CYW4354 [CYPRESS]

Single-Chip 5G Wi-Fi IEEE 802.11ac 2×2 MAC/Baseband/Radio with Integrated Bluetooth 4.1 and FM Receiver;
CYW4354
型号: CYW4354
厂家: CYPRESS    CYPRESS
描述:

Single-Chip 5G Wi-Fi IEEE 802.11ac 2×2 MAC/Baseband/Radio with Integrated Bluetooth 4.1 and FM Receiver

文件: 总165页 (文件大小:13677K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CYW4354  
Single-Chip 5G Wi-Fi IEEE 802.11ac 2×2 MAC/Baseband/Radio  
with Integrated Bluetooth 4.1 and FM Receiver  
The Cypress CYW4354 is a complete dual–band (2.4 GHz and 5 GHz) 5G Wi–Fi 2 × 2 MIMO® MAC/PHY/Radio System–on–a–Chip.  
This Wi–Fi single–chip device provides a high level of integration with dual–stream IEEE 802.11ac MAC/baseband/radio, Bluetooth  
4.1, and FM radio receiver. In IEEE 802.11ac mode, the WLAN operation supports rates of MCS0–MCS9 (up to 256 QAM) in 20 MHz,  
40 MHz, and 80 MHz channels for data rates up to 867 Mbps. In addition, all the rates specified in IEEE 802.11a/b/g/n are supported.  
Included on–chip are 2.4 GHz and 5 GHz transmit power amplifiers and receive low noise amplifiers.  
For the WLAN section, several alternative host interface options are included: an SDIO v3.0 interface that can operate in 4b or 1b  
modes, a high-speed inter-chip (HSIC) interface, and a PCIe v3.0 compliant interface running at Gen1 speeds. For the Bluetooth  
section, host interface options of a high-speed 4-wire UART and USB 2.0 full-speed (12 Mbps) are provided.  
The CYW4354 uses advanced design techniques and process technology to reduce active and idle power, and includes an embedded  
power management unit that simplifies the system power topology.  
In addition, the CYW4354 implements highly sophisticated enhanced collaborative coexistence hardware mechanisms and algorithms  
that ensure that WLAN and Bluetooth collaboration is optimized for maximum performance. Coexistence support for external radios  
(such as LTE cellular and GPS) is provided via an external interface. As a result, enhanced overall quality for simultaneous voice,  
video, and data transmission on a handheld system is achieved.  
Cypress Part Numbering Scheme  
Cypress is converting the acquired IoT part numbers from Broadcom to the Cypress part numbering scheme. Due to this conversion,  
there is no change in form, fit, or function as a result of offering the device with Cypress part number marking. The table provides  
Cypress ordering part number that matches an existing IoT part number.  
Table 1. Mapping Table for Part Number between Broadcom and Cypress  
Broadcom Part Number  
Cypress Part Number  
BCM4354  
CYW4354  
BCM4354XKUBG  
BCM4354XKWBG  
BCM4354ZKUBG  
CYW4354XKUBG  
CYW4354XKWBG  
CYW4354ZKUBG  
Cypress Semiconductor Corporation  
Document Number: 002-14809 Rev. *J  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised Wednesday, September 28, 2016  
CYW4354  
Features  
IEEE 802.11X Key Features  
Bluetooth and FM Key Features  
IEEE 802.11ac Draft compliant.  
Complies with Bluetooth Core Specification Version 4.1 with  
provisions for supporting future specifications.  
Dual–stream spatial multiplexing up to 867 Mbps data rate.  
Bluetooth Class 1 or Class 2 transmitter operation.  
Supports 20, 40, and 80 MHz channels with optional SGI (256  
QAM modulation).  
Supports extended synchronous connections (eSCO), for  
enhanced voice quality by allowing for retransmission of  
dropped packets.  
Full IEEE 802.11a/b/g/n legacy compatibility with enhanced  
performance.  
Adaptive frequency hopping (AFH) for reducing radio  
frequency interference.  
TX and RX low–density parity check (LDPC) support for  
improved range and power efficiency.  
Interface support, host controller interface (HCI) using a USB  
or high–speed UART interface and PCM for audio data.  
Supports IEEE 802.11ac/n beamforming.  
On–chip power amplifiers and low–noise amplifiers for both  
bands.  
USB 2.0 full–speed (12 Mbps) supported for Bluetooth.  
The FM unit supports HCI for communication.  
Supports various RF front–end architectures including:  
Low power consumption improves battery life of handheld  
devices.  
Two antennas with one each dedicated to Bluetooth and  
WLAN.  
Two antennas with WLAN diversity and a shared Bluetooth  
FM receiver: 65 MHz to 108 MHz FM bands; supports the  
European radio data systems (RDS) and the North American  
radio broadcast data system (RBDS) standards.  
antenna.  
SharedBluetoothandWLANreceivesignalpatheliminatesthe  
need for an external power splitter while maintaining excellent  
sensitivity for both Bluetooth and WLAN.  
Supports multiple simultaneous Advanced Audio Distribution  
Profiles (A2DP) for stereo sound.  
Internal fractional nPLL allows support for a wide range of  
reference clock frequencies  
Automatic frequency detection for standard crystal and TCXO  
values.  
Supports IEEE 802.15.2 external coexistence interface to  
optimize bandwidth utilization with other co–located wireless.  
technologies such as LTE or GPS.  
Supports serial flash interfaces.  
General Features  
Supports standard SDIO v3.0 (up to SDR104 mode at  
208 MHz, 4–bit and 1-bit) host interfaces.  
Supports battery range from 3.0V to 5.25V supplies with  
internal switching regulator.  
Backward compatible with SDIO v2.0 host interfaces.  
Alternative host interface supports HSIC v1.0  
Programmable dynamic power management  
484 bytes of user-accessible OTP for storing board parameters  
GPIOs: 11 in WLBGA, 16 in WLCSP  
PCIe mode complies with PCI Express base specification  
revision 3.0 for ×1 lane and power management running at  
Gen1 speeds.  
Package options:  
192-ball WLBGA (4.87 mm × 7.67 mm, 0.4 mm pitch  
395-bump WLCSP (4.87 mm × 7.67 mm, 0.2 mm pitch)  
Integrated ARMCR4™ processor with tightly coupled memory  
for complete WLAN subsystem functionality, minimizing the  
needtowakeuptheapplicationsprocessorforstandardWLAN  
functions. This allows for further minimization of power  
consumption, while maintaining the ability to field upgrade with  
future features. On–chip memory includes 768 KB SRAM and  
640 KB ROM.  
Security:  
WPA™ and WPA2™ (Personal) support for powerful encryp-  
tion and authentication  
AES and TKIP in hardware for faster data encryption and  
IEEE 802.11i compatibility  
Reference WLAN subsystem provides Cisco® Compatible  
OneDriver™ software architecture for easy migration from  
existing embedded WLAN and Bluetooth devices as well as  
future devices.  
Extensions (CCX, CCX 2.0, CCX 3.0, CCX 4.0, CCX 5.0)  
ReferenceWLANsubsystemprovidesWi-FiProtectedSetup  
(WPS)  
Worldwide regulatory support: Global products supported with  
worldwide homologated design.  
Document Number: 002-14809 Rev. *J  
Page 2 of 165  
CYW4354  
Figure 1. Functional Block Diagram  
VIO  
VBAT  
WL_REG_ON  
WLAN  
Host I/F  
PCIe  
SDIO  
HSIC  
T/R Switch  
T/R Switch  
5G WLAN  
2G WLAN  
5G WLAN  
Ant1  
Ant0  
Diplexer  
Diplexer  
External  
Coexistence I/F  
COEX  
CLK_REQ  
BT_REG_ON  
UART  
CYW4354  
T/R Switch  
USB 2.0  
2G WLAN Tx  
2.G WL/BT Rx  
Bluetooth Host I/F  
FM Rx Host I/F  
I2S  
3PST Switch  
PCM  
BT_DEV_WAKE  
BT_HOST_WAKE  
BT Tx  
FM Rx  
FM Audio Out  
I2S  
FM I/F  
IoT Resources  
Cypress provides a wealth of data at http://www.cypress.com/internet-things-iot to help you to select the right IoT device for your  
design, and quickly and effectively integrate the device into your design. Cypress provides customer access to a wide range of  
information, including technical documentation, schematic diagrams, product bill of materials, PCB layout information, and software  
updates. Customers can acquire technical documentation and software from the Cypress Support Community website  
(http://community.cypress.com/)  
Document Number: 002-14809 Rev. *J  
Page 3 of 165  
CYW4354  
Contents  
1. Overview ........................................................................6  
1.1 Overview ...............................................................6  
1.2 Features ................................................................ 8  
1.3 Standards Compliance.......................................... 9  
2. Power Supplies and Power Management .................10  
2.1 Power Supply Topology ......................................10  
2.2 CYW4354 PMU Features ....................................10  
2.3 WLAN Power Management................................. 12  
2.4 PMU Sequencing ................................................ 12  
2.5 Power-Off Shutdown ........................................... 13  
2.6 Power-Up/Power-Down/Reset Circuits ...............13  
3. Frequency References ...............................................14  
3.1 Crystal Interface and Clock Generation ..............14  
3.2 External Frequency Reference ............................15  
3.3 External 32.768 kHz Low-Power Oscillator .........17  
4. Bluetooth + FM Subsystem Overview ......................18  
4.1 Features ..............................................................18  
4.2 Bluetooth Radio................................................... 19  
5. Bluetooth Baseband Core .........................................21  
5.1 Bluetooth 4.1 Features ........................................21  
5.2 Bluetooth Low Energy .........................................21  
5.3 Link Control Layer ............................................... 21  
5.4 Test Mode Support ..............................................22  
5.5 Bluetooth Power Management Unit .....................22  
5.6 Adaptive Frequency Hopping ..............................26  
5.7 Advanced Bluetooth/WLAN Coexistence............ 27  
5.8 Fast Connection (Interlaced Page and  
Inquiry Scans)................................................................... 27  
6. Microprocessor and Memory Unit for Bluetooth .....28  
6.1 RAM, ROM, and Patch Memory ..........................28  
6.2 Reset ...................................................................28  
7. Bluetooth Peripheral Transport Unit ........................29  
7.1 SPI Interface ........................................................29  
7.2 SPI/UART Transport Detection ...........................29  
7.3 PCM Interface .....................................................29  
7.4 USB Interface...................................................... 37  
7.5 UART Interface.................................................... 39  
7.6 I2S Interface ........................................................ 41  
8. FM Receiver Subsystem ............................................44  
8.1 FM Radio .............................................................44  
8.2 Digital FM Audio Interfaces .................................44  
8.3 FM Over Bluetooth ..............................................44  
8.4 eSCO ...................................................................44  
8.5 Wide Band Speech Link ......................................44  
8.6 A2DP ...................................................................44  
8.7 Autotune and Search Algorithms .........................44  
8.8 Audio Features.................................................... 45  
8.9 RDS/RBDS ..........................................................47  
9. WLAN Global Functions ............................................48  
9.1 WLAN CPU and Memory Subsystem ..................48  
9.2 One-Time Programmable Memory ......................48  
9.3 GPIO Interface ....................................................48  
9.4 External Coexistence Interface ...........................49  
9.5 UART Interface ....................................................50  
9.6 JTAG Interface ....................................................50  
9.7 SPROM Interface ................................................50  
9.8 SFLASH Interface ...............................................50  
10. WLAN Host Interfaces ..............................................51  
10.1 SDIO v3.0 ..........................................................51  
10.2 HSIC Interface ..................................................53  
10.3 PCI Express Interface .......................................53  
11. Wireless LAN MAC and PHY ...................................56  
11.1 IEEE 802.11ac Draft MAC .................................56  
11.2 IEEE 802.11ac Draft PHY .................................59  
12. WLAN Radio Subsystem .........................................61  
12.1 Receiver Path ....................................................61  
12.2 Transmit Path ....................................................61  
12.3 Calibration .........................................................62  
13. Pinout and Signal Descriptions ..............................63  
13.1 Ball Maps ...........................................................63  
13.2 Pin Lists .............................................................65  
13.3 Signal Descriptions............................................ 82  
13.4 WLAN/BT GPIO Signals and Strapping Options 96  
13.5 GPIO Alternative Signal Functions.................... 97  
13.6 I/O States ..........................................................99  
14. DC Characteristics .................................................102  
14.1 Absolute Maximum Ratings .............................102  
14.2 Environmental Ratings ....................................103  
14.3 Electrostatic Discharge Specifications ............103  
14.4 Recommended Operating Conditions and  
DC Characteristics ..........................................................104  
15. Bluetooth RF Specifications ..................................106  
16. FM Receiver Specifications ...................................112  
17. WLAN RF Specifications ........................................116  
17.1 Introduction ......................................................116  
17.2 2.4 GHz Band General RF Specifications .......116  
17.3 WLAN 2.4 GHz Receiver Performance  
Specifications .................................................................117  
17.4 WLAN 2.4 GHz Transmitter Performance  
Specifications .................................................................123  
17.5 WLAN 5 GHz Receiver Performance  
Specifications ................................................................. 124  
17.6 WLAN 5 GHz Transmitter Performance  
Specifications ................................................................. 131  
18. Internal Regulator Electrical Specifications ........132  
18.1 Core Buck Switching Regulator .......................132  
18.2 3.3V LDO (LDO3P3) .......................................133  
18.3 3.3V LDO (LDO3P3_B) ...................................134  
18.4 2.5V LDO (BTLDO2P5)................................... 135  
18.5 CLDO .............................................................. 136  
18.6 LNLDO ............................................................ 137  
19. System Power Consumption .................................138  
19.1 WLAN Current Consumption ...........................138  
19.2 Bluetooth and FM Current Consumption......... 140  
20. Interface Timing and AC Characteristics .............141  
20.1 SDIO Timing ....................................................141  
20.2 HSIC Interface Specifications ..........................150  
20.3 PCI Express Interface Parameters.................. 151  
20.4 JTAG Timing .................................................. 152  
21. Power-Up Sequence and Timing ...........................153  
Document Number: 002-14809 Rev. *J  
Page 4 of 165  
CYW4354  
21.1 Sequencing of Reset and Regulator  
22.3 Environmental Characteristics .........................157  
23. Mechanical Information .........................................158  
24. Ordering Information ..............................................162  
Document History ........................................................163  
Control Signals ...............................................................153  
22. Package Information ..............................................157  
22.1 Package Thermal Characteristics ...................157  
22.2 Junction Temperature Estimation and  
PSIJT Versus ThetaJC  
............................................................ 157  
Document Number: 002-14809 Rev. *J  
Page 5 of 165  
CYW4354  
1. Overview  
1.1 Overview  
The Cypress CYW4354 single-chip device provides the highest level of integration for a mobile or handheld wireless  
system, with integrated IEEE 802.11 a/b/g/n/ac MAC/baseband/radio, Bluetooth 4.1 + EDR (enhanced data rate), and  
FM receiver. It provides a small form-factor solution with minimal external components to drive down cost for mass  
volumes and allows for handheld device flexibility in size, form, and function. Comprehensive power management  
circuitry and software ensure the system can meet the needs of highly mobile devices that require minimal power  
consumption and reliable operation.  
Figure 2 on page 7 shows the interconnect of all the major physical blocks in the CYW4354 and their associated external interfaces,  
which are described in greater detail in the following sections.  
Table 2. Device Options and Features  
Feature  
Package ball count  
PCIe  
WLBGA  
WLCSP  
192 pins  
Yes  
395 bumps  
Yes  
USB2.0 (Bluetooth)  
Yes  
Yes  
HSIC  
Yes  
Yes  
I2S  
Multiplexed onto six parallel flash pins  
No  
GPIO  
11  
16  
SDIO 3.0  
Yes  
Yes  
Document Number: 002-14809 Rev. *J  
Page 6 of 165  
CYW4354  
Figure 2. CYW4354 Block Diagram  
CYW4354  
JTAG  
WLAN  
BT/FM  
*SDIO or *PCIe 2.0  
FMRX  
PCIe  
Debug  
Cortex M3  
AHB  
PMU  
Controller  
SW REG  
LDO  
HSIC  
SDIO  
FM RX  
FM RF  
FM Digital  
Power Supply  
XTAL  
LPO  
XTAL OSC  
POR  
RAM  
ROM  
AHB2 APB  
Bridge  
APB  
Patch  
OTP  
OTP  
WD Timer  
SW Timer  
GPIO Ctrl  
Inter Ctrl  
DMA  
ARM  
GPIO  
UART  
JTAG  
GPIO  
UART  
JTAG  
Bus Arb  
PTU  
UART  
SLIMBus  
AHB  
RAM  
ROM  
Debug UART  
MEIF  
BT RF  
BT PHY  
5 GHz IPA  
CLB  
I2S/PCM1  
I2S/PCM2  
BPF  
LNA  
2.4 GHz IPA  
Diplexer  
BT Digital IO  
BPF  
BPF  
GPIO  
LNA  
5 GHz IPA  
SMPS Control  
BTFM Control Clock  
Sleep  
Clock  
PMU  
Controller  
GNSS LNA ANT  
Control  
PMU  
Timer Management  
LNA  
Diplexer  
2.4 GHz IPA  
Wake/Sleep  
Control  
BTWLAN ECI  
XO  
LPO  
BPF  
POR  
Coex  
Buffer  
Shared LNA  
BT RX  
BT TX  
VBAT VREG  
EXT LNA RF Switch Control  
XTAL  
POR  
Document Number: 002-14809 Rev. *J  
Page 7 of 165  
CYW4354  
1.2 Features  
The CYW4354 supports the following features:  
IEEE 802.11a/b/g/n/ac dual-band 2x2 MIMO radio with virtual-simultaneous dual-band operation  
Bluetooth v4.1 + EDR with integrated Class 1 PA  
Concurrent Bluetooth, FM (RX) RDS/RBDS, and WLAN operation  
On-chip WLAN driver execution capable of supporting IEEE 802.11 functionality  
Single- and dual-antenna support  
Single antenna with shared LNA  
Simultaneous BT/WLAN receive with single antenna  
WLAN host interface options:  
SDIO v3.0 (1-bit/4-bit)—up to 208 MHz clock rate in SDR104 mode  
HSIC (USB device interface for short distance on-board applications)  
PCIe 2.0  
BT host digital interface (can be used concurrently with above interfaces):  
UART (up to 4 Mbps)  
BT supports full-speed USB 2.0-compliant interface  
ECI—enhanced coexistence support, ability to coordinate BT SCO transmissions around WLAN receives  
I2S/PCM for FM/BT audio, HCI for FM block control  
HCI high-speed UART (H4, H4+, H5) transport support  
Wideband speech support (16 bits linear data, MSB first, left justified at 4K samples/s for transparent air coding, both through I2S  
and PCM interface)  
Bluetooth SmartAudio® technology improves voice and music quality to headsets  
Bluetooth low power inquiry and page scan  
Bluetooth Low Energy (BLE) support  
Bluetooth Packet Loss Concealment (PLC)  
Bluetooth Wide Band Speech (WBS)  
FM advanced internal antenna support  
FM auto search/tuning functions  
FM multiple audio routing options: I2S, PCM, eSCO, and A2DP  
FM mono-stereo blend and switch, and soft mute support  
FM audio pause detect support  
Audio rate-matching algorithms  
Multiple simultaneous A2DP audio stream  
FM over Bluetooth operation and on-chip stereo headset emulation (SBC)  
Document Number: 002-14809 Rev. *J  
Page 8 of 165  
CYW4354  
1.3 Standards Compliance  
The CYW4354 supports the following standards:  
Bluetooth 2.1 + EDR  
Bluetooth 3.0 + HS  
Bluetooth 4.1 (Bluetooth Low Energy)  
65 MHz to 108 MHz FM bands (US, Europe, and Japan)  
IEEE802.11ac mandatory and optional requirements for 20 MHz, 40 MHz, and 80 MHz channels  
IEEE 802.11n—Handheld Device Class (Section 11)  
IEEE 802.11a  
IEEE 802.11b  
IEEE 802.11g  
IEEE 802.11d  
IEEE 802.11h  
IEEE 802.11i  
Security:  
WEP  
WPA™ Personal  
WPA2™ Personal  
WMM  
WMM-PS (U-APSD)  
WMM-SA  
AES (Hardware Accelerator)  
TKIP (HW Accelerator)  
CKIP (SW Support)  
Proprietary Protocols:  
CCXv2  
CCXv3  
CCXv4  
CCXv5  
IEEE 802.15.2 Coexistence Compliance—on silicon solution compliant with IEEE 3 wire requirements  
The CYW4354 will support the following future drafts/standards:  
IEEE 802.11r—Fast Roaming (between APs)  
IEEE 802.11w—Secure Management Frames  
IEEE 802.11 Extensions:  
IEEE 802.11e QoS Enhancements (In accordance with the WMM® specification, QoS is already supported.)  
IEEE 802.11h 5 GHz Extensions  
IEEE 802.11i MAC Enhancements  
IEEE 802.11k Radio Resource Measurement  
Document Number: 002-14809 Rev. *J  
Page 9 of 165  
CYW4354  
2. Power Supplies and Power Management  
2.1 Power Supply Topology  
One Buck regulator, multiple LDO regulators, and a power management unit (PMU) are integrated into the CYW4354. All regulators  
are programmable via the PMU. These blocks simplify power supply design for Bluetooth, WLAN, and FM functions in embedded  
designs.  
A single VBAT (3.0V to 5.25V DC max.) and VIO supply (1.8V to 3.3V) can be used, with all additional voltages being provided by the  
regulators in the CYW4354.  
Two control signals, BT_REG_ON and WL_REG_ON, are used to power-up the regulators and take the respective section out of  
reset. The CBUCK CLDO and LNLDO power up when any of the reset signals are deasserted. All regulators are powered down only  
when both BT_REG_ON and WL_REG_ON are deasserted. The CLDO and LNLDO may be turned off/on based on the dynamic  
demands of the digital baseband.  
The CYW4354 allows for an extremely low power-consumption mode by completely shutting down the CBUCK, CLDO, and LNLDO  
regulators. When in this state, LPLDO1 (which is a low-power linear regulator supplied by the system VIO supply) provides the  
CYW4354 with all the voltages it requires, further reducing leakage currents.  
2.2 CYW4354 PMU Features  
VBAT to 1.35Vout (600 mA maximum) Core-Buck (CBUCK) switching regulator  
VBAT to 3.3Vout (600 mA maximum) LDO3P3  
VBAT to 3.3Vout (150 mA maximum) LDO3P3_B  
VBAT to 2.5V out (70 mA maximum) BTLDO2P5  
1.35V to 1.2Vout (150 mA maximum) LNLDO  
1.35V to 1.2Vout (300 mA maximum) CLDO with bypass mode for deep-sleep  
Additional internal LDOs (not externally accessible)  
Figure 3 on page 11 illustrates the typical power topology for the CYW4354. The shaded areas are internal to the CYW4354.  
Document Number: 002-14809 Rev. *J  
Page 10 of 165  
CYW4354  
Figure 3. Typical Power Topology for the CYW4354  
1.2V  
Internal LNLDO  
WL RF – AFE  
1.2V  
Internal LNLDO  
WL RF – TX (2.4 GHz, 5 GHz)  
1.2V  
WL RF – LOGEN (2.4 GHz, 5 GHz)  
WL RF – RX/LNA (2.4 GHz, 5 GHz)  
Internal VCOLDO  
1.2V  
Internal LNLDO  
1.2V  
XTAL LDO  
WL RF – XTAL  
WL RF – RFPLL PFD/MMD  
1.2V  
LNLDO  
Max 150 mA  
BT RF/FM  
HSIC/DFE/DFLL  
WL_REG_ON  
BT_REG_ON  
PCIE PLL/RXTX  
Core Buck  
Regulator  
CBUCK  
WLAN BBPLL/DFLL  
WLAN/BT/CLB/Top, always on  
VBAT  
1.35V  
Max 600 mA  
WL OTP  
WL PHY  
CLDO  
Max 300 mA  
(Bypass in deep  
sleep)  
1.1V  
LPLDO1  
3 mA  
1.2V– 1.1V  
VDDIO  
WL DIGITAL  
BT DIGITAL  
WL/BT SRAMs  
2.5V  
3.3V  
3.3V  
BTLDO2P5  
Max 70 mA  
BT CLASS 1 PA  
WL RFPA (2.4G, 5G)  
WL PAD (2.4 GHz, 5 GHz)  
VDDIO_RF  
LDO3P3  
Max 600 mA  
WL OTP 3.3V  
LDO3P3_B  
Max 150 mA  
WL RF – VCO  
WL RF – CP  
Internal LNLDO  
Internal LNLDO  
Document Number: 002-14809 Rev. *J  
Page 11 of 165  
CYW4354  
2.3 WLAN Power Management  
The CYW4354 has been designed with the stringent power consumption requirements of mobile devices in mind. All areas of the chip  
design are optimized to minimize power consumption. Silicon processes and cell libraries were chosen to reduce leakage current and  
supply voltages. Additionally, the CYW4354 integrated RAM is a high Vt memory with dynamic clock control. The dominant supply  
current consumed by the RAM is leakage current only. Additionally, the CYW4354 includes an advanced WLAN power management  
unit (PMU) sequencer. The PMU sequencer provides significant power savings by putting the CYW4354 into various power  
management states appropriate to the current environment and activities that are being performed. The power management unit  
enables and disables internal regulators, switches, and other blocks based on a computation of the required resources and a table  
that describes the relationship between resources and the time needed to enable and disable them. Power up sequences are fully  
programmable. Configurable, free-running counters (running at 32.768 kHz LPO clock) in the PMU sequencer are used to turn on/  
turn off individual regulators and power switches. Clock speeds are dynamically changed (or gated altogether) for the current mode.  
Slower clock speeds are used wherever possible.  
The CYW4354 WLAN power states are described as follows:  
Active mode— All WLAN blocks in the CYW4354 are powered up and fully functional with active carrier sensing and frame trans-  
mission and receiving. All required regulators are enabled and put in the most efficient mode based on the load current. Clock  
speeds are dynamically adjusted by the PMU sequencer.  
Deep-sleep mode—Most of the chip including both analog and digital domains and most of the regulators are powered off. All main  
clocks (PLL, crystal oscillator, orTCXO) are shut down to reduce active power to the minimum. The 32.768 kHz LPO clock is available  
only for the PMU sequencer. This condition is necessary to allow the PMU sequencer to wake up the chip and transition to Active  
mode. Logic states in the digital core are saved and preserved into a retention memory in the always-ON domain before the digital  
core is powered off. Upon a wake-up event triggered by the PMU timers, an external interrupt or a host resume through the HSIC  
or SDIO bus, logic states in the digital core are restored to their pre-deep-sleep settings to avoid lengthy HW reinitialization. In Deep-  
sleep mode, the primary source of power consumption is leakage current.  
Power-down mode—The CYW4354 is effectively powered off by shutting down all internal regulators. The chip is brought out of  
this mode by external logic re-enabling the internal regulators.  
2.4 PMU Sequencing  
The PMU sequencer is responsible for minimizing system power consumption. It enables and disables various system resources  
based on a computation of the required resources and a table that describes the relationship between resources and the time needed  
to enable and disable them.  
Resource requests may come from several sources: clock requests from cores, the minimum resources defined in the ResourceMin  
register, and the resources requested by any active resource request timers. The PMU sequencer maps clock requests into a set of  
resources required to produce the requested clocks.  
Each resource is in one of four states: enabled, disabled, transition_on, and transition_off and has a timer that contains 0 when the  
resource is enabled or disabled and a non-zero value in the transition states. The timer is loaded with the time_on or time_off value  
of the resource when the PMU determines that the resource must be enabled or disabled. That timer decrements on each 32.768 kHz  
PMU clock. When it reaches 0, the state changes from transition_off to disabled or transition_on to enabled. If the time_on value is  
0, the resource can go immediately from disabled to enabled. Similarly, a time_off value of 0 indicates that the resource can go  
immediately from enabled to disabled. The terms enable sequence and disable sequence refer to either the immediate transition or  
the timer load-decrement sequence.  
During each clock cycle, the PMU sequencer performs the following actions:  
Computes the required resource set based on requests and the resource dependency table.  
Decrements all timers whose values are non zero. If a timer reaches 0, the PMU clears the ResourcePending bit for the resource  
and inverts the ResourceState bit.  
Compares the request with the current resource status and determines which resources must be enabled or disabled.  
Initiates a disable sequence for each resource that is enabled, no longer being requested, and has no powered up dependents.  
Initiates an enable sequence for each resource that is disabled, is being requested, and has all of its dependencies enabled.  
Document Number: 002-14809 Rev. *J  
Page 12 of 165  
CYW4354  
2.5 Power-Off Shutdown  
The CYW4354 provides a low-power shutdown feature that allows the device to be turned off while the host, and any other devices  
in the system, remain operational. When the CYW4354 is not needed in the system, VDDIO_RF and VDDC are shut down while  
VDDIO remains powered. This allows the CYW4354 to be effectively off while keeping the I/O pins powered so that they do not draw  
extra current from any other devices connected to the I/O.  
During a low-power shut-down state, provided VDDIO remains applied to the CYW4354, all outputs are tristated, and most inputs  
signals are disabled. Input voltages must remain within the limits defined for normal operation. This is done to prevent current paths  
or create loading on any digital signals in the system, and enables the CYW4354 to be fully integrated in an embedded device and  
take full advantage of the lowest power-savings modes.  
When the CYW4354 is powered on from this state, it is the same as a normal power-up and the device does not retain any information  
about its state from before it was powered down.  
2.6 Power-Up/Power-Down/Reset Circuits  
The CYW4354 has two signals (see Table 3) that enable or disable the Bluetooth and WLAN circuits and the internal regulator blocks,  
allowing the host to control power consumption. For timing diagrams of these signals and the required power-up sequences, see  
Power-Up Sequence and Timing on page 153.  
Table 3. Power-Up/Power-Down/Reset Control Signals  
Signal  
Description  
WL_REG_ON  
This signal is used by the PMU (with BT_REG_ON) to power up the WLAN section. It is also OR-gated with the  
BT_REG_ON input to control the internal CYW4354 regulators. When this pin is high, the regulators are enabled  
and the WLAN section is out of reset. When this pin is low, the WLAN section is in reset. If BT_REG_ON and  
WL_REG_ON are both low, the regulators are disabled. This pin has an internal 200 kpull-down resistor that is  
enabled by default. It can be disabled through programming.  
BT_REG_ON  
This signal is used by the PMU (with WL_REG_ON) to decide whether or not to power down the internal CYW4354  
regulators. If BT_REG_ON and WL_REG_ON are low, the regulators will be disabled. This pin has an internal  
200 kpull-down resistor that is enabled by default. It can be disabled through programming.  
Document Number: 002-14809 Rev. *J  
Page 13 of 165  
CYW4354  
3. Frequency References  
An external crystal is used for generating all radio frequencies and normal operation clocking. As an alternative, an external frequency  
reference may be used. In addition, a low-power oscillator (LPO) is provided for lower power mode timing.  
3.1 Crystal Interface and Clock Generation  
The CYW4354 can use an external crystal to provide a frequency reference. The recommended configuration for the crystal oscillator  
including all external components is shown in Figure 4. Consult the reference schematics for the latest configuration.  
Figure 4. Recommended Oscillator Configuration  
C*  
WRF_XTAL_IN  
37.4 MHz  
C*  
Xohms*  
WRF_XTAL_OUT  
*Valuesdetermined by crystal  
drive level. See reference  
schematics for details.  
A fractional-N synthesizer in the CYW4354 generates the radio frequencies, clocks, and data/packet timing, enabling it to operate  
using a wide selection of frequency references.  
For SDIO, HSIC, and PCIe WLAN host applications, the recommended default frequency reference is a 37.4 MHz crystal. For PCIe  
applications, see Table 4 on page 15 for details on alternatives for the external frequency reference. The signal characteristics for the  
crystal oscillator interface are also listed in Table 4.  
For SDIO WLAN host applications, the recommended default frequency reference is a 37.4 MHz crystal. The signal characteristics  
for the crystal oscillator interface are also listed in Table 4.  
Note:  
Although the fractional-N synthesizer can support alternative reference frequencies, frequencies other than the default require support  
to be added in the driver, plus additional extensive system testing. Contact Broadcom for further details.  
Document Number: 002-14809 Rev. *J  
Page 14 of 165  
CYW4354  
3.2 External Frequency Reference  
For operation in SDIO and HSIC modes only, an alternative to a crystal (an external precision frequency reference) can be used. The  
recommended default frequency is 52 MHz ±10 ppm, and it must meet the phase noise requirements listed in Table 4.  
If used, the external clock should be connected to the WRF_XTAL_IN pin through an external 1000 pF coupling capacitor, as shown  
in Figure 5. The internal clock buffer connected to this pin will be turned OFF when the CYW4354 goes into sleep mode. When the  
clock buffer turns ON and OFF there will be a small impedance variation. Power must be supplied to the WRF_XTAL_VDD1P5 pin.  
Figure 5. Recommended Circuit to Use with an External Reference Clock  
1000 pF  
Reference  
WRF_XTAL_IN  
Clock  
NC  
WRF_XTAL_OUT  
Table 4. Crystal Oscillator and External Clock—Requirements and Performance  
Crystala  
External Frequency Ref-  
erenceb,c  
Parameter  
Conditions/Notes  
Min.  
35  
Typ.  
37.4  
Max.  
Min.  
Typ.  
52  
Max.  
Units  
MHz  
Frequency  
2.4G and 5G bands: IEEE 802.11ac  
operation, SDIO3.0, HSIC and PCIe  
WLAN interfaces  
2.4G and 5G bands, IEEE 802.11ac  
operation, PCIe interface alternative  
frequency  
40  
MHz  
MHz  
5G band: IEEE 802.11n operation only 19  
52  
35  
52  
2.4G band: IEEE 802.11n operation, Ranges between 19 MHz and 52 MHzd,e  
and both bands legacy 802.11a/b/g  
operation only  
Frequencytoleranceover Without trimming  
the lifetime of the  
–20  
20  
–20  
20  
ppm  
equipment, including  
temperaturef  
Crystal load capacitance  
ESR  
12  
pF  
60  
External crystal must be able to  
tolerate this drive level.  
200  
µW  
Drive level  
Input impedance  
(WRF_XTAL_IN)  
Resistive  
30  
100  
kΩ  
pF  
V
Capacitive  
7.5  
7.5  
0.2  
WRF_XTAL_IN  
Input low level  
DC-coupled digital signal  
0
WRF_XTAL_IN  
Input high level  
DC-coupled digital signal  
AC-coupled analog signal  
1.0  
1.26  
V
WRF_XTAL_IN  
input voltage  
(see Figure 5)  
400  
1200  
mVp-p  
Duty cycle  
37.4 MHz clock  
40  
50  
60  
%
Document Number: 002-14809 Rev. *J  
Page 15 of 165  
CYW4354  
Table 4. Crystal Oscillator and External Clock—Requirements and Performance (Cont.)  
Crystala  
External Frequency Ref-  
erenceb,c  
Parameter  
Conditions/Notes  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
–129  
–136  
–137  
–144  
–134  
–141  
–142  
–149  
–150  
–157  
Units  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Phase Noiseg  
(IEEE 802.11b/g)  
37.4 MHz clock at 10 kHz offset  
37.4 MHz clock at 100 kHz offset  
37.4 MHz clock at 10 kHz offset  
37.4 MHz clock at 100 kHz offset  
37.4 MHz clock at 10 kHz offset  
37.4 MHz clock at 100 kHz offset  
37.4 MHz clock at 10 kHz offset  
37.4 MHz clock at 100 kHz offset  
37.4 MHz clock at 10 kHz offset  
37.4 MHz clock at 100 kHz offset  
Phase Noiseg  
(IEEE 802.11a)  
Phase Noiseg  
(IEEE 802.11n, 2.4 GHz)  
Phase Noiseg,h  
(IEEE 802.11n, 5 GHz)  
Phase Noiseg  
(IEEE 802.11ac, 5 GHz)  
a. (Crystal) Use WRF_XTAL_IN and WRF_XTAL_OUT.  
b. See “External Frequency Reference” on page 15 for alternate connection methods.  
c. For a clock reference other than 37.4 MHz, 20 × log10(f/ 37.4) dB should be added to the limits, where f = the reference clock frequency in MHz.  
d. BT_TM6 should be tied low for a 52 MHz clock reference. For other frequencies, BT_TM6 should be tied high. Note that 52 MHz is not an  
auto–detected frequency using the LPO clock.  
e. The frequency step size is approximately 80 Hz resolution.  
f. It is the responsibility of the equipment designer to select oscillator components that comply with these specifications.  
g. Assumes that external clock has a flat phase noise response above 100 kHz.  
h. If the reference clock frequency is <35 MHz the phase noise requirements must be tightened by an additional 2 dB.  
Document Number: 002-14809 Rev. *J  
Page 16 of 165  
CYW4354  
3.3 External 32.768 kHz Low-Power Oscillator  
The CYW4354 uses a secondary low-frequency clock for Low-Power mode timing. Either the internal low- precision LPO or an external  
32.768 kHz precision oscillator is required. The internal LPO frequency range is approximately 33 kHz (± 30%) over process, voltage,  
and temperature, which is adequate for some applications. However, one trade-off caused by this wide LPO tolerance is a small  
current consumption increase during power save mode that is incurred by the need to wake up earlier to avoid missing beacons.  
Whenever possible, the preferred approach is to use a precision external 32.768 kHz clock which meets the requirements listed in  
Table 5.  
Table 5. External 32.768 kHz Sleep Clock Specifications  
Parameter  
Nominal input frequency  
LPO Clock  
Unit  
32.768  
±200  
kHz  
Frequency accuracy  
Duty cycle  
ppm  
%
30–70  
Input signal amplitude  
200-3300  
mV, p-p  
Signal type  
Square-wave or sine-wave  
Input impedancea  
> 100k  
< 5  
pF  
Clock jitter (during initial start-up)  
< 10,000  
ppm  
a. When power is applied or switched off.  
Document Number: 002-14809 Rev. *J  
Page 17 of 165  
CYW4354  
4. Bluetooth + FM Subsystem Overview  
The Cypress CYW4354 is a Bluetooth 4.1 + EDR-compliant, baseband processor/2.4 GHz transceiver with an integrated FM/RDS/  
RBDS receiver. It features the highest level of integration and eliminates all critical external components, thus minimizing the footprint,  
power consumption, and system cost of a Bluetooth plus FM radio solution.  
The CYW4354 is the optimal solution for any Bluetooth voice and/or data application that also requires an FM radio receiver. The  
Bluetooth subsystem presents a standard Host Controller Interface (HCI) via a high-speed UART and PCM for audio. The FM  
subsystem supports the HCI control interface, analog output, as well as I2S and PCM interfaces. The CYW4354 incorporates all  
Bluetooth 4.1 features including Secure Simple Pairing, Sniff Subrating, and Encryption Pause and Resume.  
The CYW4354 Bluetooth radio transceiver provides enhanced radio performance to meet the most stringent mobile phone  
temperature applications and the tightest integration into mobile handsets and portable devices. It is fully compatible with any of the  
standard TCXO frequencies and provides full radio compatibility to operate simultaneously with GPS, WLAN, and cellular radios.  
The Bluetooth transmitter also features a Class 1 power amplifier with Class 2 capability.  
4.1 Features  
Major Bluetooth features of the CYW4354 include:  
Supports key features of upcoming Bluetooth standards  
Fully supports Bluetooth Core Specification version 4.1 + (Enhanced Data Rate) EDR features:  
Adaptive Frequency Hopping (AFH)  
Quality of Service (QoS)  
Extended Synchronous Connections (eSCO)—Voice Connections  
Fast Connect (interlaced page and inquiry scans)  
Secure Simple Pairing (SSP)  
Sniff Subrating (SSR)  
Encryption Pause Resume (EPR)  
Extended Inquiry Response (EIR)  
Link Supervision Timeout (LST)  
UART baud rates up to 4 Mbps  
Supports all Bluetooth 4.1 packet types  
Supports maximum Bluetooth data rates over HCI UART  
BT supports full-speed USB 2.0-compliant interface  
Multipoint operation with up to seven active slaves  
Maximum of seven simultaneous active ACL links  
Maximum of three simultaneous active SCO and eSCO connections with scatternet support  
Trigger Broadcom fast connect (TBFC)  
Narrowband and wideband packet loss concealment  
Scatternet operation with up to four active piconets with background scan and support for scatter mode  
High-speed HCI UART transport support with low-power out-of-band BT_DEV_WAKE and BT_HOST_WAKE signaling (see “Host  
Controller Power Management” on page 23)  
Channel quality driven data rate and packet type selection  
Standard Bluetooth test modes  
Extended radio and production test mode features  
Full support for power savings modes  
Bluetooth clock request  
Bluetooth standard sniff  
Deep-sleep modes and software regulator shutdown  
