FPT-24P-M34 [CYPRESS]

F2MC-8FX CPU core;
FPT-24P-M34
型号: FPT-24P-M34
厂家: CYPRESS    CYPRESS
描述:

F2MC-8FX CPU core

文件: 总105页 (文件大小:12176K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MB95650L Series  
New 8FX 8-bit Microcontrollers  
The MB95650L Series is a series of general-purpose, single-chip microcontrollers. In addition to a compact instruction set, the  
microcontrollers of this series contain a variety of peripheral functions.  
Features  
2
2
F MC-8FX CPU core  
I Cbusinterface2channels(Oneofthetwochannels  
2
can be used either as an I C bus interface channel or  
as a UART/SIO channel.)  
Instruction set optimized for controllers  
Multiplication and division instructions  
16-bit arithmetic operations  
Supports Standard-mode and Fast-mode (400 kHz).  
Built-in wake-up function  
Bit test branch instructions  
LIN-UART  
Bit manipulation instructions, etc.  
Full duplex double buffer  
Clock  
Capable of clock asynchronous serial data transfer and clock  
synchronous serial data transfer  
Selectable main clock source  
Main oscillation clock (up to 16.25 MHz, maximum machine  
clock frequency: 8.125 MHz)  
External interrupt 6 channels  
External clock (up to 32.5 MHz, maximum machine clock  
Interrupt by edge detection (rising edge, falling edge, and both  
edges can be selected)  
frequency: 16.25 MHz)  
Main CR clock (4 MHz 2%)  
Main CR PLL clock  
• The main CR PLL clock frequency becomes 8 MHz 2%  
when the PLL multiplication rate is 2.  
• The main CR PLL clock frequency becomes 10 MHz 2%  
when the PLL multiplication rate is 2.5.  
Can be used to wake up the device from different low power  
consumption (standby) modes  
8/12-bit A/D converter 6 channels  
8-bit or 12-bit resolution can be selected.  
• The main CR PLL clock frequency becomes 12 MHz 2%  
when the PLL multiplication rate is 3.  
Low power consumption (standby) modes  
There are four standby modes as follows:  
• The main CR PLL clock frequency becomes 16 MHz 2%  
when the PLL multiplication rate is 4.  
Stop mode  
Main PLL clock (maximum machine clock frequency:  
16 MHz)  
Sleep mode  
Selectable subclock source  
Watch mode  
Suboscillation clock (32.768 kHz)  
External clock (32.768 kHz)  
Time-base timer mode  
Sub-CR clock (Typ: 100 kHz, Min: 50 kHz, Max: 150 kHz)  
I/O port  
MB95F652E/F653E/F654E/F656E (number of I/O ports: 21)  
Timer  
General-purpose I/O ports (CMOS I/O)  
General-purpose I/O ports (N-ch open drain)  
: 17  
: 4  
8/16-bit composite timer 2 channels  
Time-base timer 1 channel  
Watch prescaler 1 channel  
MB95F652L/F653L/F654L/F656L (number of I/O ports: 20)  
General-purpose I/O ports (CMOS I/O)  
General-purpose I/O ports (N-ch open drain)  
: 17  
: 3  
UART/SIO 1 channel (The channel can be used either  
2
as a UART/SIO channel or as an I C bus interface  
On-chip debug  
channel.)  
1-wire serial control  
The function of this channel can be switched between  
Serial writing supported (asynchronous mode)  
UART/SIO and I2C bus interface.  
Hardware/software watchdog timer  
Built-in hardware watchdog timer  
Built-in software watchdog timer  
Full duplex double buffer  
Capableofclockasynchronous(UART)serialdatatransferand  
clock synchronous (SIO) serial data transfer  
Cypress Semiconductor Corporation  
Document Number: 002-04696 Rev. *A  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised April 12, 2016  
MB95650L Series  
Power-on reset  
Clock supervisor counter  
A power-on reset is generated when the power is switched on.  
Built-in clock supervisor counter  
Low-voltage detection reset circuit and low-voltage  
detection interrupt circuit (only available on  
MB95F652E/F653E/F654E/F656E)  
Dual operation Flash memory  
The program/erase operation and the read operation can be  
executed in different banks (upper bank/lower bank)  
simultaneously.  
Built-in low-voltage detection function  
Flash memory security function  
Protects the content of the Flash memory.  
Document Number: 002-04696 Rev. *A  
Page 2 of 105  
MB95650L Series  
Contents  
Product Line-up ................................................................4  
Packages and Corresponding Products ........................6  
Differences among Products and  
I/O Ports ...........................................................................29  
Port 0 .........................................................................30  
Port 1 .........................................................................36  
Port 6 .........................................................................42  
Port F .........................................................................46  
Port G ........................................................................50  
Interrupt Source Table ...................................................53  
Pin States in each Mode ................................................54  
Electrical Characteristics ...............................................56  
Absolute Maximum Ratings .......................................56  
Recommended Operating Conditions .......................58  
DC Characteristics ....................................................59  
AC Characteristics .....................................................62  
A/D Converter ............................................................86  
Flash Memory Program/Erase Characteristics ..........90  
Sample Characteristics ..................................................91  
Mask Options ..................................................................98  
Ordering Information ......................................................99  
Package Dimension ......................................................100  
Major Changes ..............................................................103  
Document History .........................................................104  
Notes on Product Selection .............................................7  
Pin Assignment ................................................................8  
Pin Functions ....................................................................9  
I/O Circuit Type ...............................................................12  
Handling Precautions .....................................................15  
Precautions for Product Design .................................15  
Precautions for Package Mounting ...........................16  
Precautions for Use Environment ..............................17  
Notes On Device Handling .............................................18  
Pin Connection ...............................................................19  
Block Diagram ................................................................20  
CPU Core .........................................................................21  
Memory Space ................................................................22  
Areas for Specific Applications ....................................24  
I/O Map .............................................................................25  
Document Number: 002-04696 Rev. *A  
Page 3 of 105  
MB95650L Series  
1. Product Line-up  
Part number  
MB95F652E MB95F653E MB95F654E MB95F656E MB95F652L MB95F653L MB95F654L MB95F656L  
Parameter  
Type  
Flash memory product  
Clock supervisor  
counter  
It supervises the main clock oscillation and the subclock oscillation.  
Flash memory  
capacity  
8 Kbyte  
12 Kbyte  
512 bytes  
20 Kbyte  
36 Kbyte  
8 Kbyte  
12 Kbyte  
512 bytes  
20 Kbyte  
36 Kbyte  
RAM capacity  
256 bytes  
1024 bytes 1024 bytes  
Yes  
256 bytes  
1024 bytes 1024 bytes  
Power-on reset  
Low-voltage  
detection reset  
Yes  
No  
With dedicated reset input  
Reset input  
Selected through software  
• Number of basic instructions  
• Instruction bit length  
: 136  
: 8 bits  
• Instruction length  
• Data bit length  
: 1 to 3 bytes  
: 1, 8 and 16 bits  
CPU functions  
• Minimum instruction execution time  
• Interrupt processing time  
: 61.5 ns (machine clock frequency = 16.25 MHz)  
: 0.6 µs (machine clock frequency = 16.25 MHz)  
• I/O port  
• CMOS I/O  
• N-ch open drain  
: 21  
: 17  
: 4  
• I/O port  
• CMOS I/O  
• N-ch open drain  
: 20  
: 17  
: 3  
General-purpose  
I/O  
Time-base timer  
Interval time: 0.256 ms to 8.3 s (external clock frequency = 4 MHz)  
• Reset generation cycle  
Main oscillation clock at 10 MHz: 105 ms (Min)  
• The sub-CR clock can be used as the source clock of the software watchdog timer.  
Hardware/software  
watchdog timer  
Wild register  
It can be used to replace 3 bytes of data.  
• A wide range of communication speed can be selected by a dedicated reload timer.  
• It has a full duplex double buffer.  
• Both clock synchronous serial data transfer and clock asynchronous serial data transfer are enabled.  
• The LIN function can be used as a LIN master or a LIN slave.  
LIN-UART  
6 channels  
8/12-bit  
A/D converter  
8-bit or 12-bit resolution can be selected.  
2 channels  
• The timer can be configured as an “8-bit timer × 2 channels” or a “16-bit timer × 1 channel”.  
• It has the following functions: interval timer function, PWC function, PWM function and input capture function.  
• Count clock: it can be selected from internal clocks (seven types) and external clocks.  
• It can output square wave.  
8/16-bit  
composite timer  
6 channels  
External interrupt  
On-chip debug  
• Interrupt by edge detection (The rising edge, falling edge, and both edges can be selected.)  
• It can be used to wake up the device from different standby modes.  
• 1-wire serial control  
• It supports serial writing (asynchronous mode).  
(Continued)  
Document Number: 002-04696 Rev. *A  
Page 4 of 105  
MB95650L Series  
(Continued)  
Part number  
MB95F652E MB95F653E MB95F654E MB95F656E MB95F652L MB95F653L MB95F654L MB95F656L  
Parameter  
1 channel (The channel can be used either as a UART/SIO channel or as an I2C bus interface channel.)  
• Data transfer with UART/SIO is enabled.  
• It has a full duplex double buffer, variable data length (5/6/7/8 bits), an internal baud rate generator and an  
error detection function.  
• It uses the NRZ type transfer format.  
UART/SIO  
• LSB-first data transfer and MSB-first data transfer are available to use.  
• Both clock asynchronous (UART) serial data transfer and clock synchronous (SIO) serial data transfer are  
enabled.  
2 channels (One of the two channels can be used either as an I2C bus interface channel or as a UART/SIO  
channel.)  
I2C bus  
interface  
• Master/slave transmission and reception  
• It has the following functions: bus error function, arbitration function, transmission direction detection function,  
wake-up function, and functions of generating and detecting repeated START conditions.  
Watch prescaler  
Flash memory  
Eight different time intervals can be selected.  
• It supports automatic programming (Embedded Algorithm), and program/erase/erase-suspend/erase-resume  
commands.  
• It has a flag indicating the completion of the operation of Embedded Algorithm.  
• Flash security feature for protecting the content of the Flash memory  
Number of program/erase cycles  
Data retention time  
1000  
10000  
100000  
5 years  
20 years  
10 years  
There are four standby modes as follows:  
• Stop mode  
Standby mode  
Package  
• Sleep mode  
• Watch mode  
• Time-base timer mode  
FPT-24P-M10  
FPT-24P-M34  
LCC-32P-M19  
Document Number: 002-04696 Rev. *A  
Page 5 of 105  
MB95650L Series  
2. Packages and Corresponding Products  
Part number  
MB95F652E MB95F653E MB95F654E MB95F656E MB95F652L MB95F653L MB95F654L MB95F656L  
Package  
FPT-24P-M10  
FPT-24P-M34  
LCC-32P-M19  
: Available  
Document Number: 002-04696 Rev. *A  
Page 6 of 105  
MB95650L Series  
3. Differences among Products and Notes on Product Selection  
Current consumption  
When using the on-chip debug function, take account of the current consumption of Flash memory program/erase.  
For details of current consumption, see “18. Electrical Characteristics”.  
Package  
For details of information on each package, see “2. Packages and Corresponding Products” and “22. Package Dimension”.  
Operating voltage  
The operating voltage varies, depending on whether the on-chip debug function is used or not.  
For details of operating voltage, see “18. Electrical Characteristics”.  
On-chip debug function  
The on-chip debug function requires that VCC, VSS and one serial wire be connected to an evaluation tool. For details of the connection  
method, refer to “Chapter 20 Example Of Serial Programming Connection” in “New 8FX MB95650L Series Hardware Manual”.  
Document Number: 002-04696 Rev. *A  
Page 7 of 105  
MB95650L Series  
4. Pin Assignment  
PF0/X0  
PF1/X1  
Vss  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
P12/DBG/EC0  
P07/INT07/TO10  
P06/INT06/TO01  
3
(TOP VIEW)  
PG2/X1A  
PG1/X0A  
Vcc  
4
P05/INT05/AN05/TO00  
P04/INT04/AN04/SIN/EC0  
P03/INT03/AN03/SOT  
P02/INT02/AN02/SCK  
P01/AN01  
5
TSSOP24  
FPT-24P-M10  
6
C
7
PF2/RST  
8
SOP24  
FPT-24P-M34  
P17/SCL1/UI0  
P16/SDA1/UO0  
P62/TO10/UCK0  
P63/TO11  
9
P00/AN00  
10  
11  
12  
P64/EC1  
P14/SDA0  
P15/SCL0  
Vss  
1
24  
23  
22  
21  
20  
19  
18  
17  
P06/INT06/TO01  
P05/INT05/AN05/TO00  
P04/INT04/AN04/SIN/EC0  
P03/INT03/AN03/SOT  
P02/INT02/AN02/SCK  
P01/AN01  
PG2/X1A  
PG1/X0A  
Vcc  
2
3
4
5
6
7
8
(TOP VIEW)  
C
QFN32  
LCC-32P-M19  
PF2/RST  
P17/SCL1/UI0  
P16/SDA1/UO0  
P00/AN00  
P64/EC1  
Document Number: 002-04696 Rev. *A  
Page 8 of 105  
MB95650L Series  
5. Pin Functions  
Pin no.  
I/O type  
I/O  
circuit  
SOP24*1,  
QFN32*3  
Pin name  
Function  
OD*5 PU*6  
Output  
type*4  
Input  
TSSOP24*2  
PF0  
X0  
General-purpose I/O port  
Main clock input oscillation pin  
General-purpose I/O port  
Main clock I/O oscillation pin  
Power supply pin (GND)  
General-purpose I/O port  
Subclock I/O oscillation pin  
General-purpose I/O port  
Subclock input oscillation pin  
Power supply pin  
1
32  
B
Hysteresis  
CMOS  
PF1  
X1  
2
3
4
31  
1
B
C
Hysteresis  
CMOS  
VSS  
PG2  
X1A  
PG1  
X0A  
VCC  
C
2
Hysteresis  
CMOS  
5
3
C
Hysteresis  
CMOS  
6
7
4
5
Decoupling capacitor connection pin  
General-purpose I/O port  
PF2  
Reset pin  
Dedicated reset pin on  
MB95F652L/F653L/F654L/F656L  
8
6
A
Hysteresis  
CMOS  
RST  
P17  
SCL1  
UI0  
General-purpose I/O port  
9
7
8
J
J
I2C bus interface ch. 1 clock I/O pin  
UART/SIO ch. 0 data input pin  
General-purpose I/O port  
CMOS  
CMOS  
CMOS —/*7  
CMOS —/*7  
P16  
10  
SDA1  
UO0  
I2C bus interface ch. 1 data I/O pin  
UART/SIO ch. 0 data output pin  
General-purpose I/O port  
High-current pin  
P62  
11  
12  
10  
9
D
D
Hysteresis  
Hysteresis  
CMOS  
CMOS  
TO10  
UCK0  
8/16-bit composite timer ch. 1 output pin  
UART/SIO ch. 0 clock I/O pin  
General-purpose I/O port  
High-current output  
P63  
TO11  
P15  
8/16-bit composite timer ch. 1 output pin  
General-purpose I/O port  
13  
14  
16  
15  
I
I
CMOS  
CMOS  
CMOS  
CMOS  
SCL0  
P14  
I2C bus interface ch. 0 clock I/O pin  
General-purpose I/O port  
I2C bus interface ch. 0 data I/O pin  
SDA0  
P64  
General-purpose I/O port  
15  
17  
D
Hysteresis  
CMOS  
8/16-bit composite timer ch. 1 clock input  
pin  
EC1  
(Continued)  
Document Number: 002-04696 Rev. *A  
Page 9 of 105  
MB95650L Series  
Pin no.  
I/O type  
I/O  
circuit  
SOP24*1,  
Pin name  
Function  
QFN32*3  
OD*5 PU*6  
Output  
type*4  
Input  
TSSOP24*2  
P00  
AN00  
P01  
General-purpose I/O port  
Hysteresis/  
analog  
16  
18  
E
CMOS  
CMOS  
8/12-bit A/D converter analog input pin  
General-purpose I/O port  
Hysteresis/  
analog  
17  
18  
18  
20  
E
E
AN01  
P02  
8/12-bit A/D converter analog input pin  
General-purpose I/O port  
INT02  
AN02  
SCK  
P03  
External interrupt input pin  
Hysteresis/  
analog  
CMOS  
CMOS  
8/12-bit A/D converter analog input pin  
LIN-UART clock I/O pin  
General-purpose I/O port  
INT03  
AN03  
SOT  
P04  
External interrupt input pin  
Hysteresis/  
analog  
19  
20  
21  
22  
E
F
8/12-bit A/D converter analog input pin  
LIN-UART data output pin  
General-purpose I/O port  
INT04  
AN04  
SIN  
External interrupt input pin  
8/12-bit A/D converter analog input pin  
LIN-UART data input pin  
CMOS/  
analog  
CMOS  
CMOS  
8/16-bit composite timer ch. 0 clock input  
pin  
EC0  
P05  
General-purpose I/O port  
High-current pin  
Hysteresis/  
analog  
INT05  
AN05  
TO00  
External interrupt input pin  
21  
23  
K
8/12-bit A/D converter analog input pin  
8/16-bit composite timer ch. 0 output pin  
General-purpose I/O port  
High-current pin  
P06  
22  
23  
24  
26  
D
K
Hysteresis  
Hysteresis  
CMOS  
CMOS  
INT06  
TO01  
External interrupt input pin  
8/16-bit composite timer ch. 0 output pin  
General-purpose I/O port  
High-current pin  
P07  
INT07  
TO10  
External interrupt input pin  
8/16-bit composite timer ch. 1 output pin  
(Continued)  
Document Number: 002-04696 Rev. *A  
Page 10 of 105  
MB95650L Series  
(Continued)  
Pin no.  
I/O type  
I/O  
circuit  
SOP24*1,  
Pin name  
Function  
QFN32*3  
OD*5 PU*6  
Output  
type*4  
Input  
TSSOP24*2  
P12  
General-purpose I/O port  
DBG input pin  
DBG  
24  
25  
H
Hysteresis  
CMOS  
8/16-bit composite timer ch. 0 clock input  
pin  
EC0  
11  
12  
13  
14  
27  
28  
29  
30  
It is an internally connected pin. Always  
leave it unconnected.  
NC  
: Available  
*1: FPT-24P-M34  
*2: FPT-24P-M10  
*3: LCC-32P-M19  
*4: For the I/O circuit types, see “6. I/O Circuit Type”.  
*5: N-ch open drain  
*6: Pull-up  
*7: In I2C mode, the pin becomes an N-ch open drain pin.  
Document Number: 002-04696 Rev. *A  
Page 11 of 105  
MB95650L Series  
6. I/O Circuit Type  
Type  
Circuit  
Remarks  
• N-ch open drain output  
• Hysteresis input  
• Reset output  
Reset input / Hysteresis input  
Reset output / Digital output  
A
N-ch  
Port select  
P-ch  
Digital output  
Digital output  
N-ch  
Standby control  
Hysteresis input  
• Oscillation circuit  
• High-speed side  
Feedback resistance:  
approx. 1 M  
Clock input  
X1  
B
X0  
• CMOS output  
• Hysteresis input  
