CYW89820 [INFINEON]

The AIROC™ CYW89820 Automotive Bluetooth® & Bluetooth® LE SoC is a Bluetooth® 5.2 core spec compliant device for automotive and industrial applications. Manufactured using the industry's advanced 40 nm CMOS low-power process, the CYW89820 is a highly integrated device which delivers up to 11.5 dBm transmit output power in LE and BR modes and up to 2.5 dBm in EDR mode, reducing the device footprint and the costs associated with implementing Bluetooth® solutions.;
CYW89820
型号: CYW89820
厂家: Infineon    Infineon
描述:

The AIROC™ CYW89820 Automotive Bluetooth® & Bluetooth® LE SoC is a Bluetooth® 5.2 core spec compliant device for automotive and industrial applications. Manufactured using the industry's advanced 40 nm CMOS low-power process, the CYW89820 is a highly integrated device which delivers up to 11.5 dBm transmit output power in LE and BR modes and up to 2.5 dBm in EDR mode, reducing the device footprint and the costs associated with implementing Bluetooth® solutions.

文件: 总53页 (文件大小:735K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CYW89820  
AIROC™ Bluetooth® system on chip for  
automotive applications  
CYW89820 is a monolithic, single-chip, Bluetooth® 5.0 compliant, standalone baseband processor system on chip  
(SoC) with an integrated 2.4 GHz transceiver.  
Manufactured using the industry's most advanced 40-nm CMOS low-power process, the CYW89820 employs the  
highest level of integration, eliminating all critical external components, and thereby minimizing the device’s  
footprint and costs associated with the implementation of Bluetooth® solutions.  
Integrating a transceiver, baseband processor, Arm® Cortex®-M4, and application flash memory on a single die  
provides the capability to replace function-specific devices with a single design that offers all Bluetooth® modes  
of operation.  
The CYW89820 brings the latest Bluetooth® technology to automotive applications and offers automotive Grade  
2 (–40°C to +105°C) ambient operating temperature performance. The CYW89820 is tested to Automotive  
Electronics Council AEC-Q100 environmental stress guidelines and is manufactured in ISO9001 approved and  
TS16949 certified facilities.  
Features  
• Bluetooth® subsystem  
- Complies with Bluetooth® Core Specification version 5.0  
• QDID: 151200  
• Declaration ID: D043201  
- Includes support for BR, EDR 2 Mbps and 3 Mbps, eSCO, Bluetooth® LE, and LE 2 Mbps.  
- Programmable TX Power up to 11.5 dBm  
- Excellent receiver sensitivity (–94 dBm for BLE 1 Mbps)  
• Microcontroller  
- Powerful Arm® Cortex®-M4 core with a maximum speed of 96 MHz  
- Bluetooth® stack in ROM allowing standalone operation without any external MCU  
- 256-KB on-chip secure flash  
- 176-KB on-chip RA  
- Bluetooth® stack, peripheral drivers, security functions built into ROM (1 MB) allowing application to efficiently  
use on-chip flash  
- AES-128 and true random number generator (TRNG)  
- Security functions in ROM including ECDSA signature verification  
- Over-the-air (OTA) firmware updates  
• Peripherals  
- 17 GPIOs  
- I2C, I2S, UART, and PCM interfaces  
- Quad-SPI interfaces  
- Auxiliary ADC with up to 14 analog channels  
- General-purpose timers and PWM  
- Real-time clock (RTC) and watchdog timers (WDT)  
• Power management  
- On chip power-on reset (POR)  
- Integrated buck (DC-DC) and LDO regulators  
- On chip software controlled power management unit  
- On chip 32-kHz LPO with optional external 32-kHz crystal oscillator support  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
page 1  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Applications  
• Wi-Fi coexistence  
- Global Coexistence Interface (GCI) for Infineon Wi-Fi parts  
- Serial Enhanced Coexistence Interface (SECI)  
• Supported in ModusToolbox™ software  
• OTA firmware update support  
• Grade-2 (–40°C to +105°C) operation  
• Package types  
- 48-pin WQFN  
- RoHS compliant  
Applications  
• Automotive  
- Car access and car sharing  
- Keyless entry  
- Passive entry and passive start (PEPS)  
- Remote parking  
- Wireless diagnostics (OBD)  
- Sensors  
- Cable replacement  
• Industrial  
- Access control  
- Asset tracking  
- Factory automation  
- Logistics management  
- Sensors  
Datasheet  
2
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Functional block diagram  
Functional block diagram  
Microcontroller Subsystem  
Bluetooth® Core  
Cache  
Secure Flash  
8 KB  
256 KB  
BT5.0  
PHY  
BT5.0  
MAC  
PA  
RF  
RAM  
160 KB  
ROM  
1 MB  
Arm®  
Cortex® M4  
96 MHz  
Clocks  
XTAL OSC  
24 MHz  
Patch Control  
Patch RAM  
16 KB  
HP-LPO  
32 kHz  
Debug UART/JTAG  
Watchdog  
XTAL OSC  
32 kHz  
LP-LPO  
16/32/128 kHz  
Peripherals  
Power Management  
Core DC-DC  
ADC  
IR  
TRNG  
GPIOs (17)  
I2C Master  
I2C Slave  
UART (x2)  
I/  
O
RF LDO  
TRIAC  
M
U
X
Digital LDO  
PA LDO  
PWM  
PCM  
Timer  
Q-SPI (x2)  
Coexistence Interface (GCI)  
Datasheet  
3
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Table of contents  
Table of contents  
Features ...........................................................................................................................................1  
Applications......................................................................................................................................2  
Functional block diagram...................................................................................................................3  
Table of contents...............................................................................................................................4  
1 Bluetooth® baseband core ...............................................................................................................6  
1.1 BQB and regulatory testing support ......................................................................................................................6  
1.2 Wi-Fi coexistence support ......................................................................................................................................7  
2 Microprocessor unit ........................................................................................................................8  
2.1 Main crystal oscillator.............................................................................................................................................8  
2.2 32 kHz crystal oscillator..........................................................................................................................................9  
2.3 Low-frequency clock sources...............................................................................................................................10  
2.4 Power modes ........................................................................................................................................................11  
2.5 Watchdog ..............................................................................................................................................................11  
2.6 Lockout functionality............................................................................................................................................11  
2.7 True random number generator ..........................................................................................................................11  
3 Power-on and external reset..........................................................................................................12  
4 Power management unit ...............................................................................................................13  
5 Power configurations....................................................................................................................14  
5.1 Configuration 1 - VBAT and VDDIO.......................................................................................................................14  
5.2 Configuration 2 - External supplies......................................................................................................................15  
5.3 Configuration 3 - LDOs and VDDIO.......................................................................................................................15  
6 Integrated radio transceiver ..........................................................................................................16  
6.1 Transmitter path...................................................................................................................................................16  
6.1.1 Digital modulator...............................................................................................................................................16  
6.1.2 Power amplifier..................................................................................................................................................16  
6.2 Receiver path ........................................................................................................................................................16  
6.2.1 Digital demodulator and bit synchronizer........................................................................................................16  
6.2.2 Receiver signal strength indicator ....................................................................................................................16  
6.3 Local oscillator......................................................................................................................................................16  
7 Peripherals ..................................................................................................................................17  
7.1 I2C compatible master .........................................................................................................................................17  
7.2 Serial peripheral interface....................................................................................................................................17  
7.3 HCI UART interface................................................................................................................................................17  
7.4 Peripheral UART interface ....................................................................................................................................17  
7.5 GPIO ports .............................................................................................................................................................17  
7.6 ADC ........................................................................................................................................................................18  
7.7 PWM .......................................................................................................................................................................18  
7.8 PDM microphone ..................................................................................................................................................19  
7.9 I2S interface ..........................................................................................................................................................19  
7.10 PCM interface ......................................................................................................................................................19  
7.10.1 Slot mapping....................................................................................................................................................19  
7.10.2 Frame synchronization....................................................................................................................................20  
7.10.3 Data formatting................................................................................................................................................20  
8 Firmware .....................................................................................................................................21  
9 Pin assignments and GPIOs............................................................................................................22  
10 Ball maps ...................................................................................................................................31  
10.1 48-pin WQFN pin map.........................................................................................................................................31  
11 Specifications .............................................................................................................................32  
11.1 Electrical characteristics ....................................................................................................................................32  
11.2 Brown out............................................................................................................................................................33  
11.2.1 Core buck regulator .........................................................................................................................................33  
Datasheet  
4
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Table of contents  
11.2.2 Recommended component ............................................................................................................................34  
11.2.3 Digital LDO........................................................................................................................................................34  
11.2.4 Recommended component ............................................................................................................................35  
11.2.5 RF LDO ..............................................................................................................................................................35  
11.2.6 PALDO...............................................................................................................................................................36  
11.2.7 Recommended component ............................................................................................................................37  
11.2.8 Digital I/O characteristics ................................................................................................................................37  
11.2.9 Current consumption ......................................................................................................................................37  
11.3 RF specifications .................................................................................................................................................38  
11.4 Timing and AC characteristics............................................................................................................................40  
11.4.1 UART timing .....................................................................................................................................................40  
11.4.2 SPI timing .........................................................................................................................................................41  
11.4.3 BSC interface timing ........................................................................................................................................42  
11.4.4 I2S .....................................................................................................................................................................43  
12 Package information ...................................................................................................................45  
12.1 Package thermal characteristics........................................................................................................................45  
13 Packaging diagrams ....................................................................................................................46  
13.1 48-Pin WQFN package.........................................................................................................................................46  
13.2 Tape reel and packaging specifications ............................................................................................................47  
14 Ordering information ..................................................................................................................48  
15 Acronyms ...................................................................................................................................49  
Revision history ..............................................................................................................................52  
Datasheet  
5
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Bluetooth® baseband core  
1
Bluetooth® baseband core  
The Bluetooth® baseband core (BBC) implements all of the time-critical functions required for high-performance  
Bluetooth® operation. The BBC manages the buffering, segmentation, and routing of data for all ACL, SCO, eSCO,  
LE, and 2 Mbps LE connections. It prioritizes and schedules all RX/TX activities including adv, paging, scanning,  
and servicing of connections. In addition to these functions, it independently handles the host controller  
interface (HCI) including all commands, events, and data flowing over HCI. The core also handles symbol timing,  
forward error correction (FEC), header error control (HEC), cyclic redundancy check (CRC), authentication, data  
encryption/decryption, and data whitening/dewhitening.  
Table 1 lists key Bluetooth® features supported by the CYW89820.  
