CYW43903KUBG [CYPRESS]

WICED™ IEEE 802.11 a/b/g/n SoC with anEmbedded Applications Processor;
CYW43903KUBG
型号: CYW43903KUBG
厂家: CYPRESS    CYPRESS
描述:

WICED™ IEEE 802.11 a/b/g/n SoC with anEmbedded Applications Processor

文件: 总65页 (文件大小:1225K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CYW43903  
PRELIMINARY  
WICED™ IEEE 802.11 a/b/g/n SoC with an  
Embedded Applications Processor  
The Cypress CYW43903 embedded wireless system-on-a-chip (SoC) is uniquely suited for Internet-of-Things applications. It sup-  
ports all rates specified in the IEEE 802.11 b/g/n specifications.The device includes an ARM Cortex-based applications processor, a  
single stream IEEE 802.11n MAC/baseband/radio, a power amplifier (PA), and a receive low-noise amplifier (LNA). It also supports  
optional antenna diversity for improved RF performance in difficult environments.  
The CYW43903 is an optimized SoC targeting embedded Internet-of-Things applications in the industrial and medical sensor, home  
appliance markets. Using advanced design techniques and process technology to reduce active and idle power, the device is  
designed for embedded applications that require minimal power consumption and a compact size.  
The device includes a PMU for simplifying system power topology and allows for direct operation from a battery while maximizing  
battery life.  
Cypress Part Numbering Scheme  
Cypress is converting the acquired IoT part numbers from Broadcom to the Cypress part numbering scheme. Due to this conversion,  
there is no change in form, fit, or function as a result of offering the device with Cypress part number marking. The Table 1 provides  
Cypress ordering part number that matches an existing IoT part number.  
Table 1. Mapping Table for Part Number between Broadcom and Cypress  
Broadcom Part Number  
Cypress Part Number  
BCM43903  
CYW43903  
BCM43903KUBG  
CYW43903KUBG  
Features  
On-chip power and low-noise amplifiers.  
Application Processor Features  
An internal fractional nPLL allows support for a wide range of  
ARM Cortex-R4 32-bit RISC processor.  
1 MB of on-chip SRAM for code and data.  
An on-chip cryptography core  
reference clock frequencies.  
Integrated ARM Cortex-R4 processor with tightly coupled  
memory for complete WLAN subsystem functionality, mini-  
mizing the need to wake up the applications processor for  
standard WLAN functions (to further minimize power con-  
sumption while maintaining the ability to upgrade to future  
features in the field).  
640 KB of ROM containing WICED SDK components such  
as RTOS and TCP/IP stack.  
17 GPIOs supported.  
Q-SPI serial flash interface to support up to 40 Mbps of peak  
Software architecture supported by standard WICED SDK  
allows easy migration from existing discrete MCU designs  
and to future devices.  
transfer.  
Support for UART (3), SPI or CSC master, interfaces.  
(Cypress Serial Control (CSC) is an I2C-compatible inter-  
face.)  
Security support:  
WPA and WPA2 (Personal) support for powerful encryp-  
tion and authentication.  
Key IEEE 801.11x Features  
AES and TKIP in hardware for faster data encryption and  
IEEE 802.11i compatibility.  
Single-band 2.4 GHz IEEE 802.11n compliant.  
Single-stream spatial multiplexing up to 72 Mbps.  
Supports 20 MHz channels with optional SGI.  
Reference WLAN subsystem provides Cisco Compatible  
Extensions (CCX, CCX 2.0, CCX 3.0, CCX 4.0, and CCX  
5.0).  
Full IEEE 802.11 b/g legacy compatibility with enhanced per-  
formance.  
Wi-Fi Protected Setup and Wi-Fi Easy-Setup  
TX and RX low-density parity check (LDPC) support for  
Worldwide regulatory support: Global products supported  
improved range and power efficiency.  
with worldwide design approval.  
Cypress Semiconductor Corporation  
Document Number: 002-14826 Rev. *G  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised January 11, 2018  
PRELIMINARY  
CYW43903  
General Features  
Supports battery voltage range from 3.0V to 4.8V with an  
6 Kb OTP memory for storing board parameters.  
151-ball WLBGA (4.91mm x 5.85mm, 0.4 mm pitch).  
internal switching regulator.  
Programmable dynamic power management.  
Figure 1. Functional Block Diagram  
CYW43903  
1 MB RAM,  
640 KB ROM  
TCM  
512 KB RAM  
320 KB ROM  
UART  
CSC  
PWM  
SPI  
SPI  
APPS ARM  
Cortex-R4  
PWM (6)  
32 KB (I),  
32 KB (D)  
ICACHE  
CSC  
SPI or CSC  
GPIO (17)  
WLAN  
ARM  
Cortex-R4  
AXI-to-AXI  
Bridge  
AXI to AXI  
Bridge  
GPIO  
JTAG  
Crytography  
Engine  
AXI  
DMA  
32 kHz  
External LPO  
WLAN  
APPS Domain  
IEEE 802.11 MAC  
1 x 1, IEEE 802.11n PHY  
2.4 GHz Radio  
RF Switch Controls  
37.4 MHz Crystal  
Always-On Domain  
REG_ON  
AXI-to-AXI  
Bridge  
2.4 GHz  
HIB_REG_ON_IN  
LNA  
PA  
AXI  
PS  
TX  
Switch  
VIO  
PMU  
PS RAM  
SR_Eng  
VBAT  
CSC = Cypress Serial Control. An I2C‐compatible interface.  
WRF_PAOUT_2G  
WRF_RFIN_2G  
Document Number: 002-14826 Rev. *G  
Page 2 of 65  
PRELIMINARY  
CYW43903  
Contents  
7.2.8 MAC-PHY Interface ................................24  
7.3 IEEE 802.11b/g/n PHY ...................................25  
1. Overview............................................................ 5  
1.1 Introduction ......................................................... 5  
1.1.1 Features .................................................. 6  
8. WLAN Radio Subsystem............................... 26  
8.1 Receiver Path .....................................................26  
8.2 Transmit Path .....................................................26  
8.3 Calibration ..........................................................26  
1.2 Standards Compliance ........................................ 7  
2. Power Supplies and Power Management....... 8  
2.1 Power Supply Topology ...................................... 8  
2.2 CYW43903 Power Management Unit Features .. 8  
2.3 Power Management .......................................... 11  
2.4 PMU Sequencing .............................................. 11  
2.5 Power-Off Shutdown ......................................... 12  
2.6 Power-Up/Power-Down/Reset Circuits ............. 12  
9. Pinout and Signal Descriptions..................... 27  
9.1 Ball Map .............................................................27  
9.2 Ball List ...............................................................28  
9.3 Signal Descriptions ............................................30  
10.GPIO Signals and Strapping Options ........... 34  
10.1 Overview ............................................................34  
10.2 Weak Pull-Down and Pull-Up Resistances ........34  
10.3 Strapping Options ..............................................34  
10.4 Alternate GPIO Signal Functions .......................35  
3. Frequency References ................................... 13  
3.1 Crystal Interface and Clock Generation ............ 13  
3.2 External Frequency Reference ......................... 14  
3.3 External 32.768 kHz Low-Power Oscillator ....... 15  
4. Applications Subsystem ................................ 16  
4.1 Overview ........................................................... 16  
4.2 Applications CPU and Memory Subsystem ...... 16  
4.3 Memory-to-Memory DMA Core ......................... 16  
4.4 Cryptography Core ............................................ 16  
11.Pin Multiplexing .............................................. 36  
12.I/O States ......................................................... 38  
13.Electrical Characteristics............................... 40  
13.1 Absolute Maximum Ratings ...............................40  
13.2 Environmental Ratings .......................................41  
13.3 Electrostatic Discharge Specifications ...............41  
5. Applications Subsystem External Interfaces 17  
5.1 GPIO ................................................................. 17  
5.2 Cypress Serial Control ...................................... 17  
5.3 JTAG and ARM Serial Wire Debug ................... 17  
5.4 PWM ................................................................. 18  
5.5 SPI Flash ........................................................... 18  
5.6 UART ................................................................ 18  
5.7 SPI .................................................................... 19  
13.4 Recommended Operating Conditions and DC  
Characteristics ...................................................41  
13.5 Power Supply Segments ....................................43  
13.6 GPIO, UART, and JTAG Interfaces DC  
Characteristics ...................................................43  
14.WLAN RF Specifications................................ 44  
14.1 Introduction ........................................................44  
14.2 2.4 GHz Band General RF Specifications ..........44  
6. Global Functions............................................. 20  
6.1 External Coexistence Interface ......................... 20  
6.2 One-Time Programmable Memory .................... 20  
6.3 Hibernation Block .............................................. 20  
6.4 System Boot Sequence ..................................... 21  
14.3 WLAN 2.4 GHz Receiver Performance  
Specifications .....................................................45  
14.4 WLAN 2.4 GHz Transmitter Performance  
Specifications .....................................................47  
14.5 General Spurious Emissions Specifications .......48  
14.5.1 Transmitter Spurious Emissions  
7. Wireless LAN Subsystem............................... 22  
7.1 WLAN CPU and Memory Subsystem ............... 22  
Specifications .........................................48  
14.5.2 Receiver Spurious Emissions  
7.2 IEEE 802.11n MAC ........................................... 22  
7.2.1 PSM ....................................................... 23  
7.2.2 WEP ...................................................... 23  
7.2.3 TXE ........................................................ 23  
7.2.4 RXE ....................................................... 24  
7.2.5 IFS ......................................................... 24  
7.2.6 TSF ........................................................ 24  
7.2.7 NAV ....................................................... 24  
Specifications .........................................48  
15.Internal Regulator Electrical Specifications. 49  
15.1 Core Buck Switching Regulator .........................49  
15.2 3.3V LDO (LDO3P3) ..........................................50  
15.3 CLDO .................................................................51  
15.4 LNLDO ...............................................................52  
Document Number: 002-14826 Rev. *G  
Page 3 of 65  
PRELIMINARY  
CYW43903  
15.5 BBPLL LDO ....................................................... 53  
19.Thermal Information....................................... 61  
19.1 Package Thermal Characteristics ......................61  
16.System Power Consumption ......................... 54  
19.2 Junction Temperature Estimation and PSIJT  
Versus THETAJC .............................................................61  
16.1 WLAN Current Consumption ............................. 54  
16.1.1 2.4 GHz Mode ....................................... 54  
19.3 Environmental Characteristics ...........................61  
20.Mechanical Information.................................. 62  
21.Ordering Information...................................... 63  
17.SPI Flash Characteristics............................... 55  
17.1 SPI Flash Timing ............................................... 55  
17.1.1 Read-Register Timing ............................ 55  
17.1.2 Write-Register Timing ............................ 56  
17.1.3 Memory Fast-Read Timing .................... 57  
17.1.4 Memory-Write Timing ............................ 58  
17.1.5 SPI Flash Parameters ........................... 59  
22.Additional Information ................................... 63  
22.1 Acronyms and Abbreviations .............................63  
22.2 IoT Resources ....................................................63  
22.3 Errata .................................................................63  
Document History Page................................................. 64  
Sales, Solutions, and Legal Information ...................... 65  
18.Power-Up Sequence and Timing................... 60  
18.1 Sequencing of Reset and Regulator Control  
Signals .............................................................. 60  
18.1.1 Description of Control Signals ............... 60  
18.1.2 Control Signal Timing Diagrams ............ 60  
Document Number: 002-14826 Rev. *G  
Page 4 of 65  
PRELIMINARY  
CYW43903  
1. Overview  
1.1 Introduction  
The Cypress CYW43903 is a single-chip device that provides the highest level of integration for an embedded system-on-a-chip with  
integrated IEEE 802.11 b/g/n MAC/baseband/radio and a separate ARM Cortex-R4 applications processor. It provides a small form-  
factor solution with minimal external components to drive down cost for mass volumes and allows for an embedded system with  
flexibility in size, form, and function. Comprehensive power management circuitry and software ensure that the system can meet the  
needs of highly embedded systems that require minimal power consumption and reliable operation.  
Figure 2 shows the interconnect of all the major physical blocks in the CYW43903 and their associated external interfaces, which are  
described in greater detail in Applications Subsystem External Interfaces.  
Figure 2. Block Diagram and I/O  
CYW43903  
RF TX  
APPS Subsystem  
WLAN Subsystem  
SPI Flash  
GPIO[16:0]  
RF RX  
2x 2-Wire UART  
4-Wire UART  
ARM Cortex‐R4  
160 MHz  
32 KB I‐cache  
32 KB D‐cache  
ARM Cortex‐R4  
160 MHz  
SPI/CSC  
CSC  
Switch Control  
448 KB ROM TCM  
576 KB SRAM TCM  
Antenna Diversity  
JTAG/SWD  
1 MB SRAM  
640 KB ROM  
802.11n  
1x1  
2.4 GHz  
VDDIOs  
GND  
WAKE  
Note: Another SPI interface can be defined by reconfiguring GPIO_8 through GPIO_11 and another CSC interface can be defined  
by reconfiguring GPIO_12 and GPIO_13 (see Table 11, “Pin Multiplexing,”).  
Document Number: 002-14826 Rev. *G  
Page 5 of 65  
PRELIMINARY  
CYW43903  
1.1.1 Features  
The CYW43903 supports the following features:  
ARM Cortex-R4 clocked at 160 MHz.  
1 MB of SRAM and 640 KB ROM available for the applications processor.  
One high-speed 4-wire UART interface with operation up to 4 Mbps.  
Two low-speed 2-wire UART interfaces multiplexed on general purpose I/O (GPIO) pins.  
One dedicated CSC1 interface.  
Note: Another CSC interface can be defined by reconfiguring GPIOs. See Table 11, “Pin Multiplexing,”.  
One SPI master interface with operation up to 24 MHz.  
Either or both of the SPI interfaces can be used as CSC master interfaces. This is in addition to the two dedicated CSC interfaces.  
Note: In addition to the dedicated CSC interface, the SPI interface can be used as a CSC master interface.  
Note: Another SPI interface can be defined by reconfiguring GPIOs. See Table 11, “Pin Multiplexing,”.  
One SPI master interface for serial flash.  
Six dedicated PWM outputs.  
17 GPIOs.  
IEEE 802.11 b/g/n 1×1 2.4 GHz radio.  
Single- and dual-antenna support.  
2
1.Cypress Serial Control (CSC) is an I C-compatible interface.  
Document Number: 002-14826 Rev. *G  
Page 6 of 65  
PRELIMINARY  
CYW43903  
1.2 Standards Compliance  
The CYW43903 supports the following standards:  
IEEE 802.11n  
IEEE 802.11b  
IEEE 802.11g  
IEEE 802.11d  
IEEE 802.11h  
IEEE 802.11i  
Security:  
WEP  
WPA Personal  
WPA2 Personal  
WMM  
WMM-PS (U-APSD)  
WMM-SA  
AES (hardware accelerator)  
TKIP (hardware accelerator)  
CKIP (software support)  
Proprietary Protocols:  
CCXv2  
CCXv3  
CCXv4  
CCXv5  
WFAEC  
The CYW43903 supports the following additional standards:  
IEEE 802.11r—Fast Roaming (between APs)  
IEEE 802.11w—Secure Management Frames  
IEEE 802.11 Extensions:  
IEEE 802.11e QoS enhancements (already supported as per the WMM specification)  
IEEE 802.11i MAC enhancements  
IEEE 802.11k radio resource measurement  
Document Number: 002-14826 Rev. *G  
Page 7 of 65  
PRELIMINARY  
CYW43903  
2. Power Supplies and Power Management  
2.1 Power Supply Topology  
One core buck regulator, multiple LDO regulators, and a power management unit (PMU) are integrated into the CYW43903. All  
regulators are programmable via the PMU. These blocks simplify power supply design for application and WLAN functions in  
embedded designs.  
A single VBAT (3.0V to 4.8V DC maximum) and VIO supply (1.8V to 3.3V) can be used, with all additional voltages being provided  
by the regulators in the CYW43903.  
The REG_ON control signal is used to power up the regulators and take the appropriate sections out of reset. The CBUCK, CLDO,  
LNLDO, and other regulators power up when any of the reset signals are deasserted. All regulators are powered down only when  
REG_ON is deasserted. The regulators may be turned off/on based on the dynamic demands of the digital baseband.  
The CYW43903 provides a low power-consumption mode whereby the CBUCK, CLDO, and LNLDO regulators are shut down. When  