TCXO input and auto-detection of all standard handset clock frequencies. Also supports a low-power crystal, which can be used  
during power save mode for better timing accuracy.  
Document Number: 002-14809 Rev. *J  
Page 18 of 165  
CYW4354  
Major FM Radio features include:  
65 MHz to 108 MHz FM bands supported (US, Europe, and Japan)  
FM subsystem control using the Bluetooth HCI interface  
FM subsystem operates from reference clock inputs.  
Improved audio interface capabilities with full-featured bidirectional PCM and I2S  
I2S can be master or slave.  
FM Receiver-Specific Features Include:  
Excellent FM radio performance with 1 µV sensitivity for 26 dB (S+N)/N  
Signal-dependent stereo/mono blending  
Signal dependent soft mute  
Auto search and tuning modes  
Audio silence detection  
RSSI, IF frequency, status indicators  
RDS and RBDS demodulator and decoder with filter and buffering functions  
Automatic frequency jump  
4.2 Bluetooth Radio  
The CYW4354 has an integrated radio transceiver that has been optimized for use in 2.4 GHz Bluetooth wireless systems. It has been  
designed to provide low-power, low-cost, robust communications for applications operating in the globally available 2.4 GHz  
unlicensed ISM band. It is fully compliant with the Bluetooth Radio Specification and EDR specification and meets or exceeds the  
requirements to provide the highest communication link quality of service.  
4.2.1 Transmit  
The CYW4354 features a fully integrated zero-IF transmitter. The baseband transmit data is GFSK-modulated in the modem block  
and upconverted to the 2.4 GHz ISM band in the transmitter path. The transmitter path consists of signal filtering, I/Q upconversion,  
output power amplifier, and RF filtering. The transmitter path also incorporates /4–DQPSK for 2 Mbps and 8–DPSK for 3 Mbps to  
support EDR. The transmitter section is compatible to the Bluetooth Low Energy specification. The transmitter PA bias can also be  
adjusted to provide Bluetooth class 1 or class 2 operation.  
4.2.2 Digital Modulator  
The digital modulator performs the data modulation and filtering required for the GFSK, /4–DQPSK, and  
8–DPSK signal. The fully digital modulator minimizes any frequency drift or anomalies in the modulation characteristics of the trans-  
mitted signal and is much more stable than direct VCO modulation schemes.  
4.2.3 Digital Demodulator and Bit Synchronizer  
The digital demodulator and bit synchronizer take the low-IF received signal and perform an optimal frequency tracking and bit-  
synchronization algorithm.  
4.2.4 Power Amplifier  
The fully integrated PA supports Class 1 or Class 2 output using a highly linearized, temperature-compensated design. This provides  
greater flexibility in front-end matching and filtering. Due to the linear nature of the PAcombined with some integrated filtering, external  
filtering is required to meet the Bluetooth and regulatory harmonic and spurious requirements. For integrated mobile handset appli-  
cations in which Bluetooth is integrated next to the cellular radio, external filtering can be applied to achieve near thermal noise levels  
for spurious and radiated noise emissions. The transmitter features a sophisticated on-chip transmit signal strength indicator (TSSI)  
block to keep the absolute output power variation within a tight range across process, voltage, and temperature.  
Document Number: 002-14809 Rev. *J  
Page 19 of 165  
CYW4354  
4.2.5 Receiver  
The receiver path uses a low-IF scheme to downconvert the received signal for demodulation in the digital demodulator and bit  
synchronizer. The receiver path provides a high degree of linearity, an extended dynamic range, and high-order on-chip channel  
filtering to ensure reliable operation in the noisy 2.4 GHz ISM band. The front-end topology with built-in out-of-band attenuation  
enables the CYW4354 to be used in most applications with minimal off-chip filtering. For integrated handset operation, in which the  
Bluetooth function is integrated close to the cellular transmitter, external filtering is required to eliminate the desensitization of the  
receiver by the cellular transmit signal.  
4.2.6 Digital Demodulator and Bit Synchronizer  
The digital demodulator and bit synchronizer take the low-IF received signal and perform an optimal frequency tracking and bit  
synchronization algorithm.  
4.2.7 Receiver Signal Strength Indicator  
The radio portion of the CYW4354 provides a Receiver Signal Strength Indicator (RSSI) signal to the baseband, so that the controller  
can take part in a Bluetooth power-controlled link by providing a metric of its own receiver signal strength to determine whether the  
transmitter should increase or decrease its output power.  
4.2.8 Local Oscillator Generation  
Local Oscillator (LO) generation provides fast frequency hopping (1600 hops/second) across the 79 maximum available channels.  
The LO generation subblock employs an architecture for high immunity to LO pulling during PA operation. The CYW4354 uses an  
internal RF and IF loop filter.  
4.2.9 Calibration  
The CYW4354 radio transceiver features an automated calibration scheme that is fully self contained in the radio. No user interaction  
is required during normal operation or during manufacturing to provide the optimal performance. Calibration optimizes the perfor-  
mance of all the major blocks within the radio to within 2% of optimal conditions, including gain and phase characteristics of filters,  
matching between key components, and key gain blocks. This takes into account process variation and temperature variation.  
Calibration occurs transparently during normal operation during the settling time of the hops and calibrates for temperature variations  
as the device cools and heats during normal operation in its environment.  
Document Number: 002-14809 Rev. *J  
Page 20 of 165  
CYW4354  
5. Bluetooth Baseband Core  
The Bluetooth Baseband Core (BBC) implements all of the time critical functions required for high-performance Bluetooth operation.  
The BBC manages the buffering, segmentation, and routing of data for all connections. It also buffers data that passes through it,  
handles data flow control, schedules SCO/ACLTX/RX transactions, monitors Bluetooth slot usage, optimally segments and packages  
data into baseband packets, manages connection status indicators, and composes and decodes HCI packets. In addition to these  
functions, it independently handles HCI event types, and HCI command types.  
The following transmit and receive functions are also implemented in the BBC hardware to increase reliability and security of the TX/  
RX data before sending over the air:  
Symbol timing recovery, data deframing, forward error correction (FEC), header error control (HEC), cyclic redundancy check (CRC),  
data decryption, and data dewhitening in the receiver.  
Data framing, FEC generation, HEC generation, CRC generation, key generation, data encryption, and data whitening in the  
transmitter.  
5.1 Bluetooth 4.1 Features  
The BBC supports all Bluetooth 4.1 features, with the following benefits:  
Dual-mode bluetooth Low Energy (BT and BLE operation)  
Extended Inquiry Response (EIR): Shortens the time to retrieve the device name, specific profile, and operating mode.  
Encryption Pause Resume (EPR): Enables the use of Bluetooth technology in a much more secure environment.  
SniffSubrating(SSR):Optimizespowerconsumptionforlowduty cycleasymmetricdataflow, whichsubsequentlyextendsbattery life.  
Secure Simple Pairing (SSP): Reduces the number of steps for connecting two devices, with minimal or no user interaction required.  
Link Supervision Time Out (LSTO): Additional commands added to HCI and Link Management Protocol (LMP) for improved link  
time-out supervision.  
QoS enhancements: Changes to data traffic control, which results in better link performance. Audio, human interface device (HID),  
bulk traffic, SCO, and enhanced SCO (eSCO) are improved with the erroneous data (ED) and packet boundary flag (PBF) enhance-  
ments.  
5.2 Bluetooth Low Energy  
The CYW4354 supports the Bluetooth Low Energy operating mode.  
5.3 Link Control Layer  
The link control layer is part of the Bluetooth link control functions that are implemented in dedicated logic in the link control unit (LCU).  
This layer consists of the command controller that takes commands from the software, and other controllers that are activated or  
configured by the command controller, to perform the link control tasks. Each task performs a different state in the Bluetooth Link  
Controller.  
Major states:  
Standby  
Connection  
Substates:  
Page  
Page Scan  
Inquiry  
Inquiry Scan  
Sniff  
Document Number: 002-14809 Rev. *J  
Page 21 of 165  
CYW4354  
5.4 Test Mode Support  
The CYW4354 fully supports Bluetooth Test mode as described in Part I:1 of the Specification of the Bluetooth System Version 3.0.  
This includes the transmitter tests, normal and delayed loopback tests, and reduced hopping sequence.  
In addition to the standard Bluetooth Test Mode, the CYW4354 also supports enhanced testing features to simplify RF debugging and  
qualification and type-approval testing. These features include:  
Fixed frequency carrier wave (unmodulated) transmission  
Simplifies some type-approval measurements (Japan)  
Aids in transmitter performance analysis  
Fixed frequency constant receiver mode  
Receiver output directed to I/O pin  
Allows for direct BER measurements using standard RF test equipment  
Facilitates spurious emissions testing for receive mode  
Fixed frequency constant transmission  
Eight-bit fixed pattern or PRBS-9  
Enables modulated signal measurements with standard RF test equipment  
5.5 Bluetooth Power Management Unit  
The Bluetooth Power Management Unit (PMU) provides power management features that can be invoked by either software through  
power management registers or packet handling in the baseband core. The power management functions provided by the CYW4354  
are:  
RF Power Management  
Host Controller Power Management  
BBC Power Management  
FM Power Management  
5.5.1 RF Power Management  
The BBC generates power-down control signals for the transmit path, receive path, PLL, and power amplifier to the 2.4 GHz trans-  
ceiver. The transceiver then processes the power-down functions accordingly.  
Document Number: 002-14809 Rev. *J  
Page 22 of 165  
CYW4354  
5.5.2 Host Controller Power Management  
When running in UART mode, the CYW4354 may be configured so that dedicated signals are used for power management hand-  
shaking between the CYW4354 and the host. The basic power saving functions supported by those hand-shaking signals include the  
standard Bluetooth defined power savings modes and standby modes of operation. Table 6 describes the power-control hand-shake  
signals used with the UART interface.  
Table 6. Power Control Pin Description  
Signal  
Mapped to Pin  
BT_GPIO_0  
Type  
Description  
I
Bluetooth device wake-up: Signal from the host to the CYW4354  
indicating that the host requires attention.  
BT_DEV_WAKE  
Asserted: The Bluetooth device must wake-up or remain awake.  
Deasserted: The Bluetooth device may sleep when sleep criteria are  
met.  
The polarity of this signal is software configurable and can be asserted  
high or low.  
BT_GPIO_1  
O
O
Host wake up. Signal from the CYW4354 to the host indicating that the  
CYW4354 requires attention.  
BT_HOST_WAKE  
Asserted: host device must wake-up or remain awake.  
Deasserted: host device may sleep when sleep criteria are met.  
The polarity of this signal is software configurable and can be asserted  
high or low.  
CLK_REQ  
BT_CLK_REQ_OUT  
WL_CLK_REQ_OUT  
The CYW4354 asserts CLK_REQ when Bluetooth or WLAN wants the  
host to turn on the reference clock. The CLK_REQ polarity is active-high.  
Add an external 100 kpull-down resistor to ensure the signal is  
deasserted when the CYW4354 powers up or resets when VDDIO is  
present.  
Note: Pad function Control Register is set to 0 for these pins. See “DC Characteristics” on page 128 for more details  
Document Number: 002-14809 Rev. *J  
Page 23 of 165  
CYW4354  
The timing for the startup sequence is defined in Figure 6.  
Figure 6. Startup Signaling Sequence  
LPO  
VDDIO  
Host I/Os  
unconfigured  
Host I/Os  
configured  
HostResetX  
T1  
BT_GPIO_0  
(BT_DEV_WAKE  
)
BTH I/Os  
unconfigured  
T2  
BT_REG_ON  
BTH I/Os  
configured  
BT_GPIO_1  
(BT_HOST_WAKE)  
T3  
Host side drives  
this line low  
BT_UART_CTS_N  
BTH device drives this line low  
indicating transport is ready  
T4  
BT_UART_RTS_N  
CLK_REQ_OUT  
T5  
Driven  
Pulled  
Notes:  
T1 is the time for Host to settle it’s IOs after a reset.  
T2 is the time for Host to drive BT_REG_ON high after the Host IOs are configured.  
T3 is the time for BTH (Bluetooth) device to settle its IOs after a reset and reference clock settling time has elapsed .  
T4 is the time for BTH device to drive BT_UART_RTS_N low after the Host drives BT_UART_CTS_N low. This assumes the BTH device has already  
completed initialization.  
T5 is the time for BTH device to drive CLK_REQ_OUT high after BT_REG_ON goes high. Note this pin is used for designs that use an external reference  
clock source from the Host. This pin is irrelevant for Crystal reference clock based designs where the BTH device generates it’s own reference clock from  
an external crystal connected to it’s oscillator circuit.  
Timing diagram assumes VBAT is present.  
Document Number: 002-14809 Rev. *J  
Page 24 of 165  
CYW4354  
5.5.3 BBC Power Management  
The following are low-power operations for the BBC:  
Physical layer packet-handling turns the RF on and off dynamically within transmit/receive packets.  
Bluetooth-specified low-power connection modes: sniff, hold, and park. While in these modes, the CYW4354 runs on the low-power  
oscillator and wakes up after a predefined time period.  
Alow-powershutdownfeatureallowsthedevicetobeturnedoffwhilethehostandanyotherdevicesinthesystemremainoperational.  
When the CYW4354 is not needed in the system, the RF and core supplies are shut down while the I/O remains powered. This  
allows the CYW4354 to effectively be off while keeping the I/O pins powered so they do not draw extra current from any other devices  
connected to the I/O.  
During the low-power shut-down state, provided VDDIO remains applied to the CYW4354, all outputs are tristated,  
and most input signals are disabled. Input voltages must remain within the limits defined for normal operation. This  
is done to prevent current paths or create loading on any digital signals in the system and enables the CYW4354 to  
be fully integrated in an embedded device to take full advantage of the lowest power-saving modes.  
Two CYW4354 input signals are designed to be high-impedance inputs that do not load the driving signal even if the  
chip does not have VDDIO power supplied to it: the frequency reference input (WRF_TCXO_IN) and the 32.768 kHz  
input (LPO). When the CYW4354 is powered on from this state, it is the same as a normal power-up, and the device  
does not contain any information about its state from the time before it was powered down.  
5.5.4 FM Power Management  
The CYW4354 FM subsystem can operate independently of, or in tandem with, the Bluetooth RF and BBC subsystems. The FM  
subsystem power management scheme operates in conjunction with the Bluetooth RF and BBC subsystems. The FM block does not  
have a low power state, it is either on or off.  
5.5.5 Wideband Speech  
The CYW4354 provides support for wideband speech (WBS) using on-chip SmartAudio technology. The CYW4354 can perform  
subband-codec (SBC), as well as mSBC, encoding and decoding of linear 16 bits at 16 kHz (256 Kbps rate) transferred over the PCM  
bus.  
5.5.6 Packet Loss Concealment  
Packet Loss Concealment (PLC) improves apparent audio quality for systems with marginal link performance. Bluetooth messages  
are sent in packets. When a packet is lost, it creates a gap in the received audio bit-stream. Packet loss can be mitigated in several  
ways:  
Fill in zeros.  
Ramp down the output audio signal toward zero (this is the method used in current Bluetooth headsets).  
Repeat the last frame (or packet) of the received bit-stream and decode it as usual (frame repeat).  
These techniques cause distortion and popping in the audio stream. The CYW4354 uses a proprietary waveform extension algorithm  
to provide dramatic improvement in the audio quality. Figure 7 and Figure 8 show audio waveforms with and without Packet Loss  
Concealment. Broadcom PLC/BEC algorithms also support wide band speech.  
Document Number: 002-14809 Rev. *J  
Page 25 of 165  
CYW4354  
Figure 7. CVSD Decoder Output Waveform Without PLC  
Packet Loss Causes Ramp-down  
Figure 8. CVSD Decoder Output Waveform After Applying PLC  
5.5.7 Audio Rate-Matching Algorithms  
The CYW4354 has an enhanced rate-matching algorithm that uses interpolation algorithms to reduce audio stream jitter that may be  
present when the rate of audio data coming from the host is not the same as the Bluetooth or FM audio data rates.  
5.5.8 Codec Encoding  
The CYW4354 can support SBC and mSBC encoding and decoding for wideband speech.  
5.5.9 Multiple Simultaneous A2DP Audio Stream  
The CYW4354 has the ability to take a single audio stream and output it to multiple Bluetooth devices simultaneously. This allows a  
user to share his or her music (or any audio stream) with a friend.  
5.5.10 FM Over Bluetooth  
FM Over Bluetooth enables the CYW4354 to stream data from FM over Bluetooth without requiring the host to be awake. This can  
significantly extend battery life for usage cases where someone is listening to FM radio on a Bluetooth headset.  
5.5.11 Burst Buffer Operation  
The CYW4354 has a data buffer that can buffer data being sent over the HCI and audio transports, then send the data at an increased  
rate. This mode of operation allows the host to sleep for the maximum amount of time, dramatically reducing system current  
consumption.  
5.6 Adaptive Frequency Hopping  
The CYW4354 gathers link quality statistics on a channel by channel basis to facilitate channel assessment and channel map  
selection. The link quality is determined using both RF and baseband signal processing to provide a more accurate frequency-hop  
map.  
Document Number: 002-14809 Rev. *J  
Page 26 of 165  
CYW4354  
5.7 Advanced Bluetooth/WLAN Coexistence  
The CYW4354 includes advanced coexistence technologies that are only possible with a Bluetooth/WLAN integrated die solution.  
These coexistence technologies are targeted at small form-factor platforms, such as cell phones and media players, including appli-  
cations such as VoWLAN + SCO and Video-over-WLAN + High Fidelity BT Stereo.  
Support is provided for platforms that share a single antenna between Bluetooth and WLAN. Dual-antenna applications are also  
supported. The CYW4354 radio architecture allows for lossless simultaneous Bluetooth and WLAN reception for shared antenna  
applications. This is possible only via an integrated solution (shared LNAand joint AGC algorithm). It has superior performance versus  
implementations that need to arbitrate between Bluetooth and WLAN reception.  
The CYW4354 integrated solution enables MAC-layer signaling (firmware) and a greater degree of sharing via an enhanced coexis-  
tence interface. Information is exchanged between the Bluetooth and WLAN cores without host processor involvement.  
The CYW4354 also supports Transmit Power Control on the STA together with standard Bluetooth TPC to limit mutual interference  
and receiver desensitization. Preemption mechanisms are utilized to prevent AP transmissions from colliding with Bluetooth frames.  
Improved channel classification techniques have been implemented in Bluetooth for faster and more accurate detection and elimi-  
nation of interferers (including non-WLAN 2.4 GHz interference).  
The Bluetooth AFH classification is also enhanced by the WLAN core’s channel information.  
5.8 Fast Connection (Interlaced Page and Inquiry Scans)  
The CYW4354 supports page scan and inquiry scan modes that significantly reduce the average inquiry response and connection  
times. These scanning modes are compatible with the Bluetooth version 2.1 page and inquiry procedures.  
Document Number: 002-14809 Rev. *J  
Page 27 of 165  
CYW4354  
6. Microprocessor and Memory Unit for Bluetooth  
The Bluetooth microprocessor core is based on the ARM® Cortex-M3™ 32-bit RISC processor with embedded ICE-RT debug and  
JTAG interface units. It runs software from the link control (LC) layer, up to the host controller interface (HCI).  
The ARM core is paired with a memory unit that contains 668 KB of ROM memory for program storage and boot ROM, 200 KB of  
RAM for data scratchpad and patch RAM code. The internal ROM allows for flexibility during power-on reset to enable the same device  
to be used in various configurations. At power-up, the lower-layer protocol stack is executed from the internal ROM memory.  
External patches may be applied to the ROM-based firmware to provide flexibility for bug fixes or features additions. These patches  
may be downloaded from the host to the CYW4354 through the UART transports. The mechanism for downloading via UART is  
identical to the proven interface of the CYW4330 device.  
6.1 RAM, ROM, and Patch Memory  
The CYW4354 Bluetooth core has 200 KB of internal RAM which is mapped between general purpose scratch pad memory and patch  
memory and 668 KB of ROM used for the lower-layer protocol stack, test mode software, and boot ROM. The patch memory capability  
enables the addition of code changes for purposes of feature additions and bug fixes to the ROM memory.  
6.2 Reset  
The CYW4354 has an integrated power-on reset circuit that resets all circuits to a known power-on state. The BT power-on reset  
(POR) circuit is out of reset after BT_REG_ON goes High. If BT_REG_ON is low, then the POR circuit is held in reset.  
Document Number: 002-14809 Rev. *J  
Page 28 of 165  
CYW4354  
7. Bluetooth Peripheral Transport Unit  
7.1 SPI Interface  
The CYW4354 supports a slave SPI HCI transport with an input clock range of up to 16 MHz. Higher clock rates can be possible. The  
physical interface between the SPI master and the CYW4354 consists of the four SPI signals (SPI_CSB, SPI_CLK, SPI_SI, and  
SPI_SO) and one interrupt signal (SPI_INT). The SPI signals are muxed onto the UART signals, see Table 7. The CYW4354 can be  
configured to accept active-low or active-high polarity on the SPI_CSB chip select signal. It can also be configured to drive an active-  
low or active-high SPI_INT interrupt signal. Bit ordering on the SPI_SI and SPI_SO data lines can be configured as either little-endian  
or big-endian. Additionally, proprietary sleep mode and half-duplex handshaking is implemented between the SPI master and the  
CYW4354. The SPI_INT is required to negotiate the start of a transaction. The SPI interface does not require flow control in the middle  
of a payload. The FIFO is large enough to handle the largest packet size. Only the SPI master can stop the flow of bytes on the data  
lines, since it controls SPI_CSB and SPI_CLK. Flow control should be implemented in the higher layer protocols.  
Table 7. SPI to UART Signal Mapping  
SPI Signals  
UART Signals  
SPI_CLK  
SPI_CSB  
SPI_MISO  
SPI_MOSI  
SPI_INT  
UART_CTS_N  
UART_RTS_N  
UART_TXD  
UART_RXD  
BT_DEV_WAKE  
7.2 SPI/UART Transport Detection  
The BT_HOST_WAKE (BT_GPIO1) pin is also used for BT transport detection. The transport detection occurs during the power-up  
sequence. It selects either UART or SPI transport operation based on the following pin state:  
If the BT_HOST_WAKE (BT_GPIO1) pin is pulled low by an external pull-down during power-up, it selects the SPI transport interface.  
If the BT_HOST_WAKE (BT_GPIO1) pin is not pulled low externally during power-up, then the default internal pull-up is detected  
as a high and it selects the UART transport interface.  
7.3 PCM Interface  
The CYW4354 supports two independent PCM interfaces that share the pins with the I2S interfaces. The PCM Interface on the  
CYW4354 can connect to linear PCM Codec devices in master or slave mode. In master mode, the CYW4354 generates the  
PCM_CLK and PCM_SYNC signals, and in slave mode, these signals are provided by another master on the PCM interface and are  
inputs to the CYW4354.  
The configuration of the PCM interface may be adjusted by the host through the use of vendor-specific HCI commands.  
7.3.1 Slot Mapping  
The CYW4354 supports up to three simultaneous full-duplex SCO or eSCO channels through the PCM interface. These three  
channels are time-multiplexed onto the single PCM interface by using a time-slotting scheme where the 8 kHz or 16 kHz audio sample  
interval is divided into as many as 16 slots. The number of slots is dependent on the selected interface rate of 128 kHz, 512 kHz, or  
1024 kHz. The corresponding number of slots for these interface rate is 1, 2, 4, 8, and 16, respectively. Transmit and receive PCM  
data from an SCO channel is always mapped to the same slot. The PCM data output driver tristates its output on unused slots to allow  
other devices to share the same PCM interface signals. The data output driver tristates its output after the falling edge of the PCM  
clock during the last bit of the slot.  
7.3.2 Frame Synchronization  
The CYW4354 supports both short- and long-frame synchronization in both master and slave modes. In short-frame synchronization  
mode, the frame synchronization signal is an active-high pulse at the audio frame rate that is a single-bit period in width and is  
synchronized to the rising edge of the bit clock. The PCM slave looks for a high on the falling edge of the bit clock and expects the  
first bit of the first slot to start at the next rising edge of the clock. In long-frame synchronization mode, the frame synchronization  
signal is again an active-high pulse at the audio frame rate; however, the duration is three bit periods and the pulse starts coincident  
with the first bit of the first slot.  
Document Number: 002-14809 Rev. *J  
Page 29 of 165  
CYW4354  
7.3.3 Data Formatting  
The CYW4354 may be configured to generate and accept several different data formats. For conventional narrowband speech mode,  
the CYW4354 uses 13 of the 16 bits in each PCM frame. The location and order of these 13 bits can be configured to support various  
data formats on the PCM interface. The remaining three bits are ignored on the input and may be filled with 0s, 1s, a sign bit, or a  
programmed value on the output. The default format is 13-bit 2’s complement data, left justified, and clocked MSB first.  
7.3.4 Wideband Speech Support  
When the host encodes Wideband Speech (WBS) packets in transparent mode, the encoded packets are transferred over the PCM  
bus for an eSCO voice connection. In this mode, the PCM bus is typically configured in master mode for a 4 kHz sync rate with 16-  
bit samples, resulting in a 64 Kbps bit rate. The CYW4354 also supports slave transparent mode using a proprietary rate-matching  
scheme. In SBC-code mode, linear 16-bit data at 16 kHz (256 Kbps rate) is transferred over the PCM bus.  
7.3.5 Multiplexed Bluetooth and FM Over PCM  
In this mode of operation, the CYW4354 multiplexes both FM and Bluetooth audio PCM channels over the same interface, reducing  
the number of required I/Os. This mode of operation is initiated through an HCI command from the host. The format of the data stream  
consists of three channels: a Bluetooth channel followed by two FM channels (audio left and right). In this mode of operation, the bus  
data rate only supports 48 kHz operation per channel with 16 bits sent for each channel. This is done to allow the low data rate  
Bluetooth data to coexist in the same interface as the higher speed I2S data. To accomplish this, the Bluetooth data is repeated six  
times for 8 kHz data and three times for 16 kHz data. An initial sync pulse on the PCM_SYNC line is used to indicate the beginning  
of the frame.  
To support multiple Bluetooth audio streams within the Bluetooth channel, both 16 kHz and 8 kHz streams can be multiplexed. This  
mode of operation is only supported when the Bluetooth host is the master. Figure 9 shows the operation of the multiplexed transport  
with three simultaneous SCO connections. To accommodate additional SCO channels, the transport clock speed is increased. To  
change between modes of operation, the transport must be halted and restarted in the new configuration.  
Figure 9. Functional Multiplex Data Diagram  
1 Frame  
BT SCO 1 Rx  
BT SCO 1 Tx  
BT SCO 2 Rx  
BT SCO 2 Tx  
BT SCO 3 Rx  
FM Right  
FM Right  
FM Left  
FM Left  
PCM_OUT  
PCM_IN  
BT SCO 3 Tx  
PCM_SYNC  
PCM_CLK  
CLK  
16 bits per SCO frame  
16 bits per frame  
16 bits per frame  
Each SCO channel duplicates the data 6 times. Each WBS  
frame duplicates the data three times per frame  
7.3.6 Burst PCM Mode  
In this mode of operation, the PCM bus runs at a significantly higher rate of operation to allow the host to duty cycle its operation and  
save current. In this mode of operation, the PCM bus can operate at a rate of up to 24 MHz. This mode of operation is initiated with  
an HCI command from the host.  
Document Number: 002-14809 Rev. *J  
Page 30 of 165  
CYW4354  
7.3.7 PCM Interface Timing  
Short Frame Sync, Master Mode  
Figure 10. PCM Timing Diagram (Short Frame Sync, Master Mode)  
1
2
3
PCM_BCLK  
4
PCM_SYNC  
PCM_OUT  
8
HIGH IMPEDANCE  
5
7
6
PCM_IN  
Table 8. PCM Interface Timing Specifications (Short Frame Sync, Master Mode)  
Ref No. Characteristics Minimum  
Typical  
Maximum  
Unit  
MHz  
ns  
1
2
3
4
5
6
7
8
PCM bit clock frequency  
PCM bit clock LOW  
PCM bit clock HIGH  
PCM_SYNC delay  
PCM_OUT delay  
PCM_IN setup  
12  
41  
41  
0
ns  
25  
25  
ns  
0
ns  
8
ns  
PCM_IN hold  
8
ns  
Delay from rising edge of PCM_BCLK during last bit period to  
PCM_OUT becoming high impedance  
0
25  
ns  
Document Number: 002-14809 Rev. *J  
Page 31 of 165  
CYW4354  
Short Frame Sync, Slave Mode  
Figure 11. PCM Timing Diagram (Short Frame Sync, Slave Mode)  
1
2
3
PCM_BCLK  
4
5
PCM_SYNC  
PCM_OUT  
9
HIGH IMPEDANCE  
8
6
7
PCM_IN  
Table 9. PCM Interface Timing Specifications (Short Frame Sync, Slave Mode)  
Ref No. Characteristics Minimum  
Typical  
Maximum  
Unit  
MHz  
1
2
3
4
5
6
7
8
9
PCM bit clock frequency  
PCM bit clock LOW  
PCM bit clock HIGH  
PCM_SYNC setup  
PCM_SYNC hold  
PCM_OUT delay  
PCM_IN setup  
12  
41  
41  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
8
0
25  
8
PCM_IN hold  
8
Delay from rising edge of PCM_BCLK during last bit period to  
PCM_OUT becoming high impedance  
0
25  
Document Number: 002-14809 Rev. *J  
Page 32 of 165  
CYW4354  
Long Frame Sync, Master Mode  
Figure 12. PCM Timing Diagram (Long Frame Sync, Master Mode)  
1
2
3
PCM_BCLK  
4
PCM_SYNC  
PCM_OUT  
8
HIGH IMPEDANCE  
7
Bit 0  
Bit 1  
Bit 1  
5
6
Bit 0  
PCM_IN  
Table 10. PCM Interface Timing Specifications (Long Frame Sync, Master Mode)  
Ref No. Characteristics Minimum  
Typical  
Maximum  
Unit  
MHz  
1
2
3
4
5
6
7
8
PCM bit clock frequency  
PCM bit clock LOW  
PCM bit clock HIGH  
PCM_SYNC delay  
PCM_OUT delay  
PCM_IN setup  
12  
41  
41  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
25  
25  
0
8
PCM_IN hold  
8
Delay from rising edge of PCM_BCLK during last bit period to  
PCM_OUT becoming high impedance  
0
25  
Document Number: 002-14809 Rev. *J  
Page 33 of 165  
CYW4354  
Long Frame Sync, Slave Mode  
Figure 13. PCM Timing Diagram (Long Frame Sync, Slave Mode)  
1
2
3
PCM_BCLK  
4
5
PCM_SYNC  
9
Bit 0  
Bit 0  
HIGH IMPEDANCE  
PCM_OUT  
PCM_IN  
Bit 1  
6
7
8
Bit 1  
Table 11. PCM Interface Timing Specifications (Long Frame Sync, Slave Mode)  
Ref No. Characteristics Minimum  
Typical  
Maximum  
Unit  
MHz  
1
2
3
4
5
6
7
8
9
PCM bit clock frequency  
PCM bit clock LOW  
PCM bit clock HIGH  
PCM_SYNC setup  
PCM_SYNC hold  
PCM_OUT delay  
PCM_IN setup  
12  
41  
41  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
8
0
25  
8
PCM_IN hold  
8
Delay from rising edge of PCM_BCLK during last bit period to  
PCM_OUT becoming high impedance  
0
25  
Document Number: 002-14809 Rev. *J  
Page 34 of 165  
CYW4354  
Short Frame Sync, Burst Mode  
Figure 14. PCM Burst Mode Timing (Receive Only, Short Frame Sync)  
1
2
3
PCM_BCLK  
PCM_SYNC  
4
5
6
7
PCM_IN  
Table 12. PCM Burst Mode (Receive Only, Short Frame Sync)  
Ref No. Characteristics  
Minimum  
Typical  
Maximum  
Unit  
MHz  
1
2
3
4
5
6
7
PCM bit clock frequency  
PCM bit clock LOW  
PCM bit clock HIGH  
PCM_SYNC setup  
PCM_SYNC hold  
PCM_IN setup  
24  
20.8  
20.8  
8
ns  
ns  
ns  
ns  
ns  
ns  
8
8
PCM_IN hold  
8
Document Number: 002-14809 Rev. *J  
Page 35 of 165  
CYW4354  
Long Frame Sync, Burst Mode  
Figure 15. PCM Burst Mode Timing (Receive Only, Long Frame Sync)  
1
3
2
PCM_BCLK  
PCM_SYNC  
4
5
6
7
PCM_IN  
Bit 0  
Bit 1  
Table 13. PCM Burst Mode (Receive Only, Long Frame Sync)  
Ref No. Characteristics  
Minimum  
Typical  
Maximum  
Unit  
MHz  
1
2
3
4
5
6
7
PCM bit clock frequency  
PCM bit clock LOW  
PCM bit clock HIGH  
PCM_SYNC setup  
PCM_SYNC hold  
PCM_IN setup  
24  
20.8  
20.8  
8
ns  
ns  
ns  
ns  
ns  
ns  
8
8
PCM_IN hold  
8
Document Number: 002-14809 Rev. *J  
Page 36 of 165  
CYW4354  
7.4 USB Interface  
7.4.1 Features  
The following USB interface features are supported:  
USB Protocol, Revision 2.0, full-speed (12 Mbps) compliant including the hub  
Optional hub compound device with up to three device cores internal to device  
Bus or self-power, dynamic configuration for the hub  
Global and selective suspend and resume with remote wake-up  
Bluetooth HCI  
HID, DFU, UHE (proprietary method to emulate an HID device at system bootup)  
Integrated detach resistor  
7.4.2 Operation  
The CYW4354 can be configured to boot up as either a single USB peripheral or a USB hub with several USB peripherals attached.  
As a single peripheral, the host detects a single USB Bluetooth device. In hub mode, the host detects a hub with one to three of the  
ports already connected to USB devices (see Figure 16).  
Figure 16. USB Compounded Device Configuration  
Host  
USB Compounded Device  
Hub Controller  
USB Device 1  
HID Keyboard  
USB Device 2  
HID Mouse  
USB Device 3  
Bluetooth  
Depending on the desired hub mode configuration, the CYW4354 can boot up showing the three ports connected to logical USB  
devices internal to the CYW4354: a generic Bluetooth device, a mouse, and a keyboard. In this mode, the mouse and keyboard are  
emulated devices, since they connect to real HID devices via a Bluetooth link. The Bluetooth link to these HID devices is hidden from  
the USB host. To the host, the mouse and/or keyboard appear to be directly connected to the USB port. This Broadcom proprietary  
architecture is called USB HID Emulation (UHE).  
The USB device, configuration, and string descriptors are fully programmable, allowing manufacturers to customize the descriptors,  
including vendor and product IDs, the CYW4354 uses to identify itself on the USB port. To make custom USB descriptor information  
available at boot time, stored it in external NVRAM.  
Despite the mode of operation (single peripheral or hub), the Bluetooth device is configured to include the following interfaces:  
Interface 0  
Contains a Control endpoint (Endpoint 0x00) for HCI commands, a Bulk In Endpoint (Endpoint 0x82) for receiving  
ACL data, a Bulk Out Endpoint (Endpoint 0x02) for transmitting ACL data, and an Interrupt Endpoint (Endpoint  
0x81) for HCI events.  
Interface 1  
Interface 2  
Contains Isochronous In and Out endpoints (Endpoints 0x83 and 0x03) for SCO traffic. Several alternate Interface  
1 settings are available for reserving the proper bandwidth of isochronous data (depending on the application).  
Contains Bulk In and Bulk Out endpoints (Endpoints 0x84 and 0x04) used for proprietary testing and debugging  
purposes. These endpoints can be ignored during normal operation.  
Document Number: 002-14809 Rev. *J  
Page 37 of 165  
CYW4354  
7.4.3 USB Hub and UHE Support  
The CYW4354 supports the USB hub and device model (USB, Revision 2.0, full-speed compliant). Optional mouse and keyboard  
devices utilize Broadcom’s proprietary USB HID Emulation (UHE) architecture, which allows these devices appear as standalone HID  
devices even though connected through a Bluetooth link.  
The presence of UHE devices requires the hub to be enabled. The CYW4354 cannot appear as a single keyboard or a single mouse  
device without the hub. Once either mouse or keyboard UHE device is enabled, the hub must also be enabled.  
When the hub is enabled, the CYW4354 handles all standard USB functions for the following devices:  
HID keyboard  
HID mouse  
Bluetooth  
All hub and device descriptors are firmware-programmable. This USB compound device configuration (see Figure 16 on page 37)  
supports up to three downstream ports. This configuration can also be programmed to a single USB device core. The device automat-  
ically detects activity on the USB interface when connected. Therefore, no special configuration is needed to select HCI as the  
transport.  
The hub’s downstream port definition is as follows:  
Port 1 USB lite device core (for HID applications)  
Port 2 USB lite device core (for HID applications)  
Port 3 USB full device core (for Bluetooth applications)  
When operating in hub mode, all three internal devices do not have to be enabled. Each internal USB device can be optionally enabled.  
The configuration record in NVRAM determines which devices are present.  
7.4.4 USB Full-Speed Timing  
Table 14 shows timing specifications for the VDD_USB = 3.3V, VSS = 0V, and TA = 0°C to 85°C operating temperature range.  
Table 14. USB Full-Speed Timing Specifications  
Reference  
Characteristics  
Minimum  
Maximum  
Unit  
1
2
3
4
Transition rise time  
Transition fall time  
4
20  
ns  
ns  
%
4
20  
Rise/fall timing matching  
Full-speed data rate  
90  
111  
12 – 0.25%  
12 + 0.25%  
Mb/s  
Figure 17. USB Full-Speed Timing  
2
1
D+  
90%  
90%  
VCRS  
10%  
10%  
D-  
Document Number: 002-14809 Rev. *J  
Page 38 of 165  
CYW4354  
7.5 UART Interface  
The CYW4354 shares a single UART for Bluetooth and FM. The UART is a standard 4-wire interface (RX, TX, RTS, and CTS) with  
adjustable baud rates from 9600 bps to 4.1 Mbps. The interface features an automatic baud rate detection capability that returns a  
baud rate selection. Alternatively, the baud rate may be selected through a vendor-specific UART HCI command.  
UART has a 1040-byte receive FIFO and a 1040-byte transmit FIFO to support EDR. Access to the FIFOs is conducted through the  
AHB interface through either DMAor the CPU. The UART supports the Bluetooth 4.1 UART HCI specification: H4, a custom Extended  
H4, and H5. The default baud rate is 115.2 Kbaud.  
The UART supports the 3-wire H5 UART transport, as described in the Bluetooth specification (“Three-wire UART Transport Layer”).  
Compared to H4, the H5 UART transport reduces the number of signal lines required by eliminating the CTS and RTS signals.  
The CYW4354 UART can perform XON/XOFF flow control and includes hardware support for the Serial Line Input Protocol (SLIP).  
It can also perform wake-on activity. For example, activity on the RX or CTS inputs can wake the chip from a sleep state.  
Normally, the UART baud rate is set by a configuration record downloaded after device reset, or by automatic baud rate detection,  
and the host does not need to adjust the baud rate. Support for changing the baud rate during normal HCI UART operation is included  
through a vendor-specific command that allows the host to adjust the contents of the baud rate registers. The CYW4354 UARTs  
operate correctly with the host UART as long as the combined baud rate error of the two devices is within ±2%.  
Table 15. Example of Common Baud Rates  
Desired Rate  
4000000  
3692000  
3000000  
2000000  
1500000  
1444444  
921600  
460800  
230400  
115200  
57600  
Actual Rate  
4000000  
3692308  
3000000  
2000000  
1500000  
1454544  
923077  
461538  
230796  
115385  
57692  
Error (%)  
0.00  
0.01  
0.00  
0.00  
0.00  
0.70  
0.16  
0.16  
0.17  
0.16  
0.16  
0.00  
0.16  
0.00  
0.16  
0.00  
38400  
38400  
28800  
28846  
19200  
19200  
14400  
14423  
9600  
9600  
Document Number: 002-14809 Rev. *J  
Page 39 of 165  
CYW4354  
Figure 18. UART Timing  
UART_CTS_N  
UART_TXD  
1
2
Midpoint of STOP bit  
Midpoint of STOP bit  
UART_RXD  
3
UART_RTS_N  
Table 16. UART Timing Specifications  
Ref No. Characteristics  
Minimum  
Typical  
Maximum  
1.5  
Unit  
1
2
3
Delay time, UART_CTS_N low to UART_TXD valid  
Setup time, UART_CTS_N high before midpoint of stop bit  
Delay time, midpoint of stop bit to UART_RTS_N high  
Bit periods  
Bit periods  
Bit periods  
0.5  
0.5  
Document Number: 002-14809 Rev. *J  
Page 40 of 165  
CYW4354  
2
7.6 I S Interface  
The CYW4354 supports two independent I2S digital audio ports: one for Bluetooth audio, and one for high-fidelity FM audio. The I2S  
interface for FM audio supports both master and slave modes. The I2S signals are:  
I2S clock: BT_I2S_CLK  
I2S Word Select: BT_I2S_WS  
I2S Data Out: BT_I2S_DO  