Table 1  
Key Bluetooth® features supported by CYW89820  
Bluetooth® 1.0  
Basic rate  
SCO  
Paging and inquiry  
Page and inquiry scan  
Sniff  
Bluetooth® 1.2  
Interlaced scans  
Adaptive frequency hopping  
eSCO  
Bluetooth® 2.0  
EDR 2 Mbps and 3 Mbps  
Bluetooth® 2.1  
Secure simple pairing  
Enhanced inquiry response  
Sniff Subrating  
Bluetooth® 4.1  
Low duty cycle advertising  
Dual mode  
Bluetooth® 3.0  
Unicast connectionless data  
Enhanced power control  
eSCO  
Bluetooth® 4.2  
Data packet length extension  
LE secure connection  
Link layer privacy  
Bluetooth® 4.0  
Bluetooth® Low Energy  
Bluetooth® 5.0  
LE 2 Mbps  
Slot availability mask  
High duty cycle advertising  
LE link layer topology  
1.1  
BQB and regulatory testing support  
The CYW89820 fully supports Bluetooth® test mode as described in Part I:1 of the Specification of the Bluetooth®  
System v3.0. This includes the transmitter tests, normal and delayed loop back tests, and reduced hopping  
sequence.  
In addition to the standard Bluetooth® test mode, the CYW89820 also supports enhanced testing features to  
simplify RF debugging and qualification. These features include:  
• Fixed frequency carrier wave (unmodulated) transmission  
- Simplifies some type-approval measurements (Japan)  
- Aids in transmitter performance analysis  
• Fixed frequency constant receiver mode  
- Receiver output directed to I/O pin  
- Allows for direct BER measurements using standard RF test equipment  
- Facilitates spurious emissions testing for receive mode  
• Fixed frequency constant transmission  
- 8-bit fixed pattern or PRBS-9  
- Enables modulated signal measurements with standard RF test equipment  
Datasheet  
6
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Bluetooth® baseband core  
1.2  
Wi-Fi coexistence support  
The CYW89820 includes support for:  
• Global Coexistence Interface for use with Infineon Wi-Fi parts  
• Serial Enhanced Coexistence Interface (SECI) for use with SECI compatible Wi-Fi parts  
Datasheet  
7
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Microprocessor unit  
2
Microprocessor unit  
The CYW89820 includes a Cortex® M4 processor with 1 MB of program ROM, 160 KB of data RAM, 16 KB of patch  
RAM, and 256 KB of flash. The CM4 has a maximum speed of 96 MHz. The 256 KB of flash is supported by an 8 KB  
cache allowing direct code execution from flash at near maximum speed and low power consumption.  
The CM4 runs all the BT layers as well as application code. The ROM includes LMAC, HCI, L2CAP, GATT, as well as  
other stack layers freeing up most of the flash for application usage.  
A standard serial wire debug (SWD) interface provides debugging support. Refer to the “Firmware” on page 21  
section for details on the architecture and layers that are included in the ROM.  
2.1  
Main crystal oscillator  
The CYW89820 uses a 24 MHz crystal oscillator (XTAL).  
The XTAL must have an accuracy of ±20 ppm as defined by the Bluetooth® specification. Two external load capac-  
itors are required to work with the crystal oscillator. The selection of the load capacitors is XTAL-dependent (see  
Figure 1).  
CL1  
XIN  
Crystal  
XOUT  
CL2  
Figure 1  
Recommended oscillator configuration  
Table 2  
Reference crystal electrical specifications  
Conditions  
Parameter  
Min  
Fundamental  
Typ  
24.000  
Max  
Unit  
MHz  
Nominal frequency  
Oscillation mode  
Includes operating temperature  
range and aging  
Frequency accuracy  
±20  
ppm  
Equivalent series resistance  
Load capacitance  
Drive level  
8
60  
200  
2
W
pF  
μW  
pF  
Shunt capacitance  
Datasheet  
8
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Microprocessor unit  
2.2  
32 kHz crystal oscillator  
The CYW89820 includes a 32 kHz oscillator to provide accurate timing during low power operations. Figure 2  
shows the 32 kHz XTAL oscillator with external components and Table 3 lists the oscillator’s characteristics. This  
oscillator can be operated with a 32 kHz or 32.768 kHz crystal oscillator or be driven with a clock input at similar  
frequency. The XTAL must have an accuracy of ±250 ppm or better per the BT spec over temperature and  
including aging. The default component values are: R1 = 10 Mand C1 = C2 = ~6 pF. The values of C1 and C2 are  
used to fine-tune the oscillator.  
C 2  
3 2 .7 6 8 k H z  
R 1  
X T A L  
C 1  
Figure 2  
32 kHz oscillator block diagram  
XTAL oscillator characteristics  
Table 3  
Parameter  
Symbol  
Foscout  
Pdrv  
Rseries  
Conditions  
Over temperature and aging  
For crystal selection  
For crystal selection  
For crystal selection  
Min  
Typ  
32.768  
Max  
250  
0.5  
70  
Unit  
kHz  
ppm  
μW  
kΩ  
pF  
Output Frequency  
Frequency Tolerance  
XTAL Drive Level  
XTAL Series Resistance  
XTAL Shunt Capacitance Cshunt  
2.2  
Datasheet  
9
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Microprocessor unit  
2.3  
Low-frequency clock sources  
The 32-kHz low-frequency clock (LPO_32K on the following figure) can be obtained from multiple sources. There  
are two internal low-power oscillators (LPOs), called the LP-LPO and HP-LPO, as well as external crystal connec-  
tions (OSC32K). The firmware determines the clock source to use among the available LPOs depending on the  
accuracy and power requirements. The preferred source is the external LPO (OSC32K) because it has good  
accuracy with the lowest current consumption. Internal LP-LPO has low current consumption and low accuracy  
whereas HP-LPO has higher accuracy and higher current consumption. The firmware assumes the external LPO  
has less than 250 PPM error with little or no jitter.  
Variable  
Frequency  
HCLK  
CPU  
48/96M  
Fixed  
Frequency  
DIV N  
Block  
Timers  
DIV N  
1M  
XTAL 24M  
96M  
ADPLL  
SPI2  
SPI1  
PUART  
HCI UART  
I2C  
48M  
DIV N  
PTU  
24M  
ADC  
(12M)  
24M  
DIV N  
1M  
24M  
ACLK0  
24M  
ACLK1  
PWM(0-5)  
OSC32K  
LPO  
LPO  
LPO  
LPO_32K  
HP- LPO  
LP-LPO  
LHL  
RTC  
Figure 3  
Simplified clock source  
Datasheet  
10  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Microprocessor unit  
2.4  
Power modes  
The CYW89820 supports the following HW power modes:  
• Active mode: Normal operating mode in which all peripherals are available and CPU is active  
• Idle mode - CPU is paused: In this mode, the CPU is in “Wait for Interrupt” (WFI) and the HCLK, which is the high  
frequency clock derived from the main crystal oscillator, is running at a lower clock speed. Other clocks are  
active and the state of the entire chip is retained.  
• Sleep mode: All systems clocks idle except for the LPO. The chip can wake up either after a programmed period  
of time has expired or if an external event is received via one of the GPIOs. In this mode, CPU is in WFI and the  
HCLK is not running. The PMU determines if the other clocks can be turned off and does accordingly. State of  
the entire chip is retained, the internal LDOs run at a lower voltage (voltage is managed by the PMU), and SRAM  
is retained.  
• PDS (Power Down Sleep) mode: Radio powered down and digital core mostly powered down except for RAM,  
registers, and some core logic. CYW89819 can wake up either after a programmed period of time has expired or  
if an external event is received via one of the GPIOs.  
• ePDS (extended PDS) mode: This is an extension of the PDS Mode. In this mode, only the main RAM and ePDS  
control circuitry retains power. As in other modes, the CYW89819 can wake up either after a programmed period  
or upon receiving an external event.  
• HID-OFF (Deep Sleep) mode: Core, radio, and regulators powered down. Only the LHL IO domain is powered.  
In this mode, the CYW89819 can be woken up either by an event on one of the GPIOs or after a certain amount  
of time has expired. After wakeup, the part will go through full FW initialization although it will retain enough  
information to determine that it came out of HID-OFF and the event that caused the wake up. LPO and RTC are  
turned off in this mode. Either an internal LPO or an external input would provide a measure of time.  
Transition between power modes is handled by the on-chip firmware with host/application involvement. In  
general ePDS is the most power efficient mode for most active use cases. HID-OFF generally works for  
non-connectable beacon type use cases with long advertisement intervals. Refer to the “Firmware” on page 21  
section for more details.  
2.5  
Watchdog  
CYW89820 includes an onboard watchdog with a period of approx. 4 seconds. The watchdog timer generates an  
interrupt to the FW after 2 seconds of inactivity and resets the parts after 4 seconds.  
2.6  
Lockout functionality  
The CYW89820 power up with JTAG and SWD access to flash and RAM is disabled. After reset, FW checks OCF for  
the presence of a security lockout field. If present, FW leaves JTAG and SWD Flash and RAM access disabled and  
also blocks any HCI commands from reading the raw contents of the RAM or Flash.  
The security field can be programmed in the factory after all programming and testing has been done. Refer to  
the ModusToolbox™ software documentation for details on how to enable this feature. This provides an  
effective way of protecting against any tampering, dumping, probing or reverse engineering of OCF resident user  
application. The only FW upgrade path in this scenario is the secure OTA update.  
2.7  
True random number generator  
The CYW89820 includes a hardware TRNG. Applications can access the random number generator via the  
firmware driver. Refer to the ModusToolbox™ software documentation for details.  
Datasheet  
11  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Power-on and external reset  
3
Power-on and external reset  
Figure 4 shows power-on and reset timing of the CYW89820. After VBAT is applied and reset is inactive, the  
internal buck turns on, followed by the RF and Digital LDOs. Once the LDO outputs have stabilized, the PMU allows  
the digital core to come out of reset. As shown in the figure, external reset can be applied at any time subsequent  
to power up.  
Power up with Switching Regulator  
RESET_N  
VBAT  
VDDIO  
~
1.3ms  
VDDC  
~
2.4ms  
VDDIO POR  
~
820µs  
~
820µs  
VDDC Reset  
(internal)  
3 Lpo cycles  
3 Lpo cycles  
XTAL_PU  
31 Lpo cy cles  
31 Lpo cy cles  
XTAL_BUF_PU  
Figure 4  
Reset timing  
Datasheet  
12  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Power management unit  
4
Power management unit  
Figure 5 shows the CYW89820 power management unit (PMU) block diagram. The CYW89820 includes an  
integrated buck regulator, a digital LDO for the digital core, and an RF LDO for the Radio. The PMU also includes  
a brownout detector which places the part in shutdown when input voltage is below a certain threshold.  
CYW89820 PMU  
PMU_AVDD  
Reset  
Brownout  
Detector  
Buck Output  
SRPVDD  
SR_VLX  
Buck  
DIGLDO_VDDOUT  
DIGLDO_VDDIN  
Digital LDO  
RFLDO_VDDOUT  
PALDO_VDDOUT  
RFLDO_VDDIN  
PALDO_VDDIN  
RF LDO  
PA LDO  
Figure 5  
Power management unit  
Datasheet  
13  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Power configurations  
5
Power configurations  
CYW89820 supports three power configurations as described in the following table.  