Standby control / Port select  
P-ch  
Port select  
Digital output  
Digital output  
N-ch  
Standby control  
Hysteresis input  
Port select  
R
Pull-up control  
P-ch  
N-ch  
P-ch  
Digital output  
Digital output  
Standby control  
Hysteresis input  
• Oscillation circuit  
• Low-speed side  
Feedback resistance:  
approx. 5 M  
Clock input  
X1A  
C
X0A  
• CMOS output  
• Hysteresis input  
• Pull-up control  
Standby control / Port select  
Port select  
R
Pull-up control  
Digital output  
N-ch  
P-ch  
Digital output  
Digital output  
Standby control  
Hysteresis input  
(Continued)  
Page 12 of 105  
Document Number: 002-04696 Rev. *A  
MB95650L Series  
Type  
Circuit  
Remarks  
Pull-up control  
R
• CMOS output  
• Hysteresis input  
• Pull-up control  
P-ch  
N-ch  
Digital output  
Digital output  
D
P-ch  
• High current output  
Standby control  
Hysteresis input  
Pull-up control  
R
P-ch  
N-ch  
Digital output  
Digital output  
P-ch  
• CMOS output  
• Hysteresis input  
• Pull-up control  
• Analog input  
E
Analog input  
A/D control  
Standby control  
Hysteresis input  
Pull-up control  
R
P-ch  
N-ch  
Digital output  
Digital output  
P-ch  
• CMOS output  
• CMOS input  
• Pull-up control  
• Analog input  
F
Analog input  
A/D control  
Standby control  
CMOS input  
Standby control  
Hysteresis input  
• N-ch open drain output  
• Hysteresis input  
H
Digital output  
N-ch  
N-ch  
Digital output  
Standby control  
CMOS input  
• N-ch open drain output  
• CMOS input  
I
(Continued)  
Document Number: 002-04696 Rev. *A  
Page 13 of 105  
MB95650L Series  
(Continued)  
Type  
Circuit  
Remarks  
I2C mode control  
Digital output  
• CMOS output  
J
• CMOS input  
P-ch  
N-ch  
• N-ch open drain output in I2C mode  
Digital output  
Standby control  
CMOS input  
Pull-up control  
R
P-ch  
N-ch  
Digital output  
Digital output  
• CMOS output  
• Hysteresis input  
• Pull-up control  
• Analog input  
P-ch  
K
• High current output  
Analog input  
A/D control  
Standby control  
Hysteresis input  
Document Number: 002-04696 Rev. *A  
Page 14 of 105  
MB95650L Series  
7. Handling Precautions  
Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in  
which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to  
minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.  
7.1 Precautions for Product Design  
This section describes precautions when designing electronic equipment using semiconductor devices.  
Absolute Maximum Ratings  
Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain  
established limits, called absolute maximum ratings. Do not exceed these ratings.  
Recommended Operating Conditions  
Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical character-  
istics are warranted when operated within these ranges.  
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely  
affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering  
application outside the listed conditions are advised to contact their sales representative beforehand.  
Processing and Protection of Pins  
These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output  
functions.  
1. Preventing Over-Voltage and Over-Current Conditions  
Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and  
in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the  
design stage.  
2. Protection of Output Pins  
Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such  
conditions if present for extended periods of time can damage the device.  
Therefore, avoid this type of connection.  
3. Handling of Unused Input Pins  
Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected  
through an appropriate resistance to a power supply pin or ground pin.  
Latch-up  
Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally  
high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of  
several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.  
CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage  
from high heat, smoke or flame. To prevent this from happening, do the following:  
1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise,  
surge levels, etc.  
2. Be sure that abnormal current flows do not occur during the power-on sequence.  
Observance of Safety Regulations and Standards  
Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference,  
etc. Customers are requested to observe applicable regulations and standards in the design of products.  
Fail-Safe Design  
Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures  
by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of  
over-current levels and other abnormal operating conditions.  
Document Number: 002-04696 Rev. *A  
Page 15 of 105  
MB95650L Series  
Precautions Related to Usage of Devices  
Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office  
equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).  
CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly  
affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as  
aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are  
requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such  
use without prior approval.  
7.2 Precautions for Package Mounting  
Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you  
should only mount under Cypress’s recommended conditions. For detailed information about mount conditions, contact your sales  
representative.  
Lead Insertion Type  
Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or  
mounting by using a socket.  
Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow  
soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected  
to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress  
recommended mounting conditions.  
If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact  
deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be  
verified before mounting.  
Surface Mount Type  
Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed  
or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections  
caused by deformed pins, or shorting due to solder bridges.  
You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of  
mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended  
conditions.  
Lead-Free Packaging  
CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength  
may be reduced under some conditions of use.  
Storage of Semiconductor Devices  
Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of  
moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing  
moisture resistance and causing packages to crack. To prevent, do the following:  
1. Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations  
where temperature changes are slight.  
2. Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and  
30°C.  
When you open Dry Package that recommends humidity 40% to 70% relative humidity.  
3. When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel  
desiccant. Devices should be sealed in their aluminum laminate bags for storage.  
4. Avoid storing packages where they are exposed to corrosive gases or high levels of dust.  
Baking  
Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions  
for baking.  
Condition: 125°C/24 h  
Document Number: 002-04696 Rev. *A  
Page 16 of 105  
MB95650L Series  
Static Electricity  
Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:  
1. Maintain relative humidity in the working environment between 40% and 70%.  
Use of an apparatus for ion generation may be needed to remove electricity.  
2. Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.  
3. Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 M).  
Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is  
recommended.  
4. Ground all fixtures and instruments, or protect with anti-static measures.  
5. Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.  
7.3 Precautions for Use Environment  
Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.  
For reliable performance, do the following:  
1. Humidity  
Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are  
anticipated, consider anti-humidity processing.  
2. Discharge of Static Electricity  
When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use  
anti-static measures or processing to prevent discharges.  
3. Corrosive Gases, Dust, or Oil  
Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you  
use devices in such conditions, consider ways to prevent such exposure or to protect the devices.  
4. Radiation, Including Cosmic Radiation  
Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding  
as appropriate.  
5. Smoke, Flame  
CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin  
to smoke or burn, there is danger of the release of toxic gases.  
Customers considering the use of Cypress products in other special environmental conditions should consult with sales  
representatives.  
Document Number: 002-04696 Rev. *A  
Page 17 of 105  
MB95650L Series  
8. Notes On Device Handling  
Preventing latch-ups  
When using the device, ensure that the voltage applied does not exceed the maximum voltage rating.  
In a CMOS IC, if a voltage higher than VCC or a voltage lower than VSS is applied to an input/output pin that is neither a  
medium-withstand voltage pin nor a high-withstand voltage pin, or if a voltage out of the rating range of power supply voltage mentioned  
in “18.1 Absolute Maximum Ratings” of “18. Electrical Characteristics” is applied to the VCC pin or the VSS pin, a latch-up may occur.  
When a latch-up occurs, power supply current increases significantly, which may cause a component to be thermally destroyed.  
Stabilizing supply voltage  
Supply voltage must be stabilized.  
A malfunction may occur when power supply voltage fluctuates rapidly even though the fluctuation is within the guaranteed operating  
range of the VCC power supply voltage.  
As a rule of voltage stabilization, suppress voltage fluctuation so that the fluctuation in VCC ripple (p-p value) at the commercial  
frequency (50 Hz/60 Hz) does not exceed 10% of the standard VCC value, and the transient fluctuation rate does not exceed 0.1 V/ms  
at a momentary fluctuation such as switching the power supply.  
Notes on using the external clock  
When an external clock is used, oscillation stabilization wait time is required for power-on reset, wake-up from subclock mode or stop  
mode.  
Document Number: 002-04696 Rev. *A  
Page 18 of 105  
MB95650L Series  
9. Pin Connection  
Treatment of unused pins  
If an unused input pin is left unconnected, a component may be permanently damaged due to malfunctions or latch-ups. Always pull  
up or pull down an unused input pin through a resistor of at least 2 k. Set an unused input/output pin to the output state and leave  
it unconnected, or set it to the input state and treat it the same as an unused input pin. If there is an unused output pin, leave it  
unconnected.  
Power supply pins  
To reduce unnecessary electro-magnetic emission, prevent malfunctions of strobe signals due to an increase in the ground level, and  
conform to the total output current standard, always connect the VCC pin and the VSS pin to the power supply and ground outside the  
device. In addition, connect the current supply source to the VCC pin and the VSS pin with low impedance.  
It is also advisable to connect a ceramic capacitor of approximately 1.0 µF as a bypass capacitor between the VCC pin and the VSS  
pin at a location close to this device.  
DBG pin  
Connect the DBG pin to an external pull-up resistor of 2 kor above.  
After power-on, ensure that the DBG pin does not stay at “L” level until the reset output is released.  
The DBG pin becomes a communication pin in debug mode. Since the actual pull-up resistance depends on the tool used and the  
interconnection length, refer to the tool document when selecting a pull-up resistor.  
RST pin  
Connect the RST pin to an external pull-up resistor of 2 kor above.  
To prevent the device from unintentionally entering the reset mode due to noise, minimize the interconnection length between a pull-up  
resistor and the RST pin and that between a pull-up resistor and the VCC pin when designing the layout of the printed circuit board.  
The PF2/RST pin functions as the reset input/output pin after power-on. In addition, the reset output of the PF2/RST pin can be enabled  
by the RSTOE bit in the SYSC register, and the reset input function and the general purpose I/O function can be selected by the  
RSTEN bit in the SYSC register.  
C pin  
Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The decoupling capacitor for the VCC pin must have  
a capacitance equal to or larger than the capacitance of CS. For the connection to a decoupling capacitor CS, see the diagram below.  
To prevent the device from unintentionally entering a mode to which the device is not set to transit due to noise, minimize the distance  
between the C pin and CS and the distance between CS and the VSS pin when designing the layout of a printed circuit board.  
DBG/RST/C pins connection diagram  
DBG  
C
RST  
Cs  
Note on serial communication  
In serial communication, reception of wrong data may occur due to noise or other causes. Therefore, design a printed circuit board  
to prevent noise from occurring. Taking account of the reception of wrong data, take measures such as adding a checksum to the end  
of data in order to detect errors. If an error is detected, retransmit the data.  
Document Number: 002-04696 Rev. *A  
Page 19 of 105  
MB95650L Series  
10. Block Diagram  
F2MC-8FX CPU  
PF2*1/RST*2  
Reset with LVD  
Dual operation Flash with  
security function  
(36/20/12/8 Kbyte)  
PF0/X0*2  
PF1/X1*2  
PG1/X0A*2  
PG2/X1A*2  
Oscillator  
circuit  
CR oscillator  
RAM (1024/512/256 bytes)  
8/16-bit composite timer ch. 0  
(P05/TO00)  
Clock control  
(P06/TO01)  
(P04/EC0), P12*1/EC0  
(P12*1/DBG)  
On-chip debug  
Wild register  
(P62*3/TO10), P62*3/TO10  
P63*3/TO11  
8/16-bit composite timer ch. 1  
P64/EC1  
P02/INT02 to P07/INT07  
C
External interrupt  
P14*1/SDA0  
P15*1/SCL0  
I2C bus interface ch. 0  
I2C bus interface ch. 1  
(P00/AN00 to P05*3/AN05)  
8/12-bit A/D converter  
LIN-UART  
(P16/SDA1)  
(P17/SCL1)  
(P04/SIN)  
(P03/SOT)  
(P02/SCK)  
P17/UI0  
UART/SIO ch. 0  
Port  
P16/UO0  
P62/UCK0  
Port  
Vcc  
Vss  
P12, P14, P15 and PF2 are N-ch open drain pins.  
Software select  
*1:  
*2:  
*3:  
P05 to P07, P62 and P63 are high-current pins.  
Note: Pins in parentheses indicate that those pins are shared among different peripheral functions.  
Document Number: 002-04696 Rev. *A  
Page 20 of 105  
MB95650L Series  
11. CPU Core  
Memory space  
The memory space of the MB95650L Series is 64 Kbyte in size, and consists of an I/O area, an extended I/O area, a data area, and  
a program area. The memory space includes areas intended for specific purposes such as general-purpose registers and a vector  
table. The memory maps of the MB95650L Series are shown below.  
Memory maps  
MB95F652E/F652L  
MB95F653E/F653L  
MB95F654E/F654L  
MB95F656E/F656L  
0x0000  
0x0080  
0x0000  
0x0080  
0x0000  
0x0080  
0x0000  
0x0080  
I/O area  
I/O area  
I/O area  
I/O area  
Access prohibited  
RAM 256 bytes  
Registers  
Access prohibited  
RAM 512 bytes  
Registers  
Access prohibited  
RAM 1024 bytes  
Registers  
Access prohibited  
RAM 1024 bytes  
Registers  
0x0090  
0x0100  
0x0190  
0x0090  
0x0100  
0x0090  
0x0100  
0x0090  
0x0100  
0x0200  
0x0200  
0x0200  
0x0290  
Access prohibited  
0x0490  
0x0490  
Access prohibited  
Access prohibited  
Access prohibited  
0x0F80  
0x1000  
0x0F80  
0x1000  
0x0F80  
0x1000  
0x0F80  
0x1000  
Extended I/O area  
Extended I/O area  
Extended I/O area  
Extended I/O area  
Flash memory 4 Kbyte  
Flash memory 4 Kbyte  
Flash memory 4 Kbyte  
Flash memory 4 Kbyte  
0x2000  
0x2000  
0x2000  
0x2000  
Access prohibited  
Access prohibited  
Access prohibited  
0x8000  
Access prohibited  
0xC000  
Flash memory 32 Kbyte  
0xE000  
0xFFFF  
Flash memory 16 Kbyte  
0xF000  
0xFFFF  
Flash memory 8 Kbyte  
Flash memory 4 Kbyte  
0xFFFF  
0xFFFF  
Document Number: 002-04696 Rev. *A  
Page 21 of 105  
MB95650L Series  
12. Memory Space  
The memory space of the MB95650L Series is 64 Kbyte in size, and consists of an I/O area, an extended I/O area, a data area, and  
a program area. The memory space includes areas for specific applications such as general-purpose registers and a vector table.  
I/O area (addresses: 0x0000 to 0x007F)  
• This area contains the control registers and data registers for built-in peripheral functions.  
• As the I/O area forms part of the memory space, it can be accessed in the same way as the memory. It can also be accessed  
at high-speed by using direct addressing instructions.  
Extended I/O area (addresses: 0x0F80 to 0x0FFF)  
• This area contains the control registers and data registers for built-in peripheral functions.  
• As the extended I/O area forms part of the memory space, it can be accessed in the same way as the memory.  
Data area  
• Static RAM is incorporated in the data area as the internal data area.  
• The internal RAM size varies according to product.  
• The RAM area from 0x0090 to 0x00FF can be accessed at high-speed by using direct addressing instructions.  
• In MB95F656E/F656L, the area from 0x0090 to 0x047F is an extended direct addressing area. It can be accessed at high-speed  
by direct addressing instructions with a direct bank pointer set.  
• In MB95F654E/F654L, the area from 0x0090 to 0x047F is an extended direct addressing area. It can be accessed at high-speed  
by direct addressing instructions with a direct bank pointer set.  
• In MB95F653E/F653L, the area from 0x0090 to 0x028F is an extended direct addressing area. It can be accessed at high-speed  
by direct addressing instructions with a direct bank pointer set.  
• In MB95F652E/F652L, the area from 0x0090 to 0x018F is an extended direct addressing area. It can be accessed at high-speed  
by direct addressing instructions with a direct bank pointer set.  
• In MB95F653E/F653L/F654E/F654L/F656E/F656L, the area from 0x0100 to 0x01FF can be used as a general-purpose register  