I2S Data In: BT_I2S_DI  
BT_I2S_CLK and BT_I2S_WS become outputs in master mode and inputs in slave mode, whereas BT_I2S_DO always stays as an  
output. The channel word length is 16 bits, and the data is justified so that the MSB of the left-channel data is aligned with the MSB  
of the I2S bus, in accord with the I2S specification. The MSB of each data word is transmitted one bit clock cycle after the BT_I2S_WS  
transition, synchronous with the falling edge of the bit clock. Left-channel data is transmitted when IBT_I2S_WS is low, and right-  
channel data is transmitted when BT_I2S_WS is high. Data bits sent by the CYW4354 are synchronized with the falling edge of  
BT_I2S_CLK and should be sampled by the receiver on the rising edge of BT_I2S_CLK.  
The clock rate in master mode is either of the following:  
48 kHz x 32 bits per frame = 1.536 MHz  
48 kHz x 50 bits per frame = 2.400 MHz  
The master clock is generated from the input reference clock using a N/M clock divider.  
In the slave mode, any clock rate is supported to a maximum of 3.072 MHz.  
Document Number: 002-14809 Rev. *J  
Page 41 of 165  
CYW4354  
7.6.1 I2S Timing  
Note: Timing values specified in Table 16 are relative to high and low threshold levels  
Table 17. Timing for I2S Transmitters and Receivers  
Transmitter  
Receiver  
Lower Limit Upper Limit  
Min. Max.  
Tr  
Master Mode: Clock generated by transmitter or receiver  
Lower LImit  
Min. Max.  
Ttr  
Upper Limit  
Min. Max.  
Notes  
Min.  
Max.  
a
Clock Period T  
b
b
HIGH tHC  
LOWtLC  
0.35Ttr  
0.35Ttr  
0.35Ttr  
0.35Ttr  
Slave Mode: Clock accepted by transmitter or receiver  
c
c
d
HIGH tHC  
0.35Ttr  
0.35Ttr  
0.35Ttr  
0.35Ttr  
LOW tLC  
Rise time tRC  
0.15Ttr  
Transmitter  
e
d
Delay tdtr  
0
0.8T  
Hold time thtr  
Receiver  
f
f
Setup time tsr  
Hold time thr  
0.2Tr  
0
a. The system clock period T must be greater than Ttr and Tr because both the transmitter and receiver have to be able to handle the data transfer  
rate.  
b. At all data rates in master mode, the transmitter or receiver generates a clock signal with a fixed mark/space ratio. For this reason, tHC and tLC  
are specified with respect to T.  
c. In slave mode, the transmitter and receiver need a clock signal with minimum HIGH and LOW periods so that they can detect the signal. So  
long as the minimum periods are greater than 0.35Tr, any clock that meets the requirements can be used.  
d. Because the delay (tdtr) and the maximum transmitter speed (defined by Ttr) are related, a fast transmitter driven by a slow clock edge can  
result in tdtr not exceeding tRC which means thtr becomes zero or negative. Therefore, the transmitter has to guarantee that thtr is greater than  
or equal to zero, so long as the clock rise-time tRC is not more than tRCmax, where tRCmax is not less than 0.15Ttr.  
e. To allow data to be clocked out on a falling edge, the delay is specified with respect to the rising edge of the clock signal and T, always giving  
the receiver sufficient setup time.  
f. The data setup and hold time must not be less than the specified receiver setup and hold time.  
Note: The time periods specified in Figure 19 and Figure 20 are defined by the transmitter speed. The receiver specifications must  
match transmitter performance.  
Document Number: 002-14809 Rev. *J  
Page 42 of 165  
CYW4354  
Figure 19. I2S Transmitter Timing  
T
tRC  
*
tLC > 0.35T  
tHC > 0.35T  
VH = 2.0V  
VL = 0.8V  
SCK  
thtr > 0  
totr < 0.8T  
SD and WS  
T = Clock period  
Ttr = Minimum allowed clock period for transmitter  
T = Ttr  
* tRC is only relevant for transmitters in slave mode.  
Figure 20. I2S Receiver Timing  
T
tLC > 0.35T  
tHC > 0.35  
VH = 2.0V  
VL = 0.8V  
SCK  
tsr > 0.2T  
thr > 0  
SD and WS  
T = Clock period  
Tr = Minimum allowed clock period for transmitter  
T > Tr  
Document Number: 002-14809 Rev. *J  
Page 43 of 165  
CYW4354  
8. FM Receiver Subsystem  
8.1 FM Radio  
The CYW4354 includes a completely integrated FM radio receiver with RDS/RBDS covering all FM bands from 65 MHz to 108 MHz.  
The receiver is controlled through commands on the HCI. FM received audio is available as stereo or in digital form through I2S or  
PCM. The FM radio operates from the external clock reference.  
8.2 Digital FM Audio Interfaces  
The FM audio can be transmitted via the shared PCM and I2S pins, and the sampling rate is programmable. The CYW4354 supports  
a three-wire PCM or I2S audio interface in either master or slave configuration. The master or slave configuration is selected using  
vendor specific commands over the HCI interface. In addition, multiple sampling rates are supported, derived from either the FM or  
Bluetooth clocks. In master mode, the clock rate is either of the following:  
48 kHz × 32 bits per frame = 1.536 MHz  
48 kHz × 50 bits per frame = 2.400 MHz  
In slave mode, any clock rate is supported up to a maximum of 3.072 MHz.  
8.3 FM Over Bluetooth  
The CYW4354 can output received FM audio onto Bluetooth using one of following three links: eSCO, WBS, and A2DP. In all of the  
above modes, once the link has been set up, the host processor can enter sleep mode while the CYW4354 continues to stream FM  
audio to the remote Bluetooth device, allowing the system current consumption to be minimized.  
8.4 eSCO  
In this use case, the stereo FM audio is downsampled to 8 kHz and a mono or stereo stream is then sent through the Bluetooth eSCO  
link to a remote Bluetooth device, typically a headset. Two Bluetooth voice connections must be used to transport stereo.  
8.5 Wide Band Speech Link  
In this case, the stereo FM audio is downsampled to 16 kHz and a mono or stereo stream is then sent through the Bluetooth wideband  
speech link to a remote Bluetooth device, typically a headset. Two Bluetooth voice connections must be used to transport stereo.  
8.6 A2DP  
In this case, the stereo FM audio is encoded by the on-chip SBC encoder and transported as an A2DP link to a remote Bluetooth  
device. Sampling rates of 48 kHz, 44.1 kHz, and 32 kHz joint stereo are supported. An A2DP “lite” stack is implemented in the  
CYW4354 to support this use case, which eliminates the need to route the SBC-encoded audio back to the host to create the A2DP  
packets.  
8.7 Autotune and Search Algorithms  
The CYW4354 supports a number of FM search and tune functions that allows the host to implement many convenient user functions,  
which are accessed through the Broadcom FM stack.  
Tune to Play: Allows the FM receiver to be programmed to a specific frequency.  
Search for SNR > Threshold: Checks the power level of the available channel and the estimated SNR of the channel to help achieve  
precise control of the expected sound quality for the selected FM channel. Specifically, the host can adjust its SNR requirements to  
retrieve a signal with a specific sound quality, or adjust this to return the weakest channels.  
AlternateFrequencyJump:AllowstheFMreceivertoautomaticallyjumptoanalternateFMchannelthatcarriesthesameinformation,  
but has a better SNR. For example, when traveling, a user may pass through a region where a number of channels carry the same  
station. When the user passes from one area to the next, the FM receiver can automatically switch to another channel with a stronger  
signal to spare the user from having to manually change the channel to continue listening to the same station.  
Document Number: 002-14809 Rev. *J  
Page 44 of 165  
CYW4354  
8.8 Audio Features  
A number of features are implemented in the CYW4354 to provide the best possible audio experience for the user.  
Mono/Stereo Blend or Switch: The CYW4354 provides automatic control of the stereo or mono settings based on the FM signal  
carrier-to-noise ratio (C/N). This feature is used to maintain the best possible audio SNR based on the FM channel condition. Two  
modes of operation are supported:  
Blend: In this mode, fine control of stereo separation is used to achieve optimal audio quality over a wide range of input C/N. The  
amount of separation is fully programmable. In Figure 21, the separation is programmed to maintain a minimum 50 dB SNR across  
the blend range.  
Extended blend: In this mode, stereo separation is maximized across a wide range of input CNR. Broadcom static suppression  
typically gives a static-free user experience to within 3 dB of ultimate sensitivity.  
Figure 21. Example Blend/Switch Usage  
Switch: In this mode, the audio switches from full stereo to full mono at a predetermined level to maintain optimal audio quality.  
The stereo-to-mono switch point and the mono-to-stereo switch points are fully programmable to provide the desired amount of  
audio SNR. In Figure 22, the switch point is programmed to switch to mono to maintain a 40 dB SNR.  
Document Number: 002-14809 Rev. *J  
Page 45 of 165  
CYW4354  
Figure 22. Example Blend/Switch Separation  
Soft Mute: Improves the user experience by dynamically muting the output audio proportionate to the FM signal C/N. This prevents  
the user from being assaulted with a blast of static. The mute characteristic is fully programmable to accommodate fine tuning of  
the output signal level. An example mute characteristic is shown in Figure 23.  
Figure 23. Example Soft Mute Characteristic  
Document Number: 002-14809 Rev. *J  
Page 46 of 165  
CYW4354  
High Cut: A programmable high-cut filter is provided to reduce the amount of high-frequency noise caused by static in the output  
audio signal. Like the soft mute circuit, it is fully programmable to allow for any amount of high cut based on the FM signal C/N.  
Audio Pause Detect: The FM receiver monitors the magnitude of the audio signal and notifies the host through an interrupt when  
the magnitude of the signal has fallen below the threshold set for a programmable period. This feature can be used to provide  
alternate frequency jumps during periods of silence to minimize disturbances to the listener. Filtering techniques are used within the  
audio pause detection block to provide more robust presence-to-silence detection and silence-to-presence detection.  
Automatic Antenna Tuning: The CYW4354 has an on-chip automatic antenna tuning network. When used with a single off-chip  
inductor, the on-chip circuitry automatically chooses an optimal on-chip matching component to obtain the highest signal strength  
for the desired frequency. The high-Q nature of this matching network simultaneously provides out-of-band blocking protection as  
well as a reduction of radiated spurious emissions from the FM antenna. It is designed to accommodate a wide range of external  
wire antennas.  
8.9 RDS/RBDS  
The CYW4354 integrates a RDS/RBDS modem and codec, the decoder includes programmable filtering and buffering functions, and  
the encoder includes the option to encode messages to PS or RT frame format with programmable scrolling in PS mode. The RDS/  
RBDS data can be read out in receive mode or delivered in transmit mode through either the HCI interface.  
In addition, the RDS/RBDS functionality supports the following:  
Receive  
Block decoding, error correction and synchronization  
Flywheel synchronization feature, allowing the host to set parameters for acquisition, maintenance, and loss of sync. (It is possible  
to set up the CYW4354 such that synch is achieved when a minimum of two good blocks (error free) are decoded in sequence. The  
number of good blocks required for sync is programmable.)  
Storage capability up to 126 blocks of RDS data  
Full or partial block B match detect and interrupt to host  
Audio pause detection with programmable parameters  
Program Identification (PI) code detection and interrupt to host  
Automatic frequency jump  
Block E filtering  
Soft mute  
Signal dependent mono/stereo blend  
Programmable pre-emphasis  
Document Number: 002-14809 Rev. *J  
Page 47 of 165  
CYW4354  
9. WLAN Global Functions  
9.1 WLAN CPU and Memory Subsystem  
The CYW4354 WLAN section includes an integrated ARM Cortex-R4™ 32-bit processor with internal RAM and ROM. The ARM  
Cortex-R4 is a low-power processor that features low gate count, low interrupt latency, and low-cost debug capabilities. It is intended  
for deeply embedded applications that require fast interrupt response features. Delivering a performance gain of more than 30% over  
the ARM7TDMI® processor, the ARM Cortex-R4 processor implements the ARM v7-R architecture with support for the Thumb®-2  
instruction set.  
At 0.19 µW/MHz, the Cortex-R4 is the most power efficient general-purpose microprocessor available, outperforming 8- and 16-bit  
devices on MIPS/µW.  
Using multiple technologies to reduce cost, the ARM Cortex-R4 offers improved memory utilization, reduced pin overhead, and  
reduced silicon area. It supports independent buses for Code and Data access (ICode/DCode and System buses), integrated sleep  
modes, and extensive debug features including real time trace of program execution.  
On-chip memory for the CPU includes 768 KB SRAM and 640 KB ROM.  
9.2 One-Time Programmable Memory  
Various hardware configuration parameters may be stored in an internal One-Time Programmable (OTP) memory, which is read by  
the system software after device reset. In addition, customer-specific parameters, including the system vendor ID and the MAC  
address can be stored, depending on the specific board design. Up to 484 bytes of user-accessible OTP are available.  
The initial state of all bits in an unprogrammed OTP device is 0. After any bit is programmed to a 1, it cannot be reprogrammed to 0.  
The entire OTP array can be programmed in a single write cycle using a utility provided with the Broadcom WLAN manufacturing test  
tools. Alternatively, multiple write cycles can be used to selectively program specific bytes, but only bits which are still in the 0 state  
can be altered during each programming cycle.  
Prior to OTP programming, all values should be verified using the appropriate editable nvram.txt file, which is provided with the  
reference board design package.  
9.3 GPIO Interface  
The CYW4354 has 11 general-purpose I/O (GPIO) pins in the WLAN section that can be used to connect to various external devices.  
Upon power-up and reset, these pins become tristated. Subsequently, they can be programmed to be either input or output pins via  
the GPIO control register. In addition, the GPIO pins can be assigned to various other functions, see Table 27 on page 97.  
Document Number: 002-14809 Rev. *J  
Page 48 of 165  
CYW4354  
9.4 External Coexistence Interface  
An external handshake interface is available to enable signaling between the device and an external co-located wireless device, such  
as GPS, or LTE, to manage wireless medium sharing for optimal performance.  
Figure 24 and Figure 25 on page 49 show the LTE coexistence interface (including UART) for each CYW4354 package type. See  
Table 27 on page 97 for further details on multiplexed signals, such as the GPIO pins.  
See Table 16 on page 40 for the UART baud rate.  
Figure 24. Cypress GCI Mode LTE Coexistence Interface  
SECI_OUT  
UART_IN  
WLAN  
SECI_IN  
UART_OUT  
GCI  
BTFM  
CYW4354  
LTE/IC  
Notes:  
OR’ing to generate ISM_RX_PRIORITY for ERCX_TXCONF or BT_RX_PRIORITY is achieved by  
setting the GPIO mask registers appropriately.  
SECI_OUT and SECI_IN are multiplexed on the GPIOs.  
Figure 25. Legacy 3-Wire LTE Coexistence Interface  
GCI_GPIO_2  
WCN_PRIORITY  
WLAN  
GCI_GPIO_1  
GCI  
MWS_RX, LTE_PRIORITY  
GCI_GPIO_0  
LTE_FRAME_SYNC  
BT/FM  
CYW4354  
LTE/IC  
Note: OR’ing to generate WCN_PRIORITY FOR ERCX_TXCONF or BT_RX_PRIORITY is achieved by  
setting the GPIO mask registers appropriately.  
Document Number: 002-14809 Rev. *J  
Page 49 of 165  
CYW4354  
9.5 UART Interface  
One 2-wire UART interface can be enabled by software as an alternate function on GPIO pins. Refer to Table 27 on page 97. Provided  
primarily for debugging during development, this UART enables the CYW4354 to operate as RS-232 data termination equipment  
(DTE) for exchanging and managing data with other serial devices. It is compatible with the industry standard 16550 UART, and  
provides a FIFO size of 64 × 8 in each direction.  
9.6 JTAG Interface  
The CYW4354 supports the IEEE 1149.1 JTAG boundary scan standard for performing device package and PCB assembly testing  
during manufacturing. In addition, the JTAG interface allows Broadcom to assist customers by using proprietary debug and charac-  
terization test tools during board bring-up. Therefore, it is highly recommended to provide access to the JTAG pins by means of test  
points or a header on all PCB designs.  
Refer to Table 27 on page 97 for JTAG pin assignments.  
9.7 SPROM Interface  
Various hardware configuration parameters may be stored in an external SPROM instead of the OTP. The SPROM is  
read by system software after device reset. In addition, depending on the board design, customer-specific parameters  
may be stored in SPROM.  
The four SPROM control signals —SPROM_CS, SPROM_CLK, SPROM_MI, and SPROM_MO are multiplexed on the SDIO interface  
(see Table 27 on page 97 for additional details). By default, the SPROM interface supports 2 kbit serial SPROMs, and it can also  
support 4 kbit and 16 kbit serial SPROMs by using the appropriate strapping option.  
9.8 SFLASH Interface  
For use only when the HSIC interface mode is selected, an interface to external SFLASH is available.  
The four SFLASH control signals —SFLASH_CS#, SFLASH_CLK, SFLASH_MI, and SFLASH_MO are multiplexed on the SDIO  
interface (see Table 27 on page 97 for additional details).  
Document Number: 002-14809 Rev. *J  
Page 50 of 165  
CYW4354  
10. WLAN Host Interfaces  
10.1 SDIO v3.0  
All three package options of the CYW4354 WLAN section provide support for SDIO version 3.0, including the new UHS-I modes:  
DS: Default speed (DS) up to 25 MHz, including 1- and 4-bit modes (3.3V signaling).  
HS: High-speed up to 50 MHz (3.3V signaling).  
SDR12: SDR up to 25 MHz (1.8V signaling).  
SDR25: SDR up to 50 MHz (1.8V signaling).  
SDR50: SDR up to 100 MHz (1.8V signaling).  
SDR104: SDR up to 208 MHz (1.8V signaling)  
DDR50: DDR up to 50 MHz (1.8V signaling).  
Note: The CYW4354 is backward compatible with SDIO v2.0 host interfaces.  
The SDIO interface also has the ability to map the interrupt signal on to a GPIO pin for applications requiring an interrupt different  
from the one provided by the SDIO interface. The ability to force control of the gated clocks from within the device is also provided.  
SDIO mode is enabled by strapping options. Refer to Table 24 on page 96 WLAN GPIO Functions and Strapping Options.  
The following three functions are supported:  
Function 0 Standard SDIO function (max. BlockSize/ByteCount = 32B)  
Function 1 Backplane Function to access the internal system-on-chip (SoC) address space  
(max. BlockSize/ByteCount = 64B)  
Function 2 WLAN Function for efficient WLAN packet transfer through DMA  
(max. BlockSize/ByteCount = 512B)  
10.1.1 SDIO Pins  
Table 18. SDIO Pin Descriptions  
SD 4-Bit Mode  
Data line 0  
SD 1-Bit Mode  
DATA0  
DATA1  
DATA2  
DATA3  
CLK  
DATA  
IRQ  
Data line  
Interrupt  
Data line 1 or Interrupt  
Data line 2 or Read Wait  
Data line 3  
RW  
Read Wait  
Not used  
Clock  
N/C  
Clock  
CLK  
CMD  
CMD  
Command line  
Command line  
Document Number: 002-14809 Rev. *J  
Page 51 of 165  
CYW4354  
Figure 26. Signal Connections to SDIO Host (SD 4-Bit Mode)  
CLK  
CYW4354  
CMD  
SD Host  
DAT[3:0]  
Figure 27. Signal Connections to SDIO Host (SD 1-Bit Mode)  
CLK  
CMD  
CYW4354  
DATA  
IRQ  
SD Host  
RW  
Note:  
Per Section 6 of the SDIO specification, pull-ups in the 10 kto 100 krange are required on the four DATA lines and the CMD line.  
This requirement must be met during all operating states either through the use of external pull-up resistors or through proper  
programming of the SDIO host’s internal pull-ups.  
Document Number: 002-14809 Rev. *J  
Page 52 of 165  
CYW4354  
10.2 HSIC Interface  
As an alternative to SDIO, an HSIC host interface can be enabled using the strapping option pins strap_host_ifc_[3:1]. HSIC is a  
simplified derivative of the USB2.0 interface designed to replace a standard USB PHY and cable for short distances (up to 10 cm) on  
board point-to-point connections. Using two signals, a bidirectional data strobe (STROBE) and a bidirectional DDR data signal (DATA),  
it provides high-speed serial 480 Mbps data transfers that are 100% host driver compatible with traditional USB 2.0 cable-connected  
topologies.  
Figure 28 shows the blocks in the HSIC device core.  
Key features of HSIC include:  
High-speed 480 Mbps data rate  
Source-synchronous serial interface using 1.2V LVCMOS signal levels  
No power consumed except when a data transfer is in progress  
Maximum trace length of 10 cm.  
No Plug-n-Play support, no hot attach/removal  
Figure 28. HSIC Device Block Diagram  
32Bit OnChip Communication System  
DMA Engines  
RX FIFO  
TX FIFOs  
Endpoint Management Unit  
USB 2.0 Protocol Engine  
HSIC PHY  
Strobe  
Data  
10.3 PCI Express Interface  
The PCI Express (PCIe™) core on the CYW4354 is a high-performance serial I/O interconnect that is protocol compliant and electri-  
cally compatible with the PCI Express Base Specification v3.0 running at Gen1 speeds. This core contains all the necessary blocks,  
including logical and electrical functional subblocks to perform PCIe functionality and maintain high-speed links, using existing PCI  
system configuration software implementations without modification.  
Organization of the PCIe core is in logical layers: Transaction Layer, Data Link Layer, and Physical Layer, as shown in Figure 29. A  
configuration or link management block is provided for enumerating the PCIe configuration space and supporting generation and  
reception of System Management Messages by communicating with PCIe layers.  
Each layer is partitioned into dedicated transmit and receive units that allow point-to-point communication between the host and  
CYW4354 device. The transmit side processes outbound packets whereas the receive side processes inbound packets. Packets are  
formed and generated in the Transaction and Data Link Layer for transmission onto the high-speed links and onto the receiving device.  
A header is added at the beginning to indicate the packet type and any other optional fields.  
Document Number: 002-14809 Rev. *J  
Page 53 of 165  
CYW4354  
Figure 29. PCI Express Layer Model  
HW/SW Interface  
HW/SW Interface  
Transaction  
Layer  
Transaction  
Layer  
Data Link  
Layer  
Data Link  
Layer  
Physical Layer  
Physical Layer  
Logical Subblock  
Logical Subblock  
Electrical Subblock  
Electrical Subblock  
TX  
RX  
TX  
RX  
10.3.1 Transaction Layer Interface  
The PCIe core employs a packet-based protocol to transfer data between the host and CYW4354 device, delivering new levels of  
performance and features. The upper layer of the PCIe is the Transaction Layer. The Transaction layer is primarily responsible for  
assembly and disassembly of Transaction Layer Packets (TLPs). TLP structure contains header, data payload, and End-to-End CRC  
(ECRC) fields, which are used to communicate transactions, such as read and write requests and other events.  
A pipelined full split-transaction protocol is implemented in this layer to maximize efficient communication between devices with credit-  
based flow control of TLP, which eliminates wasted link bandwidth due to retries.  
10.3.2 Data Link Layer  
The data link layer serves as an intermediate stage between the transaction layer and the physical layer. Its primary responsibility is  
to provide reliable, efficient mechanism for the exchange of TLPs between two directly connected components on the link. Services  
provided by the data link layer include data exchange, initialization, error detection and correction, and retry services.  
Data Link Layer Packets (DLLPs) are generated and consumed by the data link layer. DLLPs are the mechanism used to transfer link  
management information between data link layers of the two directly connected components on the link, including TLP acknowl-  
edgement, power management, and flow control.  
10.3.3 Physical Layer  
The physical layer of the PCIe provides a handshake mechanism between the data link layer and the high-speed signaling used for  
Link data interchange. This layer is divided into the logical and electrical functional subblocks. Both subblocks have dedicated transmit  
and receive units that allow for point-to-point communication between the host and CYW4354 device. The transmit section prepares  
outgoing information passed from the data link layer for transmission, and the receiver section identifies and prepares received  
information before passing it to the data link layer. This process involves link initialization, configuration, scrambler, and data  
conversion into a specific format.  
10.3.4 Logical Subblock  
The logical sub block primary functions are to prepare outgoing data from the data link layer for transmission and identify received  
data before passing it to the data link layer.  
10.3.5 Scrambler/Descrambler  
This PCIe PHY component generates pseudo-random sequence for scrambling of data bytes and the idle sequence. On the transmit  
side, scrambling is applied to characters prior to the 8b/10b encoding. On the receive side, descrambling is applied to characters after  
8b/10b decoding. Scrambling may be disabled in polling and recovery for testing and debugging purposes.  
Document Number: 002-14809 Rev. *J  
Page 54 of 165  
CYW4354  
10.3.6 8B/10B Encoder/Decoder  
The PCIe core on the CYW4354 uses an 8b/10b encoder/decoder scheme to provide DC balancing, synchronizing clock and data  
recovery, and error detection. The transmission code is specified in the ANSI X3.230-1994, clause 11 and in IEEE 802.3z, 36.2.4.  
Using this scheme, 8-bit data characters are treated as 3 bits and 5 bits mapped onto a 4-bit code group and a 6-bit code group,  
respectively. The control bit in conjunction with the data character is used to identify when to encode one of the twelve Special Symbols  
included in the 8b/10b transmission code. These code groups are concatenated to form a 10-bit symbol, which is then transmitted  
serially. Special Symbols are used for link management, frame TLPs, and DLLPs, allowing these packets to be quickly identified and  
easily distinguished.  
10.3.7 Elastic FIFO  
An elastic FIFO is implemented in the receiver side to compensate for the differences between the transmit clock domain and the  
receive clock domain, with worse case clock frequency specified at 600 ppm tolerance. As a result, the transmit and receive clocks  
can shift one clock every 1666 clocks. In addition, the FIFO adaptively adjusts the elastic level based on the relative frequency  
difference of the write and read clock. This technique reduces the elastic FIFO size and the average receiver latency by half.  
10.3.8 Electrical Subblock  
The high-speed signals utilize the Common Mode Logic (CML) signaling interface with on-chip termination and de-emphasis for best-  
in-class signal integrity. A de-emphasis technique is employed to reduce the effects of Intersymbol Interference (ISI) due to the  
interconnect by optimizing voltage and timing margins for worst case channel loss. This results in a maximally open “eye” at the  
detection point, thereby allowing the receiver to receive data with acceptable Bit-Error Rate (BER).  
To further minimize ISI, multiple bits of the same polarity that are output in succession are de-emphasized. Subsequent same bits are  
reduced by a factor of 3.5 dB in power. This amount is specified by PCIe to allow for maximum interoperability while minimizing the  
complexity of controlling the de-emphasis values. The high-speed interface requires AC coupling on the transmit side to eliminate the  
DC common mode voltage from the receiver. The range of AC capacitance allowed is 75 nF to 200 nF.  
10.3.9 Configuration Space  
The PCIe function in the CYW4354 implements the configuration space as defined in the PCI Express Base Specification v3.0.  
Document Number: 002-14809 Rev. *J  
Page 55 of 165  
CYW4354  
11. Wireless LAN MAC and PHY  
11.1 IEEE 802.11ac Draft MAC  
The CYW4354 WLAN MAC is designed to support high-throughput operation with low-power consumption. It does so without compro-  
mising the Bluetooth coexistence policies, thereby enabling optimal performance over both networks. In addition, several power saving  
modes have been implemented that allow the MAC to consume very little power while maintaining network-wide timing synchroni-  
zation. The architecture diagram of the MAC is shown in Figure 30.  
The following sections provide an overview of the important modules in the MAC.  
Figure 30. WLAN MAC Architecture  
Embedded CPU Interface  
Host Registers, DMA Engines  
TXFIFO  
32 KB  
RXFIFO  
10 KB  
PSM  
PMQ  
PSM  
UCODE  
Memory  
IFS  
Backoff, BTCX  
WEP  
TKIP, AES, WAPI  
TSF  
SHM  
BUS  
IHR  
NAV  
BUS  
Shared Memory  
6 KB  
RXE  
RX AMPDU  
TXE  
TX AMPDU  
EXTIHR  
MACPHY Interface  
Document Number: 002-14809 Rev. *J  
Page 56 of 165  
CYW4354  
The CYW4354 WLAN media access controller (MAC) supports features specified in the IEEE 802.11 base standard, and amended  
by IEEE 802.11n. The key MAC features include:  
Enhanced MAC for supporting IEEE 802.11ac Draft features  
Transmission and reception of aggregated MPDUs (A-MPDU) for high throughput (HT)  
Support for power management schemes, including WMM power-save, power-save multi-poll (PSMP) and multiphase PSMP  
operation  
Support for immediate ACK and Block-ACK policies  
Interframe space timing support, including RIFS  
Support for RTS/CTS and CTS-to-self frame sequences for protecting frame exchanges  
Back-off counters in hardware for supporting multiple priorities as specified in the WMM specification  
Timing synchronization function (TSF), network allocation vector (NAV) maintenance, and target beacon transmission time (TBTT)  
generation in hardware  
Hardware offload for AES-CCMP, legacy WPA TKIP, legacy WEP ciphers, WAPI, and support for key management  
Support for coexistence with Bluetooth and other external radios  
Programmable independent basic service set (IBSS) or infrastructure basic service set functionality  
Statistics counters for MIB support  
11.1.1 PSM  
The programmable state machine (PSM) is a micro-coded engine, which provides most of the low-level control to the hardware, to  
implement the IEEE 802.11 specification. It is a microcontroller that is highly optimized for flow control operations, which are predom-  
inant in implementations of communication protocols. The instruction set and fundamental operations are simple and general, which  
allows algorithms to be optimized until very late in the design process. It also allows for changes to the algorithms to track evolving  
IEEE 802.11 specifications.  
The PSM fetches instructions from the microcode memory. It uses the shared memory to obtain operands for instructions, as a data  
store, and to exchange data between both the host and the MAC data pipeline (via the SHM bus). The PSM also uses a scratchpad  
memory (similar to a register bank) to store frequently accessed and temporary variables.  
The PSM exercises fine-grained control over the hardware engines, by programming internal hardware registers (IHR). These IHRs  
are co-located with the hardware functions they control, and are accessed by the PSM via the IHR bus.  
The PSM fetches instructions from the microcode memory using an address determined by the program counter, instruction literal,  
or a program stack. For ALU operations the operands are obtained from shared memory, scratchpad, IHRs, or instruction literals, and  
the results are written into the shared memory, scratchpad, or IHRs.  
There are two basic branch instructions: conditional branches and ALU based branches. To better support the many decision points  
in the IEEE 802.11 algorithms, branches can depend on either a readily available signals from the hardware modules (branch condition  
signals are available to the PSM without polling the IHRs), or on the results of ALU operations.  
11.1.2 WEP  
The wired equivalent privacy (WEP) engine encapsulates all the hardware accelerators to perform the encryption and decryption, and  
MIC computation and verification. The accelerators implement the following cipher algorithms: legacy WEP, WPA TKIP, WPA2 AES-  
CCMP.  
The PSM determines, based on the frame type and association information, the appropriate cipher algorithm to be used. It supplies  
the keys to the hardware engines from an on-chip key table. The WEP interfaces with the TXE to encrypt and compute the MIC on  
transmit frames, and the RXE to decrypt and verify the MIC on receive frames.  
Document Number: 002-14809 Rev. *J  
Page 57 of 165  
CYW4354  
11.1.3 TXE  
The transmit engine (TXE) constitutes the transmit data path of the MAC. It coordinates the DMA engines to store the transmit frames  
in the TXFIFO. It interfaces with WEP module to encrypt frames, and transfers the frames across the MAC-PHY interface at the  
appropriate time determined by the channel access mechanisms.  
The data received from the DMA engines are stored in transmit FIFOs. The MAC supports multiple logical queues to support traffic  
streams that have different QoS priority requirements. The PSM uses the channel access information from the IFS module to schedule  
a queue from which the next frame is transmitted. Once the frame is scheduled, the TXE hardware transmits the frame based on a  
precise timing trigger received from the IFS module.  
The TXE module also contains the hardware that allows the rapid assembly of MPDUs into anA-MPDU for transmission. The hardware  
module aggregates the encrypted MPDUs by adding appropriate headers and pad delimiters as needed.  
11.1.4 RXE  
The receive engine (RXE) constitutes the receive data path of the MAC. It interfaces with the DMAengine to drain the received frames  
from the RXFIFO. It transfers bytes across the MAC-PHY interface and interfaces with the WEP module to decrypt frames. The  
decrypted data is stored in the RXFIFO.  
The RXE module contains programmable filters that are programmed by the PSM to accept or filter frames based on several criteria  
such as receiver address, BSSID, and certain frame types.  
The RXE module also contains the hardware required to detect A-MPDUs, parse the headers of the containers, and disaggregate  
them into component MPDUS.  
11.1.5 IFS  
The IFS module contains the timers required to determine interframe space timing including RIFS timing. It also contains multiple  
backoff engines required to support prioritized access to the medium as specified by WMM.  
The interframe spacing timers are triggered by the cessation of channel activity on the medium, as indicated by the PHY. These timers  
provide precise timing to the TXE to begin frame transmission. The TXE uses this information to send response frames or perform  
transmit frame-bursting (RIFS or SIFS separated, as within a TXOP).  
The backoff engines (for each access category) monitor channel activity, in each slot duration, to determine whether to continue or  
pause the backoff counters. When the backoff counters reach 0, the TXE gets notified, so that it may commence frame transmission.  
In the event of multiple backoff counters decrementing to 0 at the same time, the hardware resolves the conflict based on policies  
provided by the PSM.  
The IFS module also incorporates hardware that allows the MAC to enter a low-power state when operating under the IEEE power  
save mode. In this mode, the MAC is in a suspended state with its clock turned off. A sleep timer, whose count value is initialized by  
the PSM, runs on a slow clock and determines the duration over which the MAC remains in this suspended state. Once the timer  
expires the MAC is restored to its functional state. The PSM updates the TSF timer based on the sleep duration ensuring that the TSF  
is synchronized to the network.  
The IFS module also contains the PTA hardware that assists the PSM in Bluetooth coexistence functions.  
11.1.6 TSF  
The timing synchronization function (TSF) module maintains the TSF timer of the MAC. It also maintains the target beacon trans-  
mission time (TBTT). The TSF timer hardware, under the control of the PSM, is capable of adopting timestamps received from beacon  
and probe response frames in order to maintain synchronization with the network.  
The TSF module also generates trigger signals for events that are specified as offsets from the TSF timer, such as uplink and downlink  
transmission times used in PSMP.  
11.1.7 NAV  
The network allocation vector (NAV) timer module is responsible for maintaining the NAV information conveyed through the duration  
field of MAC frames. This ensures that the MAC complies with the protection mechanisms specified in the standard.  
The hardware, under the control of the PSM, maintains the NAV timer and updates the timer appropriately based on received frames.  
This timing information is provided to the IFS module, which uses it as a virtual carrier-sense indication.  
11.1.8 MAC-PHY Interface  
The MAC-PHY interface consists of a data path interface to exchange RX/TX data from/to the PHY. In addition, there is an  
programming interface, which can be controlled either by the host or the PSM to configure and control the PHY.  
Document Number: 002-14809 Rev. *J  
Page 58 of 165  
CYW4354  
11.2 IEEE 802.11ac Draft PHY  
The CYW4354 WLAN Digital PHY (see Figure 31 on page 60) is designed to comply with IEEE 802.11ac Draft and IEEE  
802.11a/b/g/n dual-stream specifications to provide wireless LAN connectivity supporting data rates from 1 Mbps to  
866.7 Mbps for low-power, high-performance handheld applications.  
The PHY has been designed to work in the presence of interference, radio nonlinearity, and various other impairments.  
It incorporates optimized implementations of the filters, FFT and Viterbi decoder algorithms. Efficient algorithms have  
been designed to achieve maximum throughput and reliability, including algorithms for carrier sense/rejection,  
frequency/phase/timing acquisition and tracking, channel estimation and tracking. The PHY receiver also contains a  
robust IEEE 802.11b demodulator. The PHY carrier sense has been tuned to provide high throughput for IEEE 802.11g/  
11b hybrid networks with Bluetooth coexistence. It has also been designed for sharing an antenna between WL and BT  
to support simultaneous RX-RX.  
The key PHY features include:  
Programmable data rates from MCS0–15 in 20 MHz, 40 MHz, and 80 MHz channels, as specified in IEEE 802.11ac Draft  
Supports Optional Short GI and Green Field modes in TX and RX  
TX and RX LDPC for improved range and power efficiency  
Beamforming support  
All scrambling, encoding, forward error correction, and modulation in the transmit direction and inverse operations in the receive  
direction.  
Supports IEEE 802.11h/k for worldwide operation  
Advanced algorithms for low power, enhanced sensitivity, range, and reliability  
Algorithms to improve performance in presence of Bluetooth  
Closed loop transmit power control  
Digital RF chip calibration algorithms to handle CMOS RF chip non-idealities  
On-the-fly channel frequency and transmit power selection  
Supports per packet RX antenna diversity  
Available per-packet channel quality and signal strength measurements  
Designed to meet FCC and other worldwide regulatory requirements  
Document Number: 002-14809 Rev. *J  
Page 59 of 165  
CYW4354  
Figure 31. WLAN PHY Block Diagram  
CCK/DSSS  
Demodulate  
Filters and  
Radio Comp  
Frequency and  
Timing Synch  
Descramble  
and Deframe  
OFDM  
Demodulate  
Viterbi Decoder  
Carrier Sense,  
AGC, and Rx FSM  
Radio Control  
Block  
Buffers  
MAC  
Interface  
FFT/IFFT  
AFE  
and  
Radio  
Tx FSM  
Modulation  
and Coding  
Common Logic  
Block  
Frame and  
Scramble  
Filters and Radio  
Comp  
Modulate/  
Spread  
PA Comp  
COEX  
Document Number: 002-14809 Rev. *J  
Page 60 of 165  
CYW4354  
12. WLAN Radio Subsystem  
The CYW4354 includes an integrated dual-band WLAN RF transceiver that has been optimized for use in 2.4 GHz and 5 GHz Wireless  
LAN systems. It has been designed to provide low-power, low-cost, and robust communications for applications operating in the  
globally available 2.4 GHz unlicensed ISM or 5 GHz U-NII bands. The transmit and receive sections include all on-chip filtering, mixing,  
and gain control functions.  
Sixteen RF control signals are available (eight per core) to drive external RF switches and support optional external power amplifiers  
and low-noise amplifiers for each band. See the reference board schematics for further details.  
A block diagram of the radio subsystem (core 0) is shown in Figure 32 on page 62. Core 1, is identical to Core 0 without the Bluetooth  
blocks. The integrated on-chip baluns (not shown) convert the fully differential transmit and receive paths to single-ended signal pins.  
12.1 Receiver Path  
The CYW4354 has a wide dynamic range, direct conversion receiver that employs high order on-chip channel filtering to ensure  
reliable operation in the noisy 2.4 GHz ISM band or the entire 5 GHz U-NII band. An on-chip low noise amplifier (LNA) in the 2.4 GHz  