Table 4  
Power configurations  
Configuration  
Description  
VBAT and VDDIO are supplied externally and are used to generate all other supplies on the  
VBAT and VDDIO device. Reset may be left floating as it has an internal pull-up, may be connected to an  
external RC, or may be driven externally.  
PMU is disabled and on-chip regulators are not used. All supplies are provided externally.  
Reset is driven from the outside.  
External Supplies  
On-chip LDOs are used to generate internal supplies but the on-chip buck is not used.  
Reset is driven externally.  
LDOs and VDDIO  
5.1  
Configuration 1 - VBAT and VDDIO  
In this configuration the device is provided with two supplies (which can also be tied together). RST_N is either  
left floating and relies on the internal pull-up to VDDIO to bring the device out of reset or tied to an external RC,  
or driven externally. All other required supplies are generated on-chip (see the following figure). Note that VDDIO  
must be supplied at the same time or before VBAT is supplied.  
The device may require an external reset when any supply voltages drop below 1 V. POR operation not  
guaranteed below 1 V.  
CYW89820  
VBAT  
PALDO_VDDIN  
PMU_AVDD  
SR_PVDD  
PA LDO  
BUCK  
PALDO_VDDOUT  
SR_VLX  
RFLDO_VDDIN  
DIGLDO_VDDIN  
RF LDO  
RFLDO_VDDOUT  
DIGLDO_VDDOUT  
DIG LDO  
VDDC  
RST_N  
Radio  
IFVDD  
VDDIO  
VDDIO  
PLLVDD  
VCOVDD  
PAVDD  
VDDIO  
MIC_AVDD  
ADC_AVDDBAT  
Figure 6  
VBAT and VDDIO configuration  
Datasheet  
14  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Power configurations  
5.2  
Configuration 2 - External supplies  
In this configuration the internal regulators are not used and VBAT is not supplied. VDDIO is supplied along with  
externally generated core and radio supplies. This is shown in the following figure.  
CYW89820  
PALDO_VDDIN  
PMU_AVDD  
PALDO_VDDOUT  
PA LDO  
_
SR PVDD  
BUCK  
SR_VLX  
RFLDO_VDDOUT  
DIGLDO_VDDOUT  
RFLDO_VDDIN  
DIGLDO_VDDIN  
RF LDO  
DIG LDO  
VDDC  
VDDC  
External  
VDDIO  
RST_N  
VDDRF  
Radio  
IFVDD  
VDDIO  
PLLVDD  
VCOVDD  
PAVDD  
VDDIO  
MICAVD D  
AD C_AVDDBAT  
VDDPA  
Figure 7  
External supplies configuration  
Note that VDDIO must be provided simultaneously or before the rest of the supplies and the device must be held  
in reset until all supplies are within normal operating ranges.  
The device may require a reset if any supply goes outside the normal operating range.  
5.3  
Configuration 3 - LDOs and VDDIO  
In this configuration the internal buck regulator is not used. Instead, power is supplied to the internal LDOs which  
are responsible for supplying the rest of the device.  
CYW89820  
PA Supply  
PALDO_VDDIN  
PA LDO  
PALDO_VDDOUT  
PMU_AVDD  
SR_PVDD  
BUCK  
SR_VLX  
RF Supply  
RFLDO_VDDIN  
RF LDO  
RFLDO_VDDOUT  
DIGLDO_VDDOUT  
DIGLDO_VDDIN  
DIG LDO  
DIG Supply  
External  
VDDC  
RST_N  
Radio  
IFVDD  
VDDIO  
VDDIO  
PLLVDD  
VCOVDD  
PAVDD  
VDDIO  
MIC_AVDD  
ADC_AVDDBAT  
Figure 8  
LDOs and VDDIO configuration  
Note that VDDIO must be provided simultaneously or before the rest of the supplies and the device must be held  
in reset until all supplies are within normal operating ranges. The internal LDOs have a small turn-on time  
(specified later in the datasheet) which should be accounted for before releasing reset.  
The device may require a reset if any supply goes outside the normal operating range.  
Datasheet  
15  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Integrated radio transceiver  
6
Integrated radio transceiver  
The CYW89820 has an integrated radio transceiver that has been designed to provide low power operation in the  
globally available 2.4 GHz unlicensed ISM band. It is fully compliant with Bluetooth® Radio Specification 5.0 and  
meets or exceeds the requirements to provide the highest communication link quality of service.  
6.1  
Transmitter path  
The CYW89820 features a fully integrated transmitter. The baseband transmit data is GFSK modulated in the  
2.4 GHz ISM band.  
6.1.1  
Digital modulator  
The digital modulator performs the data modulation and filtering required for the GFSK signal. The fully digital  
modulator minimizes any frequency drift or anomalies in the modulation characteristics of the transmitted  
signal.  
6.1.2  
Power amplifier  
The CYW89820 has an integrated power amplifier (PA) that can transmit up to +10.5 dBm for class 1 operation.  
6.2  
Receiver path  
The receiver path uses a low IF scheme to down-convert the received signal for demodulation in the digital  
demodulator and bit synchronizer. The receiver path provides a high degree of linearity, and an extended  
dynamic range to ensure reliable operation in the noisy 2.4 GHz ISM band. The front-end topology, which has  
built-in out-of-band attenuation, enables the CYW89820 to be used in most applications without off-chip filtering.  
6.2.1  
Digital demodulator and bit synchronizer  
The digital demodulator and bit synchronizer take the low-IF received signal and perform an optimal frequency  
tracking and bit synchronization algorithm.  
6.2.2  
Receiver signal strength indicator  
The radio portion of the CYW89820 provides a receiver signal strength indicator (RSSI) to the baseband. This  
enables the controller to take part in a Bluetooth® power-controlled link by providing a metric of its own receiver  
signal strength to determine whether the transmitter should increase or decrease its output power.  
6.3  
Local oscillator  
The local oscillator (LO) provides fast frequency hopping (1600 hops/second) across the band. The CYW89820  
uses an internal loop filter.  
Datasheet  
16  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Peripherals  
7
Peripherals  
7.1  
I2C compatible master  
The CYW89820 provides a 2-pin I2C compatible master interface to communicate with I2C compatible periph-  
erals. The I2C compatible master supports the following clock speeds:  
• 100 kHz  
• 400 kHz  
• 800 kHz (Not a standard I2C-compatible speed.)  
• 1 MHz (Compatibility with high-speed I2C-compatible devices is not guaranteed.)  
The I2C compatible master is capable for doing read, write, write followed by read, and read followed by write  
operations where read/write can be up to 64 bytes.  
SCL and SDA lines can be routed to any of the P1-P37 GPIOs allowing for flexible system configuration. When used  
as SCL/SDA the GPIOs go into open drain mode and require an external pull-up for proper operation. BSC does  
not support multimaster capability or flexible wait-state insertion by either master or slave devices.  
7.2  
Serial peripheral interface  
The CYW89820 has two independent SPI interfaces. Both interfaces support single, dual, and Quad Mode SPI  
operations. Either interface can be a master or a slave. SPI1 has 1040-byte transmit and receive buffers (shared  
with UART) and SPI2 has 256-byte dedicated transmit and receive buffers. To support more flexibility for user  
applications, the CYW89820 has optional I/O ports that can be configured individually and separately for each  
functional pin.  
SPI IO voltage depends on VDDO.  
7.3  
HCI UART interface  
The CYW89820 includes a UART interface for factory programming as well as when operating as a BT HCI device  
in a system with an external host. The UART physical interface is a standard, 4-wire interface (RX, TX, RTS, and  
CTS) with adjustable baud rates from 115200 bps to 3 Mbps. Typical rates are 115200, 921600, 1500000, and  
3,000,000 bps although intermediate speeds are also available. Support for changing the baud rate during normal  
HCI UART operation is included through a vendor-specific command. The CYW89820 UART operates correctly  
with the host UART as long as the combined baud rate error of the two devices is within ±5%. The UART interface  
CYW89820 has a 1040-byte receive FIFO and a 1040-byte transmit FIFO to support enhanced data rates. The  
interface supports the Bluetooth® UART HCI (H4) specification. The default baud rate for H4 is 115.2 kbaud.  
In HCI Mode, the CYW89820 can wake up the host as needed or allow the host to sleep via the HOST_WAKE signal.  
The HOST_WAKE signal can be enabled via a vendor specific command.  
The FW UART driver allows applications to select different baud rates.  
7.4  
Peripheral UART interface  
The CYW89820 has a second UART that may be used to interface to peripherals. Functionally, the peripheral UART  
is the same as the HCI UART except for 256 byte TX/RX FIFOs. The peripheral UART is accessed through the I/O  
ports, which can be configured individually and separately for each functional pin. The CYW89820 can map the  
peripheral UART to any LHL GPIO.  
7.5  
GPIO ports  
The CYW89820 has 17 general purpose IOs labeled P1-P37. All GPIOs support the following:  
• Programmable pull-up/down of approx 45 k  
• Input disable, allowing pins to be left floating or analog signals connected without risk of leakage  
• Source/sink 8 mA at 3.3 V and 4 mA at 1.8 V  
• P26/P27/P28/P29 sink/source 16 mA at 3.3 V and 8 mA at 1.8 V  
Datasheet  
17  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Peripherals  
Most peripheral functions can be assigned to any GPIO. For details, see Table 6 and Table 7.  
7.6  
ADC  
The CYW89820 includes a Σ-Δ ADC designed for audio and DC measurements. The ADC can measure the voltage  
on 14 GPIO (P1, P9-14, P17-19, P28, P29, P32, P37). When used for analog inputs, the GPIOs must be placed in  
digital input disable mode to disconnect the digital circuit from the pin and avoid leakage. The internal bandgap  
reference has ±5% accuracy without calibration. Calibration and digital correction schemes can be applied to  
reduce ADC absolute error and improve measurement accuracy in Direct Current (DC) Mode.  
The application can access the ADC through the ADC driver included in the firmware.  
7.7  
PWM  
The CYW89820 has four internal PWMs, labeled PWM0-3.  
• Each of the six PWM channels contains the following registers:  
- 16-bit initial value register (read/write)  
- 16-bit toggle register (read/write)  
- 16-bit PWM counter value register (read)  
• PWM configuration register is shared among PWM0–3 (read/write). This 18-bit register is used:  
- To enable/disable each PWM channel  
- To select the clock of each PWM channel  
- To invert the output of each PWM channel. The application can access the PWM module through the FW driver.  
Figure 9 shows the structure of one PWM channel.  
pwm_cfg_adr register  
pwm#_init_val_adr register  
pwm#_togg_val_adr register  
16  
16  
pwm#_cntr_adr  
16  
cntr value is ARM readable  
pwm_out  
Example: PWM cntr w/ pwm#_init_val = 0 (dashed line)  
PWM cntr w/ pwm#_init_val = x (solid line)  
16'HFFFF  
pwm_togg_val_adr  
16'Hx  
16'H000  
pwm_out  
Figure 9  
PWM block diagram  
Datasheet  
18  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Peripherals  
7.8  
PDM microphone  
The CYW89820 accepts a ΣΔ-based one-bit pulse density modulation (PDM) input stream and outputs filtered  
samples at either 8 kHz or 16 kHz sampling rates. The PDM signal derives from an external kit that can process  
analog microphone signals and generate digital signals. The PDM inputs share the filter path with the aux ADC.  
