Baseband/Radio with Integrated Bluetooth 4.1 and FM Receiver
CYPRESS

CYW4354XKUBG

Single-Chip 5G Wi-Fi IEEE 802.11ac 2×2 MAC/Baseband/Radio with Integrated Bluetooth 4.1 and FM Receiver
CYPRESS

CYW4354XKWBG

Single-Chip 5G Wi-Fi IEEE 802.11ac 2×2 MAC/Baseband/Radio with Integrated Bluetooth 4.1 and FM Receiver
CYPRESS

CYW4354ZKUBG

Single-Chip 5G Wi-Fi IEEE 802.11ac 2×2 MAC/Baseband/Radio with Integrated Bluetooth 4.1 and FM Receiver
CYPRESS

CYW4356

Single-Chip 5G WiFi IEEE 802.11ac 2×2 MAC/Baseband/Radio with Integrated Bluetooth 4.1, FM Receiver, and Wireless Charging
CYPRESS

CYW4356XKUBG

Single-Chip 5G WiFi IEEE 802.11ac 2×2 MAC/Baseband/Radio with Integrated Bluetooth 4.1, FM Receiver, and Wireless Charging
CYPRESS

CYW4356XKWBG

Single-Chip 5G WiFi IEEE 802.11ac 2×2 MAC/Baseband/Radio with Integrated Bluetooth 4.1, FM Receiver, and Wireless Charging
CYPRESS

CYW43570

Single-Chip 5G WiFi IEEE 802.11ac 2×2MAC/Baseband/Radio with IntegratedBluetooth 4.1 and EDR
CYPRESS

CYW43570KFFBG

Single-Chip 5G WiFi IEEE 802.11ac 2×2MAC/Baseband/Radio with IntegratedBluetooth 4.1 and EDR
CYPRESS

CYW4390

WICED™ Wi-Fi IEEE 802.11 b/g/n SoC with Embedded Application Processor
CYPRESS