area.  
• In MB95F652E/F652L, the area from 0x0100 to 0x018F can be used as a general-purpose register area.  
Program area  
• The Flash memory is incorporated in the program area as the internal program area.  
• The Flash memory size varies according to product.  
• The area from 0xFFC0 to 0xFFFF is used as the vector table.  
• The area from 0xFFBB to 0xFFBF is used to store data of the non-volatile register.  
Document Number: 002-04696 Rev. *A  
Page 22 of 105  
MB95650L Series  
Memory space map  
0x0000  
0x0080  
I/O area  
Direct addressing area  
Access prohibited  
0x0090  
0x0100  
Registers  
(General-purpose register area)  
Extended direct addressing area  
0x0200  
Data area  
0x047F  
0x048F  
0x0490  
Access prohibited  
Extended I/O area  
0x0F80  
0x0FFF  
0x1000  
Program area  
0xFFC0  
0xFFFF  
Vector table area  
Document Number: 002-04696 Rev. *A  
Page 23 of 105  
MB95650L Series  
13. Areas for Specific Applications  
The general-purpose register area and vector table area are used for the specific applications.  
1
General-purpose register area (Addresses: 0x0100 to 0x01FF* )  
• This area contains the auxiliary registers used for 8-bit arithmetic operations, transfer, etc.  
• As this area forms part of the RAM area, it can also be used as conventional RAM.  
• When the area is used as general-purpose registers, general-purpose register addressing enables high-speed access with short  
instructions.  
Non-volatile register data area (Addresses: 0xFFBB to 0xFFBF)  
• The area from 0xFFBB to 0xFFBF is used to store data of the non-volatile register. For details, refer to “Chapter 23 Non-volatile  
Register (NVR) Interface” in “New 8FX MB95650L Series Hardware Manual”.  
Vector table area (Addresses: 0xFFC0 to 0xFFFF)  
• This area is used as the vector table for vector call instructions (CALLV), interrupts, and resets.  
• The top of the Flash memory area is allocated to the vector table area. The start address of a service routine is set to an address  
in the vector table in the form of data.  
“16. Interrupt Source Table” lists the vector table addresses corresponding to vector call instructions, interrupts, and resets.  
For details, refer to “Chapter 4 Reset”, “Chapter 5 Interrupts” and “A.2 Special Instruction Special Instruction CALLV #vct” in “New  
8FX MB95650L Series Hardware Manual”.  
Direct bank pointer and access area  
Direct bank pointer (DP[2:0])  
0bXXX (It does not affect mapping.)  
Operand-specified dir  
0x0000 to 0x007F  
Access area  
0x0000 to 0x007F  
0b000 (Initial value)  
0b001  
0x0090 to 0x00FF  
0x0090 to 0x00FF  
0x0100 to 0x017F  
0x0180 to 0x01FF*1  
0x0200 to 0x027F  
0x0280 to 0x02FF*2  
0x0300 to 0x037F  
0x0380 to 0x03FF  
0x0400 to 0x047F  
0b010  
0b011  
0b100  
0x0080 to 0x00FF  
0b101  
0b110  
0b111  
*1: Due to the memory size limit, the available access area is up to “0x018F” in MB95F652E/F652L.  
*2: Due to the memory size limit, the available access area is up to “0x028F” in MB95F653E/F653L.  
Document Number: 002-04696 Rev. *A  
Page 24 of 105  
MB95650L Series  
14. I/O Map  
Register  
abbreviation  
Address  
Register name  
R/W  
Initial value  
0x0000  
0x0001  
0x0002  
0x0003  
0x0004  
0x0005  
0x0006  
0x0007  
0x0008  
0x0009  
0x000A  
0x000B  
0x000C  
0x000D  
PDR0  
DDR0  
PDR1  
DDR1  
Port 0 data register  
R/W  
R/W  
R/W  
R/W  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
Port 0 direction register  
Port 1 data register  
Port 1 direction register  
(Disabled)  
WATR  
PLLC  
SYCC  
STBC  
RSRR  
TBTC  
WPCR  
WDTC  
SYCC2  
Oscillation stabilization wait time setting register  
PLL control register  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b11111111  
0b000X0000  
0bXXX11011  
0b00000000  
0b000XXXXX  
0b00000000  
0b00000000  
0b00XX0000  
0bXXXX0011  
System clock control register  
Standby control register  
Reset source register  
Time-base timer control register  
Watch prescaler control register  
Watchdog timer control register  
System clock control register 2  
0x000E  
to  
(Disabled)  
0x0015  
0x0016  
0x0017  
PDR6  
DDR6  
Port 6 data register  
R/W  
R/W  
0b00000000  
0b00000000  
Port 6 direction register  
0x0018  
to  
(Disabled)  
0x0027  
0x0028  
0x0029  
0x002A  
0x002B  
0x002C  
PDRF  
DDRF  
PDRG  
DDRG  
PUL0  
Port F data register  
R/W  
R/W  
R/W  
R/W  
R/W  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
Port F direction register  
Port G data register  
Port G direction register  
Port 0 pull-up register  
0x002D  
to  
(Disabled)  
0x0032  
0x0033  
0x0034  
0x0035  
0x0036  
0x0037  
0x0038  
0x0039  
PUL6  
Port 6 pull-up register  
R/W  
0b00000000  
(Disabled)  
PULG  
Port G pull-up register  
R/W  
R/W  
R/W  
R/W  
R/W  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
T01CR1  
T00CR1  
T11CR1  
T10CR1  
8/16-bit composite timer 01 status control register 1  
8/16-bit composite timer 00 status control register 1  
8/16-bit composite timer 11 status control register 1  
8/16-bit composite timer 10 status control register 1  
0x003A  
to  
(Disabled)  
0x0048  
(Continued)  
Document Number: 002-04696 Rev. *A  
Page 25 of 105  
MB95650L Series  
Register  
abbreviation  
Address  
Register name  
R/W  
Initial value  
0x0049  
0x004A  
0x004B  
EIC10  
EIC20  
EIC30  
External interrupt circuit control register ch. 2/ch. 3  
External interrupt circuit control register ch. 4/ch. 5  
External interrupt circuit control register ch. 6/ch. 7  
R/W  
R/W  
R/W  
0b00000000  
0b00000000  
0b00000000  
0x004C  
to  
(Disabled)  
0x004E  
0x004F  
0x0050  
0x0051  
0x0052  
LVDC  
SCR  
LVD control register  
R/W  
R/W  
R/W  
R/W  
0b00000100  
0b00000000  
0b00000000  
0b00001000  
LIN-UART serial control register  
SMR  
LIN-UART serial mode register  
SSR  
LIN-UART serial status register  
RDR  
LIN-UART receive data register  
0x0053  
R/W  
0b00000000  
TDR  
LIN-UART transmit data register  
0x0054  
0x0055  
0x0056  
0x0057  
0x0058  
0x0059  
0x005A  
ESCR  
ECCR  
SMC10  
SMC20  
SSR0  
TDR0  
RDR0  
LIN-UART extended status control register  
LIN-UART extended communication control register  
UART/SIO serial mode control register 1 ch. 0  
UART/SIO serial mode control register 2 ch. 0  
UART/SIO serial status and data register ch. 0  
UART/SIO serial output data register ch. 0  
UART/SIO serial input data register ch. 0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0b00000100  
0b000000XX  
0b00000000  
0b00100000  
0b00000001  
0b00000000  
0b00000000  
0x005B  
to  
(Disabled)  
0x005F  
0x0060  
0x0061  
0x0062  
0x0063  
0x0064  
0x0065  
0x0066  
0x0067  
0x0068  
0x0069  
0x006A  
0x006B  
0x006C  
0x006D  
0x006E  
0x006F  
0x0070  
IBCR00  
IBCR10  
IBSR0  
IDDR0  
IAAR0  
ICCR0  
IBCR01  
IBCR11  
IBSR1  
IDDR1  
IAAR1  
ICCR1  
ADC1  
I2C bus control register 0 ch. 0  
I2C bus control register 1 ch. 0  
I2C bus status register ch. 0  
I2C data register ch. 0  
I2C address register ch. 0  
I2C clock control register ch. 0  
I2C bus control register 0 ch. 1  
I2C bus control register 1 ch. 1  
I2C bus status register ch. 1  
I2C data register ch. 1  
I2C address register ch. 1  
I2C clock control register ch. 1  
8/12-bit A/D converter control register 1  
8/12-bit A/D converter control register 2  
8/12-bit A/D converter data register (upper)  
8/12-bit A/D converter data register (lower)  
8/12-bit A/D converter control register 3  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b01111100  
ADC2  
ADDH  
ADDL  
ADC3  
(Continued)  
Document Number: 002-04696 Rev. *A  
Page 26 of 105  
MB95650L Series  
Register  
Address  
Register name  
Flash memory status register 2  
R/W  
Initial value  
abbreviation  
0x0071  
0x0072  
0x0073  
0x0074  
0x0075  
0x0076  
0x0077  
0x0078  
0x0079  
0x007A  
0x007B  
0x007C  
0x007D  
0x007E  
0x007F  
0x0F80  
0x0F81  
0x0F82  
0x0F83  
0x0F84  
0x0F85  
0x0F86  
0x0F87  
0x0F88  
FSR2  
FSR  
R/W  
R/W  
R/W  
R
0b00000000  
0b000X0000  
0b00000000  
0b000XXXXX  
0b00000000  
0b00000000  
0b00000000  
Flash memory status register  
SWRE0  
FSR3  
Flash memory sector write control register 0  
Flash memory status register 3  
FSR4  
Flash memory status register 4  
R/W  
R/W  
R/W  
WREN  
WROR  
Wild register address compare enable register  
Wild register data test setting register  
Mirror of register bank pointer (RP) and direct bank pointer (DP)  
Interrupt level setting register 0  
ILR0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b11111111  
0b11111111  
0b11111111  
0b11111111  
0b11111111  
0b11111111  
ILR1  
Interrupt level setting register 1  
ILR2  
Interrupt level setting register 2  
ILR3  
Interrupt level setting register 3  
ILR4  
Interrupt level setting register 4  
ILR5  
Interrupt level setting register 5  
(Disabled)  
WRARH0  
WRARL0  
WRDR0  
WRARH1  
WRARL1  
WRDR1  
WRARH2  
WRARL2  
WRDR2  
Wild register address setting register (upper) ch. 0  
Wild register address setting register (lower) ch. 0  
Wild register data setting register ch. 0  
Wild register address setting register (upper) ch. 1  
Wild register address setting register (lower) ch. 1  
Wild register data setting register ch. 1  
Wild register address setting register (upper) ch. 2  
Wild register address setting register (lower) ch. 2  
Wild register data setting register ch. 2  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0x0F89  
to  
(Disabled)  
0x0F91  
0x0F92  
0x0F93  
0x0F94  
0x0F95  
0x0F96  
0x0F97  
0x0F98  
0x0F99  
0x0F9A  
0x0F9B  
T01CR0  
T00CR0  
T01DR  
T00DR  
TMCR0  
T11CR0  
T10CR0  
T11DR  
8/16-bit composite timer 01 status control register 0  
8/16-bit composite timer 00 status control register 0  
8/16-bit composite timer 01 data register  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
8/16-bit composite timer 00 data register  
8/16-bit composite timer 00/01 timer mode control register  
8/16-bit composite timer 11 status control register 0  
8/16-bit composite timer 10 status control register 0  
8/16-bit composite timer 11 data register  
T10DR  
TMCR1  
8/16-bit composite timer 10 data register  
8/16-bit composite timer 10/11 timer mode control register  
(Continued)  
Document Number: 002-04696 Rev. *A  
Page 27 of 105  
MB95650L Series  
(Continued)  
Register  
abbreviation  
Address  
Register name  
R/W  
Initial value  
0x0F9C  
to  
(Disabled)  
0x0FBB  
0x0FBC  
0x0FBD  
BGR1  
BGR0  
LIN-UART baud rate generator register 1  
LIN-UART baud rate generator register 0  
R/W  
R/W  
0b00000000  
0b00000000  
UART/SIO dedicated baud rate generator prescaler select register ch.  
0
0x0FBE  
0x0FBF  
PSSR0  
BRSR0  
R/W  
R/W  
0b00000000  
0b00000000  
UART/SIO dedicated baud rate generator baud rate setting register  
ch. 0  
0x0FC0  
to  
0x0FC2  
AIDRL  
(Disabled)  
A/D input disable register (lower)  
(Disabled)  
R/W  
0b00000000  
0x0FC3  
0x0FC4  
to  
0x0FE3  
0x0FE4  
0x0FE5  
0x0FE6  
0x0FE7  
0x0FE8  
0x0FE9  
0x0FEA  
0x0FEB  
0x0FEC  
CRTH  
CRTL  
Main CR clock trimming register (upper)  
Main CR clock trimming register (lower)  
System configuration register 2  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0b000XXXXX  
0b000XXXXX  
0b00000000  
0b000XXXXX  
0b00111111  
SYSC2  
CRTDA  
SYSC  
Main CR clock temperature dependent adjustment register  
System configuration register  
CMCR  
CMDR  
WDTH  
WDTL  
Clock monitoring control register  
0b00000000  
0b00000000  
0bXXXXXXXX  
0bXXXXXXXX  
Clock monitoring data register  
Watchdog timer selection ID register (upper)  
Watchdog timer selection ID register (lower)  
R
R
0x0FED  
to  
(Disabled)  
0x0FFF  
R/W access symbols  
R/W  
: Readable/Writable  
R
: Read only  
Initial value symbols  
0
1
X
: The initial value of this bit is “0”.  
: The initial value of this bit is “1”.  
: The initial value of this bit is undefined.  
Note: Do not write to an address that is “(Disabled)”. If a “(Disabled)” address is read, an indeterminate value is returned.  
Document Number: 002-04696 Rev. *A  
Page 28 of 105  
MB95650L Series  
15. I/O Ports  
List of port registers  
Register name  
Read/Write  
R, RM/W  
R/W  
Initial value  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
0b00000000  
Port 0 data register  
PDR0  
DDR0  
PDR1  
DDR1  
PDR6  
DDR6  
PDRF  
DDRF  
PDRG  
DDRG  
PUL0  
PUL6  
PULG  
AIDRL  
Port 0 direction register  
Port 1 data register  
R, RM/W  
R/W  
Port 1 direction register  
Port 6 data register  
R, RM/W  
R/W  
Port 6 direction register  
Port F data register  
R, RM/W  
R/W  
Port F direction register  
Port G data register  
Port G direction register  
Port 0 pull-up register  
Port 6 pull-up register  
Port G pull-up register  
R, RM/W  
R/W  
R/W  
R/W  
R/W  
A/D input disable register (lower)  
R/W  
R/W : Readable/writable (The read value is the same as the write value.)  
R, RM/W : Readable/writable (The read value is different from the write value. The write value is read by the read-modify-write  
(RMW) type of instruction.)  
Document Number: 002-04696 Rev. *A  
Page 29 of 105  
MB95650L Series  
15.1 Port 0  
Port 0 is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral  
functions, refer to their respective chapters in “New 8FX MB95650L Series Hardware Manual”.  
15.1.1 Port 0 configuration  
Port 0 is made up of the following elements.  
• General-purpose I/O pins/peripheral function I/O pins  
• Port 0 data register (PDR0)  
• Port 0 direction register (DDR0)  
• Port 0 pull-up register (PUL0)  
• A/D input disable register (lower) (AIDRL)  
15.1.2 Block diagrams of port 0  
P00/AN00 pin  
This pin has the following peripheral function:  
• 8/12-bit A/D converter analog input pin (AN00)  
P01/AN01 pin  
This pin has the following peripheral function:  
• 8/12-bit A/D converter analog input pin (AN01)  
Block diagram of P00/AN00 and P01/AN01  
A/D analog input  
Hysteresis  
0
Pull-up  
1
PDR0 read  
Pin  
PDR0  
PDR0 write  
Executing bit manipulation instruction  
DDR0 read  
DDR0  
DDR0 write  
PUL0 read  
PUL0 write  
AIDRL read  
AIDRL write  
Stop mode, watch mode (SPL = 1)  
PUL0  
AIDRL  
Document Number: 002-04696 Rev. *A  
Page 30 of 105  
MB95650L Series  
P02/INT02/AN02/SCK pin  
This pin has the following peripheral functions:  
• External interrupt input pin (INT02)  
• 8/12-bit A/D converter analog input pin (AN02)  
• LIN-UART clock I/O pin (SCK)  
P03/INT03/AN03/SOT pin  
This pin has the following peripheral functions:  
• External interrupt input pin (INT03)  
• 8/12-bit A/D converter analog input pin (AN03)  
• LIN-UART data output pin (SOT)  
P05/INT05/AN05/TO00 pin  
This pin has the following peripheral functions:  
• External interrupt input pin (INT05)  
• 8/12-bit A/D converter analog input pin (AN05)  
• 8/16-bit composite timer ch. 0 output pin (TO00)  
Block diagram of P02/INT02/AN02/SCK, P03/INT03/AN03/SOT and P05/INT05/AN05/TO00  
Peripheral function input  
Peripheral function input enable  
(INT02, INT03 and INT05)  
Peripheral function output enable  
Peripheral function output  
A/D analog input  
Hysteresis  
Pull-up  
0
1
PDR0 read  
PDR0  
1
0
Pin  
PDR0 write  
Executing bit manipulation instruction  
DDR0 read  
DDR0  
DDR0 write  
PUL0 read  
PUL0 write  
AIDRL read  
AIDRL write  
Stop mode, watch mode (SPL = 1)  
PUL0  
AIDRL  
Document Number: 002-04696 Rev. *A  
Page 31 of 105  
MB95650L Series  
P04/INT04/AN04/SIN/EC0 pin  
This pin has the following peripheral functions:  
• External interrupt input pin (INT04)  
• 8/12-bit A/D converter analog input pin (AN04)  
• LIN-UART data input pin (SIN)  
• 8/16-bit composite timer ch. 0 clock input pin (EC0)  
Block diagram of P04/INT04/AN04/SIN/EC0  
Peripheral function input  
Peripheral function input enable (INT04)  
A/D analog input  
0
Pull-up  
1
CMOS  
PDR0 read  
PDR0  
Pin  
PDR0 write  
Executing bit manipulation instruction  
DDR0 read  
DDR0  
DDR0 write  
PUL0 read  
PUL0 write  
AIDRL read  
AIDRL write  
Stop mode, watch mode (SPL = 1)  
PUL0  
AIDRL  
Document Number: 002-04696 Rev. *A  
Page 32 of 105  
MB95650L Series  
P06/INT06/TO01 pin  
This pin has the following peripheral functions:  
• External interrupt input pin (INT06)  
• 8/16-bit composite timer ch. 0 output pin (TO01)  
P07/INT07/TO10 pin  
This pin has the following peripheral functions:  
• External interrupt input pin (INT07)  
• 8/16-bit composite timer ch. 1 output pin (TO10)  
Block diagram of P06/INT06/TO01 and P07/INT07/TO10  
Peripheral function input  
Peripheral function input enable  
(INT06 and INT07)  
Peripheral function output enable  
Peripheral function output  
Hysteresis  
Pull-up  
0
1
PDR0 read  
PDR0 write  
1
0
Pin  
PDR0  
Executing bit manipulation instruction  
DDR0 read  
DDR0  
DDR0 write  
PUL0 read  
PUL0 write  
Stop mode, watch mode (SPL = 1)  
PUL0  
Document Number: 002-04696 Rev. *A  
Page 33 of 105  
MB95650L Series  
15.1.3 Port 0 registers  
Port 0 register functions  
Register  
Data  
Read by read-modify-write  
(RMW) instruction  
Read  
Write  
abbreviation  
0
Pin state is “L” level.  
Pin state is “H” level.  
PDR0 value is “0”.  
PDR0 value is “1”.  
Port input enabled  
Port output enabled  
Pull-up disabled  
As output port, outputs “L” level.  
As output port, outputs “H” level.  
PDR0  
1
0
DDR0  
1
0
PUL0  
1
Pull-up enabled  
0
Analog input enabled  
Port input enabled  
AIDRL  
1
Correspondence between registers and pins for port 0  
Correspondence between related register bits and pins  
Pin name  
PDR0  
P07  
bit7  
-
P06  
bit6  
-
P05  
P04  
P03  
P02  
P01  
P00  
DDR0  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
PUL0  
AIDRL  
Document Number: 002-04696 Rev. *A  
Page 34 of 105  
MB95650L Series  
15.1.4 Port 0 operations  
Operation as an output port  
• A pin becomes an output port if the bit in the DDR0 register corresponding to that pin is set to “1”.  
• For a pin shared with other peripheral functions, disable the output of such peripheral functions.  
• When a pin is used as an output port, it outputs the value of the PDR0 register to external pins.  
• If data is written to the PDR0 register, the value is stored in the output latch and is output to the pin set as an output port as it is.  
• Reading the PDR0 register returns the PDR0 register value.  
Operation as an input port  
• A pin becomes an input port if the bit in the DDR0 register corresponding to that pin is set to “0”.  
• For a pin shared with other peripheral functions, disable the output of such peripheral functions.  
• When using a pin shared with the analog input function as an input port, set the corresponding bit in the A/D input disable register  
(lower) (AIDRL) to “1”.  
• If data is written to the PDR0 register, the value is stored in the output latch but is not output to the pin set as an input port.  
• Reading the PDR0 register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read  
the PDR0 register, the PDR0 register value is returned.  
Operation as a peripheral function output pin  
• A pin becomes a peripheral function output pin if the peripheral output function is enabled by setting the output enable bit of a  
peripheral function corresponding to that pin.  
• The pin value can be read from the PDR0 register even if the peripheral function output is enabled. Therefore, the output value  
of a peripheral function can be read by the read operation on the PDR0 register. However, if the read-modify-write (RMW) type  
of instruction is used to read the PDR0 register, the PDR0 register value is returned.  
Operation as a peripheral function input pin  
To set a pin as an input port, set the bit in the DDR0 register corresponding to the input pin of a peripheral function to “0”.  
• When using a pin shared with the analog input function as another peripheral function input pin, configure it as an input port by  
setting the bit in the AIDRL register corresponding to that pin to “1”.  
• Reading the PDR0 register returns the pin value, regardless of whether the peripheral function uses that pin as its input pin.  
However, if the read-modify-write (RMW) type of instruction is used to read the PDR0 register, the PDR0 register value is re-  
turned.  
Operation at reset  
If the CPU is reset, all bits in the DDR0 register are initialized to “0” and port input is enabled. As for a pin shared with analog input,  
its port input is disabled because the AIDRL register is initialized to “0”.  
Operation in stop mode and watch mode  
• If the pin state setting bit in the standby control register (STBC:SPL) is set to “1” and the device transits to stop mode or watch  
mode, the pin is compulsorily made to enter the high impedance state regardless of the DDR0 register value. The input of that  
pin is locked to “L” level and blocked in order to prevent leaks due to input open. However, if the interrupt input is enabled for  
the external interrupt (INT02 to INT07), the input is enabled and not blocked.  
• If the pin state setting bit is “0”, the state of the port I/O or that of the peripheral function I/O remains unchanged and the output  
level is maintained.  
Operation as an analog input pin  
• Set the bit in the DDR0 register bit corresponding to the analog input pin to “0” and the bit corresponding to that pin in the AIDRL  
register to “0”.  
• For a pin shared with other peripheral functions, disable the output of such peripheral functions. In addition, set the correspond-  
ing bit in the PUL0 register to “0”.  
Operation as an external interrupt input pin  
• Set the bit in the DDR0 register corresponding to the external interrupt input pin to “0”.  
• For a pin shared with other peripheral functions, disable the output of such peripheral functions.  
• The pin value is always input to the external interrupt circuit. When using a pin for a function other than the interrupt, disable the  
external interrupt function corresponding to that pin.  
Operation of the pull-up register  
Setting the bit in the PUL0 register to “1” makes the pull-up resistor be internally connected to the pin. When the pin output is “L”  
level, the pull-up resistor is disconnected regardless of the value of the PUL0 register.  
Document Number: 002-04696 Rev. *A  
Page 35 of 105  
MB95650L Series  
15.2 Port 1  
Port 1 is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral  
functions, refer to their respective chapters in “New 8FX MB95650L Series Hardware Manual”.  
15.2.1 Port 1 configuration  
Port 1 is made up of the following elements.  
• General-purpose I/O pins/peripheral function I/O pins  
• Port 1 data register (PDR1)  
• Port 1 direction register (DDR1)  
15.2.2 (2)Block diagrams of port 1  
P12/DBG/EC0 pin  
This pin has the following peripheral functions:  
• DBG input pin (DBG)  
• 8/16-bit composite timer ch. 0 clock input pin (EC0)  
Block diagram of P12/DBG/EC0  
Peripheral function input  
Hysteresis  
0
1
PDR1 read  
Pin  
PDR1  
OD  
PDR1 write  
Executing bit manipulation instruction  
DDR1 read  
DDR1  
DDR1 write  
Stop mode, watch mode (SPL = 1)  
Document Number: 002-04696 Rev. *A  
Page 36 of 105  
MB95650L Series  
P14/SDA0 pin  
This pin has the following peripheral function:  
• I2C bus interface ch. 0 data I/O pin (SDA0)  
P15/SCL0 pin  
This pin has the following peripheral function:  
• I2C bus interface ch. 0 clock I/O pin (SCL0)  
Block diagram of P14/SDA0 and P15/SCL0  
Peripheral function input  
Peripheral function input enable  
Peripheral function output enable  
Peripheral function output  
CMOS  
0
1
Pin  
PDR1 read  
PDR1  
1
0
OD  
PDR1 write  
Executing bit manipulation instruction  
DDR1 read  
DDR1  
DDR1 write  
Stop mode, watch mode (SPL = 1)  
Document Number: 002-04696 Rev. *A  
Page 37 of 105  
MB95650L Series  
P16/SDA1/UO0 pin  
This pin has the following peripheral functions:  
• I2C bus interface ch. 1 data I/O pin (SDA1)  
• UART/SIO ch. 0 data output pin (UO0)  
Block diagram of P16/SDA1/UO0  
I2C_SEL bit in SYSC2 register  
UART/SIO function output enable  
UART/SIO function output  
0
1
Peripheral function input enable  
Peripheral function output enable  
Peripheral function output  
I2C function input  
I2C function input enable  
I2C function output enable  
I2C function output  
Peripheral function input  
0
1
CMOS  
PDR1 read  
PDR1 write  
1
0
P-ch  
PDR1  
Pin  
Executing bit manipulation instruction  
N-ch  
DDR1 read  
DDR1  
DDR1 write  
Stop mode, watch mode (SPL = 1)  
Document Number: 002-04696 Rev. *A  
Page 38 of 105  
MB95650L Series  
P17/SCL1/UI0 pin  
This pin has the following peripheral functions:  
• I2C bus interface ch. 1 clock I/O pin (SCL1)  
• UART/SIO ch. 0 data input pin (UI0)  
Block diagram of P17/SCL1/UI0  
I2C_SEL bit in SYSC2 register  
UART/SIO function input  
UART/SIO function input enable  
0
Peripheral function input enable  
Peripheral function output enable  
Peripheral function output  
I2C function input  
I2C function input enable  
I2Cfunction output enable  
I2C function output  
1
Peripheral function input  
0
1
CMOS  
PDR1 read  
PDR1 write  
1
0
P-ch  
PDR1  
Pin  
Executing bit manipulation instruction  
N-ch  
DDR1 read  
DDR1  
DDR1 write  
Stop mode, watch mode (SPL = 1)  
Document Number: 002-04696 Rev. *A  
Page 39 of 105  
MB95650L Series  
15.2.3 Port 1 registers  
Port 1 register functions  
Register  
Data  
Read by read-modify-write  
(RMW) instruction  
Read  
Write  
abbreviation  
0
Pin state is “L” level.  
Pin state is “H” level.  
PDR1 value is “0”.  
PDR1 value is “1”.  
Port input enabled  
Port output enabled  
As output port, outputs “L” level.  
As output port, outputs “H” level.*  
PDR1  
1
0
DDR1  
1
*: If the pin is an N-ch open drain pin, the pin state becomes Hi-Z.  
Correspondence between registers and pins for port 1  
Correspondence between related register bits and pins  
Pin name  
PDR1  
P17  
P16  
P15  
P14  
-
P12  
-
-
bit7  
bit6  
bit5  
bit4  
-
bit2  
-
-
DDR1  
Document Number: 002-04696 Rev. *A  
Page 40 of 105  
MB95650L Series  
15.2.4 Port 1 operations  
Operation as an output port  
• A pin becomes an output port if the bit in the DDR1 register corresponding to that pin is set to “1”.  
• For a pin shared with other peripheral functions, disable the output of such peripheral functions.  
• When a pin is used as an output port, it outputs the value of the PDR1 register to external pins.  
• If data is written to the PDR1 register, the value is stored in the output latch and is output to the pin set as an output port as it is.  
• Reading the PDR1 register returns the PDR1 register value.  
Operation as an input port  
• A pin becomes an input port if the bit in the DDR1 register corresponding to that pin is set to “0”.  
• For a pin shared with other peripheral functions, disable the output of such peripheral functions.  
• If data is written to the PDR1 register, the value is stored in the output latch but is not output to the pin set as an input port.  
• Reading the PDR1 register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read  
the PDR1 register, the PDR1 register value is returned.  
Operation as a peripheral function output pin  
• A pin becomes a peripheral function output pin if the peripheral output function is enabled by setting the output enable bit of a  
peripheral function corresponding to that pin.  
• The pin value can be read from the PDR1 register even if the peripheral function output is enabled. Therefore, the output value  
of a peripheral function can be read by the read operation on the PDR1 register. However, if the read-modify-write (RMW) type  
of instruction is used to read the PDR1 register, the PDR1 register value is returned.  
Operation as a peripheral function input pin  
To set a pin as an input port, set the bit in the DDR1 register corresponding to the input pin of a peripheral function to “0”.  
• Reading the PDR1 register returns the pin value, regardless of whether the peripheral function uses that pin as its input pin.  
However, if the read-modify-write (RMW) type of instruction is used to read the PDR1 register, the PDR1 register value is  
returned.  
Operation at reset  
If the CPU is reset, all bits in the DDR1 register are initialized to “0” and port input is enabled.  
Operation in stop mode and watch mode  
• If the pin state setting bit in the standby control register (STBC:SPL) is set to “1” and the device transits to stop mode or watch  
mode, the pin is compulsorily made to enter the high impedance state regardless of the DDR1 register value. The input of that  
pin is locked to “L” level and blocked in order to prevent leaks due to input open.  
• If the pin state setting bit is “0”, the state of the port I/O or that of the peripheral function I/O remains unchanged and the output  
level is maintained.  
Document Number: 002-04696 Rev. *A  
Page 41 of 105  
MB95650L Series  
15.3 Port 6  
Port 6 is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral  
functions, refer to their respective chapters in “New 8FX MB95650L Series Hardware Manual”.  
15.3.1 Port 6 configuration  
Port 6 is made up of the following elements.  
• General-purpose I/O pins/peripheral function I/O pins  
• Port 6 data register (PDR6)  
• Port 6 direction register (DDR6)  
• Port 6 pull-up register (PUL6)  
15.3.2 Block diagrams of port 6  
P62/TO10/UCK0 pin  
This pin has the following peripheral functions:  
• 8/16-bit composite timer ch. 1 output pin (TO10)  
• UART/SIO ch. 0 clock I/O pin (UCK0)  
P63/TO11 pin  
This pin has the following peripheral function:  
• 8/16-bit composite timer ch. 1 output pin (TO11)  
Block diagram of P62/TO10/UCK0 and P63/TO11  
Peripheral function input  
Peripheral function input enable  
Peripheral function output enable  
Peripheral function output  
Hysteresis  
Pull-up  
0
1
PDR6 read  
PDR6 write  
1
0
Pin  
PDR6  
Executing bit manipulation instruction  
DDR6 read  
DDR6  
DDR6 write  
PUL6 read  
PUL6 write  
Stop mode, watch mode (SPL = 1)  
PUL6  
Document Number: 002-04696 Rev. *A  
Page 42 of 105  
MB95650L Series  
P64/EC1 pin  
This pin has the following peripheral function:  
• 8/16-bit composite timer ch. 1 clock input pin (EC1)  
Block diagram of P64/EC1  
Peripheral function input  
Hysteresis  
0
1
PDR6 read  
PDR6  
Pin  
PDR6 write  
Executing bit manipulation instruction  
DDR6 read  
DDR6  
DDR6 write  
Stop mode, watch mode (SPL = 1)  
Document Number: 002-04696 Rev. *A  
Page 43 of 105  
MB95650L Series  
15.3.3 Port 6 registers  
Port 6 register functions  
Register  
Data  
Read by read-modify-write  
(RMW) instruction  
Read  
Write  
abbreviation  
0
Pin state is “L” level.  
Pin state is “H” level.  
PDR6 value is “0”.  
PDR6 value is “1”.  
Port input enabled  
Port output enabled  
Pull-up disabled  
As output port, outputs “L” level.  
As output port, outputs “H” level.*  
PDR6  
1
0
DDR6  
1
0
PUL6  
1
Pull-up enabled  
*: If the pin is an N-ch open drain pin, the pin state becomes Hi-Z.  
Correspondence between registers and pins for port 6  
Correspondence between related register bits and pins  
Pin name  
PDR6  
-
-
-
P64  
P63  
P62  
-
-
DDR6  
-
-
-
bit4  
bit3  
bit2  
-
-
PUL6  
Document Number: 002-04696 Rev. *A  
Page 44 of 105  
MB95650L Series  
15.3.4 Port 6 operations  
Operation as an output port  
• A pin becomes an output port if the bit in the DDR6 register corresponding to that pin is set to “1”.  
• For a pin shared with other peripheral functions, disable the output of such peripheral functions.  
• When a pin is used as an output port, it outputs the value of the PDR6 register to external pins.  
• If data is written to the PDR6 register, the value is stored in the output latch and is output to the pin set as an output port as it is.  
• Reading the PDR6 register returns the PDR6 register value.  
Operation as an input port  
• A pin becomes an input port if the bit in the DDR6 register corresponding to that pin is set to “0”.  
• For a pin shared with other peripheral functions, disable the output of such peripheral functions.  
• If data is written to the PDR6 register, the value is stored in the output latch but is not output to the pin set as an input port.  
• Reading the PDR6 register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read  
the PDR6 register, the PDR6 register value is returned.  
Operation as a peripheral function output pin  
• A pin becomes a peripheral function output pin if the peripheral output function is enabled by setting the output enable bit of a  
peripheral function corresponding to that pin.  
• The pin value can be read from the PDR6 register even if the peripheral function output is enabled. Therefore, the output value  
of a peripheral function can be read by the read operation on the PDR6 register. However, if the read-modify-write (RMW) type  
of instruction is used to read the PDR6 register, the PDR6 register value is returned.  
Operation as a peripheral function input pin  
To set a pin as an input port, set the bit in the DDR6 register corresponding to the input pin of a peripheral function to “0”.  
• Reading the PDR6 register returns the pin value, regardless of whether the peripheral function uses that pin as its input pin.  
However, if the read-modify-write (RMW) type of instruction is used to read the PDR6 register, the PDR6 register value is re-  
turned.  
Operation at reset  
If the CPU is reset, all bits in the DDR6 register are initialized to “0” and port input is enabled.  
Operation in stop mode and watch mode  
• If the pin state setting bit in the standby control register (STBC:SPL) is set to “1” and the device transits to stop mode or watch  
mode, the pin is compulsorily made to enter the high impedance state regardless of the DDR6 register value. The input of that  
pin is locked to “L” level and blocked in order to prevent leaks due to input open.  
• If the pin state setting bit is “0”, the state of the port I/O or that of the peripheral function I/O remains unchanged and the output  
level is maintained.  
Operation of the pull-up register  
Setting the bit in the PUL6 register to “1” makes the pull-up resistor be internally connected to the pin. When the pin output is “L”  
level, the pull-up resistor is disconnected regardless of the value of the PUL6 register.  
Document Number: 002-04696 Rev. *A  
Page 45 of 105  
MB95650L Series  
15.4 Port F  
Port F is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral  
functions, refer to their respective chapters in “New 8FX MB95650L Series Hardware Manual”.  
15.4.1 Port F configuration  
Port F is made up of the following elements.  
• General-purpose I/O pins/peripheral function I/O pins  
• Port F data register (PDRF)  
• Port F direction register (DDRF)  
15.4.2 Block diagrams of port F  
PF0/X0 pin  
This pin has the following peripheral function:  
• Main clock input oscillation pin (X0)  
PF1/X1 pin  
This pin has the following peripheral function:  
• Main clock I/O oscillation pin (X1)  
Block diagram of PF0/X0 and PF1/X1  
Hysteresis  
0
1
PDRF read  
Pin  
PDRF  
PDRF write  
Executing bit manipulation instruction  
DDRF read  
DDRF  
DDRF write  
Stop mode, watch mode (SPL = 1)  
Document Number: 002-04696 Rev. *A  
Page 46 of 105  
MB95650L Series  
PF2/RST pin  
This pin has the following peripheral function:  
• Reset pin (RST)  
Block diagram of PF2/RST  
Reset input  
Reset input enable  
le  
Reset output enab  
Reset output  
Hysteresis  
0
1
Pin  
PDRF read  
PDRF write  
1
0
OD  
PDRF  
Executing bit manipulation instruction  
DDRF read  
DDRF  
DDRF write  
Stop mode, watch mode (SPL = 1)  
Document Number: 002-04696 Rev. *A  
Page 47 of 105  
MB95650L Series  
15.4.3 Port F registers  
Port F register functions  
Register  
Data  
Read by read-modify-write  
(RMW) instruction  
Read  
Write  
abbreviation  
0
Pin state is “L” level.  
Pin state is “H” level.  
PDRF value is “0”.  
PDRF value is “1”.  
Port input enabled  
Port output enabled  
As output port, outputs “L” level.  
As output port, outputs “H” level.*  
PDRF  
1
0
DDRF  
1
*: If the pin is an N-ch open drain pin, the pin state becomes Hi-Z.  
Correspondence between registers and pins for port F  
Correspondence between related register bits and pins  
Pin name  
PDRF  
-
-
-
-
-
PF2*  
PF1  
PF0  
-
-
-
-
-
bit2  
bit1  
bit0  
DDRF  
*: PF2/RST is the dedicated reset pin on MB95F652L/F653L/F654L/F656L.  
Document Number: 002-04696 Rev. *A  
Page 48 of 105  
MB95650L Series  
15.4.4 Port F operations  
Operation as an output port  
• A pin becomes an output port if the bit in the DDRF register corresponding to that pin is set to “1”.  
• For a pin shared with other peripheral functions, disable the output of such peripheral functions.  
• When a pin is used as an output port, it outputs the value of the PDRF register to external pins.  
• If data is written to the PDRF register, the value is stored in the output latch and is output to the pin set as an output port as it is.  
• Reading the PDRF register returns the PDRF register value.  
Operation as an input port  
• A pin becomes an input port if the bit in the DDRF register corresponding to that pin is set to “0”.  
• For a pin shared with other peripheral functions, disable the output of such peripheral functions.  
• If data is written to the PDRF register, the value is stored in the output latch but is not output to the pin set as an input port.  
• Reading the PDRF register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read  
the PDRF register, the PDRF register value is returned.  
Operation at reset  
If the CPU is reset, all bits in the DDRF register are initialized to “0” and port input is enabled.  
Operation in stop mode and watch mode  
• If the pin state setting bit in the standby control register (STBC:SPL) is set to “1” and the device transits to stop mode or watch  
mode, the pin is compulsorily made to enter the high impedance state regardless of the DDRF register value. The input of that  
pin is locked to “L” level and blocked in order to prevent leaks due to input open.  
• If the pin state setting bit is “0”, the state of the port I/O or that of the peripheral function I/O remains unchanged and the output  
level is maintained.  
Document Number: 002-04696 Rev. *A  
Page 49 of 105  
MB95650L Series  
15.5 Port G  
Port G is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral  
functions, refer to their respective chapters in “New 8FX MB95650L Series Hardware Manual”.  
15.5.1 Port G configuration  
Port G is made up of the following elements.  
• General-purpose I/O pins/peripheral function I/O pins  
• Port G data register (PDRG)  
• Port G direction register (DDRG)  
• Port G pull-up register (PULG)  
15.5.2 Block diagram of port G  
PG1/X0A pin  
This pin has the following peripheral function:  
• Subclock input oscillation pin (X0A)  
PG2/X1A pin  
This pin has the following peripheral function:  
• Subclock I/O oscillation pin (X1A)  
Block diagram of PG1/X0A and PG2/X1A  
Hysteresis  
0
Pull-up  
1
PDRG read  
PDRG  
Pin  
PDRG write  
Executing bit manipulation instruction  
DDRG read  
DDRG  
DDRG write  
PULG read  
PULG write  
Stop mode, watch mode (SPL = 1)  
PULG  
Document Number: 002-04696 Rev. *A  
Page 50 of 105  
MB95650L Series  
15.5.3 Port G registers  
Port G register functions  
Register  
Data  
Read by read-modify-write  
(RMW) instruction  
Read  
Write  
abbreviation  
0
Pin state is “L” level.  
Pin state is “H” level.  
PDRG value is “0”.  
PDRG value is “1”.  
Port input enabled  
Port output enabled  
Pull-up disabled  
As output port, outputs “L” level.  
As output port, outputs “H” level.  
PDRG  
1
0
DDRG  
1
0
PULG  
1
Pull-up enabled  
Correspondence between registers and pins for port G  
Correspondence between related register bits and pins  
Pin name  
PDRG  
-
-
-
-
-
PG2  
PG1  
-
DDRG  
-
-
-
-
-
bit2  
bit1  
-
PULG  
Document Number: 002-04696 Rev. *A  
Page 51 of 105  
MB95650L Series  
15.5.4 Port G operations  
Operation as an output port  
• A pin becomes an output port if the bit in the DDRG register corresponding to that pin is set to “1”.  
• For a pin shared with other peripheral functions, disable the output of such peripheral functions.  
• When a pin is used as an output port, it outputs the value of the PDRG register to external pins.  
• If data is written to the PDRG register, the value is stored in the output latch and is output to the pin set as an output  
port as it is.  
• Reading the PDRG register returns the PDRG register value.  
Operation as an input port  
• A pin becomes an input port if the bit in the DDRG register corresponding to that pin is set to “0”.  
• For a pin shared with other peripheral functions, disable the output of such peripheral functions.  
• If data is written to the PDRG register, the value is stored in the output latch but is not output to the pin set as an  
input port.  
• Reading the PDRG register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read  
the PDRG register, the PDRG register value is returned.  
Operation at reset  
If the CPU is reset, all bits in the DDRG register are initialized to “0” and port input is enabled.  
Operation in stop mode and watch mode  
• If the pin state setting bit in the standby control register (STBC:SPL) is set to “1” and the device transits to stop mode or watch  
mode, the pin is compulsorily made to enter the high impedance state regardless of the DDRG register value. The input of that  
pin is locked to “L” level and blocked in order to prevent leaks due to input open.  
• If the pin state setting bit is “0”, the state of the port I/O or that of the peripheral function I/O remains unchanged and the output  
level is maintained.  
Operation of the pull-up register  
Setting the bit in the PULG register to “1” makes the pull-up resistor be internally connected to the pin. When the pin output is “L”  
level, the pull-up resistor is disconnected regardless of the value of the PULG register.  
Document Number: 002-04696 Rev. *A  
Page 52 of 105  
MB95650L Series  
16. Interrupt Source Table  
Interrupt level setting Priority order of interrupt  
Interrupt Vector table address  
register  
sources of the same level  
(occurring  
Interrupt source  
request  
number  
Upper  
Lower  
Register  
Bit  
simultaneously)  
External interrupt ch. 4  
External interrupt ch. 5  
External interrupt ch. 2  
External interrupt ch. 6  
External interrupt ch. 3  
External interrupt ch. 7  
Low-voltage detection interrupt circuit  
UART/SIO ch. 0  
IRQ00  
IRQ01  
0xFFFA  
0xFFF8  
0xFFFB  
0xFFF9  
ILR0  
ILR0  
L00 [1:0]  
L01 [1:0]  
High  
IRQ02  
IRQ03  
IRQ04  
0xFFF6  
0xFFF4  
0xFFF2  
0xFFF7  
0xFFF5  
0xFFF3  
ILR0  
ILR0  
ILR1  
L02 [1:0]  
L03 [1:0]  
L04 [1:0]  
8/16-bit composite timer ch. 0 (lower)  
8/16-bit composite timer ch. 0 (upper)  
LIN-UART (reception)  
LIN-UART (transmission)  
IRQ05  
IRQ06  
IRQ07  
IRQ08  
IRQ09  
IRQ10  
IRQ11  
IRQ12  
IRQ13  
IRQ14  
IRQ15  
IRQ16  
IRQ17  
IRQ18  
IRQ19  
IRQ20  
IRQ21  
IRQ22  
IRQ23  
0xFFF0  
0xFFEE  
0xFFF1  
0xFFEF  
ILR1  
ILR1  
ILR1  
ILR2  
ILR2  
ILR2  
ILR2  
ILR3  
ILR3  
ILR3  
ILR3  
ILR4  
ILR4  
ILR4  
ILR4  
ILR5  
ILR5  
ILR5  
ILR5  
L05 [1:0]  
L06 [1:0]  
L07 [1:0]  
L08 [1:0]  
L09 [1:0]  
L10 [1:0]  
L11 [1:0]  
L12 [1:0]  
L13 [1:0]  
L14 [1:0]  
L15 [1:0]  
L16 [1:0]  
L17 [1:0]  
L18 [1:0]  
L19 [1:0]  
L20 [1:0]  
L21 [1:0]  
L22 [1:0]  
L23 [1:0]  
0xFFEC 0xFFED  
0xFFEA  
0xFFE8  
0xFFE6  
0xFFE4  
0xFFE2  
0xFFE0  
0xFFEB  
0xFFE9  
0xFFE7  
0xFFE5  
0xFFE3  
0xFFE1  
I2C bus interface ch. 1  
8/16-bit composite timer ch. 1 (upper)  
0xFFDE 0xFFDF  
0xFFDC 0xFFDD  
0xFFDA 0xFFDB  
I2C bus interface ch. 0  
0xFFD8  
0xFFD6  
0xFFD4  
0xFFD2  
0xFFD0  
0xFFD9  
0xFFD7  
0xFFD5  
0xFFD3  
0xFFD1  
8/12-bit A/D converter  
Time-base timer  
Watch prescaler  
8/16-bit composite timer ch. 1 (lower)  
Flash memory  
0xFFCE 0xFFCF  
0xFFCC 0xFFCD  
Low  
Document Number: 002-04696 Rev. *A  
Page 53 of 105  
MB95650L Series  
17. Pin States in each Mode  
Stop mode  
Watch mode  
Normal  
operation  
Pin name  
Sleep mode  
On reset  
SPL=0  
SPL=1  
SPL=0  
SPL=1  
Oscillation input Oscillation input  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
- Hi-Z  
- Previous state  
kept  
- Previous state  
kept  
- Input  
- Hi-Z  
- Hi-Z  
enabled*3  
(However, it  
does not  
function.)  
PF0/X0  
I/O port*1  
I/O port*1  
- Input  
- Input  
- Input  
- Input  
blocked*1,  
*
*
blocked*1,  
*
*
2
2
2
2
blocked*1,  
*
blocked*1,  
*
Oscillation input Oscillation input  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
- Hi-Z  
- Input  
- Previous state  
kept  
- Previous state  
kept  
- Hi-Z  
- Hi-Z  
enabled*3  
(However, it  
does not  
function.)  
PF1/X1  
I/O port*1  
Reset input  
I/O port*1  
I/O port*1  
Reset input  
I/O port*1  
- Input  
- Input  
- Input  
- Input  
blocked*1,  
blocked*1,  
2
2
2
2
blocked*1,  
*
blocked*1,  
*
Reset input  
Reset input  
Reset input  
Reset input  
Reset input*4  
- Hi-Z  
- Input  
- Previous state  
kept  
- Previous state  
kept  
- Hi-Z  
- Hi-Z  
enabled*3  
(However, it  
does not  
function.)  
PF2/RST  
PG1/X0A  
PG2/X1A  
- Input  
- Input  
- Input  
- Input  
blocked*1,  
*
*
*
blocked*1,  
*
*
*
2
2
2
2
2
2
2
2
blocked*1,  
*
blocked*1,  
*
Oscillation input Oscillation input  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
- Hi-Z  
- Input  
- Previous state  
kept  
- Previous state  
kept  
- Hi-Z  
- Hi-Z  
enabled*3  
(However, it  
does not  
function.)  
I/O port*1  
I/O port*1  
- Input  
- Input  
- Input  
- Input  
blocked*1,  
blocked*1,  
2
2
blocked*1,  
*
blocked*1,  
*
Oscillation input Oscillation input  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
- Hi-Z  
- Input  
- Previous state  
kept  
- Previous state  
kept  
- Hi-Z  
- Hi-Z  
enabled*3  
(However, it  
does not  
function.)  
I/O port*1  
I/O port*1  
- Input  
- Input  
- Input  
- Input  
blocked*1,  
blocked*1,  
2
2
blocked*1,  
*
blocked*1,  
*
P00/AN00  
P01/AN01  
P02/INT02/  
AN02/SCK  
I/O port/  
peripheral  
function I/O/  
analog input  
I/O port/  
peripheral  
function I/O/  
analog input  
- Previous state  
kept  
- Previous state  
kept  
- Hi-Z*6  
- Input  
- Hi-Z*6  
- Input  
- Hi-Z  
P03/INT03/  
AN03/SOT  
- Input  
- Input  
- Input  
5
5
blocked*2,  
*
blocked*2,  
*
blocked*2  
5
5
blocked*2,  
*
blocked*2,  
*
P04/INT04/  
AN04/SIN/  
EC0  
P05/INT05/  
AN05/TO00  
Document Number: 002-04696 Rev. *A  
Page 54 of 105  
MB95650L Series  
Stop mode  
SPL=0 SPL=1  
Watch mode  
Normal  
operation  
Pin name  
Sleep mode  
On reset  
SPL=0  
SPL=1  
P06/INT06/  
TO01  
- Previous state  
kept  
- Previous state  
kept  
I/O port/  
peripheral  
function I/O  
I/O port/  
peripheral  
function I/O  
- Hi-Z*6  
- Hi-Z*6  
- Hi-Z  
- Input  
- Input  
- Input  
- Input  
- Input  
P07/INT07/  
TO10  
5
7
5
7
blocked*2,  
*
blocked*2,  
*
blocked*2  
5
5
blocked*2,  
*
blocked*2,  
*
P14/SDA0  
P15/SCL0  
- Hi-Z  
- Input  
- Previous state  
kept  
- Previous state  
kept  
I/O port/  
peripheral func- peripheral func-  
tion I/O  
I/O port/  
- Hi-Z  
- Hi-Z  
enabled*3  
(However, it  
does not  
function.)  
P16/SDA1/  
UO0  
- Input  
- Input  
- Input  
- Input  
tion I/O  
blocked*2,  
*
blocked*2,  
*
7
7
blocked*2,  
*
blocked*2,  
*
P17/SCL1/  
UI0  
P12/DBG/  
EC0  
- Hi-Z  
- Input  
- Previous state  
kept  
- Previous state  
kept  
I/O port/  
peripheral  
function I/O  
I/O port/  
peripheral  
function I/O  
- Hi-Z  
- Hi-Z  
enabled*3  
(However, it  
does not  
function.)  
P62/TO10/  
UCK0  
- Input  
- Input  
- Input  
- Input  
blocked*2  
blocked*2  
blocked*2  
blocked*2  
P63/TO11  
P64/EC1  
SPL: Pin state setting bit in the standby control register (STBC:SPL)  
Hi-Z: High impedance  
*1: The pin stays at the state shown when configured as a general-purpose I/O port.  
*2: “Input blocked” means direct input gate operation from the pin is disabled.  
*3: “Input enabled” means that the input function is enabled. While the input function is enabled, perform a pull-up or pull-down  
operation in order to prevent leaks due to external input. If a pin is used as an output port, its pin state is the same as that of other  
ports.  
*4: The PF2/RST pin stays at the state shown when configured as a reset pin.  
*5: Though input is blocked, an external interrupt can be input when the external interrupt request is enabled.  
*6: The pull-up control setting is still effective.  
*7: The I2C bus interface can wake up the MCU in stop mode or watch mode when its MCU standby mode wakeup function is enabled.  
For details of the MCU standby mode wakeup function, refer to “Chapter 19 I2c Bus Interface” in “New 8FX MB95650L Series  
Hardware Manual”.  
Document Number: 002-04696 Rev. *A  
Page 55 of 105  
MB95650L Series  
18. Electrical Characteristics  
18.1 Absolute Maximum Ratings  
Rating  
Parameter  
Symbol  
Unit  
Remarks  
Min  
Max  
VSS 6  
VSS 6  
VSS 6  
2  
Power supply voltage*1  
Input voltage*1  
Output voltage*1  
VCC  
VI  
VSS 0.3  
VSS 0.3  
VSS 0.3  
2  
V
V
V
*2  
*2  
VO  
Maximum clamp current  
ICLAMP  
mA Applicable to specific pins*3  
mA Applicable to specific pins*3  
Total maximum clamp current |ICLAMP  
|
20  
“L” level maximum output  
current  
IOL  
15  
mA  
Other than P05 to P07, P62 and P63  
Average output current =  
operating current operating ratio (1 pin)  
IOLAV1  
“L” level average current  
IOLAV2  
4
mA  
P05 to P07, P62 and P63  
Average output current =  
operating current operating ratio (1 pin)  
12  
100  
37  
“L” level total maximum output  
current  
IOL  
mA  
Total average output current =  
mA operating current operating ratio  
(Total number of pins)  
“L” level total average output  
current  
IOLAV  
“H” level maximum output  
current  
IOH  
15  
4  
mA  
Other than P05 to P07, P62 and P63  
Average output current =  
operating current operating ratio (1 pin)  
IOHAV1  
“H” level average current  
IOHAV2  
mA  
P05 to P07, P62 and P63  
Average output current =  
8  
operating current operating ratio (1 pin)  
“H” level total maximum output  
current  
IOH  
100  
47  
mA  
Total average output current =  
mA operating current operating ratio  
(Total number of pins)  
“H” level total average output  
current  
IOHAV  
Power consumption  
Operating temperature  
Storage temperature  
Pd  
TA  
320  
85  
mW  
C  
C  
40  
55  
Tstg  
150  
*1: These parameters are based on the condition that VSS is 0.0 V.  
*2: V1 and V0 must not exceed VCC 0.3 V. V1 must not exceed the rated voltage. However, if the maximum current to/from an input  
is limited by means of an external component, the ICLAMP rating is used instead of the VI rating.  
(Continued)  
Document Number: 002-04696 Rev. *A  
Page 56 of 105  
MB95650L Series  
(Continued)  
*3: Specific pins: P00 to P07, P14, P15, P62 to P64, PF0, PF1, PG1, PG2  
• Use under recommended operating conditions.  
• Use with DC voltage (current).  
• The HV (High Voltage) signal is an input signal exceeding the V  
voltage. Always connect a limiting resistor  
CC  
between the HV (High Voltage) signal and the microcontroller before applying the HV (High Voltage) signal.  
• The value of the limiting resistor should be set to a value at which the current to be input to the microcontroller pin  
when the HV (High Voltage) signal is input is below the standard value, irrespective of whether the current is transient  
current or stationary current.  
• When the microcontroller drive current is low, such as in low power consumption modes, the HV (High Voltage)  
input potential may pass through the protective diode to increase the potential of the V pin, affecting other devices.  
CC  
• If the HV (High Voltage) signal is input when the microcontroller power supply is off (not fixed at 0 V), since power  
is supplied from the pins, incomplete operations may be executed.  
• If the HV (High Voltage) input is input after power-on, since power is supplied from the pins, the voltage of power  
supply may not be sufficient to enable a power-on reset.  
• Do not leave the HV (High Voltage) input pin unconnected.  
• Example of a recommended circuit:  
Input/Output equivalent circuit  
Protective diode  
VCC  
P-ch  
Limiting  
resistor  
HV(High Voltage) input (0 V to 16 V)  
N-ch  
R
WARNING:  
Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage,  
current or temperature) in excess of absolute maximum ratings.  
Do not exceed any of these ratings.  
Document Number: 002-04696 Rev. *A  
Page 57 of 105  
MB95650L Series  
18.2 Recommended Operating Conditions  
(VSS = 0.0 V)  
Value  
Parameter  
Power supply voltage  
Symbol  
Unit  
Remarks  
Min  
1.8*1  
0.2  
Max  
5.5  
VCC  
CS  
V
In normal operation  
Decoupling capacitor  
10  
µF A capacitor of about 1.0 µF is recommended. *2  
40  
5  
85  
35  
Other than on-chip debug mode  
Operating temperature  
TA  
C  
On-chip debug mode  
*1: The minimum power supply voltage becomes 2.18 V when a product with the low-voltage detection reset is used or when the  
on-chip debug mode is used.  
*2: Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. For the connection to a decoupling capacitor CS,  
see the diagram below. To prevent the device from unintentionally entering an unknown mode due to noise, minimize the distance  
between the C pin and CS and the distance between CS and the VSS pin when designing the layout of a printed circuit board.  
DBG / RST / C pins connection diagram  
*
DBG  
C
RST  
Cs  
*: Connect the DBG pin to an external pull-up resistor of 2 kor above. After power-on, ensure that the DBG pin  
does not stay at “L” level until the reset output is released. The DBG pin becomes a communication pin in debug  
mode. Since the actual pull-up resistance depends on the tool used and the interconnection length, refer to the  
tool document when selecting a pull-up resistor.  
WARNING:  
The recommended operating conditions are required in order to ensure the normal operation of the semiconductor  
device. All of the device's electrical characteristics are warranted when the device is operated under these conditions.  
Any use of semiconductor devices will be under their recommended operating condition.  
Operation under any conditions other than these conditions may adversely affect reliability of device and could result  
in device failure.  
No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet.  
If you are considering application under any conditions other than listed herein, please contact sales representatives  
beforehand.  
Document Number: 002-04696 Rev. *A  
Page 58 of 105  
MB95650L Series  
18.3 DC Characteristics  
(VCC = 3.0 V10%, VSS = 0.0 V, TA = 40 °C to 85 °C)  
Value  
Parameter  
Symbol  
Pin name  
Condition  
Unit  
Remarks  
Min  
Typ  
Max  
VIHI1  
VIHI2  
P04, P16, P17  
P14, P15  
*1  
*1  
0.7 VCC  
0.7 VCC  
VCC 0.3  
VCC 5.5  
V
V
CMOS input level  
CMOS input level  
P00 to P03,  
P05 to P07,  
P12,  
P62 to P64,  
PF0, PF1,  
PG1, PG2  
“H” level input  
voltage  
VIHS  
*1  
0.8 VCC  
VCC 0.3  
V
Hysteresis input  
VIHM  
VILI  
PF2  
*1  
0.8 VCC  
VCC 0.3  
V
V
Hysteresis input  
CMOS input level  
P04, P14 to P17  
VSS 0.3  
0.3 VCC  
P00 to P03,  
P05 to P07,  
P12,  
P62 to P64,  
PF0, PF1,  
PG1, PG2  
“L” level input  
voltage  
VILS  
*1  
VSS 0.3  
0.2 VCC  
V
Hysteresis input  
Hysteresis input  
VILM  
VD1  
VD2  
PF2  
VSS 0.3  
VSS 0.3  
VSS 0.3  
0.2 VCC  
VSS 5.5  
VSS 5.5  
V
V
V
Open-drain  
output  
application  
voltage  
P12, PF2  
P14, P15  
VD3  
P16, P17  
VSS 0.3  
VSS 5.5  
V
In I2C mode  
Output pins other  
VOH1  
than P05 to P07, IOH = 4 mA*2  
P12, P62, P63  
VCC 0.5  
V
“Hleveloutput  
voltage  
P05 to P07, P62,  
IOH = 8 mA*3  
P63  
VOH2  
VOL1  
VOL2  
VCC 0.5  
V
V
V
Output pins other  
than P05 to P07, IOL = 4 mA*4  
P62, P63  
0.4  
0.4  
“L” level output  
voltage  
P05 to P07, P62,  
IOL = 12 mA*5  
P63  
Input leak  
current (Hi-Z  
output leak  
current)  
When the internal  
µA pull-up resistor is  
disabled  
ILI  
All input pins  
0.0 V < VI < VCC  
5  
5  
P00 to P07,  
RPULL P62 to P64,  
PG1, PG2  
When the internal  
kpull-up resistor is  
enabled  
Internal  
pull-up resistor  
VI = 0 V  
75  
100  
5
150  
15  
Input  
capacitance  
Other than VCC  
and VSS  
CIN  
f = 1 MHz  
pF  
(Continued)  
Document Number: 002-04696 Rev. *A  
Page 59 of 105  
MB95650L Series  
(VCC = 3.0 V10%, VSS = 0.0 V, TA = 40 °C to 85 °C)  
Value  
Parameter  
Symbol  
Pin name  
Condition  
Unit  
Remarks  
Typ*1 Max*6  
Min  
Except during Flash  
4.2  
6.8  
mA memory programming  
and erasing  
FCH = 32 MHz  
MP = 16 MHz  
Main clock mode  
(divided by 2)  
F
ICC  
During Flash memory  
mA programming and  
erasing  
9.3  
6
14.7  
10  
mA At A/D conversion  
FCH = 32 MHz  
FMP = 16 MHz  
Main sleep mode  
(divided by 2)  
ICCS  
1.7  
3
mA  
VCC  
(External clock  
operation)  
FCL = 32 kHz  
FMPL = 16 kHz  
Subclock mode  
(divided by 2)  
TA = 25 °C  
ICCL  
35  
60  
µA  
FCL = 32 kHz  
FMPL = 16 kHz  
Subsleep mode  
(divided by 2)  
TA = 25 °C  
ICCLS  
2
7
6
µA  
µA  
Power supply  
current*7  
FCL = 32 kHz  
Watch mode  
Main stop mode  
TA = 25 °C  
ICCT  
1
FMCRPLL = 16 MHz  
FMP = 16 MHz  
Main CR PLL clock  
mode  
ICCMCRPLL  
4.3  
4.1  
7.7  
7
mA  
(multiplied by 4)  
FMPLL = 16 MHz  
FMP = 16 MHz  
Main PLL clock mode  
(multiplied by 4)  
ICCMPLL  
mA  
mA  
VCC  
FCRH = 4 MHz  
FMP = 4 MHz  
Main CR clock mode  
ICCMCR  
1.5  
50  
3
Sub-CR clock mode  
(divided by 2)  
ICCSCR  
100  
µA  
TA = 25 °C  
(Continued)  
Document Number: 002-04696 Rev. *A  
Page 60 of 105  
MB95650L Series  
(VCC = 3.0 V10%, VSS = 0.0 V, TA = 40 °C to 85 °C)  
Value  
Parameter  
Symbol  
Pin name  
Condition  
FCH = 32 MHz  
Unit  
Remarks  
Typ*1 Max*6  
Min  
ICCTS  
Time-base timer mode  
TA = 25 °C  
450  
0.7  
500  
5
µA  
µA  
VCC  
(External clock  
operation)  
Substop mode  
TA = 25 °C  
ICCH  
Current consumption of  
the low-voltage  
detection reset circuit in  
operation  
IPLVD  
6
6
26  
14  
µA  
µA  
Current consumption of  
the low-voltage  
detection interrupt  
circuit operating in  
normal mode  
IILVD  
Power supply  
current*7  
Current consumption of  
the low-voltage  
detection interrupt  
circuit operating in low  
power consumption  
mode  
VCC  
IILVDL  
3
10  
µA  
Current consumption of  
the main CR oscillator  
ICRH  
270  
5
320  
20  
7
µA  
µA  
µA  
Current consumption of  
the sub-CR oscillator  
oscillating at 100 kHz  
ICRL  
Current consumption of  
the suboscillator  
ISOSC  
0.8  
*1: VCC = 3.0 V, TA = 25 °C  
*2: When VCC is smaller than 4.5 V, the condition becomes IOH = 2 mA.  
*3: When VCC is smaller than 4.5 V, the condition becomes IOH = 4 mA.  
*4: When VCC is smaller than 4.5 V, the condition becomes IOL = 2 mA.  
*5: When VCC is smaller than 4.5 V, the condition becomes IOH = 6 mA.  
*6: VCC = 3.3 V, TA = 85 °C (unless otherwise specified)  
*7: • The power supply current is determined by the external clock. When the low-voltage detection reset circuit is selected, the power  
supply current is the sum of adding the current consumption of the low-voltage detection reset circuit (IPLVD) to one of the values  
from ICC to ICCH. In addition, when the low-voltage detection reset circuit and a CR oscillator are selected, the power supply  
current is the sum of adding up the current consumption of the low-voltage detection reset circuit (IPLVD), the current  
consumption of the CR oscillator (ICRH or ICRL) and one of the values from ICC to ICCH. In on-chip debug mode, the main CR  
oscillator (ICRH) and the low-voltage detection reset circuit are always in operation, and current consumption therefore increases  
accordingly.  
• See “18.4. AC Characteristics 18.4.1. Clock Timing” for FCH, FCL, FCRH, FMCRPLL and FMPLL  
.
• See “18.4. AC Characteristics 18.4.2. Source Clock/Machine Clock” for FMP and FMPL  
.
• The power supply current in subclock mode is determined by the external clock. In subclock mode, current consumption in using  
the crystal oscillator is higher than that in using the external clock. When the crystal oscillator is used, the power supply current  
is the sum of adding ISOSC (current consumption of the suboscillator) to the power supply current in using the external clock.  
For details of controlling the subclock, refer to “Chapter 3 Clock Controller” And “chapter 24 System Configuration Register” in  
“New 8FX MB95650L Series Hardware Manual”.  
Document Number: 002-04696 Rev. *A  
Page 61 of 105  
MB95650L Series  
18.4 AC Characteristics  
18.4.1 Clock Timing  
(VCC = 1.8 V to 5.5 V, VSS = 0.0 V, TA = 40 °C to 85 °C)  
Value  
Typ  
Parameter  
Symbol  
Pin name  
Condition  
Unit  
Remarks  
Min  
Max  
When the main oscillation circuit is  
used  
X0, X1  
1
16.25 MHz  
FCH  
When the main external clock is  
used  
X0  
1
4
32.5  
MHz  
X0, X1  
MHz When the main PLL clock is used  
Operating conditions  
MHz • The main CR clock is used.  
• 0C TA 70C  
3.92  
4
4.08  
FCRH  
Operating conditions  
• The main CR clock is used.  
3.8  
4
4.2  
MHz  
40C TA 0C,  
70C TA  85C  
Operating conditions  
MHz • PLL multiplication rate: 2  
• 0C TA 70C  
7.84  
7.6  
8
8.16  
8.4  
Operating conditions  
• PLL multiplication rate: 2  
8
MHz  
40C TA 0C,  
70C TA  85C  
Operating conditions  
MHz • PLL multiplication rate: 2.5  
• 0C TA 70C  
Clock frequency  
9.8  
10  
10  
12  
12  
16  
10.2  
10.5  
Operating conditions  
• PLL multiplication rate: 2.5  
9.5  
MHz  
40C TA 0C,  
70C TA  85C  
FMCRPLL  
Operating conditions  
12.24 MHz • PLL multiplication rate: 3  
11.76  
11.4  
15.68  
• 0C TA 70C  
Operating conditions  
• PLL multiplication rate: 3  
12.6  
MHz  
40C TA 0C,  
70C TA  85C  
Operating conditions  
16.32 MHz • PLL multiplication rate: 4  
• 0C TA 70C  
Operating conditions  
• PLL multiplication rate: 4  
15.2  
8
16  
16.8  
16  
MHz  
40C TA 0C,  
70C TA  85C  
FMPLL  
MHz When the main PLL clock is used  
(Continued)  
Document Number: 002-04696 Rev. *A  
Page 62 of 105  
MB95650L Series  
(Continued)  
(VCC = 1.8 V to 5.5 V, VSS = 0.0 V, TA = 40 °C to 85 °C)  
Value  
Typ  
Parameter  
Symbol  
Pin name  
Condition  
Unit  
Remarks  
Min  
Max  
When the suboscillation circuit is  
used  
32.768  
kHz  
FCL  
X0A, X1A  
Clock frequency  
Clock cycle time  
32.768  
100  
kHz When the sub-external clock is used  
kHz When the sub-CR clock is used  
FCRL  
50  
150  
When the main oscillation circuit is  
used  
X0, X1  
61.5  
1000  
ns  
tHCYL  
X0  
30.8  
1000  
ns When an external clock is used  
ns When the main PLL clock is used  
µs When the subclock is used  
X0, X1  
X0A, X1A  
250  
30.5  
tLCYL  
When an external clock is used, the  
ns duty ratio should range between  
40% and 60%.  
X0  
12.4  
t
WH1, tWL1  
Input clock  
pulse width  
X0, X1  
125  
15.2  
ns When the main PLL clock is used  
When an external clock is used, the  
µs duty ratio should range between  
40% and 60%.  
tWH2, tWL2 X0A  
Input clock  
rising time and  
falling time  
tCR, tCF X0, X0A  
5
ns When an external clock is used  
tCRHWK  
tCRLWK  
50  
30  
µs When the main CR clock is used  
µs When the sub-CR clock is used  
CR oscillation  
start time  
PLL oscillation  
start time  
When the main CR PLL clock is  
used  
tMCRPLLWK  
100  
µs  
Document Number: 002-04696 Rev. *A  
Page 63 of 105  
MB95650L Series  
Input waveform generated when an external clock (main clock) is used  
t
HCYL  
t
WH1  
t
WL1  
t
CR  
t
CF  
0.8 VCC 0.8 VCC  
0.2 VCC  
X0, X1  
0.2 VCC  
0.2 VCC  
Figure of main clock input port external connection  
When a crystal oscillator or  
a ceramic oscillator is used  
When an external clock  
is used  
X0  
X1  
X0  
FCH  
FCH  
Input waveform generated when an external clock (subclock) is used  
t
LCYL  
tWH2  
t
WL2  
t
CR  
t
CF  
0.8 VCC 0.8 VCC  
0.2 VCC  
X0A  
0.2 VCC  
0.2 VCC  
Figure of subclock input port external connection  
When a crystal oscillator or  
a ceramic oscillator is used  
When an external clock  
is used  
X0A X1A  
X0A  
FCL  
FCL  
Document Number: 002-04696 Rev. *A  
Page 64 of 105  
MB95650L Series  
Input waveform generated when an internal clock (main CR clock) is used  
tCRHWK  
1/FCRH  
Main CR clock  
Oscillation starts  
Oscillation stabilizes  
Input waveform generated when an internal clock (sub-CR clock) is used  
tCRLWK  
1/FCRL  
Sub-CR clock  
Oscillation starts  
Oscillation stabilizes  
Input waveform generated when an internal clock (main CR PLL clock) is used  
1/FMCRPLL  
tMCRPLLWK  
Main CR PLL clock  
Oscillation starts  
Oscillation stabilizes  
Document Number: 002-04696 Rev. *A  
Page 65 of 105  
MB95650L Series  
18.4.2 Source Clock/Machine Clock  
(VCC = 1.8 V to 5.5 V, VSS = 0.0 V, TA = 40 °C to 85 °C)  
Value  
Typ  
Pin  
Parameter  
Symbol  
Unit  
Remarks  
name  
Min  
61.5  
Max  
2000  
When the main external clock is used  
250  
ns Min: FCH = 32.5 MHz, divided by 2  
Max: FCH = 1 MHz, divided by 2  
ns When the main CR clock is used  
When the main PLL clock is used  
ns Min: FCH = 4 MHz, multiplied by 4  
Max: FCH = 4 MHz, no division  
62.5  
250  
Source clock cycle  
time*1  
tSCLK  
When the main CR PLL clock is used  
ns Min: FCRH = 4 MHz, multiplied by 4  
Max: FCRH = 4 MHz, no division  
62.5  
250  
When the suboscillation clock is used  
FCL = 32.768 kHz, divided by 2  
61  
20  
µs  
When the sub-CR clock is used  
µs  
FCRL = 100 kHz, divided by 2  
0.5  
4
4
16.25  
MHz When the main oscillation clock is used  
MHz When the main CR clock is used  
MHz When the main PLL clock is used  
MHz When the main CR PLL clock is used  
kHz When the suboscillation clock is used  
FSP  
16  
Source clock  
frequency  
4
16  
16.384  
FSPL  
When the sub-CR clock is used  
kHz  
50  
FCRL = 100 kHz, divided by 2  
When the main oscillation clock is used  
ns Min: FSP = 16.25 MHz, no division  
Max: FSP = 0.5 MHz, divided by 16  
61.5  
32000  
When the main CR clock is used  
ns Min: FSP = 4 MHz, no division  
Max: FSP = 4 MHz, divided by 16  
250  
62.5  
62.5  
61  
4000  
4000  
4000  
976.5  
320  
When the main PLL clock is used  
ns Min: FSP = 4 MHz, multiplied by 4  
Max: FSP = 4 MHz, divided by 16  
Machine clock  
cycle time*2  
(minimum  
tMCLK  
When the main CR PLL clock is used  
ns Min: FSP = 4 MHz, multiplied by 4  
Max: FSP = 4 MHz, divided by 16  
instruction  
execution time)  
When the suboscillation clock is used  
µs Min: FSPL = 16.384 kHz, no division  
Max: FSPL = 16.384 kHz, divided by 16  
When the sub-CR clock is used  
µs Min: FSPL = 50 kHz, no division  
Max: FSPL = 50 kHz, divided by 16  
20  
(Continued)  
Document Number: 002-04696 Rev. *A  
Page 66 of 105  
MB95650L Series  
(Continued)  
(VCC = 1.8 V to 5.5 V, VSS = 0.0 V, TA = 40 °C to 85 °C)  
Value  
Typ  
Pin  
Parameter  
Symbol  
Unit  
Remarks  
name  
Min  
0.031  
0.25  
Max  
16.25  
4
MHz When the main oscillation clock is used  
MHz When the main CR clock is used  
MHz When the main PLL clock is used  
MHz When the main CR PLL clock is used  
kHz When the suboscillation clock is used  
FMP  
0.25  
16  
Machine clock  
frequency  
0.25  
16  
1.024  
16.384  
FMPL  
When the sub-CR clock is used  
FCRL = 100 kHz  
3.125  
50  
kHz  
*1: This is the clock before it is divided according to the division ratio set by the machine clock division ratio select bits  
(SYCC:DIV[1:0]). This source clock is divided to become a machine clock according to the division ratio set by the machine clock  
division ratio select bits (SYCC:DIV[1:0]). In addition, a source clock can be selected from the following.  
• Main clock divided by 2  
• PLL multiplication of main clock (Select a multiplication rate from 2, 2.5, 3 and 4.)  
• Main CR clock  
• PLL multiplication of main CR clock (Select a multiplication rate from 2, 2.5, 3 and 4.)  
• Subclock divided by 2  
• Sub-CR clock divided by 2  
*2: This is the operating clock of the microcontroller. A machine clock can be selected from the following.  
• Source clock (no division)  
• Source clock divided by 4  
• Source clock divided by 8  
• Source clock divided by 16  
Document Number: 002-04696 Rev. *A  
Page 67 of 105  
MB95650L Series  
Schematic diagram of the clock generation block  
FCH  
Divided by 2  
(Main oscillation clock)  
FMPLL  
(Main PLL clock)  
FCRH  
(Main CR clock)  
Division circuit  
SCLK  
(Source clock)  
×
×
×
1
1/4  
1/8  
MCLK  
(Machine clock)  
FMCRPLL  
(Main CR PLL clock)  
× 1/16  
FCL  
Machine clock divide ratio select bits  
(SYCC:DIV[1:0])  
Divided by 2  
Divided by 2  
(Suboscillation clock)  
FCRL  
(Sub-CR clock)  
Clock mode select bits  
(SYCC:SCS[2:0])  
Operating voltage - Operating frequency (T = 40 °C to 85 °C)  
A
5.5  
5.0  
4.5  
4.0  
A/D converter operation range  
3.5  
3.0  
2.5  
2.0  
1.8  
1.5  
0.0  
16 kHz  
3 MHz  
10 MHz  
16.25 MHz  
Source clock frequency (FSP/FSPL)  
Document Number: 002-04696 Rev. *A  
Page 68 of 105  
MB95650L Series  
18.4.3 External Reset  
(VCC = 3.0 V to 5.5 V, VSS = 0.0 V, TA = 40 °C to 85 °C)  
Value  
Parameter  
Symbol  
Unit  
Remarks  
Min  
Max  
RST “L” level  
pulse width  
tRSTL  
2 tMCLK  
*
ns  
*: See “18.4.2. Source Clock/Machine Clock” for tMCLK  
.
tRSTL  
RST  
0.2 VCC  
0.2 VCC  
Document Number: 002-04696 Rev. *A  
Page 69 of 105  
MB95650L Series  
18.4.4 Power-on Reset  
(VSS = 0.0 V, TA = 40 °C to 85 °C)  
Value  
Typ  
Pin  
name  
Parameter  
Symbol  
Unit  
Remarks  
Min  
Max  
Power supply  
rising time  
dV/dt  
Toff  
0.1  
V/ms  
ms  
V
Power supply  
cutoff time  
1
1.76  
1.71  
10  
Reset release  
voltage  
Vdeth  
Vdetl  
Tond  
Toffd  
1.44  
1.39  
1.60  
1.55  
At voltage rise  
At voltage fall  
VCC  
Reset detection  
voltage  
V
Reset release  
delay time  
ms dV/dt 0.1 mV/µs  
Reset detection  
delay time  
0.4  
ms dV/dt  0.04 mV/µs  
T
off  
V
deth  
dV  
V
detl  
V
CC  
0.2 V  
0.2 V  
dt  
T
ond  
Toffd  
Power-on reset  
Document Number: 002-04696 Rev. *A  
Page 70 of 105  
MB95650L Series  
18.4.5 Peripheral Input Timing  
(VCC = 3.0 V to 5.5 V, VSS = 0.0 V, TA = 40 °C to 85 °C)  
Value  
Parameter  
Symbol  
Pin name  
Unit  
Min  
Max  
Peripheral input “H” pulse width  
Peripheral input “L” pulse width  
tILIH  
tIHIL  
2 tMCLK  
*
ns  
ns  
INT02 to INT07, EC0, EC1  
2 tMCLK  
*
*: See “18.4.2. Source Clock/Machine Clock” for tMCLK  
.
t
ILIH  
t
IHIL  
0.8 VCC 0.8 VCC  
INT02 to INT07,  
EC0, EC1  
0.2 VCC  
0.2 VCC  
Document Number: 002-04696 Rev. *A  
Page 71 of 105  
MB95650L Series  
18.4.6 LIN-UART Timing  
Sampling is executed at the rising edge of the sampling clock*1, and serial clock delay is disabled*2.  
(ESCR register : SCES bit = 0, ECCR register : SCDE bit = 0)  
(VCC = 3.0 V to 5.5 V, VSS = 0.0 V, TA = 40 °C to 85 °C)  
Value  
Parameter  
Symbol  
Pin name  
SCK  
Condition  
Unit  
Min  
5 tMCLK  
50  
Max  
3
Serial clock cycle time  
SCK  SOT delay time  
Valid SIN SCK  
tSCYC  
*
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Internal clock operation  
output pin:  
CL = 80 pF 1 TTL  
tSLOVI SCK, SOT  
50  
tIVSHI  
tSHIXI  
tSLSH  
tSHSL  
SCK, SIN  
SCK, SIN  
SCK  
tMCLK*3 80  
SCK  valid SIN hold time  
Serial clock “L” pulse width  
Serial clock “H” pulse width  
SCK  SOT delay time  
Valid SIN SCK  
0
3 tMCLK*3tR  
tMCLK*3 10  
SCK  
tSLOVE SCK, SOT  
tIVSHE SCK, SIN  
tSHIXE SCK, SIN  
2 tMCLK*3 60  
External clock operation  
output pin:  
CL = 80 pF 1 TTL  
30  
10  
10  
SCK  valid SIN hold time  
SCK fall time  
tMCLK*3 30  
tF  
SCK  
SCK  
SCK rise time  
tR  
*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the  
serial clock.  
*2: The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.  
*3: See “18.4.2. Source Clock/Machine Clock” for tMCLK  
.
Document Number: 002-04696 Rev. *A  
Page 72 of 105  
MB95650L Series  
Internal shift clock mode  
tSCYC  
0.8 VCC  
SCK  
0.2 VCC  
0.2 VCC  
t
SLOVI  
0.8 VCC  
0.2 VCC  
SOT  
tIVSHI  
tSHIXI  
0.7 VCC 0.7 VCC  
SIN  
0.3 VCC 0.3 VCC  
External shift clock mode  
t
SLSH  
t
SHSL  
0.8 VCC  
0.8 VCC  
0.8 VCC  
SCK  
SOT  
SIN  
0.2 VCC  
0.2 VCC  
t
R
t
F
t
SLOVE  
0.8 VCC  
0.2 VCC  
t
IVSHE  
t
SHIXE  
0.7 VCC 0.7 VCC  
0.3 VCC 0.3 VCC  
Document Number: 002-04696 Rev. *A  
Page 73 of 105  
MB95650L Series  
Sampling is executed at the falling edge of the sampling clock*1, and serial clock delay is disabled*2.  
(ESCR register : SCES bit = 1, ECCR register : SCDE bit = 0)  
(VCC = 3.0 V to 5.5 V, VSS = 0.0 V, TA = 40 °C to 85 °C)  
Value  
Parameter  
Symbol  
Pin name  
SCK  
Condition  
Unit  
Min  
5 tMCLK  
50  
Max  
3
Serial clock cycle time  
SCK  SOT delay time  
Valid SIN SCK  
tSCYC  
*
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Internal clock operation  
output pin:  
CL = 80 pF 1 TTL  
tSHOVI SCK, SOT  
50  
tIVSLI  
tSLIXI  
tSHSL  
tSLSH  
SCK, SIN  
SCK, SIN  
SCK  
tMCLK*3 80  
SCK valid SIN hold time  
Serial clock “H” pulse width  
Serial clock “L” pulse width  
SCK  SOT delay time  
Valid SIN SCK  
0
3 tMCLK*3 tR  
tMCLK*3 10  
SCK  
tSHOVE SCK, SOT  
tIVSLE SCK, SIN  
tSLIXE SCK, SIN  
2 tMCLK*3 60  
External clock operation  
output pin:  
CL = 80 pF 1 TTL  
30  
10  
10  
SCK valid SIN hold time  
SCK fall time  
tMCLK*3 30  
tF  
SCK  
SCK  
SCK rise time  
tR  
*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the  
serial clock.  
*2: The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.  
*3: See “18.4.2. Source Clock/Machine Clock” for tMCLK  
.
Document Number: 002-04696 Rev. *A  
Page 74 of 105  
MB95650L Series  
Internal shift clock mode  
tSCYC  
0.8 VCC  
0.8 VCC  
SCK  
0.2 VCC  
t
SHOVI  
0.8 VCC  
0.2 VCC  
SOT  
SIN  
tIVSLI  
tSLIXI  
0.7 VCC 0.7 VCC  
0.3 VCC 0.3 VCC  
External shift clock mode  
t
SHSL  
t
SLSH  
0.8 VCC  
0.8 VCC  
SCK  
0.2 VCC  
0.2 VCC  
0.2 VCC  
t
F
tR  
tSHOVE  
0.8 VCC  
0.2 VCC  
SOT  
SIN  
t
IVSLE  
tSLIXE  
0.7 VCC 0.7 VCC  
0.3 VCC 0.3 VCC  
Document Number: 002-04696 Rev. *A  
Page 75 of 105  
MB95650L Series  
Sampling is executed at the rising edge of the sampling clock*1, and serial clock delay is enabled*2.  
(ESCR register : SCES bit = 0, ECCR register : SCDE bit = 1)  
(VCC = 3.0 V to 5.5 V, VSS = 0.0 V, TA = 40 °C to 85 °C)  
Value  
Parameter  
Symbol  
Pin name  
SCK  
Condition  
Unit  
Min  
5 tMCLK  
50  
Max  
3
Serial clock cycle time  
SCK SOT delay time  
Valid SIN SCK  
tSCYC  
*
ns  
ns  
ns  
ns  
ns  
tSHOVI SCK, SOT  
50  
Internal clock operation  
output pin:  
CL = 80 pF 1 TTL  
tIVSLI  
tSLIXI  
SCK, SIN  
SCK, SIN  
tMCLK*3 80  
SCK valid SIN hold time  
SOT SCKdelay time  
0
tSOVLI SCK, SOT  
3tMCLK*3 70  
*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the  
serial clock.  
*2: The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.  
*3: See “18.4.2. Source Clock/Machine Clock” for tMCLK  
.
t
SCYC  
0.8 VCC  
SCK  
0.2 VCC  
0.2 VCC  
t
SHOVI  
t
SOVLI  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
SOT  
SIN  
t
IVSLI  
t
SLIXI  
0.7 VCC  
0.3 VCC  
0.7 VCC  
0.3 VCC  
Document Number: 002-04696 Rev. *A  
Page 76 of 105  
MB95650L Series  
Sampling is executed at the falling edge of the sampling clock*1, and serial clock delay is enabled*2.  
(ESCR register : SCES bit = 1, ECCR register : SCDE bit = 1)  
(VCC = 3.0 V to 5.5 V, VSS = 0.0 V, TA = 40 °C to 85 °C)  
Value  
Parameter  
Symbol  
Pin name  
SCK  
Condition  
Unit  
Min  
5 tMCLK  
50  
Max  
3
Serial clock cycle time  
SCK  SOT delay time  
Valid SIN SCK  
tSCYC  
*
ns  
ns  
ns  
ns  
ns  
tSLOVI SCK, SOT  
50  
Internal clock operation  
output pin:  
CL = 80 pF 1 TTL  
tIVSHI  
tSHIXI  
SCK, SIN  
SCK, SIN  
tMCLK*3 80  
SCK  valid SIN hold time  
SOT SCKdelay time  
0
tSOVHI SCK, SOT  
3tMCLK*3 70  
*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the  
serial clock.  
*2: The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.  
*3: See “18.4.2. Source Clock/Machine Clock” for tMCLK  
.
t
SCYC  
0.8 VCC  
0.8 VCC  
SCK  
0.2 VCC  
tSOVHI  
t
SLOVI  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
SOT  
SIN  
t
IVSHI  
t
SHIXI  
0.7 VCC  
0.3 VCC  
0.7 VCC  
0.3 VCC  
Document Number: 002-04696 Rev. *A  
Page 77 of 105  
MB95650L Series  
18.4.7 Low-vo ltage Detection  
Normal mode  
(VCC = 1.8 V to 5.5 V, VSS = 0.0 V, TA = 40 °C to 85 °C)  
Value  
Typ  
2.03  
1.93  
2.3  
2.2  
2.6  
2.5  
2.9  
2.8  
3.3  
3.2  
3.7  
3.6  
4.1  
4
Parameter  
Symbol  
Unit  
Remarks  
Min  
1.88  
1.8  
Max  
2.18  
2.06  
2.47  
2.35  
2.79  
2.67  
3.11  
2.99  
3.54  
3.42  
3.97  
3.85  
4.39  
4.27  
1.6  
Reset release voltage  
VPDL  
VPDL  
VIDL0  
VIDL0  
VIDL1  
VIDL1  
VIDL2  
VIDL2  
VIDL3  
VIDL3  
VIDL4  
VIDL4  
VIDL5  
VIDL5  
Voff  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
At power supply rise  
Reset detection voltage  
At power supply fall  
At power supply rise  
At power supply fall  
At power supply rise  
At power supply fall  
At power supply rise  
At power supply fall  
At power supply rise  
At power supply fall  
At power supply rise  
At power supply fall  
At power supply rise  
At power supply fall  
Interrupt release voltage 0  
Interrupt detection voltage 0  
Interrupt release voltage 1  
Interrupt detection voltage 1  
Interrupt release voltage 2  
Interrupt detection voltage 2  
Interrupt release voltage 3  
Interrupt detection voltage 3  
Interrupt release voltage 4  
Interrupt detection voltage 4  
Interrupt release voltage 5  
Interrupt detection voltage 5  
Power supply start voltage  
Power supply end voltage  
2.13  
2.05  
2.41  
2.33  
2.69  
2.61  
3.06  
2.98  
3.43  
3.35  
3.81  
3.73  
Von  
4.39  
Slope of power supply that the reset  
Power supply voltage change time  
(at power supply rise)  
tr  
tf  
697.5  
697.5  
µs release signal generates within the  
rating (VPDL/VIDL  
)
Slope of power supply that the reset  
µs release signal generates within the  
Power supply voltage change time  
(at power supply fall)  
rating (VPDL/VIDL  
)
Reset release delay time  
Reset detection delay time  
Interrupt release delay time  
Interrupt detection delay time  
tdp1  
tdp2  
tdi1  
tdi2  
30  
30  
30  
30  
µs  
µs  
µs  
µs  
LVD reset threshold voltage transition  
stabilization time  
tstb  
30  
µs  
Document Number: 002-04696 Rev. *A  
Page 78 of 105  
MB95650L Series  
Low power consumption mode  
Parameter  
(VCC = 1.8 V to 5.5 V, VSS = 0.0 V, TA = 40 °C to 85 °C)  
Value  
Typ  
2.3  
2.2  
2.6  
2.5  
2.9  
2.8  
3.3  
3.2  
3.7  
3.6  
4.1  
4
Symbol  
Unit  
Remarks  
Min  
2.06  
1.98  
2.33  
2.25  
2.6  
Max  
2.54  
2.42  
2.87  
2.75  
3.2  
Interrupt release voltage 0  
Interrupt detection voltage 0  
Interrupt release voltage 1  
Interrupt detection voltage 1  
Interrupt release voltage 2  
Interrupt detection voltage 2  
Interrupt release voltage 3  
Interrupt detection voltage 3  
Interrupt release voltage 4  
Interrupt detection voltage 4  
Interrupt release voltage 5  
Interrupt detection voltage 5  
Power supply start voltage  
Power supply end voltage  
VIDLL0  
VIDLL0  
VIDLL1  
VIDLL1  
VIDLL2  
VIDLL2  
VIDLL3  
VIDLL3  
VIDLL4  
VIDLL4  
VIDLL5  
VIDLL5  
VoffL  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
At power supply rise  
At power supply fall  
At power supply rise  
At power supply fall  
At power supply rise  
At power supply fall  
At power supply rise  
At power supply fall  
At power supply rise  
At power supply fall  
At power supply rise  
At power supply fall  
2.52  
2.96  
2.88  
3.32  
3.24  
3.68  
3.6  
3.08  
3.64  
3.52  
4.08  
3.96  
4.52  
4.4  
1.6  
VonL  
4.52  
Slope of power supply that the  
Power supply voltage change time  
(at power supply rise)  
trL  
7300  
7300  
µs interrupt release signal generates  
within the rating (VIDLL  
)
Slope of power supply that the  
µs interrupt detection signal generates  
Power supply voltage change time  
(at power supply fall)  
tfL  
within the rating (VIDLL  
)
Interrupt release delay time  
Interrupt detection delay time  
tdiL1  
tdiL2  
400  
400  
µs  
µs  
Interrupt threshold voltage transition  
stabilization time  
tstbL  
400  
400  
µs  
µs  
Interrupt low-voltage detection mode  
switch time  
Normal mode Low power  
consumption mode  
tmdsw  
Note: When used for interrupt, the low-voltage detection circuit can be switched between the normal mode and the low power  
consumption mode. Compared with the normal mode, while the low power consumption mode has lower detection voltage  
accuracy and lower release voltage accuracy, it has the lower power consumption. See “18.3 DC Characteristics” for the  
difference in current consumption between the normal mode and the low power consumption mode. For details of the method  
for switching between the normal mode and the low power consumption mode, refer to “Chapter 17 Low-voltage Detection  
Circuit” in “New 8FX MB95650L Series Hardware Manual”.  
Document Number: 002-04696 Rev. *A  
Page 79 of 105  
MB95650L Series  
V
CC  
Von/VonL  
Voff/VoffL  
Time  
tf/tfL  
tr/trL  
V
PDL+/VIDL+  
PDL/VIDL−  
V
Internal reset signal or interrupt signal  
Time  
tdp2/tdi2/tdiL2  
tdp1/tdi1/tdiL1  
Document Number: 002-04696 Rev. *A  
Page 80 of 105  
MB95650L Series  
18.4.8 I2C Bus Interface Timing  
(VCC = 3.0 V to 5.5 V, VSS = 0.0 V, TA = 40 °C to 85 °C)  
Value  
Parameter  
Symbol  
Pin name  
Condition  
Standard-mode  
Fast-mode  
Unit  
Min  
Max  
Min  
Max  
SCL clock frequency  
fSCL  
SCL0, SCL1  
0
100  
0
400  
kHz  
µs  
(Repeated) START condition hold time  
SDA  SCL   
SCL0, SCL1,  
SDA0, SDA1  
tHD;STA  
4.0  
0.6  
SCL clock “L” width  
SCL clock “H” width  
tLOW  
tHIGH  
SCL0, SCL1  
SCL0, SCL1  
4.7  
4.0  
1.3  
0.6  
µs  
µs  
(Repeated) START condition setup time  
SCL  SDA   
SCL0, SCL1,  
SDA0, SDA1  
tSU;STA  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
4.7  
0
3.45*2  
0.6  
0
0.9*3  
µs  
µs  
µs  
µs  
µs  
R = 1.7 k,  
C = 50 pF*1  
Data hold time  
SCL  SDA   
SCL0, SCL1,  
SDA0, SDA1  
Data setup time  
SDA  SCL   
SCL0, SCL1,  
SDA0, SDA1  
0.25  
4
0.1  
0.6  
1.3  
STOP condition setup time  
SCL   SDA   
SCL0, SCL1,  
SDA0, SDA1  
Bus free time between STOP condition and  
START condition  
SCL0, SCL1,  
SDA0, SDA1  
4.7  
*1: R represents the pull-up resistor of the SCL0/1 and SDA0/1 lines, and C the load capacitor of the SCL0/1 and SDA0/1 lines.  
*2: The maximum tHD;DAT in the Standard-mode is applicable only when the time during which the device is holding the SCL signal  
at “L” (tLOW) does not extend.  
*3: A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, provided that the condition of tSU;DAT 250 ns is  
fulfilled.  
tWAKEUP  
SDA0,  
SDA1  
tHD;STA  
tHD;DAT  
tHIGH  
tBUF  
tLOW  
SCL0,  
SCL1  
tSU;STO  
tHD;STA  
tSU;DAT  
fSCL  
tSU;STA  
Document Number: 002-04696 Rev. *A  
Page 81 of 105  
MB95650L Series  
(VCC = 3.0 V to 5.5 V, VSS = 0.0 V, TA = 40 °C to 85 °C)  
Value*2  
Pin  
name  
Parameter  
Symbol  
Condition  
Unit  
Remarks  
Min  
Max  
SCL clock “L”  
width  
SCL0,  
SCL1  
tLOW  
tHIGH  
(2 nm/2)tMCLK 20  
ns Master mode  
SCL clock “H”  
width  
SCL0,  
SCL1  
(nm/2)tMCLK 20  
(nm/2)tMCLK 20  
ns Master mode  
Master mode  
Maximum value is  
applied when m, n =  
ns 1, 8.  
SCL0,  
SCL1,  
SDA0,  
SDA1  
START  
condition hold  
time  
tHD;STA  
(-1 nm/2)tMCLK 20  
(-1 nm)tMCLK 20  
Otherwise, the  
minimum value is  
applied.  
SCL0,  
SCL1,  
STOPcondition  
setup time  
tSU;STO  
(1 nm/2)tMCLK 20  
(1 nm/2)tMCLK 20  
(1 nm/2)tMCLK 20  
(1 nm/2)tMCLK 20  
ns Master mode  
ns Master mode  
SDA0, R = 1.7 k,  
SDA1 C = 50 pF*1  
SCL0,  
SCL1,  
SDA0,  
SDA1  
START  
condition setup tSU;STA  
time  
Bus free time  
between STOP  
condition and  
START  
condition  
SCL0,  
SCL1,  
SDA0,  
SDA1  
tBUF  
(2 nm 4) tMCLK 20  
ns  
SCL0,  
SCL1,  
SDA0,  
SDA1  
Data hold time tHD;DAT  
3 tMCLK 20  
ns Master mode  
(Continued)  
Document Number: 002-04696 Rev. *A  
Page 82 of 105  
MB95650L Series  
(VCC = 3.0 V to 5.5 V, VSS = 0.0 V, TA = 40 °C to 85 °C)  
Value*2  
Pin  
name  
Parameter  
Symbol  
Condition  
Unit  
Remarks  
Min  
Max  
Master mode  
It is assumed that “L”  
of SCL is not  
SCL0,  
SCL1,  
SDA0,  
SDA1  
extended. The  
minimum value is  
applied to the first bit  
of continuous data.  
Otherwise, the  
maximum value is  
applied.  
Data setup time tSU;DAT  
(-2 nm/2) tMCLK 20 (-1 nm/2) tMCLK 20  
ns  
The minimum value  
is applied to the  
interrupt at the ninth  
Setup time  
between  
clearing  
interrupt and  
SCL rising  
SCL0,  
SCL1  
tSU;INT  
(nm/2) tMCLK 20  
(1 nm/2) tMCLK 20  
ns SCL. Themaximum  
value is applied to  
the interrupt at the  
eighth SCL.  
R = 1.7 k,  
C = 50 pF*1  
SCL clock “L”  
width  
SCL0,  
SCL1  
tLOW  
tHIGH  
4 tMCLK 20  
4 tMCLK 20  
ns At reception  
SCL clock “H”  
width  
SCL0,  
SCL1  
ns At reception  
SCL0,  
SCL1,  
SDA0,  
SDA1  
No START condition  
is detected when  
1 tMCLK is used at  
reception.  
START  
condition  
detection  
tHD;STA  
tSU;STO  
tSU;STA  
2 tMCLK 20  
2 tMCLK 20  
2 tMCLK 20  
ns  
SCL0,  
SCL1,  
SDA0,  
SDA1  
NoSTOPconditionis  
detected when  
1 tMCLK is used at  
reception.  
STOPcondition  
detection  
ns  
RESTART  
condition  
detection  
condition  
SCL0,  
SCL1,  
SDA0,  
SDA1  
No RESTART  
condition is detected  
when 1 tMCLK is used  
at reception.  
ns  
(Continued)  
Document Number: 002-04696 Rev. *A  
Page 83 of 105  
MB95650L Series  
(Continued)  
(VCC = 3.0 V to 5.5 V, VSS = 0.0 V, TA = 40 °C to 85 °C)  
Value*2  
Pin  
name  
Parameter  
Symbol  
Condition  
Unit  
Remarks  
Min  
Max  
SCL0,  
SCL1,  
SDA0,  
SDA1  
Bus free time  
Data hold time  
Data setup time  
Data hold time  
tBUF  
2 tMCLK 20  
ns At reception  
SCL0,  
SCL1,  
SDA0,  
SDA1  
At slave transmission  
mode  
tHD;DAT  
tSU;DAT  
tHD;DAT  
tSU;DAT  
2 tMCLK 20  
tLOW 3 tMCLK 20  
0
ns  
ns  
SCL0,  
SCL1,  
SDA0,  
SDA1  
At slave transmission  
mode  
R = 1.7 k,  
C = 50 pF*1  
SCL0,  
SCL1,  
SDA0,  
SDA1  
ns At reception  
ns At reception  
ns  
SCL0,  
SCL1,  
SDA0,  
SDA1  
Data setup time  
tMCLK 20  
SCL0,  
SCL1,  
SDA0,  
SDA1  
SDA  SCL  
(with wakeup function tWAKEUP  
in use)  
Oscillation stabilizationwait  
time  
2 tMCLK 20  
*1: R represents the pull-up resistor of the SCL0/SCL1 and SDA0/SDA1 lines, and C the load capacitor of the SCL0/SCL1 and  
SDA0/SDA1 lines.  
*2: • See “18.4.2. Source Clock/Machine Clock” for tMCLK  
.
• m represents the CS[4:3] bits in the I2C clock control register ch. 0/ch. 1 (ICCR0/ICCR1).  
• n represents the CS[2:0] bits in the I2C clock control register ch. 0/ch. 1 (ICCR0/ICCR1).  
• The actual timing of the I2C bus interface is determined by the values of m and n set by the machine clock (tMCLK) and the  
CS[4:0] bits in the ICCR0/ICCR1 register.  
• Standard-mode:  
m and n can be set to values in the following range: 0.9 MHz t  
(machine clock) 16.25 MHz.  
MCLK  
The usable frequencies of the machine clock are determined by the settings of m and n as shown below.  
(m, n) = (1, 8)  
: 0.9 MHz < t  
: 0.9 MHz < t  
: 0.9 MHz < t  
: 0.9 MHz < t  
: 0.9 MHz < t  
1 MHz  
2 MHz  
4 MHz  
10 MHz  
16.25 MHz  
MCLK  
MCLK  
MCLK  
MCLK  
MCLK  
(m, n) = (1, 22), (5, 4), (6, 4), (7, 4), (8, 4)  
(m, n) = (1, 38), (5, 8), (6, 8), (7, 8), (8, 8)  
(m, n) = (1, 98), (5, 22), (6, 22), (7, 22)  
(m, n) = (8, 22)  
• Fast-mode:  
m and n can be set to values in the following range: 3.3 MHz < t  
(machine clock) < 16.25 MHz.  
MCLK  
The usable frequencies of the machine clock are determined by the settings of m and n as shown below.  
(m, n) = (1, 8)  
: 3.3 MHz < t  
: 3.3 MHz < t  
: 3.3 MHz < t  
: 3.3 MHz < t  
4 MHz  
8 MHz  
10 MHz  
16.25 MHz  
MCLK  
MCLK  
MCLK  
MCLK  
(m, n) = (1, 22), (5, 4)  
(m, n) = (1, 38), (6, 4), (7, 4), (8, 4)  
(m, n) = (5, 8)  
Document Number: 002-04696 Rev. *A  
Page 84 of 105  
MB95650L Series  
18.4.9 UART/SIO, Serial I/O Timing  
(VCC = 3.0 V to 5.5 V, VSS = 0.0 V, TA = 40 °C to 85 °C)  
Value  
Parameter  
Symbol  
Pin name  
Condition  
Unit  
Min  
4 tMCLK  
190  
Max  
Serial clock cycle time  
UCK  UO time  
tSCYC UCK0  
*
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSLOV UCK0, UO0  
190  
Internal clock operation  
Valid UI UCK   
tIVSH  
tSHIX  
UCK0, UI0  
UCK0, UI0  
2 tMCLK  
2 tMCLK  
4 tMCLK  
4 tMCLK  
*
*
*
*
UCK  valid UI hold time  
Serial clock “H” pulse width  
Serial clock “L” pulse width  
UCK  UO time  
tSHSL UCK0  
tSLSH UCK0  
tSLOV UCK0, UO0  
External clock operation  
190  
Valid UI UCK   
tIVSH  
tSHIX  
UCK0, UI0  
UCK0, UI0  
2 tMCLK  
*
*
UCK  valid UI hold time  
2 tMCLK  
*: See “18.4.2. Source Clock/Machine Clock” for tMCLK  
.
Internal shift clock mode  
t
SCYC  
0.8 VCC  
UCK0  
0.2 VCC  
0.2 VCC  
t
SLOV  
0.8 VCC  
0.2 VCC  
UO0  
UI0  
t
IVSH  
t
SHIX  
0.7 VCC 0.7 VCC  
0.3 VCC 0.3 VCC  
External shift clock mode  
tSLSH  
t
SHSL  
0.8 VCC  
0.8 VCC  
UCK0  
0.2 VCC  
0.2 VCC  
t
SLOV  
0.8 VCC  
0.2 VCC  
UO0  
UI0  
tIVSH  
t
SHIX  
0.7 VCC 0.7 VCC  
0.3 VCC 0.3 VCC  
Document Number: 002-04696 Rev. *A  
Page 85 of 105  
MB95650L Series  
18.5 A/D Converter  
18.5.1 A/D Converter Electrical Characteristics  
(VCC = 1.8 V to 5.5 V, VSS = 0.0 V, TA = 40 °C to 85 °C)  
Value  
Typ  
Parameter  
Resolution  
Symbol  
Unit  
Remarks  
Min  
Max  
6  
12  
bit  
6  
LSB VCC 2.7 V  
LSB VCC 2.7 V  
LSB VCC 2.7 V  
LSB VCC 2.7 V  
LSB VCC 2.7 V  
LSB VCC 2.7 V  
mV  
Total error  
10  
10  
3  
3  
5  
Linearity error  
5  
1.9  
1.9  
Differential linearity error  
Zero transition voltage  
2.9  
2.9  
V0T  
VFST  
TS  
VSS 6 LSB  
VSS 8.2 LSB  
Full-scale transition  
voltage  
VCC 6.2 LSB  
VCC 9.2 LSB  
mV  
Sampling time  
*
10  
14  
14  
µs  
0.861  
2.8  
µs VCC 2.7 V  
µs VCC 2.7 V  
Compare time  
Tcck  
Tstt  
Time of transiting to  
operation enabled state  
1
µs  
Analog input current  
Analog input voltage  
IAIN  
0.3  
0.3  
µA  
V
VAIN  
VSS  
VCC  
*: See “18.4.2. Notes on Using A/D Converter” for details of the minimum sampling time.  
Document Number: 002-04696 Rev. *A  
Page 86 of 105  
MB95650L Series  
18.5.2 Notes on Using A/D Converter  
External impedance of analog input and its sampling time  
The A/D converter of the MB95650L Series has a sample and hold circuit. If the external impedance is too high to keep sufficient  
sampling time, the analog voltage charged to the capacitor of the internal sample and hold circuit is insufficient, adversely affecting  
A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, considering the relationship between the  
external impedance and minimum sampling time, either adjust the register value and operating frequency or decrease the external  
impedance so that the sampling time is longer than the minimum value. In addition, if sufficient sampling time cannot be secured,  
connect a capacitor of about 0.1 µF to the analog input pin.  
Analog input equivalent circuit  
Comparator  
Rext  
Rin  
Analog input pins  
(AN00 to AN05)  
Analog signal source  
Cin  
VCC  
Rin  
Cin  
0.9 kΩ (Max)  
1.6 kΩ (Max)  
4.0 kΩ (Max)  
4.5 V VCC 5.5 V  
2.7 V VCC < 4.5 V  
1.8 V VCC < 2.7 V  
13 pF (Max)  
13 pF (Max)  
13 pF (Max)  
Note: The values are reference values.  
Relationship between external impedance and minimum sampling time  
The sampling required varies according to external impedance. Ensure that the following condition is met when setting the sampling  
time.  
Ts  Rin + Rext  Cin 9  
Ts  
: Sampling time  
Rin : Input resistance of A/D converter  
Cin : Input capacitance of A/D converter  
Rext : Output impedance of external circuit  
A/D conversion error  
As |VCC VSS| decreases, the A/D conversion error increases proportionately.  
Document Number: 002-04696 Rev. *A  
Page 87 of 105  
MB95650L Series  
18.5.3 Definitions of A/D Converter Terms  
Resolution  
It indicates the level of analog variation that can be distinguished by the A/D converter.  
When the number of bits is 12, analog voltage can be divided into 212 = 4096.  
Linearity error (unit: LSB)  
It indicates how much an actual conversion value deviates from the straight line connecting the zero transition point  
(“000000000000”   “000000000001”) of a device to the full-scale transition point (“111111111111”   “111111111110”) of the same  
device.  
Differential linear error (unit: LSB)  
It indicates how much the input voltage required to change the output code by 1 LSB deviates from an ideal value.  
Total error (unit: LSB)  
It indicates the difference between an actual value and a theoretical value. The error can be caused by a zero transition error, a  
full-scale transition errors, a linearity error, a quantum error, or noise.  
Ideal I/O characteristics  
VFST  
Total error  
0xFFF  
0xFFE  
0xFFD  
0xFFF  
0xFFE  
0xFFD  
Actual conversion  
characteristic  
2 LSB  
{1 LSB × (N 1) + 0.5 LSB}  
0x004  
0x003  
0x002  
0x001  
0x004  
0x003  
0x002  
0x001  
V0T  
VNT  
Actual conversion  
characteristic  
1 LSB  
Ideal characteristic  
0.5 LSB  
VSS  
Analog input  
VCC  
VSS  
Analog input  
VCC  
VNT {1 LSB × (N 1) + 0.5 LSB}  
VCC VSS  
4096  
1 LSB =  
V
Total error of digital output N =  
LSB  
1 LSB  
N
: A/D converter digital output value  
VNT : Voltage at which the digital output transits from 0x(N 1) to 0xN  
(Continued)  
Document Number: 002-04696 Rev. *A  
Page 88 of 105  
MB95650L Series  
(Continued)  
Zero transition error  
Full-scale transition error  
0x004  
Ideal characteristic  
Actual conversion  
characteristic  
0xFFF  
0xFFE  
0xFFD  
0xFFC  
Actual conversion  
characteristic  
0x003  
0x002  
0x001  
VFST  
(measurement  
value)  
Actual conversion  
Ideal  
characteristic  
characteristic  
Actual conversion  
characteristic  
V0T (measurement value)  
Analog input  
VSS  
VCC  
VSS  
Analog input  
VCC  
Linearity error  
Differential linearity error  
Ideal characteristic  
Actual conversion  
characteristic  
0xFFF  
0xFFE  
0xFFD  
0x(N+1)  
0xN  
Actual conversion  
characteristic  
{1 LSB × N + V0T}  
V(N+1)T  
VFST  
(measurement  
value)  
VNT  
0x004  
0x003  
0x002  
0x001  
VNT  
0x(N1)  
0x(N2)  
Actual conversion  
characteristic  
Ideal  
Actual conversion  
characteristic  
characteristic  
V0T (measurement value)  
Analog input  
VSS  
VCC  
VSS  
Analog input  
VCC  
VNT {1 LSB × N + V0T}  
Linearity error of digital output N =  
1 LSB  
V(N+1)T VNT  
Differential linearity error of digital output N =  
: A/D converter digital output value  
1  
1 LSB  
N
VNT : Voltage at which the digital output transits from 0x(N 1) to 0xN  
V0T (ideal value) = VSS + 0.5 LSB [V]  
VFST (ideal value) = VCC 2 LSB [V]  
Document Number: 002-04696 Rev. *A  
Page 89 of 105  
MB95650L Series  
18.6 Flash Memory Program/Erase Characteristics  
Value  
Parameter  
Unit  
Remarks  
Min  
Typ  
Max  
Sector erase time  
(2 Kbyte sector)  
0.3*1  
1.6*2  
s
s
The time of writing “0x00” prior to erasure is excluded.  
The time of writing “0x00” prior to erasure is excluded.  
Sector erase time  
(32 Kbyte sector)  
0.6*1  
3.1*2  
Byte writing time  
17  
272  
µs System-level overhead is excluded.  
cycle  
Program/erase cycle  
100000  
Power supply voltage at  
program/erase  
1.8  
20*3  
10*3  
5*3  
5.5  
V
Average TA = 85 °C  
Number of program/erase cycles: 1000 or below  
Flash memory data  
retention time  
Average TA = 85 °C  
Number of program/erase cycles: 1001 to 10000 inclusive  
year  
Average TA = 85 °C  
Number of program/erase cycles: 10001 or above  
*1: VCC = 5.5 V, TA = 25 °C, 0 cycle  
*2: VCC = 1.8 V, TA = 85 °C, 100000 cycles  
*3: These values were converted from the result of a technology reliability assessment. (These values were converted from the result  
of a high temperature accelerated test using the Arrhenius equation with the average temperature being 85 °C.)  
Document Number: 002-04696 Rev. *A  
Page 90 of 105  
MB95650L Series  
19. Sample Characteristics  
Power supply current temperature characteristics  
ICC VCC  
ICC TA  
TA  25 C, FMP 2, 4, 8, 10, 16 MHz (divided by 2)  
VCC 3.3V, FMP 2, 4, 8, 10, 16 MHz (divided by 2)  
Main clock mode with the external clock operating  
Main clock mode with the external clock operating  
10  
10  
FMP = 16 MHz  
FMP = 10 MHz  
FMP = 8 MHz  
FMP = 16 MHz  
FMP = 10 MHz  
FMP = 8 MHz  
FMP = 4 MHz  
FMP = 2 MHz  
FMP = 4 MHz  
FMP = 2 MHz  
8
6
4
2
0
8
6
4
2
0
1
2
3
4
5
6
7
50  
0
+50  
+100  
+150  
VCC[V]  
TA[°C]  
ICCS VCC  
ICCS TA  
TA  25 C, FMP 2, 4, 8, 10, 16 MHz (divided by 2)  
VCC 3.3 V, FMP 2, 4, 8, 10, 16 MHz (divided by 2)  
Main sleep mode with the external clock operating  
Main sleep mode with the external clock operating  
4
4
FMP = 16 MHz  
FMP = 10 MHz  
FMP = 8 MHz  
FMP = 4 MHz  
FMP = 16 MHz  
FMP = 10 MHz  
FMP = 8 MHz  
FMP = 4 MHz  
FMP = 2 MHz  
FMP = 2 MHz  
3
3
2
1
0
2
1
0
1
2
3
4
5
6
7
50  
0
+50  
+100  
+150  
VCC[V]  
TA[°C]  
ICCL VCC  
ICCL TA  
TA  25 C, FMPL 16 kHz (divided by 2)  
VCC 3.3 V, FMPL 16 kHz (divided by 2)  
Subclock mode with the external clock operating  
Subclock mode with the external clock operating  
140  
120  
100  
80  
140  
120  
100  
80  
60  
60  
40  
40  
20  
20  
0
0
1
2
3
4
5
6
7
50  
0
+50  
+100  
+150  
VCC[V]  
TA[°C]  
(Continued)  
Document Number: 002-04696 Rev. *A  
Page 91 of 105  
MB95650L Series  
ICCLS VCC  
ICCLS TA  
VCC 3.3 V, FMPL 16 kHz (divided by 2)  
Subsleep mode with the external clock operating  
TA  25 C, FMPL 16 kHz (divided by 2)  
Subsleep mode with the external clock operating  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
1
2
3
4
5
6
7
50  
0
+50  
+100  
+150  
VCC[V]  
TA[°C]  
ICCT VCC  
ICCT TA  
TA  25 C, FMPL 16 kHz (divided by 2)  
VCC 3.3 V, FMPL 16 kHz (divided by 2)  
Watch mode with the external clock operating  
Watch mode with the external clock operating  
5
4
3
2
1
0
5
4
3
2
1
0
1
2
3
4
5
6
7
50  
0
+50  
+100  
+150  
VCC[V]  
TA[°C]  
ICCTS VCC  
ICCTS TA  
TA  25 C, FMP 2, 4, 8, 10, 16 MHz (divided by 2)  
VCC 3.3 V, FMP 2, 4, 8, 10, 16 MHz (divided by 2)  
Time-base timer mode with the external clock operating  
Time-base timer mode with the external clock operating  
600  
600  
FMP = 16 MHz  
FMP = 10 MHz  
FMP = 16 MHz  
FMP = 10 MHz  
FMP = 8 MHz  
FMP = 4 MHz  
FMP = 8 MHz  
FMP = 4 MHz  
500  
500  
FMP = 2 MHz  
FMP = 2 MHz  
400  
400  
300  
200  
100  
0
300  
200  
100  
0
1
2
3
4
5
6
7
50  
0
+50  
+100  
+150  
VCC[V]  
TA[°C]  
Document Number: 002-04696 Rev. *A  
Page 92 of 105  
MB95650L Series  
ICCH VCC  
ICCH TA  
TA  25 C, FMPL (stop)  
VCC 3.3 V, FMPL (stop)  
Substop mode with the external clock stopping  
Substop mode with the external clock stopping  
5
4
3
2
1
0
5
4
3
2
1
0
1
2
3
4
5
6
7
50  
0
+50  
+100  
+150  
VCC[V]  
TA[°C]  
ICCMCR VCC  
ICCMCR TA  
TA  25 C, FMP 4 MHz (no division)  
VCC 3.3 V, FMP 4 MHz (no division)  
Main CR clock mode  
Main CR clock mode  
5
4
3
2
1
0
5
4
3
2
1
0
1
2
3
4
5
6
7
50  
0
+50  
+100  
+150  
VCC[V]  
TA[°C]  
ICCMCRPLL VCC  
ICCMCRPLL TA  
VCC 3.3 V, FMP 16 MHz (PLL multiplication rate: 4)  
TA  25 C, FMP 16 MHz (PLL multiplication rate: 4)  
Main CR PLL clock mode  
Main CR PLL clock mode  
10  
10  
8
8
6
6
4
4
2
2
0
0
1
2
3
4
5
6
7
50  
0
+50  
+100  
+150  
VCC[V]  
TA[°C]  
(Continued)  
Document Number: 002-04696 Rev. *A  
Page 93 of 105  
MB95650L Series  
(Continued)  
ICCMPLL VCC  
ICCMPLL TA  
TA  25 C, FMP 16 MHz (PLL multiplication rate: 4)  
VCC 3.3 V, FMP 16 MHz (PLL multiplication rate: 4)  
Main PLL clock mode  
Main PLL clock mode  
10  
10  
8
8
6
6
4
4
2
2
0
0
1
2
3
4
5
6
7
50  
0
+50  
+100  
+150  
VCC[V]  
TA[°C]  
ICCSCR VCC  
ICCSCR TA  
VCC 3.3 V, FMPL 50 kHz (divided by 2)  
TA  25 C, FMPL 50 kHz (divided by 2)  
Sub-CR clock mode  
Sub-CR clock mode  
200  
150  
100  
50  
200  
150  
100  
50  
0
0
1
2
3
4
5
6
7
50  
0
+50  
+100  
+150  
VCC[V]  
TA[°C]  
Document Number: 002-04696 Rev. *A  
Page 94 of 105  
MB95650L Series  
Input voltage characteristics  
VIHI1 VCC and VILI VCC  
VIHI2 VCC and VILI VCC  
TA  25 C  
TA  25 C  
5
4
3
2
1
0
5
4
3
2
1
0
VIHI1  
VILI  
VIHI2  
VILI  
1
2
3
4
5
6
1
2
3
4
5
6
VCC[V]  
VCC[V]  
VIHS VCC and VILS VCC  
TA  25 C  
VIHM VCC and VILM VCC  
TA  25 C  
5
4
3
2
1
0
5
4
3
2
1
0
VIHS  
VILS  
VIHM  
VILM  
1
2
3
4
5
6
1
2
3
4
5
6
VCC[V]  
VCC[V]  
Document Number: 002-04696 Rev. *A  
Page 95 of 105  
MB95650L Series  
Output voltage characteristics  
(VCC VOH1) IOH  
(VCC VOH2) IOH  
TA  25 C  
TA  25 C  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  
IOH[mA]  
IOH[mA]  
VCC = 1.8 V  
VCC = 2.0 V  
VCC = 2.4 V  
VCC = 2.7 V  
VCC = 3.0 V  
VCC = 3.6 V  
VCC = 4.0 V  
VCC = 4.5 V  
VCC = 5.0 V  
VCC = 5.5 V  
VCC = 1.8 V  
VCC = 2.0 V  
VCC = 2.4 V  
VCC = 2.7 V  
VCC = 3.0 V  
VCC = 3.6 V  
VCC = 4.0 V  
VCC = 4.5 V  
VCC = 5.0 V  
VCC = 5.5 V  
VOL1 IOL  
VOL2 IOL  
TA  25 C  
TA  25 C  
1.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
IOL[mA]  
IOL[mA]  
VCC = 1.8 V  
VCC = 2.0 V  
VCC = 2.4 V  
VCC = 2.7 V  
VCC = 3.0 V  
VCC = 3.6 V  
VCC = 4.0 V  
VCC = 4.5 V  
VCC = 5.0 V  
VCC = 5.5 V  
VCC = 1.8 V  
VCC = 2.0 V  
VCC = 2.4 V  
VCC = 2.7 V  
VCC = 3.0 V  
VCC = 3.6 V  
VCC = 4.0 V  
VCC = 4.5 V  
VCC = 5.0 V  
VCC = 5.5 V  
Document Number: 002-04696 Rev. *A  
Page 96 of 105  
MB95650L Series  
Pull-up characteristics  
RPULL VCC  
TA  25 C  
300  
250  
200  
150  
100  
50  
0
1
2
3
4
5
6
VCC[V]  
Document Number: 002-04696 Rev. *A  
Page 97 of 105  
MB95650L Series  
20. Mask Options  
MB95F652E  
MB95F653E  
MB95F654E  
MB95F656E  
MB95F652L  
MB95F653L  
MB95F654L  
MB95F656L  
Part number  
No.  
Selectable/Fixed  
Fixed  
Without low-voltage detection  
1
2
Low-voltage detection reset/interrupt With low-voltage detection reset/interrupt  
reset/interrupt  
Reset  
Without dedicated reset input  
With dedicated reset input  
Document Number: 002-04696 Rev. *A  
Page 98 of 105  
MB95650L Series  
21. Ordering Information  
Part number  
Package  
MB95F652EPFT-G-SNE2  
MB95F652LPFT-G-SNE2  
MB95F653EPFT-G-SNE2  
MB95F653LPFT-G-SNE2  
MB95F654EPFT-G-SNE2  
MB95F654LPFT-G-SNE2  
MB95F656EPFT-G-SNE2  
MB95F656LPFT-G-SNE2  
24-pin plastic TSSOP  
(FPT-24P-M10)  
MB95F652EPF-G-SNE2  
MB95F652LPF-G-SNE2  
MB95F653EPF-G-SNE2  
MB95F653LPF-G-SNE2  
MB95F654EPF-G-SNE2  
MB95F654LPF-G-SNE2  
MB95F656EPF-G-SNE2  
MB95F656LPF-G-SNE2  
24-pin plastic SOP  
(FPT-24P-M34)  
MB95F652EWQN-G-SNE1  
MB95F652EWQN-G-SNERE1  
MB95F652LWQN-G-SNE1  
MB95F652LWQN-G-SNERE1  
MB95F653EWQN-G-SNE1  
MB95F653EWQN-G-SNERE1  
MB95F653LWQN-G-SNE1  
MB95F653LWQN-G-SNERE1  
MB95F654EWQN-G-SNE1  
MB95F654EWQN-G-SNERE1  
MB95F654LWQN-G-SNE1  
MB95F654LWQN-G-SNERE1  
MB95F656EWQN-G-SNE1  
MB95F656EWQN-G-SNERE1  
MB95F656LWQN-G-SNE1  
MB95F656LWQN-G-SNERE1  
32-pin plastic QFN  
(LCC-32P-M19)  
Document Number: 002-04696 Rev. *A  
Page 99 of 105  
MB95650L Series  
22. Package Dimension  
24-pin plastic TSSOP  
Lead pitch  
0.65 mm  
4.40 mm × 7.80 mm  
Gullwing  
Package width  
package length  
×
Lead shape  
Sealing method  
Mounting height  
Weight  
Plastic mold  
1.20 mm MAX  
0.10 g  
(FPT-24P-M10)  
24-pin plastic TSSOP  
Note 1) Pins width and pins thickness include plating thickness.  
Note 2) Pins width do not include tie bar cutting remainder.  
Note 3) #: These dimensions do not include resin protrusion.  
(FPT-24P-M10)  
#
+0.06  
–0.03  
7.80 0.10(.307 .004)  
0.13  
+.002  
–.001  
.005  
24  
13  
BTM E-MARK  
#
4.40 0.10  
(.173 .004)  
INDEX  
Details of "A" part  
6.40 0.20  
(.252 .008)  
1.20(.047)  
(Mounting height)  
MAX  
0~8°  
"A"  
1
12  
+0.07  
0.65(.026)  
0.22 –0.02  
0.10(.004)  
+.003  
.008  
–.001  
0.10 0.05  
(.004 .002)  
0.60 0.15  
(Stand off)  
(.024 .006)  
0.10(.004)  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2008-2010 FUJITSU SEMICONDUCTOR LIMITED F24033S-c-1-2  
(Continued)  
Document Number: 002-04696 Rev. *A  
Page 100 of 105  
MB95650L Series  
24-pin plastic SOP  
Lead pitch  
1.27 mm  
7.50 mm × 15.34 mm  
Gullwing  
Package width ×  
package length  
Lead shape  
Lead bend  
direction  
Normal bend  
Plastic mold  
2.80 mm MAX  
0.44 g  
Sealing method  
Mounting height  
Weight  
(FPT-24P-M34)  
24-pin plastic SOP  
(FPT-24P-M34)  
Note 1) * : These dimensions do not include resin protrusion.  
*15.34 0.10(.604 .004)  
0.27 0.07  
(.011 .003)  
24  
13  
10.20 0.40  
(.402 .016)  
INDEX ø1.20 0.1 DEP0.20 +00..0150  
ø.047 .004 DEP.008 +..000024  
7.50 0.10  
(.295 .004)  
Details of "A" part  
+0.20  
2.60  
0.25  
+.008  
.102 .010  
0.25(.010)  
0~8°  
1
12  
"A"  
1.27(.050)  
0.42 0.07  
(.017 .003)  
M
0.25(.010)  
0.60 0.20  
(.024 .008)  
0.15 +00..1105  
+.006  
.006  
.004  
0.10(.004)  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2009-2010 FUJITSU SEMICONDUCTOR LIMITED F24034S-c-1-2  
(Continued)  
Document Number: 002-04696 Rev. *A  
Page 101 of 105  
MB95650L Series  
(Continued)  
32-pin plastic QFN  
Lead pitch  
0.50 mm  
5.00 mm × 5.00 mm  
Plastic mold  
Package width ×  
package length  
Sealing method  
Mounting height  
Weight  
0.80 mm MAX  
0.06 g  
(LCC-32P-M19)  
32-pin plastic QFN  
(LCC-32P-M19)  
3.50 0.10  
(.138 .004)  
5.00 0.10  
(.197 .004)  
3.50 0.10  
(.138 .004)  
5.00 0.10  
(.197 .004)  
+0.05  
0.25 0.07  
+.002  
INDEX AREA  
(.010  
)
.003  
(3-R0.20)  
((3-R.008))  
0.40 0.05  
(.016 .002)  
1PIN CORNER  
0.50(.020)  
(TYP)  
(C0.30(C.012))  
0.75 0.05  
(.030 .002)  
+0.03  
0.02 0.02  
+.001  
(0.20(.008))  
(.001  
)
.001  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2009-2010 FUJITSU SEMICONDUCTOR LIMITED C32071S-c-1-2  
Document Number: 002-04696 Rev. *A  
Page 102 of 105  
MB95650L Series  
23. Major Changes  
Spansion Publication Number: DS702–00016–3v0-E  
Page  
Section  
Details  
Corrected the following statement.  
The bypass capacitor for the VCC pin must have a capacitance  
Pin Connection  
• C pin  
larger than CS.  
19  
The decoupling capacitor for the VCC pin must have a capacitance  
equal to or larger than the capacitance of CS.  
Electrical Characteristics  
4. AC Characteristics  
(1) Clock Timing  
Corrected the pin name of the parameter “Input clock rising time  
and falling time”.  
X0 X0, X0A  
64  
NOTE: Please see “Document History” about later revised information.  
Document Number: 002-04696 Rev. *A  
Page 103 of 105  
MB95650L Series  
Document History  
Document Title: MB95650L Series New 8FX 8-bit Microcontrollers  
Document Number: 002-04696  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
**  
AKIH  
06/14/2013 Migrated to Cypress and assigned document number 002-04696.  
No change to document contents or format.  
*A  
5216808  
AKIH  
04/12/2016 Updated to Cypress format.  
Document Number: 002-04696 Rev. *A  
Page 104 of 105  
MB95650L Series  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
ARM® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/powerpsoc  
cypress.com/memory  
cypress.com/psoc  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Forums | Projects | Video | Blogs | Training | Components  
Technical Support  
Lighting & Power Control  
Memory  
cypress.com/support  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/touch  
cypress.com/usb  
cypress.com/wireless  
© Cypress Semiconductor Corporation, 2012-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document,  
including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to  
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users  
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation  
of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent  
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any  
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is  
the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products  
are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or  
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the  
device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably  
expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,  
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other  
liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United  
States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 002-04696 Rev. *A  
Revised April 12, 2016  
Page 105 of 105  

相关型号:

FPT-28P-M17

SMALL OUTLINE L-LEADED PACKAGE 28 PIN PLASTIC
FUJITSU

FPT-64P-M09

LOW PROFILE QUAD FLAT PACKAGE 64 PIN PLASTIC
FUJITSU

FPT-64P-M23

F2MC-8FX MB95160MA Series
FUJITSU

FPT-64P-M24

F2MC-8FX MB95160MA Series
FUJITSU

FPT-8P-M01

SMALL OUTLINE L-LEADED PACKAGE
FUJITSU

FPT-8P-M02

SMALL OUTLINE L-LEADED PACKAGE 8 PIN PLASTIC
FUJITSU

FPT-MOBILE

Provides the following
GAMEWELL-FCI

FPT-XDIM

Provides the following
GAMEWELL-FCI

FPT-XSTAND

Provides the following
GAMEWELL-FCI

FPT0125

Optoelectronic
ETC

FPT0136

Optoelectronic
ETC

FPT100

General Purpose Silicon Planar Phototransistor
FAIRCHILD