Two types of data rates can be supported:  
• 8 kHz  
• 16 kHz  
The external digital microphone takes in a 2.4 MHz clock generated by the CYW89820 and outputs a PDM signal  
which is registered by the PDM interface with either the rising or falling edge of the 2.4 MHz clock selectable  
through a programmable control bit. The design can accommodate two simultaneous PDM input channels, so  
stereo voice is possible.  
7.9  
I2S interface  
The CYW89820 supports a single I2S digital audio port with both master and slave modes. The I2S signals are:  
• I2S clock: I2S SCK  
• I2S word select: I2S WS  
• I2S data out: I2S DO  
• I2S data in: I2S DI  
I2S SCK and I2S WS become outputs in master mode and inputs in slave mode, while I2S DO always stays as an  
output. The channel word length is 16 bits and the data is justified so that the MSN of the left-channel data is  
aligned with the MSB of the I2S bus, per I2S Specifications. The MSB of each data word is transmitted one bit clock  
cycle after the I2S WS transition, synchronous with the falling edge of bit clock. Left Channel data is transmitted  
when I2S WS is low, and right-channel data is transmitted when I2S WS is high. Data bits sent by the CYW89820  
are synchronized with the falling edge of I2S SCK and should be sampled by the receiver on the rising edge of the  
I2S SCK.  
The clock rate in master mode as follows:  
• 16 kHz 16 bits per frame = 256 kHz  
The master clock is generated from the reference clock using an N/M clock divider. In the slave mode, any clock  
rate is supported up to a maximum of 3.072 MHz.  
7.10  
PCM interface  
The CYW89820 includes a PCM interface that can connect to linear PCM codec devices in master or slave mode.  
In master mode, the CYW89820 generates the PCM_CLK and PCM_SYNC signals. In slave mode, these signals are  
provided by another master on the PCM interface and are inputs to the CYW89820.The configuration of the PCM  
interface may be adjusted by the host through the use of vendor-specific HCI commands.  
Note PCM interface shares HW with the I2S interface and only one can be used at any time. Only audio source  
(other than SCO) use cases are supported on CYW89820.  
7.10.1  
Slot mapping  
The CYW89820 supports up to three simultaneous full-duplex channels through the PCM Interface. These three  
channels are time-multiplexed onto the single PCM interface by using a time-slotting scheme where the 8 kHz or  
16 kHz audio sample interval is divided into as many as 16 slots. The number of slots is dependent on the selected  
interface rate (128 kHz, 512 kHz, or 1024 kHz). The corresponding number of slots for these interface rate is 1, 2,  
4, 8, and 16, respectively. Transmit and receive PCM data from an SCO channel is always mapped to the same  
slot. The PCM data output driver tristates its output on unused slots to allow other devices to share the same PCM  
interface signals. The data output driver tristates its output after the falling edge of the PCM clock during the last  
bit of the slot.  
Datasheet  
19  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Peripherals  
7.10.2  
Frame synchronization  
The CYW89820 supports both short- and long-frame synchronization in both master and slave modes. In short  
frame synchronization mode, the frame synchronization signal is an active-high pulse at the audio frame rate that  
is a single-bit period in width and is synchronized to the rising edge of the bit clock. The PCGM slave looks for a  
high on the falling edge of the bit clock and expects the first bit of the first slot to start at the next rising edge of  
the clock. In long-frame synchronization mode, the frame synchronization signal is again an active-high pulse at  
the audio frame rate; however, the duration is three bit periods and the pulse starts coincident with the first bit  
of the first slot.  
7.10.3  
Data formatting  
The CYW89820 may be configured to generate and accept several different data formats. For conventional narrow  
band speech mode, the CYW89820 uses 13 of the 16 bits in each PCM frame. The location and order of these 13  
bits can be configured to support various data formats on the PCM interface. The remaining three bits are ignored  
on the input and may be filled with 0s, 1s, a sign bit, or a programmed value on the output. The default format is  
13-bit 2’s complement data, left justified, and clocked MSB first.  
Datasheet  
20  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Firmware  
8
Firmware  
The CYW89820 ROM firmware runs on a real time operating system and handles the programming and configu-  
ration of all on-chip hardware functions as well as the BT/LE baseband, LMAC, HCI, GATT, ATT, L2CAP, and SDP  
layers. The ROM also includes drivers for on-chip peripherals as well as handling on-chip power management  
functions including transitions between different power modes. The ROM also supports OTA firmware update  
and acts as a root of trust.  
The CYW89820 is fully supported by the Infineon ModusToolbox™. ModusToolbox™ releases provide latest ROM  
patches, drivers, and sample applications allowing customized applications using the CYW89820 to be built  
quickly and efficiently.  
Refer to the ModusToolbox™ software documentation for details on the firmware architecture and how to write  
applications/profiles using the CYW89820.  
Datasheet  
21  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Pin assignments and GPIOs  
9
Pin assignments and GPIOs  
This section addresses 48-pin WQFN pin assignment and general purpose IOs (GPIOs) for the CYW89820 device.  
Table 5. 48-pin WQFN pin assignment  
Pin number  
WQFN-48  
Power  
Pin name  
I/O  
Description  
domain  
Baseband supply  
VDDO  
VDDO1  
VDDO2  
31  
6
39  
I
I
I
I
VDDO  
VDDO  
VDDO  
I/O pad power supply  
I/O pad power supply  
I/O pad power supply  
ADC_AVDDBAT 36  
ADC_AVDD ADC supply  
VDDC  
8, 30, 41  
I/O VDDC  
Baseband core power supply  
RF power supply  
IFVDD  
PLLVDD  
PAVDD  
VCOVDD  
24  
I
I
I
I
IFVDD  
IFPLL power supply  
RFPLL and crystal oscillator supply  
PA supply  
26  
22  
25  
PLLVDD  
PAVDD  
VCOVDD  
VCO supply  
Onboard LDOs  
PALDO_VDDIN  
PALDO_VDDOUT 18  
17  
I
O
I
PA LDO input  
PA LDO output  
Internal digital LDO input  
DIGLDO_VDDIN  
DIGLDO_-  
VDDOUT  
21  
O
Internal digital LDO output  
RFLDO_VDDIN  
RFLDO_VDDOUT 19  
I
O
RF LDO input  
RF LDO output  
RFLDO_DIGLDO  
_VDDIN  
20  
I
Internal digital LDO and RF LDO input  
SR_PVDD  
SR_VLX  
PMU_AVDD  
Ground pins [1]  
ADC_REFGND  
VSSC  
ADC_AVSS  
MIC_AVSS  
ADC_AVSSC  
PMU_AVSS  
PLLVSS  
15  
14  
16  
I
O
I
Core buck input  
Core buck output  
PMU supply  
I
I
I
I
I
I
I
I
I
I
AVSS  
VSS  
AVSS  
AVSS  
AVSS  
VSS  
Analog reference ground  
Ground  
Analog ground  
Microphone analog ground  
Analog ground  
PMU ground  
Ground  
VSS  
VSS  
PAVSS  
Ground  
VCOVSS  
SR_PVSS  
Note  
VSS  
VSS  
Ground  
Ground  
1. All grounds in WQFN package connected to ground paddle.  
Datasheet  
22  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Pin assignments and GPIOs  
Table 5. 48-pin WQFN pin assignment (continued)  
Pin number  
WQFN-48  
Power  
Pin name  
I/O  
Description  
domain  
IFVSS  
I
VSS  
Ground  
UART  
Clear to send (CTS) for HCI UART interface.  
Leave unconnected if not used.  
Request to send (RTS) for HCI UART interface.  
Leave unconnected if not used.  
UART serial input. Serial data input for the HCI UART  
interface.  
UART serial output. Serial data output for the HCI UART  
interface.  
UART_CTS_N  
UART_RTS_N  
UART_RXD  
35  
34  
32  
33  
I, PU VDDO  
O,  
VDDO  
PU  
I
VDDO  
VDDO  
O,  
PU  
UART_TXD  
Crystal  
Crystal oscillator input. See “The XTAL must have an  
accuracy of ±20 ppm as defined by the Bluetooth®  
specification. Two external load capacitors are  
required to work with the crystal oscillator. The  
selection of the load capacitors is XTAL-dependent (see  
Figure 1)” for options.  
XTALI  
27  
I
PLLVDD  
XTALO  
28  
38  
37  
O
I
O
O
PLLVDD  
VDDO  
VDDO  
N/A  
Crystal oscillator output  
XTALI_32K  
XTALO_32K  
CLK_REQ  
Other  
Low-power oscillator input  
Low-power oscillator output  
Used for shared-clock application  
RF  
23  
12  
I
RF antenna port  
Active-low system reset with internal pull-up  
resistor.  
RST_N  
VDDO  
Arm® JTAG debug mode control. Connect to GND for all  
applications.  
JTAG_SEL  
GPIOs  
13  
A signal from the CYW89820 device to the host  
indicating that the Bluetooth® device requires  
attention.  
HOST_WAKE  
29  
O
VDDO  
• GPIO: P1  
• Keyboard scan input (row): KSI1  
• A/D converter input 28  
• Peripheral UART: puart_rts  
• SPI_1: MISO (slave only)  
• UART1_RXD  
P1  
5
I/O VDDO  
• Supermux I/O functions as defined in Table 6 and  
Table 7.  
Note  
1. All grounds in WQFN package connected to ground paddle.  
Datasheet  
23  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Pin assignments and GPIOs  
Table 5. 48-pin WQFN pin assignment (continued)  
Pin number  
WQFN-48  
Power  
Pin name  
P2  
I/O  
Description  
domain  
• GPIO: P2  
40  
I/O VDDO  
I/O VDDO  
• Keyboard defined in Table 6 and Table 7.  
• GPIO: P4  
• Keyboard scan input (row): KSI4  
• Quadrature: QDY0  
P4  
P6  
42  
43  
46  
• SPI_1: MOSI (master only)  
• Supermux I/O functions as defined in Table 6 and  
Table 7.  
• GPIO: P6  
• Keyboard scan input (row): KSI6  
• Quadrature: QDZ0  
• Peripheral UART: puart_rts  
• PWM2  
I/O VDDO  
• Triac control 1  
• Supermux I/O functions as defined in Table 6 and  
Table 7.  
• GPIO: P9  
• Keyboard scan output (column): KSO1  
• A/D converter input 26  
P9  
I/O VDDO  
• External T/R switch control: tx_pd  
• Supermux I/O functions as defined in Table 6 and  
Table 7.  