path in core 0 is shared between the Bluetooth and WLAN receivers, whereas the 5 GHz receive path and the core 1 2.4 GHz receive  
path have dedicated on-chip LNAs. Control signals are available that can support the use of external LNAs for each band, which can  
increase the receive sensitivity by several dB.  
12.2 Transmit Path  
Baseband data is modulated and upconverted to the 2.4 GHz ISM or 5 GHz U-NII bands, respectively. Linear on-chip power amplifiers  
are included, which are capable of delivering high output power while meeting IEEE 802.11ac and IEEE 802.11a/b/g/n specifications,  
and without the need for external PAs. When using the internal PAs, closed-loop output power control is completely integrated.  
Document Number: 002-14809 Rev. *J  
Page 61 of 165  
CYW4354  
Figure 32. Radio Functional Block Diagram (core 0)  
WL DAC  
WL PA  
WL PAD  
WL PGA  
WL TXLPF  
WL TX GMixer  
WL DAC  
WL APA  
WL APAD  
WL APGA  
WL TXLPF  
WL TX AMixer  
WL RX AMixer  
Voltage  
Regulators  
WLAN BB  
WL ADC  
WL ALNA11  
WL ALNA12  
WL RXLPF  
MUX  
WL ADC  
SLNA  
WL GLNA12  
WL RXLPF  
WL RX GMixer  
WL ATX  
WL ARX  
WL GTX  
WL GRX  
CLB  
WL LOGEN  
WL PLL  
Gm  
BT LNA GM  
Shared XO  
BT RX  
BT TX  
BT LOGEN  
BT PLL  
LPO/Ext LPO/RCAL  
BT ADC  
BT RXLPF  
BT RXLPF  
BT ADC  
BT LNA Load  
BT PA  
BT RX Mixer  
BT BB  
BT FM  
BT DAC  
BT DAC  
BT TX Mixer  
BT TXLPF  
12.3 Calibration  
The CYW4354 features dynamic and automatic on-chip calibration to continually compensate for temperature and process variations  
across components. These calibration routines are performed periodically in the course of normal radio operation. Examples of some  
of the automatic calibration algorithms are baseband filter calibration for optimum transmit and receive performance, and LOFT  
calibration for carrier leakage reduction. In addition, I/Q Calibration, R Calibration, and VCO Calibration are performed on-chip. No  
per-board calibration is required in manufacturing test, which helps to minimize the test time and cost in large volume production.  
Document Number: 002-14809 Rev. *J  
Page 62 of 165  
CYW4354  
13. Pinout and Signal Descriptions  
13.1 Ball Maps  
Figure 33 and Figure 34 on page 64 show the WLBGA ball map.  
Figure 33. WLBGA Ball Map, 4.87 mm × 7.67 mm Array, 192-Ball, A1–V6 (Bottom View—Balls Facing Up)  
6
5
4
3
2
1
HSIC_DATA  
PCIE_REFCLKN  
PCIE_REFCLKP  
PCIE_TDN  
PCIE_TDP  
A
B
C
D
E
PCIE_PLL  
_AVDD1P2  
PCIE_RXTX  
_AVDD1P2  
HSIC_AGND12PLL  
HSIC_DVDD12  
VSSC  
PCIE_PLL_AVSS  
PCIE_PME_L  
PCIE_RXTX_AVSS  
PCIE_PERST_L  
VDDC  
PCIE_RDN  
PCIE_RDP  
PCIE_TESTP  
VSSC  
PCIE_TESTN  
PCIE_CLKREQ_L  
BT_USB_DN  
GPIO_9  
BT_VDDC  
FM_AUDIOVDD1P2  
FM_AOUT1  
FM_AOUT2  
LPO_IN  
BT_USB_DP  
CLK_REQ  
FM_PLLVDD1P2  
FM_PLLVSS  
BT_VDDC  
F
FM_AUDIOVSS  
FM_VCOVSS  
BT_I2S_DO  
BT_I2S_DI  
VSSC  
FM_LNAVCOVDD1P2  
FM_RFIN  
G
H
J
BT_UART_RXD  
BT_UART_TXD  
BT_UART_RTS_L  
BT_UART_CTS_L  
BT_VDDC  
BT_PCM_OUT  
BT_PCM_IN  
BT_GPIO_4  
BT_DEV_WAKE  
VSSC  
FM_LNAVSS  
BT_VCOVSS  
BT_PLLVDD1P2  
BT_PAVSS  
BT_I2S_CLK  
BT_PCM_SYNC  
BT_I2S_WS  
BT_HOST_WAKE  
BT_IFVDD1P2  
BT_PLLVSS  
BT_VCOVDD1P2  
BT_LNAVDD1P2  
BT_RF  
K
L
BT_PCM_CLK  
BT_IFVSS  
BT_PAVDD2P5  
M
N
P
R
T
WRF_RX2G  
_GND1P2_CORE0  
WRF_LNA_2G  
_GND1P2_CORE0  
WRF_RFIN  
_2G_CORE0  
RF_SW_CTRL_4  
RF_SW_CTRL_6  
WRF_AFE  
_GND1P2_CORE0  
WRF_TX  
_GND1P2_CORE0  
WRF_PA2G_VBAT  
_GND3P3_CORE0  
WRF_RFOUT  
_2G_CORE0  
WRF_LOGEN  
_GND1P2  
WRF_LOGENG  
_GND1P2  
WRF_GPIO  
_OUT_CORE0  
WRF_PADRV_VBAT  
_VDD3P3_CORE0  
WRF_PA2G_VBAT  
_GND3P3_CORE0  
WRF_PA2G_VBAT  
_VDD3P3_CORE0  
WRF_MMD  
_GND1P2  
WRF_MMD  
_VDD1P2  
WRF_PFD  
_VDD1P2  
WRF_PADRV_VBAT  
_GND3P3_CORE0  
WRF_PA5G_VBAT  
_GND3P3_CORE0  
WRF_PA5G_VBAT  
_VDD3P3_CORE0  
WRF_BUCK  
_VDD1P5  
CORE0  
WRF_BUCK  
_GND1P5_CORE0  
WRF_VCO  
_GND1P2  
WRF_PFD  
_GND1P2  
WRF_TSSI_A  
_CORE0  
WRF_PA5G_VBAT  
_GND3P3_CORE0  
WRF_RFOUT  
_5G_CORE0  
U
V
WRF_SYNTH  
_VBAT_VDD3P3  
WRF_CP  
_GND1P2  
WRF_RX5G  
_GND1P2_CORE0  
WRF_LNA_5G  
_GND1P2_CORE0  
WRF_RFIN  
_5G_CORE0  
6
5
4
3
2
1
Document Number: 002-14809 Rev. *J  
Page 63 of 165  
CYW4354  
Figure 34. WLBGA Ball Map, 4.87 × 7.67 Array, 192-Ball, A7 – V12 (Bottom View—Balls Facing Up)  
12  
11  
10  
9
8
7
SR  
_PVSS  
SR  
_VLX  
A
B
C
D
E
WL_REG_ON  
SDIO_CMD  
SDIO_CLK  
HSIC_STROBE  
SR  
SR  
PMU_AVSS  
VSSC  
SDIO_DATA_0  
SDIO_DATA_1  
JTAG_SEL  
VDDC  
SDIO_DATA_2  
SDIO_DATA_3  
VDDC  
HSIC_AVDD12PLL  
RREFHSIC  
_VDDBATP5V  
_VDDBATA5V  
LDO  
_VDD1P5  
VOUT  
_CLDO  
VOUT  
_BTLDO2P5  
VOUT  
_LNLDO  
BT_REG_ON  
VDDIO  
LDO  
_VDDBAT5V  
VOUT  
_LDO3P3_B  
VDDIO_SD  
GPIO_6  
VSSC  
GPIO_7  
VOUT  
_3P3  
F
GPIO_2  
GPIO_0  
GPIO_1  
VDDC  
GPIO_5  
GPIO_8  
G
H
J
VSSC  
GPIO_10  
VDDC  
GPIO_3  
AVSS_BBPLL  
AVDD_BBPLL  
VDDIO_RF  
GPIO_4  
RF_SW  
_CTRL_9  
RF_SW_CTRL_12  
VDDC  
RF_SW  
_CTRL_8  
RF_SW  
_CTRL_13  
K
L
BT_VDDIO  
VSSC  
VSSC  
VDDC  
RF_SW_CTRL_11  
RF_SW_CTRL_2  
RF_SW_CTRL_15  
RF_SW_CTRL_7  
RF_SW_CTRL_1  
RF_SW  
_CTRL_10  
RF_SW  
_CTRL_14  
M
N
P
R
T
VDDC  
WRF_XTAL  
_OUT  
WRF_XTAL  
_GND1P2  
WRF_XTAL  
_VDD1P2  
RF_SW_CTRL_3  
RF_SW_CTRL_5  
RF_SW_CTRL_0  
WRF_XTAL  
_IN  
WRF_XTAL  
_VDD1P5  
WRF_BUCK  
_GND1P5_CORE1  
WRF_BUCK  
_VDD1P5_CORE1  
WRF_GPIO_OUT  
_CORE1  
WRF_AFE  
_GND1P2_CORE1  
WRF_RX5G  
_GND1P2_CORE1  
WRF_TSSI  
_A_CORE1  
WRF_PADRV_VBAT  
_GND3P3_CORE1  
WRF_PADRV_VBAT  
_VDD3P3_CORE1  
WRF_TX  
_GND1P2_CORE1  
WRF_RX2G  
_GND1P2_CORE1  
WRF_LNA  
_5G_GND1P2_CORE1  
WRF_PA5G_VBAT  
_GND3P3_CORE1  
WRF_PA5G_VBAT  
_GND3P3_CORE1  
WRF_PA2G_VBAT  
_GND3P3_CORE1  
WRF_PA2G_VBAT  
_GND3P3_CORE1  
WRF_LNA_2G  
_GND1P2_CORE1  
U
V
WRF_RFIN  
_5G_CORE1  
WRF_RFOUT  
_5G_CORE1  
WRF_PA5G_VBAT  
_VDD3P3_CORE1  
WRF_PA2G_VBAT  
_VDD3P3_CORE1  
WRF_RFOUT  
_2G_CORE1  
WRF_RFIN  
_2G_CORE1  
12  
11  
10  
9
8
7
Document Number: 002-14809 Rev. *J  
Page 64 of 165  
CYW4354  
13.2 Pin Lists  
Table 19. Pin List by Pin Number (192-Pin WLBGA Package)  
WLBGA  
Ball#  
WLBGA  
Pin Name  
Ball#  
Pin Name  
D6  
VSSC/VSS  
A10  
A11  
A12  
A2  
WL_REG_ON  
SR_VLX  
D7  
D9  
E1  
RREFHSIC  
JTAG_SEL  
SR_PVSS  
FM_AOUT1  
VDDIO  
PCIE_TDP0  
E10  
E11  
E12  
E2  
A3  
PCIE_TDN0  
VOUT_LDO3P3_B  
LDO_VDDBAT5V  
A4  
PCIE_REFCLKP  
PCIE_REFCLKN  
HSIC_DATA  
A5  
FM_AUDIOVDD1P2  
BT_VDD/VDDC  
BT_USB_DN  
GPIO_9  
A6  
E4  
A7  
HSIC_STROBE  
SDIO_CLK  
E5  
A8  
E6  
A9  
SDIO_CMD  
E7  
GPIO_7  
B1  
PCIE_RDN0  
E8  
VDDIO_SD  
VDD/VDDC  
FM_AOUT2  
GPIO_1  
B10  
B11  
B12  
B2  
PMU_AVSS  
E9  
SR_VDDBATA5V  
SR_VDDBATP5V  
PCIE_RXTX_AVDD1P2  
PCIE_PLL_AVDD1P2  
PCIE_RXTX_AVSS  
PCIE_PLL_AVSS  
HSIC_AGND12PLL  
VDD/VDDC  
F1  
F10  
F11  
F12  
F2  
GPIO_2  
B3  
VOUT_3P3  
FM_AUDIOVSS  
FM_PLLVDD1P2  
CLK_REQ  
B4  
B5  
F3  
B6  
F4  
B7  
F5  
BT_USB_DP  
LPO_IN  
B8  
SDIO_DATA_2  
SDIO_DATA_0  
PCIE_RDP0  
F6  
B9  
F7  
GPIO_8  
C1  
C10  
C11  
C12  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
D10  
D11  
D12  
D3  
D4  
D5  
F8  
GPIO_6  
VSSC/VSS  
F9  
GPIO_5  
VOUT_CLDO  
LDO_VDD1P5  
PCIE_TESTN  
PCIE_TESTP  
PCIE_PERST_L  
PCIE_PME_L  
HSIC_DVDD12  
HSIC_AVDD12PLL  
SDIO_DATA_3  
SDIO_DATA_1  
BT_REG_ON  
VOUT_LNLDO  
VOUT_BTLDO2P5  
VSSC/VSS  
G1  
G10  
G11  
G12  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
H1  
H11  
H12  
FM_LNAVCOVDD1P2  
VDD/VDDC  
GPIO_0  
VSSC/VSS  
FM_VCOVSS  
FM_PLLVSS  
VSSC/VSS  
BT_I2S_DI  
BT_I2S_DO  
AVSS_BBPLL  
VSSC/VSS  
GPIO_3  
FM_RFIN  
VDDIO_RF  
GPIO_10  
VDD/VDDC  
PCIE_CLKREQ_L  
Document Number: 002-14809 Rev. *J  
Page 65 of 165  
CYW4354  
WLBGA  
Ball#  
WLBGA  
Ball#  
Pin Name  
Pin Name  
H2  
FM_LNAVSS  
M7  
VDD/VDDC  
H3  
H4  
H5  
H7  
H9  
J1  
BT_VDD/VDDC  
BT_PCM_OUT  
BT_UART_RXD  
AVDD_BBPLL  
GPIO_4  
M8  
N1  
N10  
N11  
N12  
N2  
N3  
N5  
N7  
N8  
P1  
RF_SW_CTRL_7  
WRF_RFIN_2G_CORE0  
WRF_XTAL_VDD1P2  
WRF_XTAL_GND1P2  
WRF_XTAL_OUT  
BT_VCOVDD1P2  
RF_SW_CTRL_9  
VDD/VDDC  
WRF_LNA_2G_GND1P2_CORE0  
WRF_RX2G_GND1P2_CORE0  
RF_SW_CTRL_4  
J11  
J12  
J2  
BT_VCOVSS  
BT_HOST_WAKE  
BT_PCM_IN  
RF_SW_CTRL_3  
J3  
RF_SW_CTRL_1  
J4  
WRF_RFOUT_2G_CORE0  
WRF_XTAL_VDD1P5  
WRF_XTAL_IN  
J5  
BT_UART_TXD  
BT_I2S_CLK  
P11  
P12  
P2  
J6  
J8  
VDD/VDDC  
WRF_PA2G_VBAT_GND3P3_CORE0  
WRF_TX_GND1P2_CORE0  
WRF_AFE_GND1P2_CORE0  
RF_SW_CTRL_6  
J9  
RF_SW_CTRL_12  
BT_LNAVDD1P2  
RF_SW_CTRL_13  
RF_SW_CTRL_8  
BT_PLLVDD1P2  
BT_IFVDD1P2  
BT_GPIO_4  
P3  
K1  
K10  
K12  
K2  
K3  
K4  
K5  
K6  
K7  
L1  
P4  
P5  
P7  
RF_SW_CTRL_5  
P9  
RF_SW_CTRL_2  
R1  
R11  
R12  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
T1  
WRF_PA2G_VBAT_VDD3P3_CORE0  
WRF_BUCK_VDD1P5_CORE1  
WRF_BUCK_GND1P5_CORE1  
WRF_PA2G_VBAT_GND3P3_CORE0  
WRF_PADRV_VBAT_VDD3P3_CORE0  
WRF_GPIO_OUT_CORE0  
WRF_LOGENG_GND1P2  
BT_UART_RTS_L  
BT_PCM_SYNC  
BT_VDDIO  
BT_RF  
L10  
L11  
L2  
VDD/VDDC  
VSSC/VSS  
WRF_LOGEN_GND1P2  
BT_PAVSS  
RF_SW_CTRL_0  
L3  
BT_PLLVSS  
WRF_AFE_GND1P2_CORE1  
WRF_GPIO_OUT_CORE1  
WRF_PA5G_VBAT_VDD3P3_CORE0  
WRF_PADRV_VBAT_GND3P3_CORE1  
WRF_TSSI_A_CORE1  
L4  
BT_DEV_WAKE  
BT_UART_CTS_L  
BT_I2S_WS  
L5  
L6  
T10  
T11  
T12  
T2  
L7  
VSSC/VSS  
L8  
RF_SW_CTRL_15  
RF_SW_CTRL_11  
BT_PAVDD2P5  
RF_SW_CTRL_14  
RF_SW_CTRL_10  
BT_IFVSS  
WRF_RX5G_GND1P2_CORE1  
WRF_PA5G_VBAT_GND3P3_CORE0  
WRF_PADRV_VBAT_GND3P3_CORE0  
WRF_PFD_VDD1P2  
L9  
M1  
M10  
M12  
M3  
M4  
M5  
M6  
T3  
T4  
T5  
WRF_MMD_VDD1P2  
T6  
WRF_MMD_GND1P2  
VSSC/VSS  
T7  
WRF_RX2G_GND1P2_CORE1  
WRF_TX_GND1P2_CORE1  
WRF_PADRV_VBAT_VDD3P3_CORE1  
BT_VDD/VDDC  
BT_PCM_CLK  
T8  
T9  
Document Number: 002-14809 Rev. *J  
Page 66 of 165  
CYW4354  
WLBGA  
Ball#  
Pin Name  
U1  
WRF_RFOUT_5G_CORE0  
U10  
U11  
U12  
U2  
U3  
U4  
U5  
U6  
U7  
U8  
U9  
V1  
WRF_PA5G_VBAT_GND3P3_CORE1  
WRF_PA5G_VBAT_GND3P3_CORE1  
WRF_LNA_5G_GND1P2_CORE1  
WRF_PA5G_VBAT_GND3P3_CORE0  
WRF_TSSI_A_CORE0  
WRF_BUCK_VDD1P5_CORE0  
WRF_PFD_GND1P2  
WRF_VCO_GND1P2  
WRF_LNA_2G_GND1P2_CORE1  
WRF_PA2G_VBAT_GND3P3_CORE1  
WRF_PA2G_VBAT_GND3P3_CORE1  
WRF_RFIN_5G_CORE0  
V10  
V11  
V12  
V2  
WRF_PA5G_VBAT_VDD3P3_CORE1  
WRF_RFOUT_5G_CORE1  
WRF_RFIN_5G_CORE1  
WRF_LNA_5G_GND1P2_CORE0  
WRF_RX5G_GND1P2_CORE0  
WRF_BUCK_GND1P5_CORE0  
WRF_CP_GND1P2  
V3  
V4  
V5  
V6  
WRF_SYNTH_VBAT_VDD3P3  
WRF_RFIN_2G_CORE1  
V7  
V8  
WRF_RFOUT_2G_CORE1  
V9  
WRF_PA2G_VBAT_VDD3P3_CORE1  
Document Number: 002-14809 Rev. *J  
Page 67 of 165  
CYW4354  
Table 20. Pin List by Pin Name (192-Pin WLBGA Package)  
Pin Name WLBGA Ball#  
H7  
Pin Name  
WLBGA Ball#  
GPIO_1  
GPIO_10  
GPIO_2  
GPIO_3  
GPIO_4  
GPIO_5  
GPIO_6  
GPIO_7  
GPIO_8  
GPIO_9  
F10  
AVDD_BBPLL  
AVSS_BBPLL  
BT_DEV_WAKE  
BT_GPIO_4  
H12  
F11  
G9  
H9  
F9  
G7  
L4  
K4  
J3  
BT_HOST_WAKE  
BT_I2S_CLK  
BT_I2S_DI  
J6  
F8  
G5  
G6  
L6  
E7  
F7  
BT_I2S_DO  
BT_I2S_WS  
E6  
B6  
C7  
A6  
C6  
A7  
D9  
C12  
E12  
F6  
BT_IFVDD1P2  
BT_IFVSS  
K3  
M3  
K1  
M1  
L2  
HSIC_AGND12PLL  
HSIC_AVDD12PLL  
HSIC_DATA  
BT_LNAVDD1P2  
BT_PAVDD2P5  
BT_PAVSS  
HSIC_DVDD12  
HSIC_STROBE  
JTAG_SEL  
BT_PCM_CLK  
BT_PCM_IN  
M6  
J4  
LDO_VDD1P5  
BT_PCM_OUT  
BT_PCM_SYNC  
BT_PLLVDD1P2  
BT_PLLVSS  
H4  
K6  
K2  
L3  
LDO_VDDBAT5V  
LPO_IN  
PCIE_PME_L  
C5  
D5  
C4  
B3  
B5  
B1  
C1  
A5  
A4  
B2  
B4  
A3  
A2  
C2  
C3  
B10  
R7  
N8  
M12  
L9  
PCIE_CLKREQ_L  
PCIE_PERST_L  
PCIE_PLL_AVDD1P2  
PCIE_PLL_AVSS  
PCIE_RDN0  
BT_REG_ON  
BT_RF  
D10  
L1  
BT_UART_CTS_L  
BT_UART_RTS_L  
BT_UART_RXD  
BT_UART_TXD  
BT_USB_DN  
BT_USB_DP  
BT_VCOVDD1P2  
BT_VCOVSS  
BT_VDDIO  
L5  
K5  
H5  
J5  
PCIE_RDP0  
PCIE_REFCLKN  
PCIE_REFCLKP  
PCIE_RXTX_AVDD1P2  
PCIE_RXTX_AVSS  
PCIE_TDN0  
E5  
F5  
J1  
J2  
K7  
F4  
E1  
F1  
E2  
F2  
G1  
H2  
F3  
G3  
H1  
G2  
G11  
PCIE_TDP0  
CLK_REQ  
PCIE_TESTN  
FM_AOUT1  
PCIE_TESTP  
FM_AOUT2  
PMU_AVSS  
FM_AUDIOVDD1P2  
FM_AUDIOVSS  
FM_LNAVCOVDD1P2  
FM_LNAVSS  
FM_PLLVDD1P2  
FM_PLLVSS  
RF_SW_CTRL_0  
RF_SW_CTRL_1  
RF_SW_CTRL_10  
RF_SW_CTRL_11  
RF_SW_CTRL_12  
RF_SW_CTRL_13  
RF_SW_CTRL_14  
RF_SW_CTRL_15  
J9  
K10  
M10  
L8  
FM_RFIN  
FM_VCOVSS  
GPIO_0  
Document Number: 002-14809 Rev. *J  
Page 68 of 165  
CYW4354  
Pin Name  
RF_SW_CTRL_2  
WLBGA Ball#  
P9  
Pin Name  
WLBGA Ball#  
VSSC/VSS  
VSSC/VSS  
VSSC/VSS  
WL_REG_ON  
L11  
RF_SW_CTRL_3  
RF_SW_CTRL_4  
RF_SW_CTRL_5  
RF_SW_CTRL_6  
RF_SW_CTRL_7  
RF_SW_CTRL_8  
RF_SW_CTRL_9  
RREFHSIC  
N7  
L7  
N5  
M4  
A10  
P4  
P7  
P5  
WRF_AFE_GND1P2_CORE0  
WRF_AFE_GND1P2_CORE1  
WRF_BUCK_GND1P5_CORE0  
WRF_BUCK_GND1P5_CORE1  
WRF_BUCK_VDD1P5_CORE0  
WRF_BUCK_VDD1P5_CORE1  
WRF_CP_GND1P2  
M8  
K12  
J11  
D7  
R8  
V4  
R12  
U4  
R11  
V5  
SDIO_CLK  
A8  
SDIO_CMD  
A9  
SDIO_DATA_0  
SDIO_DATA_1  
SDIO_DATA_2  
SDIO_DATA_3  
SR_PVSS  
B9  
WRF_GPIO_OUT_CORE0  
R4  
R9  
N2  
U7  
V2  
C9  
WRF_GPIO_OUT_CORE1  
B8  
WRF_LNA_2G_GND1P2_CORE0  
WRF_LNA_2G_GND1P2_CORE1  
WRF_LNA_5G_GND1P2_CORE0  
WRF_LNA_5G_GND1P2_CORE1  
WRF_LOGEN_GND1P2  
C8  
A12  
B11  
B12  
A11  
B7  
SR_VDDBATA5V  
SR_VDDBATP5V  
SR_VLX  
U12  
R6  
R5  
T6  
WRF_LOGENG_GND1P2  
VDD/VDDC  
WRF_MMD_GND1P2  
VDD/VDDC  
D4  
WRF_MMD_VDD1P2  
T5  
BT_VDD/VDDC  
VDD/VDDC  
E4  
WRF_PA2G_VBAT_GND3P3_CORE0  
WRF_PA2G_VBAT_GND3P3_CORE0  
WRF_PA2G_VBAT_GND3P3_CORE1  
WRF_PA2G_VBAT_GND3P3_CORE1  
WRF_PA2G_VBAT_VDD3P3_CORE0  
WRF_PA2G_VBAT_VDD3P3_CORE1  
WRF_PA5G_VBAT_GND3P3_CORE0  
WRF_PA5G_VBAT_GND3P3_CORE0  
WRF_PA5G_VBAT_GND3P3_CORE1  
WRF_PA5G_VBAT_GND3P3_CORE1  
WRF_PA5G_VBAT_VDD3P3_CORE0  
WRF_PA5G_VBAT_VDD3P3_CORE1  
WRF_PADRV_VBAT_GND3P3_CORE0  
WRF_PADRV_VBAT_GND3P3_CORE1  
WRF_PADRV_VBAT_VDD3P3_CORE0  
WRF_PADRV_VBAT_VDD3P3_CORE1  
WRF_PFD_GND1P2  
P2  
E9  
R2  
U8  
U9  
R1  
V9  
VDD/VDDC  
G10  
H3  
BT_VDD/VDDC  
VDD/VDDC  
J12  
J8  
VDD/VDDC  
VDD/VDDC  
L10  
M5  
M7  
E10  
H11  
E8  
T2  
BT_VDD/VDDC  
VDD/VDDC  
U2  
U10  
U11  
T1  
VDDIO  
VDDIO_RF  
VDDIO_SD  
V10  
T3  
VOUT_3P3  
F12  
D12  
C11  
E11  
D11  
C10  
D3  
VOUT_BTLDO2P5  
VOUT_CLDO  
VOUT_LDO3P3_B  
VOUT_LNLDO  
VSSC/VSS  
T10  
R3  
T9  
U5  
T4  
WRF_PFD_VDD1P2  
VSSC/VSS  
WRF_RFIN_2G_CORE0  
N1  
V7  
VSSC/VSS  
D6  
WRF_RFIN_2G_CORE1  
VSSC/VSS  
G12  
G4  
WRF_RFIN_5G_CORE0  
V1  
VSSC/VSS  
WRF_RFIN_5G_CORE1  
V12  
P1  
VSSC/VSS  
G8  
WRF_RFOUT_2G_CORE0  
Document Number: 002-14809 Rev. *J  
Page 69 of 165  
CYW4354  
Pin Name  
WRF_RFOUT_2G_CORE1  
WRF_RFOUT_5G_CORE0  
WRF_RFOUT_5G_CORE1  
WRF_RX2G_GND1P2_CORE0  
WRF_RX2G_GND1P2_CORE1  
WRF_RX5G_GND1P2_CORE0  
WRF_RX5G_GND1P2_CORE1  
WRF_SYNTH_VBAT_VDD3P3  
WRF_TSSI_A_CORE0  
WLBGA Ball#  
V8  
U1  
V11  
N3  
T7  
V3  
T12  
V6  
U3  
WRF_TSSI_A_CORE1  
T11  
P3  
WRF_TX_GND1P2_CORE0  
WRF_TX_GND1P2_CORE1  
WRF_VCO_GND1P2  
T8  
U6  
WRF_XTAL_GND1P2  
N11  
P12  
N12  
N10  
P11  
WRF_XTAL_IN  
WRF_XTAL_OUT  
WRF_XTAL_VDD1P2  
WRF_XTAL_VDD1P5  
Document Number: 002-14809 Rev. *J  
Page 70 of 165  
CYW4354  
Table 21. 395-Bump WLCSP Coordinates  
Coordinates (0,0 center of die)  
Bump Side Top Side  
No.  
Net Name  
X
Y
X
–2300.51  
–1966.81  
–1966.81  
–1800.31  
–2134.01  
–2134.01  
–2134.01  
–2300.51  
–2300.51  
–1966.81  
–1800.31  
–508.44  
–768.62  
–508.44  
–1177.22  
–972.92  
–553.11  
Y
1
2
3
4
5
6
7
8
9
PCIE_RXTX_AVSS  
2300.51  
3659.87  
3659.87  
PCIE_PLL_AVSS  
PCIE_REFCLKP  
PCIE_REFCLKN  
PCIE_TDN0  
1966.81  
1966.81  
1800.31  
2134.01  
2134.01  
2134.01  
2300.51  
2300.51  
1966.81  
1800.31  
508.44  
3659.87  
3434.87  
3547.37  
3547.37  
3322.37  
3068.53  
3209.87  
3434.87  
3209.87  
3322.37  
3481.00  
3062.57  
3281.00  
3062.57  
3062.57  
3681.00  
3681.00  
3481.00  
3281.00  
3481.00  
3281.00  
3681.00  
3281.00  
3481.00  
3681.00  
3062.57  
2860.07  
2860.07  
3595.19  
2792.39  
3394.49  
3394.49  
2993.09  
3193.79  
2792.39  
3595.19  
2993.09  
3659.87  
3434.87  
3547.37  
3547.37  
3322.37  
3068.53  
3209.87  
3434.87  
3209.87  
3322.37  
3481.00  
3062.57  
3281.00  
3062.57  
3062.57  
3681.00  
3681.00  
3481.00  
3281.00  
3481.00  
3281.00  
3681.00  
3281.00  
3481.00  
3681.00  
3062.57  
2860.07  
2860.07  
3595.19  
2792.39  
3394.49  
3394.49  
2993.09  
3193.79  
2792.39  
3595.19  
2993.09  
PCIE_TDP0  
PCIE_RXTX_AVDD1P2  
PCIE_RDP0  
PCIE_RDN0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
PCIE_PLL_AVSS  
PCIE_PLL_AVDD1P2  
USB3_REFCLKN  
USB3_PVDD1P2  
USB3_REFCLKP  
USB3_RVDD1P2  
USB3_TVDD1P2  
USB3_PGND  
768.62  
508.44  
1177.22  
972.92  
553.11  
USB3_PGND  
753.11  
–753.11  
USB3_PTESTP  
USB3_PTESTN  
USB3_TDP  
773.17  
–773.17  
–773.17  
–974.72  
–974.72  
–982.37  
–1176.88  
–1176.88  
–1186.67  
–526.91  
–1177.22  
–768.62  
–1601.79  
–1601.79  
–1401.09  
–1601.79  
–1601.79  
–1601.79  
–1401.09  
–1401.09  
–1401.09  
773.17  
974.72  
USB3_TDN  
974.72  
USB3_TGND  
982.37  
USB3_RDP  
1176.88  
1176.88  
1186.67  
526.91  
USB3_RDN  
USB3_RGND  
USB3_PVDD1P2  
USB3_DVDD1P2  
USB3_DVDD1P2  
USB2_AVSS  
1177.22  
768.62  
1601.79  
1601.79  
1401.09  
1601.79  
1601.79  
1601.79  
1401.09  
1401.09  
1401.09  
USB2_MONCDR  
USB2_RREF  
USB2_DP  
USB2_AVDD3P3  
USB2_DM  
USB2_AVDD1P2  
USB2_AVSSBG  
USB2_MONPLL  
Document Number: 002-14809 Rev. *J  
Page 71 of 165  
CYW4354  
Table 21. 395-Bump WLCSP Coordinates (Cont.)  
Coordinates (0,0 center of die)  
Bump Side Top Side  
No.  
Net Name  
X
Y
X
–1401.09  
–2217.95  
–2017.95  
–1768.91  
–1568.92  
–2228.18  
–1843.60  
–2176.03  
–1768.91  
–1568.92  
–2252.39  
–2227.01  
–1967.62  
–2044.00  
–2044.00  
–2244.00  
–2244.00  
–1614.95  
–1614.95  
–1793.21  
–1686.40  
–2273.40  
–2260.02  
–2060.02  
–2060.02  
–2273.40  
–2273.40  
2202.33  
661.10  
Y
39  
USB2_DVSS  
BT_PAVSS  
1401.09  
3193.79  
3193.79  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
2217.95  
2017.95  
1768.91  
1568.92  
2228.18  
1843.60  
2176.03  
1768.91  
1568.92  
2252.39  
2227.01  
1967.62  
2044.00  
2044.00  
2244.00  
2244.00  
1614.95  
1614.95  
1793.21  
1686.40  
2273.40  
2260.02  
2060.02  
2060.02  
2273.40  
2273.40  
–2202.33  
–661.10  
740.99  
–736.50  
–1298.03  
–1298.03  
–1298.03  
–392.72  
–524.82  
–1164.53  
–223.55  
–223.55  
–936.50  
–189.65  
–45.40  
–736.50  
–1298.03  
–1298.03  
–1298.03  
–392.72  
–524.82  
–1164.53  
–223.55  
–223.55  
–936.50  
–189.65  
–45.40  
BT_AGPIO  
BT_IFVDD1P2  
BT_IFVSS  
BT_LNAVDD1P2  
BT_LNAVSS  
BT_PAVDD2P5  
BT_PLLVDD1P2  
BT_PLLVSS  
BT_RF  
BT_VCOVDD1P2  
BT_VCOVSS  
FM_AUDIOVDD1P2  
FM_AUDIOAVSS  
FM_AOUT1  
FM_AOUT2  
FM_IFVDD1P2  
FM_IFVSS  
FM_PLLVSS  
FM_PLLVDD1P2  
FM_RFAUX  
FM_RFIN  
931.81  
931.81  
1143.58  
1143.58  
931.81  
1143.58  
1143.58  
931.81  
371.79  
371.79  
171.80  
171.80  
871.61  
871.61  
695.87  
695.87  
68.08  
68.08  
313.69  
313.69  
FM_LNAVDD1P2  
FM_LNAVSS  
FM_VCOVDD1P2  
FM_VCOVSS  
RF_SW_CTRL_0  
VDDC  
354.59  
354.59  
154.59  
154.59  
731.81  
731.81  
531.81  
531.81  
–1494.00  
–1355.99  
2052.00  
–408.01  
–198.00  
–1008.00  
–708.00  
252.00  
–1494.00  
–1355.99  
2052.00  
–408.01  
–198.00  
–1008.00  
–708.00  
252.00  
VSSC  
–740.99  
616.50  
VSSC  
–616.50  
–459.00  
–546.71  
–546.71  
–459.00  
–661.10  
740.99  
VSSC  
459.00  
VSSC  
546.71  
VSSC  
546.71  
VSSC  
459.00  
VDDC  
–21.01  
661.10  
–21.01  
VSSC  
2352.00  
2299.50  
–740.99  
405.00  
2352.00  
2299.50  
VDDIO_SD  
–405.00  
Document Number: 002-14809 Rev. *J  
Page 72 of 165  
CYW4354  
Table 21. 395-Bump WLCSP Coordinates (Cont.)  
Coordinates (0,0 center of die)  
Bump Side Top Side  
No.  
Net Name  
X
Y
X
Y
77  
SDIO_DATA_1  
SDIO_CLK  
SDIO_DATA_3  
SDIO_DATA_2  
SDIO_CMD  
SDIO_DATA_0  
VSSC  
–337.05  
2531.57  
337.05  
337.05  
337.05  
337.05  
337.05  
337.05  
316.50  
266.51  
266.51  
2531.57  
78  
–337.05  
–337.05  
–337.05  
–337.05  
–337.05  
–316.50  
–266.51  
–266.51  
–2072.12  
–261.11  
–259.00  
–159.00  
–159.00  
–159.00  
–159.00  
–159.00  
–159.00  
–459.00  
–67.05  
–67.05  
–67.05  
–67.05  
–67.05  
–67.05  
–67.05  
–61.11  
2731.57  
2931.58  
3131.59  
3331.59  
3531.60  
–408.01  
–1008.00  
–708.00  
–1125.00  
–21.01  
2731.57  
2931.58  
3131.59  
3331.59  
3531.60  
–408.01  
–1008.00  
–708.00  
–1125.00  
–21.01  
79  
80  
81  
82  
83  
84  
VSSC  
85  
VSSC  
86  
RF_SW_CTRL_4  
VDDC  
2072.12  
261.11  
259.00  
159.00  
159.00  
159.00  
159.00  
159.00  
159.00  
459.00  
67.05  
87  
88  
VSSC  
1651.99  
252.00  
1651.99  
252.00  
89  
VSSC  
90  
VSSC  
552.00  
552.00  
91  
VSSC  
851.99  
851.99  
92  
VSSC  
1151.99  
1451.99  
2052.00  
552.00  
1151.99  
1451.99  
2052.00  
552.00  
93  
VSSC  
94  
VSSC  
95  
VSSC  
96  
DGNDHSIC  
AGND12PLL  
AVDD12PLL  
RREFHSIC  
STROBE  
DATA  
2286.36  
2486.57  
2686.57  
2886.58  
3086.59  
3286.59  
3486.60  
–1220.99  
–1008.00  
–708.00  
–408.01  
–21.01  
2286.36  
2486.57  
2686.57  
2886.58  
3086.59  
3286.59  
3486.60  
–1220.99  
–1008.00  
–708.00  
–408.01  
–21.01  
97  
67.05  
98  
67.05  
99  
67.05  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
67.05  
67.05  
DVDD12HSIC  
VDDC  
67.05  
61.11  
VSSC  
–61.11  
61.11  
VSSC  
–61.11  
61.11  
VSSC  
–61.11  
61.11  
VDDC  
–61.11  
61.11  
VDDC  
–61.11  
1843.97  
–1220.99  
–1021.00  
–821.00  
–1220.99  
–421.00  
–221.00  
61.11  
1843.97  
–1220.99  
–1021.00  
–821.00  
–1220.99  
–421.00  
–221.00  
VDDC  
138.89  
138.89  
138.89  
–261.11  
138.89  
138.89  
–138.89  
–138.89  
–138.89  
261.11  
–138.89  
–138.89  
VDDC  
VDDC  
VDDC  
VDDC  
VDDC  
Document Number: 002-14809 Rev. *J  
Page 73 of 165  
CYW4354  
Table 21. 395-Bump WLCSP Coordinates (Cont.)  
Coordinates (0,0 center of die)  
Bump Side Top Side  
No.  
Net Name  
X
Y
X
Y
115  
VDDC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
138.89  
140.99  
140.99  
140.99  
140.99  
140.99  
140.99  
140.99  
140.99  
768.37  
816.40  
599.69  
338.89  
338.89  
338.89  
–21.01  
–138.89  
–21.01  
252.00  
552.00  
851.99  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
252.00  
552.00  
851.99  
–140.99  
–140.99  
–140.99  
–140.99  
–140.99  
–140.99  
–140.99  
–140.99  
–768.37  
–816.40  
–599.69  
–338.89  
–338.89  
–338.89  
459.00  
1151.99  
1451.99  
1651.99  
2052.00  
2352.00  
–1186.86  
21.84  
1151.99  
1451.99  
1651.99  
2052.00  
2352.00  
–1186.86  
21.84  
PACKAGEOPTION_4  
BT_VSSC  
BT_VSSC  
BT_VSSC  
–715.49  
443.99  
–715.49  
443.99  
VDDC  
VDDC  
643.99  
643.99  
VDDC  
1843.97  
851.99  
1843.97  
851.99  
VSSC  
–459.00  
440.99  
440.99  
468.37  
538.88  
538.88  
538.88  
538.88  
538.88  
538.88  
538.88  
601.19  
620.91  
655.50  
655.50  
1480.37  
740.99  
1480.37  
830.29  
840.29  
865.28  
915.28  
1040.99  
PACKAGEOPTION_2  
PACKAGEOPTION_3  
BT_VSSC  
2352.00  
2592.00  
–1186.86  
643.99  
–440.99  
–440.99  
–468.37  
–538.88  
–538.88  
–538.88  
–538.88  
–538.88  
–538.88  
–538.88  
–601.19  
–620.91  
–655.50  
–655.50  
–1480.37  
–740.99  
–1480.37  
–830.29  
–840.29  
–865.28  
–915.28  
–1040.99  
2352.00  
2592.00  
–1186.86  
643.99  
VDDC  
VDDC  
843.98  
843.98  
VDDC  
1043.98  
1243.98  
1443.98  
1643.98  
1843.97  
–970.04  
–500.07  
168.14  
1043.98  
1243.98  
1443.98  
1643.98  
1843.97  
–970.04  
–500.07  
168.14  
VDDC  
VDDC  
VDDC  
VDDC  
BT_VDDC_ISO_1  
BT_VDDC_ISO_2  
AVDD_BBPLL  
AVSS_BBPLL  
BT_VDDC  
437.48  
437.48  
555.67  
555.67  
PACKAGEOPTION_1  
BT_VDDC  
2592.00  
780.66  
2592.00  
780.66  
BT_VDDIO  
BT_VDDIO  
BT_VDDIO  
BT_VDDIO  
PACKAGEOPTION_0  
–445.06  
–724.53  
–245.06  
–973.39  
2592.00  
–445.06  
–724.53  
–245.06  
–973.39  
2592.00  
Document Number: 002-14809 Rev. *J  
Page 74 of 165  
CYW4354  
Table 21. 395-Bump WLCSP Coordinates (Cont.)  
Coordinates (0,0 center of die)  
Bump Side Top Side  
No.  
Net Name  
X
Y
X
–1048.37  
–1048.37  
–1048.37  
–1444.06  
–1444.06  
–1143.51  
–1143.51  
–1348.51  
–1644.06  
–1644.06  
–1343.51  
–1343.51  
–1548.50  
–1844.06  
–1844.06  
–1543.51  
–1543.51  
–2044.05  
–2044.05  
–1743.51  
–1743.51  
–1858.50  
2002.32  
Y
153  
BT_GPIO_5  
BT_GPIO_3  
BT_GPIO_2  
BT_I2S_DI  
1048.37  
420.67  
420.67  
620.67  
820.67  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
1048.37  
1048.37  
1444.06  
1444.06  
1143.51  
1143.51  
1348.51  
1644.06  
1644.06  
1343.51  
1343.51  
1548.50  
1844.06  
1844.06  
1543.51  
1543.51  
2044.05  
2044.05  
1743.51  
1743.51  
1858.50  
–2002.32  
2244.05  
2244.05  
1943.51  
1943.51  
2058.50  
–1945.91  
–2040.71  
–1872.11  
–1760.12  
–1959.30  
–1802.31  
–1745.90  
–1840.71  
–1853.50  
–1672.10  
620.67  
820.67  
1426.01  
1643.00  
1940.00  
2237.00  
2444.00  
1426.01  
1643.00  
1940.00  
2237.00  
2444.00  
1346.00  
1643.00  
1940.00  
2237.00  
1346.00  
1643.00  
1940.00  
2237.00  
2534.00  
–1494.00  
1346.00  
1643.00  
1940.00  
2237.00  
2534.00  
–806.00  
516.01  
1426.01  
1643.00  
1940.00  
2237.00  
2444.00  
1426.01  
1643.00  
1940.00  
2237.00  
2444.00  
1346.00  
1643.00  
1940.00  
2237.00  
1346.00  
1643.00  
1940.00  
2237.00  
2534.00  
–1494.00  
1346.00  
1643.00  
1940.00  
2237.00  
2534.00  
–806.00  
516.01  
BT_UART_TXD  
BT_I2S_WS  
LPO_IN  
OTP_VDD33  
BT_CLK_REQ  
BT_UART_RXD  
BT_PCM_SYNC  
BT_USB_DN  
PCIE_PME_L  
BT_TM1  
BT_I2S_CLK  
BT_GPIO_4  
BT_USB_DP  
BT_HOST_WAKE  
BT_I2S_DO  
BT_UART_CTS_N  
BT_PCM_IN  
PCIE_CLKREQ_L  
RF_SW_CTRL_1  
BT_DEV_WAKE  
BT_PCM_OUT  
BT_UART_RTS_N  
BT_PCM_CLK  
PERST_L  
–2244.05  
–2244.05  
–1943.51  
–1943.51  
–2058.50  
1945.91  
RF_SW_CTRL_8  
GPIO_13  
2040.71  
RF_SW_CTRL_5  
RF_SW_CTRL_12  
GPIO_10  
–1125.00  
–327.01  
229.01  
1872.11  
–1125.00  
–327.01  
229.01  
1760.12  
1959.30  
RF_SW_CTRL_2  
RF_SW_CTRL_9  
GPIO_14  
–1494.00  
–806.00  
516.01  
1802.31  
–1494.00  
–806.00  
516.01  
1745.90  
1840.71  
GPIO_7  
–18.00  
1853.50  
–18.00  
RF_SW_CTRL_6  
–1125.00  
1672.10  
–1125.00  
Document Number: 002-14809 Rev. *J  
Page 75 of 165  
CYW4354  
Table 21. 395-Bump WLCSP Coordinates (Cont.)  
Coordinates (0,0 center of die)  
Bump Side Top Side  
No.  
Net Name  
X
–1560.11  
–1759.91  
–1602.31  
–1545.89  
–1640.70  
–1593.91  
–1472.09  
–1360.11  
–1559.91  
–459.00  
–459.00  
–1346.09  
–459.00  
–1345.37  
–1393.90  
–1215.90  
–1160.10  
–1261.10  
–1061.11  
–1061.11  
–1061.10  
–1402.10  
–1180.10  
–1151.11  
–1058.99  
–816.10  
–459.00  
–996.05  
–996.05  
–996.05  
–996.05  
–990.90  
–960.10  
–1061.10  
–1061.10  
–1058.99  
–852.10  
–461.11  
Y
X
Y
191  
RF_SW_CTRL_13  
–327.01  
1560.11  
–327.01  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
GPIO_11  
279.00  
1759.91  
1602.31  
1545.89  
1640.70  
1593.91  
1472.09  
1360.11  
1559.91  
459.00  
279.00  
RF_SW_CTRL_3  
RF_SW_CTRL_10  
GPIO_15  
–1494.00  
–806.00  
516.01  
–1494.00  
–806.00  
516.01  
GPIO_8  
22.00  
22.00  
RF_SW_CTRL_7  
RF_SW_CTRL_14  
GPIO_12  
–1125.00  
–327.01  
279.00  
–1125.00  
–327.01  
279.00  
VSSC  
1151.99  
1451.99  
–756.00  
1651.99  
1017.54  
22.00  
1151.99  
1451.99  
–756.00  
1651.99  
1017.54  
22.00  
VSSC  
459.00  
RF_SW_CTRL_11  
VDDC  
1346.09  
459.00  
VDDC  
1345.37  
1393.90  
1215.90  
1160.10  
1261.10  
1061.11  
1061.11  
1061.10  
1402.10  
1180.10  
1151.11  
1058.99  
816.10  
GPIO_9  
VDDIO  
576.00  
576.00  
RF_SW_CTRL_15  
VDDC  
–327.01  
1843.97  
–1156.00  
–776.00  
–1355.99  
–1494.00  
–587.00  
–956.00  
2052.00  
1843.97  
2052.00  
2877.58  
3077.59  
3277.59  
3477.60  
576.00  
–327.01  
1843.97  
–1156.00  
–776.00  
–1355.99  
–1494.00  
–587.00  
–956.00  
2052.00  
1843.97  
2052.00  
2877.58  
3077.59  
3277.59  
3477.60  
576.00  
VDDC  
VDDC  
VDDC  
VDDC_ISO_PHY  
VDDC  
VDDC_ISO_PHY  
VDDC_ISO_DIG  
VDDC_ISO_DIG  
VSSC  
459.00  
GPIO_0  
996.05  
GPIO_1  
996.05  
GPIO_2  
996.05  
GPIO_3  
996.05  
VDDIO  
990.90  
VDDIO_RF  
VDDC  
–117.00  
1843.97  
843.98  
960.10  
–117.00  
1843.97  
843.98  
1061.10  
1061.10  
1058.99  
852.10  
VDDC_ISO_PHY  
VDDC_ISO_PHY  
VDDIO_RF  
VDDC  
1151.99  
–387.00  
–1355.99  
1151.99  
–387.00  
–1355.99  
461.11  
Document Number: 002-14809 Rev. *J  
Page 76 of 165  
CYW4354  
Table 21. 395-Bump WLCSP Coordinates (Cont.)  
Coordinates (0,0 center of die)  
Bump Side Top Side  
No.  
Net Name  
X
Y
X
Y
229  
GPIO_4  
VDDIO_PCIEa  
VDDIO  
–769.05  
3196.59  
769.05  
759.00  
759.00  
3196.59  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
–759.00  
–759.00  
–1359.90  
–1319.39  
–1358.99  
–1351.11  
–751.05  
–751.05  
–745.50  
–733.05  
–729.00  
–951.31  
–861.10  
–1440.90  
–1159.90  
–1159.90  
–616.10  
75.91  
252.00  
252.00  
552.00  
552.00  
VSSC  
279.00  
1359.90  
1319.39  
1358.99  
1351.11  
751.05  
279.00  
VSSC  
2052.00  
2302.00  
–956.00  
2996.59  
3396.60  
2352.00  
2796.58  
–220.50  
–956.00  
–1355.99  
576.00  
2052.00  
2302.00  
–956.00  
2996.59  
3396.60  
2352.00  
2796.58  
–220.50  
–956.00  
–1355.99  
576.00  
VSSC  
VSSC  
GPIO_6  
GPIO_5  
VDDIO_SD  
JTAG_SEL  
751.05  
745.50  
733.05  
VDDC_ISO_PHY  
729.00  
VDDC  
951.31  
VDDC  
861.10  
VSSC  
1440.90  
1159.90  
1159.90  
616.10  
VSSC  
–98.00  
–98.00  
VSSC  
279.00  
279.00  
VDDC  
1843.97  
–3598.00  
–1834.98  
–2065.65  
–3109.71  
–2065.65  
–2303.63  
–1818.42  
–1960.54  
–2417.93  
–2823.85  
–2944.01  
–2398.01  
–2716.52  
–3538.14  
–3598.00  
–2994.96  
–3198.01  
–2792.61  
–2798.01  
–3679.00  
1843.97  
–3598.00  
–1834.98  
–2065.65  
–3109.71  
–2065.65  
–2303.63  
–1818.42  
–1960.54  
–2417.93  
–2823.85  
–2944.01  
–2398.01  
–2716.52  
–3538.14  
–3598.00  
–2994.96  
–3198.01  
–2792.61  
–2798.01  
–3679.00  
WRF_SYNTH_VBAT_VDD3P3  
WRF_XTAL_GND1P2  
WRF_XTAL_VDD1P5  
WRF_VCO_GND1P2  
WRF_XTAL_IN  
–75.91  
–2003.12  
–2003.12  
198.52  
2003.12  
2003.12  
–198.52  
2205.82  
–126.11  
2205.82  
1807.98  
437.83  
–2205.82  
126.11  
WRF_LOGEN_GND1P2  
WRF_XTAL_OUT  
–2205.82  
–1807.98  
–437.83  
–2137.36  
–1968.14  
–877.08  
–167.27  
–2253.44  
–201.47  
901.40  
WRF_XTAL_VDD1P2  
WRF_TX_GND1P2_core1  
WRF_BUCK_GND1P5_core1  
WRF_RX5G_GND1P2_core1  
WRF_GPIO_OUT_core1  
WRF_RX2G_GND1P2_core1  
WRF_RFIN_5G_core1  
WRF_RFIN_2G_core1  
WRF_PFD_VDD1P2  
WRF_PFD_GND1P2  
WRF_PADRV_VBAT_VDD3P3_core1  
WRF_PADRV_VBAT_GND3P3_core1  
WRF_PA5G_VBAT_VDD3P3_core1  
2137.36  
1968.14  
877.08  
167.27  
2253.44  
201.47  
–901.40  
–818.12  
1090.70  
1401.46  
1401.46  
818.12  
–1090.70  
–1401.46  
–1401.46  
Document Number: 002-14809 Rev. *J  
Page 77 of 165  
CYW4354  
Table 21. 395-Bump WLCSP Coordinates (Cont.)  
Coordinates (0,0 center of die)  
Bump Side Top Side  
No.  
Net Name  
X
Y
X
Y
–2293.35  
–2798.01  
–2998.01  
–2994.96  
–2798.01  
–1940.22  
–3673.49  
–3598.00  
–1598.02  
–2716.77  
–3433.91  
–2353.01  
–3679.00  
–3198.01  
–2028.11  
–3198.01  
–3276.89  
–3144.01  
–3697.00  
–3225.01  
–2798.01  
–2798.01  
–2487.25  
–1598.02  
–1563.82  
–3364.69  
–1834.38  
–3235.69  
–3533.90  
–2423.85  
–2273.63  
–1998.02  
–3688.00  
–2523.25  
–3114.13  
–3649.99  
–3198.01  
–3225.01  
267  
WRF_AFE_GND1P2_core1  
WRF_PA5G_VBAT_GND3P3_core0  
WRF_PA5G_VBAT_VDD3P3_core0  
WRF_MMD_VDD1P2  
–631.56  
–2293.35  
–2798.01  
–2998.01  
–2994.96  
–2798.01  
–1940.22  
–3673.49  
–3598.00  
–1598.02  
–2716.77  
–3433.91  
–2353.01  
–3679.00  
–3198.01  
–2028.11  
–3198.01  
–3276.89  
–3144.01  
–3697.00  
–3225.01  
–2798.01  
–2798.01  
–2487.25  
–1598.02  
–1563.82  
–3364.69  
–1834.38  
–3235.69  
–3533.90  
–2423.85  
–2273.63  
–1998.02  
–3688.00  
–2523.25  
–3114.13  
–3649.99  
–3198.01  
–3225.01  
631.56  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
1825.51  
2297.50  
692.41  
–1825.51  
–2297.50  
–692.41  
–499.12  
–1744.51  
–1877.39  
–539.26  
–1798.51  
1839.15  
–1024.35  
–770.31  
601.47  
WRF_MMD_GND1P2  
499.12  
WRF_PA2G_VBAT_GND3P3_core0  
WRF_LNA_5G_GND1P2_core0  
WRF_CP_GND1P2  
1744.51  
1877.39  
539.26  
WRF_LNA_2G_GND1P2_core0  
WRF_TSSI_A_core1  
1798.51  
–1839.15  
1024.35  
770.31  
WRF_BUCK_VDD1P5_core0  
WRF_LOGENG_GND1P2  
WRF_RFOUT_2G_core1  
–601.47  
2288.50  
880.13  
WRF_RFOUT_5G_core0  
–2288.50  
–880.13  
201.47  
WRF_AFE_GND1P2_core0  
WRF_LNA_2G_GND1P2_core1  
WRF_LNA_5G_GND1P2_core1  
WRF_PA2G_VBAT_GND3P3_core1  
WRF_PA2G_VBAT_VDD3P3_core1  
WRF_PA5G_VBAT_GND3P3_core1  
WRF_PA5G_VBAT_VDD3P3_core0  
WRF_PADRV_VBAT_GND3P3_core0  
WRF_PADRV_VBAT_VDD3P3_core0  
WRF_RFIN_2G_core0  
–201.47  
–2276.94  
–543.68  
–801.47  
–1801.46  
2279.50  
1398.51  
1393.11  
2198.50  
1317.02  
1544.51  
1018.43  
1317.27  
1424.35  
–2237.36  
998.51  
2276.94  
543.68  
801.47  
1801.46  
–2279.50  
–1398.51  
–1393.11  
–2198.50  
–1317.02  
–1544.51  
–1018.43  
–1317.27  
–1424.35  
2237.36  
–998.51  
–2279.50  
1801.46  
–1714.63  
1126.70  
–2138.64  
–1825.51  
1401.46  
WRF_RX2G_GND1P2_core0  
WRF_RX5G_GND1P2_core0  
WRF_TX_GND1P2_core0  
WRF_TSSI_A_core0  
WRF_BUCK_GND1P5_core0  
WRF_BUCK_VDD1P5_core1  
WRF_GPIO_OUT_core0  
WRF_RFOUT_2G_core0  
2279.50  
–1801.46  
1714.63  
–1126.70  
2138.64  
1825.51  
–1401.46  
WRF_RFOUT_5G_core1  
WRF_PA2G_VBAT_GND3P3_core0  
WRF_PA2G_VBAT_GND3P3_core1  
WRF_RFIN_5G_core0  
WRF_PA5G_VBAT_GND3P3_core0  
WRF_PA5G_VBAT_GND3P3_core1  
Document Number: 002-14809 Rev. *J  
Page 78 of 165  
CYW4354  
Table 21. 395-Bump WLCSP Coordinates (Cont.)  
Coordinates (0,0 center of die)  
Bump Side Top Side  
No.  
Net Name  
X
Y
X
–2279.50  
–2297.50  
–1488.79  
–1024.35  
–1224.35  
–1224.35  
2037.36  
2037.36  
2237.36  
1601.46  
1001.47  
–326.11  
303.96  
Y
–2398.01  
–2198.02  
–1700.51  
–3633.90  
–3633.90  
–3433.91  
–2423.85  
–2623.85  
–2623.85  
–3697.00  
–3679.00  
–2303.63  
–2888.29  
–3598.00  
3277.01  
1721.37  
1721.37  
1438.53  
1155.69  
1297.11  
1155.69  
1297.11  
872.84  
305  
WRF_PA2G_VBAT_VDD3P3_core0  
WRF_PA2G_VBAT_VDD3P3_core0  
WRF_RX2G_GND1P2_core0  
WRF_BUCK_VDD1P5_core0  
WRF_BUCK_VDD1P5_core0  
WRF_BUCK_VDD1P5_core0  
WRF_BUCK_VDD1P5_core1  
WRF_BUCK_VDD1P5_core1  
WRF_BUCK_VDD1P5_core1  
WRF_PA5G_VBAT_VDD3P3_core1  
WRF_PA2G_VBAT_VDD3P3_core1  
WRF_LOGEN_GND1P2  
WRF_RX2G_GND1P2_core1  
WRF_CP_GND1P2  
WL_REG_ON  
2279.50  
–2398.01  
–2198.02  
–1700.51  
–3633.90  
–3633.90  
–3433.91  
–2423.85  
–2623.85  
–2623.85  
–3697.00  
–3679.00  
–2303.63  
–2888.29  
–3598.00  
3277.01  
1721.37  
1721.37  
1438.53  
1155.69  
1297.11  
1155.69  
1297.11  
872.84  
306  
307  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
2297.50  
1488.79  
1024.35  
1224.35  
1224.35  
–2037.36  
–2037.36  
–2237.36  
–1601.46  
–1001.47  
326.11  
–303.96  
339.26  
–339.26  
1710.77  
1569.35  
1852.20  
1852.20  
1852.20  
1993.62  
2135.04  
1710.77  
1852.20  
2135.04  
2276.46  
2276.46  
1710.77  
1993.62  
1569.35  
1569.35  
1569.35  
1569.35  
1569.35  
1852.20  
1852.20  
1852.20  
1852.20  
1852.20  
–1710.77  
–1569.35  
–1852.20  
–1852.20  
–1852.20  
–1993.62  
–2135.04  
–1710.77  
–1852.20  
–2135.04  
–2276.46  
–2276.46  
–1710.77  
–1993.62  
–1569.35  
–1569.35  
–1569.35  
–1569.35  
–1569.35  
–1852.20  
–1852.20  
–1852.20  
–1852.20  
–1852.20  
BT_REG_ON  
LDO_VDDBAT5V  
LDO_VDDBAT5V  
LDO_VDDBAT5V  
VOUT_3P3  
VOUT_3P3  
VDDIO_PMU  
LDO_VDDBAT5V  
LDO_VDDBAT5V  
872.84  
872.84  
LDO_VDDBAT5V  
1014.26  
1297.11  
1862.79  
1579.95  
1155.69  
1438.53  
2287.06  
2852.74  
3135.59  
3135.59  
2852.74  
2569.90  
2287.06  
2004.21  
1014.26  
1297.11  
1862.79  
1579.95  
1155.69  
1438.53  
2287.06  
2852.74  
3135.59  
3135.59  
2852.74  
2569.90  
2287.06  
2004.21  
VOUT_3P3_SENSE  
LDO_VDDBAT5V  
VOUT_3P3  
VSSC  
VSSC  
PMU_AVSS  
SR_VLX  
SR_VLX  
SR_PVSS  
SR_VLX  
SR_VDDBATA5V  
VOUT_CLDO  
LDO_VDD1P5  
Document Number: 002-14809 Rev. *J  
Page 79 of 165  
CYW4354  
Table 21. 395-Bump WLCSP Coordinates (Cont.)  
Coordinates (0,0 center of die)  
Bump Side Top Side  
No.  
Net Name  
X
–1993.62  
–2135.04  
–2135.04  
–2135.04  
–2135.04  
–2135.04  
–2135.04  
–1710.77  
–1710.77  
–1710.77  
–1710.77  
–1710.77  
–1993.62  
–1993.62  
–1993.62  
–1993.62  
–1993.62  
–1993.62  
–2276.46  
–2276.46  
–2276.46  
–2276.46  
–2276.46  
–2276.46  
1800.31  
1966.81  
1480.37  
1480.37  
1408.19  
1322.34  
1060.28  
666.40  
Y
X
Y
343  
LDO_VDDBAT5V  
1014.26  
1993.62  
1014.26  
344  
345  
346  
347  
348  
349  
350  
351  
352  
353  
354  
355  
356  
357  
358  
359  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
370  
371  
372  
373  
374  
375  
376  
377  
378  
379  
380  
VOUT_3P3  
1438.53  
1721.37  
2004.21  
2287.06  
2569.90  
3135.59  
1579.95  
2145.64  
2428.48  
2711.32  
2994.17  
1862.79  
2145.64  
2428.48  
2711.32  
2994.17  
3277.01  
1862.79  
2145.64  
2428.48  
3277.01  
1579.95  
2711.32  
3068.53  
2956.03  
1005.66  
1225.66  
248.05  
2135.04  
2135.04  
2135.04  
2135.04  
2135.04  
2135.04  
1710.77  
1710.77  
1710.77  
1710.77  
1710.77  
1993.62  
1993.62  
1993.62  
1993.62  
1993.62  
1993.62  
2276.46  
2276.46  
2276.46  
2276.46  
2276.46  
2276.46  
–1800.31  
–1966.81  
–1480.37  
–1480.37  
–1408.19  
–1322.34  
–1060.28  
–666.40  
–617.61  
–338.89  
–1040.28  
–1063.38  
–1063.38  
–1273.37  
1438.53  
1721.37  
2004.21  
2287.06  
2569.90  
3135.59  
1579.95  
2145.64  
2428.48  
2711.32  
2994.17  
1862.79  
2145.64  
2428.48  
2711.32  
2994.17  
3277.01  
1862.79  
2145.64  
2428.48  
3277.01  
1579.95  
2711.32  
3068.53  
2956.03  
1005.66  
1225.66  
248.05  
LDO_VDDBAT5V  
VOUT_LDO3P3_B  
LDO_VDD1P5  
SR_VDDBATP5V  
SR_PVSS  
VDDIO_PMU  
VOUT_LNLDO  
VOUT_CLDO  
SR_VLX  
SR_VLX  
VOUT_LDO3P3_B  
LDO_VDD1P5  
VOUT_CLDO  
SR_VDDBATP5V  
SR_VLX  
SR_PVSS  
VOUT_3P3  
VOUT_BTLDO2P5  
LDO_VDD1P5  
SR_PVSS  
VOUT_3P3  
SR_VDDBATP5V  
PCIE_TESTP  
PCIE_TESTN  
BT_VDDC  
BT_VDDC  
BT_VDDC  
BT_VDDC  
55.02  
55.02  
BT_VDDC  
–1186.86  
–198.15  
–1324.61  
–475.07  
–724.53  
1020.66  
1320.66  
505.67  
–1186.86  
–198.15  
–1324.61  
–475.07  
–724.53  
1020.66  
1320.66  
505.67  
BT_VDDC  
BT_VDDC  
617.61  
BT_VSSC  
338.89  
BT_VSSC  
1040.28  
1063.38  
1063.38  
1273.37  
BT_VSSC  
BT_VSSC  
BT_VSSC  
Document Number: 002-14809 Rev. *J  
Page 80 of 165  
CYW4354  
Table 21. 395-Bump WLCSP Coordinates (Cont.)  
Coordinates (0,0 center of die)  
Bump Side Top Side  
No.  
Net Name  
X
Y
X
–1273.37  
–1273.37  
–1273.37  
–440.99  
1293.24  
1202.10  
1058.99  
1058.99  
959.90  
Y
381  
BT_VSSC  
BT_VSSC  
BT_VSSC  
VSSC  
1273.37  
705.66  
705.66  
382  
383  
384  
385  
386  
387  
388  
389  
390  
391  
392  
393  
394  
395  
1273.37  
1273.37  
440.99  
1005.66  
1225.66  
2052.00  
–1317.60  
–1504.00  
1451.99  
2302.00  
279.00  
1005.66  
1225.66  
2052.00  
–1317.60  
–1504.00  
1451.99  
2302.00  
279.00  
VSSC  
–1293.24  
–1202.10  
–1058.99  
–1058.99  
–959.90  
–759.00  
–759.00  
–759.00  
–759.00  
–746.31  
–746.31  
VSSC  
VSSC  
VSSC  
VSSC  
VSSC  
851.99  
759.00  
851.99  
VSSC  
1151.99  
1451.99  
2052.00  
–956.00  
–756.00  
759.00  
1151.99  
1451.99  
2052.00  
–956.00  
–756.00  
VSSC  
759.00  
VSSC  
759.00  
VSSC  
746.31  
VSSC  
746.31  
a. This net name was changed to VDDIO_PCIE to correct an error in the pin definition of bump 230. The correction applies to WLCSP package  
PCIe platform only, and is inconsequential for SDIO platforms.  
Document Number: 002-14809 Rev. *J  
Page 81 of 165  
CYW4354  
13.3 Signal Descriptions  
The signal name, type, and description of each pin in the CYW4354 is listed in Table 22 (WLCSP) and Table 23 on page 89 (WLBGA).  
The symbols shown under Type indicate pin directions (I/O = bidirectional, I = input, O = output) and the internal pull-up/pull-down  
characteristics (PU = weak internal pull-up resistor and PD = weak internal pull-down resistor), if any.  
Table 22. WLCSP Signal Descriptions  
Bump#  
Signal Name  
Type  
Description  
WLAN and Bluetooth Receive RF Signal Interface  
290  
WRF_RFIN_2G_CORE0  
WRF_RFIN_2G_CORE1  
WRF_RFIN_5G_CORE0  
WRF_RFIN_5G_CORE1  
WRF_RFOUT_2G_CORE0  
WRF_RFOUT_2G_CORE1  
WRF_RFOUT_5G_CORE0  
WRF_RFOUT_5G_CORE1  
WRF_TSSI_A_CORE0  
I
I
2.4 GHz Bluetooth and WLAN CORE0 receiver shared input  
2.4 GHz Bluetooth and WLAN CORE1 receiver shared input  
5 GHz WLAN CORE0 receiver input  
261  
302  
260  
298  
279  
280  
299  
294  
I
I
5 GHz WLAN CORE1 receiver input  
O
O
O
O
I
2.4 GHz WLAN CORE0 PA output  
2.4 GHz WLAN CORE1 PA output  
5 GHz WLAN CORE0 PA output  
5 GHz WLAN CORE1 PA output  
5 GHz TSSI CORE0 input from an optional external power  
amplifier/power detector.  
276  
297  
258  
WRF_TSSI_A_CORE1  
I
5 GHz TSSI CORE1 input from an optional external power  
amplifier/power detector.  
WRF_GPIO_OUT_CORE0  
WRF_GPIO_OUT_CORE1  
I/O  
I/O  
GPIO or 2.4 GHz TSSI CORE0 input from an optional external  
power amplifier/power detector  
GPIO or 2.4 GHz TSSI CORE1 input from an optional external  
power amplifier/power detector  
RF Switch Control Lines  
Programmable RF switch control lines. The control lines are  
programmable via the driver and NVRAM file.  
66  
RF_SW_CTRL_0  
RF_SW_CTRL_1  
RF_SW_CTRL_2  
RF_SW_CTRL_3  
RF_SW_CTRL_4  
RF_SW_CTRL_5  
RF_SW_CTRL_6  
RF_SW_CTRL_7  
RF_SW_CTRL_8  
RF_SW_CTRL_9  
RF_SW_CTRL_10  
RF_SW_CTRL_11  
RF_SW_CTRL_12  
RF_SW_CTRL_13  
RF_SW_CTRL_14  
RF_SW_CTRL_15  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
175  
186  
193  
86  
183  
190  
197  
181  
187  
194  
202  
184  
191  
198  
207  
WLAN PCI Express Interface  
174  
PCIE_CLKREQ_L  
OD PCIe clock request signal which indicates when the REFCLK to  
the PCIe interface can be gated.  
1 = the clock can be gated  
0 = the clock is required  
Document Number: 002-14809 Rev. *J  
Page 82 of 165  
CYW4354  
Table 22. WLCSP Signal Descriptions (Cont.)  
Bump# Signal Name  
180 PCIE_PERST_L  
Type  
Description  
I (PU) PCIe System Reset. This input is the PCIe reset as defined in  
the PCIe base specification version 1.1.  
9
PCIE_RDN0  
I
I
Receiver differential pair (×1 lane)  
8
PCIE_RDP0  
4
PCIE_REFCLKN  
PCIE_REFCLKP  
PCIE_TDN0  
I
PCIE Differential Clock inputs (negative and positive). 100 MHz  
differential.  
3
I
5
O
O
OD  
Transmitter differential pair (×1 lane)  
6
PCIE_TDP0  
165  
PCIE_PME_L  
PCIpower management event output. Used to request a change  
in the device or system power state. The assertion and  
deassertion of this signal is asynchronous to the PCIe reference  
clock. This signal has an open-drain output structure, as per the  
PCI Bus Local Bus Specification, revision 2.3.  
367  
368  
PCIE_TESTP  
PCIE_TESTN  
PCIe test pin  
WLAN SDIO Bus Interface  
These signals can support alternate functionality depending on package and host interface mode. See Table 27 on page 97  
78  
81  
82  
77  
80  
79  
SDIO_CLK  
I
SDIO clock input  
SDIO command line  
SDIO data line 0  
SDIO data line 1  
SDIO data line 2  
SDIO data line 3  
SDIO_CMD  
I/O  
I/O  
I/O  
I/O  
I/O  
SDIO_DATA_0  
SDIO_DATA_1  
SDIO_DATA_2  
SDIO_DATA_3  
WLAN HSIC Interface  
100  
101  
99  
HSIC_STROBE  
I/O  
I/O  
I
HSIC Strobe  
HSIC Data  
HSIC_DATA  
RREFHSIC  
HSIC reference resistor input. If HSIC is used, connect this pin  
to ground via a 51-ohm 5% resistor. On SDIO designs this pin  
should not be connected.  
Document Number: 002-14809 Rev. *J  
Page 83 of 165  
CYW4354  
Table 22. WLCSP Signal Descriptions (Cont.)  
Bump# Signal Name  
Type  
Description  
WLAN GPIO Interface  
The GPIO signals can be multiplexed via software and the JTAG_SEL pin to support other functions. See Table 24 on page 96 and  
Table 27 on page 97 for additional details.  
218  
219  
220  
221  
229  
237  
236  
189  
196  
205  
185  
192  
199  
182  
188  
195  
GPIO_0  
GPIO_1  
GPIO_2  
GPIO_3  
GPIO_4  
GPIO_5  
GPIO_6  
GPIO_7  
GPIO_8  
GPIO_9  
GPIO_10  
GPIO_11  
GPIO_12  
GPIO_13  
GPIO_14  
GPIO_15  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Programmable GPIO pins  
JTAG Interface  
239  
JTAG_SEL  
I/O  
JTAG select: pull high to select the JTAG interface. If the JTAG  
interface is not used this pin may be left floating or connected to  
ground.  
Note:  
See Table 27 on page 97 for the JTAG signal pins.  
Clocks  
251  
253  
159  
161  
WRF_XTAL_IN  
WRF_XTAL_OUT  
LPO_IN  
I
XTAL oscillator input  
O
I
XTAL oscillator output  
External sleep clock input (32.768 kHz)  
CLK_REQ  
O
Reference clock request (shared by BT and WLAN). If not used,  
this can be no-connect.  
Bluetooth/FM Transceiver  
49  
BT_RF  
O
I
Bluetooth PA output  
BT_SF_CLK  
BT_SF_CS_L  
BT_SF_MISO  
BT_SF_MOSI  
FM_RFIN  
SFLASH_CLK  
I/O  
I/O  
I/O  
I
SFLASH_CSN  
SFLASH master input, slave output  
SFLASH master output, slave input  
FM radio antenna port  
FM radio auxiliary antenna port  
FM DAC output 1  
61  
60  
54  
55  
FM_RFAUX  
FM_AOUT1  
FM_AOUT2  
I
O
O
FM DAC output 2  
Document Number: 002-14809 Rev. *J  
Page 84 of 165  
CYW4354  
Table 22. WLCSP Signal Descriptions (Cont.)  
Bump# Signal Name  
Type  
Description  
Bluetooth PCM  
179  
BT_PCM_CLK  
BT_PCM_IN  
I/O  
I
PCM clock; can be master (output) or slave (input)  
PCM data input  
173  
177  
163  
BT_PCM_OUT  
O
PCM data output  
BT_PCM_SYNC  
I/O  
PCM sync; can be master (output) or slave (input).  
Bluetooth USB Interface  
164  
169  
BT_USB_DN  
BT_USB_DP  
I/O  
USB (Host) data negative. Negative terminal of the USB trans-  
ceiver.  
I/O  
USB (Host) data positive. Positive terminal of the USB trans-  
ceiver.  
Bluetooth UART  
172  
178  
BT_UART_CTS_L  
BT_UART_RTS_L  
I
UART clear-to-send. Active-low clear-to-send signal for the HCI  
UART interface.  
O
UART request-to-send. Active-low request-to-send signal for  
the HCI UART interface. BT LED control pin.  
162  
157  
BT_UART_RXD  
BT_UART_TXD  
I
UART serial input. Serial data input for the HCI UART interface.  
O
UART serial output. Serial data output for the HCI UART  
interface.  
Bluetooth/FM I2S  
167  
171  
156  
158  
BT_I2S_CLK  
BT_I2S_DO  
BT_I2S_DI  
I/O  
I/O  
I/O  
I/O  
I2S clock, can be master (output) or slave (input).  
I2S data output  
I2S data input  
I2S WS; can be master (output) or slave (input).  
BT_I2S_WS  
Bluetooth GPIOs  
155  
154  
168  
153  
BT_GPIO_2  
BT_GPIO_3  
BT_GPIO_4  
BT_GPIO_5  
I/O  
I/O  
I/O  
I/O  
Bluetooth general-purpose I/O  
Bluetooth general-purpose I/O  
Bluetooth general-purpose I/O  
Bluetooth general-purpose I/O  
Miscellaneous  
319  
WL_REG_ON  
I
Used by PMU to power up or power down the internal CYW4354  
regulators used by the WLAN section. Also, when deasserted,  
this pin holds the WLAN section in reset. This pin has an internal  
200 kpull-down resistor that is enabled by default. It can be  
disabled through programming.  
320  
BT_REG_ON  
I
Used by PMU to power up or power down the internal CYW4354  
regulators used by the Bluetooth/FM section. Also, when  
deasserted, this pin holds the Bluetooth/FM section in reset.  
Thispinhas an internal 200 kpull-downresistorthatisenabled  
by default. It can be disabled through programming.  
176  
170  
BT_DEV_WAKE  
BT_HOST_WAKE  
I/O  
I/O  
Bluetooth DEV_WAKE  
Bluetooth HOST_WAKE  
Document Number: 002-14809 Rev. *J  
Page 85 of 165  
CYW4354  
Table 22. WLCSP Signal Descriptions (Cont.)  
Bump# Signal Name  
Type  
Description  
Integrated Voltage Regulators  
340  
SR_VDDBATA5V  
I
I
Quiet VBAT  
Power VBAT  
348  
336  
SR_VDDBATP5V  
SR_VLX  
O
CBuck switching regulator output. Refer to Table 44 on page 132  
for details of the inductor and capacitor required on this output.  
342  
327  
249  
254  
351  
341  
362  
346  
324  
330  
LDO_VDD1P5  
I
LNLDO input  
LDO_VDDBAT5V  
WRF_XTAL_VDD1P5  
WRF_XTAL_VDD1P2  
VOUT_LNLDO  
I
LDO VBAT.  
I
XTAL LDO input (1.35V)  
XTAL LDO output (1.2V)  
Output of LNLDO  
O
O
O
O
O
O
O
VOUT_CLDO  
Output of core LDO  
Output of BT LDO  
VOUT_BTLDO2P5  
VOUT_LDO3P3_B  
VOUT_3P3  
Output of 3.3V LDO  
LDO 3.3V output  
VOUT_3P3_SENSE  
Voltage sense pin for LDO 3.3V output  
Bluetooth Supplies  
46  
44  
42  
47  
50  
BT_PAVDD2P5  
BT_LNAVDD1P2  
BT_IFVDD1P2  
PWR Bluetooth PA power supply  
PWR Bluetooth LNA power supply  
PWR Bluetooth IF block power supply  
PWR Bluetooth RF PLL power supply  
PWR Bluetooth RF power supply  
PWR Core supply  
BT_PLLVDD1P2  
BT_VCOVDD1P2  
148, 149, BT_VDDIO  
150,151  
FM Transceiver Supplies  
FM_LNAVCOVDD1P2  
PWR FM LNA and VCO 1.2V power supply  
PWR FM LNA 1.2V power supply  
PWR FM VCO 1.2V power supply  
PWR FM PLL 1.2V power supply  
PWR FM AUDIO power supply  
62  
64  
59  
52  
FM_LNAVDD1P2  
FM_VCOVDD1P2  
FM_PLLVDD1P2  
FM_AUDIOVDD1P2  
WLAN Supplies  
277  
296  
262  
289  
264  
269  
266  
305  
285  
270  
WRF_BUCK_VDD1P5_CORE0  
PWR Internal capacitor-less CORE0 LDO supply  
PWR Internal capacitor-less CORE1 LDO supply  
PWR Synth VDD 3.3V supply  
WRF_BUCK_VDD1P5_CORE1  
WRF_SYNTH_VBAT_VDD3P3  
WRF_PADRV_VBAT_VDD3P3_CORE0  
WRF_PADRV_VBAT_VDD3P3_CORE1  
WRF_PA5G_VBAT_VDD3P3_CORE0  
WRF_PA5G_VBAT_VDD3P3_CORE1  
WRF_PA2G_VBAT_VDD3P3_CORE0  
WRF_PA2G_VBAT_VDD3P3_CORE1  
WRF_MMD_VDD1P2  
PWR CORE0 PA Driver VBAT supply  
PWR CORE1 PA Driver VBAT supply  
PWR 5 GHz CORE0 PA 3.3V VBAT supply  
PWR 5 GHz CORE1 PA 3.3V VBAT supply  
PWR 2 GHz CORE0 PA 3.3V VBAT supply  
PWR 2 GHz CORE1 PA 3.3V VBAT supply  
PWR 1.2V supply  
Document Number: 002-14809 Rev. *J  
Page 86 of 165  
CYW4354  
Table 22. WLCSP Signal Descriptions (Cont.)  
Bump# Signal Name  
262 WRF_PFD_VDD1P2  
Type  
Description  
PWR 1.2V supply  
Miscellaneous Supplies  
PWR OTP 3.3V supply  
160  
OTP_VDD33  
67, 74, 87, VDDC  
103, 107–  
115, 127–  
129, 134–  
140, 203,  
204, 208–  
211, 213,  
224, 228,  
241, 242,  
246  
PWR 1.2V core supply for WLAN  
206, 222, VDDIO  
231  
PWR 1.8V–3.3V supply for WLAN. Must be directly connected to  
PMU_VDDIO and BT_VDDIO on the PCB.  
145, 147, BT_VDDC  
369– 375,  
PWR 1.2V core supply for BT  
326  
VDDIO_PMU  
PWR 1.8V–3.3V supply for PMU controls. Must be directly connected  
to VDDIO and BT_VDDIO on the PCB.  
76  
VDDIO_SD  
PWR 1.8V–3.3V supply for SDIO pads  
PWR IO supply for RF switch control pads (3.3V)  
PWR 1.2V supply for HSIC PLL  
223  
98  
VDDIO_RF  
HSIC_AVDD12PLL  
HSIC_DVDD12  
AVDD_BBPLL  
102  
143  
11  
PWR 1.2V supply for HSIC digital  
PWR Baseband PLL supply  
PCIE_PLL_AVDD1P2  
PCIE_RXTX_AVDD1P2  
VDDIO_PCIE  
PWR 1.2V supply for PCIe PLL  
7
PWR 1.2V supply for PCIE TX and RX  
230  
PWR Supply the same voltage to this pin as used for the PCIe out-of-  
bandsignals(that is, PCIE_PME_L). This would be 1.8Vor3.3V,  
and cannot be turned off.  
Ground  
250  
281  
267  
295  
256  
275  
282  
273  
283  
293  
255  
288  
265  
248  
WRF_VCO_GND1P2  
GND VCO/LOGEN ground  
WRF_AFE_GND1P2_CORE0  
WRF_AFE_GND1P2_CORE1  
WRF_BUCK_GND1P5_CORE0  
WRF_BUCK_GND1P5_CORE1  
WRF_LNA_2G_GND1P2_CORE0  
WRF_LNA_2G_GND1P2_CORE1  
WRF_LNA_5G_GND1P2_CORE0  
WRF_LNA_5G_GND1P2_CORE1  
WRF_TX_GND1P2_CORE0  
GND CORE0 AFE ground  
GND CORE1 AFE ground  
GND Internal capacitor-less CORE0 LDO ground  
GND Internal capacitor-less CORE1 LDO ground  
GND 2 GHz internal CORE0 LNA ground  
GND 2 GHz internal CORE1 LNA ground  
GND 5 GHz internal CORE0 LNA ground  
GND 5 GHz internal CORE1 LNA ground  
GND TX CORE0 ground  
WRF_TX_GND1P2_CORE1  
GND TX CORE1 ground  
WRF_PADRV_VBAT_GND3P3_CORE0  
WRF_PADRV_VBAT_GND3P3_CORE1  
WRF_XTAL_GND1P2  
GND PAD CORE0 ground  
GND PAD CORE1 ground  
GND XTAL ground  
Document Number: 002-14809 Rev. *J  
Page 87 of 165  
CYW4354  
Table 22. WLCSP Signal Descriptions (Cont.)  
Bump#  
291, 307  
259, 317  
292  
Signal Name  
WRF_RX2G_GND1P2_CORE0  
WRF_RX2G_GND1P2_CORE1  
WRF_RX5G_GND1P2_CORE0  
WRF_RX5G_GND1P2_CORE1  
WRF_LOGEN_GND1P2  
Type  
Description  
GND RX 2GHz CORE0 ground  
GND RX 2GHz CORE1 ground  
GND RX 5GHz CORE0 ground  
GND RX 5GHz CORE1 ground  
GND LOGEN ground  
257  
252, 316  
278  
WRF_LOGENG_GND1P2  
GND LOGEN ground  
268, 030  
286, 304  
272, 300  
284, 301  
271  
WRF_PA5G_VBAT_GND3P3_CORE0  
WRF_PA5G_VBAT_GND3P3_CORE1  
WRF_PA2G_VBAT_GND3P3_CORE0  
WRF_PA2G_VBAT_GND3P3_CORE1  
WRF_MMD_GND1P2  
GND 5 GHz PA CORE0 ground  
GND 5 GHz PA CORE1 ground  
GND 2 GHz PA CORE0 ground  
GND 2 GHz PA CORE1 ground  
GND Ground  
274, 318  
263  
WRF_CP_GND1P2  
GND Ground  
WRF_PFD_GND1P2  
GND Ground  
68–73, 75, VSSC  
83–85,  
GND Core ground for WLAN and BT  
88–95,  
104–106,  
116–122,  
130, 200,  
201, 217,  
232–235,  
254–245,  
333, 334,  
384–395  
338, 349, SR_PVSS  
360, 364  
GND Power ground  
335  
97  
40  
43  
48  
51  
65  
63  
58  
53  
144  
10  
1
PMU_AVSS  
GND Quiet ground  
HSIC_AGND12PLL  
BT_PAVSS  
GND HSIC PLL ground  
GND Bluetooth PA ground  
GND Bluetooth IF block ground  
GND Bluetooth PLL ground  
GND Bluetooth VCO ground  
GND FM VCO ground  
GND FM LNA ground  
GND FM PLL ground  
GND FM AUDIO ground  
GND Baseband PLL ground  
GND PCIe ground  
BT_IFVSS  
BT_PLLVSS  
BT_VCOVSS  
FM_VCOVSS  
FM_LNAVSS  
FM_PLLVSS  
FM_AUDIOVSS  
AVSS_BBPLL  
PCIE_AVSS  
PCIE_RXTX_AVSS  
PCIE_PLL_AVSS  
GND PCIe ground  
2
GND PCIe ground  
17, 18, 23, RGND  
26, 96  
GND Ground  
BTRGND  
GND Ground  
Document Number: 002-14809 Rev. *J  
Page 88 of 165  
CYW4354  
Table 23. WLBGA Signal Descriptions  
Ball# Signal Name  
WLAN and Bluetooth Receive RF Signal Interface  
Type  
Description  
N1  
WRF_RFIN_2G_CORE0  
WRF_RFIN_2G_CORE1  
WRF_RFIN_5G_CORE0  
WRF_RFIN_5G_CORE1  
WRF_RFOUT_2G_CORE0  
WRF_RFOUT_2G_CORE1  
WRF_RFOUT_5G_CORE0  
WRF_RFOUT_5G_CORE1  
WRF_TSSI_A_CORE0  
I
I
2.4 GHz Bluetooth and WLAN CORE0 receiver shared input  
2.4 GHz Bluetooth and WLAN CORE1 receiver shared input  
5 GHz WLAN CORE0 receiver input  
V7  
V1  
I
V12  
P1  
I
5 GHz WLAN CORE1 receiver input  
O
O
O
O
I
2.4 GHz WLAN CORE0 PA output  
V8  
2.4 GHz WLAN CORE1 PA output  
U1  
V11  
U3  
5 GHz WLAN CORE0 PA output  
5 GHz WLAN CORE1 PA output  
5 GHz TSSI CORE0 input from an optional external power  
amplifier/power detector.  
T11  
R4  
R9  
WRF_TSSI_A_CORE1  
I
5 GHz TSSI CORE1 input from an optional external power  
amplifier/power detector.  
WRF_GPIO_OUT_CORE0  
WRF_GPIO_OUT_CORE1  
I/O  
I/O  
GPIO or 2.4 GHz TSSI CORE0 input from an optional external  
power amplifier/power detector  
GPIO or 2.4 GHz TSSI CORE1 input from an optional external  
power amplifier/power detector  
RF Switch Control Lines  
Programmable RF switch control lines. The control lines are  
programmable via the driver and NVRAM file.  
R7  
N8  
P9  
RF_SW_CTRL_0  
RF_SW_CTRL_1  
RF_SW_CTRL_2  
RF_SW_CTRL_3  
RF_SW_CTRL_4  
RF_SW_CTRL_5  
RF_SW_CTRL_6  
RF_SW_CTRL_7  
RF_SW_CTRL_8  
RF_SW_CTRL_9  
RF_SW_CTRL_10  
RF_SW_CTRL_11  
RF_SW_CTRL_12  
RF_SW_CTRL_13  
RF_SW_CTRL_14  
RF_SW_CTRL_15  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
N7  
N5  
P7  
P5  
M8  
K12  
J11  
M12  
L9  
J9  
K10  
M10  
L8  
WLAN PCI Express Interface  
D5  
C4  
PCIE_CLKREQ_L  
PCIE_PERST_L  
OD PCIe clock request signal which indicates when the REFCLK to  
the PCIe interface can be gated.  
1 = the clock can be gated  
0 = the clock is required  
I (PU) PCIe System Reset. This input is the PCIe reset as defined in  
the PCIe base specification version 1.1.  
Document Number: 002-14809 Rev. *J  
Page 89 of 165  
CYW4354  
Table 23. WLBGA Signal Descriptions  
Ball# Signal Name  
B1  
Type  
Description  
Receiver differential pair (×1 lane)  
PCIE_RDN0  
PCIE_RDP0  
I
I
C1  
A5  
A4  
A3  
A2  
C5  
PCIE_REFCLKN  
PCIE_REFCLKP  
PCIE_TDN0  
I
PCIE Differential Clock inputs (negative and positive). 100 MHz  
differential.  
I
O
O
OD  
Transmitter differential pair (×1 lane)  
PCIE_TDP0  
PCIE_PME_L  
PCI power management event output. Used to request a  
change in the device or system power state. The assertion and  
deassertion of this signal is asynchronous to the PCIe reference  
clock. This signal has an open-drain output structure, as per the  
PCI Bus Local Bus Specification, revision 2.3.  
C3  
C2  
PCIE_TESTP  
PCIE_TESTN  
PCIe test pin  
WLAN SDIO Bus Interface  
Note: These signals can support alternate functionality depending on package and host interface mode. See Table 27  
on page 97 for additional details.  
A8  
A9  
B9  
C9  
B8  
C8  
SDIO_CLK  
I
SDIO clock input  
SDIO command line  
SDIO data line 0  
SDIO data line 1  
SDIO data line 2  
SDIO data line 3  
SDIO_CMD  
I/O  
I/O  
I/O  
I/O  
I/O  
SDIO_DATA_0  
SDIO_DATA_1  
SDIO_DATA_2  
SDIO_DATA_3  
WLAN HSIC Interface  
A7  
A6  
D7  
HSIC_STROBE  
HSIC_DATA  
RREFHSIC  
I/O  
I/O  
I
HSIC Strobe  
HSIC Data  
HSIC reference resistor input. If HSIC is used, connect this pin  
to ground via a 51-ohm 5% resistor. On SDIO designs this pin  
should not be connected.  
Document Number: 002-14809 Rev. *J  
Page 90 of 165  
CYW4354  
Table 23. WLBGA Signal Descriptions  
Ball# Signal Name  
Type  
Description  
WLAN GPIO Interface  
Note: The GPIO signals can be multiplexed via software and the JTAG_SEL pin to support other functions. See Table  
24 on page 96 and Table 27 on page 97 for additional details.  
G11  
F10  
F11  
G9  
H9  
F9  
F8  
E7  
F7  
E6  
H12  
GPIO_0  
GPIO_1  
GPIO_2  
GPIO_3  
GPIO_4  
GPIO_5  
GPIO_6  
GPIO_7  
GPIO_8  
GPIO_9  
GPIO_10  
GPIO_11  
GPIO_12  
GPIO_13  
GPIO_14  
GPIO_15  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Programmable GPIO pins  
JTAG Interface  
D9  
JTAG_SEL  
I/O JTAG select: pull high to select the JTAG interface. If the JTAG  
interface is not used this pin may be left floating or connected  
to ground.  
Note: See Table 27 on page 97 for the JTAG signal pins.  
Clocks  
P12  
N12  
F6  
WRF_XTAL_IN  
WRF_XTAL_OUT  
LPO_IN  
I
XTAL oscillator input  
O
I
XTAL oscillator output  
External sleep clock input (32.768 kHz)  
F4  
CLK_REQ  
O
Reference clock request (shared by BT and WLAN). If not used,  
this can be no-connect.  
Bluetooth/FM Transceiver  
L1  
BT_RF  
O
I
Bluetooth PA output  
BT_SF_CLK  
BT_SF_CS_L  
BT_SF_MISO  
BT_SF_MOSI  
FM_RFIN  
SFLASH_CLK  
I/O  
I/O  
I/O  
I
SFLASH_CSN  
SFLASH master input, slave output  
SFLASH master output, slave input  
FM radio antenna port  
FM radio auxiliary antenna port  
FM DAC output 1  
H1  
FM_RFAUX  
FM_AOUT1  
FM_AOUT2  
I
E1  
F1  
O
O
FM DAC output 2  
Bluetooth PCM  
Document Number: 002-14809 Rev. *J  
Page 91 of 165  
CYW4354  
Table 23. WLBGA Signal Descriptions  
Ball# Signal Name  
M6  
Type  
Description  
BT_PCM_CLK  
BT_PCM_IN  
I/O  
I
PCM clock; can be master (output) or slave (input)  
PCM data input  
J4  
H4  
K6  
BT_PCM_OUT  
O
PCM data output  
BT_PCM_SYNC  
I/O  
PCM sync; can be master (output) or slave (input).  
Bluetooth USB Interface  
E5  
F5  
BT_USB_DN  
BT_USB_DP  
I/O  
USB (Host) data negative. Negative terminal of the USB trans-  
ceiver.  
I/O  
USB (Host) data positive. Positive terminal of the USB trans-  
ceiver.  
Bluetooth UART  
L5  
BT_UART_CTS_L  
BT_UART_RTS_L  
I
UART clear-to-send. Active-low clear-to-send signal for the HCI  
UART interface.  
K5  
O
UART request-to-send. Active-low request-to-send signal for  
the HCI UART interface. BT LED control pin.  
H5  
J5  
BT_UART_RXD  
BT_UART_TXD  
I
UART serial input. Serial data input for the HCI UART interface.  
O
UART serial output. Serial data output for the HCI UART  
interface.  
Bluetooth/FM I2S  
J6  
BT_I2S_CLK  
BT_I2S_DO  
BT_I2S_DI  
I/O  
I/O  
I/O  
I/O  
I2S clock, can be master (output) or slave (input).  
I2S data output  
I2S data input  
I2S WS; can be master (output) or slave (input).  
G6  
G5  
L6  
BT_I2S_WS  
Bluetooth GPIO  
BT_GPIO_2  
BT_GPIO_3  
BT_GPIO_4  
BT_GPIO_5  
I/O  
I/O  
I/O  
I/O  
Bluetooth general-purpose I/O  
Bluetooth general-purpose I/O  
Bluetooth general-purpose I/O  
Bluetooth general-purpose I/O  
K4  
Miscellaneous  
A10  
WL_REG_ON  
I
Used by PMU to power up or power down the internal CYW4354  
regulators used by the WLAN section. Also, when deasserted,  
this pin holds the WLAN section in reset. This pin has an internal  
200 kpull-down resistor that is enabled by default. It can be  
disabled through programming.  
D10  
BT_REG_ON  
I
Used by PMU to power up or power down the internal CYW4354  
regulators used by the Bluetooth/FM section. Also, when  
deasserted, this pin holds the Bluetooth/FM section in reset.  
This pin has an internal 200 kpull-down resistor that is  
enabled by default. It can be disabled through programming.  
L4  
J3  
BT_DEV_WAKE  
BT_HOST_WAKE  
I/O  
I/O  
Bluetooth DEV_WAKE  
Bluetooth HOST_WAKE  
Document Number: 002-14809 Rev. *J  
Page 92 of 165  
CYW4354  
Table 23. WLBGA Signal Descriptions  
Ball# Signal Name  
Type  
Description  
Integrated Voltage Regulators  
B11  
SR_VDDBATA5V  
I
I
Quiet VBAT  
Power VBAT  
B12  
A11  
SR_VDDBATP5V  
SR_VLX  
O
CBuckswitchingregulator output. Referto Table 44 on page 132  
for details of the inductor and capacitor required on this output.  
C12  
E12  
P11  
N10  
D11  
C11  
D12  
E11  
F12  
LDO_VDD1P5  
I
LNLDO input  
LDO_VDDBAT5V  
WRF_XTAL_VDD1P5  
WRF_XTAL_VDD1P2  
VOUT_LNLDO  
I
LDO VBAT.  
I
XTAL LDO input (1.35V)  
XTAL LDO output (1.2V)  
Output of LNLDO  
O
O
O
O
O
O
O
VOUT_CLDO  
Output of core LDO  
Output of BT LDO  
VOUT_BTLDO2P5  
VOUT_LDO3P3_B  
VOUT_3P3  
Output of 3.3V LDO  
LDO 3.3V output  
VOUT_3P3_SENSE  
Voltage sense pin for LDO 3.3V output  
Bluetooth Supplies  
M1  
K1  
K3  
K2  
J1  
BT_PAVDD2P5  
BT_LNAVDD1P2  
BT_IFVDD1P2  
BT_PLLVDD1P2  
BT_VCOVDD1P2  
BT_VDDIO  
PWR Bluetooth PA power supply  
PWR Bluetooth LNA power supply  
PWR Bluetooth IF block power supply  
PWR Bluetooth RF PLL power supply  
PWR Bluetooth RF power supply  
PWR Core supply  
K7  
FM Transceiver Supplies  
G1  
FM_LNAVCOVDD1P2  
FM_LNAVDD1P2  
FM_VCOVDD1P2  
FM_PLLVDD1P2  
PWR FM LNA and VCO 1.2V power supply  
PWR FM LNA 1.2V power supply  
PWR FM VCO 1.2V power supply  
PWR FM PLL 1.2V power supply  
PWR FM AUDIO power supply  
WLAN Supplies  
F3  
E2  
FM_AUDIOVDD1P2  
U4  
R11  
V6  
R3  
T9  
WRF_BUCK_VDD1P5_CORE0  
WRF_BUCK_VDD1P5_CORE1  
WRF_SYNTH_VBAT_VDD3P3  
WRF_PADRV_VBAT_VDD3P3_CORE0  
WRF_PADRV_VBAT_VDD3P3_CORE1  
WRF_PA5G_VBAT_VDD3P3_CORE0  
WRF_PA5G_VBAT_VDD3P3_CORE1  
WRF_PA2G_VBAT_VDD3P3_CORE0  
WRF_PA2G_VBAT_VDD3P3_CORE1  
WRF_MMD_VDD1P2  
PWR Internal capacitor-less CORE0 LDO supply  
PWR Internal capacitor-less CORE1 LDO supply  
PWR Synth VDD 3.3V supply  
PWR CORE0 PA Driver VBAT supply  
PWR CORE1 PA Driver VBAT supply  
PWR 5 GHz CORE0 PA 3.3V VBAT supply  
PWR 5 GHz CORE1 PA 3.3V VBAT supply  
PWR 2 GHz CORE0 PA 3.3V VBAT supply  
PWR 2 GHz CORE1 PA 3.3V VBAT supply  
PWR 1.2V supply  
T1  
V10  
R1  
V9  
T5  
T4  
WRF_PFD_VDD1P2  
PWR 1.2V supply  
Document Number: 002-14809 Rev. *J  
Page 93 of 165  
CYW4354  
Table 23. WLBGA Signal Descriptions  
Ball# Signal Name  
Type  
Description  
Miscellaneous Supplies  
OTP_VDD33  
VDDC  
PWR OTP 3.3V supply  
PWR 1.2V core supply for WLAN  
B7, D4,  
E9, G10,  
J8, J12,  
L10, M7  
E10  
VDDIO  
PWR 1.8V–3.3V supply for WLAN. Must be directly connected to  
PMU_VDDIO and BT_VDDIO on the PCB.  
E4, H3, M5 BT_VDDC  
PWR 1.2V core supply for BT  
VDDIO_PMU  
PWR 1.8V–3.3V supply for PMU controls. Must be directly connected  
to VDDIO and BT_VDDIO on the PCB.  
E8  
H11  
C7  
C6  
H7  
B3  
B2  
VDDIO_SD  
VDDIO_RF  
PWR 1.8V–3.3V supply for SDIO pads  
PWR IO supply for RF switch control pads (3.3V)  
PWR 1.2V supply for HSIC PLL  
PWR 1.2V supply for HSIC digital  
PWR Baseband PLL supply  
HSIC_AVDD12PLL  
HSIC_DVDD12  
AVDD_BBPLL  
PCIE_PLL_AVDD1P2  
PCIE_RXTX_AVDD1P2  
PWR 1.2V supply for PCIe PLL  
PWR 1.2V supply for PCIE TX and RX  
Ground  
U6  
WRF_VCO_GND1P2  
GND VCO/LOGEN ground  
P4  
WRF_AFE_GND1P2_CORE0  
WRF_AFE_GND1P2_CORE1  
WRF_BUCK_GND1P5_CORE0  
WRF_BUCK_GND1P5_CORE1  
WRF_LNA_2G_GND1P2_CORE0  
WRF_LNA_2G_GND1P2_CORE1  
WRF_LNA_5G_GND1P2_CORE0  
WRF_LNA_5G_GND1P2_CORE1  
WRF_TX_GND1P2_CORE0  
WRF_TX_GND1P2_CORE1  
WRF_PADRV_VBAT_GND3P3_CORE0  
WRF_PADRV_VBAT_GND3P3_CORE1  
WRF_XTAL_GND1P2  
GND CORE0 AFE ground  
R8  
GND CORE1 AFE ground  
V4  
GND Internal capacitor-less CORE0 LDO ground  
GND Internal capacitor-less CORE1 LDO ground  
GND 2 GHz internal CORE0 LNA ground  
GND 2 GHz internal CORE1 LNA ground  
GND 5 GHz internal CORE0 LNA ground  
GND 5 GHz internal CORE1 LNA ground  
GND TX CORE0 ground  
R12  
N2  
U7  
V2  
U12  
P3  
T8  
GND TX CORE1 ground  
T3  
GND PAD CORE0 ground  
T10  
N11  
N3  
GND PAD CORE1 ground  
GND XTAL ground  
WRF_RX2G_GND1P2_CORE0  
WRF_RX2G_GND1P2_CORE1  
WRF_RX5G_GND1P2_CORE0  
WRF_RX5G_GND1P2_CORE1  
WRF_LOGEN_GND1P2  
GND RX 2GHz CORE0 ground  
GND RX 2GHz CORE1 ground  
GND RX 5GHz CORE0 ground  
GND RX 5GHz CORE1 ground  
GND LOGEN ground  
T7  
V3  
T12  
R6  
R5  
WRF_LOGENG_GND1P2  
GND LOGEN ground  
T2, U2  
WRF_PA5G_VBAT_GND3P3_CORE0  
GND 5 GHz PA CORE0 ground  
GND 5 GHz PA CORE1 ground  
U10, U11 WRF_PA5G_VBAT_GND3P3_CORE1  
Document Number: 002-14809 Rev. *J  
Page 94 of 165  
CYW4354  
Table 23. WLBGA Signal Descriptions  
Ball#  
Signal Name  
Type  
Description  
P2, R2  
U8, U9  
T6  
WRF_PA2G_VBAT_GND3P3_CORE0  
WRF_PA2G_VBAT_GND3P3_CORE1  
WRF_MMD_GND1P2  
GND 2 GHz PA CORE0 ground  
GND 2 GHz PA CORE1 ground  
GND Ground  
V5  
WRF_CP_GND1P2  
GND Ground  
U5  
WRF_PFD_GND1P2  
GND Ground  
C10, D3,  
D6, G4,  
G8, G12,  
L7, L11,  
M4  
VSSC  
GND Core ground for WLAN and BT  
A12  
B10  
B6  
L2  
M3  
L3  
J2  
SR_PVSS  
GND Power ground  
GND Quiet ground  
PMU_AVSS  
HSIC_AGND12PLL  
BT_PAVSS  
GND HSIC PLL ground  
GND Bluetooth PA ground  
GND Bluetooth IF block ground  
GND Bluetooth PLL ground  
GND Bluetooth VCO ground  
GND FM VCO ground  
GND FM LNA ground  
GND FM PLL ground  
GND FM AUDIO ground  
GND Baseband PLL ground  
GND PCIe ground  
BT_IFVSS  
BT_PLLVSS  
BT_VCOVSS  
FM_VCOVSS  
FM_LNAVSS  
FM_PLLVSS  
FM_AUDIOVSS  
AVSS_BBPLL  
PCIE_AVSS  
PCIE_RXTX_AVSS  
PCIE_PLL_AVSS  
RGND  
G2  
H2  
G3  
F2  
G7  
B4  
B5  
GND PCIe ground  
GND PCIe ground  
GND Ground  
BTRGND  
GND Ground  
Document Number: 002-14809 Rev. *J  
Page 95 of 165  
CYW4354  
13.4 WLAN/BT GPIO Signals and Strapping Options  
The pins listed in Table 24 and Table 25 are sampled at power-on reset (POR) to determine the various operating modes. Sampling  
occurs a few milliseconds after an internal POR or deassertion of the external POR. After the POR, each pin assumes the GPIO or  
alternative function specified in the signal descriptions table. Each strapping option pin has an internal pull-up (PU) or pull-down (PD)  
resistor that determines the default mode. To change the mode, connect an external PU resistor to VDDIO or a PD resistor to GND,  
using a 10 kresistor or less.  
Note: Refer to the reference board schematics for more information.  
Table 24. WLAN GPIO Functions and Strapping Options  
Pin Name  
GPIO_4  
Default Function  
Description  
0
1: SPROM is present  
0: SPROM is absent (default). Applicable in PCIe Host mode.  
Note: In SDIO Host mode, sdioPadVddio is 3.3V while set to 1, and 1.8V while set to 0.  
GPIO_5  
0
0: sflash absent (default)  
1: sflash present  
GPIO_[10, 9, 8]  
GPIO_12  
[0,0,0]  
1
Host interface selection: see Table 26.  
1 = HTAvailable (default)  
0 = ResourceModeInit is ALPAvailable. On PCBs, use a pull-down and tie to ALP clock  
mode.  
Table 25. BT GPIO Functions and Strapping Options  
Default  
Pin Name  
Description  
Function  
BT_GPIO4  
0
1: BT Serial Flash is present.  
0: BT Serial Flash is absent (default)  
Table 26. GPIO_[10, 9, 8] Host Interface Selection  
GPIO_[10, 9, 8]  
WLAN Host Interface Mode  
Bluetooth Mode  
BTUART or BTUSB;  
Bit Setting  
000  
010  
011  
SDIO  
BT tPorts stand-alone.  
HSIC_30D  
PCIE  
BTUART or BTUSB;  
BT tPorts stand-alone  
BTUART or BTUSB;  
BT tPorts stand-alone  
Document Number: 002-14809 Rev. *J  
Page 96 of 165  
CYW4354  
13.5 GPIO Alternative Signal Functions  
Table 27. GPIO Alternative Signal Functions  
Miscella-  
neous-0  
(JTAG_SEL =  
1)  
Miscellaneous-  
1
Miscella-  
neous-2  
Test Mode  
UART  
SFLASH  
SPROM  
4
BSC  
GCI  
7
PWDOG  
10  
Function Select  
Pin  
Names  
Additional  
Functionality  
0
2
3
5
6
8
9
GPIO_0  
GPIO_1  
GPIO_2  
GPIO_3  
TEST_GPIO_0 FAST_UAR UART_DBG  
BSC_CLK  
GCI_G-  
PIO_4  
SDIO_SEP_INT SDIO_SEP_INT PWDOG  
WL_HOST_WAK  
E
T
_TX  
_OD  
_GPIO_0  
_RX  
TEST_GPIO_1 FAST_UAR UART_DBG  
BSC _SDA RF_DISABLE_L GCI_G-  
PIO_5  
PWDOG  
WL_DEV_WAKE/  
T
_TX  
_RX  
_GPIO_1 HSIC_HOST_RD  
Y
TEST_GPIO_2 FAST_UAR  
N/A  
N/A  
TCK  
TMS  
GCI_G-  
PIO_1  
T
_CTS_IN  
TEST_GPIO_3 FAST_UAR  
GCI_G-  
PIO_0  
T
_RTS_OUT  
GPIO_4  
GPIO_5  
GPIO_6  
GPIO_7  
TEST_GPIO_4 UART_RX  
UART_DBG  
_RX  
N/A  
N/A  
N/A  
TDI  
SECI_IN  
TEST_GPIO_5 UART_TX  
UART_DBG  
_TX  
TDO  
SECI_OUT  
TEST_GPIO_6  
TRST_L  
GCI_G-  
PIO_2  
SECI_IN  
TEST_GPIO_7 FAST_UAR SFLASH_CS SPROM_CS BSC_SDA PMU_TEST_O GCI_G-  
USB_MDC/  
HSIC_MDC  
PWDOG  
_GPIO_2 (For WLBGA)  
WL_LED  
T
PIO_3  
_RTS_OUT  
GPIO_8  
GPIO_9  
TEST_GPIO_8 FAST_UAR SFLASH_CL SPROM_CLK BSC_CLK  
SECI_IN  
USB_MDIO/  
HSIC_MDIO  
––  
PWDOG  
_GPIO_3  
T
K
_CTS_IN  
TEST_GPIO_9 FAST_UAR SFLASH_MI SPROM_MI  
PALDO  
_PU  
SECI_OUT PALDO_PD  
PWDOG  
_GPIO_4  
T
_RX  
GPIO_10 TEST_G-  
PIO_10  
FAST_UAR SFLASH_MO SPROM_MO  
GCI_G-  
PIO_4  
PWDOG  
_GPIO_5  
HSIC_DEV_RDY  
T
_TX  
GPIO_11 TEST_G-  
PIO_11  
FAST_UAR  
T_RX  
PALDO  
_PU  
GCI_G-  
PIO_5  
PALDO_PD  
USB_VBUS  
_PRESENT  
GPIO_12 TEST_G-  
PIO_12  
FAST_UAR  
T
_TX  
GCI_G-  
PIO_1  
Document Number: 002-14809 Rev. *J  
Page 97 of 165  
CYW4354  
Table 27. GPIO Alternative Signal Functions (Cont.)  
Miscella-  
neous-0  
(JTAG_SEL =  
1)  
Miscellaneous-  
1
Miscella-  
neous-2  
Test Mode  
UART  
SFLASH  
3
SPROM  
4
BSC  
5
GCI  
7
PWDOG  
Function Select  
Pin  
Names  
Additional  
Functionality  
0
2
6
8
9
10  
GPIO_13 TEST_G-  
PIO_13  
usbphy  
GCI_G-  
PIO_0  
_scan  
_resetb  
GPIO_14 TEST_G-  
PIO_14  
FAST_UAR UART_DBG  
GCI_G-  
PIO_2  
T
_RX  
_RTS_OUT  
GPIO_15 TEST_GPIO_1 FAST_UART UART_DBG  
_CTS_IN _TX  
GCI_GPIO_  
3
5
Note:  
1. GPIO_0 and WL_DEV_WAKE signals are selected by using software.  
2. USB_VBUS_PRESENT indicates that USB30D is selected.  
3. SDIO_PADVDDIO = 1 (not in straps table) is set to 3.3V by default for all packages.  
4.GPIO_7 can be used as WL_LED in WLBGA packages.  
5. USB_MDx/HSIC_MDx MDIO is the interface of USB1.0/2.0/3.0 PHY or of HSIC PHY (depending on the strap option).  
Table 28 defines status for all CYW4354 GPIOs based on the tristate test mode.  
Table 28. GPIO Status Vs. Test Modes  
Test Mode  
TRISTATE_IND  
TRISTATE_PDN  
TRISTATE_PUP  
TRISTATE  
Function Select  
Status for All GPIOs  
Input disable  
Pull down  
12  
13  
14  
15  
Pull up  
Tristate  
Document Number: 002-14809 Rev. *J  
Page 98 of 165  
CYW4354  
13.6 I/O States  
The following notations are used in Table 29 on page 99:  
I: Input signal  
O: Output signal  
PD = Pulled down  
I/O: Input/Output signal  
PU = Pulled up  
NoPull = Neither pulled up nor pulled down  
Note: Where applicable, the default value is shown in bold brackets (for example, [default value].  
Table 29. I/O States  
Out-of-Reset; Before  
Power-downb  
(WL_REG_ON High and  
BT_REG_ON Low) and Power Rail  
VDDIOs Are Present  
Low Power State/Sleep (All  
SW Download  
Name  
I/O Keepera  
Active Mode  
(BT_REG_ON and  
Power Present)  
(BT_REG_ON High;  
WL_REG_ON High)  
WL_REG_ON Held Low)  
WL_REG_ON  
BT_REG_ON  
CLK_REQ  
I
N
Y
I: PD  
I: PD  
I: PD (of 200K)  
High-Z, NoPull  
I: PD (of 200K)  
I: PD (of 200K)  
Pull-down can be disabled  
Pull-down can be disabled  
I/O  
Open drain or push-pull  
Programmable  
Active high  
Open drain or push-pull  
Programmable  
Active high  
Open drain  
Active high  
Open drain  
Active high  
BT_VDDIO  
BT_HOST_WAKE I/O  
BT_DEV_WAKE  
BT_GPIO 5  
Y
I/O: PU, PD, NoPull  
Programmable  
I/O: PU, PD, NoPull  
Programmable  
High-Z, NoPull  
I: PD  
I: PD  
BT_GPIO 4  
I: Floating, but input  
disabled  
BT_GPIO 2, 3  
I: PU  
I: PU  
I: PU  
I: PU  
BT_UART_CTS  
BT_UART_RTS  
BT_UART_RXD  
BT_UART_TXD  
I
Y
I: NoPull; PU programmable  
I: NoPull  
O: NoPull  
I: NoPull  
O: NoPull  
High-Z, NoPull  
O
I
O: NoPull  
I: PU  
O
O: NoPull  
Document Number: 002-14809 Rev. *J  
Page 99 of 165  
CYW4354  
Table 29. I/O States (Cont.)  
Out-of-Reset; Before  
SW Download  
(BT_REG_ON High;  
WL_REG_ON High)  
Power-downb  
(BT_REG_ON and  
WL_REG_ON Held Low)  
(WL_REG_ON High and  
BT_REG_ON Low) and Power Rail  
VDDIOs Are Present  
Low Power State/Sleep (All  
Power Present)  
Name  
I/O Keepera  
Active Mode  
SDIO Data  
I/O  
N
Y
I/O:  
I:  
High-Z, NoPull  
I:  
I: PU (SDIO Mode)  
VDDIO_SD  
PU (SDIO Mode)  
PU (SDIO Mode)  
PU (SDIO Mode)  
SDIO CMD  
SDIO_CLK  
I
I: NoPull  
I: noPull  
I: NoPull  
I: PD  
I: NoPull  
I: PD  
I: NoPullc  
I: NoPullc  
BT_PCM_CLK  
BT_PCM_IN  
BT_PCM_OUT  
BT_PCM_SYNC  
I/O  
High-Z, NoPull  
BT_VDDIO  
I: Floating, but input  
disabled  
I: NoPulld  
I: NoPulld  
BT_I2S_WS  
BT_I2S_CLK  
BT_I2S_DI  
I: PD  
BT_I2S_DO  
Document Number: 002-14809 Rev. *J  
Page 100 of 165  
CYW4354  
Table 29. I/O States (Cont.)  
Out-of-Reset; Before  
SW Download  
(BT_REG_ON High;  
WL_REG_ON High)  
Power-downb  
(BT_REG_ON and  
WL_REG_ON Held Low)  
(WL_REG_ON High and  
BT_REG_ON Low) and Power Rail  
VDDIOs Are Present  
Low Power State/Sleep (All  
Power Present)  
Name  
I/O Keepera  
Active Mode  
GPIO_0  
I/O  
Y
Y
Y
Y
Y
I/O: PU, PD, NoPull  
Programmable [NoPull]  
I/O: PU, PD, NoPull  
Programmable [NoPull]  
High-Z, NoPull  
I: NoPull  
I: NoPull  
VDDIO  
GPIO_1  
GPIO_2  
GPIO_3  
GPIO_4  
I/O: PU, PD, NoPull  
I/O: PU, PD, NoPull  
I: PD  
I: PD  
Programmable [PD]  
Programmable [PD]  
GPIO_5  
Y
I/O: PU, PD, NoPull  
I/O: PU, PD, NoPull  
I: PD  
Programmable [PD]  
Programmable [PD]  
GPIO_6  
GPIO_7  
GPIO_8  
GPIO_9  
GPIO_10  
Y
Y
Y
Y
Y
I/O: PU, PD, NoPull  
Programmable [NoPull]  
I/O: PU, PD, NoPull  
Programmable [NoPull]  
High-Z, NoPull  
I: NoPull  
Ie  
I: NoPull  
I: NoPull  
I/O: PU, PD, NoPull  
Programmable  
I/O: PU, PD, NoPull  
Programmable  
I: PD  
I/O: PU, PD, NoPull  
I/O: PU, PD, NoPull  
High-Z, NoPull  
I: PD  
I: PD  
Programmable [PD]  
Programmable [PD]  
GPIO_11  
GPIO_12  
Y
Y
I/O: PU, PD, NoPull  
Programmable [NoPull]  
I/O: PU, PD, NoPull  
Programmable [NoPull]  
I: PD  
I: NoPull  
I: PU  
I: NoPull  
I: PU  
I/O: PU, PD, NoPull  
I/O: PU, PD, NoPull  
High-Z, NoPull  
Programmable [PU]  
Programmable [PU]  
GPIO_13  
GPIO_14  
GPIO_15  
Y
Y
Y
Y
I/O: PU, PD, NoPull  
Programmable [NoPull]  
I/O: PU, PD, NoPull  
Programmable [NoPull]  
I: NoPull  
I: NoPull  
RF_SW_CTRL_X I/O  
O: NoPull  
O: NoPull  
I: PD  
O: NoPull  
: NoPull  
VDDIO_RF  
a. Keeper column: N = pad has no keeper. Y = pad has a keeper. Keeper is always active except in Power-down state. If there is no keeper, and it is an input and there is Nopull, then the  
pad should be driven to prevent leakage due to floating pad (SDIO_CLK, for example).  
b. In the Power-down state (xx_REG_ON=0): High-Z; NoPull => the pad is disabled because power is not supplied.  
c. Depending on whether the PCM interface is enabled and the configuration of PCM is in master or slave mode, it can be either input or output.  
d. Depending on whether the I2S interface is enabled and the configuration of I2S is in master or slave mode, it can be either input or output.  
e. For WLBGA this GPIO has NoPull in this state. For WLCSP this GPIO has a PU in this state.  
Document Number: 002-14809 Rev. *J  
Page 101 of 165  
CYW4354  
14. DC Characteristics  
Note: Values in this data sheet are design goals and are subject to change based on the results of device characterization  
14.1 Absolute Maximum Ratings  
Caution:  
The absolute maximum ratings in Table 30 indicate levels where permanent damage to the device can occur, even if these limits are  
exceeded for only a brief duration. Functional operation is not guaranteed under these conditions. Operation at absolute maximum  
conditions for extended periods can adversely affect long-term reliability of the device.  
Table 30. Absolute Maximum Ratings  
Rating  
DC supply for VBAT and PA driver supplya  
DC supply voltage for digital I/O  
DC supply voltage for RF switch I/Os  
DC input supply voltage for CLDO and LNLDO  
DC supply voltage for RF analog  
DC supply voltage for core  
Symbol  
VBAT  
Value  
Unit  
V
–0.5 to +6.0  
–0.5 to 3.9  
–0.5 to 3.9  
–0.5 to 1.575  
–0.5 to 1.32  
–0.5 to 1.32  
–0.5 to 3.63  
–0.5  
VDDIO  
VDDIO_RF  
V
V
V
VDDRF  
VDDC  
V
V
WRF_TCXO_VDD  
V
Maximum undershoot voltage for I/Ob  
Maximum overshoot voltage for I/Ob  
Maximum junction temperature  
Vundershoot  
Vovershoot  
Tj  
V
VDDIO + 0.5  
125  
V
°C  
a. The maximum continuous voltage is 5.25V. Voltage transients up to 6.0V for up to 10 seconds, cumulative duration over the lifetime of the  
device, are allowed. Voltage transients as high as 5.5V for up to 250 seconds, cumulative duration over the lifetime of the device, are allowed.  
b. Duration not to exceed 25% of the duty cycle.  
Document Number: 002-14809 Rev. *J  
Page 102 of 165  
CYW4354  
14.2 Environmental Ratings  
The environmental ratings are shown in Table 31.  
Table 31. Environmental Ratings  
Characteristic  
Ambient Temperature (TA)  
Storage Temperature  
Value  
Units  
°C  
Conditions/Comments  
Functional operationa  
–30 to +85  
–40 to +125  
Less than 60  
Less than 85  
°C  
Relative Humidity  
%
Storage  
Operation  
%
a. Functionality is guaranteed but specifications require derating at extreme temperatures; see the specification tables for details.  
14.3 Electrostatic Discharge Specifications  
Proper use of wrist and heel grounding straps is required to discharge static electricity when handling the CYW4354.  
Caution:  
Electrostatic discharge (ESD) damage can occur if the CYW4354 is mishandled. Always wear an ESD-preventive wrist or heel ground  
strap when handling the CYW4354. As with all electrical devices of this type, take all necessary safety precautions to prevent damage  
to the equipment. When not being used, always store the CYW4354 in antistatic packaging.  
Table 32. Electrostatic Discharge Specifications  
Pin Type  
ESDa  
Symbol  
Condition  
ESD Rating  
Unit  
ESD_HAND_HBM  
Human body model contact discharge per JEDEC EID/  
JESD22-A114.  
WLBGA:1.k  
WLCSP:1.5k  
V
CDM  
ESD_HAND_CDM  
Charged device model contact JEDEC EIA/JESD22-  
C101.  
WLBGA:300  
WLCSP:500  
V
a. Handling Reference: NQY00083, Section 3.4, Group D9, Table B.  
Document Number: 002-14809 Rev. *J  
Page 103 of 165  
CYW4354  
14.4 Recommended Operating Conditions and DC Characteristics  
Caution:  
Functional operation is not guaranteed outside of the limits shown in Table 33, and operation outside these limits for extended periods  
can adversely affect long-term reliability of the device.  
Table 33. Recommended Operating Conditions and DC Characteristics  
Value  
Parameter  
Symbol  
Unit  
Minimum  
3.0a  
Typical  
Maximum  
5.25b  
1.26  
DC supply voltage for VBAT  
VBAT  
VDD  
1.2  
1.2  
1.8  
V
V
V
V
V
V
V
V
DC supply voltage for core  
1.14  
DC supply voltage for RF blocks in chip  
DC supply voltage for TCXO input buffer  
DC supply voltage for digital I/O  
DC supply voltage for RF switch I/Os  
External TSSI input  
VDDRF  
1.14  
1.26  
WRF_TCXO_VDD  
VDDIO, VDDIO_SD  
VDDIO_RF  
1.62  
1.98  
1.62  
3.63  
3.13  
3.3  
3.46  
TSSI  
0.15  
0.95  
Internal POR threshold  
Vth_POR  
0.4  
0.7  
SDIO Interface I/O Pins  
For VDDIO_SD = 1.8V:  
Input high voltage  
VIH  
VIL  
1.27  
V
V
V
V
Input low voltage  
0.58  
Output high voltage @ 2 mA  
Output low voltage @ 2 mA  
For VDDIO_SD = 3.3V:  
Input high voltage  
VOH  
VOL  
1.40  
0.45  
VIH  
0.625 ×  
VDDIO  
V
Input low voltage  
VIL  
0.25 × VDDIO  
V
V
Output high voltage @ 2 mA  
VOH  
0.75 ×  
VDDIO  
Output low voltage @ 2 mA  
VOL  
0.125 ×  
VDDIO  
V
Other Digital I/O Pins  
For VDDIO = 1.8V:  
Input high voltage  
VIH  
0.65 ×  
VDDIO  
V
Input low voltage  
VIL  
0.35 × VDDIO  
V
V
Output high voltage @ 2 mA  
VOH  
VDDIO –  
0.45  
Output low voltage @ 2 mA  
For VDDIO = 3.3V:  
VOL  
0.45  
V
Input high voltage  
VIH  
VIL  
2.00  
V
V
V
V
Input low voltage  
0.80  
Output high voltage @ 2 mA  
Output low Voltage @ 2 mA  
VOH  
VOL  
VDDIO – 0.4  
0.40  
Document Number: 002-14809 Rev. *J  
Page 104 of 165  
CYW4354  
Table 33. Recommended Operating Conditions and DC Characteristics (Cont.)  
Value  
Parameter  
Symbol  
Unit  
Minimum  
Typical  
Maximum  
RF Switch Control Output Pinsc  
For VDDIO_RF = 3.3V:  
Output high voltage @ 2 mA  
Output low voltage @ 2 mA  
Input capacitance  
VOH  
VOL  
CIN  
VDDIO – 0.4  
V
V
0.40  
5
pF  
a. The CYW4354 is functional across this range of voltages. Optimal RF performance specified in the data sheet, however, is guaranteed only  
for 3.13V < VBAT < 4.8V.  
b. The maximum continuous voltage is 5.25V. Voltage transients up to 6.0V for up to 10 seconds, cumulative duration over the lifetime of the  
device, are allowed. Voltage transients as high as 5.5V for up to 250 seconds, cumulative duration over the lifetime of the device, are allowed.  
c. Programmable 2 mA to 16 mA drive strength. Default is 10 mA.  
Document Number: 002-14809 Rev. *J  
Page 105 of 165  
CYW4354  
15. Bluetooth RF Specifications  
Note: Values in this data sheet are design goals and are subject to change based on the results of device characterization.  
Unless otherwise stated, limit values apply for the conditions specified in Table 31 on page 103 and Table 33 on page 104. Typical  
values apply for an ambient temperature of +25°C.  
Figure 35. RF Port Location for Bluetooth Testing  
CYW4354  
RF Switch  
(0.5 dB Insertion Loss)  
WLAN Tx  
BT Tx  
Filter  
WLAN/BT Rx  
Antenna  
Port  
RF Port  
Chip  
Port  
Note: All Bluetooth specifications are measured at the chip port unless otherwise specified.  
Table 34. Bluetooth Receiver RF Specifications  
Parameter  
Conditions  
Minimum  
Typical  
Maximum  
Unit  
Note: The specifications in this table are measured at the chip port output unless otherwise specified.  
General  
Frequency range  
RX sensitivity  
2402  
2480  
MHz  
dBm  
dBm  
GFSK, 0.1% BER, 1 Mbps  
–93.5  
–95.5  
/4–DQPSK, 0.01% BER,  
2 Mbps  
8–DPSK, 0.01% BER, 3 Mbps  
–16  
–89.5  
dBm  
dBm  
dBm  
Input IP3  
Maximum input at antenna  
–20  
RX LO Leakage  
2.4 GHz band  
–90.0  
–80.0  
dBm  
Document Number: 002-14809 Rev. *J  
Page 106 of 165  
CYW4354  
Table 34. Bluetooth Receiver RF Specifications (Cont.)  
Parameter Conditions  
Interference Performancea  
GFSK, 0.1% BER  
Minimum  
Typical  
Maximum  
Unit  
C/I co-channel  
8
11  
0
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
C/I 1 MHz adjacent channel  
C/I 2 MHz adjacent channel  
C/I 3 MHz adjacent channel  
C/I image channel  
GFSK, 0.1% BER  
GFSK, 0.1% BER  
GFSK, 0.1% BER  
GFSK, 0.1% BER  
–7  
–38  
–56  
–31  
–46  
9
–30  
–40  
–9  
C/I 1 MHz adjacent to image channel GFSK, 0.1% BER  
–20  
13  
C/I co-channel  
/4–DQPSK, 0.1% BER  
C/I 1 MHz adjacent channel  
C/I 2 MHz adjacent channel  
C/I 3 MHz adjacent channel  
C/I image channel  
/4–DQPSK, 0.1% BER  
/4–DQPSK, 0.1% BER  
/4–DQPSK, 0.1% BER  
/4–DQPSK, 0.1% BER  
–11  
–39  
–55  
–23  
–43  
17  
0
–30  
–40  
–7  
C/I 1 MHz adjacent to image channel /4–DQPSK, 0.1% BER  
–20  
21  
C/I co-channel  
8–DPSK, 0.1% BER  
8–DPSK, 0.1% BER  
8–DPSK, 0.1% BER  
8–DPSK, 0.1% BER  
8–DPSK, 0.1% BER  
C/I 1 MHz adjacent channel  
C/I 2 MHz adjacent channel  
C/I 3 MHz adjacent channel  
C/I Image channel  
–4  
5
–37  
–53  
–16  
–37  
–25  
–33  
0
C/I 1 MHz adjacent to image channel 8–DPSK, 0.1% BER  
Out-of-Band Blocking Performance (CW)  
–13  
30–2000 MHz  
0.1% BER  
–10.0  
–27  
dBm  
dBm  
dBm  
dBm  
2000–2399 MHz  
2498–3000 MHz  
3000 MHz–12.75 GHz  
0.1% BER  
0.1% BER  
0.1% BER  
–27  
–10.0  
Out-of-Band Blocking Performance, Modulated Interferer  
GFSK (1 Mbps)b  
698–716 MHz  
776–849 MHz  
824–849 MHz  
824–849 MHz  
880–915 MHz  
880–915 MHz  
1710–1785 MHz  
1710–1785 MHz  
1850–1910 MHz  
1850–1910 MHz  
1880–1920 MHz  
1920–1980 MHz  
2010–2025 MHz  
WCDMA  
WCDMA  
GSM850  
WCDMA  
E-GSM  
–13.5  
–13.8  
–13.5  
–14.3  
–13.1  
–13.1  
–18.1  
–17.4  
–19.4  
–18.8  
–19.7  
–19.6  
–20.4  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
WCDMA  
GSM1800  
WCDMA  
GSM1900  
WCDMA  
TD-SCDMA  
WCDMA  
TD–SCDMA  
Document Number: 002-14809 Rev. *J  
Page 107 of 165  
CYW4354  
Table 34. Bluetooth Receiver RF Specifications (Cont.)  
Parameter Conditions  
2500–2570 MHz  
Minimum  
Typical  
–20.4  
–30.5  
–34.0  
–30.8  
–29.5  
Maximum  
Unit  
dBm  
dBm  
dBm  
dBm  
dBm  
WCDMA  
Band 7  
2500–2570 MHzc  
2300–2400 MHzd  
2570–2620 MHze  
2545–2575 MHzf  
Band 40  
Band 38  
XGP Band  
DPSK (2 Mbps)b  
π/4  
698–716 MHz  
WCDMA  
WCDMA  
GSM850  
WCDMA  
E-GSM  
–9.8  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
776–794 MHz  
–9.7  
824–849 MHz  
–10.7  
–11.4  
–10.4  
–10.2  
–15.8  
–15.4  
–16.6  
–16.4  
–17.9  
–16.8  
–18.6  
–20.4  
–31.9  
–35.3  
–31.8  
–31.1  
824–849 MHz  
880–915 MHz  
880–915 MHz  
WCDMA  
GSM1800  
WCDMA  
GSM1900  
WCDMA  
TD-SCDMA  
WCDMA  
TD-SCDMA  
WCDMA  
Band 7  
1710–1785 MHz  
1710–1785 MHz  
1850–1910 MHz  
1850–1910 MHz  
1880–1920 MHz  
1920–1980 MHz  
2010–2025 MHz  
2500–2570 MHz  
2500–2570 MHzc  
2300–2400 MHzd  
2570–2620 MHze  
2545–2575 MHzf  
Band 40  
Band 38  
XGP Band  
8DPSK (3 Mbps)b  
698–716 MHz  
WCDMA  
WCDMA  
GSM850  
WCDMA  
E-GSM  
–12.6  
–12.6  
–12.7  
–13.7  
–12.8  
–12.6  
–18.1  
–17.4  
–19.1  
–18.6  
–19.3  
–18.9  
–20.4  
–21.4  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
776–794 MHz  
824–849 MHz  
824–849 MHz  
880–915 MHz  
880–915 MHz  
WCDMA  
GSM1800  
WCDMA  
GSM1900  
WCDMA  
TD-SCDMA  
WCDMA  
TD-SCDMA  
WCDMA  
1710–1785 MHz  
1710–1785 MHz  
1850–1910 MHz  
1850–1910 MHz  
1880–1920 MHz  
1920–1980 MHz  
2010–2025 MHz  
2500–2570 MHz  
Document Number: 002-14809 Rev. *J  
Page 108 of 165  
CYW4354  
Table 34. Bluetooth Receiver RF Specifications (Cont.)  
Parameter Conditions  
2500–2570 MHzc  
Minimum  
Typical  
–31.0  
–34.5  
–31.2  
–30.0  
Maximum  
Unit  
dBm  
dBm  
dBm  
dBm  
Band 7  
2300–2400 MHzd  
2570–2620 MHze  
2545–2575 MHzf  
Band 40  
Band 38  
XGP Band  
Spurious Emissions  
30 MHz–1 GHz  
1–12.75 GHz  
–95  
–70  
–62  
–47  
dBm  
dBm  
851–894 MHz  
925–960 MHz  
1805–1880 MHz  
1930–1990 MHz  
2110–2170 MHz  
–147  
–147  
–147  
–147  
–147  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
a. The maximum value represents the actual Bluetooth specification required for Bluetooth qualification as defined in the version 4.1  
specification.  
b. Bluetooth reference level for the wanted signal at the Bluetooth Chip port = at 3 dB desense for each data rate.  
c. Interferer: 2560 MHz, BW=10 MHz; measured at 2480 MHz.  
d. Interferer: 2360 MHz, BW=10 MHz; measured at 2402 MHz.  
e. Interferer: 2380 MHz, BW=10 MHz; measured at 2480 MHz.  
f. Interferer: 2355 MHz, BW=10 MHz; measured at 2480 MHz.  
Document Number: 002-14809 Rev. *J  
Page 109 of 165  
CYW4354  
Table 35. Bluetooth Transmitter RF Specifications  
Parameter  
Conditions  
Minimum  
Typical  
Maximum  
Unit  
Note: The specifications in this table are measured at the Chip port output unless otherwise specified.  
General  
Frequency range  
2402  
2480  
MHz  
Basic rate (GFSK) TX power at Bluetooth  
QPSK TX power at Bluetooth  
8PSK TX power at Bluetooth  
2
13.0  
10.0  
10.0  
4
8
dBm  
dBm  
dBm  
dB  
Power control step  
Note: Output power is with TCA and TSSI enabled.  
GFSK In-Band Spurious Emissions  
–20 dBc BW  
0.93  
1
MHz  
EDR In-Band Spurious Emissions  
1.0 MHz < |M – N| < 1.5 MHz  
1.5 MHz < |M – N| < 2.5 MHz  
|M – N| 2.5 MHza  
M – N = the frequency range for which  
the spurious emission is measured  
relative to the transmit center  
frequency.  
–38  
–31  
–43  
–26.0  
–20.0  
–40.0  
dBc  
dBm  
dBm  
Out-of-Band Spurious Emissions  
30 MHz to 1 GHz  
–36.0 b,c  
–30.0 b,d,e  
–47.0  
dBm  
dBm  
dBm  
dBm  
1 GHz to 12.75 GHz  
1.8 GHz to 1.9 GHz  
5.15 GHz to 5.3 GHz  
GPS Band Spurious Emissions  
–47.0  
Spurious emissions  
–103  
dBm  
Out-of-Band Noise Floorf  
65–108 MHz  
FM RX  
–147  
–147  
–147  
–147  
–146  
–145  
–144  
–141  
–140  
–140  
–140  
–140  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm  
776–794 MHz  
CDMA2000  
cdmaOne, GSM850  
E-GSM  
869–960 MHz  
925–960 MHz  
1570–1580 MHz  
1805–1880 MHz  
1930–1990 MHz  
2110–2170 MHz  
2500–2570 MHz  
2300–2400 MHz  
2570–2620 MHz  
2545–2575 MHz  
GPS  
GSM1800  
GSM1900, cdmaOne, WCDMA  
WCDMA  
Band 7  
Band 40  
dBm  
Band 38  
dBm  
XGP Band  
dBm  
a. The typical number is measured at ± 3 MHz offset.  
b. The maximum value represents the value required for Bluetooth qualification as defined in the v4.1 specification.  
c. The spurious emissions during Idle mode are the same as specified in Table 35 on page 110.  
d. Specified at the Bluetooth Antenna port.  
e. Meets this specification using a front–end band–pass filter.  
f. Transmitted power in cellular and FM bands at the Bluetooth Antenna port. See Figure 35 on page 106 for location of the port.  
Document Number: 002-14809 Rev. *J  
Page 110 of 165  
CYW4354  
Table 36. Local Oscillator Performance  
Parameter  
Minimum  
Typical  
Maximum  
Unit  
LO Performance  
Lock time  
72  
s  
Initial carrier frequency tolerance  
±25  
±75  
kHz  
Frequency Drift  
DH1 packet  
DH3 packet  
DH5 packet  
Drift rate  
±8  
±8  
±8  
5
±25  
±40  
±40  
20  
kHz  
kHz  
kHz  
kHz/50 µs  
Frequency Deviation  
00001111 sequence in payloada  
10101010 sequence in payloadb  
Channel spacing  
140  
115  
155  
140  
1
175  
kHz  
kHz  
MHz  
a. This pattern represents an average deviation in payload.  
b. Pattern represents the maximum deviation in payload for 99.9% of all frequency deviations.  
Table 37. BLE RF Specifications  
Parameter  
Frequency range  
RX sensea  
Conditions  
Minimum  
2402  
Typical  
Maximum  
Unit  
MHz  
dBm  
dBm  
kHz  
2480  
GFSK, 0.1% BER, 1 Mbps  
–95.5  
8.5  
255  
TX powerb  
Mod Char: delta F1 average  
Mod Char: delta F2 max.c  
Mod Char: ratio  
225  
99.9  
0.8  
275  
%
0.95  
%
a. Dirty TX is On.  
b. BLE TX power can be increased to compensate for front-end losses such as BPF, diplexer, switch, etc.). The output is capped at 12 dBm out.  
The BLE TX power at the antenna port cannot exceed the 10 dBm specification limit.  
c. At least 99.9% of all delta F2 max. frequency values recorded over 10 packets must be greater than 185 kHz.  
Document Number: 002-14809 Rev. *J  
Page 111 of 165  
CYW4354  
16. FM Receiver Specifications  
Note: Values in this data sheet are design goals and are subject to change based on the results of device characterization.  
Unless otherwise stated, limit values apply for the conditions specified inTable 31 on page 103 and Table 33 on page 104. Typical  
values apply for an ambient temperature +25°C.  
Table 38. FM Receiver Specifications  
Parameter  
Conditionsa  
RF Parameters  
Minimum Typical Maximum  
Units  
Operating frequencyb  
Sensitivityc  
Frequencies inclusive  
65  
108  
MHz  
FM only  
SNR 26 dB  
0
dBµV EMF  
µV EMF  
dBuV  
1
–6  
51  
Receiver adjacent channel  
selectivityc,d  
Measured for 30 dB SNR at the audio output.  
Wanted Signal: 23 dBµV EMF (14.1 µV EMF), at  
± 200 kHz.  
dB  
At ± 400 kHz  
62  
53  
dB  
dB  
Intermediate signal plus noise- Vin = 20 dBµV EMF (10 µV EMF)  
to-noise ratio (S+N)/N, stereoc  
45  
Intermodulation perfor-  
mancec,d  
Blocker level increased until desired at 30 dB  
SNR  
Wanted Signal: 33 dBµV EMF (45 µV EMF)  
Modulated Interferer: At fWanted ±400 kHz and  
±4 MHz  
55  
dBc  
CW Interferer: At fWanted ± 800 kHz and ±8 MHz  
AM suppression, monoc  
RDS sensitivitye,f  
Vin = 23 dBµV EMF (14.1 µV EMF)  
AM at 400 Hz with m = 0.3  
No A-weighted or any other filtering applied.  
40  
dB  
RDS  
RDS deviation = 1.2 kHz  
16  
6.3  
10  
12  
4
dBµV EMF  
µV EMF  
dBuV  
RDS deviation = 2 kHz  
dBµV EMF  
µV EMF  
dBuV  
6
RDS selectivityf  
Wanted Signal: 33 dBµV EMF (45 µV EMF), 2 kHz RDS deviation  
Interferer: f = 40 kHz, fmod = 1 kHz  
± 200 kHz  
± 300 kHz  
± 400 kHz  
49  
52  
52  
dB  
dB  
dB  
RF input impedance  
Antenna tuning capacitor  
Maximum input levelc  
1.5  
2.5  
kꢀ  
30  
113  
446  
107  
pF  
SNR > 26 dB  
dBµV EMF  
mV EMF  
dBuV  
Document Number: 002-14809 Rev. *J  
Page 112 of 165  
CYW4354  
Table 38. FM Receiver Specifications (Cont.)  
Parameter  
Conditionsa  
Minimum Typical Maximum  
Units  
dBm  
RF conducted emissions  
Local oscillator breakthrough measured on the  
reference port  
–55  
(measured into a 50load)  
869–894 MHz, 925–960 MHz,  
1805–1880 MHz, 1930–1990 MHz.  
GPS  
–90  
dBm  
dBm  
dBm  
dBm  
RF blocking levels at the FM  
antenna input 40 dB SNR  
(assumes a 50at the radio  
input and excludes spurs)  
GSM850, E-GSM (std), BW = 0.2 MHz,  
824–849 MHz  
880–915 MHz  
7
GSM850, E-GSM (edge), BW = 0.2 MHz,  
824–849 MHz  
880–915 MHz  
–1  
12  
GSM DCS 1800, PCS 1900 (std/edge),  
BW = 0.2 MHz,  
1710–1785 MHz  
1850–1910 MHz  
WCDMA: II(I), III(IV, X),  
BW = 5 MHz,  
12  
dBm  
1850–1980 MHz (1920–1980 MHz),  
1710–1785 MHz (1710–1755 MHz, 1710–  
1770 MHz)  
WCDMA: V(VI), VIII, XII, XIII, XIV, BW = 5 MHz,  
824–849 MHz (830–840 MHz),  
880–915 MHz  
5
0
dBm  
dBm  
CDMA2000, cdmaOne, BW = 1.25 MHz,  
824–849 MHz,  
887–925 MHz,  
776–794 MHz  
CDMA2000, cdmaOne, BW = 1.25 MHz,  
1850–1910 MHz,  
12  
dBm  
1750–1780 MHz,  
1920–1980 MHz  
Bluetooth, BW = 1 MHz,  
2402–2480 MHz  
11  
11  
6
dBm  
dBm  
dBm  
IEEE 802.11g/b, BW = 20 MHz,  
2400–2483.5 MHz  
IEEE 802.11a, BW = 20 MHz,  
4915–5825 MHz  
2500–2570 MHz  
2300–2400 MHz  
2570–2620 MHz  
2545–2575 MHz  
Band 7  
Band 40  
Band 38  
XGP Band  
Tuning  
11  
11  
11  
11  
dBm  
dBm  
dBm  
dBm  
Frequency step  
Settling time  
10  
kHz  
µs  
Single-frequency switch in any direction to a  
frequency within the bands 88–108 MHz or 76–  
90 MHz. Time measured to within 5 kHz of the  
final frequency.  
150  
Search time  
Total time for an automatic search to sweep from –  
88–108 MHz or 76–90 MHz (and reverse  
direction) assuming no channels are found.  
8
sec  
Document Number: 002-14809 Rev. *J  
Page 113 of 165  
CYW4354  
Table 38. FM Receiver Specifications (Cont.)  
Parameter  
Conditionsa  
General Audio  
Minimum Typical Maximum  
Units  
Audio output levelg  
Maximum audio output levelh  
Audio DAC output levelg  
–14.5  
–12.5  
dBFS  
0
dBFS  
72  
88  
mV rms  
mV rms  
Maximum DAC audio output  
levelh  
333  
Audio DAC output level  
differencei  
–1  
60  
1
dB  
Left and right AC mute  
Left and right hard mute  
FM input signal fully muted with DAC enabled  
dB  
dB  
FM input signal fully muted with DAC disabled 80  
Soft mute attenuation and start Muting is performed dynamically proportional to  
level  
the FM wanted input signal C/N. The muting  
characteristic is fully programmable. Refer to  
“Audio Features” on page 45 for further details.  
Maximum signal plus noise-to- –  
noise ratio (S + N)/N, mono i  
69  
64  
dB  
dB  
%
Maximum signal plus noise-to- –  
noise ratio (S + N)/N, stereog  
Total harmonic distortion,  
mono  
Vin = 66 dBµV EMF (2 mV EMF),  
f = 75 kHz, fmod = 400 Hz  
0.8  
f = 75 kHz, fmod = 1 kHz  
f = 75 kHz, fmod = 3 kHz  
f = 100 kHz, fmod = 1 kHz  
0.8  
0.8  
1.0  
1.5  
%
%
%
%
Total harmonic distortion,  
stereo  
Vin = 66 dBµV EMF (2 mV EMF)  
f = 67.5 kHz, fmod = 1 kHz, f Pilot = 7.5 kHz,  
L = R  
Audio spurious productsi  
Range from 300 Hz to 15 kHz, with respect to 1  
kHz tone  
–60  
dBc  
kHz  
Hz  
Audiobandwidth, upper(–3 dB Vin = 66 dBµV EMF (2 mV EMF)  
point)  
15  
f = 8 kHz, for 50 µs  
Audio bandwidth, lower (–3 dB  
point)  
20  
0.5  
Audio in-band ripple  
100 Hz to 13 kHz,  
–0.5  
dB  
Vin = 66 dBµV EMF (2 mV EMF)  
f = 8 kHz, for 50 µs  
De-emphasis time constant  
tolerance  
With respect to 50 and 75 µs  
±5  
%
RSSI range  
With 1 dB resolution and ± 5 dB accuracy at  
room temp  
3
83  
dBµV EMF  
µV EMF  
dBuV  
1.41  
–3  
14.1m  
77  
Stereo Decoder  
Stereo channel separation  
Forced Stereo mode  
Vin = 66 dBµV EMF (2 mV EMF),  
f = 67.5 kHz, fmod = 1 kHz,  
f Pilot = 6.75 kHz  
48  
dB  
R = 0, L = 1  
Document Number: 002-14809 Rev. *J  
Page 114 of 165  
CYW4354  
Table 38. FM Receiver Specifications (Cont.)  
Parameter  
Conditionsa  
Minimum Typical Maximum  
Units  
Mono stereo blend and  
switching  
Blending and switching is dynamically proportional to the FM wanted input signal C/N. The blending  
and switching characteristics are fully programmable. Refer to “Audio Features” on page 45 for  
further details.  
Pilot suppression  
Vin = 66 dBµV EMF (2 mV EMF), f = 75 kHz, 46  
fmod = 1 kHz  
dB  
Pause detection  
Audio level at which a pause is Relative to 1 kHz tone, f = 22.5 kHz  
detected  
Four values in 3 dB steps  
–21  
20  
–12  
40  
dB  
ms  
Audio pause duration  
Four values  
a. Following conditions are applied to all relevant tests unless otherwise indicated: Pre-emphasis and de-emphasis of 50 us, R = L for mono,  
DAC Load 20 k, BAF = 300 Hz to 15 kHz, and A-weighted filtering applied.  
b. Contact Broadcom regarding applications that operate between 65 and 76 MHz.  
c. Wanted Signal: f = 22.5 kHz, and fmod = 1 kHz.  
d. Interferer: f = 22.5 kHz, and fmod = 1 kHz.  
e. RDS sensitivity numbers are for 87.5–108 MHz only.  
f. Vin = f = 32 kHz, fmod = 1 kHz, f Pilot = 7.5 kHz, and 95% of blocks decoded with no errors after correction.  
g. Vin = 66 dBµV EMF (2 mV EMF), f = 22.5 kHz, fmod = 1 kHz, and f Pilot = 6.75 kHz.  
h. Vin = 66 dBµV EMF (2 mV EMF), f = 100 kHz, fmod = 1 kHz, and f Pilot = 6.75 kHz.  
i. Vin = 66 dBµV EMF (2 mV EMF), f = 22.5 kHz, and fmod = 1 kHz.  
Document Number: 002-14809 Rev. *J  
Page 115 of 165  
CYW4354  
17. WLAN RF Specifications  
17.1 Introduction  
The CYW4354 includes an integrated dual-band direct conversion radio that supports the 2.4 GHz and the 5 GHz bands. This section  
describes the RF characteristics of the 2.4 GHz and 5 GHz radios.  
Note: Values in this section of the data sheet are design goals and are subject to change based on the results of device characteri-  
zation.  
Unless otherwise stated, limit values apply for the conditions specified inTable 31 on page 103 and Table 33 on page 104. Typical  
values apply for an ambient temperature +25°C.  
Figure 36. Port Locations (Applies to 2.4 GHz and 5 GHz)  
CYW4354  
RF Switch  
(0.5 dB Insertion Loss)  
WLAN Tx  
BT Tx  
Filter  
WLAN/BT Rx  
Antenna  
Port  
RF Port  
Chip  
Port  
17.2 2.4 GHz Band General RF Specifications  
Table 39. 2.4 GHz Band General RF Specifications  
Item  
Condition  
Minimum  
Typical  
Maximum  
Unit  
TX/RX switch time  
Including TX ramp down  
Including TX ramp up  
DSSS/CCK modulations  
5
2
µs  
µs  
µs  
RX/TX switch time  
Power-up and power-down ramp time  
< 2  
Document Number: 002-14809 Rev. *J  
Page 116 of 165  
CYW4354  
17.3 WLAN 2.4 GHz Receiver Performance Specifications  
Note: The values in Table 40 are specified at the RF port unless otherwise noted.  
Table 40. WLAN 2.4 GHz Receiver Performance Specifications  
Parameter  
Frequency range  
Condition/Notes  
Min.  
2400  
Typ.  
Max.  
2500  
Unit  
MHz  
RX sensitivity IEEE 802.11ba  
1 Mbps DSSS  
2 Mbps DSSS  
5.5 Mbps DSSS  
11 Mbps DSSS  
6 Mbps OFDM  
9 Mbps OFDM  
12 Mbps OFDM  
18 Mbps OFDM  
24 Mbps OFDM  
36 Mbps OFDM  
48 Mbps OFDM  
54 Mbps OFDM  
6 Mbps OFDM  
9 Mbps OFDM  
12 Mbps OFDM  
18 Mbps OFDM  
24 Mbps OFDM  
36 Mbps OFDM  
48 Mbps OFDM  
54 Mbps OFDM  
20 MHz channel spacing for all MCS rates  
MCS0  
–96.4  
–94.5  
–91.7  
–89.4  
–93.5  
–92.1  
–91.2  
–88.6  
–85.3  
–82  
dBm  
dBm  
dBm  
dBm  
SISO RX sensitivity IEEE  
802.11g  
dBm  
dBm  
(10% PER for 1024 octet PSDU)a  
dBm  
dBm  
dBm  
dBm  
–77.3  
–75.8  
–94.5  
–94  
dBm  
dBm  
MIMO RX sensitivity IEEE  
802.11g  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
(10% PER for 1024 octet PSDU)a  
–93.2  
–91.6  
–88.3  
–85  
–80.3  
–78.8  
SISO RX sensitivity IEEE  
802.11n  
–93  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
(10% PER for 4096 octet  
PSDU)a,b  
MCS1  
–90.7  
–88.2  
–85.1  
–81.5  
–76.9  
–75.3  
–73.7  
Defined for default parameters:  
GF, 800 ns GI, and non–STBC.  
MCS2  
MCS3  
MCS4  
MCS5  
MCS6  
MCS7  
Document Number: 002-14809 Rev. *J  
Page 117 of 165  
CYW4354  
Table 40. WLAN 2.4 GHz Receiver Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
Min.  
Typ.  
Max.  
Unit  
MIMO RX sensitivity IEEE  
802.11n  
20 MHz channel spacing for all MCS rates  
MCS0  
–94.5  
–93.7  
–91.2  
–88.1  
–84.5  
–79.9  
–78.3  
–76.7  
–93  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
(10% PER for 4096 octet  
PSDU)a,b  
MCS1  
Defined for default parameters:  
GF, 800 ns GI, and non–STBC.  
MCS2  
MCS3  
MCS4  
MCS5  
MCS6  
MCS7  
MCS8  
MCS15  
–73.7  
SISO RX sensitivity IEEE  
802.11n  
40 MHz channel spacing for all MCS rates  
MCS0  
–90.8  
–87.9  
–85.5  
–82  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
(10% PER for 4096 octet  
PSDU)a,b  
MCS1  
Defined for default parameters:  
GF, 800 ns GI, and non–STBC.  
MCS2  
MCS3  
MCS4  
–78.9  
–74.2  
–72.7  
–71.3  
MCS5  
MCS6  
MCS7  
MIMO RX sensitivity IEEE  
802.11n  
40 MHz channel spacing for all MCS rates  
MCS0  
MCS1  
MCS2  
MCS3  
MCS4  
MCS5  
MCS6  
MCS7  
MCS8  
MCS15  
–92.3  
–90.9  
–88.5  
–85  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
(10% PER for 4096 octet  
PSDU)a,b  
Defined for default parameters:  
GF, 800 ns GI, and non–STBC.  
–81.9  
–77.2  
–75.7  
–74.3  
–90.8  
–71.3  
Document Number: 002-14809 Rev. *J  
Page 118 of 165  
CYW4354  
Table 40. WLAN 2.4 GHz Receiver Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
20 MHz channel spacing for all MCS rates  
MCS0, Nss 1  
Min.  
Typ.  
Max.  
Unit  
SISO RX sensitivity IEEE  
802.11ac  
(10% PER for 4096 octet  
–92.3  
–89.9  
–88.1  
–84.9  
–81.4  
–76.9  
–75.3  
–73.6  
–69.2  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
PSDU)a,b  
MCS1, Nss 1  
Defined for default parameters:  
GF, 800 ns GI, and non–STBC  
MCS2, Nss 1  
MCS3, Nss 1  
MCS4, Nss 1  
MCS5, Nss 1  
MCS6, Nss 1  
MCS7, Nss 1  
MCS8, Nss 1  
MIMO RX sensitivity IEEE  
802.11ac  
20 MHz channel spacing for all MCS rates  
MCS0, Nss 1  
–93.8  
–92.9  
–91.1  
–87.9  
–84.4  
–79.9  
–78.3  
–76.6  
–72.2  
–92  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
(10% PER for 4096 octet  
PSDU)a,b  
MCS1, Nss 1  
Defined for default parameters:  
GF, 800 ns GI, and non–STBC  
MCS2, Nss 1  
MCS3, Nss 1  
MCS4, Nss 1  
MCS5, Nss 1  
MCS6, Nss 1  
MCS7, Nss 1  
MCS8, Nss 1  
MCS0, Nss 2  
MCS8, Nss 2  
–68.1  
SISO RX sensitivity IEEE  
802.11ac  
40 MHz channel spacing for all MCS rates  
MCS0, Nss 1  
–89.5  
–87  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
(10% PER for 4096 octet  
PSDU)a,b  
MCS1, Nss 1  
Defined for default parameters:  
GF, 800 ns GI, and non–STBC.  
MCS2, Nss 1  
–85.2  
–82  
MCS3, Nss 1  
MCS4, Nss 1  
–78.8  
–74.3  
–72.7  
–71.3  
–66.9  
–65.6  
MCS5, Nss 1  
MCS6, Nss 1  
MCS7, Nss 1  
MCS8, Nss 1  
MCS9, Nss 1  
Document Number: 002-14809 Rev. *J  
Page 119 of 165  
CYW4354  
Table 40. WLAN 2.4 GHz Receiver Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
40 MHz channel spacing for all MCS rates  
MCS0, Nss 1  
Min.  
Typ.  
Max.  
Unit  
MIMO RX sensitivity IEEE  
802.11ac  
(10% PER for 4096 octet  
–91  
–90  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm  
PSDU)a,b  
MCS1, Nss 1  
Defined for default parameters:  
GF, 800 ns GI, and non–STBC.  
MCS2, Nss 1  
–88.2  
–85  
MCS3, Nss 1  
MCS4, Nss 1  
–81.8  
–77.3  
–75.7  
–74.3  
–69.9  
–68.6  
–89  
MCS5, Nss 1  
MCS6, Nss 1  
MCS7, Nss 1  
MCS8, Nss 1  
MCS9, Nss 1  
MCS0, Nss 2  
MCS9, Nss 2  
–64.2  
–75.4  
–72.7  
–69.4  
–72.8  
–68.5  
–67.3  
–74  
SISO RX sensitivity IEEE  
802.11ac 20/40/80 MHz channel  
spacing with LDPC  
(10% PER for 4096 octet  
PSDU)a,b at WLAN RF port.  
Defined for default parameters:  
MCS7, Nss 1  
MCS8, Nss 1  
MCS9, Nss 1  
MCS7, Nss 1  
20 MHz  
20 MHz  
20 MHz  
40 MHz  
40 MHz  
40 MHz  
20 MHz  
20 MHz  
20 MHz  
40 MHz  
40 MHz  
40 MHz  
CDMA2000  
cdmaOne  
GSM850  
E–GSM  
GSM1800  
GSM1800  
cdmaOne  
WCDMA  
WCDMA  
Band 7  
dBm  
dBm  
dBm  
GF, 800 ns GI, LDPC coding, and MCS8, Nss 1  
non–STBC.  
dBm  
MCS9, Nss 1  
dBm  
MIMO RX sensitivity IEEE  
802.11ac 20/40/80 MHz channel  
spacing with LDPC  
(10% PER for 4096 octet  
PSDU)a,b at WLAN RF port.  
Defined for default parameters:  
MCS7, Nss 2  
MCS8, Nss 2  
MCS9, Nss 2  
MCS7, Nss 2  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm  
–71.2  
–68.0  
–71.8  
–67  
GF, 800 ns GI, LDPC coding, and MCS8, Nss 2  
non–STBC.  
MCS9, Nss 2  
–65.5  
–24  
Blocking level for 3dB RX sensi- 776–794 MHz  
–8  
–24.5  
–16.5  
–2  
–17  
–21  
–32  
–29  
–32  
–45  
–50  
–45  
–45  
tivity degradation (without  
824–849 MHzd  
824–849 MHzd  
880–915 MHz  
–25  
dBm  
external filtering)c  
–15  
dBm  
–16  
dBm  
1710–1785 MHz  
1850–1910 MHz  
1850–1910 MHz  
1850–1910 MHz  
1920–1980 MHz  
2500–2570 MHz  
2300–2400 MHz  
2570-2620 MHz  
2545-2575 MHz  
–18  
dBm  
–19  
dBm  
–26  
dBm  
–26  
dBm  
–28.5  
–45  
dBm  
dBm  
Band 40  
Band 38  
XGP band  
–50  
dBm  
–45  
dBm  
–45  
dBm  
Document Number: 002-14809 Rev. *J  
Page 120 of 165  
CYW4354  
Table 40. WLAN 2.4 GHz Receiver Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
Min.  
Typ.  
Max.  
Unit  
In-band static CW jammer  
immunity  
(fc – 8 MHz < fcw < + 8 MHz)  
RX PER < 1%, 54 Mbps OFDM,  
1000 octet PSDU for:  
(RxSense + 23 dB < Rxlevel < max. input level)  
–80  
dBm  
Input In–Band IP3  
Maximum LNA gain  
–15.5  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
MHz  
Minimum LNA gain  
–1.5  
Maximum Receive Level  
@ 2.4 GHz  
@ 1, 2 Mbps (8% PER, 1024 octets)  
@ 5.5, 11 Mbps (8% PER, 1024 octets)  
@ 6–54 Mbps (10% PER, 1024 octets)  
@ MCS0–7 rates (10% PER, 4095 octets)  
@ MCS8–9 rates (10% PER, 4095 octets)  
–3.5  
–9.5  
–9.5  
–9.5  
–11.5  
9
LPF 3 dB Bandwidth  
36  
Adjacent channel rejection–  
DSSS  
(Difference between interfering  
Desired and interfering signal 30 MHz apart  
1 Mbps DSSS  
–74 dBm  
–74 dBm  
35  
35  
dB  
dB  
and desired signal at 8% PER for 2 Mbps DSSS  
1024 octet PSDU with desired  
signal level as specified in  
Condition/Notes)  
Desired and interfering signal 25 MHz apart  
5.5 Mbps DSSS  
11 Mbps DSSS  
6 Mbps OFDM  
9 Mbps OFDM  
12 Mbps OFDM  
18 Mbps OFDM  
24 Mbps OFDM  
36 Mbps OFDM  
48 Mbps OFDM  
54 Mbps OFDM  
MCS0  
–70 dBm  
–70 dBm  
–79 dBm  
–78 dBm  
–76 dBm  
–74 dBm  
–71 dBm  
–67 dBm  
–63 dBm  
–62 dBm  
–79 dBm  
–76 dBm  
–74 dBm  
–71 dBm  
–67 dBm  
–63 dBm  
–62 dBm  
–61 dBm  
–59 dBm  
–57 dBm  
35  
35  
16  
15  
13  
11  
8
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Adjacent channel rejection–  
OFDM  
(difference between interfering  
and desired signal (25 MHz  
apart) at 10% PER for 1024 octet  
PSDU with desired signallevel as  
specified in Condition/Notes)  
4
0
–1  
16  
13  
11  
8
Adjacent channel rejection  
MCS0–9 (Difference between  
interfering and desired signal (25  
MHz apart) at 10% PER for 4096 MCS2  
octet PSDU with desired signal  
level as specified in Condition/  
Notes)  
MCS1  
MCS3  
MCS4  
MCS5  
MCS6  
MCS7  
MCS8  
MCS9  
4
0
–1  
–2  
–4  
–6  
Document Number: 002-14809 Rev. *J  
Page 121 of 165  
CYW4354  
Table 40. WLAN 2.4 GHz Receiver Performance Specifications (Cont.)  
Parameter Condition/Notes  
Min.  
Typ.  
Max.  
Unit  
dB  
IEEE 802.11ac Adjacent channel MCS0  
–82 dBm  
–80 dBm  
–77 dBm  
–74 dBm  
–70 dBm  
–66 dBm  
–65 dBm  
–64 dBm  
–59 dBm  
–57 dBm  
rejection MCS0–9 (Difference  
between interfering and desired  
MCS1  
dB  
signal at 10% PER for 4096 octet MCS2  
dB  
PSDU with desired signallevel as  
specified in Condition/Notes)  
MCS3  
dB  
MCS4  
MCS5  
MCS6  
MCS7  
MCS8  
MCS9  
dB  
dB  
dB  
dB  
dB  
dB  
Maximum receiver gain  
Gain control step  
95  
3
dB  
dB  
RSSI accuracye  
Range –90 dBm to –30 dBm  
Range above –30 dBm  
–5  
–8  
10  
5
dB  
8
dB  
Return loss  
Zo = 50, across the dynamic range  
11.5  
4
13  
dB  
Receiver cascaded noise figure At maximum gain  
dB  
General spurs  
1–18 GHz  
–60  
dBm/MHz  
a. Derate by 1.5 dB for 55°C to 70°C.  
b. Sensitivity degradations for alternate settings in MCS modes. MM: 0.5 dB drop, and SGI: 2 dB drop.  
c. The cellular standard listed for each band indicates the type of modulation used to generate the interfering signal in that band for the purpose  
of this test. It is not intended to indicate any specific usage of each band in any specific country.  
d. The blocking levels are valid for channels 1 to 11. (For higher channels, the performance may be lower due to third harmonic signals (3 × 824  
MHz) falling within band.)  
e. The minimum and maximum values shown have a 95% confidence level.  
Document Number: 002-14809 Rev. *J  
Page 122 of 165  
CYW4354  
17.4 WLAN 2.4 GHz Transmitter Performance Specifications  
Note: The values in Table 41 are specified at the RF port unless otherwise noted.  
Table 41. WLAN 2.4 GHz Transmitter Performance Specifications  
Parameter  
Condition/Notes  
Min.  
Typ.  
Max.  
Unit  
Frequency range Transmitted  
power in cellular and FM bands at  
18dBm, 100%dutycycle, 1Mbps  
CCKa  
2400  
2500  
MHz  
76-108 MHz  
776-794 MHz  
869-960 MHz  
FM RX  
–149  
–162  
–162  
dBm/Hz  
dBm/Hz  
dBm/Hz  
cdmaOne,  
GSM850  
925-960 MHz  
E-GSM  
GPS  
–162  
–152  
-142  
–143  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
1570-1580 MHz  
1805-1880 MHz  
1930-1990 MHz  
GSM1800  
GSM1900,  
cdmaOne,  
cdmaOne  
2110-2170 MHz  
2500-2570 MHz  
2300-2400 MHz  
2570-2620 MHz  
2545-2575 MHz  
4.8-5.0 GHz  
WCDMA  
Band 7  
–128  
–92  
–95  
–110  
–110  
–18  
–20  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/MHz  
Band 40  
Band 38  
XGP Band  
Harmonic level (at 18 dBm  
with 100% duty cycle)  
2
3
nd harmonic  
rd harmonic  
7.2-7.5 GHz  
General spurs (at 18 dBm  
with 100% duty cycle)  
1–18 GHz  
–60  
EVM Does Not Exceed  
TX power at RF port for highest 802.11b  
–9 dB  
18  
19.5  
dBm  
power level setting at 25°C with (DSSS/CCK)  
spectral mask and EVM  
OFDM, BPSK  
–8 dB  
18  
18  
19  
19  
18  
17  
dBm  
dBm  
dBm  
dBm  
complianceb  
OFDM, QPSK  
–13 dB  
–19 dB  
–25 dB  
OFDM, 16-QAM  
16.5  
15.5  
OFDM, 64-QAM  
(R = 3/4)  
OFDM, 64-QAM  
(R = 5/6)  
–28 dB  
14.5  
13.5  
12  
16  
15  
dBm  
dBm  
OFDM,256-QAM(R= 30 dB  
3/4, VHT20)  
OFDM,256-QAM(R= 32 dB  
5/6, VHT20)  
13.5  
0.45  
dBm  
Phase noise  
37.4 MHz Crystal, Integrated from 10 kHz  
to 10 MHz  
Degrees  
TX power control dynamic range  
10  
dB  
dB  
Closed-loop TX power variation Across full temperature and voltage  
±1.5  
at highest power level setting  
range. Applies across 10 dBm to 20 dBm  
output power range.  
Carrier suppression  
15  
dBc  
Document Number: 002-14809 Rev. *J  
Page 123 of 165  
CYW4354  
Table 41. WLAN 2.4 GHz Transmitter Performance Specifications (Cont.)  
Parameter Condition/Notes  
Gain control step  
Return loss at chip port TX  
Min.  
Typ.  
Max.  
Unit  
0.25  
6
dB  
dB  
Zo = 50ꢀ  
a. The cellular standards listed only indicate the typical usages of that band in some countries: other standards may also be used within those  
bands  
b. Derate by 1.5 dB for temperatures higher than 55°C, or supply voltages lower than 3.0V. Derate by 3.0 dB for supply voltages of lower than  
2.7V, or supply voltages lower than 3.0V at temperatures higher than 55°C.  
17.5 WLAN 5 GHz Receiver Performance Specifications  
Note: The values in Table 42 on page 124 are specified at the RF port unless otherwise noted.  
Table 42. WLAN 5 GHz Receiver Performance Specifications  
Parameter  
Frequency range  
Condition/Notes  
Min.  
Typ.  
Max.  
Unit  
MHz  
4900  
5845  
SISO RX sensitivity IEEE  
802.11a  
6 Mbps OFDM  
9 Mbps OFDM  
12 Mbps OFDM  
18 Mbps OFDM  
24 Mbps OFDM  
36 Mbps OFDM  
48 Mbps OFDM  
54 Mbps OFDM  
6 Mbps OFDM  
9 Mbps OFDM  
12 Mbps OFDM  
18 Mbps OFDM  
24 Mbps OFDM  
36 Mbps OFDM  
48 Mbps OFDM  
54 Mbps OFDM  
20 MHz channel spacing for all MCS rates  
MCS0  
–92.5  
–91.1  
–90.2  
–87.6  
–84.3  
–81  
dBm  
dBm  
(10% PER for 1000 octet  
PSDU)a  
dBm  
dBm  
dBm  
dBm  
–76.3  
–74.8  
–93.5  
–93  
dBm  
dBm  
MIMO RX sensitivity IEEE  
802.11a  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
(10% PER for 1024 octet  
PSDU)a,b  
–92.2  
–90.6  
–87.3  
–84  
–79.3  
–75.8  
SISO RX sensitivity IEEE  
802.11n  
–92  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
(10% PER for 4096 octet  
PSDU)a,b  
MCS1  
–89.7  
–87.2  
–84.1  
–80.5  
–75.9  
–74.3  
–72.7  
Defined for default parameters:  
GF, 800 ns GI, and non-STBC.  
MCS2  
MCS3  
MCS4  
MCS5  
MCS6  
MCS7  
Document Number: 002-14809 Rev. *J  
Page 124 of 165  
CYW4354  
Table 42. WLAN 5 GHz Receiver Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
Min.  
Typ.  
Max.  
Unit  
MIMO RX sensitivity IEEE  
802.11n  
(10% PER for 4096 octet  
PSDU)a,b Defined for default  
parameters: GF, 800 ns GI, and  
non-STBC.  
20 MHz channel spacing for all MCS rates  
MCS0  
–93.5  
–92.7  
–90.2  
–87.1  
–83.5  
–78.9  
–77.3  
–75.7  
–92  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
MCS1  
MCS2  
MCS3  
MCS4  
MCS5  
MCS6  
MCS7  
MCS8  
MCS15  
–72.7  
SISO RX sensitivity IEEE  
802.11n  
40 MHz channel spacing for all MCS rates  
MCS0  
–89.8  
–86.9  
–84.5  
–81  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
(10% PER for 4096 octet  
PSDU)a,b  
MCS1  
Defined for default parameters:  
GF, 800 ns GI, and non-STBC.  
MCS2  
MCS3  
MCS4  
–77.9  
–73.2  
–71.7  
–70.3  
MCS5  
MCS6  
MCS7  
MIMO RX sensitivity IEEE  
802.11n  
40 MHz channel spacing for all MCS rates  
MCS0  
MCS1  
MCS2  
MCS3  
MCS4  
MCS5  
MCS6  
MCS7  
MCS8  
MCS15  
–91.3  
–89.9  
–87.5  
–84  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
(10% PER for 4096 octet  
PSDU)a,b  
Defined for default parameters:  
GF, 800 ns GI, and non-STBC.  
–80.9  
–76.2  
–74.7  
–73.3  
–89.8  
–70.3  
Document Number: 002-14809 Rev. *J  
Page 125 of 165  
CYW4354  
Table 42. WLAN 5 GHz Receiver Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
20 MHz channel spacing for all MCS rates  
MCS0, Nss 1  
Min.  
Typ.  
Max.  
Unit  
SISO RX sensitivity IEEE  
802.11ac  
(10% PER for 4096 octet  
–91.3  
–88.3  
–86  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
PSDU)a,b  
MCS1, Nss 1  
Defined for default parameters:  
GF, 800 ns GI, and non-STBC  
MCS2, Nss 1  
MCS3, Nss 1  
–83  
MCS4, Nss 1  
–79.4  
–74.9  
–73.3  
–72.6  
–68.2  
MCS5, Nss 1  
MCS6, Nss 1  
MCS7, Nss 1  
MCS8, Nss 1  
MIMO RX sensitivity IEEE  
802.11ac  
20 MHz channel spacing for all MCS rates  
MCS0, Nss 1  
–92.8  
–91.3  
–89  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
(10% PER for 4096 octet  
PSDU)a,b  
MCS1, Nss 1  
Defined for default parameters:  
GF, 800 ns GI, and non-STBC  
MCS2, Nss 1  
MCS3, Nss 1  
–86  
MCS4, Nss 1  
–82.4  
–77.9  
–76.3  
–75.6  
–71.2  
–91  
MCS5, Nss 1  
MCS6, Nss 1  
MCS7, Nss 1  
MCS8, Nss 1  
MCS0, Nss 2  
MCS8, Nss 2  
–67.1  
SISO RX sensitivity IEEE  
802.11ac  
40 MHz channel spacing for all MCS rates  
MCS0, Nss 1  
–88.5  
–85.5  
–83.7  
–80.5  
–77.5  
–72.5  
–71.7  
–70.3  
–65.9  
–64.6  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
(10% PER for 4096 octet  
PSDU)a,b  
MCS1, Nss 1  
Defined for default parameters:  
GF, 800 ns GI, and non-STBC.  
MCS2, Nss 1  
MCS3, Nss 1  
MCS4, Nss 1  
MCS5, Nss 1  
MCS6, Nss 1  
MCS7, Nss 1  
MCS8, Nss 1  
MCS9, Nss 1  
Document Number: 002-14809 Rev. *J  
Page 126 of 165  
CYW4354  
Table 42. WLAN 5 GHz Receiver Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
40 MHz channel spacing for all MCS rates  
MCS0, Nss 1  
Min.  
Typ.  
Max.  
Unit  
MIMO RX sensitivity IEEE  
802.11ac  
(10% PER for 4096 octet  
–90  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
PSDU)a,b  
MCS1, Nss 1  
–88.5  
–86.7  
–83.5  
–80.5  
–75.5  
–74.7  
–73.3  
–68.9  
–67.6  
–88  
Defined for default parameters:  
GF, 800 ns GI, and non-STBC.  
MCS2, Nss 1  
MCS3, Nss 1  
MCS4, Nss 1  
MCS5, Nss 1  
MCS6, Nss 1  
MCS7, Nss 1  
MCS8, Nss 1  
MCS9, Nss 1  
MCS0, Nss 2  
MCS9, Nss 2  
–63.2  
SISO RX sensitivity IEEE  
802.11ac  
80 MHz channel spacing for all MCS rates  
MCS0, Nss 1  
–85  
–82  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
(10% PER for 4096 octet  
PSDU)a,b  
MCS1, Nss 1  
Defined for default parameters:  
GF, 800 ns GI, and non-STBC.  
MCS2, Nss 1  
–80  
MCS3, Nss 1  
–76.7  
–73.7  
–70.5  
–68  
MCS4, Nss 1  
MCS5, Nss 1  
MCS6, Nss 1  
MCS7, Nss 1  
–66.5  
–62.3  
–60.5  
MCS8, Nss 1  
MCS9, Nss 1  
MIMO RX sensitivity IEEE  
802.11ac  
80 MHz channel spacing for all MCS rates  
MCS0, Nss 1  
–86.5  
–85  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
(10% PER for 4096 octet  
PSDU)a,b  
MCS1, Nss 1  
Defined for default parameters:  
GF, 800 ns GI, and non-STBC.  
MCS2, Nss 1  
–83  
MCS3, Nss 1  
–79.7  
–76.7  
–73.5  
–71  
MCS4, Nss 1  
MCS5, Nss 1  
MCS6, Nss 1  
MCS7, Nss 1  
–69.5  
–65.3  
–63.5  
–84.3  
–59.5  
MCS8, Nss 1  
MCS9, Nss 1  
MCS0, Nss 2  
MCS9, Nss 2  
Document Number: 002-14809 Rev. *J  
Page 127 of 165  
CYW4354  
Table 42. WLAN 5 GHz Receiver Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
Min.  
Typ.  
Max.  
Unit  
SISO RX sensitivity IEEE  
802.11ac 20/40/80 MHz  
channel spacing with LDPC  
(10% PER for 4096 octet  
PSDU)a,b at WLAN RF port.  
Defined for default parameters:  
GF, 800 ns GI, LDPC coding,  
and non-STBC.  
MCS7, Nss 1  
20 MHz  
–74.4  
dBm  
MCS8, Nss 1  
MCS9, Nss 1  
MCS7, Nss 1  
MCS8, Nss 1  
MCS9, Nss 1  
MCS7, Nss 1  
MCS8, Nss 1  
MCS9, Nss 1  
MCS7, Nss 2  
20 MHz  
20 MHz  
40 MHz  
40 MHz  
40 MHz  
80 MHz  
80 MHz  
80 MHz  
20 MHz  
–71.7  
–71.4  
–71.8  
–67.5  
–66.5  
–68  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
–64.3  
–62.5  
–73  
dBm  
dBm  
MIMO RX sensitivity IEEE  
802.11ac 20/40/80 MHz  
channel spacing with LDPC  
(10% PER for 4096 octet  
PSDU)a,b at WLAN RF port.  
Defined for default parameters:  
GF, 800 ns GI, LDPC coding,  
and non-STBC.  
dBm/core  
MCS8, Nss 2  
MCS9, Nss 2  
MCS7, Nss 2  
MCS8, Nss 2  
MCS9, Nss 2  
MCS7, Nss 2  
MCS8, Nss 2  
MCS9, Nss 2  
20 MHz  
20 MHz  
40 MHz  
40 MHz  
40 MHz  
80 MHz  
80 MHz  
80 MHz  
–70.2  
–66.5  
–70.8  
–66  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
dBm/core  
–64.7  
–67  
–62.8  
–60.5  
Document Number: 002-14809 Rev. *J  
Page 128 of 165  
CYW4354  
Table 42. WLAN 5 GHz Receiver Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
776–794 MHz  
824–849 MHzd  
Min.  
–21  
–20  
–12  
–12  
–15  
–15  
–20  
–21  
–21  
–21  
–21  
–21  
–21  
Typ.  
Max.  
36  
5
8
Unit  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
MHz  
dB  
Alternate adjacent channel  
rejection  
Blocking level for 3 dB RX  
sensitivity degradationc  
(without external filtering)  
CDMA2000  
cdmaOne  
GSM850  
E-GSM  
824–849 MHzd  
880–915 MHz  
1710–1785 MHz  
1850–1910 MHz  
1850–1910 MHz  
1850–1910 MHz  
1920–1980 MHz  
2500–2570 MHz  
2300–2400 MHz  
2570–2620 MHz  
2545–2575 MHz  
Maximum LNA gain  
Minimum LNA gain  
@ 6, 9, 12 Mbps  
GSM1800  
GSM1800  
cdmaOne  
WCDMA  
WCDMA  
Band 7  
Band 40  
Band 38  
XGP Band  
Input In-Band IP3  
–15.5  
–1.5  
Maximum receive level  
@ 5.24 GHz  
–9.5  
–14.5  
9
@ 18, 24, 36, 48, 54 Mbps  
LPF 3 dB bandwidth  
Adjacent channel rejection  
(Difference between interfering  
and desired signal (20 MHz  
apart) at 10% PER for 1000  
octet PSDU with desired signal  
level as specified in Condition/  
Notes)  
6 Mbps OFDM  
9 Mbps OFDM  
12 Mbps OFDM  
18 Mbps OFDM  
24 Mbps OFDM  
36 Mbps OFDM  
48 Mbps OFDM  
54 Mbps OFDM  
65 Mbps OFDM  
–79 dBm  
16  
–78 dBm  
15  
dB  
–76 dBm  
13  
dB  
–74 dBm  
11  
dB  
–71 dBm  
8
dB  
–67 dBm  
4
dB  
–63 dBm  
0
dB  
–62 dBm  
–1  
dB  
–61 dBm  
–2  
dB  
(Difference between interfering 6 Mbps OFDM  
–78.5 dBm  
–77.5 dBm  
–75.5 dBm  
–73.5 dBm  
–70.5 dBm  
–66.5 dBm  
–62.5 dBm  
–61.5 dBm  
–60.5 dBm  
32  
dB  
and desired signal (40 MHz  
9 Mbps OFDM  
31  
dB  
apart) at 10% PER for 1000e  
octet PSDU with desired signal 12 Mbps OFDM  
level as specified in Condition/  
29  
dB  
18 Mbps OFDM  
27  
dB  
Notes)  
24 Mbps OFDM  
36 Mbps OFDM  
48 Mbps OFDM  
54 Mbps OFDM  
65 Mbps OFDM  
24  
dB  
20  
dB  
16  
dB  
15  
dB  
14  
dB  
Maximum receiver gain  
Gain control step  
RSSI accuracyf  
95  
3
dB  
dB  
Range –90 dBm to –30 dBm  
Range above –30 dBm  
–5  
dB  
–8  
dB  
Document Number: 002-14809 Rev. *J  
Page 129 of 165  
CYW4354  
Table 42. WLAN 5 GHz Receiver Performance Specifications (Cont.)  
Parameter  
Return loss  
Condition/Notes  
Min.  
10  
Typ.  
Max.  
13  
Unit  
dB  
Zo = 50, across the dynamic range  
5
Receiver cascaded noise figure At maximum gain  
dB  
General spurs  
1–18 GHz  
–65  
dBm/MHz  
a. Derate by 1.5 dB for 55°C to 70°C.  
b. The cellular standard listed for each band indicates the type of modulation used to generate the interfering signal in that band for the purpose  
of this test. It is not intended to indicate any specific usage of each band in any specific country.  
c. The cellular standard listed for each band indicates the type of modulation used to generate the interfering signal in that band for the purpose  
of this test. It is not intended to indicate any specific usage of each band in any specific country.  
d. The blocking levels are valid for channels 1 to 11. (For higher channels, the performance may be lower due to third harmonic signals (3 × 824  
MHz) falling within band.)  
e. For 65 Mbps, the size is 4096.  
f. The minimum and maximum values shown have a 95% confidence level.  
Document Number: 002-14809 Rev. *J  
Page 130 of 165  
CYW4354  
17.6 WLAN 5 GHz Transmitter Performance Specifications  
Note: The values in Table 43 are specified at the RF port unless otherwise noted.  
Table 43. WLAN 5 GHz Transmitter Performance Specifications  
Parameter  
Condition/Notes  
Min.  
Typ.  
Max.  
Unit  
MHz  
Frequency range  
4900  
5845  
Transmitted power in cellular and 76-108 MHz  
FMRX  
–162  
–168  
–167  
–170  
–162  
–169  
–169  
–168  
–168  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
FM bands (at 18 dBm)a  
776-794 MHz  
869-960 MHz  
cdmaOne, GSM850  
GPS  
1570-1580 MHz  
1592-1610 MHz  
1805-1880 MHz  
1850-1910 MHz  
1910-1930 MHz  
1930-1990 MHz  
GLONASS  
GSM1800  
GSM1900  
Band 37  
GSM1900, cdmaOne,  
WCDMA  
2010-2075 MHz  
2110-2170 MHz  
2300-2370 MHz  
2370-2400 MHz  
2496-2530 MHz  
2530-2560 MHz  
2570-2690 MHz  
TDSCDMA  
WCDMA  
Band 40  
Band 40  
Band 41  
Band 41  
Band 41  
–168  
–160  
–166  
–162  
–165  
–165  
–158  
–30  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/MHz  
Harmonic level  
(at 17 dBm)  
9.8-11.570 GHz  
2
nd harmonic  
General spurs  
1-18 GHz  
–57  
dBm/MHz  
dBm  
dBm  
TX power at RF port for highest  
power level setting at 25°C with  
spectral mask and EVM  
complianceb  
OFDM, QPSK  
OFDM, 16-QAM  
OFDM, 64-QAM  
(R = 3/4)  
–13 dB  
–19 dB  
17.5  
16  
18.5  
17.5  
–25 dB  
15  
16.5  
dBm  
OFDM, 64-QAM  
(R = 5/6)  
–28 dB  
14  
13  
15.5  
14.5  
dBm  
dBm  
OFDM, 256-QAM (R = –30 dB  
3/4, VHT)  
OFDM, 256-QAM (R = –32 dB  
5/6, VHT)  
11  
12.5  
0.5  
dBm  
Phase noise  
37.4 MHz Crystal, Integrated from 10 kHz to 10  
MHz  
Degrees  
TX power control dynamic range  
10  
dB  
dB  
Closed loop TX power variation at Across full-temperature and voltage range. Applies  
±2.0  
highest power level setting  
Carrier suppression  
Gain control step  
Return loss  
across 10 to 20 dBm output power range.  
15  
dBc  
dB  
0.25  
6
Zo = 50ꢀ  
dB  
a. The cellular standards listed indicate only typical usages of that band in some countries. Other standards may also be used within those  
bands.  
b. Derate by 1.5 dB for temperatures higher than 55°C, or supply voltages lower than 3.0V. Derate by 3.0 dB for supply voltages of lower than  
2.7V, or supply voltages lower than 3.0V at temperatures higher than 55°C.  
Document Number: 002-14809 Rev. *J  
Page 131 of 165  
CYW4354  
18. Internal Regulator Electrical Specifications  
Note: Values in this data sheet are design goals and are subject to change based on the results of device characterization.  
Functional operation is not guaranteed outside of the specification limits provided in this section.  
18.1 Core Buck Switching Regulator  
Table 44. Core Buck Switching Regulator (CBUCK) Specifications  
Specification  
Input supply voltage (DC)  
PWM mode switching frequency  
PWM output current  
Notes  
Min.  
3.0  
2.8  
Typ.  
3.6  
4
Max.  
5.25a  
5.2  
Units  
V
DC voltage range inclusive of disturbances.  
CCM, Load > 100 mA VBAT = 3.6V  
MHz  
mA  
mA  
V
600  
Output current limit  
1400  
1.35  
Output voltage range  
Programmable, 30 mV steps  
Default = 1.35V  
1.2  
1.5  
PWM output voltage  
DC accuracy  
Includes load and line regulation.  
Forced PWM mode  
–4  
7
4
%
PWM ripple voltage, static  
Measure with 20 MHz bandwidth limit.  
Static Load. Max. ripple based on VBAT = 3.6V,  
Vout = 1.35V,  
20  
mVpp  
Fsw = 4 MHz, 2.2 μH inductor L > 1.05 μH, Cap +  
Board total-ESR < 20 m,  
Cout > 1.9 μF, ESL<200pH  
PWM mode peak efficiency  
PFM mode efficiency  
Peak Efficiency at 200 mA load  
10 mA load current  
78  
70  
86  
81  
%
%
Start-up time from  
power down  
VIO already ON and steady.  
Time from REG_ON rising edge to CLDO reaching  
850  
µs  
1.2V  
External inductor  
0806 size, ± 30%, 0.11 ± 25% Ohms  
2.0b  
2.2  
4.7  
10c  
µH  
µF  
External output capacitor  
Ceramic, X5R, 0402,  
ESR <30 mat 4 MHz, ± 20%, 6.3V  
External input capacitor  
For SR_VDDBATP5V pin,  
ceramic, X5R, 0603,  
ESR < 30 mat 4 MHz, ± 20%, 6.3V, 4.7 µF  
0.67b  
4.7  
µF  
µs  
Input supply voltage ramp-up time  
0 to 4.3V  
40  
a. The maximum continuous voltage is 5.25V. Voltages up to 6.0V for up to 10 seconds, cumulative duration, over the lifetime of the device are  
allowed. Voltages as high as 5.5V for up to 250 seconds, cumulative duration, over the lifetime of the device are allowed.  
b. Minimum capacitor value refers to the residual capacitor value after taking into account the part–to–part tolerance, DC–bias, temperature, and  
aging.  
c. Total capacitance includes those connected at the far end of the active load.  
Document Number: 002-14809 Rev. *J  
Page 132 of 165  
CYW4354  
18.2 3.3V LDO (LDO3P3)  
Table 45. LDO3P3 Specifications  
Specification  
Notes  
Min.  
Typ.  
Max.  
Units  
Input supply voltage, Vin  
Min. = Vo + 0.2V = 3.5V dropout voltage requirement  
must be met under maximum load for performance  
specifications.  
2.3  
3.6  
5.25a  
V
Output current  
0.2  
3.3  
600  
mA  
V
Nominal output voltage, Vo  
Dropout voltage  
Default = 3.3V  
At max. load.  
200  
+5  
120  
6
mV  
%
Output voltage DC accuracy  
Quiescent current  
Includes line/load regulation.  
No load  
–5  
100  
5.8  
1.5  
µA  
mA  
µA  
Maximum load (600 mA)  
Leakage current  
Power-Down mode,  
5
junction temperature = 85°C  
Line regulation  
Load regulation  
PSRR  
Vin from (Vo + 0.2V) to 4.8V, max. load  
load from 1 mA to 450 mA  
3.5  
0.25  
mV/V  
mV/mA  
dB  
Vin Vo + 0.2V,  
Vo = 3.3V, Co = 4.7 µF,  
Max. load, 100 Hz to 100 kHz  
20  
LDO turn-on time  
Chip already powered up.  
1.0b  
160  
4.7  
250  
µs  
µF  
External output capacitor, Co  
Ceramic, X5R, 0402,  
(ESR: 5 m–240 m), ± 10%, 10V  
External input capacitor  
For SR_VDDBATA5V pin (shared with Bandgap)  
Ceramic, X5R, 0402,  
4.7  
µF  
(ESR: 30m-200 m), ± 10%, 10V.  
Not needed if sharing VBAT capacitor 4.7 µF with  
SR_VDDBATP5V.  
a. The maximum continuous voltage is 5.25V. Voltages up to 6.0V for up to 10 seconds, cumulative duration, over the lifetime of the device are  
allowed. Voltages as high as 5.5V for up to 250 seconds, cumulative duration, over the lifetime of the device are allowed.  
b. Minimum capacitor value refers to the residual capacitor value after taking into account the part-to-part tolerance, DC-bias, temperature, and  
aging.  
Document Number: 002-14809 Rev. *J  
Page 133 of 165  
CYW4354  
18.3 3.3V LDO (LDO3P3_B)  
Table 46. LDO3P3_B Specifications  
Specification  
Notes  
Min.  
Typ.  
Max.  
Units  
Input supply voltage, Vin  
Min. = Vo + 0.2V = 3.5V dropout voltage requirement  
must be met under maximum load for performance  
specifications.  
2.3  
3.6  
5.25a  
V
Output current  
0.1  
3.3  
150  
mA  
V
Nominal output voltage, Vo  
Dropout voltage  
Default = 3.3V  
At max. load.  
200  
+5  
16  
1.4  
5
mV  
%
Output voltage DC accuracy  
Quiescent current  
Includes line/load regulation.  
–5  
No load  
10  
1.38  
1.5  
µA  
mA  
µA  
Maximum load (150 mA)  
Leakage current  
Power-Down mode,  
junction temperature = 85°C  
Line regulation  
Load regulation  
PSRR  
Vin from (Vo + 0.2V) to 4.8V, max. load  
load from 1 mA to 450 mA  
3.5  
0.25  
mV/V  
mV/mA  
dB  
Vin Vo + 0.2V,  
Vo = 3.3V, Co = 4.7 µF,  
Max. load, 100 Hz to 100 kHz  
20  
LDO turn-on time  
Chip already powered up.  
0.7b  
150  
µs  
µF  
External output capacitor, Co  
Ceramic, X5R, 0402,  
2.2  
(ESR: 5 m–240 m), ± 10%, 10V  
External input capacitor  
For SR_VDDBATA5V pin (shared with Bandgap)  
Ceramic, X5R, 0402  
4.7  
µF  
a. The maximum continuous voltage is 5.25V. Voltages up to 6.0V for up to 10 seconds, cumulative duration, over the lifetime of the device are  
allowed. Voltages as high as 5.5V for up to 250 seconds, cumulative duration, over the lifetime of the device are allowed.  
b. Minimum capacitor value refers to the residual capacitor value after taking into account the part–to–part tolerance, DC–bias, temperature, and  
aging.  
Document Number: 002-14809 Rev. *J  
Page 134 of 165  
CYW4354  
18.4 2.5V LDO (BTLDO2P5)  
Table 47. BTLDO2P5 Specifications  
Specification  
Notes  
Min.  
Typ.  
Max.  
Units  
Input supply voltage  
Min. = 2.5V + 0.2V = 2.7V.  
3.0  
3.6  
5.25a  
V
Dropout voltage requirement must be met  
under maximum load for performance specifi-  
cations.  
Nominal output voltage  
Default = 2.5V.  
Range  
2.5  
2.5  
2.8  
5
V
V
Output voltage programmability  
2.2  
–5  
Accuracy at any step (including line/load  
regulation), load > 0.1 mA.  
%
Dropout voltage  
Output current  
At maximum load.  
0.1  
200  
70  
mV  
mA  
µA  
Quiescent current  
No load.  
8
16  
Maximum load at 70 mA.  
Power-down mode.  
660  
1.5  
700  
5
µA  
Leakage current  
Line regulation  
µA  
Vin from (Vo + 0.2V) to 4.8V,  
maximum load.  
3.5  
mV/V  
Load regulation  
PSRR  
Load from 1 mA to 70 mA,  
0.3  
mV/mA  
dB  
Vin = 3.6V.  
Vin Vo + 0.2V, Vo = 2.5V, Co = 2.2 µF,  
maximum load, 100 Hz to 100 kHz.  
20  
LDO turn-on time  
In-rush current  
Chip already powered up.  
150  
250  
µs  
Vin = Vo + 0.15V to 4.8V, Co = 2.2 µF,  
No load.  
mA  
External output capacitor, Co  
External input capacitor  
Ceramic, X5R, 0402,  
(ESR: 5–240 m), ±10%, 10V  
0.7b  
2.2  
4.7  
2.64  
µF  
µF  
For SR_VDDBATA5V pin (shared with  
Bandgap) ceramic, X5R, 0402,  
(ESR: 30–200 m), ±10%, 10V.  
Not needed if sharing VBAT 4.7 µF capacitor  
with SR_VDDBATP5V.  
a. The maximum continuous voltage is 5.25V. Voltages up to 6.0V for up to 10 seconds, cumulative duration, over the lifetime of the device are  
allowed. Voltages as high as 5.5V for up to 250 seconds, cumulative duration, over the lifetime of the device are allowed.  
b. The minimum value refers to the residual capacitor value after taking into account part–to–part tolerance, DC–bias, temperature, and aging.  
Document Number: 002-14809 Rev. *J  
Page 135 of 165  
CYW4354  
18.5 CLDO  
Table 48. CLDO Specifications  
Specification  
Notes  
Min.  
Typ.  
Max.  
Units  
Input supply voltage, Vin  
Min. = 1.2 + 0.15V = 1.35V dropout voltage  
requirement must be met under maximum load.  
1.3  
1.35  
1.5  
V
Output current  
0.2  
1.1  
300  
mA  
V
Output voltage, Vo  
Programmable in 25 mV steps.  
Default = 1.2.V  
1.2  
1.275  
Dropout voltage  
At max. load  
–4  
150  
+4  
mV  
%
Output voltage DC accuracy  
Quiescent current  
Includes line/load regulation  
No load  
24  
2.1  
µA  
300 mA load  
mA  
Line Regulation  
Load Regulation  
Leakage Current  
Vin from (Vo + 0.15V) to 1.5V, maximum load  
Load from 1 mA to 300 mA  
Power down  
5
mV/V  
mV/mA  
µA  
0.02  
0.05  
20  
3
Bypass mode  
1
µA  
PSRR  
@1 kHz, Vin 1.35V, Co = 4.7 µF  
20  
dB  
Start-up Time of PMU  
VIO up and steady. Time from the REG_ON rising  
edge to the CLDO reaching 1.2V.  
700  
µs  
LDO Turn-on Time  
LDO turn-on time when rest of the chip is up  
1.32a  
140  
4.7  
1
180  
µs  
µF  
µF  
External Output Capacitor, Co  
External Input Capacitor  
Total ESR: 5 m–240 mꢀ  
Only use an external input capacitor at the VDD_LDO  
pin if it is not supplied from CBUCK output.  
2.2  
a. Minimum capacitor value refers to the residual capacitor value after taking into account the part–to–part tolerance, DC–bias, temperature, and  
aging.  
Document Number: 002-14809 Rev. *J  
Page 136 of 165  
CYW4354  
18.6 LNLDO  
Table 49. LNLDO Specifications  
Specification  
Notes  
Min.  
Typ.  
Max.  
Units  
Input supply voltage, Vin  
Min. = 1.2Vo + 0.15V = 1.35V dropout voltage  
requirement must be met under maximum load.  
1.3  
1.35  
1.5  
V
Output Current  
0.1  
1.1  
150  
mA  
V
Output Voltage, Vo  
Programmable in 25 mV steps.  
Default = 1.2V  
1.2  
1.275  
Dropout Voltage  
At maximum load  
–4  
150  
+4  
mV  
%
Output Voltage DC Accuracy  
Quiescent current  
Includes line/load regulation  
No load  
44  
970  
µA  
Max. load  
990  
5
µA  
Line Regulation  
Load Regulation  
Leakage Current  
Output Noise  
Vin from (Vo + 0.1V) to 1.5V, max. load  
Load from 1 mA to 150 mA  
Power-down  
mV/V  
mV/mA  
µA  
0.02  
0.05  
10  
@30 kHz, 60–150 mA load Co = 2.2 µF  
@100 kHz, 60–150 mA load Co = 2.2 µF  
60  
35  
nV/rt Hz nV/  
rt Hz  
PSRR  
@ 1kHz, Input > 1.35V, Co= 2.2 µF, Vo = 1.2V  
LDO turn-on time when rest of chip is up  
20  
0.5a  
dB  
µs  
µF  
LDO Turn-on Time  
External Output Capacitor, Co  
140  
2.2  
180  
4.7  
Total ESR (trace/capacitor):  
5 m–240 mꢀ  
External Input Capacitor  
Only use an external input capacitor at the  
VDD_LDO pin if it is not supplied from CBUCK  
output.  
1
2.2  
µF  
Total ESR (trace/capacitor): 30 m–200 mꢀ  
a. Minimum capacitor value refers to the residual capacitor value after taking into account the part–to–part tolerance, DC–bias, temperature, and  
aging.  
Document Number: 002-14809 Rev. *J  
Page 137 of 165  
CYW4354  
19. System Power Consumption  
Note: Values in this data sheet are design goals and are subject to change based on the results of device characterization.  
Unless otherwise stated, these values apply for the conditions specified in Table 33: “Recommended Operating Conditions and DC  
Characteristics,” on page 113.  
19.1 WLAN Current Consumption  
The WLAN current consumption measurements are shown in Table 50.  
All values in Table 50 are with the Bluetooth core in reset (that is, Bluetooth and FM are OFF).  
Table 50. Typical WLAN Power Consumption  
Bandwidth  
(MHz)  
Band  
(GHz)  
Vbat = 3.6V)  
mA  
Vio = 1.8V  
uAa  
Mode  
Sleep Modes  
OFFb  
Sleepc  
0.003  
0.005  
1.2  
5.5  
260  
260  
260  
260  
260  
260  
260  
260  
260  
IEEE power save, DTIM 1 1 RX cored  
IEEE power save, DTIM 3 1 RX cored  
IEEE power save, DTIM 1 1 RX cored  
IEEE power save, DTIM 3 1 RX cored  
IEEE power save, DTIM 1 1 RX cored  
IEEE power save, DTIM 3 1 RX cored  
IEEE power save, DTIM 1 1 RX cored  
IEEE power save, DTIM 3 1 RX cored  
Active Modes  
20  
20  
20  
20  
40  
40  
80  
80  
2.4  
2.4  
5
0.4  
1.2  
5
0.4  
5
1.5  
5
0.5  
5
2.0  
5
0.7  
Transmit  
CCK 1 chaine  
20  
20  
20  
20  
20  
40  
40  
40  
80  
80  
2.4  
2.4  
2.4  
5
350  
270  
540  
310  
620  
315  
295  
590  
305  
610  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
MCS8, Nss 1, HT20, SGIf,g,h  
TMCS8, Nss 2, HT20, SGIf,g,h  
MCS7, SGIf, g,i  
MCS15, SGIf, g,i  
MCS7f,g,i  
MCS9, Nss 1, SGIf,g,j  
MCS9, Nss 2, SGIf,g,j  
MCS9, Nss 1, SGIf,g,j  
MCS9, Nss 2, SGIf,g,j  
5
5
5
5
5
5
Receive  
1 Mbps, 1 RX core  
20  
20  
20  
20  
20  
20  
20  
20  
2.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2.4  
5
59  
75  
62  
81  
86  
57  
76  
71  
60  
60  
60  
60  
60  
60  
60  
60  
1 Mbps, 2 RX cores  
MCS7, HT20 1 RX corek  
MCS7, HT20 2 RX coresk  
MCS15, HT20k  
CRS 1 RX corel  
CRS 2 RX coresl  
Receive MCS7, SGI 1 RX corek  
Document Number: 002-14809 Rev. *J  
Page 138 of 165  
CYW4354  
Table 50. Typical WLAN Power Consumption (Cont.)  
Mode  
Bandwidth  
(MHz)  
Band  
(GHz)  
Vbat = 3.6V)  
mA  
Vio = 1.8V  
uAa  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
60  
Receive MCS7, SGI 2 RX coresk  
Receiver MCS15, SGIk  
CRS 1 RX corel  
20  
20  
20  
20  
40  
40  
40  
40  
40  
80  
80  
80  
80  
80  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
102  
106  
67  
CRS 2 RX coresl  
96  
Receive MCS 7, SGI 1 RX corek  
Receive MCS 7, SGI 2 RX coresk  
Receive MCS 15, SGIk  
CRS 1 RX corel  
91  
135  
141  
80  
CRS 2 RX coresl  
121  
123  
189  
206  
102  
163  
Receive MCS9, Nss 1, SGIk  
Receive MCS9, Nss 1, SGI 2 RX coresk  
Receive MCS9, Nss 2, SGIk  
CRS 1 RX corel  
CRS 2 RX coresl  
a. Specified with all pins idle (not switching) and not driving any loads.  
b. WL_REG_ON, BT_REG_ON low, no VDDIO.  
c. Idle, not associated, or inter-beacon.  
d. Beacon Interval = 102.4 ms. Beacon duration = 1 ms @1 Mbps. Average current over 3 DTIM intervals.  
e. Output power per core at RF port = 21 dBm  
f. Duty cycle is 100%  
g. Measured using packet engine test mode.  
h. Output power per core at RF port = 17 dBm.  
i. Output power per core at RF port = 17.5 dBm.  
j. Output power per core at RF port = 14 dBm.  
k. Duty cycle is 100%. Carrier sense (CS) detect/packet receive.  
l. Carrier sense (CCA) when no carrier present.  
Document Number: 002-14809 Rev. *J  
Page 139 of 165  
CYW4354  
19.2 Bluetooth and FM Current Consumption  
The Bluetooth, BLE, and FM current consumption measurements are shown in Table 51.  
Note:  
The WLAN core is in reset (WLAN_REG_ON = low) for all measurements provided in Table 51.  
For FM measurements, the Bluetooth core is in Sleep mode.  
The BT current consumption numbers are measured based on GFSK TX output power = 10 dBm.  
Table 51. Bluetooth BLE and FM Current Consumption  
Operating Mode  
VBAT (VBAT = 3.6V) Typical  
VDDIO (VDDIO = 1.8V) Typical  
Units  
µA  
Sleep  
13  
0.217  
440  
0.168  
0.124  
25.3  
30.6  
31.4  
29.2  
11.45  
11.7  
8.0  
198  
0.197  
194  
Standard 1.28s Inquiry Scan  
P and I Scanb  
mA  
µA  
500 ms Sniff Master  
500 ms Sniff Slave  
0.195  
0.190  
0.024  
0.035  
0.037  
0.094  
0.089  
0.090  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
DM1/DH1 Master  
DM3/DH3 Master  
DM5/DH5 Master  
3DH5 Master  
SCO HV3 Master  
HV3 + Sniff + Scana  
FMRX I2S Audio  
FMRX Analog Audio only  
FMRX I2S Audio + RDS  
FMRX Analog Audio + RDS  
BLE Scanb  
8.6  
8.0  
8.6  
244  
21.34  
67  
196  
BLE Scan 10 ms  
0.013  
199  
mA  
µA  
BLE Adv—Unconnectable 1.00 sec  
BLE Adv—Unconnectable 1.28 sec  
BLE Adv—Unconnectable 2.00 sec  
BLE Connected 7.5 ms  
BLE Connected 1 sec.  
BLE Connected 1.28 sec.  
55  
199  
µA  
58  
199  
µA  
3.95  
57  
0.013  
198  
mA  
µA  
52  
197  
µA  
a. At maximum class 1 TX power, 500 ms sniff, four attempts (slave), P = 1.28s, and I = 2.56s.  
b. No devices present. A 1.28 second interval with a scan window of 11.25 ms.  
Document Number: 002-14809 Rev. *J  
Page 140 of 165  
CYW4354  
20. Interface Timing and AC Characteristics  
20.1 SDIO Timing  
20.1.1 SDIO Default Mode Timing  
SDIO default mode timing is shown by the combination of Figure 37 and Table 52.  
Figure 37. SDIO Bus Timing (Default Mode)  
fPP  
tWL  
tWH  
SDIO_CLK  
tTHL  
tTLH  
tIH  
tISU  
Input  
Output  
tODLY  
tODLY  
(max)  
(min)  
Document Number: 002-14809 Rev. *J  
Page 141 of 165  
CYW4354  
Table 52. SDIO Bus Timinga Parameters (Default Mode)  
Parameter  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
SDIO CLK (All values are referred to minimum VIH and maximum VILb)  
Frequency – Data Transfer mode  
Frequency – Identification mode  
Clock low time  
fPP  
0
25  
MHz  
kHz  
ns  
fOD  
tWL  
tWH  
tTLH  
tTHL  
0
400  
10  
10  
Clock high time  
ns  
Clock rise time  
10  
10  
ns  
Clock low time  
ns  
Inputs: CMD, DAT (referenced to CLK)  
Input setup time  
Input hold time  
tISU  
tIH  
5
5
ns  
ns  
Outputs: CMD, DAT (referenced to CLK)  
Output delay time – Data Transfer mode  
Output delay time – Identification mode  
tODLY  
tODLY  
0
0
14  
50  
ns  
ns  
a. Timing is based on CL 40pF load on CMD and Data.  
b. Min. (Vih) = 0.7 × VDDIO and max. (Vil) = 0.2 × VDDIO.  
Document Number: 002-14809 Rev. *J  
Page 142 of 165  
CYW4354  
20.1.2 SDIO High-Speed Mode Timing  
SDIO high-speed mode timing is shown by the combination of Figure 38 and Table 53.  
Figure 38. SDIO Bus Timing (High-Speed Mode)  
fPP  
tWL  
tWH  
50% VDD  
SDIO_CLK  
tTHL  
tTLH  
tIH  
tISU  
Input  
Output  
tODLY  
tOH  
Table 53. SDIO Bus Timinga Parameters (High-Speed Mode)  
Parameter Symbol  
SDIO CLK (all values are referred to minimum VIH and maximum VILb)  
Minimum  
Typical  
Maximum  
Unit  
Frequency – Data Transfer Mode  
Frequency – Identification Mode  
Clock low time  
fPP  
fOD  
tWL  
tWH  
tTLH  
tTHL  
0
0
50  
400  
MHz  
kHz  
ns  
ns  
ns  
ns  
7
Clock high time  
7
Clock rise time  
3
Clock low time  
3
Inputs: CMD, DAT (referenced to CLK)  
Input setup Time  
tISU  
tIH  
6
ns  
ns  
Input hold Time  
2
Outputs: CMD, DAT (referenced to CLK)  
Output delay time – Data Transfer Mode  
Output hold time  
tODLY  
tOH  
CL  
14  
ns  
ns  
pF  
2.5  
Total system capacitance (each line)  
40  
a. Timing is based on CL 40pF load on CMD and Data.  
b. Min. (Vih) = 0.7 × VDDIO and max. (Vil) = 0.2 × VDDIO.  
Document Number: 002-14809 Rev. *J  
Page 143 of 165  
CYW4354  
20.1.3 SDIO Bus Timing Specifications in SDR Modes  
Clock Timing  
Figure 39. SDIO Clock Timing (SDR Modes)  
tCLK  
SDIO_CLK  
tCR  
tCF  
tCR  
Table 54. SDIO Bus Clock Timing Parameters (SDR Modes)  
Parameter Symbol Minimum Maximum  
Unit  
Comments  
tCLK  
40  
20  
10  
ns  
ns  
ns  
ns  
ns  
SDR12 mode  
SDR25 mode  
SDR50 mode  
SDR104 mode  
4.8  
tCR, tCF  
0.2 × tCLK  
tCR, tCF < 2.00 ns (max.) @100 MHz, CCARD  
= 10 pF  
tCR, tCF < 0.96 ns (max.) @208 MHz, CCARD  
= 10 pF  
Clock duty  
30  
70  
%
Document Number: 002-14809 Rev. *J  
Page 144 of 165  
CYW4354  
Device Input Timing  
Figure 40. SDIO Bus Input Timing (SDR Modes)  
SDIO_CLK  
tIS  
tIH  
CMD input  
DAT[3:0] input  
Table 55. SDIO Bus Input Timing Parameters (SDR Modes)  
Symbol  
Minimum  
Maximum  
Unit  
SDR104 Mode  
Comments  
tIS  
tIH  
1.4  
ns  
ns  
CCARD = 10 pF, VCT = 0.975V  
CCARD = 5 pF, VCT = 0.975V  
0.80  
SDR50 Mode  
tIS  
tIH  
3.00  
0.80  
ns  
ns  
CCARD = 10 pF, VCT = 0.975V  
CCARD = 5 pF, VCT = 0.975V  
Document Number: 002-14809 Rev. *J  
Page 145 of 165  
CYW4354  
Device Output Timing  
Figure 41. SDIO Bus Output Timing (SDR Modes up to 100 MHz)  
tCLK  
SDIO_CLK  
tODLY  
tOH  
CMD input  
DAT[3:0] input  
Table 56. SDIO Bus Output Timing Parameters (SDR Modes up to 100 MHz)  
Symbol Minimum Maximum Unit  
tODLY 7.5  
tODLY  
tOH  
Comments  
ns  
ns  
ns  
tCLK 10 ns CL= 30 pF using driver type B for SDR50  
tCLK 20 ns CL= 40 pF using for SDR12, SDR25  
Hold time at the tODLY (min.) CL= 15 pF  
14.0  
1.5  
Figure 42. SDIO Bus Output Timing (SDR Modes 100 MHz to 208 MHz)  
tCLK  
SDIO_CLK  
tOP  
tODW  
CMD input  
DAT[3:0] input  
Document Number: 002-14809 Rev. *J  
Page 146 of 165  
CYW4354  
Table 57. SDIO Bus Output Timing Parameters (SDR Modes 100 MHz to 208 MHz)  
Symbol Minimum Maximum Unit  
Comments  
tOP  
0
2
UI  
ps  
UI  
Card output phase  
tOP  
–350  
0.60  
+1550  
Delay variation due to temp change after tuning  
tODW=2.88 ns @208 MHz  
tODW  
tOP = +1550 ps for junction temperature of tOP = 90 degrees during operation  
tOP = –350 ps for junction temperature of tOP = –20 degrees during operation  
tOP = +2600 ps for junction temperature of tOP = –20 to +125 degrees during operation  
Figure 43. tOP Consideration for Variable Data Window (SDR 104 Mode)  
Data valid window  
Sampling point after tuning  
ȴtOP  
1550 ps  
=
Data valid window  
ȴtOP  
–350 ps  
=
Sampling point after card junction heating  
by +90°C from tuning temperature  
Data valid window  
Sampling point after card junction cooling  
by –20°C from tuning temperature  
Document Number: 002-14809 Rev. *J  
Page 147 of 165  
CYW4354  
20.1.4 SDIO Bus Timing Specifications in DDR50 Mode  
Figure 44. SDIO Clock Timing (DDR50 Mode)  
tCLK  
SDIO_CLK  
tCR  
tCF  
tCR  
Table 58. SDIO Bus Clock Timing Parameters (DDR50 Mode)  
Parameter Symbol Minimum Maximum  
tCLK  
tCR,tCF  
Unit  
Comments  
20  
ns  
DDR50 mode  
0.2 × tCLK  
55  
ns  
tCR, tCF < 4.00 ns (max.) @50 MHz,  
CCARD = 10 pF  
Clock duty  
45  
%
Document Number: 002-14809 Rev. *J  
Page 148 of 165  
CYW4354  
Data Timing, DDR50 Mode  
Figure 45. SDIO Data Timing (DDR50 Mode)  
FPP  
SDIO_CLK  
DAT[3:0]  
tISU2x  
tIH2x  
tISU2x  
tIH2x  
Invalid  
input  
Data  
Invalid  
Data  
Invalid  
Data  
Invalid  
tODLY2x (max)  
tODLY2x (max)  
tODLY2x  
(min)  
tODLY2x  
(min)  
Available timing  
window for card  
output transition  
DAT[3:0]  
output  
Data  
Data  
Data  
In DDR50 mode, DAT[3:0] lines are sampled on both edges of  
the clock (not applicable for CMD line)  
Available timing  
window for host to  
sample data from card  
Table 59. SDIO Bus Timing Parameters (DDR50 Mode)  
Parameter  
Symbol  
Minimum  
Maximum  
Input CMD  
Unit  
Comments  
Input setup time  
Input hold time  
tISU  
tIH  
6
ns  
CCARD < 10 pF (1 Card)  
CCARD < 10 pF (1 Card)  
0.8  
ns  
Output CMD  
Output delay time  
Output hold time  
tODLY  
tOH  
13.7  
ns  
ns  
CCARD < 30 pF (1 Card)  
CCARD < 15 pF (1 Card)  
1.5  
Input DAT  
Input setup time  
Input hold time  
tISU2x  
tIH2x  
3
ns  
ns  
CCARD < 10 pF (1 Card)  
CCARD < 10 pF (1 Card)  
0.8  
Output DAT  
Output delay time  
Output hold time  
tODLY2x  
tODLY2x  
7.5  
ns  
ns  
CCARD < 25 pF (1 Card)  
CCARD < 15 pF (1 Card)  
1.5  
Document Number: 002-14809 Rev. *J  
Page 149 of 165  
CYW4354  
20.2 HSIC Interface Specifications  
Table 60. HSIC Interface Parameters  
Parameter  
HSIC signaling voltage  
I/O voltage input low  
I/O Voltage input high  
I/O voltage output low  
I/O voltage output high  
I/O pad drive strength  
Symbol  
Minimum  
1.1  
Typical  
Maximum  
1.3  
Unit  
Comments  
VDD  
VIL  
1.2  
V
V
V
V
V
–0.3  
0.35 × VDD  
VDD + 0.3  
0.25 × VDD  
VIH  
VOL  
VOH  
OD  
0.65 × VDD  
0.75 × VDD  
40  
60  
Controlled output  
impedance driver  
I/O weak keepers  
IL  
20  
100  
3
70  
mA  
kꢀ  
pF  
I/O input impedance  
Total capacitive loada  
ZI  
CL  
14  
55  
10  
15  
Characteristic trace impedance TI  
Circuit board trace length TL  
45  
50  
cm  
ps  
Circuit board trace propagation TS  
skewb  
STROBE frequencyc  
FSTROBE  
239.988  
240  
1.0  
240.012  
1.2  
MHz  
V/ns  
± 500 ppm  
Slew rate (rise and fall) STROBE Tslew  
and DATAC  
0.60 × VDD  
Averaged from  
30% ~ 70% points  
Receiver data setup time (with  
respect to STROBE)c  
Ts  
300  
300  
ps  
ps  
Measured at the 50%  
point  
Receiver data hold time (with  
respect to STROBE)c  
Tb  
Measured at the 50%  
point  
a. Total Capacitive Load (CL), includes device Input/Output capacitance, and capacitance of a 50PCB trace with a length of 10 cm.  
b. Maximum propagation delay skew in STROBE or DATA with respect to each other. The trace delay should be matched between STROBE  
and DATA to ensure that the signal timing is within specification limits at the receiver.  
c. Jitter and duty cycle are not separately specified parameters, they are incorporated into the values in the Table 60.  
Document Number: 002-14809 Rev. *J  
Page 150 of 165  
CYW4354  
20.3 PCI Express Interface Parameters  
Table 61. PCI Express Interface Parameters  
Parameter  
Symbol  
Comments  
General  
Minimum  
Typical Maximum  
Unit  
Baud rate  
BPS  
1
5
Gbaud  
V
Reference clock amplitude Vref  
LVPECL  
Receiver  
Differential termination  
DC impedance  
ZRX-DIFF-DC  
ZRX-DC  
Differential termination  
80  
40  
100  
50  
120  
60  
DC common-mode  
impedance  
Powered down termination ZRX-HIGH-IMP-DC-  
(POS) POS  
Power-downorRESEThigh 100k  
impedance  
Powered down termination ZRX-HIGH-IMP-DC-  
Power-downorRESEThigh 1k  
impedance  
(NEG)  
NEG  
Input voltage  
VRX-DIFFp-p  
AC coupled, differential  
p-p  
175  
mV  
Jitter tolerance  
TRX-EYE  
Minimum receiver eye width 0.4  
UI  
Differential return loss  
RLRX-DIFF  
Differential return loss  
10  
6
dB  
dB  
Common-mode return loss RLRX-CM  
Common-mode return loss  
Unexpected electrical idle TRX-IDEL-DET-DIFF- An unexpected electrical  
10  
ms  
enter detect threshold  
integration time  
ENTERTIME  
idle must be recognized no  
longer than this time to  
signal an unexpected idle  
condition.  
Signal detect threshold  
VRX-IDLE-DET-DIFFp- Electrical idle detect  
65  
175  
mV  
p
threshold  
Transmitter  
Output voltage  
VTX-DIFFp-p  
VTX-RISE  
Differential p-p, program-  
mable in 16 steps  
0.8  
1200  
mV  
UI  
Output voltage rise time  
20% to 80%  
0.125  
(2.5 GT/s)  
0.15  
(5 GT/s)  
Output voltage fall time  
VTX-FALL  
80% to 20%  
0.125  
(2.5 GT/s)  
0.15  
UI  
(5 GT/s)  
RX detection voltage swing VTX-RCV-DETECT  
The amount of voltage  
change allowed during  
receiver detection.  
600  
100  
20  
mV  
mV  
mV  
TX AC peak common-  
mode voltage  
(5 GT/s)  
VTX-CM-AC-PP  
VTX-CM-AC-P  
TX AC common mode  
voltage (5 GT/s)  
TX AC peak common-  
mode voltage  
TX AC common mode  
voltage (2.5 GT/s)  
(2.5 GT/s)  
Document Number: 002-14809 Rev. *J  
Page 151 of 165  
CYW4354  
Table 61. PCI Express Interface Parameters (Cont.)  
Parameter  
Symbol  
Comments  
Minimum  
Typical Maximum  
Unit  
mV  
Absolute delta of DC  
common-model voltage  
during L0 and electrical idle  
VTX-CM-DC-ACTIVE- Absolute delta of DC  
IDLE-DELTA  
0
0
100  
common-model voltage  
during L0 and electrical idle.  
Absolute delta of DC  
common-model voltage  
between D+ and D-  
VTX-CM-DC-LINE-  
DELTA  
DC offset between D+ and  
D-  
25  
mV  
Electrical idle differential  
peak output voltage  
VTX-IDLE-DIFF-AC-p  
ITX-SHORT  
Peak-to-peak voltage  
0
20  
mV  
mA  
TX short circuit  
current  
Current limit when TX  
output is shorted to ground.  
90  
DC differential TX termi-  
nation  
ZTX-DIFF-DC  
Low impedance defined  
during signaling (parameter  
is captured for 5.0 GHz by  
RLTX-DIFF)  
80  
120  
Differential  
return loss  
RLTX-DIFF  
Differential  
return loss  
10 (min.) for  
0.05:  
1.25 GHz  
dB  
Common-mode  
return loss  
RLTX-CM  
TTX-EYE  
Common-mode return loss  
6
dB  
UI  
TX eye width  
Minimum TX  
eye width  
0.75  
20.4 JTAG Timing  
Table 62. JTAG Timing Characteristics  
Output  
Maximum  
Output  
Minimum  
Signal Name Period  
Setup  
Hold  
125 ns  
TCK  
TDI  
20 ns  
20 ns  
0 ns  
0 ns  
TMS  
TDO  
100 ns  
0 ns  
JTAG_TRST  
250 ns  
Document Number: 002-14809 Rev. *J  
Page 152 of 165  
CYW4354  
21. Power-Up Sequence and Timing  
21.1 Sequencing of Reset and Regulator Control Signals  
The CYW4354 has two signals that allow the host to control power consumption by enabling or disabling the Bluetooth, WLAN, and  
internal regulator blocks. These signals are described below. Additionally, diagrams are provided to indicate proper sequencing of the  
signals for various operational states (see Figure 46, Figure 47 on page 154, and Figure 48 and Figure 49 on page 155). The timing  
values indicated are minimum required values; longer delays are also acceptable.  
21.1.1 Description of Control Signals  
WL_REG_ON: Used by the PMU to power up the WLAN section. It is also OR-gated with the BT_REG_ON input to control the  
internal CYW4354 regulators. When this pin is high, the regulators are enabled and the WLAN section is out of reset. When this pin  
is low the WLAN section is in reset. If both the BT_REG_ON and WL_REG_ON pins are low, the regulators are disabled.  
BT_REG_ON: Used by the PMU (OR-gated with WL_REG_ON) to power up the internal CYW4354 regulators. If both the  
BT_REG_ON and WL_REG_ON pins are low, the regulators are disabled. When this pin is low and WL_REG_ON is high, the BT  
section is in reset.  
Note:  
For both the WL_REG_ON and BT_REG_ON pins, there should be at least a 10 ms time delay between consecutive toggles (where  
both signals have been driven low). This is to allow time for the CBUCK regulator to discharge. If this delay is not followed, then  
there may be a VDDIO in-rush current on the order of 36 mA during the next PMU cold start.  
The reset requirements for the Bluetooth core are also applicable for the FM core. In other words, if FM is to be used, then the  
Bluetooth core must be enabled.  
The CYW4354 has an internal power-on reset (POR) circuit. The device will be held in reset for a maximum of 110 ms after VDDC  
and VDDIO have both passed the POR threshold. Wait at least 150 ms after VDDC and VDDIO are available before initiating SDIO  
accesses.  
VBAT should not rise 10%–90% faster than 40 microseconds. VBAT should be up before or at the same time as VDDIO. VDDIO  
should NOT be present first or be held high before VBAT is high.  
Document Number: 002-14809 Rev. *J  
Page 153 of 165  
CYW4354  
21.1.2 Control Signal Timing Diagrams  
Figure 46. WLAN = ON, Bluetooth = ON  
32.678 kHz  
Sleep Clock  
90% of VH  
VBAT*  
VDDIO  
~ 2 Sleep cycles  
WL_REG_ON  
BT_REG_ON  
*Notes:  
1. VBAT should not rise 10%–90% faster than 40 microseconds.  
2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high  
before VBAT is high.  
Figure 47. WLAN = OFF, Bluetooth = OFF  
32.678 kHz  
Sleep Clock  
VBAT*  
VDDIO  
WL_REG_ON  
BT_REG_ON  
*Notes:  
1. VBAT should not rise 10%–90% faster than 40 microseconds.  
2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.  
Document Number: 002-14809 Rev. *J  
Page 154 of 165  
CYW4354  
Figure 48. WLAN = ON, Bluetooth = OFF  
32.678 kHz  
Sleep Clock  
90% of VH  
VBAT*  
VDDIO  
~ 2 Sleep cycles  
WL_REG_ON  
BT_REG_ON  
*Notes:  
1. VBAT should not rise 10%–90% faster than 40 microseconds.  
2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.  
Figure 49. WLAN = OFF, Bluetooth = ON  
32.678 kHz  
Sleep Clock  
90% of VH  
VBAT*  
VDDIO  
~ 2 Sleep cycles  
WL_REG_ON  
BT_REG_ON  
*Notes:  
1. VBAT should not rise 10%–90% faster than 40 microseconds.  
2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.  
Document Number: 002-14809 Rev. *J  
Page 155 of 165  
CYW4354  
Figure 50 shows the WLAN boot-up sequence from power-up to firmware download.  
Figure 50. WLAN Boot-Up Sequence  
VBAT*  
VDDIO  
WL_REG_ON  
< 950 µs  
VDDC  
(from internal PMU)  
< 104 ms  
Internal POR  
After a fixed delay following Internal POR and WL_REG_ON going high,  
the device responds to host F0 (address 0x14) reads.  
< 4 ms  
Device requests for reference clock  
8 ms  
After 8 ms the reference clock is  
assumed to be up. Access to PLL  
registers is possible.  
Host Interaction:  
Host polls F0 (address 0x14) until it reads a  
predefined pattern.  
Host sets wakeupwlan bit and  
waits 8 ms, the maximum time for  
reference clock availability.  
After 8 ms, host programs PLL  
registers to set crystal frequency  
Chip active interrupt is asserted after the PLL locks  
Host downloads  
code.  
*Notes:  
1. VBAT should not rise 10%–90% faster than 40 microseconds.  
2. VBAT should be up before or at the same time as VDDIO. VDDIO should NOT be present first or be held high before VBAT is high.  
Document Number: 002-14809 Rev. *J  
Page 156 of 165  
CYW4354  
22. Package Information  
22.1 Package Thermal Characteristics  
The information in Table 63 and Table 64 is based on the following conditions:  
No heat sink, TA = 70°C. This is an estimate, based on a 4-layer PCB that conforms to EIA/JESD51–7  
(101.6 mm × 101.6 mm × 1.6 mm) and P = 1.53W continuous dissipation.  
Absolute junction temperature limits are maintained through active thermal monitoring and driver-based techniques that may include  
duty-cycle limiting or turning off one of the TX chains, or both.  
Table 63. WLCSP Package Thermal Characteristics  
Characteristic  
WLCSP  
θJA (°C/W) (value in still air)  
θJB (°C/W)  
26.86  
2.23  
1.09  
2.48  
11.61  
125  
θJC (°C/W)  
JT (°C/W)  
JB (°C/W)  
Maximum Junction Temperature Tj (°C)  
Maximum Power Dissipation (W)  
1.53  
Table 64. WLBGA Package Thermal Characteristics  
Characteristic  
WLBGA  
θJA (°C/W) (value in still air)  
θJB (°C/W)  
26.80  
1.66  
1.16  
1.85  
7.93  
125  
θJC (°C/W)  
JT (°C/W)  
JB (°C/W)  
Maximum Junction Temperature Tj (°C)  
Maximum Power Dissipation (W)  
1.53  
22.2 Junction Temperature Estimation and PSI Versus Theta  
JT  
JC  
The package thermal characterization parameter PSIJT (JT) yields a better estimation of actual junction temperature (TJ) than using  
the junction-to-case thermal resistance parameter ThetaJC (θJC). The reason for this is that θJC is based on the assumption that all  
the power is dissipated through the top surface of the package case. In actual applications, however, some of the power is dissipated  
through the bottom and sides of the package. JT takes into account the power dissipated through the top, bottom, and sides of the  
package. The equation for calculating the device junction temperature is:  
T = T + P x   
J
T
JT  
Where:  
TJ = Junction temperature at steady-state condition (°C)  
TT = Package case top center temperature at steady-state condition (°C)  
P = Device power dissipation (Watts)  
JT = Package thermal characteristics; no airflow (°C/W)  
22.3 Environmental Characteristics  
For environmental characteristics data, see Table 31 on page 103.  
Document Number: 002-14809 Rev. *J  
Page 157 of 165  
CYW4354  
23. Mechanical Information  
Figure 51. 192-Ball WLBGA Package Mechanical Information  
Document Number: 002-14809 Rev. *J  
Page 158 of 165  
CYW4354  
Figure 52. WLBGA Keep-Out Areas for PCB Layout (Top View, Balls Facing Down)  
Document Number: 002-14809 Rev. *J  
Page 159 of 165  
CYW4354  
Figure 53. 395-Bump WLCSP Package  
Document Number: 002-14809 Rev. *J  
Page 160 of 165  
CYW4354  
Figure 54. WLCSP Keep-Out Areas for PCB Layout (Top View, Balls Facing Down)  
Document Number: 002-14809 Rev. *J  
Page 161 of 165  
CYW4354  
24. Ordering Information  
Operating Ambient  
Temperature  
Part Number  
Package  
Description  
CYW4354XKUBG  
192-ball WLBGA  
(4.87 mm × 7.67 mm,  
0.4 mm pitch)  
Dual-band 2.4 GHz and 5 GHz WLAN + BT 4.0 +  
FMRX  
–30°C to +85°C  
(–22°F to 185°F)  
CYW4354XKWBG  
CYW4354ZKUBG  
395-bump WLCSP  
(4.87 mm × 7.67 mm,  
0.2 mm pitch)  
Dual-band 2.4 GHz and 5 GHz WLAN + BT 4.0 +  
FMRX  
–30°C to +85°C  
(–22°F to 185°F)  
192-ball WLBGA  
(4.87 mm × 7.67 mm,  
0.4 mm pitch)  
Dual-band 2.4 GHz and 5 GHz WLAN  
–30°C to +85°C  
(–22°F to 185°F)  
Document Number: 002-14809 Rev. *J  
Page 162 of 165  
CYW4354  
Document History  
Document Title: CYW4354 Single-Chip 5G Wi-Fi IEEE 802.11ac 2×2 MAC/Baseband/Radio with Integrated Bluetooth 4.1 and  
FM Receiver  
Document Number: 002-14809  
Orig. of Submission  
Revision  
ECN  
Description of Change  
Change  
Date  
4354-DS100-R  
Initial Release  
**  
07/31/13  
4354-DS101-R  
Updated:  
Section 2: “Power Supplies and Power Management,” on page 27.  
“WLAN Power Management” on page 29.  
“Crystal Interface and Clock Generation” on page 32.  
Table 4: “Crystal Oscillator and External Clock — Requirements and  
Performance,” on page 33: Frequency conditions.  
Figure 7: “Startup Signaling Sequence,” on page 43.  
“Receiver Path” on page 88.  
“Transmit Path” on page 88.  
Section 13: “Pinout and Signal Descriptions,” on page 89.  
Table 29: “GPIO Alternative Signal Functions,” on page 135.  
Table 34: “Recommended Operating Conditions and DC Characteristics,” on  
page 142: DC supply voltage for digital I/O (minimum value).  
Table 42: “WLAN 2.4 GHz Receiver Performance Specifications,” on page  
163: SISO/MIMO RX sensitivity.  
*A  
11/06/13  
Table 46: “WLAN 5 GHz Receiver Performance Specifications,” on page 180:  
SISO/MIMO RX sensitivity.  
Table 51: “LDO3P3 Specifications,” on page 192.  
Table 57: “Typical WLAN Power Consumption,” on page 199.  
Table 58: “Bluetooth BLE and FM Current Consumption,” on page 201.  
Section 22: “Package Information,” on page 219.  
Section 23: “Mechanical Information,” on page 221.  
Section 24: “Ordering Information,” on page 226.  
Added:  
Figure 4: “Typical Power Topology for the CYW435X,” on page 28.  
“External 32.768 kHz Low-Power Oscillator” on page 35.  
Table 30: “GPIO Status Vs. Test Modes,” on page 136.  
Table 52: “LDO3P3_B Specifications,” on page 193.  
4354-DS102-R  
Updated:  
The CYW4354 now supports PCI Express base specification v3.0 running at  
Gen1 speeds.  
“WLAN 2.4 GHz Receiver Performance Specifications” on page 158: Note  
update.  
“WLAN 2.4 GHz Transmitter Performance Specifications” on page 170: Note  
update.  
*B  
12/12/13  
“WLAN 5 GHz Receiver Performance Specifications” on page 174: Note  
update.  
“WLAN 5 GHz Transmitter Performance Specifications” on page 187: Note  
update.  
“Package Thermal Characteristics” on page 219: Note update.  
Section 24: “Ordering Information,” on page 227.  
4354-DS103-R  
Updated:  
*C  
12/20/13  
Table 33: “Environmental Ratings,” on page 141: Ambient temperature range  
for functional operation is now –30°C to +85°C.  
Document Number: 002-14809 Rev. *J  
Page 163 of 165  
CYW4354  
Document Title: CYW4354 Single-Chip 5G Wi-Fi IEEE 802.11ac 2×2 MAC/Baseband/Radio with Integrated Bluetooth 4.1 and  
FM Receiver  
Document Number: 002-14809  
4354-DS104-R  
Updated:  
Table 4: “External 32.768 kHz Sleep Clock Specifications,” on page 28  
Figure 33: “WLBGA Ball Map, 4.87 × 7.67 Array, 192-Balls, A7–V12 (Bottom  
View — Balls Facing Up),” on page 83  
*D  
03/24/14  
Table 20: “395-Bump WLCSP Coordinates,” on page 90 (Modified Bump 230,  
see note at end of the Table 20.)  
Table 32: “Bluetooth Receiver RF Specifications,” on page 129 (footnotes  
modified)  
Table 50: “Bluetooth BLE and FM Current Consumption,” on page 167  
4354-DS105-R  
Updated:  
Table 4: “External 32.768 kHz Sleep Clock Specifications,” on page 28  
Figure 34: “WLBGA Ball Map, 4.87 × 7.67 Array, 192-Ball, A7–V12 (Bottom  
View — Balls Facing Up),” on page 84  
Table 49: “Bluetooth BLE and FM Current Consumption,” on page 164  
“Receiver Path” on page 80  
Figure 32: “Radio Functional Block Diagram (core 0),” on page 81  
Table 38: “WLAN 2.4 GHz Receiver Performance Specifications,” on page 139  
Table 39: “WLAN 2.4 GHz Transmitter Performance Specifications,” on page  
145  
*E  
04/02/14  
Table 40: “WLAN 5 GHz Receiver Performance Specifications,” on page 147  
Table 41: “WLAN 5 GHz Transmitter Performance Specifications,” on page  
154  
General Spurious Emissions Specifications (deleted)  
4354-DS106-R  
*F  
*G  
*H  
05/20/14  
06/30/14  
08/08/14  
Updated:  
Section 24: “Ordering Information,” on page 189.  
4354-DS107-R  
Updated:  
“CYW4354 PMU Features” on page 22  
Figure 3: “Typical Power Topology for the CYW4354,” on page 23  
Table 18: “Pin List by Pin Number (192-Pin WLBGA Package),” on page 85  
Table 19: “Pin List by Pin Name (192-Pin WLBGA Package),” on page 88  
Table 20: “395-Bump WLCSP Coordinates,” on page 91  
Table 21: “WLCSP Signal Descriptions,” on page 102  
Table 60: “PCI Express Interface Parameters,” on page 175  
Added:  
“Electrostatic Discharge Specifications” on page 124  
4354-DS108-R  
Updated:  
Changed document type from “Preliminary Data Sheet” to “Data Sheet”.  
4354-DS109-R  
Updated:  
*I  
10/15/14  
09/28/16  
“I/O States” on page 99.  
<Cross-Ref>Figure 52: “WLBGA Keep-Out Areas for PCB Layout (Top View,  
Balls Facing Down),” on page 159.  
*J  
5451155  
UTSV  
Converted to Cypress Template  
Document Number: 002-14809 Rev. *J  
Page 164 of 165  
CYW4354  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
ARM® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Forums | WICED IoT Forums | Projects | Video | Blogs |  
Training | Components  
Internet of Things  
Lighting & Power Control  
Memory  
Technical Support  
cypress.com/powerpsoc  
cypress.com/memory  
cypress.com/psoc  
cypress.com/support  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/touch  
cypress.com/usb  
cypress.com/wireless  
165  
© Cypress Semiconductor Corporation, 2013-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document,  
including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to  
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users  
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation  
of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent  
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any  
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is  
the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products  
are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or  
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the  
device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose failure to perform can be reasonably  
expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,  
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other  
liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 002-14809 Rev. *J  
Revised September 28, 2016  
Page 165 of 165  