in this state, the low-power linear regulator (LPLDO1) supplied by the system VIO supply provides the CYW43903 with all required  
voltages.  
2.2 CYW43903 Power Management Unit Features  
The CYW43903 supports the following Power Management Unit (PMU) features:  
VBAT to 1.35Vout (550 mA maximum) core buck (CBUCK) switching regulator  
VBAT to 3.3Vout (450 mA maximum) LDO3P3  
1.35V to 1.2Vout (350 mA maximum) CLDO with bypass mode for deep-sleep  
1.35V to 1.2Vout (55 mA maximum) LDO for BBPLL  
Additional internal LDOs (not externally accessible)  
PMU internal timer auto-calibration by the crystal clock for precise wake-up timing from the low power-consumption mode.  
Figure 3 and Figure 4 show the regulators and a typical power topology.  
Document Number: 002-14826 Rev. *G  
Page 8 of 65  
PRELIMINARY  
CYW43903  
Figure 3. Typical Power Topology (Page 1 of 2)  
WLRF TX Mixer and PA (not always)  
1.2V  
Cap-less  
LNLDO  
WLRF LOGEN  
CYW43903 1.2V  
Cap-less  
LNLDO  
1.2V  
1.2V  
WLRF LNA  
VBAT  
Operational:  
Performance:  
Cap-less  
VCOLDO  
2.3V to 4.8V  
3.0V to 4.8V  
WLRF AFE and TIA  
WLRF TX  
Absolute Maximum: 5.5V  
1.2V  
1.2V  
Cap-less  
LNLDO  
VDDIO  
Operational:  
Cap-less  
LNLDO  
WLRF ADC REF  
WLRF XTAL  
3.3V  
15 mA  
1.2V  
XTAL LDO  
Mini‐PMU  
(Inside WL Radio)  
WLRF RFPLL, PFD, and MMD  
VBAT  
1.35V  
1.3V, 1.2V,  
.095V (AVS)  
WLAN/CLB/Top, Always On  
WL PHY  
Core Buck  
Regulator  
(CBUCK)  
CLDO  
WL Subcore  
WL VDDM (SRAMS in AOS)  
APPS VDDM  
VDDIO  
1.35V  
APPS SOCSRAM  
APPS Subcore  
LPLDO1  
REG_ON  
1.2V  
BBPLL  
LNLDO  
WL BBPLL/DFLL  
Power  
switch  
Supply bump/pad  
Ground bump/pad  
External to chip  
Supply ball  
No power switch  
Ground ball  
No dedicated power switch, but internal power‐  
down modes and block‐specific power switches  
WLAN reset  
ball  
Document Number: 002-14826 Rev. *G  
Page 9 of 65  
PRELIMINARY  
CYW43903  
Figure 4. Typical Power Topology (Page 2 of 2)  
CYW43903 2.5V and 3.3V  
450 to  
800 mA  
WLRF PA  
3.3V  
VBAT  
LDO3P3  
WLRF Pad  
VDDIO_RF  
WL OTP 3.3V  
2.5V Cap-less  
LNLDO  
WL RF RX, TX, NMOS, Mini-PMU LDOs  
2.5V Cap-less 2.5V  
LNLDO  
WL RF VCO  
WL RF CP  
2.5V Cap-less 2.5V  
LNLDO  
VCOLDO2P5  
Inside WL Radio  
Power  
switch  
Supply bump/pad  
Ground bump/pad  
External to chip  
Supply ball  
Ground ball  
No power switch  
No dedicated power switch, but internal power‐  
down modes and block‐specific power switches  
Document Number: 002-14826 Rev. *G  
Page 10 of 65  
PRELIMINARY  
CYW43903  
2.3 Power Management  
The CYW43903 has been designed with the stringent power consumption requirements of mobile devices in mind. All areas of the  
chip design are optimized to minimize power consumption. Silicon processes and cell libraries were chosen to reduce leakage current  
and supply voltages. Additionally, the CYW43903 includes an advanced Power Management Unit (PMU) sequencer. The PMU  
sequencer provides significant power savings by putting the CYW43903 into various power management states appropriate to the  
environment and activities that are being performed. The power management unit enables and disables internal regulators, switches,  
and other blocks based on a computation of the required resources and a table that describes the relationship between resources  
and the time needed to enable and disable them. Power-up sequences are fully programmable. Configurable, free-running counters  
(running at a 32.768 kHz LPO clock) in the PMU sequencer are used to turn on and turn off individual regulators and power switches.  
Clock speeds are dynamically changed (or gated altogether) as a function of the mode. Slower clock speeds are used whenever  
possible.  
Table 2 provides descriptions for the CYW43903 power modes.  
Table 2. CYW43903 Power Modes  
Mode  
Active  
Description  
All WLAN blocks in the CYW43903 are powered up and fully functional with active carrier sensing and frame  
transmission and receiving.  
All required regulators are enabled and put in the most efficient mode based on the load current. Clock speeds  
are dynamically adjusted by the PMU sequencer.  
Doze  
The radio, analog domains, and most of the linear regulators are powered down.  
The rest of the CYW43903 remains powered up in an idle state. All main clocks (PLL, crystal oscillator, or  
TCXO) are shut down to minimize active power consumption. The 32.768 kHz LPO clock is available only for  
the PMU sequencer. This condition is necessary to allow the PMU sequencer to wake up the chip and transition  
to Active mode. In Doze mode, the primary power consumed is due to leakage current.  
Deep-sleep  
Power-down  
Most of the chip, including both analog and digital domains and most of the regulators, is powered off.  
Logic states in the digital core are saved and preserved in a retention memory in the Always-On domain before  
the digital core is powered off. Upon a wake-up event triggered by the PMU timers or an external interrupt, logic  
states in the digital core are restored to their pre-deep-sleep settings to avoid lengthy HW reinitialization.  
The CYW43903 is effectively powered off by shutting down all internal regulators.  
The chip is brought out of this mode by external logic re-enabling the internal regulators.  
2.4 PMU Sequencing  
The PMU sequencer minimizes system power consumption. It enables and disables various system resources based on a compu-  
tation of required resources and a table that describes the relationship between resources and the time required to enable and disable  
them.  
Resource requests can come from several sources: clock requests from cores, the minimum resources defined in the ResourceMin  
register, and the resources requested by any active resource-request timers. The PMU sequencer maps clock requests into a set of  
resources required to produce the requested clocks.  
Each resource is in one of the following four states:  
enabled  
disabled  
transition_on  
transition_off  
The timer contains 0 when the resource is enabled or disabled and a nonzero value when in a transition state. The timer is loaded  
with the time_on or time_off value of the resource after the PMU determines that the resource must be enabled or disabled and  
decrements on each 32.768 kHz PMU clock. When it reaches 0, the state changes from transition_off to disabled or transition_on to  
enabled. If the time_on value is 0, the resource can transition immediately from disabled to enabled. Similarly, a time_off value of 0  
indicates that the resource can transition immediately from enabled to disabled. The terms enable sequence and disable sequence  
refer to either the immediate transition or the timer load-decrement sequence.  
Document Number: 002-14826 Rev. *G  
Page 11 of 65  
PRELIMINARY  
CYW43903  
During each clock cycle, the PMU sequencer performs the following actions:  
Computes the required resource set based on requests and the resource dependency table.  
Decrements all timers whose values are nonzero. If a timer reaches 0, the PMU clears the ResourcePending bit of the resource  
and inverts the ResourceState bit.  
Compares the request with the current resource status and determines which resources must be enabled or disabled.  
Initiates a disable sequence for each resource that is enabled, is no longer being requested, and has no powered-up depen-  
dents.  
Initiates an enable sequence for each resource that is disabled, is being requested, and has all of its dependencies enabled.  
2.5 Power-Off Shutdown  
The CYW43903 provides a low-power shutdown feature that allows the device to be turned off while the host, and any other system  
devices remain operational. When the CYW43903 is not needed in the system, VDDIO_RF and VDDC are shut down while VDDIO  
remains powered. This allows the CYW43903 to be effectively off while keeping the I/O pins powered so that they do not draw extra  
current from devices connected to the I/O.  
During a low-power shutdown state, provided VDDIO remains applied to the CYW43903, all outputs are tristated and most inputs  
signals are disabled. Input voltages must remain within the limits defined for normal operation. This is done to prevent current paths  
or create loading on any digital signals in the system, and enables the CYW43903 to be fully integrated in an embedded device while  
taking full advantage of the lowest power-saving modes.  
When the CYW43903 is powered on from this state, it is the same as a normal power-up and does not retain any information about  
its state from before it was powered down.  
2.6 Power-Up/Power-Down/Reset Circuits  
The CYW43903 has two signals (see Table 3) that enable or disable circuits and the internal regulator blocks, allowing the host to  
control power consumption. For timing diagrams of these signals and the required power-up sequences, see Power-Up Sequence  
and Timing.  
Table 3. Power-Up/Power-Down/Reset Control Signals  
Signal  
REG_ON  
Description  
This signal is used by the PMU to power up the CYW43903. It controls the internal CYW43903 regulators.  
When this pin is high, the regulators are enabled and the device is out of reset. When this pin is low, the device  
is in reset and the regulators are disabled. This pin has an internal 200 kpull-down resistor that is enabled  
by default. It can be disabled through programming.  
HIB_REG_ON_IN  
This signal is used by the hibernation block to decide whether or not to power down the internal CYW43903  
regulators. If HIB_REG_ON_IN is low, the regulators will be disabled. For a signal at HIB_REG_ON_IN to  
function as intended, HIB_REG_ON_OUT must be connected to REG_ON.  
Document Number: 002-14826 Rev. *G  
Page 12 of 65  
PRELIMINARY  
CYW43903  
3. Frequency References  
An external crystal is used for generating all radio frequencies and normal-operation clocking. As an alternative, an external frequency  
reference can be used. In addition, a low-power oscillator (LPO) is provided for lower power mode timing.  
3.1 Crystal Interface and Clock Generation  
The CYW43903 can use an external crystal to provide a frequency reference. The recommended crystal oscillator configuration,  
including all external components, is shown in Figure 5. Consult the reference schematics for the latest configuration.  
Figure 5. Recommended Oscillator Configuration  
Device boundary  
C
WRF_XTAL_XON  
1.3 pF  
27 pF  
Programmable internal shunt caps are  
from 0 pF to 7.5 pF in steps of 0.5 pF.  
37.4 MHz  
C
WRF_XTAL_XOP  
x ohms  
0.4 pF  
27 pF  
External resistor and programmable  
internal resistor value is determined  
by crystal drive level.  
Programmable internal series resistor is from 50 ohms to 500 ohms  
in steps of 50 ohms. Boot‐up ROM value is 50 ohms.  
Note: A reference schematic is available for further details. Contact your Cypress FAE.  
A fractional-N synthesizer in the CYW43903 generates the radio frequencies, clocks, and data/packet timing, enabling it to operate  
using a wide selection of frequency references.  
The recommended default frequency reference is a 37.4 MHz crystal. The signal characteristics for the crystal interface are listed in  
Table 4.  
Note: Although the fractional-N synthesizer can support alternative reference frequencies, frequencies other than the default require  
support to be added in the driver, plus additional extensive system testing. Contact Cypress for further details.  
Document Number: 002-14826 Rev. *G  
Page 13 of 65  
PRELIMINARY  
CYW43903  
3.2 External Frequency Reference  
As an alternative to a crystal, an external precision frequency reference can be used, provided that it meets the phase noise require-  
ments listed in Table 4.  
If used, the external clock should be connected to the WRF_XTAL_XON pin through an external 1000 pF coupling capacitor, as shown  
in Figure 6. The internal clock buffer connected to this pin will be turned off when the CYW43903 goes into sleep mode. When the  
clock buffer turns on and off, there will be a small impedance variation. Power must be supplied to the WRF_XTAL_VDD1P35 pin.  
Figure 6. Recommended Circuit to Use With an External Reference Clock  
1000 pF  
Reference  
WRF_XTAL_XON  
Clock  
NC  
WRF_XTAL_XOP  
Table 4. Crystal Oscillator and External Clock—Requirements and Performance  
Crystal1  
External Frequency  
Reference2  
Parameter  
Frequency  
Conditions/Notes  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
Units  
2.4 GHz and 5 GHz bands:  
IEEE 802.11a/b/g/n operation  
37.4  
–37.4  
MHz  
Frequency tolerance over the Without trimming  
lifetime of the equipment,  
–20  
20  
–20  
20  
ppm  
including temperature3  
Crystal load capacitance  
ESR  
16  
60  
pF  
Drive level  
External crystal must be able to  
tolerate this drive level.  
200  
µW  
Input impedance  
Resistive  
7.5  
30k  
100k  
pF  
V
(WRF_XTAL_XON)  
Capacitive  
7.5  
0.2  
WRF_XTAL_XON  
Input low level  
DC-coupled digital signal  
0
WRF_XTAL_XON  
Input high level  
DC-coupled digital signal  
1.0  
1.26  
V
WRF_XTAL_XON  
input voltage  
(see Figure 6)  
IEEE 802.11b/g operation only  
400  
1200  
mVp-p  
WRF_XTAL_XON  
input voltage  
(see Figure 6)  
IEEE 802.11n AC-coupled analog  
input  
1
Vp-p  
Duty cycle  
37.4 MHz clock  
40  
50  
60  
%
Phase noise4  
(IEEE 802.11b/g)  
37.4 MHz clock at 10 kHz offset  
37.4 MHz clock at 100 kHz offset  
37.4 MHz clock at 10 kHz offset  
37.4 MHz clock at 100 kHz offset  
–129 dBc/Hz  
–136 dBc/Hz  
–134 dBc/Hz  
–141 dBc/Hz  
Phase noise4  
(IEEE 802.11n, 2.4 GHz)  
1. (Crystal) Use WRF_XTAL_XON and WRF_XTAL_XOP.  
2. See External Frequency Reference for alternative connection methods.  
3. It is the responsibility of the equipment designer to select oscillator components that comply with these specifications.  
4. Assumes that external clock has a flat phase noise response above 100 kHz.  
Document Number: 002-14826 Rev. *G  
Page 14 of 65  
PRELIMINARY  
CYW43903  
3.3 External 32.768 kHz Low-Power Oscillator  
The CYW43903 uses a secondary low frequency clock for low-power-mode timing. Either the internal low-precision LPO or an external  
32.768 kHz precision oscillator is required. The internal LPO frequency range is approximately 33 kHz ± 30% over process, voltage,  
and temperature, which is adequate for some applications. However, one tradeoff caused by this wide LPO tolerance is a small current  
consumption increase during power save mode that is incurred by the need to wake-up earlier to avoid missing beacons.  
Whenever possible, the preferred approach is to use a precision external 32.768 kHz clock that meets the requirements listed in  
Table 5.  
Table 5. External 32.768 kHz Sleep Clock Specifications  
Parameter  
Nominal input frequency  
LPO Clock  
Units  
32.768  
±200  
kHz  
ppm  
%
Frequency accuracy  
Duty cycle  
30–70  
200–3300  
Input signal amplitude  
Signal type  
mV, p-p  
Square-wave or sine-wave  
Input impedance1  
>100k  
<5  
pF  
Clock jitter (during initial start-up)  
<10,000  
ppm  
1. When power is applied or switched off.  
Document Number: 002-14826 Rev. *G  
Page 15 of 65  
PRELIMINARY  
CYW43903  
4. Applications Subsystem  
4.1 Overview  
The Applications subsystem contains the general use CPU, memory, the standalone DMA core, the cryptography core, and the  
majority of the external interfaces.  
4.2 Applications CPU and Memory Subsystem  
This subsystem has an integrated 32-bit ARM Cortex-R4 processor with an internal 32 KB D-cache and an internal 32 KB I-cache.  
The ARM Cortex-R4 is a low-power processor that features a low gate count, low interrupt latency, and low-cost debugging capabil-  
ities. It is intended for deeply embedded applications that require fast interrupt response features. The ARM Cortex-R4 implements  
the ARM v7-R architecture and supports the Thumb-2 instruction set.  
At 0.19 µW/MHz, the Cortex-R4 is the most power efficient general-purpose microprocessor available, outperforming 8- and 16-bit  
devices on a MIPS/µW basis. It also supports integrated sleep modes.  
Using multiple technologies to reduce cost, the ARM Cortex-R4 enables improved memory utilization, reduced pin overhead, and  
reduced silicon area. It also has extensive debugging features, including real-time tracing of program execution.  
On-chip memory for the CPU includes 1 MB SRAM, 640 KB ROM, and an 8 KB RAM powered independently of the application  
subsystem.  
4.3 Memory-to-Memory DMA Core  
The CYW43903 memory-to-memory DMA (M2MDMA) engine contains eight DMA channel pairs, each containing one transmit/pull  
engine and one receive/push engine.  
The DMA engine provides general purpose data movement between memories that can be on the device, attached directly to the  
device, or accessed through a host interface. The transmit/pull engine reads data from the source memory and immediately passes  
it to the paired receive/push engine, which proceeds to write it to the destination memory. Multiple masters can program the individual  
channels, and multiple interrupts are provided so that interrupts for different channels can be routed separately to different masters.  
4.4 Cryptography Core  
This core provides general purpose data movement between memories, which may be either on the device, attached directly to the  
device, or accessed through a host interface. The transmit/pull engine reads data from the source memory and passes it immediately  
to the paired receive/push engine that proceeds to write it to the destination memory. Multiple masters may program the individual  
channels, and multiple interrupts are provided so that interrupts for different channels can be routed separately to different masters.  
The cryptography block provides a hardware accelerator for enciphering and deciphering data that has undergone processing using  
standards-based encryption algorithms. The cryptography block includes the following primary features:  
Encryption and hash engines that support single pass AUTH-ENC or ENC-AUTH processing.  
A scalable AES module that supports CBC, ECB, CTR, CFB, OFB, and XTS encryption with 128-, 192-, and 256-bit key sizes.  
A scalable DES module that supports DES and 3DES in ECB and CBC modes.  
An RC4 stream cipher module that supports state initialization, state update, and key-stream generation.  
MD5, SHA1, SHA224, and SHA256 engines that support pure hash or HMAC operations.  
A built-in 512-byte key cache for locally protected key storage.  
OTP memory is used to store authentication keys.  
Document Number: 002-14826 Rev. *G  
Page 16 of 65  
PRELIMINARY  
CYW43903  
5. Applications Subsystem External Interfaces  
5.1 GPIO  
There are 17 general-purpose I/O (GPIO) pins available on the CYW43903. The GPIOs can be used to connect to various external  
devices.  
Upon power-up and reset, these pins are tristated. Subsequently, they can be programmed to be either input or output pins via the  
GPIO control register. In addition, the GPIO pins can be assigned to various other functions.  
Apart from other functions, GPIOs are used to set bootstrap options and use the JTAG interface for debugging during software  
development.  
5.2 Cypress Serial Control  
The CYW43903 has two Cypress Serial Control (CSC2) master interfaces for external communication with codecs, DACs, NVRAM,  
etc. The I/O pads can be configured as pull-ups or pull-ups can be installed on the reference design to support a multimaster on an  
open drain bus.  
5.3 JTAG and ARM Serial Wire Debug  
The CYW43903 supports the IEEE 1149.1 JTAG boundary scan standard for performing device package and PCB assembly testing  
during manufacturing. In addition, the JTAG interface allows Cypress to assist customers by using proprietary debug and character-  
ization test tools during board bring-up. Therefore, it is highly recommended to provide access to the JTAG pins by means of test  
points or a header on all PCB designs.  
The CYW43903 also supports ARM Serial Wire Debug (SWD) for connecting a JTAG debugger directly to both ARM Cortex-R4s. For  
SWD, the combination of a clock and a bidirectional signal (on a single pin) provides normal JTAG debug and test functionality. The  
reduced pin-count SWD interface is a high-performance alternative to the JTAG interface.  
Table 6 shows the JTAG_SEL and TAP_SEL states for test and debug function selection. Test and debug function selection is  
independent of the debugging interface (JTAG or SWD) being used.  
Table 6. JTAG_SEL and TAP_SEL States for Test and Debug Function Selection  
JTAG_SEL State  
TAP_SEL State  
Test and Debug Function  
0
0
1
0
1
JTAG not used.  
JTAG not used.  
0
1
1
Access the LV tap directly for ATE and bring-up.  
Access either of the ARM Cortex-R4’s directly via either the 5-pin JTAG port or the 2-pin  
SWD configuration.  
Note: JTAG_SEL is exposed on a dedicated physical pin. TAP_SEL uses the GPIO_8 physical pin.  
2
2. Cypress Serial Control is an I C compatible interface.  
Document Number: 002-14826 Rev. *G  
Page 17 of 65  
PRELIMINARY  
CYW43903  
5.4 PWM  
The CYW43903 provides up to six independent pulse width modulation (PWM) channels. The following features apply to the PWM  
channels:  
Each channel is a square wave generator with a programmable duty cycle.  
Each channel generates its duty cycle by dividing down the input clock.  
Both the high and low duration of the duty cycle can be divided down independently by a 16-bit divider register.  
Each channel can work independently or update simultaneously.  
Pairs of PWM outputs can be inverted for devices that need a differential output.  
Continuous or single pulses can be generated.  
The input clock can either be a high-speed clock from a PLL channel or a lower speed clock at the crystal frequency.  
5.5 SPI Flash  
The SPI flash interface supports the following features:  
A SPI-compatible serial bus.  
An 80 MHz (maximum) clock frequency.  
Increased Throughput to 40 MBps in Quad-mode or upto 10 MBps in single Mode3.  
Support for either ×1 or ×4 addresses with ×4 data.  
3-bytes and 4-byte addressing modes.  
A configurable dummy-cycle count that is programmable from 1 to 15.  
Programmable instructions output to serial flash.  
An option to change the sampling edge from rising-edge to falling-edge for read-back data when in high-speed mode.  
5.6 UART  
A high-speed 4-wire CTS/RTS UART interface can be enabled by software and has dedicated pins. Provided primarily for debugging  
during development, this UART enables the CYW43903 to operate as RS-232 data termination equipment (DTE) for exchanging and  
managing data with other serial devices. It is compatible with the industry standard 16550 UART and provides a FIFO size of 64 × 8  
in each direction.  
There are two low-speed UART interfaces on the CYW43903. Each functions as a standard 2-wire UART. They are also enabled as  
alternate functions on GPIOs and can be enabled independently of the 4-wire fast UART.  
Note: The high-speed, 4-wire UART interface is identified as UART0 in this document and in reference schematics. The two low-  
speed, 2-wire UART interfaces are identified as UART1 and UART2 in this document and in the reference schematics.  
3. Note that the clock needs to be constrained to ~26.67MHz for reliable operation at high operating temperatures. The throughput of the SPI Flash block is  
therefore restricted to ~13 MBps for Quad mode and ~3 MBps for single mode.  
Document Number: 002-14826 Rev. *G  
Page 18 of 65  
PRELIMINARY  
CYW43903  
5.7 SPI  
CYW43903 contains one SPI block. This block support a fixed SPI mode (CPOL = 0, CPHA = 0) and 8-bit data read/write.  
CPOL = 0: Clock idles at 0, and each cycle consists of a pulse of 1. The leading edge is a rising edge, and the trailing edge is a  
falling edge.  
CPHA = 0: The "out" side changes the data on the trailing edge of the preceding clock cycle, while the "in" side captures the  
data on (or shortly after) the leading edge of the clock cycle.  
The SPI hardware block supports a hold time of 25ns and a maximum clock frequency of 40MHz. If a SPI slave does not support the  
above mode or requires a hold time greater than 25ns, a bit banging software SPI driver should be used. Cypress's WICED SDK  
provides and example of such a driver.  
Note that the maximum SPI frequency support by a software SPI driver is much lower than 40 MHz.  
SPI0 mentioned in Table 8 is multiplexed with GPIOs and can therefore support a bit banging based software SPI driver.  
Document Number: 002-14826 Rev. *G  
Page 19 of 65  
PRELIMINARY  
CYW43903  
6. Global Functions  
6.1 External Coexistence Interface  
An external handshake interface is available to enable signaling between the device and an external colocated wireless device, such  
as Bluetooth, to manage wireless medium sharing for optimum performance.  
Figure 7 shows the coexistence interface.  
Figure 7. Cypress 2-Wire External Coexistence Interface  
CYW43903  
BT\IC  
SECI_OUT  
SECI_IN  
UART_IN  
GCI  
WLAN  
UART_OUT  
NOTES:  
SECI_OUT/BT_TXD and SECI_IN/BT_RXD are multiplexed on the GPIOs.  
The 2‐wire coexistence interface is intended for future compatibility with the BT SIG 2‐wire interface that is being standardized for Core 4.1.  
Note: SECI UART is the same as UART2, one of the low-speed UART interfaces mentioned in section 5.7 and in the reference  
schematics.  
6.2 One-Time Programmable Memory  
Various hardware configuration parameters can be stored in an internal 6144-bit (768 bytes) One-Time Programmable (OTP) memory  
that is read by system software after a device reset. In addition, customer-specific parameters, including the system vendor ID and  
MAC address can be stored, depending on the specific board design.  
The initial state of all bits in an unprogrammed OTP memory device is 0. After any bit is programmed to a 1, it cannot be reprogrammed  
to 0. The entire OTP memory array can be programmed in a single write-cycle using a utility provided with the Cypress WLAN  
manufacturing test tools. Alternatively, multiple write cycles can be used to selectively program specific bytes, but only bits that are  
still in the 0 state can be altered during each programming cycle.  
Prior to OTP memory programming, all values should be verified using the appropriate editable nvram.txt file. The nvram.txt file is  
provided with the reference board design package.  
6.3 Hibernation Block  
The Hibernation (HIB) block is a self-contained power domain that can be used to completely shut down the rest of the CYW43903.  
This optional block uses the HIB_REG_ON_OUT pin to drive the REG_ON pin. Therefore, for the HIB block to work as designed, the  
HIB_REG_ON_OUT pin must be connected to the REG_ON pin. To use the HIB block, software programs the HIB block with a wake  
count and then asserts a signal indicating that the chip should be put into hibernation. After assertion, the HIB block drives  
HIB_REG_ON_OUT low for the number of 32 kHz clock cycles programmed as the wake count. After the wake-count timer expires,  
HIB_REG_ON_OUT is driven high. Other than the logic state of the HIB block, no state is saved in the CYW43903 during hibernation.  
Document Number: 002-14826 Rev. *G  
Page 20 of 65  
PRELIMINARY  
CYW43903  
6.4 System Boot Sequence  
The following general sequence occurs after a CYW43903 is powered on:  
1. Either REG_ON or HIB_REG_ON_IN is asserted.  
Note: For HIB_REG_ON_IN to function as intended, HIB_REG_ON_OUT must be connected to REG_ON.  
2. The core LDO (CLDO) and LDO3P3 outputs stabilize.  
3. The OTP memory bits are used to initialize various functions, such as PMU trimming, package selection, memory size selection,  
etc.  
4. The APP and WLAN cores are powered up.  
5. The XTAL is powered up.  
6. The APP and WLAN CPU bootup sequences start.  
Document Number: 002-14826 Rev. *G  
Page 21 of 65  
PRELIMINARY  
CYW43903  
7. Wireless LAN Subsystem  
7.1 WLAN CPU and Memory Subsystem  
The CYW43903 WLAN section includes an integrated 32-bitARM Cortex-R4 processor with internal RAM and ROM. TheARM Cortex-  
R4 is a low-power processor that features a low gate count, a small interrupt latency, and low-cost debug capabilities. It is intended  
for deeply embedded applications that require fast interrupt response features. Delivering more than a 30% performance gain over  
ARM7TDMI, the ARM Cortex-R4 implements the ARM v7-R architecture with support for the Thumb-2 instruction set.  
At 0.19 µW/MHz, the Cortex-R4 is the most power efficient general-purpose microprocessor available, outperforming 8- and 16-bit  
devices on MIPS/µW. It also supports integrated sleep modes.  
On-chip memory for this CPU includes 576 KB of SRAM and 448 KB of ROM.  
7.2 IEEE 802.11n MAC  
The CYW43903 WLAN media access controller (MAC) is designed to support high-throughput operation with low power consumption.  
It does so without compromising the Bluetooth coexistence policies, thereby enabling optimal performance over both networks. In  
addition, several power-saving modes have been implemented that allow the MAC to consume very little power while maintaining  
network-wide timing synchronization. The architecture diagram of the MAC is shown in Figure 8.  
The following sections provide an overview of the important MAC modules.  
Figure 8. WLAN MAC Architecture  
Embedded CPU Interface  
Host Registers, DMA Engines  
TX‐FIFO  
32 KB  
RX‐FIFO  
10 KB  
PSM  
PMQ  
PSM  
UCODE  
Memory  
IFS  
Backoff, BTCX  
WEP  
TKIP, AES, WAPI  
TSF  
SHM  
BUS  
IHR  
NAV  
BUS  
Shared Memory  
6 KB  
RXE  
RX A‐MPDU  
TXE  
TX A‐MPDU  
EXT‐ IHR  
MAC‐PHY Interface  
The CYW43903 WLAN MAC supports features specified in the IEEE 802.11 base standard and amended by IEEE 802.11n. The key  
MAC features include:  
Transmission and reception of aggregated MPDUs (A-MPDU) for high throughput (HT).  
Support for power management schemes, including WMM power-save, power-save multi-poll (PSMP), and multiphase PSMP  
operation.  
Support for immediate ACK and Block-ACK policies.  
Interframe space timing support, including RIFS.  
Document Number: 002-14826 Rev. *G  
Page 22 of 65  
PRELIMINARY  
CYW43903  
Support for RTS/CTS and CTS-to-self frame sequences for protecting frame exchanges.  
Back-off counters in hardware for supporting multiple priorities as specified in the WMM specification.  
Timing synchronization function (TSF), network allocation vector (NAV) maintenance, and target beacon transmission time  
(TBTT) generation in hardware.  
Hardware offload for AES-CCMP, legacy WPA TKIP, legacy WEP ciphers, WAPI, and support for key management.  
Support for coexistence with Bluetooth and other external radios.  
Programmable independent basic service set (IBSS) or infrastructure basic service set functionality.  
Statistics counters for MIB support.  
7.2.1 PSM  
The programmable state machine (PSM) is a microcoded engine that provides most of the low-level control to the hardware in order  
to implement the IEEE 802.11 specification. It is a microcontroller that is highly optimized for flow-control operations, which are  
predominant in implementations of communication protocols. The instruction set and fundamental operations are simple and general,  
allowing algorithms to be optimized very late in the design process. It also allows for changes to the algorithms to track evolving IEEE  
802.11 specifications.  
The PSM fetches instructions from microcode memory. It uses the shared memory to obtain operands for instructions, as a data store,  
and to exchange data between both the host and the MAC data pipeline (via the SHM bus). The PSM also uses a scratch-pad memory  
(similar to a register bank) to store frequently accessed and temporary variables.  
The PSM exercises fine-grained control over the hardware engines by programming internal hardware registers (IHR). These IHRs  
are colocated with the hardware functions they control and are accessed by the PSM via the IHR bus.  
The PSM fetches instructions from the microcode memory using an address determined by the program counter, instruction literal,  
or a program stack. For ALU operations, the operands are obtained from shared memory, scratch-pad memory, IHRs, or instruction  
literals, and the results are written into the shared memory, scratch-pad memory, or IHRs.  
There are two basic branch instructions: conditional branches and ALU-based branches. To better support the many decision points  
in the IEEE 802.11 algorithms, branches can depend on either readily available signals from the hardware modules (branch condition  
signals are available to the PSM without polling the IHRs) or on the results of ALU operations.  
7.2.2 WEP  
The wired equivalent privacy (WEP) engine encapsulates all the hardware accelerators to perform encryption and decryption as well  
as MIC computation and verification. The accelerators implement the following cipher algorithms: legacy WEP, WPA TKIP, WPA2  
AES-CCMP.  
The PSM determines, based on the frame type and association information, the appropriate cipher algorithm to use. It supplies the  
keys to the hardware engines from an on-chip key table. The WEP interfaces with the transmit engine (TXE) to encrypt and compute  
the MIC on transmit frames and the receive engine (RXE) to decrypt and verify the MIC on receive frames.  
7.2.3 TXE  
The transmit engine (TXE) constitutes the transmit data path of the MAC. It coordinates the DMA engines to store the transmit frames  
in the TXFIFO. It interfaces with the WEP module to encrypt frames and transfers the frames across the MAC-PHY interface at the  
appropriate time determined by the channel-access mechanisms.  
The data received from the DMAengines are stored in transmit FIFOs. The MAC has multiple logical queues to support traffic streams  
that have different QoS priority requirements. The PSM uses the channel access information from the IFS module to schedule a queue  
from which the next frame is transmitted. Once the frame is scheduled, the TXE hardware transmits the frame based on a precise  
timing trigger received from the IFS module.  
The TXE module also contains the hardware that allows the rapid assembly of MPDUs into an A-MPDU for transmission. The hardware  
module aggregates the encrypted MPDUs by adding appropriate headers and pad delimiters as needed.  
Document Number: 002-14826 Rev. *G  
Page 23 of 65  
PRELIMINARY  
CYW43903  
7.2.4 RXE  
The receive engine (RXE) constitutes the receive data path of the MAC. It interfaces with the DMAengine to drain the received frames  
from the RXFIFO. It transfers bytes across the MAC-PHY interface and interfaces with the WEP module to decrypt frames. The  
decrypted data is stored in the RXFIFO.  
The RXE module contains filters that are programmed by the PSM to accept or filter frames based on several criteria such as receiver  
address, BSSID, and certain frame types.  
The RXE module also contains the hardware required to detect A-MPDUs, parse the headers of the containers, and disaggregate  
them into component MPDUS.  
7.2.5 IFS  
The IFS module contains the timers required to determine interframe-space timing including RIFS timing. It also contains multiple  
backoff engines required to support prioritized access to the medium as specified by WMM.  
The interframe-spacing timers are triggered by the cessation of channel activity on the medium, as indicated by the PHY. These timers  
provide precise timing to the TXE to begin frame transmission. The TXE uses this information to send response frames or perform  
transmit frame-bursting (RIFS or SIFS separated, as within a TXOP).  
The backoff engines (for each access category) monitor channel activity, in each slot duration, to determine whether to continue or  
pause the backoff counters. When the backoff counters reach 0, the TXE gets notified so that it may commence frame transmission.  
In the event of multiple backoff counters decrementing to 0 at the same time, the hardware resolves the conflict based on policies  
provided by the PSM.  
The IFS module also incorporates hardware that allows the MAC to enter a low-power state when operating under the IEEE power  
save mode. In this mode, the MAC is in a suspended state with its clock turned off. A sleep timer, whose count value is initialized by  
the PSM, runs on a slow clock and determines the duration over which the MAC remains in this suspended state. When the timer  
expires, the MAC is restored to its functional state. The PSM updates the TSF timer based on the sleep duration, ensuring that the  
TSF is synchronized to the network.  
The IFS module also contains the PTA hardware that assists the PSM in Bluetooth coexistence functions.  
7.2.6 TSF  
The timing synchronization function (TSF) module maintains the TSF timer of the MAC. It also maintains the target beacon trans-  
mission time (TBTT). The TSF timer hardware, under the control of the PSM, is capable of adopting timestamps received from beacon  
and probe response frames in order to maintain synchronization with the network.  
The TSF module also generates trigger signals for events that are specified as offsets from the TSF timer, such as uplink and downlink  
transmission times used in PSMP.  
7.2.7 NAV  
The network allocation vector (NAV) timer module is responsible for maintaining the NAV information conveyed through the duration  
field of MAC frames. This ensures that the MAC complies with the protection mechanisms specified in the standard.  
The hardware, under the control of the PSM, maintains the NAV timer and updates the timer appropriately based on received frames.  
This timing information is provided to the IFS module, which uses it as a virtual carrier-sense indication.  
7.2.8 MAC-PHY Interface  
The MAC-PHY interface consists of a data path interface to exchange RX/TX data from/to the PHY. In addition, there is an  
programming interface that can be controlled either by the host or the PSM to configure and control the PHY.  
Document Number: 002-14826 Rev. *G  
Page 24 of 65  
PRELIMINARY  
CYW43903  
7.3 IEEE 802.11 b/g/n PHY  
The CYW43903 WLAN digital PHY complies with IEEE 802.11b/g/n single-stream specifications to provide wireless LAN connectivity  
supporting data rates from 1 Mbps to 72 Mbps for low-power, high-performance, handheld applications.  
The PHY has been designed to work in the presence of interference, radio nonlinearity, and various other impairments. It incorporates  
optimized implementations of filters, FFTs, and Viterbi-decoder algorithms. Efficient algorithms have been designed to achieve  
maximum throughput and reliability, including algorithms for carrier sensing and rejection, frequency/phase/timing acquisition and  
tracking, and channel estimation and tracking. The PHY receiver also contains a robust IEEE 802.11b demodulator. The PHY carrier-  
sensing algorithm provides high throughput for IEEE 802.11b/g hybrid networks with Bluetooth coexistence.  
The key PHY features include:  
Programmable data rates from MCS0–7 in 20 MHz channels.  
Support for Optional Short GI and Green Field modes in TX and RX.  
TX and RX LDPC for improved range and power efficiency.  
All scrambling, encoding, forward error correction, and modulation in the transmit direction and inverse operations in the receive  
direction.  
Support for IEEE 802.11h/k for worldwide operation.  
Advanced algorithms for low power consumption and enhanced sensitivity, range, and reliability.  
Algorithms to improve performance in the presence of externally received Bluetooth signals.  
An automatic gain control scheme for blocking and nonblocking cellular applications.  
Closed loop transmit power control.  
Digital RF chip calibration algorithms to handle CMOS RF chip process, voltage, and temperature (PVT) variations.  
On-the-fly channel frequency and transmit power selection.  
Per-packet RX antenna diversity.  
Available per-packet channel quality and signal-strength measurements.  
Compliance with FCC and other worldwide regulatory requirements.  
Figure 9. WLAN PHY Block Diagram  
CCK/DSSS  
Demodulate  
Filters  
and  
Radio  
Comp  
Frequency  
and Timing  
Synch  
Descramble  
OFDM  
Demodulate  
and Deframe  
Viterbi Decoder  
Carrier Sense,  
AGC, and Rx  
FSM  
Radio  
Control  
Block  
Buffers  
FFT/IFFT  
MAC  
Interface  
AFE  
and  
Radio  
Tx FSM  
Modulation  
and Coding  
Common  
Logic  
Block  
Frame and  
Scramble  
Filters  
and  
Radio  
Comp  
Modulate/  
Spread  
PA Comp  
COEX  
Document Number: 002-14826 Rev. *G  
Page 25 of 65  
PRELIMINARY  
CYW43903  
8. WLAN Radio Subsystem  
The CYW43903 includes an integrated WLAN RF transceiver that has been optimized for use in 2.4 GHz Wireless LAN systems. It  
has been designed to provide low-power, low-cost, and robust communications for applications operating in the globally available 2.4  
GHz unlicensed ISM band. The transmit and receive sections include all on-chip filtering, mixing, and gain control functions.  
Ten RF control signals are available to drive external RF switches. See the reference board schematics for more information.  
A block diagram of the radio subsystem is shown in Figure 10. Note that integrated on-chip baluns (not shown) convert the fully  
differential transmit and receive paths to single-ended signal pins.  
8.1 Receiver Path  
The CYW43903 has a wide dynamic range, direct conversion receiver that employs high-order on-chip channel filtering to ensure  
reliable operation in the noisy 2.4 GHz ISM band. The 2.4 GHz path has a dedicated on-chip low-noise amplifier (LNA).  
8.2 Transmit Path  
Baseband data is modulated and upconverted to the 2.4 GHz ISM band. Linear on-chip power amplifiers deliver high output powers  
while meeting IEEE 802.11b/g/n specifications without the need for external PAs. When using the internal PA, which is required in the  
2.4 GHz band, closed-loop output power control is completely integrated.  
8.3 Calibration  
The CYW43903 features dynamic and automatic on-chip calibration to continually compensate for temperature and process variations  
across components. These calibration routines are performed periodically during the course of normal radio operation. Examples of  
some of the automatic calibration algorithms are baseband filter calibration for optimum transmit and receive performance and LOFT  
calibration for carrier leakage reduction. In addition, I/Q calibration and VCO calibration are performed on-chip. No per-board  
calibration is required during manufacturing testing. This helps to minimize the test time and cost in large-volume production environ-  
ments.  
Figure 10. Radio Functional Block Diagram  
WL TX 2.4 GHz Mixer  
WL DAC  
WL TXLPF  
TX Mode  
Switch  
WL PA  
WL DAC  
WL TXLPF  
Voltage  
WLAN BB  
Regulators  
WL ADC  
WL RXLPF  
WL‐G‐LNA11  
WL G‐LNA12  
TX Mode  
Switch  
WL ADC  
WL RX 2.4 GHz Mixer  
WL RXLPF  
WL PLL  
WL 2.4 GHz TX  
WL 2.4 GHz RX  
WL LOGEN  
XON  
XOP  
Shared XO  
LPO/Ext LPO/RCAL  
Document Number: 002-14826 Rev. *G  
Page 26 of 65  
PRELIMINARY  
CYW43903  
9. Pinout and Signal Descriptions  
9.1 Ball Map  
Figure 11. 151-Ball WLBGA Map—Top View with Balls Facing Down  
P
N
M
L
K
J
H
G
F
E
D
C
B
A
RF_SW_  
CTRL_8  
RF_SW_  
CTRL_7  
LDO_  
LDO_  
SR_  
12  
11  
10  
9
VDDIO  
PWR_GND  
NC_J12  
NC_H12  
GPIO_3  
GPIO_6  
VOUT_3P3  
SR_PVSS  
SR_VLX  
12  
11  
10  
9
VDDBAT5V  
VDD1P5  
VDDBAT5V  
RF_SW_  
CTRL_9  
RF_SW_  
CTRL_1  
VOUT_  
HSICLDO  
SRSTN  
VSSC  
VSSC  
NC_J11  
NC_J10  
VSSC  
VDDC  
VSSC  
NC_G11  
GPIO_2  
VSSC  
GPIO_5  
GPIO_4  
VSSC  
VDDIO  
VDDIO  
VOUT_LNLDO  
VSSC  
VOUT_CLDO  
RF_SW_  
CTRL_5  
RF_SW_  
CTRL_6  
VOUT_  
CLDO_SENSE  
JTAG_SEL  
NC_N10  
VDDC  
PMU_AVSS  
VSSC  
WL_REG_ON  
VDDC  
RF_SW_  
CTRL_2  
RF_SW_  
CTRL_3  
RF_SW_  
CTRL_0  
RF_SW_  
CTRL_4  
VDDIO_RF  
VDDIO_RF  
VDDIO  
NC_H9  
VDDIO  
GPIO_8  
VSSC  
I2C0_SDATA  
UART0_TXD  
UART0_RTS  
SPI0_SISO  
SPI0_CLK  
SFL_IO2  
8
OTP_VDD3P3  
AVDD1P2  
LPO_XTAL_IN  
AVSS  
VSSC  
VDDC  
VDDIO  
VSSC  
GPIO_13  
I2C0_CLK  
UART0_RXD  
GPIO_12  
SPI0_MISO  
SFL_IO3  
VSSC  
VDDIO  
8
WRF_XTAL_  
XON  
WRF_XTAL_  
GND1P2  
7
VDDC  
VDDC  
VSSC  
VDDC  
VSSC  
UART0_CTS  
SFL_CS  
7
WRF_XTAL_  
XOP  
WRF_XTAL_  
VDD1P35  
WRF_XTAL_  
VDD1P2  
WRF_SYNTH_  
VDD3P3  
6
VDDC  
VSSC  
VSSC  
VSSC  
VDDC  
SPI0_CS  
GPIO_7  
6
WRF_PMU_  
VDD1P35  
WRF_SYNTH_ WRF_SYNTH_  
WRF_VCO_  
GND  
5
VDDC  
SFL_CLK  
SFL_IO0  
GPIO_14  
GPIO_15  
5
VDD1P2  
GND  
WRF_RX5G_  
GND  
WRF_AFE_  
VDD1P35  
WRF_GENERAL  
_GND  
WRF_EXT_  
TSSIA  
4
VSSC  
VSSC  
VSSC  
VSSC  
VDDC  
VDDC  
VSSC  
4
WRF_GENERAL  
2_GND  
WRF_AFE_  
GND  
WRF_GPAIO_  
OUT  
HIB_REG_  
ON_IN  
HIB_LPO_  
SELMODE  
3
RF_GND_P3  
RF_GND_P2  
HIB_WAKE_B  
HIB_XTALIN  
VSSC  
SFL_IO1  
3
WRF_PA_  
GND3P3  
WRF_TXMIX_  
VDD  
WRF_RX2G_  
GND  
2
VSSC  
HIB_XTALOUT  
VDDC  
GPIO_9  
GPIO_16  
VSSC  
2
WRF_PA_  
VDD3P3  
WRF_  
PAOUT_2G  
WRF_RFIN_  
2G  
HIB_REG_ON_O  
UT  
1
VSSC  
VDDC  
HIB_VDDO  
VDDC  
GPIO_0  
GPIO_1  
GPIO_10  
GPIO_11  
1
P
N
M
L
K
J
H
G
F
E
D
C
B
A
Document Number: 002-14826 Rev. *G  
Page 27 of 65  
PRELIMINARY  
CYW43903  
9.2 Ball List  
Table 7 contains the 151-ball WLBGA net names.  
Table 7. WLBGA Net Names  
Ball  
Net Name  
Ball  
Net Name  
D8  
VSSC  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
GPIO_15  
GPIO_14  
SFL_IO0  
SFL_CLK  
SFL_CS  
D9  
GPIO_8  
VSSC  
D10  
D11  
D12  
E1  
VOUT_LNLDO  
LDO_VDDBAT5V  
GPIO_0  
GPIO_9  
VSSC  
UART0_CTS  
VDDIO  
E2  
E3  
VDDC  
E5  
GPIO_7  
SPI0_CS  
GPIO_13  
VDDIO  
A10  
A11  
A12  
B1  
REG_ON  
SR_VLX  
E6  
E8  
SR_PVSS  
GPIO_11  
VSSC  
E9  
E10  
E11  
E12  
F1  
VDDIO  
B2  
VDDIO  
B3  
SFL_IO1  
SFL_IO2  
SPI0_CLK  
SPI0_SISO  
UART0_RTS  
UART0_TXD  
I2C0_SDATA  
VOUT_3P3  
VDDC  
B4  
B5  
F2  
VDDC  
B6  
F5  
VDDC  
B7  
F6  
VSSC  
B8  
F8  
VSSC  
B9  
F9  
VSSC  
B10  
B11  
B12  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
C12  
D1  
D2  
D3  
D4  
D7  
VOUT_CLDO_SENSE  
VOUT_CLDO  
SR_VDDBAT5V  
GPIO_10  
F10  
F11  
F12  
G1  
G2  
G3  
G4  
G6  
G7  
G9  
G10  
G11  
G12  
H1  
GPIO_4  
GPIO_5  
GPIO_6  
HIB_VDDO  
VSSC  
GPIO_16  
VSSC  
VSSC  
SFL_IO3  
VSSC  
SPI0_MISO  
GPIO_12  
VDDC  
VSSC  
UART0_RXD  
I2C0_CLK  
VSSC  
VSSC  
GPIO_2  
NC_G11  
GPIO_3  
PMU_AVSS  
VOUT_HSICLDO  
LDO_VDD1P5  
GPIO_1  
HIB_REG_ON_OUT  
HIB_XTALIN  
HIB_WAKE_B  
VDDC  
H2  
H3  
VSSC  
H5  
VDDC  
H7  
VDDC  
VDDC  
H9  
NC_H9  
VSSC  
Document Number: 002-14826 Rev. *G  
Page 28 of 65  
PRELIMINARY  
CYW43903  
Ball  
H10  
Net Name  
Ball  
Net Name  
VSSC  
M7  
M8  
M9  
M10  
M11  
M12  
N2  
AVSS  
H11  
H12  
J1  
VDDC  
LPO_XTAL_IN  
RF_SW_CTRL_0  
RF_SW_CTRL_5  
VSSC  
NC_H12  
VDDC  
J2  
HIB_XTALOUT  
J3  
HIB_LPO_SELMODE  
VSSC  
RF_SW_CTRL_8  
WRF_AFE_GND  
WRF_AFE_GND  
J5  
J6  
VSSC  
N3  
J8  
VDDIO  
N4  
WRF_AFE_VDD1P35  
WRF_SYNTH_VDD1P2  
WRF_XTAL_VDD1P35  
WRF_AFE_GND  
AVDD1P2  
J9  
VSSC  
N5  
J10  
J11  
J12  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
K11  
K12  
L1  
NC_J10  
N6  
NC_J11  
N7  
NC_J12  
N8  
VSSC  
N9  
RF_SW_CTRL_3  
NC_N10  
VSSC  
N10  
N11  
N12  
P1  
HIB_REG_ON_IN  
VSSC  
RF_SW_CTRL_9  
VDDIO  
VDDC  
WRF_PA_VDD3P3  
RF_GND_P2  
VDDC  
P2  
VDDIO  
P3  
RF_GND_P3  
VDDIO_RF  
P4  
WRF_AFE_GND  
WRF_PMU_VDD1P35  
WRF_XTAL_XOP  
WRF_XTAL_XON  
OTP_VDD3P3  
RF_SW_CTRL_2  
JTAG_SEL  
VDDIO_RF  
P5  
RF_SW_CTRL_6  
VSSC  
P6  
P7  
PWR_GND  
WRF_RFIN_2G  
WRF_AFE_GND  
WRF_GPAIO_OUT  
WRF_EXT_TSSIA  
WRF_AFE_GND  
WRF_SYNTH_VDD3P3  
VDDC  
P8  
P9  
L2  
P10  
P11  
L3  
SRSTN  
L4  
L5  
L6  
L7  
L8  
VSSC  
L9  
RF_SW_CTRL_4  
VDDC  
L10  
L11  
L12  
M1  
M2  
M3  
M4  
M5  
M6  
RF_SW_CTRL_1  
RF_SW_CTRL_7  
WRF_PAOUT_2G  
WRF_TXMIX_VDD  
WRF_AFE_GND  
WRF_AFE_GND  
WRF_AFE_GND  
WRF_XTAL_VDD1P2  
Document Number: 002-14826 Rev. *G  
Page 29 of 65  
PRELIMINARY  
CYW43903  
9.3 Signal Descriptions  
Table 8 provides the signal name, type, and description for each CYW43903 ball. The symbols shown under Type indicate pin  
directions (I/O = bidirectional, I = input, and O = output) and the internal pull-up/pull-down characteristics (PU = weak internal pull-up  
resistor and PD = weak internal pull-down resistor), if any.  
Table 8. Signal Descriptions  
Ball Number  
Signal Name  
Type  
Description  
Cypress Serial Control (CSC) Interfaces  
I2C0_CLK  
C8  
B9  
O
CSC master clock.  
I2C0_SDATA  
I/O  
CSC serial data  
Clocks  
P6  
P7  
M8  
H2  
J2  
WRF_XTAL_XOP  
WRF_XTAL_XON  
LPO_XTAL_IN  
HIB_XTALIN  
I
XTAL oscillator input.  
XTAL oscillator output.  
O
I
External sleep clock input (32.768 kHz).  
3.3V 32 kHz crystal input  
I
HIB_XTALOUT  
O
3.3V 32 kHz crystal output  
GPIO Interface (WLAN)  
E1  
GPIO_0  
GPIO_1  
GPIO_2  
GPIO_3  
GPIO_4  
GPIO_5  
GPIO_6  
GPIO_7  
GPIO_8  
GPIO_9  
GPIO_10  
GPIO_11  
GPIO_12  
GPIO_13  
GPIO_14  
GPIO_15  
GPIO_16  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
D1  
G10  
G12  
F10  
F11  
F12  
E5  
Programmable GPIO pins.  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
D9  
E2  
C1  
B1  
C6  
E8  
A3  
A2  
C2  
Ground  
L2, L5, M3, M4, M5, N2, N3, N7, WRF_AFE_GND  
P4  
GND AFE ground  
M11, K11, H10, D10, J9, G9, F9, VSSC  
C9, L8, F8, D8, G7, D7, J6, F6,  
J5, K4, G4, G3, E3, C3, K2, G2,  
D2, B2, K1  
GND Core ground for WLAN and APP sections  
A12  
C10  
M7  
SR_PVSS  
PMU_AVSS  
AVSS  
GND Power ground  
GND Quiet ground  
GND Baseband PLL ground  
Document Number: 002-14826 Rev. *G  
Page 30 of 65  
PRELIMINARY  
CYW43903  
Table 8. Signal Descriptions (Cont.)  
Ball Number  
Signal Name  
Type  
Description  
Hibernation Block, Power-Down/Power-Up, and Reset  
A10  
REG_ON  
I
Used by PMU to power up or power down the internal  
CYW43903 regulators used by the WLAN and APP  
sections. Also, when deasserted, this pin holds the WLAN  
and APP sections in reset. This pin has an internal 200 kΩ  
pull-down resistor that is enabled by default. It can be  
disabled through programming.  
K3  
H1  
HIB_REG_ON_IN  
I
Used by the hibernation block to power up or power down  
the internal CYW43903 regulators. For applications that  
use the hibernation block, HIB_REG_ON_OUT must  
connect to REG_ON. Also, when deasserted, this pin  
holds the WLAN and APP sections in reset.  
HIB_REG_ON_OUT  
O
REG_ON output signal generated by the hibernation  
block.  
H3  
J3  
HIB_WAKE_B  
HIB_LPO_SELMODE  
SRSTN  
I
I
I
Wake up chip from hibernation mode.  
Select precise or coarse 32 kHz clock.  
P11  
System reset. This active-low signal resets the  
backplanes.  
JTAG Interface  
P10  
JTAG_SEL  
I
JTAG select. This pin must be connected to ground if the  
JTAG interface is not used.  
No Connects  
J10, J11, J12, H9, H12, G11,  
N10, L4  
NC_J10, NC_J11, NC_J12,  
NC_H9, NC_H12, NC_G11,  
NC_N10, WRF_EXT_TSSIA  
No connect  
Power Supplies (Miscellaneous)  
PWR OTP 3.3V supply  
P8  
OTP_VDD3P3  
VDDC  
H11, L10, A9, L7, H7, K6, G6,  
K5, H5, F5, D4, D3, F2, J1, F1  
PWR 1.2V core supply for WLAN  
N12, E11, E10, E9, J8, A8, K7  
VDDIO  
PWR I/O supply  
K8, K9  
K12  
G1  
VDDIO_RF  
PWR_GND  
HIB_VDDO  
AVDD1P2  
PWR I/O supply for RF switch control pads (3.3V).  
GND Power supply ground  
PWR I/O supply for hibernation block  
PWR 1.2V supply for baseband PLL  
N8  
Power Supplies (WLAN)  
L6  
WRF_SYNTH_VDD3P3  
WRF_PA_VDD3P3  
PWR Synthesizer VDD 3.3V supply  
PWR 2.4 GHz PA 3.3V VBAT supply  
PWR PMU 1.35V supply  
P1  
P5  
M2  
N5  
N4  
WRF_PMU_VDD1P35  
WRF_TXMIX_VDD  
PWR 3.3V supply for TX mixer  
WRF_SYNTH_VDD1P2  
WRF_AFE_VDD1P35  
PWR 1.2V supply for synthesizer  
PWR 1.35V supply for the analog front end (AFE)  
PWM Interface (Alternate Function for GPIOs)  
PWM0  
PWM1  
PWM2  
PWM3  
O
O
O
O
Pulse width modulation bit 0.  
Pulse width modulation bit 1  
Pulse width modulation bit 2  
Pulse width modulation bit 3  
Document Number: 002-14826 Rev. *G  
Page 31 of 65  
PRELIMINARY  
CYW43903  
Table 8. Signal Descriptions (Cont.)  
Ball Number  
Signal Name  
Type  
Description  
Pulse width modulation bit 4  
Pulse width modulation bit 5  
PWM4  
O
O
PWM5  
RF Signal Interface (WLAN)  
L1  
P3  
M1  
P2  
L3  
WRF_RFIN_2G  
RF_GND_P3  
I
2.4 GHz WLAN receiver input  
GND RF ground  
WRF_PAOUT_2G  
RF_GND_P2  
O
2.4 GHz WLAN PA output  
GND RF ground  
WRF_GPAIO_OUT  
I/O  
Analog GPIO  
RF Switch Control Lines  
M9  
RF_SW_CTRL_0  
RF_SW_CTRL_1  
RF_SW_CTRL_2  
RF_SW_CTRL_3  
RF_SW_CTRL_4  
RF_SW_CTRL_5  
RF_SW_CTRL_6  
RF_SW_CTRL_7  
RF_SW_CTRL_8  
RF_SW_CTRL_9  
O
Programmable RF switch control lines. The control lines  
are programmable via the driver and nvram.txt file.  
L11  
P9  
O
O
N9  
O
L9  
O
M10  
K10  
L12  
M12  
N11  
I/O  
I/O  
I/O  
I/O  
I/O  
SPI Flash Interface  
A5  
A4  
B3  
B4  
C4  
A6  
SFL_CLK  
SFL_IO0  
SFL_IO1  
SFL_IO2  
SFL_IO3  
SFL_CS  
O
Flash clock  
I/O  
I/O  
I/O  
I/O  
O
Flash data  
Flash data  
Flash data  
Flash data  
Flash slave select  
SPI Interface  
Note: The SPI interface can alternatively be configured and used as a CSC interface.  
B5  
C5  
B6  
E6  
SPI0_CLK  
SPI0_MISO  
SPI0_SISO  
SPI0_CS  
O
I
SPI clock  
SPI data master in  
SPI data master out  
SPI slave select  
O
O
UART Interface  
A7  
B7  
C7  
B8  
UART0_CTS  
UART0_RTS  
UART0_RXD  
UART0_TXD  
I
UART clear-to-send  
UART request-to-send  
UART serial input  
O
I
O
UART serial output  
Voltage Regulators (Integrated)  
B12  
A11  
SR_VDDBAT5V  
SR_VLX  
I
VBAT.  
O
CBUCK switching regulator output  
Document Number: 002-14826 Rev. *G  
Page 32 of 65  
PRELIMINARY  
CYW43903  
Table 8. Signal Descriptions (Cont.)  
Ball Number  
Signal Name  
LDO_VDD1P5  
Type  
Description  
C12  
D12  
N6  
I
LNLDO input  
LDO VBAT  
LDO_VDDBAT5V  
WRF_XTAL_VDD1P35  
WRF_XTAL_VDD1P2  
VOUT_LNLDO  
I
I
XTAL LDO input (1.35V)  
XTAL LDO output (1.2V)  
M6  
O
O
O
O
O
O
D11  
B11  
E12  
B10  
C11  
Terminate with 2.2 μF capacitor to GND  
Output of core LDO  
VOUT_CLDO  
VOUT_3P3  
LDO 3.3V output  
VOUT_CLDO_SENSE  
VOUT_HSICLDO  
Voltage sense pin for core LDO  
Output of HSIC LDO  
Document Number: 002-14826 Rev. *G  
Page 33 of 65  
PRELIMINARY  
CYW43903  
10. GPIO Signals and Strapping Options  
10.1 Overview  
This section describes GPIO signals and strapping options. The pins are sampled at power-on reset (POR) to determine various  
operating modes. Sampling occurs a few milliseconds after an internal POR or deassertion of the external POR. After the POR, each  
pin assumes the GPIO or alternative function specified in Table 10. Each strapping option pin has an internal pull-up (PU) or pull-down  
(PD) resistor that determines the default mode. To change the mode, connect an external PU resistor to VDDIO or a PD resistor to  
ground, using a 10 kΩ resistor or less.  
Note: Refer to the reference board schematics for more information.  
10.2 Weak Pull-Down and Pull-Up Resistances  
At VDDO = 3.3V ±10%, the minimum, typical, and maximum weak pull-down resistances (for a pin voltage of VDDO) are 37.99 kΩ,  
44.57 kΩ, and 51.56 kΩ, respectively. At VDDO = 3.3V ±10%, the minimum, typical, and maximum weak pull-up resistances (for a  
pin voltage of 0V) are 34.73 kΩ, 39.58 kΩ, and 44.51 kΩ, respectively.  
10.3 Strapping Options  
Table 9 provides the strapping options.  
Table 9. Strapping Options  
DefaultInternal  
Pull During  
Pin Name  
GPIO_1  
Strap  
GSPI_MODE  
#
Strap  
Description  
Enable gSPI interface  
D1  
PD  
PD  
PD  
GPIO_7  
WCPU_BOOT_MODE  
ACPU_BOOT_MODE  
E5  
B1  
Boot from SoC SROM or SoC SRAM  
GPIO_11  
Boot from tightly coupled memory (TCM) ROM or TCM  
RAM  
GPIO_13  
SDIO_MODE  
VTRIM_EN  
E8  
A2  
PD  
PD  
Select either SDIO host mode or SDIO device mode  
Enable PMU voltage trimming  
GPIO_15  
RF_SW_CTRL_5  
DAP_CLK_SEL  
M10 PD  
Select XTAL clock or the test clock (tck) for the debug  
access port (DAP)  
RF_SW_CTRL_7  
RSRC_INIT_MODE  
L12 PD  
PMU resource initialization mode selection  
Document Number: 002-14826 Rev. *G  
Page 34 of 65  
PRELIMINARY  
CYW43903  
10.4 Alternate GPIO Signal Functions  
Table 10 provides the alternate signal functions of the GPIO signals.  
Table 10. Alternate GPIO Signal Functions  
HOLD/PDLOW/  
PDHIGH  
GPIO  
Default  
JTAG_SEL  
Default Pull  
Strap  
Comments  
GPIO_0  
GPIO_1  
GPIO_2  
GPIO_3  
GPIO_4  
GPIO_5  
GPIO_6  
GPIO_7  
GPIO_8  
GPIO_9  
GPIO_10  
GPIO_11  
GPIO_12  
GPIO_13  
GPIO_14  
GPIO_15  
GPIO_16  
No pull  
Down  
HOLD  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
GSPI_MODE  
GCI_GPIO(0) JTAG_TCK  
GCI_GPIO(1) JTAG_TMS  
GCI_GPIO(2) JTAG_TDI  
GCI_GPIO(3) JTAG_TDO  
GCI_GPIO(4) JTAG_TRST  
No pull  
No pull  
No pull  
No pull  
No pull  
Down  
WCPU_BOOT_MODE 8 mA  
GPIO_8  
No pull  
Down  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
GPIO_9  
GPIO_10  
No pull  
Down  
ACPU_BOOT_MODE  
GPIO_12  
No pull  
Down  
SDIO_MODE  
GPIO_14  
No pull  
Down  
VTRIM_EN  
No pull  
Document Number: 002-14826 Rev. *G  
Page 35 of 65  
PRELIMINARY  
CYW43903  
11. Pin Multiplexing  
Table 11 shows the pin multiplexing functions.  
Table 11. Pin Multiplexing  
Function  
Pin  
1
GPIO_0  
GPIO_1  
2
3
4
5
6
7
8
GPIO_8  
GPIO_9  
9
10  
11  
I2C1_SDATA  
GPIO_0  
UART0_RXD  
UART0_TXD  
PWM0  
PWM1  
SPI1_MISO  
SPI1_CLK  
PWM2  
PWM3  
GPIO_12  
GPIO_13  
PWM4  
I2C1_CLK  
GPIO_1  
PWM5  
GPIO_2  
GPIO_3  
GPIO_4  
GPIO_5  
GPIO_6  
GPIO_7  
GPIO_2  
GPIO_3  
GPIO_4  
GPIO_5  
GPIO_6  
GPIO_7  
GCI_GPIO_0  
GCI_GPIO_1  
GCI_GPIO_2  
GCI_GPIO_3  
GCI_GPIO_4  
PWM3  
TCK  
TMS  
TDI  
TDO  
TRST_L  
UART0_  
RTS_OUT  
PWM1  
SPI1_CS  
I2C1_CLK  
GPIO_15  
GPIO_11  
PMU_TEST_  
O
PWM5  
I2C1_SDATA  
GPIO_8  
GPIO_9  
GPIO_10  
GPIO_8  
GPIO_9  
GPIO_10  
SPI1_MISO  
SPI1_CLK  
SPI1_MOSI  
PWM2  
PWM3  
PWM4  
PWM4  
PWM5  
UART0_RXD  
UART0_TXD  
GPIO_16  
GPIO_0  
GPIO_1  
GPIO_12  
GPIO_13  
GPIO_14  
TAP_SEL_P  
PWM0  
I2C1_CLK  
PWM1  
I2C1_SDATA  
I2C1_CLK  
UART0_  
CTS_IN  
PWM0  
PWM2  
GPIO_11  
GPIO_11  
SPI1_CS  
PWM5  
UART0_  
RTS_OUT  
PWM1  
GPIO_7  
GPIO_15  
PWM3  
I2C1_SDATA  
GPIO_12  
GPIO_13  
GPIO_14  
GPIO_12  
GPIO_13  
GPIO_14  
UART0_RXD  
UART0_TXD  
SPI1_MISO  
SPI1_CLK  
SPI1_MOSI  
PWM2  
PWM3  
PWM4  
PWM5  
GPIO_8  
GPIO_9  
GPIO_10  
GPIO_16  
GPIO_0  
PWM0  
PWM1  
PWM4  
I2C1_CLK  
PWM0  
I2C1_SDATA  
UART0_  
CTS_IN  
PWM2  
I2C1_CLK  
GPIO_15  
GPIO_16  
GPIO_15  
GPIO_16  
PWM1  
UART0_  
RTS_OUT  
SPI1_CS  
GPIO_11  
GPIO_7  
PWM5  
PWM3  
I2C1_SDATA  
UART0_  
CTS_IN  
PWM0  
PWM2  
SPI1_MOSI  
GPIO_14  
GPIO_10  
RF_  
DISABLE_L  
PWM4  
RF_SW_  
CTRL_5  
RF_SW_  
CTRL_5  
GCI_GPIO_5  
SECI_IN1  
RF_SW_  
CTRL_6  
RF_SW_  
CTRL_6  
UART_  
DBG_RX1  
SECI_OUT1  
RF_SW_  
CTRL_7  
RF_SW_  
CTRL_7  
UART_  
DBG_TX1  
Document Number: 002-14826 Rev. *G  
Page 36 of 65  
PRELIMINARY  
CYW43903  
Table 11. Pin Multiplexing  
Function  
Pin  
1
2
3
4
5
6
7
8
9
10  
11  
SECI_IN1  
RF_SW_  
CTRL_8  
RF_SW_  
CTRL_8  
UART_  
DBG_RX1  
SECI_OUT1  
RF_SW_  
CTRL_9  
RF_SW_  
CTRL_9  
UART_  
DBG_TX1  
SPI0_MISO  
SPI0_CLK  
SPI0_MOSI  
SPI0_CS  
SPI0_MISO  
SPI0_CLK  
SPI0_MOSI  
SPI0_CS  
GPIO_17  
GPIO_18  
GPIO_19  
GPIO_20  
GPIO_21  
GPIO_24  
GPIO_25  
GPIO_26  
GPIO_27  
GPIO_28  
I2C0_SDATA I2C0_SDATA  
I2C0_CLK I2C0_CLK  
GPIO_22  
GPIO_29  
1. UART_DBG_TX and UART_DBG_RX are for UART1 mentioned in section 5.7 and in the reference schematics. SECI_IN and SECI_OUT are for UART2 mentioned in section 5.7 and in the reference schematics.  
Document Number: 002-14826 Rev. *G  
Page 37 of 65  
PRELIMINARY  
CYW43903  
12. I/O States  
Table 12 provides I/O state information for the signals listed.  
The following notations are used in Table 12:  
I: Input signal  
O: Output signal  
I/O: Input/Output signal  
PU = Pulled up  
PD = Pulled down  
NoPull = Neither pulled up nor pulled down  
Table 12. I/O States  
Out-of-Reset; Before  
Software Download  
(REG_ON High)  
Low Power State/Sleep (All  
Power Present)  
Power-down2  
(REG_ON Held Low)  
Ball Name  
I/O  
Keeper1  
Active Mode  
Power Rail  
HIB_REG_ON_IN  
I
N
Input; PD (Pull-down can be  
disabled.)  
Input; PD (Pull-down can be  
disabled.)  
Input  
Input  
REG_ON  
GPIO_0  
I
N
Y
Input; PD (Pull-down can be  
disabled.)  
Input; PD (Pull-down can be  
disabled.)  
Input; PD (of 200 kΩ) Input; PD (of 200 kΩ)  
I/O  
Input/Output; PU, PD, or  
NoPull (programmable  
[Default: PD])  
Input/Output;PU, PD, orNoPull High-Z, NoPull  
(programmable [Default: PD])  
Input; PD  
VDDIO  
GPIO_1  
GPIO_2  
GPIO_3  
GPIO_4  
GPIO_5  
I/O  
I/O  
I/O  
I/O  
I/O  
Y
Y
Y
Y
Y
Input/Output; PU, PD, or  
NoPull (programmable  
[Default: NoPull])  
Input/Output;PU, PD, orNoPull High-Z, NoPull  
(programmable [Default:  
NoPull])  
Input; NoPull  
Input; NoPull  
Input; PD  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
Input/Output; PU, PD, or  
NoPull (programmable  
[Default: NoPull])  
Input/Output;PU, PD, orNoPull High-Z, NoPull  
(programmable [Default:  
NoPull])  
Input/Output; PU, PD, or  
NoPull (programmable  
[Default: PD])  
Input/Output;PU, PD, orNoPull High-Z, NoPull  
(programmable [Default: PD])  
Input/Output; PU, PD, or  
NoPull (programmable  
[Default: NoPull])  
Input/Output;PU, PD, orNoPull High-Z, NoPull  
(programmable [Default:  
NoPull])  
Input; NoPull  
Input; PD  
Input/Output; PU, PD, or  
NoPull (programmable  
[Default: PD])  
Input/Output;PU, PD, orNoPull High-Z, NoPull  
(programmable [Default: PD])  
Document Number: 002-14826 Rev. *G  
Page 38 of 65  
PRELIMINARY  
CYW43903  
Table 12. I/O States  
Out-of-Reset; Before  
Software Download  
(REG_ON High)  
Low Power State/Sleep (All  
Power Present)  
Power-down2  
(REG_ON Held Low)  
Ball Name  
I/O  
Keeper1  
Active Mode  
Power Rail  
GPIO_6  
I/O  
Y
Input/Output; PU, PD, or  
NoPull (programmable  
[Default: NoPull])  
Input/Output;PU, PD, orNoPull High-Z, NoPull  
(programmable [Default:  
NoPull])  
Input; NoPull  
Input; NoPull  
Input; PD  
VDDIO  
GPIO_7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Input/Output; PU, PD, or  
NoPull (programmable  
[Default: NoPull])  
Input/Output;PU, PD, orNoPull High-Z, NoPull  
(programmable [Default:  
NoPull])  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO_RF  
GPIO_8  
Input/Output; PU, PD, or  
NoPull (programmable  
[Default: PD])  
Input/Output;PU, PD, orNoPull High-Z, NoPull  
(programmable [Default: PD])  
GPIO_9  
Input/Output; PU, PD, or  
NoPull (programmable  
[Default: PD])  
Input/Output;PU, PD, orNoPull High-Z, NoPull  
(programmable [Default: PD])  
Input; PD  
GPIO_10  
GPIO_11  
GPIO_12  
GPIO_13  
GPIO_14  
GPIO_15  
GPIO_16  
Input/Output; PU, PD, or  
NoPull (programmable  
[Default: NoPull])  
Input/Output;PU, PD, orNoPull High-Z, NoPull  
(programmable [Default:  
NoPull])  
Input; NoPull  
Input; PD  
Input/Output; PU, PD, or  
NoPull (programmable  
[Default: PD])  
Input/Output;PU, PD, orNoPull High-Z, NoPull  
(programmable [Default: PD])  
Input/Output; PU, PD, or  
NoPull (programmable  
[Default: NoPull])  
Input/Output;PU, PD, orNoPull High-Z, NoPull  
(programmable [Default:  
NoPull])  
Input; NoPull  
Input; NoPull  
Input; NoPull  
Input; NoPull  
Input; NoPull  
Output; NoPull  
Input/Output; PU, PD, or  
NoPull (programmable  
[Default: NoPull])  
Input/Output;PU, PD, orNoPull High-Z, NoPull  
(programmable [Default:  
NoPull])  
Input/Output; PU, PD, or  
NoPull (programmable  
[Default: NoPull])  
Input/Output;PU, PD, orNoPull High-Z, NoPull  
(programmable [Default:  
NoPull])  
Input/Output; PU, PD, or  
NoPull (programmable  
[Default: NoPull])  
Input/Output;PU, PD, orNoPull High-Z, NoPull  
(programmable [Default:  
NoPull])  
Input/Output; PU, PD, or  
NoPull (programmable  
[Default: NoPull])  
Input/Output;PU, PD, orNoPull High-Z, NoPull  
(programmable [Default:  
NoPull])  
RF_SW_CTRL  
(0 to 9)  
Output; NoPull  
Output; NoPull  
High-Z  
1. Keeper column: N = pad has no keeper. Y = pad has a keeper. Keeper is always active except in power-down state. If there is no keeper, and it is an input and there is NoPull, then the pad should be driven to  
prevent leakage due to floating pad (WL_REG_ON, for example).  
2. In the power-down state (xx_REG_ON=0): High-Z; NoPull => the pad is disabled because power is not supplied.  
Document Number: 002-14826 Rev. *G  
Page 39 of 65  
PRELIMINARY  
CYW43903  
13. Electrical Characteristics  
Note: Values in this data sheet are design goals and are subject to change based on the results of device characterization.  
13.1 Absolute Maximum Ratings  
Caution! The absolute maximum ratings in Table 13 indicate levels where permanent damage to the device can occur, even if these  
limits are exceeded for only a brief duration. Functional operation is not guaranteed under these conditions. Operation at absolute  
maximum conditions for extended periods can adversely affect long-term reliability of the device.  
Table 13. Absolute Maximum Ratings  
Parameter  
Symbol  
Value  
Unit  
DC supply for VBAT and PA driver supply 1  
DC supply voltage for digital I/O  
VBAT  
–0.5 to +5.5  
V
VDDIO  
VDDIO_RF  
–0.5 to 3.9  
–0.5 to 3.9  
–0.5 to 1.575  
V
V
V
DC supply voltage for RF switch I/O  
DC input supply voltage for CLDO, LNLDO, and LDO2  
3.3V DC supply voltage for RF analog3  
VDD3P3RF  
VDD1P35RF  
VDD1P2RF  
VDD1P2A  
VDDC  
–0.5 to 3.6  
–0.5 to 1.5  
–0.5 to 1.26  
–0.5 to 1.26  
–0.5 to 1.32  
V
V
V
V
V
1.35V DC supply voltage for RF analog4  
1.2V DC supply voltage for RF analog5  
1.2V DC supply voltage for analog circuits6  
DC supply voltage for the core7  
DC supply voltage for OTP memory  
Maximum undershoot voltage for I/O  
OTP_VDD3P3  
Vundershoot  
–0.5 to 3.9  
–0.5  
V
V
Maximum junction temperature  
Tj  
125  
°C  
1. For the SR_VDDBAT5V and LDO_VDDBAT5V supplies.  
2. For the LDO_VDD1P5 and WRF_XTAL_VDD1P35 supplies.  
3. For the WRF_SYNTH_VDD3P3, WRF_PA_VDD3P3, and WRF_TXMIX_VDD supplies.  
4. For WRF_PMU_VDD1P35 and WRF_AFE_VDD1P35 supplies.  
5. For the WRF_SYNTH_VDD1P2 supply.  
6. For the AVDD1P2 supply.  
7. For the VDD supply.  
Document Number: 002-14826 Rev. *G  
Page 40 of 65  
PRELIMINARY  
CYW43903  
13.2 Environmental Ratings  
The environmental ratings are shown in Table 14.  
Table 14. Environmental Ratings  
Characteristic  
Value  
Units  
Conditions/Comments  
Ambient temperature (TA)  
–30 to +85  
°C  
Functional operation  
Storage temperature  
Relative humidity  
–40 to +125  
Less than 60  
Less than 85  
°C  
%
%
Storage  
Operation  
13.3 Electrostatic Discharge Specifications  
Extreme caution must be exercised to prevent electrostatic discharge (ESD) damage. Proper use of wrist and heel grounding straps  
to discharge static electricity is required when handling these devices. Always store unused material in its antistatic packaging.  
Table 15. ESD Specifications  
Pin Type  
Symbol  
Condition  
ESD Rating Unit  
ESD  
ESD_HAND_HBM  
Human body model contact discharge per JEDEC  
EID/JESD22-A114  
1.5 k  
V
CDM  
ESD_HAND_CDM  
Charged device model contact discharge per JEDEC 250  
EIA/JESD22-C101  
V
13.4 Recommended Operating Conditions and DC Characteristics  
Caution! Functional operation is not guaranteed outside of the limits shown in Table 16. Operation outside these limits for extended  
periods can adversely affect long-term reliability of the device.  
Table 16. Recommended Operating Conditions and DC Characteristics  
Value  
Parameter  
DC supply voltage for VBAT  
Symbol  
Minimum  
2.31  
Typical  
Maximum  
Unit  
VBAT  
3.6  
4.8  
V
DC supply voltage for digital I/O  
VDDIO  
1.71  
3.13  
3.63  
3.6  
V
V
VDDIO_RF2  
DC supply voltage for RF switch I/Os  
3.3  
DC input supply voltage for CLDO, LNLDO, and LDO  
3.3V DC supply voltage for RF analog  
1.3  
3
1.35  
3.3  
1.5  
V
V
VDD3P3RF3  
VDD1P35RF3  
VDD1P2RF3  
3.45  
1.35V DC supply voltage for RF analog  
1.2V DC supply voltage for RF analog  
1.2V DC supply voltage for analog  
1.3  
1.1  
1.1  
1.35  
1.2  
1.5  
V
V
V
1.26  
1.26  
VDD1P2A3  
VDDC  
1.2  
DC supply voltage for core  
1.14  
2.97  
1.2  
3.3  
1.26  
3.63  
V
V
OTP_VDD3P32  
DC supply voltage for OTP memory  
WRF_TCXO_VDD3  
Vth_POR  
DC supply voltage for TCXO input buffer  
Internal POR threshold  
1.62  
0.4  
1.8  
1.98  
0.7  
V
V
Document Number: 002-14826 Rev. *G  
Page 41 of 65  
PRELIMINARY  
CYW43903  
Table 16. Recommended Operating Conditions and DC Characteristics (Cont.)  
Value  
Parameter  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
Other Digital I/O Pins  
For VDDIO = 1.8V:  
Input high voltage  
Input low voltage  
VIH  
VIL  
0.65 × VDDIO  
V
0.35 ×  
VDDIO  
V
Output high voltage @ 2 mA  
Output low voltage @ 2 mA  
For VDDIO = 3.3V:  
VOH  
VOL  
VDDIO – 0.45  
V
V
0.45  
Input high voltage  
VIH  
2.00  
V
V
V
V
Input low voltage  
VIL  
0.80  
Output high voltage @ 2 mA  
Output low voltage @ 2 mA  
VOH  
VOL  
VDDIO – 0.4  
0.40  
RF Switch Control Output Pins4  
For VDDIO_RF = 3.3V:  
Output high voltage @ 2 mA  
Output low voltage @ 2 mA  
Input capacitance  
VOH  
VOL  
CIN  
VDDIO – 0.4  
V
0.40  
5
V
pF  
1. The CYW43903 is functional across this range of voltages. Optimal RF performance specified in the data sheet, however, is guaranteed only for 3V < VBAT < 4.8V.  
2. VDD3P3RF, which is an internally generated supply, can drive this node. There is sufficient current and the appropriate state is maintained during hibernation and  
sleep cycles.  
3. Internally generated supply.  
4. Programmable 2 mA to 16 mA drive strength. Default is 10 mA.  
Document Number: 002-14826 Rev. *G  
Page 42 of 65  
PRELIMINARY  
CYW43903  
13.5 Power Supply Segments  
The digital I/O's are placed in physical segments. The supply voltage for each segment can be independently selected.  
Table 17 shows the power supply segments and the I/O pins associated with each segment.  
Table 17. Power Supply Segments  
Power Supply Segment  
VDDIO  
Pins  
GPIO_0, GPIO_1, GPIO_2, GPIO_3, GPIO_4, GPIO_5, GPIO_6, GPIO_7, GPIO_8, GPIO_9,  
GPIO_10, GPIO_11, GPIO_12, GPIO_13, GPIO_14, GPIO_15, GPIO_16, I2C0_CLK,  
I2C0_SDATA, I2C1_CLK, I2C1_SDATA, JTAG_SEL, SFL_CLK, SFL_CS, SFL_IO0, SFL_IO1,  
SFL_IO2, SFL_IO3, SPI0_CLK, SPI0_CS, SPI0_MISO, SPI0_SISO, SPI1_CLK, SPI1_CS,  
SPI1_MISO, SPI1_SISO, SRSTN, UART0_CTS, UART0_RTS, UART0_RXD, UART0_TXD  
VDDIO_RF  
RF_SW_CTRL_0, RF_SW_CTRL_1, RF_SW_CTRL_2, RF_SW_CTRL_3, RF_SW_CTRL_4,  
RF_SW_CTRL_5, RF_SW_CTRL_6, RF_SW_CTRL_7, RF_SW_CTRL_8, RF_SW_CTRL_9  
13.6 GPIO, UART, and JTAG Interfaces DC Characteristics  
Table 18. GPIO, UART, and JTAG Interfaces  
Parameter  
Logic input high voltage  
Logic input low voltage  
Logic output high voltage  
Logic output low voltage  
Symbol  
VIH  
Minimum  
2.0  
Maximum  
Units  
Conditions  
VDDIO + 0.5  
V
V
V
V
VIL  
–0.5  
2.4  
0.8  
VOH  
VOL  
0.4  
Document Number: 002-14826 Rev. *G  
Page 43 of 65  
PRELIMINARY  
CYW43903  
14. WLAN RF Specifications  
14.1 Introduction  
The CYW43903 includes an integrated direct conversion radio that supports the 2.4 GHz band. This section describes the RF  
characteristics of the 2.4 GHz radio.  
Note: Values in this section of the data sheet are design goals and are subject to change based on device characterization results.  
Unless otherwise stated, limit values apply for the conditions specified in Table 14, “Environmental Ratings,” and Table 16, “Recom-  
mended Operating Conditions and DC Characteristics,”. Typical values apply for the following conditions:  
VBAT = 3.6V  
Ambient temperature +25°C  
Figure 12. Port Locations for WLAN Testing  
Chip Output Port  
CYW43903  
2.4 GHz WLAN TX  
(WRF_PAOUT_2G)  
Filter  
2.4 GHz WLAN RX  
(WRF_RFIN_2G)  
RF Port  
Chip Input Port  
14.2 2.4 GHz Band General RF Specifications  
Table 19. 2.4 GHz Band General RF Specifications  
Item  
Condition  
Minimum  
Typical  
Maximum  
Unit  
μs  
TX/RX switch time  
Including TX ramp down  
Including TX ramp up  
DSSS/CCK modulations  
5
RX/TX switch time  
2
μs  
μs  
Power-up and power-down ramp time  
< 2  
Document Number: 002-14826 Rev. *G  
Page 44 of 65  
PRELIMINARY  
CYW43903  
14.3 WLAN 2.4 GHz Receiver Performance Specifications  
Note: The specification shown in Table 20 apply at the chip ports, unless otherwise defined.  
Table 20. WLAN 2.4 GHz Receiver Performance Specifications  
Parameter  
Frequency range  
Condition/Notes  
Minimum Typical Maximum  
Unit  
MHz  
2400  
2500  
RX sensitivity IEEE 802.11b  
(8% PER for 1024 octet PSDU)  
1 Mbps DSSS  
2 Mbps DSSS  
5.5 Mbps DSSS  
11 Mbps DSSS  
6 Mbps OFDM  
9 Mbps OFDM  
12 Mbps OFDM  
18 Mbps OFDM  
24 Mbps OFDM  
36 Mbps OFDM  
48 Mbps OFDM  
54 Mbps OFDM  
20 MHz channel spacing for all MCS rates  
MCS0  
–98.9  
–96.0  
–93.9  
–90.4  
–95.0  
–93.8  
–92.7  
–90.3  
–87.1  
–83.6  
–79.3  
–78.0  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
RX sensitivity IEEE 802.11g  
(10% PER for 1024 octet PSDU)  
RX sensitivity IEEE 802.11n  
(10% PER for 4096 octet PSDU) 1  
Defined for default parameters:  
800 ns GI and non-STBC.  
–94.6  
–92.1  
–89.8  
–86.6  
–83.0  
–78.3  
–76.6  
–75.0  
–8  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
MCS1  
MCS2  
MCS3  
MCS4  
MCS5  
MCS6  
MCS7  
Input in-band IP3  
Maximum LNA gain  
Minimum LNA gain  
+9  
Maximum receive level  
@ 2.4 GHz  
@ 1, 2 Mbps  
–3.5  
(8% PER, 1024 octets)  
@ 5.5, 11 Mbps  
–9.5  
dBm  
dBm  
dBm  
dBm  
dBm  
(8% PER, 1024 octets)  
@ 6, 9, 12 Mbps  
(10% PER, 1024 octets)  
–9.5  
@ MCS0–2 rates  
(10% PER, 4095 octets)  
–9.5  
@ 18, 24, 36, 48, 54 Mbps  
(10% PER, 1024 octets)  
–14.5  
–14.5  
@ MCS3–7 rates  
(10% PER, 4095 octets)  
Document Number: 002-14826 Rev. *G  
Page 45 of 65  
PRELIMINARY  
CYW43903  
Table 20. WLAN 2.4 GHz Receiver Performance Specifications (Cont.)  
Parameter  
Condition/Notes  
Minimum Typical Maximum  
Unit  
Adjacent channel rejection-DSSS  
Desired and interfering signal 30 MHz apart  
(Difference between interfering  
and desired signal at 8% PER for  
1024 octet PSDU with desired  
signal level as specified in  
Condition/Notes.)  
1 Mbps DSSS  
–74 dBm  
–74 dBm  
35  
35  
dB  
dB  
2 Mbps DSSS  
Desired and interfering signal 25 MHz apart  
5.5 Mbps DSSS  
11 Mbps DSSS  
–70 dBm  
–70 dBm  
–79 dBm  
–78 dBm  
–76 dBm  
–74 dBm  
–71 dBm  
–67 dBm  
–63 dBm  
–62 dBm  
–79 dBm  
–76 dBm  
–74 dBm  
–71 dBm  
–67 dBm  
–63 dBm  
–62 dBm  
–61 dBm  
35  
35  
16  
15  
13  
11  
8
66  
3
5
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Adjacent channel rejection-OFDM 6 Mbps OFDM  
(Difference between interfering  
9 Mbps OFDM  
and desired signal (25 MHz apart)  
12 Mbps OFDM  
18 Mbps OFDM  
24 Mbps OFDM  
36 Mbps OFDM  
48 Mbps OFDM  
54 Mbps OFDM  
at 10% PER for 1024 octet PSDU  
with desired signal level as  
specified in Condition/Notes.)  
4
0
–1  
16  
13  
11  
8
Adjacent channel rejection MCS0– MCS0  
7
MCS1  
(Difference between interfering  
and desired signal (25 MHz apart)  
at 10% PER for 4096 octet PSDU  
with desired signal level as  
MCS2  
MCS3  
MCS4  
MCS5  
MCS6  
MCS7  
specified in Condition/Notes.)  
4
0
–1  
–2  
Maximum receiver gain  
Gain control step  
RSSI accuracy2  
Range –953 dBm to –30 dBm  
Range above –30 dBm  
–5  
–8  
10  
8
dB  
dB  
Return loss  
Zo = 50Ω, across the dynamic range  
11.5  
13  
Receiver cascaded noise figure  
At maximum gain  
4
dB  
1. Sensitivity degradations for alternate settings in MCS modes. MM: 0.5 dB drop, and SGI: 2 dB drop.  
2. The minimum and maximum values shown have a 95% confidence level.  
3. –95 dBm with calibration at time of manufacture, –92 dBm without calibration.  
Document Number: 002-14826 Rev. *G  
Page 46 of 65  
PRELIMINARY  
CYW43903  
14.4 WLAN 2.4 GHz Transmitter Performance Specifications  
Note: Unless otherwise noted, the values shown in Table 21 apply at the chip ports.  
Table 21. WLAN 2.4 GHz Transmitter Performance Specifications  
Parameter  
Frequency range  
Condition/Notes  
Minimum  
Typical Maximum  
Unit  
MHz  
2400  
2500  
RF port TX power EVM1  
(highest power setting, 25°C, and  
VBAT = 3.6)  
DSS/CCK  
–9 dB  
20.5  
20  
20  
19  
19  
dBm  
dBm  
dBm  
dBm  
dBm  
OFDM, BPSK  
OFDM, QPSK  
OFDM, 16-QAM  
–8 dB  
–13 dB  
–19 dB  
OFDM, 64-QAM (R = 3/ –25 dB  
4)  
OFDM, 64-QAM (MCS7, –27 dB  
HT20)  
18.5  
dBm  
OFDM EVM2  
(25°C, VBAT = 3.6V)  
OFDM, BPSK  
OFDM, 64-QAM  
MCS7  
5 dBm  
5 dBm  
5 dBm  
–29  
–31  
–33  
–31  
–33  
–35  
0.45  
dB  
dB  
dB  
Phase noise  
37.4 MHz crystal, integrated from 10 kHz to  
10 MHz  
Degrees  
TX power control dynamic range  
10  
dB  
dB  
Closed-loop TX power variation at Across full temperature and voltage range.  
highest  
power level setting  
±1.5  
Applies to 10 dBm to 20 dBm output power  
range.  
Carrier suppression  
Gain control step  
15  
dBc  
dB  
0.25  
6
Return loss at Chip port TX  
Zo = 50Ω  
dB  
1. This specification row indicates the linear power specification as measured from the chip output port. The requirement is in dBm (TX power). The ratio (dB) in the  
Conditions/Notes column is the EVM.  
2. This specification row indicates the EVM floor. The requirement is in dB (EVM). The power in the Conditions/Notes column is the TX power specification in dBm.  
Document Number: 002-14826 Rev. *G  
Page 47 of 65  
PRELIMINARY  
CYW43903  
14.5 General Spurious Emissions Specifications  
This section provides the TX and RX spurious emissions specifications for the WLAN 2.4 GHz band. The recommended spectrum  
analyzer settings for the spurious emissions specifications are provided in Table 22.  
Table 22. Recommended Spectrum Analyzer Settings  
Parameter  
Setting  
Resolution bandwidth (RBW)  
1 MHz  
Video bandwidth (VBW)  
Sweep  
1 MHz  
Auto  
Span  
100 MHz  
Maximum peak  
Maximum hold  
OFDM  
Detector  
Trace  
Modulation  
14.5.1 Transmitter Spurious Emissions Specifications  
2.4 GHz Band Spurious Emissions  
20-MHz Channel Spacing  
Note: Possible AFE combinations are as follows. The AFE=VCO/18 specifications for channel 2442 are listed in Table 23  
.
Table 23. 2.4 GHz Band, 20-MHz Channel Spacing TX Spurious Emissions Specifications  
2G - 20 MHz BW  
Emissions Frequency Range (MHz)  
Spurious Emissions Level (dBm)  
Channel Power (dBm)  
CH2442  
–50  
–40  
–40  
–39  
–24  
–48  
–49  
–13  
–43  
–52  
–50  
–49  
1000-2000  
2000-2400  
2500-3000  
3000-4000  
4000-5000  
5000-6000  
6000-7000  
7000-8000  
8000-10000  
10000-12000  
12000-15000  
15000-20000  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
21  
14.5.2 Receiver Spurious Emissions Specifications  
Table 24. 2G General Receiver Spurious Emissions  
Band  
Frequency Range  
Typical  
Maximum  
–74.1  
–50.9  
Unit  
dBm  
2G  
2.4 GHz < f < 2.5 GHz  
3.6 GHz < f < 3.8 GHz  
–75.5  
–52.8  
dBm  
Document Number: 002-14826 Rev. *G  
Page 48 of 65  
PRELIMINARY  
CYW43903  
15. Internal Regulator Electrical Specifications  
15.1 Core Buck Switching Regulator  
Note: Values in this data sheet are design goals and are subject to change based on device characterization results.  
Note: Functional operation is not guaranteed outside of the specification limits provided in this section.  
Table 25. Core Buck Switching Regulator (CBUCK) Specifications  
Specification  
Notes  
Min.  
Typ. Max.  
Unit  
4.81  
3.6  
Input supply voltage (DC)  
DC voltage range inclusive of disturbances.  
3.0  
V
PWM mode switching frequency  
PWM output current  
CCM, load > 100 mA VBAT = 3.6V.  
4
MHz  
mA  
mA  
V
550  
Output current limit  
1400  
1.35  
Output voltage range  
Programmable, 30 mV steps. Default = 1.35V.  
Includes load and line regulation. Forced PWM mode.  
Measure with 20 MHz bandwidth limit.  
1.2  
–4  
1.5  
4
PWM output voltage DC accuracy  
PWM ripple voltage, static  
%
7
20  
mVpp  
Static load. Max. ripple based on VBAT = 3.6V,  
Vout = 1.35V, Fsw = 4 MHz, 2.2 μH inductor with min.  
effective L > 1.05 μH,  
cap. + board total – ESR < 20 mΩ, Cout > 1.9 μF,  
ESL<200 pH  
PWM mode peak efficiency  
PFM mode efficiency  
Peak efficiency at 200 mA load.  
10 mA load current.  
78  
70  
86  
%
%
µs  
81  
Start-up time from power down  
VIO already ON and steady. Time from REG_ON rising  
edge to CLDO reaching 1.2V.  
400  
500  
External inductor  
0806 size, 2.2 μH, DCR = 0.11Ω, ACR = 1.18Ω @  
4 MHz.  
2.2  
4.7  
4.7  
µH  
µF  
µF  
µs  
2.02  
103  
External output capacitor  
External input capacitor  
Input supply voltage ramp-up time  
Ceramic, X5R, 0402, ESR <30 mΩ at 4 MHz, 4.7 μF  
±20%, 6.3V.  
0.672  
For SR_VDDBAT5V pin, ceramic, X5R, 0603, ESR <  
30 mΩ at 4 MHz, ±4.7 μF ±20%, 6.3V.  
0 to 4.3V.  
40  
1. The maximum continuous voltage is 4.8V. Voltages up to 6.0V for up to 10 seconds, cumulative duration, over the lifetime of the device are allowed. Voltages as  
high as 5.0V for up to 250 seconds, cumulative duration, over the lifetime of the device are allowed.  
2. Minimum capacitor value refers to the residual capacitor value after taking into account the part-to-part tolerance, DC-bias, temperature, and aging.  
3. Total capacitance includes those connected at the far end of the active load.  
Document Number: 002-14826 Rev. *G  
Page 49 of 65  
PRELIMINARY  
CYW43903  
15.2 3.3V LDO (LDO3P3)  
Table 26. LDO3P3 Specifications  
Specification  
Notes  
Min.  
3.0  
Typ.  
3.6  
Max.  
Units  
4.81  
V
Input supply voltage, Vin  
Min. = Vo + 0.2V = 3.5V dropout voltage requirement  
must be met under maximum load for performance  
specifications.  
Output current  
0.001  
450  
mA  
V
Nominal output voltage, Vo  
Default = 3.3V.  
3.3  
Dropout voltage  
At max. load.  
200  
+5  
mV  
%
Output voltage DC accuracy  
Quiescent current  
Line regulation  
Includes line/load regulation.  
No load.  
–5  
85  
µA  
V
in from (Vo + 0.2V) to 4.8V, max. load.  
Load from 1 mA to 450 mA.  
in ≥ Vo + 0.2V, Vo = 3.3V, Co = 4.7 µF, Max load,  
3.5  
mV/V  
Load regulation  
PSRR  
0.3  
mV/mA  
dB  
V
20  
100 Hz to 100 kHz.  
LDO turn-on time  
Chip already powered up.  
160  
4.7  
250  
10  
µs  
1.02  
External output capacitor, Co  
Ceramic, X5R, 0402,(ESR: 5 mΩ–240 mΩ), ± 10%,  
10V.  
µF  
External input capacitor  
For LDO_VDDBAT5V pin (shared with band gap)  
ceramic, X5R, 0402, (ESR: 30mΩ–200 mΩ), ± 10%,  
10V.  
Not needed if sharing 4.7 µF VBAT capacitor with  
SR_VDDBAT5V.  
4.7  
µF  
1. The maximum continuous voltage is 4.8V. Voltages up to 6.0V for up to 10 seconds, cumulative duration, over the lifetime of the device are allowed. Voltages as  
high as 5.0V for up to 250 seconds, cumulative duration, over the lifetime of the device are allowed.  
2. Minimum capacitor value refers to the residual capacitor value after taking into account the part-to-part tolerance, DC-bias, temperature, and aging.  
Document Number: 002-14826 Rev. *G  
Page 50 of 65  
PRELIMINARY  
CYW43903  
15.3 CLDO  
Table 27. CLDO Specifications  
Specification  
Notes  
Min. Typ. Max. Units  
Input supply voltage, Vin Min. = 1.2 + 0.15V = 1.35V dropout voltage requirement must be met 1.3  
under maximum load.  
1.35 1.5  
V
Output current  
0.2  
350  
mA  
V
Output voltage, Vo  
Programmable in 10 mV steps. Default = 1.2.V.  
0.95 1.2  
1.26  
Dropout voltage  
At max. load.  
150  
+4  
mV  
%
Output voltage DC  
accuracy  
Includes line/load regulation.  
–4  
Quiescent current  
No load.  
26  
2.48  
5
µA  
200 mA load.  
mA  
Line regulation  
V
in from (Vo + 0.15V) to 1.5V, maximum load.  
mV/V  
Load regulation  
Leakage current  
Load from 1 mA to 300 mA.  
Power down.  
0.02 0.05 mV/mA  
10  
2
40  
6
µA  
µA  
dB  
Bypass mode.  
PSRR  
@1 kHz, Vin ≥ 1.35V, Co = 4.7 µF.  
20  
Start-up time of PMU  
VIO up and steady. Time from the REG_ON rising edge to the CLDO  
reaching 1.2V.  
700  
µs  
LDO turn-on time  
LDO turn-on time when the rest of the chip is up.  
140  
4.7  
180  
µs  
3.761  
External output capacitor, Total ESR: 5 mΩ–240 mΩ.  
Co  
µF  
External input capacitor  
Only use an external input capacitor at the LDO_VDD1P5 pin if it is not  
supplied from the CBUCK output.  
1
2.2  
µF  
1. Minimum capacitor value refers to the residual capacitor value after taking into account the part-to-part tolerance, DC-bias, temperature, and aging.  
Document Number: 002-14826 Rev. *G  
Page 51 of 65  
PRELIMINARY  
CYW43903  
15.4 LNLDO  
Table 28. LNLDO Specifications  
Specification  
Notes  
Min.  
1.3  
Typ. Max. Units  
Input supply voltage, Vin Min. VIN = VO + 0.15V = 1.35V (where VO = 1.2V)dropout voltage  
requirement must be met under maximum load.  
1.35  
1.5  
V
Output current  
0.1  
1.1  
150 mA  
1.275 V  
Output voltage, Vo  
Programmable in 25 mV steps. Default = 1.2V.  
1.2  
Dropout voltage  
At maximum load.  
150 mV  
Output voltage DC  
accuracy  
Includes line/load regulation.  
–4  
+4  
%
Quiescent current  
No load.  
44  
970  
µA  
Max. load.  
990 µA  
Line regulation  
Load regulation  
V
in from (Vo + 0.1V) to 1.5V, 150 mA load.  
5
mV/V  
Load from 1 mA to 150 mA.  
0.02  
0.05 mV/  
mA  
Leakage current  
Output noise  
Power-down.  
10  
µA  
@30 kHz, 60–150 mA load Co = 2.2 µF. @100 kHz, 60–150 mA  
load  
Co = 2.2 µF.  
60  
35  
nV/rt  
Hz nV/  
rt Hz  
PSRR  
@ 1kHz, Input > 1.35V, Co= 2.2 µF, Vo = 1.2V.  
LDO turn-on time when the rest of the chip is up.  
20  
dB  
LDO turn-on time  
140  
2.2  
180 µs  
0.51  
External output capacitor, Total ESR (trace/capacitor): 5 mΩ–240 mΩ.  
Co  
4.7  
µF  
External input capacitor Only use an external input capacitor at the LDO_VDD1P5 pin if it is  
not supplied from the CBUCK output. Total ESR (trace/capacitor): 30  
mΩ–200 mΩ.  
1
2.2  
µF  
1. Minimum capacitor value refers to the residual capacitor value after taking into account the part-to-part tolerance, DC-bias, temperature, and aging.  
Document Number: 002-14826 Rev. *G  
Page 52 of 65  
PRELIMINARY  
CYW43903  
15.5 BBPLL LDO  
Table 29. BBPLL LDO Specifications  
Parameter  
Conditions and Comments  
Min.  
1.3  
Typ.  
Max.  
Units  
Input supply voltage, Vin  
Min. Vin= Vo + 0.15V = 1.35V (for Vo = 1.2V).  
1.35  
1.5  
V
The dropout voltage requirement must be met under maximum  
load.  
Output voltage, Vo  
Dropout voltage  
Programmable in 25 mV steps. Default = 1.2V.  
1.1  
1.2  
1.275  
V
At max. load  
150  
+4  
mV  
%
Output voltage DC  
accuracy  
Includes line/load regulation.  
–4  
Output current  
Peak load = 80 mA, average = 35 mA  
0.1  
55  
12  
570  
5
mA  
μA  
Quiescent current  
No load  
10  
550  
55 mA load  
μA  
Line regulation  
Load regulation  
Leakage current  
V
in from (Vo + 0.15V) to 1.5V; 200 mA load  
mV/V  
load from 1mA to 200 mA; Vin ≥ (Vo + 0.15V)  
0.025 0.045 mV/mA  
Powered down. Junction temperature is 85°C.  
Bypass mode  
5
20  
1.5  
μA  
μA  
dB  
0.2  
PSRR  
@1 kHz, Vin ≥ Vo + 0.15V, Co = 4.7 μF  
20  
Start-up time of PMU  
VIO up and steady. Time from REG_ON rising edge to CLDO  
reaching 99% of Vo.  
530  
700  
us  
LDO turn-on time  
Inrush current  
The LDO turn-on time when the rest of the chip is up.  
Vin=Vo+0.15V to 1.5V, Co=0.47uF, no load  
140  
60  
180  
70  
us  
mA  
μF  
External output capacitor, Ceramic, X5R, size 0201, max. 6.3V, 20% tolerance  
Co  
0.27  
0.47  
External input capacitor  
Only use an external input capacitor at the LDO_VDD1P5 pin if it  
is not supplied from the CBUCK output.  
1
μF  
Document Number: 002-14826 Rev. *G  
Page 53 of 65  
PRELIMINARY  
CYW43903  
16. System Power Consumption  
Note: Values in this data sheet are design goals and are subject to change based on the results of device characterization.  
Note: Unless otherwise stated, these values apply for the conditions specified in Table 16, “Recommended Operating Conditions and  
DC Characteristics,”.  
16.1 WLAN Current Consumption  
The tables in this subsection show the typical, total current used by the CYW43903. Current values may be measured with the APPS  
core powered off. The first column of the table, the mode description, will state the power condition of the APPS core.  
16.1.1 2.4 GHz Mode  
Table 30. 2.4 GHz Mode WLAN Current Consumption  
VDDIO =  
VBAT = 3.6V 1 (μA)  
Mode  
VDDIO_HIB = 3.3V 1, 2(μA)  
Sleep Modes  
Radio off 3  
Sleep 4, 5  
3
3
6
160  
160  
160  
160  
IEEE Power Save, DTIM=1, single RX, APPS powered down 6  
2180  
680  
233  
IEEE Power Save, DTIM=3, single RX, APPS powered down 7  
IEEE Power Save, DTIM=9, single RX, APPS powered down  
Active Modes  
Continuous RX mode MCS7, HT20, 1SS, APPS powered up 8, 9  
CRS-HT20, APPS powered up 10  
57,200  
55,200  
325,000  
302,000  
60  
60  
60  
60  
Continuous TX mode 1 Mbps, APPS powered up 11  
Continuous TX mode MCS7, HT20, 1SS, 1 TX, APPS powered up 12  
Ping Modes  
Ping to associated access point 11  
Sleep  
336,000  
6
60  
160  
1. Typical silicon.  
2. VIO is specified with all pins idle (not switching) and not driving any loads.  
3. REG_ON is low or the device is in hibernation, and all supplies are present.  
4. REG_ON is high. APPS domain is powered down. WLAN domain is in low-power state retention mode. Top level is powered up.  
5. Inter-beacon current.  
6. Beacon Interval = 102.4 ms. Beacon duration = 1 ms @ 1 Mbps. Average current over 3× DTIM intervals.  
7. Beacon interval = 307.2 ms. Beacon duration = 1 ms @ 1 Mbps. Average current over 3× DTIM intervals.  
8. Duty cycle is 100%. Carrier sense (CS) detect/packet receive.  
9. Measured using packet engine test mode.  
10. Carrier sense (CCA) when no carrier present.  
11. Duty cycle is 100%. TX power at chip output ~17.7 dBm.  
12. Duty cycle is 100%. TX power at chip output ~15.2 dBm.  
Document Number: 002-14826 Rev. *G  
Page 54 of 65  
PRELIMINARY  
CYW43903  
17. SPI Flash Characteristics  
17.1 SPI Flash Timing  
17.1.1 Read-Register Timing  
Figure 13 shows the SPI flash extended and quad read-register timing.  
Note: Regarding Figure 13: All Read Register commands except Read Lock Register are supported. A Read Nonvolatile Configuration Register operation will output data  
starting from the least significant byte.  
Figure 13. SPI Flash Read-Register Timing  
0
7
8
9
10  
11  
12  
13  
14  
15  
Extended  
C
LSB  
DQ0  
DQ1  
Command  
High-Z  
MSB  
LSB  
DOUT  
MSB  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
0
1
2
3
Quad  
C
LSB  
LSB  
DOUT  
DQ[3:0]  
Command  
DOUT  
MSB  
DOUT  
Don’t care  
MSB  
Document Number: 002-14826 Rev. *G  
Page 55 of 65  
PRELIMINARY  
CYW43903  
17.1.2 Write-Register Timing  
Figure 14 shows the SPI flash extended and quad write-register timing.  
Note: Regarding Figure 14:  
1. All write-register commands except Write Lock Register are supported.  
2. The waveform must be extended for each protocol: to 23 for extended and five for quad.  
3. A Write Nonvolatile Configuration Register operation requires data being sent starting from the least significant byte.  
Figure 14. SPI Flash Write-Register Timing  
0
7
8
9
10  
11  
12  
13  
14  
15  
Extended  
C
LSB  
LSB  
DQ0  
Command  
DIN  
DIN  
DIN  
DIN  
DIN  
DIN  
DIN  
DIN  
DIN  
MSB  
MSB  
0
1
2
3
Quad  
C
LSB  
LSB  
DQ[3:0]  
Command  
DIN  
DIN  
DIN  
MSB  
MSB  
Document Number: 002-14826 Rev. *G  
Page 56 of 65  
PRELIMINARY  
CYW43903  
17.1.3 Memory Fast-Read Timing  
Figure 15 shows the SPI flash extended and quad memory fast-read timing.  
Note: Regarding Figure 15:  
1. 24-bit addressing is used, so A[MAX] = A[23] and A[MIN] = A[0].  
2. For an extended SPI protocol, Cx = 7 + (A[MAX] + 1).  
3. For a quad SPI protocol, Cx = 1 + (A[MAX] + 1)/4.  
Figure 15. Memory Fast-Read Timing  
0
7
8
Cx  
Extended  
C
A[MIN]  
LSB  
DQ0  
DQ1  
Command  
High-Z  
MSB  
A[MAX]  
LSB  
DOUT  
MSB  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
Dummy Cycles  
0
1
2
Cx  
Quad  
C
LSB  
DOUT  
A[MIN]  
LSB  
DQ[3:0]  
Command  
DOUT  
MSB  
DOUT  
MSB  
A[MAX]  
Dummy Cycles  
Don’t care  
Document Number: 002-14826 Rev. *G  
Page 57 of 65  
PRELIMINARY  
CYW43903  
17.1.4 Memory-Write Timing  
Figure 16 shows the SPI flash extended and quad memory-write (Page Program) timing.  
Note: Regarding Figure 16:  
1. For an extended SPI protocol, Cx = 7 + (A[MAX] + 1).  
2. For a quad SPI protocol, Cx = 1 + (A[MAX] + 1)/4.  
Figure 16. Memory-Write Timing  
0
7
8
Cx  
Extended  
C
LSB  
A[MIN]  
LSB  
DQ0  
Command  
DIN  
MSB  
DIN  
DIN  
DIN  
DIN  
DIN  
DIN  
DIN  
DIN  
MSB  
A[MAX]  
0
1
2
Cx  
Quad  
C
LSB  
LSB  
A[MIN]  
DQ[3:0]  
Command  
DIN  
DIN  
DIN  
MSB  
A[MAX]  
MSB  
Document Number: 002-14826 Rev. *G  
Page 58 of 65  
PRELIMINARY  
CYW43903  
17.1.5 SPI Flash Parameters  
The combination of Figure 17 and Table 31 provide the SPI flash timing parameters.  
Figure 17. SPI Flash Timing Parameters Diagram  
T_DVCH  
Clock (C)  
T_CHDX  
Data in (DIN)  
(DQ1 in Serial [Extended] mode)  
(DQ[3:0] in Quad mode)  
T_CLQX  
Data out (DOUT  
)
(DQ0 in Serial [Extended] mode)  
(DQ[3:0] in Quad mode)  
T_CLQV  
Table 31. SPI Flash Timing Parameters  
Parameter  
Description  
Minimum  
Maximum  
Units  
T_DVCH  
T_CHDX  
T_CLQX  
T_CLQV  
Data setup time  
Data hold time  
Output hold time  
2
3
1
5
ns  
ns  
ns  
ns  
Output valid time (with a 10 pF load)  
Document Number: 002-14826 Rev. *G  
Page 59 of 65  
PRELIMINARY  
CYW43903  
18. Power-Up Sequence and Timing  
18.1 Sequencing of Reset and Regulator Control Signals  
The CYW43903 has two signals that allow the host to control power consumption by enabling or disabling the internal regulator blocks.  
These signals are described below. Additionally, diagrams are provided to indicate proper sequencing of the signals for various  
operational states (see Figure 18 and Figure 19). The timing values indicated are minimum required values; longer delays are also  
acceptable.  
18.1.1 Description of Control Signals  
REG_ON: Used by the PMU to power-up the CYW43903. It controls the internal CYW43903 regulators. When this pin is high,  
the regulators are enabled and the device is out of reset. When this pin is low the regulators are disabled.  
HIB_REG_ON_IN: Used by the Hibernation (HIB) block to power up the internal CYW43903 regulators. If the HIB_REG_ON_IN  
pin is low, the regulators are disabled. For the HIB_REG_ON_IN pin to work as designed, HIB_REG_ON_OUT must be con-  
nected to REG_ON.  
Note: The CYW43903 has an internal power-on reset (POR) circuit. The device will be held in reset for a maximum of 110 ms after  
VDDC and VDDIO have both passed the POR threshold.  
Note: The 10%–90% VBAT rise time should not be faster than 40 microseconds. VBAT should be up before or at the same time as  
VDDIO. VDDIO should not be present first or be held high before VBAT is high.  
18.1.2 Control Signal Timing Diagrams  
Figure 18. REG_ON = High, No HIB_REG_ON_OUT Connection to REG_ON  
32.678 kHz  
Sleep Clock  
VBAT  
VDDIO  
~ 2 Sleep Cycles  
REG_O N  
HIB_REG _O N_IN  
Figure 19. HIB_REG_ON_IN = High, HIB_REG_ON_OUT Connected to REG_ON  
32.678 kHz  
Sleep Clock  
VBAT  
VDDIO  
~ 2 Sleep Cycles  
HIB_REG _O N_IN  
Document Number: 002-14826 Rev. *G  
Page 60 of 65  
PRELIMINARY  
CYW43903  
19. Thermal Information  
19.1 Package Thermal Characteristics  
Table 32. Package Thermal Characteristics1  
Characteristic  
WLBGA  
31.72  
3.95  
2.16  
JA (°C/W) (value in still air)  
JB (°C/W)  
JC (°C/W)  
JT (°C/W)  
JB (°C/W)  
4.3  
9.28  
113.9  
1.38  
Maximum Junction Temperature Tj (°C)  
Maximum power dissipation (W)  
1. No heat sink, TA = 70°C. This is an estimate based on a 4-layer PCB that conforms to EIA/JESD51–7. Air velocity is 0 m/s.  
19.2 Junction Temperature Estimation and PSI Versus THETA  
JT  
JC  
Package thermal characterization parameter PSI–JT (JT) yields a better estimation of actual junction temperature (TJ) versus using  
the junction-to-case thermal resistance parameter Theta–JC (JC). The reason for this is that JC assumes that all the power is  
dissipated through the top surface of the package case. In actual applications, some of the power is dissipated through the bottom  
and sides of the package. JT takes into account power dissipated through the top, bottom, and sides of the package. The equation  
for calculating the device junction temperature is:  
TJ = TT + P x YJT  
Where:  
TJ = Junction temperature at steady-state condition (°C)  
TT = Package case top center temperature at steady-state condition (°C)  
P = Device power dissipation (Watts)  
JT = Package thermal characteristics; no airflow (°C/W)  
19.3 Environmental Characteristics  
For environmental characteristics data, see Table 14, “Environmental Ratings,”.  
Document Number: 002-14826 Rev. *G  
Page 61 of 65  
PRELIMINARY  
CYW43903  
20. Mechanical Information  
Figure 20. WLBGA Package  
Document Number: 002-14826 Rev. *G  
Page 62 of 65  
PRELIMINARY  
CYW43903  
21. Ordering Information  
Operating  
Ambient  
Part Number  
Package  
4.91 mm x 5.85 mm, 0.4 mm ball pitch,  
Description  
Temperature  
CYW43903KUBG  
–30°C to +85°C  
151-pin WLBGA  
22. Additional Information  
22.1 Acronyms and Abbreviations  
In most cases, acronyms and abbreviations are defined upon first use. For a more complete list of acronyms and other terms used in  
Cypress documents, go to: http://www.cypress.com/glossary.  
22.2 IoT Resources  
Cypress provides a wealth of data at http://www.cypress.com/internet-things-iot to help you to select the right IoT device for your  
design, and quickly and effectively integrate the device into your design. Cypress provides customer access to a wide range of  
information, including technical documentation, schematic diagrams, product bill of materials, PCB layout information, and software  
updates. Customers can acquire technical documentation and software from the Cypress Support Community website  
(https://community.cypress.com/)  
22.3 Errata  
1. The RTC block has been deprecated from this datasheet in revision *A and later. This block is used by Cypress for internal  
testing/validation/verification and is not intended for customers to use.  
2. The details of the SPI hardware blocks was not available in revision *E and 5.7 SPI has been added in Revision *F.  
Note that the SPI hardware blocks can only support a hold time of 25ns and a fixed SPI mode (CPHA=0, CPOL = 0). For slaves that  
require higher hold times or a different mode, a bit banging based SPI driver is recommended.  
3. The clock for the SPI Flash block needs to be constrained to ~26.67MHz for reliable operation at high operating temperatures.  
The throughput of the SPI Flash block is therefore restricted to ~13 MBps for Quad mode and ~3 MBps for single mode  
Document Number: 002-14826 Rev. *G  
Page 63 of 65  
PRELIMINARY  
CYW43903  
Document History Page  
Document Title: CYW43903 WICED™ IEEE 802.11 a/b/g/n SoC with an Embedded Applications Processor  
Document Number: 002-14826  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
43903-DS100-R  
Initial Release  
**  
10/15/2015  
43903-DS101-R  
Updated:  
*A  
11/03/2015  
Table 21: “Absolute Maximum Ratings”, Table 24: “Recommended Operating  
Conditions and DC Characteristics”, Table 30: “WLAN 2.4 GHz Receiver  
Performance Specifications”, Table 31: “WLAN 2.4 GHz Transmitter Performance  
Specifications”  
43903-DS102-R  
Updated:  
*B  
03/12/2016  
General edits  
Added Cypress Part Numbering Scheme and Mapping Table.  
Updated to Cypress template.  
*C  
*D  
*E  
5445059  
5593296  
5909757  
UTSV  
TREB  
UTSV  
11/28/2016  
01/24/2017  
10/12/2017  
Removed 43909 Documentation.  
Updated Cypress Logo and Copyright.  
Updated 512 KB to 1 MB in the following pages:  
Features on page 1, Figure 1 on page 2, Figure 2 on page 5, Features on page 6,  
Applications CPU and Memory Subsystem on page 16.  
Updated “Broadcom Serial Control (BSC)” to “Cypress Serial Control (BSC)”  
throughout the document.  
*F  
5986964  
SHJL  
12/11/2017  
Added VBAT in Figure 1 on page 2.  
Updated the footnotes in Table 4 on page 14.  
Deleted 3.3 Frequency Selection and Real-Time Clock.  
Added “Note: JTAG_SEL is exposed on a dedicated physical pin. TAP_SEL uses  
the GPIO_8 physical pin.” below Table 6.  
Added “Note: The high-speed, 4-wire UART interface is identified as UART0 in this  
document and in reference schematics. The two low-speed,  
2-wire UART interfaces are identified as UART1 and UART2 in this document and  
in the reference schematics” in the UART on page 18.  
Added footnote in Table 11 on page 36 and Table 30 on page 54.  
Added section SPI on page 19.  
Added Errata on page 63  
Updated footnote of 5.5 SPI Flash as “Note that the clock needs to be constrained  
to ~26.67MHz for reliable operation at high operating temperatures. The throughput  
of the SPI Flash block is therefore restricted to ~13 MBps for Quad mode and ~3  
MBps for single mode”.  
*G  
6026132  
SHJL  
1/11/2018  
Added “ The clock for the SPI Flash block needs to be constrained to ~26.67MHz for  
reliable operation at high operating temperatures.  
The throughput of the SPI Flash block is therefore restricted to ~13 MBps for Quad  
mode and ~3 MBps for single mode.” to 22.3.Errata.  
Document Number: 002-14826 Rev. *G  
Page 64 of 65  
PRELIMINARY  
CYW43903  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
Arm® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP| PSoC 6  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Forums | WICED IOT Forums | Projects | Video | Blogs | Training  
| Components  
Internet of Things  
Memory  
Technical Support  
cypress.com/memory  
cypress.com/mcu  
cypress.com/support  
Microcontrollers  
PSoC  
cypress.com/psoc  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless Connectivity  
cypress.com/wireless  
© Cypress Semiconductor Corporation, 2015-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document,  
including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to  
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users  
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation  
of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing  
device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach,  
such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product  
to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any  
liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming  
code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this  
information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons  
systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances  
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device  
or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you  
shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from  
and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 002-14826 Rev. *G  
Revised January 11, 2018  
Page 65 of 65  

相关型号:

CYW43907KWBG

Multifunction Peripheral, CMOS, PBGA316, WLCSP-316
CYPRESS

CYW4390DKWBG

WICED™ Wi-Fi IEEE 802.11 b/g/n SoC with Embedded Application Processor
CYPRESS

CYW4390DKWBGT

WICED™ Wi-Fi IEEE 802.11 b/g/n SoC with Embedded Application Processor
CYPRESS

CYW54907

WICED™ IEEE 802.11 a/b/g/n/ac SoC with an Embedded Applications Processor
CYPRESS

CYW54907

Infineon’s AIROC™ CYW54907 is an 802.11ac dual-band Wi-Fi SoC with embedded 320 MHz Arm® Cortex®-R4 application processor and 2 MB of on-chip memory. With a powerful processor, large on-chip memory, rich set of peripherals, 802.11ac connectivity and networking stack provided by Infineon’s ModusToolbox™, the CYW54907 offers everything need to quickly build a wide variety of secure cloud applications without relying on a host processor.
INFINEON

CYW54907KWBG

WICED™ IEEE 802.11 a/b/g/n/ac SoC with an Embedded Applications Processor
CYPRESS

CYW88335

Single-Chip 5G Wi-Fi IEEE 802.11ac MAC/Baseband/Radiowith Integrated Bluetooth 4.1 for Automotive Applications
CYPRESS

CYW88335L2CUBG

Single-Chip 5G Wi-Fi IEEE 802.11ac MAC/Baseband/Radiowith Integrated Bluetooth 4.1 for Automotive Applications
CYPRESS

CYW89071

Single-Chip Automotive Grade Bluetooth Transceiver and Baseband Processor
CYPRESS

CYW89071A1CUBXG

Single-Chip Automotive Grade Bluetooth Transceiver and Baseband Processor
CYPRESS

CYW89820

The AIROC™ CYW89820 Automotive Bluetooth® & Bluetooth® LE SoC is a Bluetooth® 5.2 core spec compliant device for automotive and industrial applications. Manufactured using the industry's advanced 40 nm CMOS low-power process, the CYW89820 is a highly integrated device which delivers up to 11.5 dBm transmit output power in LE and BR modes and up to 2.5 dBm in EDR mode, reducing the device footprint and the costs associated with implementing Bluetooth® solutions.
INFINEON

CYWB0120AB-BVXI

Microprocessor Circuit, CMOS, PBGA100, 6 X 6 MM, 1 MM HEIGHT, LEAD FREE, MO-195C, VFBGA-100
CYPRESS