• GPIO: P10  
• Keyboard scan output (column): KSO2  
• A/D converter input 25  
P10  
47  
48  
I/O VDDO  
• External PA ramp control: PA_Ramp  
• Supermux I/O functions as defined in Table 6 and  
Table 7.  
• GPIO: P11  
• Keyboard scan output (column): KSO3  
• A/D converter input 24  
P11  
I/O VDDO  
• Supermux I/O functions as defined in Table 6 and  
Table 7.  
Note  
1. All grounds in WQFN package connected to ground paddle.  
Datasheet  
24  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Pin assignments and GPIOs  
Table 5. 48-pin WQFN pin assignment (continued)  
Pin number  
WQFN-48  
Power  
Pin name  
I/O  
Description  
domain  
• GPIO: P12  
• Keyboard scan output (column): KSO4  
• A/D converter input 23  
P12  
1
I/O VDDO  
• Supermux I/O functions as defined in Table 6 and  
Table 7.  
• GPIO: P13  
• Keyboard scan output (column): KSO5  
• A/D converter input 22  
• PWM3  
P13  
2
I/O VDDO  
• Triac control 3  
• Supermux I/O functions as defined in Table 6 and  
Table 7.  
• GPIO: P14  
• Keyboard scan output (column): KSO6  
• A/D converter input 21  
• PWM2  
P14  
P17  
44  
45  
I/O VDDO  
• Triac control 4  
• Supermux I/O functions as defined in Table 6 and  
Table 7.  
• GPIO: P17  
• Keyboard scan output (column): KSO9  
• A/D converter input 18  
I/O VDDO  
• Supermux I/O functions as defined in Table 6 and  
Table 7.  
• GPIO: P26  
• Keyboard scan output (column): KSO18  
• PWM0  
• SPI_1: SPI_CS (slave only)  
• Optical control output: QOC0  
• Triac control 1  
P26  
9
I/O VDDO  
• Current: 16 mA sink  
• Supermux I/O functions as defined in Table 6 and  
Table 7.  
Note  
1. All grounds in WQFN package connected to ground paddle.  
Datasheet  
25  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Pin assignments and GPIOs  
Table 5. 48-pin WQFN pin assignment (continued)  
Pin number  
WQFN-48  
Power  
Pin name  
I/O  
Description  
domain  
• GPIO: P27  
• Keyboard scan output (column): KSO19  
• PWM1  
• SPI_1: MOSI (master only)  
• Optical control output: QOC1  
• Triac control 2  
P27  
10  
I/O VDDO  
• Current: 16 mA sink  
• Supermux I/O functions as defined in Table 6 and  
Table 7.  
• GPIO: P28  
• PWM2  
• SCL3 (master and slave)  
• Optical control output: QOC2  
• A/D converter input 11  
• Current: 16 mA sink  
P28  
3
I/O VDDO  
• Supermux I/O functions as defined in Table 6 and  
Table 7.  
• GPIO: P29  
• PWM3  
• SDA3 (master and slave)  
• Optical control output: QOC3  
• A/D converter input 10  
• Current: 16 mA sink  
P29  
4
I/O VDDO  
• Supermux I/O functions as defined in Table 6 and  
Table 7.  
Note  
1. All grounds in WQFN package connected to ground paddle.  
Datasheet  
26  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Pin assignments and GPIOs  
Table 5. 48-pin WQFN pin assignment (continued)  
Pin number  
WQFN-48  
Power  
Pin name  
I/O  
Description  
domain  
• GPIO: P32  
• A/D converter input 7  
• Quadrature: QDX0  
P32  
11  
I/O VDDO  
• Auxiliary clock output: ACLK0  
• Peripheral UART: puart_tx  
• Supermux I/O functions as defined in Table 6 and  
Table 7.  
• GPIO: P37  
• A/D converter input 2  
• Quadrature: QDZ1  
• SPI_1: MISO (slave only)  
• Auxiliary clock output: ACLK1  
• BSC: SCL  
P37  
7
I/O VDDO  
• Supermux I/O functions as defined in Table 6 and  
Table 7.  
Note  
1. All grounds in WQFN package connected to ground paddle.  
Datasheet  
27  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Pin assignments and GPIOs  
Table 6  
GPIO supermux input functions  
Input  
SWDCK  
SWDIO  
spiffy1_clk[s]  
spiffy1_cs[s]  
spiffy1_mosi[s]  
spiffy1_miso[m]  
spiffy1_io2  
spiffy1_io3  
spiffy1_int[s]  
spiffy2_clk[s]  
spiffy2_cs[s]  
spiffy2_mosi[s]  
spiffy2_miso[m]  
spiffy2_io2  
spiffy2_io3  
spiffy2_int[s]  
puart_rx  
puart_cts_n  
SCL  
SDA  
SCL2  
SDA2  
PCM_IN  
PCM_CLK  
PCM_SYNC  
I2S_DI  
I2S_WS  
I2S_CLK  
PDM_IN_Ch_1  
PDM_IN_Ch 2  
Datasheet  
28  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Pin assignments and GPIOs  
Table 7  
Output  
GPIO supermux output functions  
do_P# (data out of GPIO. For example: P0)  
do_PCM_IN  
do_PCM_OUT  
do_PCM_CLK  
do_PCM_SYNC  
do_I2S_DO  
do_I2S_DI  
do_I2S_WS  
do_I2S_CLK  
do_CLK_REQ  
IR_TX  
kso0  
kso1  
kso2  
kso3  
kso4  
kso5  
kso6  
kso7  
kso8  
kso9  
kso10  
kso11  
kso12  
kso13  
kso14  
kso15  
kso16  
kso17  
kso18  
kso19  
do_P# ^ pwm0  
do_P# ^ pwm1  
do_P# ^ pwm2  
do_P# ^ pwm3  
do_P# ^ pwm4  
do_P# ^ pwm5  
aclk0  
aclk1  
Datasheet  
29  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Pin assignments and GPIOs  
Table 7  
Output  
HID_OFF  
pa_ramp  
tx_pd  
GPIO supermux output functions (continued)  
~tx_pd  
SWDIO  
SDA2  
SCL2  
puart_tx (uart2_tx)  
puart_rts_n (uart2_rts_n)  
spiffy1_CLK  
spiffy1_CS  
spiffy1_MOSI  
spiffy1_MISO  
spiffy1_IO2  
spiffy1_IO3  
spiffy2_CLK  
spiffy2_CS  
spiffy2_MOSI  
spiffy2_MISO  
spiffy2_IO2  
spiffy2_IO3  
Datasheet  
30  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Ball maps  
10  
Ball maps  
10.1  
48-pin WQFN pin map  
The CYW89820 48-pin WQFN package is shown in Figure 11.  
хщ  
хш  
хч  
хц  
хх  
хф  
ху  
хт  
хс  
фъ  
фщ  
фш  
ꢀтт  
ꢀтс  
ꢀъ  
ꢀтш  
ꢀтх  
ꢀч  
ꢀх  
ꢁꢂꢂꢃ  
ꢀу  
ꢁꢂꢂꢄу  
ꢅꢆꢇꢈꢉҖфуꢊ ꢅꢆꢇꢈꢄҖфуꢊ  
т
у
ꢀту  
ꢀтф  
ꢁꢂꢂꢄ  
ꢋꢇꢌꢆҖꢃꢆꢍҖꢎ  
ꢋꢇꢌꢆҖꢌꢆꢍҖꢎ  
ꢋꢇꢌꢆҖꢆꢅꢂ  
ꢋꢇꢌꢆҖꢌꢅꢂ  
ꢁꢂꢂꢄт  
фч  
фц  
фх  
фф  
фу  
фт  
фс  
уъ  
ущ  
уш  
уч  
уц  
ф
ꢀущ  
х
ꢀуъ  
ц
ꢀт  
ч
ꢁꢂꢂꢄу  
ꢀфш  
ш
ꢁꢂꢂꢃ  
ꢀꢁꢂщъщусꢃш5шꢃꢂꢄꢅꢆҌхщ  
щ
ꢁꢂꢂꢃ  
ꢀуч  
ꢏꢄꢍꢆҖꢐꢇꢊꢑ  
ꢅꢆꢇꢈꢄ  
ъ
тс  
тт  
ту  
ꢀуш  
ꢅꢆꢇꢈꢉ  
ꢀфу  
ꢀꢈꢈꢁꢂꢂ  
ꢌꢍꢆҖꢎ  
ꢁꢃꢄꢁꢂꢂ  
ꢀꢇꢈꢂꢄҖꢁꢂꢂꢄ ꢌꢕꢈꢂꢄҖꢁꢂꢂꢄ ꢂꢉꢓꢈꢂꢄҖꢁꢂꢂꢉ ꢂꢉꢓꢈꢂꢄҖꢁꢂꢂ  
ꢒꢆꢇꢓҖꢍꢑꢈ  
ꢍꢌҖꢁꢈꢅ  
ꢍꢌҖꢀꢁꢂꢂ  
ꢀꢔꢋҖꢇꢃꢂꢂ ꢀꢇꢈꢂꢄҖꢁꢂꢂꢉꢎ  
ꢀꢇꢁꢂꢂ  
ꢌꢕ  
ꢉꢕꢁꢂꢂ  
ꢋꢆ  
ꢋꢆ  
ꢄꢋꢆ  
тф  
тх  
тц  
тч  
тш  
тщ  
тъ  
ус  
ут  
уу  
уф  
ух  
Figure 10  
48-pin WQFN pin map  
Datasheet  
31  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Specifications  
11  
Specifications  
11.1  
Electrical characteristics  
The absolute maximum ratings in Table 8 indicate levels where permanent damage to the device can occur, even  
if these limits are exceeded for only a brief duration. Functional operation is not guaranteed under these condi-  
tions. Operation at absolute maximum conditions for extended periods can adversely affect long-term reliability  
of the device.  
Table 8  
Absolute maximum ratings  
Specification  
Min  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
Requirement parameter  
Unit  
°C  
Nom  
Max  
125  
Maximum junction temperature  
VDDO1/VDDO2  
IFVDD/PLLVDD/VCOVDD/VDDC  
PMUAVDD/SR_PVDD  
DIGLDO_VDDIN  
RFLDO_VDDIN  
PALDO_VDDIN  
PAVDD  
3.795  
1.38  
3.795  
1.65  
1.65  
3.79  
2.75  
V
2.5  
Table 9  
ESD/latchup  
Specification  
Requirement parameter  
Unit  
Min  
–2000  
–500  
Nom  
200  
Max  
2000  
500  
ESD Tolerance HBM  
ESD Tolerance CDM  
Latch-up  
V
mA  
Table 10  
Environmental ratings  
Characteristic  
Value  
Unit  
Operating Temperature  
Storage Temperature  
–40 to +105  
–40 to +150  
°C  
Datasheet  
32  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Specifications  
Table 11  
Recommended operating conditions  
Specification  
Parameter  
Unit  
Min  
1.045[2]  
1.14  
1.14  
1.14  
2.375  
1.71  
1.71  
1.71  
1.71  
1.26  
1.26  
2.6  
Typ  
1.2  
Max  
1.26  
1.26  
1.26  
1.26  
2.625  
3.63  
3.63  
3.63  
3.63  
1.38  
1.38  
3.63  
VDDC  
IFVDD[4]  
PLLVDD[4]  
VCOVDD[4]  
PAVDD[4]  
VDDO1[3]  
VDDO2[3]  
PMU_AVDD  
SR_PVDD  
RFLDO_VDDIN  
DIGLDO_VDDIN  
PALDO_VDDIN[4]  
1.2  
1.2  
1.2  
2.5  
3.0  
3.0  
3.0  
3.0  
1.26  
1.26  
3.0  
V
V
V
Notes  
2. 1.14 V for >48 MHz operation.  