相关型号:

CYW4354XKUBG

Single-Chip 5G Wi-Fi IEEE 802.11ac 2×2 MAC/Baseband/Radio with Integrated Bluetooth 4.1 and FM Receiver
CYPRESS

CYW4354XKWBG

Single-Chip 5G Wi-Fi IEEE 802.11ac 2×2 MAC/Baseband/Radio with Integrated Bluetooth 4.1 and FM Receiver
CYPRESS

CYW4354ZKUBG

Single-Chip 5G Wi-Fi IEEE 802.11ac 2×2 MAC/Baseband/Radio with Integrated Bluetooth 4.1 and FM Receiver
CYPRESS

CYW4356

Single-Chip 5G WiFi IEEE 802.11ac 2×2 MAC/Baseband/Radio with Integrated Bluetooth 4.1, FM Receiver, and Wireless Charging
CYPRESS

CYW4356XKUBG

Single-Chip 5G WiFi IEEE 802.11ac 2×2 MAC/Baseband/Radio with Integrated Bluetooth 4.1, FM Receiver, and Wireless Charging
CYPRESS

CYW4356XKWBG

Single-Chip 5G WiFi IEEE 802.11ac 2×2 MAC/Baseband/Radio with Integrated Bluetooth 4.1, FM Receiver, and Wireless Charging
CYPRESS

CYW43570

Single-Chip 5G WiFi IEEE 802.11ac 2×2MAC/Baseband/Radio with IntegratedBluetooth 4.1 and EDR
CYPRESS

CYW43570KFFBG

Single-Chip 5G WiFi IEEE 802.11ac 2×2MAC/Baseband/Radio with IntegratedBluetooth 4.1 and EDR
CYPRESS

CYW4390

WICED™ Wi-Fi IEEE 802.11 b/g/n SoC with Embedded Application Processor
CYPRESS

CYW43903

WICED™ IEEE 802.11 a/b/g/n SoC with anEmbedded Applications Processor
CYPRESS

CYW43903KUBG

WICED™ IEEE 802.11 a/b/g/n SoC with anEmbedded Applications Processor
CYPRESS

CYW43907KWBG

Multifunction Peripheral, CMOS, PBGA316, WLCSP-316
CYPRESS