3. VDDO1 must be equal to VDDO2. Recommend that these be provided from the same source.  
4. IFVDD, PLLVDD, and VCOVDD must all be equal. Recommend providing from the same supply.PAVDD_VDDIN  
min. must be greater than Vout + 100 mV under max. load current.  
11.2  
Brown out  
The CYW89820 uses an onboard low voltage detector to shut down the part when supply voltage (VDDBAT3V)  
drops below the operating range.  
Table 12  
Parameter  
VSHUT  
Shutdown voltage  
Specification  
Min  
1.5  
Unit  
Typ  
1.56  
Max  
1.7  
V
11.2.1  
Core buck regulator  
Table 13  
Core buck regulator  
Conditions  
Parameter  
Min  
1.71  
1.1  
0.76  
Typ  
3.0  
< 60  
< 60  
1.26  
0.94 Avg 1.4  
(0.92-0.96  
)
Max Unit  
Input supply, VBAT  
Output current  
DC range  
3.63  
100  
70  
V
mA  
Active mode  
PDS mode  
Active Mode  
Output voltage  
1.4  
V
PDS mode, 40 mV min regulation window.  
Output voltage  
accuracy  
Active mode, includes line and load regulation. –4  
Before trim:  
+4  
%
Note  
5. Minimum values represent minimums after derating due to tolerance, temperature, and voltage effects.  
Datasheet  
33  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Specifications  
Table 13  
Core buck regulator (continued)  
Conditions  
Parameter  
Ripple voltage  
Min  
Typ  
Max Unit  
Active mode  
3
mV  
2.2 H ± 25% inductor, DCR = 114 m± 20%  
4.7 F ± 10% capacitor, Total ESR < 20 m  
PDS mode  
40  
40  
2.2  
4.7  
Output inductor, L  
Output capacitor,  
COUT  
Refer to the “Recommended component” on  
page 34 section for more details.  
1.6[5]  
3.0[5]  
μH  
μF  
Input capacitor, CIN  
Input supply voltage 0 to 3.3 V  
ramp time  
4.0[5]  
40  
10  
μs  
Note  
5. Minimum values represent minimums after derating due to tolerance, temperature, and voltage effects.  
11.2.2  
Recommended component  
Table 14  
Recommended component  
Conditions  
Parameter  
Min  
Typ  
2.2  
Max  
Unit  
μH  
External inductor, L  
2.2 μH ±25%, DCR = 114 m±20%, ACR < 1Ω  
(for frequency < 1 MHz)  
External output capacitor,  
COUT  
External input capacitor, CIN For SR_VDDBAT pin  
1 μF ±10%, 6.3V, 0603 inch, X5R, MLCC  
capacitor +board total-ESR < 20 mΩ  
0.7  
1
1.1  
μF  
10  
Ceramic, X5R, 0402, ESR < 30 mat 4 MHz,  
+/-20%, 6.3V, 4.7 μF  
External input capacitor  
Only use an external input capacitor at  
VDD_DIGLDO pin if it is not supplied from  
CBUCK output.  
1
2.2  
11.2.3  
Digital LDO  
Table 15  
Digital LDO  
Parameter  
Condition  
Min  
Typ Max Unit  
Input supply, DIGLDO_-  
VDDIN  
Min must be met for correct operation  
VOUT + 20 mV 1.26 1.4  
V
Range  
Step  
Accuracy after trimming  
At max load current  
DC Load  
0.9  
–2  
0.075  
1.55[6]  
1.2  
25  
40  
1.275  
Output voltage, DIGLDO_-  
VDDOUT  
mV  
%
mV  
mA  
μA  
μF  
mV/V  
mV/m  
A
+2  
20  
60  
40  
Dropout voltage  
Output current  
Quiescent current  
At T 85C, VIN = 1.4V  
Output load capacitor, COUT Total trace + cap ESR must be < 80 mΩ  
2.2  
5
Line regulation  
Load regulation  
Note  
1.235 V VIN 1.4 V  
10  
VOUT = 1.2 V, VIN = 1.26 V, 1 mA IOUT 25 mA –  
0.44  
6. Minimum values represent minimums after derating due to tolerance, temperature, and voltage effects.  
Datasheet  
34  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Specifications  
Table 15  
Digital LDO (continued)  
Condition  
Parameter  
Min  
Typ Max Unit  
IOUT step 1 mA 20 mA @ 1 μs rise/fall,  
COUT = 2.2 μF, VIN = 1.235 V, VOUT = 1.2V  
Power down Mode, VIN = 1.4 V, Temp = 25C –  
Power down Mode, VIN = 1.4 V, Temp =  
125C  
COUT = 2.2 μF, VIN = 1.4 V, VOUT = 1.2 V  
COUT = 2.2 μF, VIN = 1.4 V, VOUT = 1.2 V, IOUT  
20 mA  
Load step error  
–24  
+24  
50  
mV  
nA  
μA  
mA  
s  
Leakage current  
2
In-rush current  
100  
120  
=
LDO turn on time  
COUT = 2.2 μF, 1.235 V VIN 1.4 V, VOUT  
1.2 V,  
=
PSRR  
IOUT = 20 mA  
f = 1 kHz  
f = 100 kHz  
25  
13  
dB  
dB  
Note  
6. Minimum values represent minimums after derating due to tolerance, temperature, and voltage effects.  
11.2.4  
Recommended component  
Table 16  
Recommended component  
Conditions  
Parameter  
Min  
Typ  
1
Max  
2.2  
Unit  
μF  
External input capacitor  
Only use an external input capacitor at  
VDD_DIGLDO pin if it is not supplied from  
CBUCK output.  
11.2.5  
RF LDO  
Table 17  
RF LDO  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
Input supply, RFLDO_-  
VDDIN  
Min must be met for correct operation  
VOUT + 20 mV 1.26 1.4  
V
Output voltage, RFLDO_- Range  
1.1  
–2  
0.075  
1.55[7]  
1.2  
25  
20  
1.275  
VDDOUT  
Step  
mV  
%
mV  
mA  
μA  
μF  
Accuracy after trimming  
+2  
20  
60  
40  
Dropout voltage  
Output current  
Quiescent current  
Output load capacitor,  
COUT  
At max load current  
DC Load  
At T 85C, VIN = 1.4V  
Total trace + cap ESR must be < 80 mΩ  
2.2  
Line regulation  
Load regulation  
Load step error  
1.235 V VIN 1.4 V  
5
10  
mV/V  
VOUT = 1.2 V, VIN = 1.26 V, 1 mA IOUT 25 mA –  
0.44 mV/mA  
+24 mV  
I
OUT step 1 mA 20 mA @ 1 μs rise/fall,  
–24  
COUT = 2.2 μF, VIN = 1.235 V, VOUT = 1.2 V  
Leakage current  
Power down mode, VIN = 1.4 V, Temp = 25C  
Power down mode, VIN = 1.4 V, Temp = 125C –  
50  
2
nA  
μA  
Note  
7. Minimum values represent minimums after derating due to tolerance, temperature, and voltage effects.  
Datasheet  
35  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Specifications  
Table 17  
RF LDO (continued)  
Conditions  
COUT = 2.2 μF, VIN = 1.4 V, VOUT = 1.2 V  
OUT = 2.2 μF, VIN = 1.4V, VOUT = 1.2 V, IOUT  
20 mA  
Parameter  
In-rush current  
LDO turn on time  
Min  
Typ  
Max Unit  
100 mA  
120 μs  
C
=
PSRR  
C
OUT = 2.2 μF, 1.235 V VIN 1.4 V, VOUT  
=
25  
13  
1.2 V,  
dB  
dB  
IOUT = 20 mA  
f = 1 kHz  
f = 100 kHz  
Noise  
C
OUT = 2.2 μF, VIN = 1.235 V, VOUT = 1.2 V, IOUT  
= 20 mA  
80  
70  
nVHz  
nVHz  
f = 30 kHz  
f = 100 kHz  
Note  
7. Minimum values represent minimums after derating due to tolerance, temperature, and voltage effects.  
11.2.6  
PALDO  
Table 18  
PALDO  
Parameter  
Conditions  
Min  
2.6  
Typ  
3.0  
Max  
3.63  
3.0  
Unit  
Input supply, PALDO_- VDDIN min must be greater than VOUT+100 mV  
VDDIN  
V
under max load current for proper regulation  
Range  
Step  
1.5  
2.45  
100  
3.3  
V
mV  
%
Output voltage,  
PALDO_VDDOUT  
Accuracy  
-4  
0
+4  
100  
60  
110  
HTOL output voltage  
Dropout voltage  
Output current  
Quiescent current  
Output load capacitor, COUT  
V
At max load current  
DC Load  
At T 85C, VIN = 3.3 V  
mV  
mA  
μA  
30  
1.2[8] 2.2  
μF  
Line regulation  
Load regulation  
2.7 V VIN 3.3 V, VOUT = 2.5 V  
IN = 3.3 V, VOUT = 2.5 V, 0 mA IOUT 30 mA  
25  
1
mV/V  
mV/mA  
V
IOUT step 1 mA20 mA @ 1 s rise/fall, COUT  
2.2 F, VIN = 3.3 V, VOUT = 2.5 V  
Power-down mode, VIN = 3.6 V, Temp = 25C  
Power-down mode, VIN = 3.6 V, Temp = 125C  
=
Load step error  
Leakage current  
-25  
25  
mV  
1.6  
4.9  
140  
140  
μA  
μA  
mA  
μs  
In-rush current  
LDO turn on time  
C
C
OUT = 2.2 F, VIN = 3.3 V, VOUT = 2.5 V  
OUT=2.2 F, VIN = 3.3 V, VOUT = 2.5 V, IOUT = 20 mA  
COUT=2.2 F, VIN = 3.3 V, VOUT = 2.5 V, IOUT = 20 mA  
45  
25  
dB  
dB  
PSRR  
f = 1kHz  
f = 100kHz  
Note  
8. Minimum values represent minimums after derating due to tolerance, temperature, and voltage effect.  
Datasheet  
36  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Specifications  
11.2.7  
Recommended component  
Table 19  
Recommended component  
Conditions  
Parameter  
Min  
0.5  
Typ  
2.2  
Max  
4.7  
Unit  
μF  
External output capacitor, Total ESR (trace/cap): 5 m–240 mΩ  
Co  
External input capacitor  
Only use an external input capacitor at  
VDD_DIGLDO pin if it is not supplied from  
CBUCK output.  
1
2.2  
11.2.8  
Digital I/O characteristics  
Table 20. Digital I/O characteristics  
Characteristics  
Symbol  
VIL  
VIH  
VIL  
VIH  
VOL  
VOH  
Min  
2.4  
1.4  
Typ  
Max  
0.8  
0.4  
0.4  
Unit  
V
Input low voltage (VDDO = 3 V)  
Input high voltage (VDDO = 3 V)  
Input low voltage (VDDO = 1.8 V)  
Input high voltage (VDDO = 1.8 V)  
Output low voltage  
Output high voltage  
VDDO –  
0.4V  
Input low current  
Input high current  
IIL  
IIH  
1.0  
1.0  
4.0  
2.0  
8.0  
4.0  
0.4  
μA  
Output low current (VDDO = 3 V, VOL = 0.4 V)  
Output low current (VDDO = 3 V, VOL = 1.8 V)  
Output high current (VDDO = 3 V, VOH = 2.6 V)  
Output high current (VDDO = 1.8 V, VOH = 1.4 V)  
Input capacitance  
IOL  
IOL  
IOH  
IOH  
CIN  
mA  
pF  
11.2.9  
Current consumption  
Table 21 provides the current consumption measurements taken at input of LDOIN and VDDIO combined  
(LDOIN = VDDIO = 3.0 V).  
Table 21  
Current consumption  
Operational mode  
Conditions  
Typ  
1.3  
2.55  
5.9  
22.0  
16.5  
8.7  
Unit  
48 MHz with Pause  
48 MHz without Pause  
Continuous RX  
Continuous TX - 10.5 dBm  
HCI  
mA  
RX  
TX  
PDS  
ePDS  
All RAM retained  
32 kHz XTAL on  
μA  
HID-Off (SDS)  
1.75  
Datasheet  
37  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Specifications  
11.3  
RF specifications  
Note Table 22 and Table 23 apply to single-ended industrial temperatures. Unused inputs are left open.  
Table 22  
BR/EDR - Receiver RF specifications  
Mode and conditions  
Parameter  
Min  
Typ  
Max  
Unit  
Receiver section  
Frequency range  
2402  
–20  
2480  
MHz  
dBm  
GFSK, BDR GFSK 0.1% BER, 1 Mbps  
–91[9]  
–94  
RX sensitivity  
EDR 2M  
EDR 3M  
dB  
–87.5  
Maximum input  
dBm  
Interference performance  
C/I cochannel  
C/I 1 MHz adjacent channel  
C/I 2 MHz adjacent channel  
C/I 3 MHz adjacent channel  
C/I image channel  
GFSK, BDR GFSK 0.1% BER[10]  
GFSK, BDR GFSK 0.1% BER[10]  
GFSK, BDR GFSK 0.1% BER[10]  
GFSK, BDR GFSK 0.1% BER[10]  
GFSK, BDR GFSK 0.1% BER[10]  
11.0  
–4.0  
–31.5  
–42.5  
–24.0  
dB  
C/I 1 MHz adjacent to image  
channel  
GFSK, BDR GFSK 0.1% BER[10]  
–35.0  
Out-of-band blocking performance (CW)[11]  
30 MHz to 2000 MHz  
2000 MHz to 2399 MHz  
2498 MHz to 3000 MHz  
3000 MHz to 12.75 GHz  
BDR GFSK 0.1% BER  
–10.0  
–27  
–27  
BDR GFSK 0.1% BER  
BDR GFSK 0.1% BER  
BDR GFSK 0.1% BER  
dBm  
–10.0  
Intermodulation performance[10]  
BT, interferer signal level  
Spurious Emissions  
30 MHz to 1 GHz  
1 GHz to 12.75 GHz  
Notes  
BDR GFSK 0.1% BER  
–39.0  
dBm  
dBm  
–57.0  
–47.0  
9. The receiver sensitivity is measured at BER of 0.1% on the device interface with dirty TX Off.  
10.Desired signal is 10 dB above the reference sensitivity level (defined as –70 dBm).  
11.Desired signal is 3 dB above the reference sensitivity level (defined as –70 dBm).  
12.Desired signal is –64 dBm Bluetooth®-modulated signal, interferer 1 is –39 dBm sine wave at frequency f1,  
interferer 2 is –39 dBm Bluetooth®-modulated signal at frequency f2, f0 = 2 * f1 – f2, and |f2 – f1| = n * 1 MHz,  
where n = 3, 4, or 5. For the typical case, n = 4.  
Datasheet  
38  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Specifications  
Table 23  
BR/EDR - Transmitter RF specifications  
Parameter  
Min  
Typ  
Max  
Unit  
Transmitter section  
Frequency range  
BR TX power  
BR TX power variation  
EDR 2M TX power  
2402  
11.5  
±2  
2.5  
1.5  
±2  
2480  
MHz  
dBm  
dB  
dBm  
dBm  
dB  
EDR 3M TX power  
EDR 2M power variation  
EDR 3M power variation  
Adjacent channel power  
|M – N| = 2  
±3  
dB  
–20  
–40  
dBm  
|M – N| 3  
Out-of-band spurious emission  
30 MHz to 1 GHz  
1 GHz to 12.75 GHz  
1.8 GHz to 1.9 GHz  
5.15 GHz to 5.3 GHz  
LO performance  
–36.0  
–30.0  
–47.0  
–47.0  
dBm  
kHz  
Initial carrier frequency tolerance  
Frequency drift  
–75  
+75  
DH1 packet  
DH3 packet  
DH5 packet  
Drift rate  
–25  
–40  
–40  
–20  
+25  
+40  
+40  
20  
kHz  
kHz/50 µs  
Frequency deviation  
Average deviation in payload (sequence used is 00001111)  
Maximum deviation in payload (sequence used is 10101010)  
Channel spacing  
140  
115  
1
175  
kHz  
MHz  
Table 24  
Bluetooth® LE RF specifications  
Conditions  
Parameter  
Min  
Typ  
Max  
Unit  
Frequency range  
RX sensitivity[13]  
TX power  
N/A  
2402  
2480  
MHz  
GFSK, BDR GFSK 0.1% BER 0.1% BER,  
1 Mbps  
N/A  
–94.5  
dBm  
11.5  
255  
275  
Mod Char: Delta F1 average N/A  
225  
99.9  
0.8  
kHz  
%
Mod Char: Delta F2 max[14]  
Mod Char: Ratio  
N/A  
N/A  
%
Notes  
13.Dirty TX is Off.  
14.At least 99.9% of all delta F2 max frequency values recorded over 10 packets must be greater than 185 kHz.  
Datasheet  
39  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Specifications  
Table 25  
Bluetooth® LE2 RF specifications  
Conditions  
Parameter  
Min  
Typ  
–91.5  
11.5  
Max  
Unit  
dBm  
RX sensitivity[15]  
TX power  
Note  
15.255 packet.  
11.4  
Timing and AC characteristics  
In this section, use the numbers listed in the Reference column of each table to interpret the timing diagrams  
shown in Figure 11 through Figure 16.  
11.4.1  
UART timing  
Table 26  
UART timing specifications  
Characteristics  
Reference  
Min  
Typ  
Max  
1.50  
0.67  
1.33  
Unit  
Bit periods  
1
2
3
Delay time, UART_CTS_N low to UART_TXD valid.  
Setup time, UART_CTS_N high before midpoint of stop bit. –  
Delay time, midpoint of stop bit to UART_RTS_N high.  
UART_CTS_N  
2
1
UART_TXD  
Midpoint of STOP bit  
Midpoint of STOP bit  
UART_RXD  
3
UART_RTS_N  
Figure 11  
UART timing  
Datasheet  
40  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Specifications  
11.4.2  
SPI timing  
The SPI interface can be clocked up to 12 MHz.  
Table 27 and Figure 12 show the timing requirements when operating in SPI mode 0 and 2.  
Table 27  
SPI mode 0 and 2  
Characteristics  
Reference  
Min  
45  
6
Max  
½ SCK  
Unit  
ns  
1
2
3
Time from master assert SPI_CSN to first clock edge  
Setup time for MOSI data lines  
Idle time between subsequent SPI transactions  
1 SCK  
SPI_CSN  
3
1
SPI_CLK (mode 0)  
SPI_CLK (mode 2)  
2
First Bit  
Second Bit  
Second Bit  
Last Bit  
Last Bit  
SPI_MOSI  
SPI_MISO  
Not Driven  
First Bit  
Not Driven  
Figure 12  
SPI timing, mode 0 and 2  
Table 28 and Figure 13 show the timing requirements when operating in SPI mode 1 and 3.  
Table 28  
SPI Mode 1 and 3  
Reference  
Characteristics  
Min  
45  
6
Max  
½ SCK ns  
Unit  
1
2
3
Time from master assert SPI_CSN to first clock edge  
Setup time for MOSI data lines  
Idle time between subsequent SPI transactions  
1 SCK  
SPI_CSN  
3
1
SPI_CLK (mode 1)  
SPI_CLK (mode 3)  
SPI_MOSI  
2
First Bit  
First Bit  
Invalid bit  
Invalid bit  
Second Bit  
Second Bit  
Last Bit  
Not Driven  
Last Bit  
Not Driven  
SPI_MISO  
Figure 13  
SPI timing, mode 1 and 3  
Datasheet  
41  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Specifications  
11.4.3  
BSC interface timing  
The specifications in Table 29 references Figure 14.  
Table 29  
BSC interface timing specifications (up to 1 MHz)  
Reference  
Characteristics  
Min  
Max  
100  
400  
800  
1000  
Unit  
1
Clock frequency  
kHz  
2
3
4
5
6
7
8
9
START condition setup time  
START condition hold time  
Clock low time  
650  
280  
650  
280  
0
100  
280  
Clock high time  
Data input hold time[16]  
Data input setup time  
STOP condition setup time  
Output valid from clock  
Bus free time[17]  
ns  
400  
10  
Note  
650  
16.As a transmitter, 125 ns of delay is provided to bridge the undefined region of the falling edge of SCL to avoid  
unintended generation of START or STOP conditions.  
17.Time that the CBUS must be free before a new transaction can start.  
1
5
SCL  
2
8
6
4
3
7
SDA  
IN  
10  
9
SDA  
OUT  
Figure 14  
BSC interface timing diagram  
Datasheet  
42  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Specifications  
11.4.4  
I2S  
Table 30. Timing for I2S transmitters and receivers  
Transmitter  
Receiver  
Lower limit  
Min  
Clock period T Ttr  
Upper limit  
Min Max  
Lower limit  
Upper limit  
Min Max  
Notes  
Max  
Min  
Tr  
Max  
[18]  
Master Mode: Clock generated by transmitter or receiver  
[19]  
[19]  
HIGH tHC  
LOWtLC  
0.35Ttr  
0.35Ttr  
0.35Ttr  
0.35Ttr  
Slave mode: Clock accepted by transmitter or receiver  
[18]  
[18]  
[19]  
HIGH tHC  
LOW tLC  
0.35Ttr  
0.35Ttr  
0.35Ttr  
0.35Ttr  
Rise time tRC  
Transmitter  
Delay tdtr  
Hold time thtr  
Receiver  
0.15Ttr  
[20]  
[19]  
0
0.8T  
[21]  
[21]  
Setup time tsr  
Hold time thr  
Notes  
0.2Ttr  
0.2Ttr  
18.The system clock period T must be greater than Ttr and Tr because both the transmitter and receiver have  
to be able to handle the data transfer rate.  
19.At all data rates in master mode, the transmitter or receiver generates a clock signal with a fixed mark/space  
ratio. For this reason, tHC and tLC are specified with respect to T.  
20.In slave mode, the transmitter and receiver need a clock signal with minimum HIGH and LOW periods so that  
they can detect the signal. So long as the minimum periods are greater than 0.35Tr, any clock that meets the  
requirements can be used.  
21.Because the delay (tdtr) and the maximum transmitter speed (defined by Ttr) are related, a fast transmitter  
driven by a slow clock edge can result in tdtr not exceeding tRC which means thtr becomes zero or negative.  
Therefore, the transmitter has to guarantee that thtr is greater than or equal to zero, so long as the clock  
rise-time tRC is not more than tRCmax, where tRCmax is not less than 0.15Ttr.  
22.To allow data to be clocked out on a falling edge, the delay is specified with respect to the rising edge of the  
clock signal and T, always giving the receiver sufficient setup time.  
23.The data setup and hold time must not be less than the specified receiver setup and hold time.  
Datasheet  
43  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Specifications  
T
tRC*  
tLC 0.35T  
tHC 0.35T  
VH = 2.0V  
VL = 0.8V  
SCK  
thtr 0  
totr 0.8T  
SD and WS  
T = Clock period  
Ttr = Minimum allowed clock period for transmitter  
T = Ttr  
* tRC is only relevant for transmitters in slave mode.  
Figure 15  
I2S transmitter timing  
T
tLC 0.35T  
tHC 0.35  
VH = 2.0V  
SCK  
VL = 0.8V  
tsr 0.2T  
thr 0  
SD and WS  
T = Clock period  
Tr = Minimum allowed clock period for transmitter  
T > Tr  
Figure 16  
I2S receiver timing  
Datasheet  
44  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Package information  
12  
Package information  
12.1  
Package thermal characteristics  
Table 31  
Package thermal characteristics  
Description  
Ambient air temperature  
Total power (W)  
Board temperature (°C)  
Package-top temperature (°C)  
Maximum junction temperature (°C)  
Value  
25  
Unit  
°C  
W
°C  
°C  
0.15  
N/A  
N/A  
28.2  
3.87  
0.1  
21.2  
5.25  
13.1  
2.6  
105  
0.15  
N/A  
N/A  
107.6  
2.63  
0.1  
17.5  
5.25  
13.1  
2.6  
°C  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C  
W
°C  
°C  
°C  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
JB  
JT  
JA  
JB  
JC  
JCbottom  
Ambient air temperature  
Total power (W)  
Board temperature (°C)  
Package-top temperature (°C)  
Maximum junction temperature (°C)  
JB  
JT  
JA  
JB  
JC  
JCbottom  
Note: Absolute junction temperature limits are maintained through active thermal monitoring.  
Datasheet  
45  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Packaging diagrams  
13  
Packaging diagrams  
13.1  
48-Pin WQFN package  
Figure 17  
CYW89820 7 mm 7 mm 48-pin WQFN package  
Datasheet  
46  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Packaging diagrams  
13.2  
Tape reel and packaging specifications  
Table 32  
CYW89820 48-pin WQFN tape reel specifications  
Value  
Parameter  
Quantity per reel  
Reel diameter  
Hub diameter  
Tape width  
2500 parts  
13 inches  
4 inches  
16 mm  
Pocket pitch  
12 mm  
Sprocket hole pitch  
4 mm  
The top-left corner of the CYW89820 package is situated near the sprocket holes, as shown in Figure 18.  
Pin 1: Top left corner of package toward sprocket holes  
Figure 18  
Pin 1 orientation  
Datasheet  
47  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Ordering information  
14  
Ordering information  
Table 33  
Ordering information  
Package  
Part number  
Ambient operating temperature  
40°C to 105°C  
40°C to 105°C  
CYW89820BWMLG  
CYW89820BWMLGT  
7 mm 7 mm 48-pin WQFN  
7 mm x 7 mm 48-pin WQFN, tape and reel  
Datasheet  
48  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Acronyms  
15  
Acronyms  
Table 34  
Term  
ACL  
ADC  
AFH  
Acronyms used in this document  
Description  
asynchronous connection-less  
analog-to-digital converter  
adaptive frequency hopping  
ARM7TDMI-S Acorn RISC Machine 7 Thumb instruction, Debugger, Multiplier, Ice, Synthesizable  
BBC  
BDR  
BLE  
BR  
Bluetooth® Baseband Core  
basic data rate  
Bluetooth® low energy  
basic data rate  
CMOS  
CRC  
ECDSA  
ED  
complementary metal oxide semiconductor  
cyclic redundancy check  
elliptic curve digital signature algorithm  
erroneous data  
EDR  
EIR  
enhanced data rate  
extended inquiry response  
extended power down sleep  
extended synchronous connection-oriented  
encryption pause resume  
forward error correction  
floating point unit  
ePDS  
eSCO  
EPR  
FEC  
FPU  
GAP  
GATT  
GCI  
generic access profile  
generic attribute profile  
global coexistence interface  
Gaussian Frequency Shift Keying  
general-purpose I/O  
GFSK  
GPIO  
HCI  
host control interface  
HEC  
HID  
I2C  
header error control  
human-interface device  
inter-integrated circuit  
inter-IC sound bus  
I2S  
IF  
intermediate frequency  
Joint Test Action Group  
logical link control and adaptation protocol  
link control  
JTAG  
L2CAP  
LC  
LCU  
LDO  
LE  
link control unit  
low drop out  
low energy  
LED  
light emitting diode  
Datasheet  
49  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Acronyms  
Table 34  
Term  
LHL  
Acronyms used in this document (continued)  
Description  
lean high land  
LMAC  
LO  
Lower MAC  
local oscillator  
LPO  
low power oscillator  
link supervision time out  
master out slave in  
on-board diagnostics  
original equipment manufacturer  
on chip flash  
LSTO  
MOSI  
OBD  
OEM  
OCF  
OTA  
over-the-air  
OTP  
PA  
one-time programmable  
power amplifier  
PBF  
packet boundary flag  
pulse code modulation  
pulse density modulation  
power down sleep  
PCM  
PDM  
PDS  
PLL  
phase locked loop  
PMU  
POR  
PWM  
WQFN  
QoS  
RAM  
power management unit  
power-on reset  
pulse width modulation  
wettable plan quad flat no-lead  
quality of service  
random access memory  
RC oscillator A resistor-capacitor oscillator is a circuit composed of an amplifier, which provides the output  
signal, and a resistor-capacitor network, which controls the frequency of the signal.  
RF  
radio frequency  
ROM  
RSSI  
RTC  
RX/TX  
SCO  
SDS  
SECI  
SPI  
read-only memory  
receiver signal strength indicator  
real time clock  
receive/transmit  
synchronous connection-oriented  
Shut Down Sleep  
serial enhanced coexistence interface  
serial peripheral interface  
secure simple pairing  
SSP  
SSR  
sniff subrating  
SWD  
TRNG  
TSSI  
serial wire debug  
True Random Number Generator  
transmit signal strength indicator  
Datasheet  
50  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Acronyms  
Table 34  
Term  
Acronyms used in this document (continued)  
Description  
UART  
WDT  
universal asynchronous receiver/transmitter  
watchdog timer  
Datasheet  
51  
002-25826 Rev. *G  
2022-09-24  
AIROC™ Bluetooth® system on chip for automotive applications  
Revision history  
Revision history  
Document  
Date  
Description of changes  
revision  
**  
*A  
*B  
2018-12-06 New datasheet  
2019-25-03 Fixed typo in Page 3  
2020-07-15 Added QDID and Declaration ID and updated Programmable TX Power to 11.5  
dB in Features  
Added PA LDO in Functional block diagram  
Added Low-frequency clock sources and updated Power modes section.  
Added PA LDO in Power management unit and Power configurations section  
figures  
Added Power configurations section  
Added VDDO and ADC_AVDDBAT and updated PALDO_VDDOUT pins in Table 5.  
Added PAVDD parameter value in Table 8  
Updated PAVDD and PALDO_VDDIN values in Table 11  
Updated VSHUT values in Table 12  
Added new section PALDO and Table 18  
Updated HCI, RX and ePDS typical values in Table 21  
Updated Table 22, Table 23, Table 24, and Table 25 in RF specifications  
*C  
*D  
2021-04-23 Updated Table 23  
2021-06-11 Updated Table 21 to include BR, EDR, and Bluetooth® LE  
Changed from BLE to Bluetooth® LE and BT to Bluetooth® throughout the  
document  
*E  
*F  
2021-06-16 Updated to remove Preliminary  
2022-01-25 Updated PALDO_VDDIN value in Table 11  
Updated Input Supply, PALDO_VDDIN max value in Table 18  
*G  
2022-09-24 Migrated to Infineon template  
Updated EDR 2M and 3M TX power parameter values in Table 23  
Datasheet  
52  
002-25826 Rev. *G  
2022-09-24  
Please read the Important Notice and Warnings at the end of this document  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
For further information on the product, technology,  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”).  
Edition 2022-09-24  
Published by  
delivery terms and conditions and prices please  
contact your nearest Infineon Technologies office  
(www.infineon.com).  
Infineon Technologies AG  
81726 Munich, Germany  
With respect to any examples, hints or any typical  
values stated herein and/or any information  
regarding the application of the product, Infineon  
Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including  
without limitation warranties of non-infringement of  
intellectual property rights of any third party.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2022 Infineon Technologies AG.  
All Rights Reserved.  
Except as otherwise explicitly approved by Infineon  
In addition, any information given in this document  
is subject to customer’s compliance with its  
obligations stated in this document and any  
applicable legal requirements, norms and standards  
concerning customer’s products and any use of the  
product of Infineon Technologies in customer’s  
applications.  
Technologies in  
authorized  
a written document signed by  
Do you have a question about this  
document?  
Go to www.infineon.com/support  
representatives  
of  
Infineon  
Technologies, Infineon Technologies’ products may  
not be used in any applications where a failure of the  
product or any consequences of the use thereof can  
reasonably be expected to result in personal injury.  
Document reference  
002-25826 Rev. *G  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments  
to evaluate the suitability of the product for the  
intended application and the completeness of the  
product information given in this document with  
respect to such application.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY