GVT71512C18TA-5I [CYPRESS]

Cache SRAM, 512KX18, 3.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100;
GVT71512C18TA-5I
型号: GVT71512C18TA-5I
厂家: CYPRESS    CYPRESS
描述:

Cache SRAM, 512KX18, 3.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100

时钟 静态存储器 内存集成电路
文件: 总29页 (文件大小:424K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1366A/GVT71256C36  
CY7C1367A/GVT71512C18  
256K x 36/512K x 18 Synchronous  
Pipelined SRAM  
The  
CY7C1366A/GVT71256C36  
and  
CY7C1367A/  
Features  
GVT71512C18 SRAMs integrate 262,144 x 36 and 524,288 x  
18 SRAM cells with advanced synchronous peripheral circuitry  
• Fast access times: 2.5 ns, 3.0 ns, and 3.5 ns  
and  
a 2-bit counter for internal burst operation. All  
• Fast clock speed: 225 MHz, 200 MHz, 166 MHz, and 150  
MHz  
• Fast OE access times: 2.5 ns, 3.0 ns, and 3.5 ns  
• Optimal for performance (two cycle chip deselect,  
depth expansion without wait state)  
• 3.3V –5% and +10% power supply  
• 3.3V or 2.5V I/O supply  
synchronous inputs are gated by registers controlled by a  
positive-edge-triggered Clock Input (CLK). The synchronous  
inputs include all addresses, all data inputs, address-pipelining  
Chip Enable (CE), depth-expansion Chip Enables (CE2 and  
CE3), Burst Control Inputs (ADSC, ADSP, and ADV), Write  
Enables (BWa, BWb, BWc, BWd, and BWE), and Global Write  
(GW). However, the CE3 Chip Enable input is only available  
for the TA(GVTI)/A(CY) package version.  
• 5V tolerant inputs except I/Os  
• Clamp diodes to VSS at all inputs and outputs  
• Common data inputs and data outputs  
• Byte Write Enable and Global Write control  
Asynchronous inputs include the Output Enable (OE) and  
Burst Mode Control (MODE). The data outputs (Q), enabled  
by OE, are also asynchronous.  
• Multiple chip enables for depth expansion:  
three chip enables for TA(GVTI)/A(CY) package version  
and two chip enables for B(GVTI)/BG(CY) and  
T(GVTI)/AJ(CY) package versions  
Addresses and chip enables are registered with either  
Address Status Processor (ADSP) or Address Status  
Controller (ADSC) input pins. Subsequent burst addresses  
can be internally generated as controlled by the Burst Advance  
Pin (ADV).  
• Address pipeline capability  
• Address, data and control registers  
• Internally self-timed Write Cycle  
• Burst control pins (interleaved or linear burst  
sequence)  
• Automatic power-down feature available using ZZ  
mode or CE select.  
• JTAG boundary scan for B/BG and T/AJ package  
version  
Address, data inputs, and write controls are registered on-chip  
to initiate a self-timed WRITE cycle. WRITE cycles can be one  
to four bytes wide, as controlled by the write control inputs.  
Individual byte write allows an individual byte to be written.  
BWa controls DQa. BWb controls DQb. BWc controls DQc.  
BWd controls DQd. BWa, BWb, BWc, and BWd can be active  
only with BWE being LOW. GW being LOW causes all bytes  
to be written. The x18 version only has 18 data inputs/outputs  
(DQa and DQb) along with BWa and BWb (no BWc, BWd,  
DQc, and DQd).  
• Low profile 119-bump, 14-mm x 22-mm PBGA (Ball Grid  
Array) and 100-pin TQFP packages  
For the B(GVTI)/BG(CY) and T(GVTI)/AJ(CY) package  
versions, four pins are used to implement JTAG test capabil-  
ities: Test Mode Select (TMS), Test Data-In (TDI), Test Clock  
(TCK), and Test Data-Out (TDO). The JTAG circuitry is used  
to serially shift data to and from the device. JTAG inputs use  
LVTTL/LVCMOS levels to shift data during this testing mode  
of operation. The TA package version does not offer the JTAG  
capability.  
Functional Description  
The Cypress Synchronous Burst SRAM family employs  
high-speed, low power CMOS designs using advanced  
triple-layer polysilicon, double-layer metal technology. Each  
memory cell consists of four transistors and two high valued  
resistors.  
The  
CY7C1366A/GVT71256C36  
and  
CY7C1367A/  
GVT71512C18 operate from a +3.3V power supply. All inputs  
and outputs are LVTTL compatible.  
Selection Guide  
7C1366A-225/  
71256C36-4.4  
7C1367A-225/  
71512C18-4.4  
7C1366A-200/  
71256C36-5  
7C1367A-200/  
71512C18-5  
7C1366A-166/  
71256C36-6  
7C1367A-166/  
71512C18-6  
7C1366A-150/  
71256C36-6.7  
7C1367A-150/  
71512C18-6.7  
Unit  
ns  
Maximum Access Time  
2.5  
570  
10  
3.0  
510  
10  
3.5  
425  
10  
3.5  
380  
10  
Maximum Operating Current  
Maximum CMOS Standby Current  
mA  
mA  
Cypress Semiconductor Corporation  
Document #: 38-05264 Rev. *A  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Revised March 17, 2003  
CY7C1366A/GVT71256C36  
CY7C1367A/GVT71512C18  
Functional Block Diagram—256K x 36[1, 2]  
B Y TE  
a
b
c
d
W R ITE  
BW  
a
D
Q
BWE  
CLK  
B Y TE  
W RITE  
BW
b
D
Q
GW  
B Y TE  
W R ITE  
BW  
c
D
Q
B Y TE  
W RITE  
BW  
d
D
Q
CE  
EN A B LE  
1
D
Q
D
Q
CE  
2
CE  
3
OE  
ZZ
Pow er D ow n Logic  
Input  
R egister  
ADSP  
16  
A
A ddress  
R egister  
O U TPU T  
R EG ISTER  
ADSC  
DQa,DQb,  
DQc,DQd  
C LR  
D
Q
ADV  
B inary  
C ounter  
A0-A1  
&
Logic  
MODE  
Functional Block Diagram—512K x 18[1]  
BYTE b  
WRITE  
BW  
b
D
D
Q
BWE  
CLK  
BYTE a  
WRITE  
BW  
a
Q
GW  
ENABLE  
CE  
1
CE  
D
Q
D
Q
2
CE  
3
ZZ  
Power Down Logic  
OE  
ADSP  
Input  
Register  
17  
A
Address  
Register  
OUTPUT  
REGISTER  
ADSC  
DQa, DQb,  
CLR  
D
Q
ADV  
Binary  
Counter  
& Logic  
A0-A1  
MODE  
Notes:  
1. The Functional Block Diagram illustrates simplified device operation. See the Truth Table, pin descriptions, and timing diagrams for detailed information.  
2. CE3 is for the TA version only.  
Document #: 38-05264 Rev. *A  
Page 2 of 29  
CY7C1366A/GVT71256C36  
CY7C1367A/GVT71512C18  
Pin Configurations  
CY7C1366A/GVT71256C36  
256Kx 36 100-pin TQFP  
Top View  
DQc  
DQc  
DQc  
DQc  
1
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQc  
2
DQc  
3
4
5
6
7
8
9
V
CCQ  
V
V
V
CCQ  
V
CCQ  
CCQ  
V
V
SS  
SS  
V
SS  
SS  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQc  
V
V
SS  
V
SS  
V
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
SS  
SS  
V
V
DQc  
DQc  
NC  
V
CCQ  
V
CCQ  
V
CCQ  
CCQ  
DQc  
DQc  
NC  
DQb  
DQb  
DQb  
DQb  
V
V
SS  
SS  
V
CC  
NC  
CC  
NC  
NC  
100-pin TQFP  
NC  
V
V
100-pin TQFP  
TA Package Version  
CC  
CC  
V
V
SS  
SS  
ZZ  
DQa  
DQa  
17  
64  
ZZ  
DQa  
DQd  
DQd  
V
CCQ  
DQd  
DQd  
T Package Version  
18  
19  
20  
21  
22  
23  
24  
25  
26  
63  
62  
61  
60  
59  
58  
57  
56  
55  
DQa  
V
V
V
CCQ  
CCQ  
CCQ  
V
V
SS  
V
SS  
V
SS  
SS  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQd  
V
V
SS  
V
SS  
V
SS  
SS  
V
V
CCQ  
DQd  
DQd  
DQd  
V
CCQ  
V
27  
28  
29  
30  
54  
53  
52  
51  
CCQ  
CCQ  
DQd  
DQd  
DQd  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
CY7C1367A/GVT71512C18  
512K x 18 100- pin TQFP  
Top View  
NC  
1
A
NC  
80  
NC  
A
1
80  
79  
NC  
NC  
2
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
2
3
4
NC  
NC  
NC  
V
3
4
5
6
7
8
9
78  
77  
V
CCQ  
CCQ  
V CCQ  
V SS  
V CCQ  
V SS  
NC  
V
SS  
V
SS  
5
6
76  
75  
NC  
NC  
DQb  
DQb  
NC  
NC  
NC  
DPa  
DQa  
DQa  
7
8
74  
73  
DPa  
DQa  
DQb  
DQb  
DQa  
V SS  
9
10  
72  
71  
V
SS  
V
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
SS  
V SS  
V CCQ  
DQb  
V
CCQ  
V
CCQ  
11  
12  
70  
69  
V CCQ  
DQa  
DQb  
DQb  
NC  
DQa  
DQa  
DQb  
NC  
DQa  
V SS  
NC  
13  
14  
68  
67  
V
SS  
V
CC  
100-pin TQFP  
NC  
V CC  
NC  
15  
16  
66  
65  
100-pin TQFP  
NC  
V
CC  
V CC  
ZZ  
V
SS  
TA Package Version  
ZZ  
DQa  
DQa  
V SS  
17  
18  
64  
63  
DQb  
DQb  
T Package Version  
DQb  
DQb  
DQa  
19  
20  
62  
61  
DQa  
V CCQ  
V SS  
DQa  
V
V
CCQ  
CCQ  
V CCQ  
V SS  
V
SS  
V
SS  
21  
22  
60  
59  
DQb  
DQb  
DQb  
NC  
DQa  
DQa  
NC  
DQb  
DQb  
23  
24  
58  
57  
DQa  
NC  
DQb  
NC  
NC  
NC  
25  
26  
56  
55  
V
SS  
V
SS  
V SS  
V CCQ  
NC  
NC  
NC  
V SS  
V
CCQ  
NC  
NC  
NC  
V
CCQ  
27  
28  
54  
53  
V DDQ  
NC  
NC  
NC  
NC  
NC  
NC  
29  
30  
52  
51  
Document #: 38-05264 Rev. *A  
Page 3 of 29  
CY7C1366A/GVT71256C36  
CY7C1367A/GVT71512C18  
Pin Configurations (continued)  
CY7C1366A/GVT71256C36  
256K x 36 119-ball BGA  
Top View  
256Kx36  
1
2
3
A
4
ADSP  
ADSC  
VCC  
NC  
5
6
7
A
B
C
D
E
F
VCCQ  
A
A
A
VCCQ  
NC  
NC  
NC  
CE2  
A
A
A
A
A
A
A
NC  
DQc  
DQc  
VCCQ  
DQc  
DQc  
VCCQ  
DQd  
DQd  
VCCQ  
DQd  
DQd  
NC  
DQc  
DQc  
DQc  
DQc  
DQc  
VCC  
DQd  
DQd  
DQd  
DQd  
DQd  
A
VSS  
VSS  
VSS  
BWc  
VSS  
NC  
VSS  
VSS  
VSS  
BWb  
VSS  
NC  
VSS  
BWa  
VSS  
VSS  
VSS  
NC  
A
DQb  
DQb  
DQb  
DQb  
DQb  
VCC  
DQa  
DQa  
DQa  
DQa  
DQa  
A
DQb  
DQb  
VCCQ  
DQb  
DQb  
VCCQ  
DQa  
DQa  
VCCQ  
DQa  
DQa  
NC  
CE1  
OE  
G
H
J
ADV  
GW  
VCC  
CLK  
NC  
K
L
VSS  
BWd  
VSS  
VSS  
VSS  
MODE  
A
M
N
P
R
T
BWE  
A1  
A0  
VCC  
A
NC  
NC  
NC  
ZZ  
U
VCCQ  
TMS  
TDI  
TCK  
TDO  
NC  
VCCQ  
CY7C1367A/GVT71512C18 512Kx18 119-Ball BGA  
Top View  
1
2
3
A
4
ADSP  
ADSC  
VCC  
NC  
5
6
7
A
B
C
D
E
F
VCCQ  
NC  
A
A
A
VCCQ  
NC  
CE2  
A
A
A
CE3  
A
NC  
A
A
NC  
DQb  
NC  
NC  
DQb  
NC  
DQb  
NC  
VCC  
DQb  
NC  
DQb  
NC  
DQb  
A
VSS  
VSS  
VSS  
BWb  
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
MODE  
A
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
VSS  
BWa  
VSS  
VSS  
VSS  
NC  
A
DQa  
NC  
DQa  
NC  
DQa  
VCC  
NC  
DQa  
NC  
DQa  
NC  
A
NC  
CE1  
OE  
DQa  
VCCQ  
DQa  
NC  
VCCQ  
NC  
G
H
J
ADV  
GW  
VCC  
CLK  
NC  
DQb  
VCCQ  
NC  
VCCQ  
DQa  
NC  
K
L
DQb  
VCCQ  
DQb  
NC  
M
N
P
R
T
BWE  
A1  
VCCQ  
NC  
A0  
DQa  
NC  
NC  
VCC  
NC  
NC  
A
A
ZZ  
U
VCCQ  
TMS  
TDI  
TCK  
TDO  
NC  
VCCQ  
Document #: 38-05264 Rev. *A  
Page 4 of 29  
CY7C1366A/GVT71256C36  
CY7C1367A/GVT71512C18  
256K × 36 Pin Descriptions  
X36 PBGA Pins  
X36 QFP Pins Name  
Type  
Description  
4P  
4N  
37  
36  
A0  
A1  
A
Input-  
Addresses: These inputs are registered and must meet the set  
Synchronous up and hold times around the rising edge of CLK. The burst  
countergeneratesinternaladdressesassociatedwithA0andA1,  
during burst cycle and wait cycle.  
2A, 3A, 5A, 6A, 3B, 35, 34, 33, 32,  
5B, 6B, 2C, 3C, 5C, 100, 99, 82, 81,  
6C, 2R, 6R, 3T, 4T, 44, 45, 46, 47, 48,  
5T  
49, 50  
92 (T/AJ Version)  
43 (TA/A Version)  
5L  
5G  
3G  
3L  
93  
94  
95  
96  
BWa  
Input-  
Byte Write: A byte write is LOW for a WRITE cycle and HIGH for  
BWb Synchronous a READ cycle. BWa controls DQa. BWb controls DQb. BWc  
BWc  
BWd  
controls DQc. BWd controls DQd. Data I/O are high impedance  
if either of these inputs are LOW, conditioned by BWE being  
LOW.  
4M  
4H  
4K  
87  
88  
89  
BWE  
GW  
Input-  
Write Enable: This active LOW input gates byte write operations  
Synchronous and must meet the set-up and hold times around the rising edge  
of CLK.  
Input-  
Global Write: This active LOW input allows a full 36-bit Write to  
Synchronous occur independent of the BWE and BWn lines and must meet the  
set-up and hold times around the rising edge of CLK.  
CLK  
Input-  
Clock: This signal registers the addresses, data, chip enables,  
Synchronous write control, and burst control inputs on its rising edge. All  
synchronous inputs must meet set up and hold times around the  
clock’s rising edge.  
4E  
2B  
98  
97  
CE1  
CE2  
CE3  
OE  
Input-  
Chip Enable: This active LOW input is used to enable the device  
Synchronous and to gate ADSP.  
Input-  
Synchronous device.  
Chip Enable: This active HIGH input is used to enable the  
(not available for  
PBGA)  
92 (for TA/A  
Version only)  
Input-  
Chip Enable:This activeLOWinput is used toenable the device.  
Synchronous Not available for B and T package versions.  
4F  
86  
Input  
Output Enable: This active LOW asynchronous input enables  
the data output drivers.  
4G  
83  
ADV  
Input-  
Address Advance: This active LOW input is used to control the  
Synchronous internal burst counter. A HIGH on this pin generates wait cycle  
(no address advance).  
4A  
4B  
84  
85  
ADSP  
ADSC  
Input-  
Address Status Processor: This active LOW input, along with  
Synchronous CE being LOW, causes a new external address to be registered  
and a READ cycle is initiated using the new address.  
Input-  
Address Status Controller: This active LOW input causes  
Synchronous device to be deselected or selected along with new external  
address to be registered. A Read or Write cycle is initiated  
depending upon write control inputs.  
3R  
7T  
31  
64  
MOD  
E
Input-  
Static  
Mode: This input selects the burst sequence. A LOW on this pin  
selects LinearBurst. ANC orHIGH onthis pinselects Interleaved  
Burst.  
ZZ  
Input-  
Sleep: This active HIGH input puts the device in low power  
Asynchronous consumption standby mode. For normal operation, this input has  
to be either LOW or NC (No Connect).  
(a) 6P, 7P, 7N, 6N, (a) 51, 52, 53, 56, DQa  
6M, 6L, 7L, 6K, 7K, 57, 58, 59, 62, 63 DQb  
(b) 7H, 6H, 7G, 6G, (b) 68, 69, 72, 73, DQc  
6F, 6E, 7E, 7D, 6D, 74, 75, 78, 79, 80 DQd  
(c) 2D, 1D, 1E, 2E, (c) 1, 2, 3, 6, 7, 8,  
Input/  
Output  
Data Inputs/Outputs: First Byte is DQa. Second Byte is DQb.  
Third Byte is DQc. Fourth Byte is DQd. Input data must meet  
set-up and hold times around the rising edge of CLK.  
2F, 1G, 2G, 1H, 2H,  
9, 12, 13  
(d) 1K, 2K, 1L, 2L, (d) 18, 19, 22, 23,  
2M, 1N, 2N, 1P, 2P 24, 25, 28, 29, 30  
Document #: 38-05264 Rev. *A  
Page 5 of 29  
CY7C1366A/GVT71256C36  
CY7C1367A/GVT71512C18  
256K × 36 Pin Descriptions (continued)  
X36 PBGA Pins  
X36 QFP Pins Name  
Type  
Description  
2U  
3U  
4U  
38  
39  
43  
TMS  
TDI  
TCK  
Input  
IEEE 1149.1 Test Inputs: LVTTL-level inputs. Not available for  
TA/A package version.  
for BG/B and  
T/AJ  
version  
5U  
42  
for BG/B and  
T/AJ  
TDO Output Power IEEE 1149.1 Test Output: LVTTL-level output. Not available for  
TA/A package version.  
version  
4C, 2J, 4J, 6J, 4R  
15, 41,65, 91  
VCC Power Supply Core Power Supply: +3.3V –5% and +10%  
3D, 5D, 3E, 5E, 3F, 5, 10, 17, 21, 26, VSS  
5F, 3H, 5H, 3K, 5K, 40, 55, 60, 67, 71,  
Ground  
Ground: GND.  
3M,5M,3N,5N,3P,  
5P  
76, 90  
1A, 7A, 1F, 7F, 1J, 4, 11, 20, 27, 54, VCCQ  
I/O Power Power supply for the circuitry.  
Supply  
7J, 1M, 7M, 1U, 7U  
61, 70, 77  
1B, 7B, 1C, 7C, 4D,  
3J, 5J, 4L, 1R, 5R,  
7R, 1T, 2T, 6T, 6U  
14, 16, 66  
NC  
No Connect: These signals are not internally connected. User  
can leave it floating or connect it to VCC or VSS  
.
38, 39, 42 for  
TA/A Version  
512K × 18 Pin Descriptions  
X18 PBGA Pins  
X18 QFP Pins Name  
Type  
Description  
4P  
4N  
37  
36  
A0  
A1  
A
Input-  
Addresses: These inputs are registered and must meet the  
Synchronous set-up and hold times around the rising edge of CLK. The burst  
counter generates internal addresses associated with A0 and  
A1, during burst cycle and wait cycle.  
2A, 3A, 5A, 6A, 3B, 35, 34, 33, 32,  
5B, 6B, 2C, 3C, 5C, 100, 99, 82, 81,  
6C, 2R, 6R, 2T, 3T, 80, 48, 47, 46, 45,  
5T, 6T  
44, 49, 50  
92 (T/AJ Version)  
43 (TA/A Version)  
5L  
3G  
93  
94  
BWa  
BWb  
Input-  
Byte Write Enables: A byte write enable is LOW for a WRITE  
Synchronous cycle and HIGH for a READ cycle. BWa controls DQa. BWb  
controls DQb. Data I/O are high impedance if either of these  
inputs are LOW, conditioned by BWE being LOW.  
4M  
4H  
4K  
87  
88  
89  
BWE  
GW  
Input-  
Write Enable: This active LOW input gates byte write opera-  
Synchronous tions and must meet the set up and hold times around the rising  
edge of CLK.  
Input-  
Global Write: This active LOW input allows a full 18-bit WRITE  
Synchronous to occur independent of the BWE and WEn lines and mustmeet  
the set up and hold times around the rising edge of CLK.  
CLK  
Input-  
Clock: This signal registers the addresses, data, chip enables,  
Synchronous write control and burst control inputs on its rising edge. All  
synchronous inputsmust meet setup and holdtimes aroundthe  
clock’s rising edge.  
4E  
2B  
98  
97  
CE1  
CE2  
CE3  
OE  
Input-  
Chip Enable: This active LOW input is used to enable the  
Synchronous device and to gate ADSP.  
Input-  
Synchronous device.  
Chip Enable: This active HIGH input is used to enable the  
(not available for  
PBGA)  
92 (for TA/A  
Version only)  
Input-  
Chip Enable: This active LOW input is used to enable the  
Synchronous device. Not available for B/BG and T/AJ package versions.  
4F  
86  
Input  
Output Enable: This active LOW asynchronous input enables  
the data output drivers.  
Document #: 38-05264 Rev. *A  
Page 6 of 29  
CY7C1366A/GVT71256C36  
CY7C1367A/GVT71512C18  
512K × 18 Pin Descriptions (continued)  
X18 PBGA Pins  
X18 QFP Pins Name  
Type  
Description  
4G  
83  
84  
85  
ADV  
ADSP  
ADSC  
Input-  
Address Advance: This active LOW input is used to control  
Synchronous the internal burst counter. A HIGH on this pin generates wait  
cycle (no address advance).  
4A  
4B  
Input-  
Address Status Processor: This active LOW input, along with  
Synchronous CE being LOW, causes anew externaladdress tobe registered  
and a Read cycle is initiated using the new address.  
Input-  
Address Status Controller: This active LOW input causes  
Synchronous device to be deselected or selected along with new external  
address to be registered. A Read or Write cycle is initiated  
depending upon write control inputs.  
3R  
7T  
31  
64  
MODE  
ZZ  
Input-  
Static  
Mode: This input selects the burst sequence. A LOW on this  
pin selects Linear Burst. A NC or HIGH on this pin selects Inter-  
linear Burst.  
Input-  
Sleep: This active HIGH input puts the device in low power  
Asynchronous consumption standby mode. For normal operation, this input  
has to be either LOW or NC (No Connect).  
(a) 6D, 7E, 6F, 7G, (a) 58, 59, 62, 63, DQa  
6H, 7K, 6L, 6N, 7P 68, 69, 72, 73, 74 DQb  
(b) 1D, 2E, 2G, 1H, (b) 8, 9, 12, 13,  
Input/  
Output  
Data Inputs/Outputs: Low Byte is DQa. High Byte is DQb.  
Input data must meet set up and hold times around the rising  
edge of CLK.  
2K, 1L, 2M, 1N, 2P 18, 19, 22, 23, 24  
2U  
3U  
4U  
38  
39  
43  
TMS  
TDI  
TCK  
Input  
IEEE 1149.1 Test Inputs: LVTTL-level inputs. Not available for  
TA/A package version.  
for B/BG and  
T/AJ  
version  
5U  
42  
for B/BG and  
T/AJ  
TDO Power Output IEEE 1149.1 Test Output: LVTTL-level output. Not available  
for TA/A package version.  
version  
4C, 2J, 4J, 6J, 4R  
15, 41,65, 91  
VCC  
VSS  
Power Supply Core Power Supply: +3.3V –5% and +10%  
3D, 5D, 3E, 5E, 3F, 5, 10, 17, 21, 26,  
5F, 5G, 3H, 5H, 3K, 40, 55, 60, 67, 71,  
Ground  
Ground: GND.  
5K,3L,3M, 5M,3N,  
5N, 3P, 5P  
76, 90  
1A, 7A, 1F, 7F, 1J, 4, 11, 20, 27, 54, VCCQ  
7J, 1M, 7M, 1U, 7U 61, 70, 77  
I/O Power  
Supply  
Output Buffer Supply: +2.5V or +3.3V.  
1B, 7B, 1C, 7C, 2D, 1-3, 6, 7, 14, 16,  
4D, 7D, 1E, 6E, 2F, 25, 28-30, 51-53,  
1G, 6G, 2H, 7H, 3J, 56, 57, 66, 75, 78,  
NC  
-
No Connect: These signals are not internally connected. User  
can leave it floating or connect it to VCC or VSS  
.
5J, 1K, 6K, 2L, 4L,  
7L, 6M, 2N, 7N, 1P,  
79, 80, 95, 96  
6P, 1R, 5R, 7R, 1T, 38, 39, 42 for TA  
4T, 6U Version  
Document #: 38-05264 Rev. *A  
Page 7 of 29  
CY7C1366A/GVT71256C36  
CY7C1367A/GVT71512C18  
loaded into the address register and the address  
advancement logic while being delivered to the RAM core. The  
write signals (GW, BWE, and BWx) and ADV inputs are  
ignored during this first cycle.  
Introduction  
Functional Overview  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock.  
Maximum access delay from the clock rise (tCO) is 4.5 ns  
(150-MHz device).  
ADSP triggered write accesses require two clock cycles to  
complete. If GW is asserted LOW on the second clock rise, the  
data presented to the DQx inputs is written into the corre-  
sponding address location in the RAM core. If GW is HIGH,  
then the write operation is controlled by BWE and BWx  
signals. The CY7C1366/CY7C1367A provides byte write  
capability that is described in the Write Cycle Description table.  
Asserting the Byte Write Enable input (BWE) with the selected  
Byte Write (BWa,b,c,d for CY7C1366 and BWa,b for  
CY7C1367A) input will selectively write to only the desired  
bytes. Bytes not selected during a byte write operation will  
remain unaltered. A synchronous self-timed write mechanism  
has been provided to simplify the write operations.  
The CY7C1366A/CY7C1367A supports secondary cache in  
systems utilizing either a linear or interleaved burst sequence.  
The interleaved burst order supports Pentium® and i486  
processors. The linear burst sequence is suited for processors  
that utilize a linear burst sequence. The burst order is user  
selectable, and is determined by sampling the MODE input.  
Accesses can be initiated with either the Processor Address  
Strobe (ADSP) or the Controller Address Strobe (ADSC).  
Address advancement through the burst sequence is  
controlled by the ADV input. A two-bit on-chip wraparound  
burst counter captures the first address in a burst sequence  
and automatically increments the address for the rest of the  
burst access.  
Because the CY7C1366/CY7C1367A is a common I/O device,  
the Output Enable (OE) must be deasserted HIGH before  
presenting data to the DQ inputs. Doing so will three-state the  
output drivers. As a safety precaution, DQ are automatically  
three-stated whenever a write cycle is detected, regardless of  
the state of OE.  
Byte write operations are qualified with the Byte Write Enable  
(BWE) and Byte Write Select (BWa,b,c,d for 1366B and BWa,b  
for 1367B) inputs. A Global Write Enable (GW) overrides all  
byte write inputs and writes data to all four bytes. All writes are  
simplified with on-chip synchronous self-timed write circuitry.  
Single Write Accesses Initiated by ADSC  
ADSC write accesses are initiated when the following condi-  
tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is  
deasserted HIGH, (3) chip select is asserted active, and  
(4) the appropriate combination of the write inputs (GW, BWE,  
and BWx) are asserted active to conduct a write to the desired  
byte(s). ADSC triggered write accesses require a single clock  
cycle to complete. The address presented to A[17:0] is loaded  
into the address register and the address advancement logic  
while being delivered to the RAM core. The ADV input is  
ignored during this cycle. If a global write is conducted, the  
data presented to the DQ[x:0] is written into the corresponding  
address location in the RAM core. If a byte write is conducted,  
only the selected bytes are written. Bytes not selected during  
a byte write operation will remain unaltered. A synchronous  
self-timed write mechanism has been provided to simplify the  
write operations.  
Synchronous Chip Selects (CE1, CE2, CE3 for TQFP / CE1 for  
BGA) and an asynchronous Output Enable (OE) provide for  
easy bank selection and output three-state control. ADSP is  
ignored if CE1 is HIGH.  
Single Read Accesses  
This access is initiated when the following conditions are  
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW,  
(2) chip selects are all asserted active, and (3) the write signals  
(GW, BWE) are all deasserted HIGH. ADSP is ignored if CE1  
is HIGH. The address presented to the address inputs is  
stored into the address advancement logic and the Address  
Register while being presented to the memory core. The corre-  
sponding data is allowed to propagate to the input of the  
Output Registers. At the rising edge of the next clock the data  
is allowed to propagate through the output register and onto  
the data bus within 4.5 ns (150-MHz device) if OE is active  
LOW. The only exception occurs when the SRAM is emerging  
from a deselected state to a selected state, its outputs are  
always three-stated during the first cycle of the access. After  
the first cycle of the access, the outputs are controlled by the  
OE signal. Consecutive single read cycles are supported.  
Because the CY7C1366/CY7C1367B is a common I/O device,  
the Output Enable (OE) must be deasserted HIGH before  
presenting data to the DQ[x:0] inputs. Doing so will three-state  
the output drivers. As a safety precaution, DQ[x:0] are automat-  
ically three-stated whenever a write cycle is detected,  
regardless of the state of OE.  
Burst Sequences  
The CY7C1366B/CY7C1367B are double-cycle deselect  
parts. Once the SRAM is deselected at clock rise by the chip  
select and either ADSP or ADSC signals, its output will  
three-state immediately after the next clock rise.  
The  
CY7C1366/GVT71256C36  
provides  
a
two-bit  
wraparound counter, fed by A[1:0], that implements either an  
interleaved or linear burst sequence. The interleaved burst  
sequence is designed specifically to support Intel® Pentium  
applications. The linear burst sequence is designed to support  
processors that follow a linear burst sequence. The burst  
sequence is user selectable through the MODE input.  
Single Write Accesses Initiated by ADSP  
This access is initiated when both of the following conditions  
are satisfied at clock rise: (1) ADSP is asserted LOW, and  
(2) chip select is asserted active. The address presented is  
Document #: 38-05264 Rev. *A  
Page 8 of 29  
CY7C1366A/GVT71256C36  
CY7C1367A/GVT71512C18  
Truth Table[3, 4, 5, 6, 7, 8, 9]  
Operation  
Address Used CE CE2 CE2 ADSP ADSC ADV WRITE OE CLK  
DQ  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Q
Deselected Cycle, Power-down None  
Deselected Cycle, Power-down None  
Deselected Cycle, Power-down None  
Deselected Cycle, Power-down None  
Deselected Cycle, Power-down None  
H
L
X
X
H
X
H
L
X
L
X
L
L
X
X
L
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
L
X
X
X
X
X
L
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L
X
L
L
L
H
H
L
L
X
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
L
READ Cycle, Begin Burst  
READ Cycle, Begin Burst  
WRITE Cycle, Begin Burst  
READ Cycle, Begin Burst  
READ Cycle, Begin Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
External  
L
X
X
L
External  
External  
External  
External  
Next  
L
L
L
H
X
L
High-Z  
D
L
L
H
H
H
H
H
X
X
H
X
H
H
X
X
H
X
L
L
L
H
H
H
H
H
H
L
Q
L
L
L
H
L
High-Z  
Q
X
X
H
H
X
H
X
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
Next  
L
H
L
High-Z  
Q
Next  
L
Next  
L
H
X
X
L
High-Z  
D
WRITE Cycle, Continue Burst Next  
WRITE Cycle, Continue Burst Next  
L
L
L
D
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
Current  
H
H
H
H
H
H
H
H
H
H
L
Q
Current  
Current  
Current  
H
L
High-Z  
Q
H
X
X
High-Z  
D
WRITE Cycle, Suspend Burst Current  
WRITE Cycle, Suspend Burst Current  
L
D
Partial Truth Table for READ/WRITE[10]  
Function (1366)  
GW  
1
BWE  
BWa  
BWb  
BWc  
BWd  
Read  
Read  
1
0
0
0
0
0
0
0
0
0
X
1
1
1
1
1
1
1
1
0
X
1
1
1
1
0
0
0
0
1
X
1
1
0
0
1
1
0
0
1
X
1
1
1
0
1
0
1
0
1
1
Write Byte 0 – DQa  
Write Byte 0 – DQb  
Write Byte 1, 0  
1
1
1
Write Byte 2 – DQc  
Write Byte 2, 0  
1
1
Write Byte 2, 1  
1
Write Byte 2, 1, 0  
Write Byte 3 – DQd  
1
1
Notes:  
3. X = “Don’t Care.” H = logic HIGH. L = logic LOW.  
For X36 product, WRITE = L means [BWE + BWa*BWb*BWc*BWd]*GW equals LOW. WRITE = H means [BWE + BWa*BWb*BWc*BWd]*GW equals HIGH.  
For X18 product, WRITE = L means [BWE + BWa*BWb]*GW equals LOW. WRITE = H means [BWE + BWa*BWb]*GW equals HIGH.  
4. BWa enables write to DQa. BWb enables write to DQb. BWc enables write to DQc. BWd enables write to DQd.  
5. All inputs except OE must meet set up and hold times around the rising edge (LOW to HIGH) of CLK.  
6. Suspending burst generates wait cycle.  
7. For a write operation following a read operation, OE must be HIGH before the input data required set-up time plus High-Z time for OE and staying HIGH  
throughout the input data hold time.  
8. This device contains circuitry that will ensure the outputs will be in High-Z during power-up.  
9. ADSP LOW along with chip being selected always initiates a Read cycle at the L-H edge of CLK. A WRITE cycle can be performed by setting WRITE LOW  
for the CLK L-H edge of the subsequent wait cycle. Refer to Write timing diagram for clarification.  
10. For the X18 product, There are only BWa and BWb.  
Document #: 38-05264 Rev. *A  
Page 9 of 29  
CY7C1366A/GVT71256C36  
CY7C1367A/GVT71512C18  
Partial Truth Table for READ/WRITE[10] (continued)  
Function (1366)  
Write Byte 3, 0  
GW  
1
BWE  
BWa  
BWb  
BWc  
BWd  
0
0
0
0
0
0
0
X
0
0
0
0
0
0
0
X
1
1
1
0
0
0
0
X
1
0
0
1
1
0
0
X
0
1
0
1
0
1
0
X
Write Byte 3, 1  
Write Byte 3, 1, 0  
Write Byte 3, 2  
Write Byte 3, 2, 0  
Write Byte 3, 2, 1  
Write All Byte  
1
1
1
1
1
1
Write All Byte  
0
Function (1367)  
GW  
1
BWE  
BWb  
BWa  
Read  
1
0
0
0
0
X
X
1
1
0
0
X
x
1
0
1
0
X
Read  
1
Write Byte 0 – DQ [7:0] and DP0  
Write Byte 0 – DQ [15:8] and DP1  
Write All Byte  
1
1
1
Write All Byte  
0
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
Clock cycles are required to enter into or exit from this “sleep”  
mode.  
While in this mode, data integrity is guarantee. Accesses  
pending when entering the “sleep” mode are not considered  
valid nor is the completion of the operation guaranteed. The  
device must be deselected prior to entering the “sleep”  
mode.CEs,ADSP, and ADSC must remain inactive for the  
duration of tZZREC after the ZZ inputs returns LOW.  
ZZ Mode Electrical Characteristics  
Parameter  
Description  
Sleep mode stand-by current  
Device operation to ZZ  
ZZ recovery time  
Test Conditions  
ZZ > VDD – 0.2V  
ZZ > VDD – 0.2V  
ZZ < 0.2V  
Min.  
Max  
10  
Unit  
mA  
ns  
IDDZZ  
tZZS  
2 tcyc  
tZZREC  
2 tcyc  
ns  
Disabling the JTAG Feature  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
It is possible to use this device without using the JTAG feature.  
To disable the TAP controller without interfering with normal  
operation of the device, TCK should be tied LOW (VSS) to  
prevent clocking the device. TDI and TMS are internally pulled  
up and may be unconnected. They may alternately be pulled  
up to VCC through a resistor. TDO should be left unconnected.  
Upon power-up the device will come up in a reset state which  
will not interfere with the operation of the device.  
Overview  
This device incorporates a serial boundary scan access port  
(TAP). This port is designed to operate in a manner consistent  
with IEEE Standard 1149.1-1990 (commonly referred to as  
JTAG), but does not implement all of the functions required for  
IEEE 1149.1 compliance. Certain functions have been  
modified or eliminated because their implementation places  
extra delays in the critical speed path of the device. Never-  
theless, the device supports the standard TAP controller archi-  
tecture (the TAP controller is the state machine that controls  
the TAPs operation) and can be expected to function in a  
manner that does not conflict with the operation of devices with  
IEEE Standard 1149.1-compliant TAPs. The TAP operates  
using LVTTL/ LVCMOS logic level signaling.  
Test Access Port (TAP)  
TCK – Test Clock (INPUT)  
Clocks all TAP events. All inputs are captured on the rising  
edge of TCK and all outputs propagate from the falling edge  
of TCK.  
Document #: 38-05264 Rev. *A  
Page 10 of 29  
CY7C1366A/GVT71256C36  
CY7C1367A/GVT71512C18  
TMS – Test Mode Select (INPUT)  
Bypass Register  
The TMS input is sampled on the rising edge of TCK. This is  
the command input for the TAP controller state machine. It is  
allowable to leave this pin unconnected if the TAP is not used.  
The pin is pulled up internally, resulting in a logic HIGH level.  
The bypass register is a single-bit register that can be placed  
between TDI and TDO. It allows serial test data to be passed  
through the device TAP to another device in the scan chain  
with minimum delay. The bypass register is set LOW (VSS  
)
when the BYPASS instruction is executed.  
TDI – Test Data In (INPUT)  
Boundary Scan Register  
The TDI input is sampled on the rising edge of TCK. This is the  
input side of the serial registers placed between TDI and TDO.  
The register placed between TDI and TDO is determined by  
the state of the TAP controller state machine and the  
instruction that is currently loaded in the TAP instruction  
register see Figure 1. It is allowable to leave this pin uncon-  
nected if it is not used in an application. The pin is pulled up  
internally, resulting in a logic HIGH level. TDI is connected to  
the Most Significant Bit (MSB) of any register (see Figure 2).  
The Boundary Scan register is connected to all the input and  
bidirectional I/O pins (not counting the TAP pins) on the device.  
This also includes a number of NC pins that are reserved for  
future needs. There are a total of 70 bits for x36 device and 51  
bits for x18 device. The boundary scan register, under the  
control of the TAP controller, is loaded with the contents of the  
device I/O ring when the controller is in Capture-DR state and  
then is placed between the TDI and TDO pins when the  
controller is moved to Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE-Z instructions can be used  
to capture the contents of the I/O ring.  
TDO – Test Data Out (OUTPUT)  
The TDO output pin is used to serially clock data-out from the  
registers. The output that is active depending on the state of  
the TAP state machine (refer to Figure 1, TAP Controller State  
Diagram). Output changes in response to the falling edge of  
TCK. This is the output side of the serial registers placed  
between TDI and TDO. TDO is connected to the Least Signif-  
icant Bit (LSB) of any register (see Figure 2).  
The Boundary Scan Order table describes the order in which  
the bits are connected. The first column defines the bit’s  
position in the boundary scan register. The MSB of the register  
is connected to TDI, and LSB is connected to TDO. The  
second column is the signal name, the third column is the  
TQFP pin number, and the fourth column is the BGA bump  
number.  
Performing a TAP Reset  
Identification (ID) Register  
The TAP circuitry does not have a reset pin (TRST, which is  
optional in the IEEE 1149.1 specification). A RESET can be  
The ID Register is a 32-bit register that is loaded with a device  
and vendor specific 32-bit code when the controller is put in  
Capture-DR state with the IDCODE command loaded in the  
instruction register. The register is then placed between the  
TDI and TDO pins when the controller is moved into Shift-DR  
state. Bit 0 in the register is the LSB and the first to reach TDO  
when shifting begins. The code is loaded from a 32-bit on-chip  
ROM. It describes various attributes of the device as described  
in the Identification Register Definitions table.  
performed for the TAP controller by forcing TMS HIGH (VCC  
)
for five rising edges of TCK and pre-loads the instruction  
register with the IDCODE command. This type of reset does  
not affect the operation of the system logic. The reset affects  
test logic only.  
At power-up, the TAP is reset internally to ensure that TDO is  
in a High-Z state.  
Test Access Port (TAP) Registers  
TAP Controller Instruction Set  
Overview  
Overview  
The various TAP registers are selected (one at a time) via the  
sequences of ones and zeros input to the TMS pin as the TCK  
is strobed. Each of the TAPs registers are serial shift registers  
that capture serial input data on the rising edge of TCK and  
push serial data out on subsequent falling edge of TCK. When  
a register is selected, it is connected between the TDI and  
TDO pins.  
There are two classes of instructions defined in the IEEE  
Standard 1149.1-1990; the standard (public) instructions and  
device specific (private) instructions. Some public instructions  
are mandatory for IEEE 1149.1 compliance. Optional public  
instructions must be implemented in prescribed ways.  
Although the TAP controller in this device follows IEEE 1149.1  
conventions, it is not IEEE 1149.1-compliant because some of  
the mandatory instructions are not fully implemented. The TAP  
on this device may be used to monitor all input and I/O pads,  
but can not be used to load address, data, or control signals  
into the device or to preload the I/O buffers. In other words, the  
device will not perform IEEE 1149.1 EXTEST, INTEST, or the  
preload portion of the SAMPLE/PRELOAD command.  
Instruction Register  
The instruction register holds the instructions that are  
executed by the TAP controller when it is moved into the run  
test/idle or the various data register states. The instructions  
are three bits long. The register can be loaded when it is  
placed between the TDI and TDO pins. The parallel outputs of  
the instruction register are automatically preloaded with the  
IDCODE instruction upon power-up or whenever the controller  
is placed in the test-logic reset state. When the TAP controller  
is in the Capture-IR state, the two least significant bits of the  
serial instruction register are loaded with a binary “01” pattern  
to allow for fault isolation of the board-level serial test data  
path.  
When the TAP controller is placed in Capture-IR state, the two  
least significant bits of the instruction register are loaded with  
01. When the controller is moved to the Shift-IR state the  
instruction is serially loaded through the TDI input (while the  
previous contents are shifted out at TDO). For all instructions,  
the TAP executes newly loaded instructions only when the  
controller is moved to Update-IR state. The TAP instruction  
sets for this device are listed in the following tables.  
Document #: 38-05264 Rev. *A  
Page 11 of 29  
CY7C1366A/GVT71256C36  
CY7C1367A/GVT71512C18  
EXTEST  
state, a snap shot of the data in the device’s input and I/O  
buffers is loaded into the boundary scan register. Because the  
device system clock(s) are independent from the TAP clock  
(TCK), it is possible for the TAP to attempt to capture the input  
and I/O ring contents while the buffers are in transition (i.e., in  
a metastable state). Although allowing the TAP to sample  
metastable inputs will not harm the device, repeatable results  
can not be expected. To guarantee that the boundary scan  
register will capture the correct value of a signal, the device  
input signals must be stabilized long enough to meet the TAP  
controller’s capture set up plus hold time (tCS plus tCH). The  
device clock input(s) need not be paused for any other TAP  
operation except capturing the input and I/O ring contents into  
the boundary scan register.  
EXTEST is an IEEE 1149.1 mandatory public instruction. It is  
to be executed whenever the instruction register is loaded with  
all 0s. EXTEST is not implemented in this device.  
The TAP controller does recognize an all-0 instruction. When  
an EXTEST instruction is loaded into the instruction register,  
the device responds as if a SAMPLE/PRELOAD instruction  
has been loaded. There is one difference between two instruc-  
tions. Unlike SAMPLE/PRELOAD instruction, EXTEST places  
the device outputs in a High-Z state.  
IDCODE  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the ID register when the controller is in  
Capture-DR mode and places the ID register between the TDI  
and TDO pins in Shift-DR mode. The IDCODE instruction is  
the default instruction loaded in the instruction upon power-up  
and at any time the TAP controller is placed in the test-logic  
reset state.  
Moving the controller to Shift-DR state then places the  
boundary scan register between the TDI and TDO pins.  
Because the PRELOAD portion of the command is not imple-  
mented in this device, moving the controller to the Update-DR  
state with the SAMPLE/PRELOAD instruction loaded in the  
instruction register has the same effect as the Pause-DR  
command.  
SAMPLE-Z  
If the High-Z instruction is loaded in the instruction register, all  
output pins are forced to a High-Z state and the boundary scan  
register is connected between TDI and TDO pins when the  
TAP controller is in a Shift-DR state.  
BYPASS  
When the BYPASS instruction is loaded in the instruction  
register and the TAP controller is in the Shift-DR state, the  
bypass register is placed between TDI and TDO. This allows  
the board level scan path to be shortened to facilitate testing  
of other devices in the scan path.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is an IEEE 1149.1-mandatory  
instruction. The PRELOAD portion of the command is not  
implemented in this device, so the device TAP controller is not  
fully IEEE 1149.1-compliant.  
Reserved  
Do not use these instructions. They are reserved for future  
use.  
When the SAMPLE/PRELOAD instruction is loaded in the  
instruction register and the TAP controller is in the Capture-DR  
Document #: 38-05264 Rev. *A  
Page 12 of 29  
CY7C1366A/GVT71256C36  
CY7C1367A/GVT71512C18  
TEST-LOGIC  
RESET  
1
0
0
1
1
1
REUN-TEST/  
IDLE  
SELECT  
SELECT  
DR-SCAN  
IR-SCAN  
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
EXIT1-DR  
0
1
EXIT1-IR  
0
1
0
0
PAUSE-DR  
1
PAUSE-IR  
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
1
0
0
Figure 1. TAP Controller State Diagram[11]  
Note:  
11. The 0/1 next to each state represents the value at TMS at the rising edge of TCK.  
Document #: 38-05264 Rev. *A  
Page 13 of 29  
CY7C1366A/GVT71256C36  
CY7C1367A/GVT71512C18  
0
Bypass Register  
Selection  
Circuitry  
Selection  
Circuitry  
TDO  
2
1
0
TDI  
Instruction Register  
29  
Identification Register  
31 30  
.
.
2
1
1
0
0
.
x
.
.
.
2
Boundary Scan Register[12]  
TDI  
TDI  
TAP Controller  
Figure 2. TAP Controller Block Diagram  
TAP Electrical Characteristics Over the Operating Range  
Parameter  
Description  
Test Conditions  
Min.  
2.0  
Max.  
VCC + 0.3  
0.8  
Unit  
V
VIH  
VIl  
Input High (Logic 1) Voltage[13, 14]  
Input Low (Logic 0) Voltage[13, 14]  
Input Leakage Current  
–0.3  
–5.0  
–30  
–5.0  
V
ILI  
0V < VIN < VCC  
5.0  
µA  
µA  
µA  
ILI  
TMS and TDI Input Leakage Current 0V < VIN < VCC  
30  
ILO  
Output Leakage Current  
Output disabled,  
0V < VIN < VCCQ  
5.0  
VOLC  
VOHC  
VOLT  
LVCMOS Output Low Voltage[13, 15] IOLC = 100 µA  
LVCMOS Output High Voltage[13, 15] IOHC = 100 µA  
0.2  
0.4  
V
V
V
V
VCC – 0.2  
2.4  
LVTTL Output Low Voltage[13]  
IOLT = 8.0 mA  
IOHT = 8.0 mA  
VOHT  
LVTTL Output High Voltage[13]  
Notes:  
12. X = 69 for the x36 configuration;  
X = 50 for the x18 configuration.  
13. All voltage referenced to VSS (GND).  
14. Overshoot: VIH(AC) < VCC+1.5V for t<tKHKH/2; undershoot: VIL(AC) < –0.5V for t < tKHKH/2; power-up: VIH < 3.6V and VCC < 3.135V and VCCQ < 1.4V for  
t < 200 ms. During normal operation, VCCQ must not exceed VCC. Control input signals (such as R/W, ADV/LD) may not have pulse widths less than tKHKL (min.).  
15. This parameter is sampled.  
Document #: 38-05264 Rev. *A  
Page 14 of 29  
CY7C1366A/GVT71256C36  
CY7C1367A/GVT71512C18  
TAP AC Switching Characteristics Over the Operating Range[16, 17]  
Parameter  
Clock  
tTHTH  
Description  
Min.  
Max  
Unit  
Clock Cycle Time  
Clock Frequency  
Clock HIGH Time  
Clock LOW Time  
20  
ns  
MHz  
ns  
fTF  
50  
tTHTL  
8
8
tTLTH  
ns  
Output Times  
tTLQX  
TCK LOW to TDO Unknown  
TCK LOW to TDO Valid  
TDI Valid to TCK HIGH  
TCK HIGH to TDI Invalid  
0
ns  
ns  
ns  
ns  
tTLQV  
10  
tDVTH  
5
5
tTHDX  
Set-up Times  
tMVTH  
TMS Set-up  
TDI Set-up  
5
5
5
ns  
ns  
ns  
tTDIS  
tCS  
Capture Set-up  
Hold Times  
tTHMX  
TMS Hold  
TDI Hold  
5
5
5
ns  
ns  
ns  
tTDIH  
tCH  
Capture Hold  
TAP Timing and Test Conditions  
ALL INPUT PULSES  
1.5V  
TDO  
3.0V  
50  
Z = 
50Ω  
20 pF  
0
V
SS  
Vt = 1.5V  
1.5 ns  
1.5 ns  
(b)  
(a)  
t
t
THTL  
TLTH  
t
THTH  
TEST CLOCK  
(TCK)  
t
t
MVTH  
THMX  
TEST MODE SELECT  
(TMS)  
t
t
DVTH  
THDX  
TEST DATA IN  
(TDI)  
t
TLQV  
t
TLQX  
TEST DATA OUT  
(TDO)  
Notes:  
16.  
tCS and tCH refer to the set-up and hold time requirements of latching data from the boundary scan register.  
17. Test conditions are specified using the load in TAP AC Test Conditions.  
Document #: 38-05264 Rev. *A  
Page 15 of 29  
CY7C1366A/GVT71256C36  
CY7C1367A/GVT71512C18  
Identification Register Definitions  
Instruction Field  
Revision Number (31:28)  
Device Depth (27:23)  
256K x 36  
512K x 18  
XXXX  
Description  
XXXX  
00110  
Reserved for revision number.  
00111  
Defines depth of 256K or 512K words.  
Defines width of x36 or x18 bits.  
Reserved for future use.  
Device Width (22:18)  
00100  
00011  
Reserved (17:12)  
XXXXXX  
00011100100  
1
XXXXXX  
00011100100  
1
Cypress JEDEC ID Code (11:1)  
ID Register Presence Indicator (0)  
Allows unique identification of DEVICE vendor.  
Indicates the presence of an ID register.  
Scan Register Sizes  
Register Name  
Instruction  
Bypass  
Bit Size (x36)  
Bit Size (x18)  
3
1
3
1
ID  
32  
70  
32  
51  
Boundary Scan  
Instruction Codes  
Instruction  
Code  
Description  
EXTEST  
000 Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces all  
device outputs to High-Z state. This instruction is not IEEE 1149.1-compliant.  
IDCODE  
001 Preloads ID register with vendor ID code and places it between TDI and TDO. This instruction  
does not affect device operations.  
SAMPLE-Z  
010 Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces all  
device outputs to High-Z state.  
RESERVED  
011 Do not use these instructions; they are reserved for future use.  
SAMPLE/PRELOAD  
100 Captures I/O ring contents. Places the boundary scan register between TDI and TDO. This  
instruction does not affect device operations. This instruction does not implement IEEE 1149.1  
PRELOAD function and is therefore not 1149.1-compliant.  
RESERVED  
RESERVED  
BYPASS  
101 Do not use these instructions; they are reserved for future use.  
110 Do not use these instructions; they are reserved for future use.  
111 Places the bypass register between TDI and TDO. This instruction does not affect device opera-  
tions.  
Document #: 38-05264 Rev. *A  
Page 16 of 29  
CY7C1366A/GVT71256C36  
CY7C1367A/GVT71512C18  
Boundary Scan Order (256K × 36) (continued)  
Boundary Scan Order (256K × 36)  
Bit#  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
Signal Name  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
NC  
TQFP  
1
Bump ID  
2D  
1E  
Bit#  
1
Signal Name  
A
TQFP  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
56  
57  
58  
59  
62  
63  
64  
68  
69  
72  
73  
74  
75  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
92  
93  
94  
95  
96  
97  
98  
99  
100  
Bump ID  
2R  
3T  
2
2
A
3
2F  
3
A
4T  
6
1G  
2H  
1D  
2E  
4
A
5T  
7
5
A
6R  
3B  
5B  
6P  
7N  
6M  
7L  
8
6
A
9
7
A
12  
13  
14  
18  
19  
22  
23  
24  
25  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
2G  
1H  
5R  
2K  
8
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
ZZ  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
MODE  
A
1L  
6K  
7P  
6N  
6L  
2M  
1N  
2P  
1K  
7K  
7T  
2L  
2N  
1P  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
A
6H  
7G  
6F  
3R  
2C  
3C  
5C  
6C  
4N  
4P  
7E  
6D  
7H  
6G  
6E  
7D  
6A  
5A  
4G  
4A  
4B  
4F  
A
A
A
A1  
A0  
Boundary Scan Order (512K × 18)  
A
Bit#  
1
Signal Name  
TQFP  
44  
45  
46  
47  
48  
49  
50  
58  
59  
62  
63  
64  
68  
69  
72  
Bump ID  
2R  
2T  
ADV  
ADSP  
ADSC  
OE  
A
A
2
3
A
3T  
4
A
5T  
BWE  
GW  
CLK  
A
4M  
4H  
4K  
6B  
5L  
5
A
6R  
3B  
6
A
7
A
5B  
8
DQa  
DQa  
DQa  
DQa  
ZZ  
7P  
BWa  
BWb  
BWc  
BWd  
CE2  
CE1  
A
9
6N  
6L  
5G  
3G  
3L  
10  
11  
12  
13  
14  
15  
7K  
7T  
2B  
4E  
3A  
2A  
DQa  
DQa  
DQa  
6H  
7G  
6F  
A
Document #: 38-05264 Rev. *A  
Page 17 of 29  
CY7C1366A/GVT71256C36  
CY7C1367A/GVT71512C18  
Boundary Scan Order (512K × 18) (continued)  
Bit#  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
Signal Name  
DQa  
DQa  
A
TQFP  
73  
74  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
92  
93  
94  
97  
98  
99  
100  
8
Bump ID  
7E  
6D  
6T  
A
6A  
5A  
4G  
4A  
4B  
4F  
A
ADV  
ADSP  
ADSC  
OE  
BWE  
GW  
CLK  
A
4M  
4H  
4K  
6B  
5L  
BWa  
BWb  
CE2  
CE1  
A
3G  
2B  
4E  
3A  
2A  
1D  
2E  
2G  
1H  
5R  
2K  
1L  
A
DQb  
DQb  
DQb  
DQb  
NC  
9
12  
13  
14  
18  
19  
22  
23  
24  
31  
32  
33  
34  
35  
36  
37  
DQb  
DQb  
DQb  
DQb  
DQb  
MODE  
A
2M  
1N  
2P  
3R  
2C  
3C  
5C  
6C  
4N  
4P  
A
A
A
A1  
A0  
Document #: 38-05264 Rev. *A  
Page 18 of 29  
CY7C1366A/GVT71256C36  
CY7C1367A/GVT71512C18  
Short Circuit Output Current........................................ 50 mA  
Maximum Ratings  
Static Discharge Voltage........................................... >2001V  
(per MIL-STD-883, Method 3015)  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-up Current..................................................... >200 mA  
Voltage on VCC Supply Relative to VSS ......... –0.5V to +4.6V  
VIN ................................................................... –0.5V to 5.5V  
Storage Temperature (plastic) ...................... –55°C to +150°  
Junction Temperature ..................................................+150°  
Power Dissipation .........................................................1.0W  
Operating Range  
Ambient  
Range Temperature[18]  
VCC  
VCCQ  
Com’l  
Ind’I  
0°C to +70°C  
3.3V  
–5%/+10%  
2.5V-5%/3.3V  
+10%  
–40°C to +85°C  
Electrical Characteristics Over the Operating Range  
Parameter  
VIH  
VIHD  
Description  
Input High (Logic 1) Voltage[13, 19]  
Test Conditions  
Min.  
2.0  
Max.  
Unit  
V
All Other Inputs  
3.3V I/O  
5+0.5  
2.0  
V
2.5V I/O  
1.7  
V
VIl  
Input Low (Logic 0) Voltage[13, 19]  
Input Leakage Current  
3.3V I/O  
–0.3  
–0.3  
0.8  
0.7  
5
2.5V  
ILI  
0V < VIN < VCC  
µA  
µA  
µA  
V
IL  
MODE and ZZ Input Leakage Current[20] 0V < VIN < VCC  
30  
5
ILO  
VOH  
Output Leakage Current  
Output High Voltage[13]  
Output(s) disabled, 0V < VOUT < VCC  
IOH = –5.0 mA for 3.3V I/O  
IOH = –1.0 mA for 2.5V I/O  
IOL = 8.0 mA for 3.3V I/O  
2.4  
2.0  
VOL  
Output Low Voltage[13]  
0.4  
0.4  
V
IOL = 1.0 mA for 2.5V I/O  
VCC  
Supply Voltage[13]  
I/O Supply Voltage [13]  
3.135  
3.135  
2.375  
3.465  
3.465  
2.9  
V
V
V
VCCQ  
3.3V I/O  
2.5V I/O  
–4.4  
225  
–5  
–6  
166  
–6.7  
150  
200  
Parameter  
Description  
Conditions  
Typ. MHz MHz MHz MHz Unit  
ICC  
Power Supply Current:  
Operating[21, 22, 23]  
Device selected; all inputs < VIL  
or> VIH; cycle time > tKC min.;  
VCC = Max.; outputs open  
150 570  
510  
265  
10  
425  
200  
10  
380 mA  
ISB1  
ISB2  
ISB3  
Automatic CE  
Device deselected;  
all inputs < VIL or > VIH; VCC = Max.;  
CLK cycle time > tKC Min.  
80  
5
295  
10  
160 mA  
Power-down Current—TTL  
Inputs[22,23]  
CMOS Standby[22, 23]  
TTL Standby[22, 23]  
Clock Running[22, 23]  
Device deselected; VCC = Max.;  
all inputs < VSS + 0.2 or >VCC – 0.2;  
all inputs static; CLK frequency = 0  
10  
30  
80  
mA  
mA  
mA  
Device deselected; all inputs < VIL  
or > VIH; all inputs static;  
VCC = MAX; CLK frequency = 0  
15  
40  
30  
30  
30  
ISB4  
Device deselected; VCC = Max.;  
all inputs < VSS + 0.2 or >VCC – 0.2;  
CLK cycle time > tKC Min.  
125  
110  
90  
Notes:  
18.  
TA is the case temperature.  
19. Overshoot: VIH < +6.0V for t < tKC /2.  
Undershoot:VIL < –2.0V for t < tKC /2.  
20. Output loading is specified with CL=5 pF as in AC Test Loads.  
21. ICC is given with no output current. ICC increases with greater output loading and faster cycle times.  
22. “Device Deselected” means the device is in power-down mode as defined in the truth table. “Device Selected” means the device is active.  
23. Typical values are measured at 3.3V, 25°C, and 20 ns cycle time.  
Document #: 38-05264 Rev. *A  
Page 19 of 29  
CY7C1366A/GVT71256C36  
CY7C1367A/GVT71512C18  
Capacitance[15]  
Parameter  
Description  
Input Capacitance  
Test Conditions  
Typ.  
5
Max.  
Unit  
pF  
CI  
TA = 25°C, f = 1 MHz,  
VCC = 3.3V  
7
8
CI/O  
Input/Output Capacitance (DQ)  
7
pF  
Thermal Resistance  
Parameter  
Description  
Test Conditions  
TQFP Typ.  
Unit  
ΘJA  
ΘJC  
Thermal Resistance (Junction to Ambient) Still Air, soldered on a 4.25 x 1.125 inch,  
25  
9
°C/W  
°C/W  
4-layer PCB  
Thermal Resistance (Junction to Case)  
AC Test Loads and Waveforms  
317Ω  
V
CCQ  
DQ  
ALL INPUT PULSES  
V
CCQ  
DQ  
90%  
10%  
Z =50Ω  
90%  
0
50Ω  
10%  
1.0 ns  
0V  
5 pF  
351Ω  
1.0 ns  
V = 1.5V  
t
(c)  
(a)  
(b)  
Switching Characteristics Over the Operating Range[24]  
-4.4  
225 MHz  
-5  
200 MHz  
-6  
-6.7  
150 MHz  
166 MHz  
Parameter  
Clock  
tKC  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Unit  
Clock Cycle Time  
ns  
ns  
ns  
4.4  
1.7  
1.7  
5.0  
2.0  
2.0  
6.0  
2.4  
2.4  
6.7  
2.6  
2.6  
tKH  
Clock HIGH Time  
Clock LOW Time  
tKL  
Output Times  
tKQ  
Clock to Output Valid  
VCCQ = 3.3V  
VCCQ = 2.5V  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2.8  
2.8  
3.0  
3.5  
3.5  
4.0  
3.5  
4.5  
tKQX  
Clock to Output Invalid  
1.25  
0
1.25  
0
1.25  
0
1.25  
0
tKQLZ  
tKQHZ  
tOEQ  
Clock to Output in Low-Z[15, 25, 26]  
Clock to Output in High-Z[15, 25, 26]  
OE to Output Valid[27]  
1.25  
3.0  
2.8  
2.8  
1.25  
3.0  
3.0  
3.5  
1.25  
4.0  
3.5  
4.0  
1.25  
4.0  
3.5  
4.5  
VCCQ = 3.3V  
VCCQ = 2.5V  
tOELZ  
tOEHZ  
Set-up Times  
OE to Output in Low-Z[15, 25, 26]  
OE to Output in High-Z[15, 25, 26]  
0
0
0
0
2.5  
3.0  
3.5  
3.5  
tS  
Address, Controls, and Data In[28]  
ns  
ns  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
2.0  
0.5  
Hold Times  
tH  
Address, Controls, and Data In[28]  
Notes:  
24. Test conditions as specified with the output loading as shown in part (a) of AC Test Loads unless otherwise noted.  
25. Output loading is specified with CL = 5 pF as in (a) of AC Test Loads.  
26. At any given temperature and voltage condition, tKQHZ is less than tKQLZ and tOEHZ is less than tOELZ  
27. OE is a “Don’t Care” when a byte write enable is sampled LOW.  
.
28. This is a synchronous device. All synchronous inputs must meet specified setup and hold time, except for “Don’t Care” as defined in the truth table.  
Document #: 38-05264 Rev. *A  
Page 20 of 29  
CY7C1366A/GVT71256C36  
CY7C1367A/GVT71512C18  
Typical Output Buffer Characteristics  
Output High Voltage  
OH(V)  
Pull-up Current  
Output Low Voltage  
Pull-down Current  
V
IOH(mA) Min. IOH(mA) Max.  
VOL(V)  
–0.5  
0
IOL(mA) Min. IOL(mA) Max.  
–0.5  
0
–38  
–38  
–38  
–26  
–20  
0
–105  
–105  
–105  
–83  
–70  
–30  
–10  
0
0
0
0
0
0.8  
1.25  
1.5  
2.3  
2.7  
2.9  
3.4  
0.4  
10  
20  
31  
40  
40  
40  
40  
20  
40  
63  
80  
80  
80  
80  
0.8  
1.25  
1.6  
0
2.8  
0
3.2  
0
0
3.4  
Switching Waveforms  
Read Timing[29, 30]  
tKC  
tKL  
CLK  
tKH  
tS  
ADSP  
tH  
ADSC  
tS  
A
A1  
A2  
tH  
BWx  
BWE  
GW  
tS  
CE  
tS  
ADV  
tH  
OE  
tKQ  
tKQ  
tOEQ  
tOELZ  
tKQLZ  
DQx  
Q(A1)  
Q(A2)  
Q(A2+1)  
Q(A2+2)  
Q(A2+3)  
Q(A2)  
Q(A2+1)  
SINGLE READ  
BURST READ  
Notes:  
29. CE active in this timing diagram means that all chip enables CE, CE2, and CE2 are active. CE2 is only available for TA package version.  
30. For the X18 product, there are only BWa and BWb for byte write control.  
Document #: 38-05264 Rev. *A  
Page 21 of 29  
CY7C1366A/GVT71256C36  
CY7C1367A/GVT71512C18  
Switching Waveforms (continued)  
Write Timing[29, 30]  
CLK  
tS  
ADSP  
tH  
ADSC  
tS  
A
A1  
A2  
A3  
tH  
,  
BWx  
,  
BWE  
GW  
CE  
tS  
ADV  
tH  
OE  
tOEHZ  
tKQX  
Q
D(A1)  
D(A2) D(A2+1) D(A2+1)  
D(A2+2)  
D(A2+3)  
D(A3)  
D(A3+1) D(A3+2)  
DQx  
SINGLE WRITE  
BURST WRITE  
BURST WRITE  
Document #: 38-05264 Rev. *A  
Page 22 of 29  
CY7C1366A/GVT71256C36  
CY7C1367A/GVT71512C18  
Switching Waveforms (continued)  
Read/Write Timing[29, 30]  
CLK  
tS  
ADSP  
tH  
ADSC  
tS  
A
A2  
A3  
A4  
A5  
A1  
tH  
BWx  
,  
,  
BWE  
#  
GW  
CE  
ADV
OE  
DQx  
Q(A1)  
Q(A2)  
D(A3)  
Single Write  
Q(A4)  
Q(A4+1) Q(A4+2)  
D(A5)  
D(A5+1)  
Single Reads  
Burst Read  
Burst Write  
Document #: 38-05264 Rev. *A  
Page 23 of 29  
CY7C1366A/GVT71256C36  
CY7C1367A/GVT71512C18  
Switching Waveforms (continued)  
ZZ Mode Timing [31, 32]  
CLK  
CE1  
LOW  
CE2  
HIGH  
CE3  
ZZ  
tZZS  
IDD  
IDD(active)  
tZZREC  
IDDZZ  
I/Os  
Three-state  
31. Device must be deselected when entering ZZ mode. See Cycle Descriptions Table for all possible signal conditions to deselect the device.  
32. I/Os are in three-state when exiting ZZ sleep mode.  
Document #: 38-05264 Rev. *A  
Page 24 of 29  
CY7C1366A/GVT71256C36  
CY7C1367A/GVT71512C18  
Ordering Information  
Speed  
(MHz)  
Package  
Name  
Operating  
Range  
Ordering Code  
Package Type  
225  
CY7C1366A-225AJC/  
GVT71256C36T-4.4  
A101  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack Commercial  
Commercial  
CY7C1366A-225AC/  
GVT71256C36TA-4.4  
A101  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
CY7C1366A-225BGC/  
GVT71256C36B-4.4  
BG119  
A101  
119-Lead BGA (14 x 22 x 2.4 mm)  
200  
166  
150  
225  
200  
166  
150  
CY7C1366A-200AJC/  
GVT71256C36T-5  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Lead BGA (14 x 22 x 2.4 mm)  
CY7C1366A-200AC/  
GVT71256C36TA-5  
A101  
CY7C1366A-200BGC/  
GVT71256C36B-5  
BG119  
A101  
CY7C1366A-166AJC/  
GVT71256C36T-6  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Lead BGA (14 x 22 x 2.4 mm)  
CY7C1366A-166AC/  
GVT71256C36TA-6  
A101  
CY7C1366A-166BGC/  
GVT71256C36B-6  
BG119  
A101  
CY7C1366A-150AJC/  
GVT71256C36T-6.7  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Lead BGA (14 x 22 x 2.4 mm)  
CY7C1366A-150AC/  
GVT71256C36TA-6.7  
A101  
CY7C1366A-150BGC/  
GVT71256C36B-6.7  
BG119  
A101  
CY7C1367A-225AJC/  
GVT71512C18T-4.4  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Lead BGA (14 x 22 x 2.4 mm)  
CY7C1367A-225AC/  
GVT71512C18TA-4.4  
A101  
CY7C1367A-225BGC/  
GVT71512C18B-4.4  
BG119  
A101  
CY7C1367A-200AJC/  
GVT71512C18T-5  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Lead BGA (14 x 22 x 2.4 mm)  
CY7C1367A-200AC/  
GVT71512C18TA-5  
A101  
CY7C1367A-200BGC/  
GVT715152C18B-5  
BG119  
A101  
CY7C1367A-166AJC/  
GVT715152C18T-6  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Lead BGA (14 x 22 x 2.4 mm)  
CY7C1367A-166AC/  
GVT71512C18TA-6  
A101  
CY7C1367A-166BGC/  
GVT71512C18B-6  
BG119  
A101  
CY7C1367A-150AJC/  
GVT71512C18T-6.7  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Lead BGA (14 x 22 x 2.4 mm)  
CY7C1367A-150AC/  
GVT71512C18TA-6.7  
A101  
CY7C1367A-150BGC/  
GVT71512C18B-6.7  
BG119  
Document #: 38-05264 Rev. *A  
Page 25 of 29  
CY7C1366A/GVT71256C36  
CY7C1367A/GVT71512C18  
Ordering Information (continued)  
Speed  
(MHz)  
Package  
Name  
Operating  
Range  
Ordering Code  
Package Type  
200  
CY7C1366A-200AJCI/  
GVT71256C36T-5I  
A101  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack Industrial temp  
CY7C1366A-200ACI/  
GVT71256C36TA-5I  
A101  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Lead BGA (14 x 22 x 2.4 mm)  
CY7C1366A-200BGCI/  
GVT71256C36B-5I  
BG119  
A101  
166  
150  
200  
166  
150  
CY7C1366A-166AJCI/  
GVT71256C36T-6I  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Lead BGA (14 x 22 x 2.4 mm)  
CY7C1366A-166ACI/  
GVT71256C36TA-6I  
A101  
CY7C1366A-166BGCI/  
GVT71256C36B-6I  
BG119  
A101  
CY7C1366A-150AJCI/  
GVT71256C36T-6.7I  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Lead BGA (14 x 22 x 2.4 mm)  
CY7C1366A-150ACI/  
GVT71256C36TA-6.7I  
A101  
CY7C1366A-150BGCI/  
GVT71256C36B-6.7I  
BG119  
A101  
CY7C1367A-200AJCI/  
GVT71512C18T-5I  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Lead BGA (14 x 22 x 2.4 mm)  
CY7C1367A-200ACI/  
GVT71512C18TA-5I  
A101  
CY7C1367A-200BGCI/  
GVT715152C18B-5I  
BG119  
A101  
CY7C1367A-166AJCI/  
GVT715152C18T-6I  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Lead BGA (14 x 22 x 2.4 mm)  
CY7C1367A-166ACI/  
GVT71512C18TA-6I  
A101  
CY7C1367A-166BGCI/  
GVT71512C18B-6I  
BG119  
A101  
CY7C1367A-150AJC/  
GVT71512C18T-6.7I  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
119-Lead BGA (14 x 22 x 2.4 mm)  
CY7C1367A-150ACI/  
GVT71512C18TA-6.7I  
A101  
CY7C1367A-150BGCI/  
GVT71512C18B-6.7I  
BG119  
Document #: 38-05264 Rev. *A  
Page 26 of 29  
CY7C1366A/GVT71256C36  
CY7C1367A/GVT71512C18  
Package Diagrams  
100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
51-85050-*A  
Document #: 38-05264 Rev. *A  
Page 27 of 29  
CY7C1366A/GVT71256C36  
CY7C1367A/GVT71512C18  
Package Diagrams (continued)  
119-Lead PBGA (14 x 22 x 2.4 mm) BG119  
51-85115-*B  
Pentium is a registered trademark, and i486 is a trademark, of Intel Corporation. All product and company names mentioned in  
this document are the trademarks of their respective holders.  
Document #: 38-05264 Rev. *A  
Page 28 of 29  
© Cypress Semiconductor Corporation, 2003. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
CY7C1366A/GVT71256C36  
CY7C1367A/GVT71512C18  
Document History Page  
Document Title: CY7C1366A/GVT71256C36 CY7C1367A/GVT71512C18 256K x 36/512K x 18 Synchronous Pipelined  
SRAM  
Document Number: 38-05264  
Orig. of  
REV.  
**  
ECN No. Issue Date Change  
Description of Change  
114117  
125245  
04/26/02  
03/19/03  
KKV  
IXR  
New Data Sheet  
Changed tKQ, KQX, KQLZ, KHZ, OEQ, OELZ, OEHZ.  
**  
t
t
t
t
t
t
Document #: 38-05264 Rev. *A  
Page 29 of 29  

相关型号:

GVT71512C18TA-6

256K x 36/512K x 18 Pipelined SRAM
CYPRESS

GVT71512C18TA-6.7

256K x 36/512K x 18 Pipelined SRAM
CYPRESS
CYPRESS

GVT71512D18B-4.4

Cache SRAM, 512KX18, 3ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, FBGA-119
CYPRESS

GVT71512D18T-6.7

Cache SRAM, 512KX18, 4.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

GVT71512D18TA-6.7

Cache SRAM, 512KX18, 4.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

GVT71512DA18B-6

Standard SRAM, 512KX18, 4ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, FBGA-119
CYPRESS

GVT71512DA18T-6

Standard SRAM, 512KX18, 4ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

GVT71512DA18TA-5

Standard SRAM, 512KX18, 3.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

GVT71512ZB36-6.5

ZBT SRAM, 512KX18, 6.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, TQFP-100
CYPRESS

GVT71512ZB36-7.5

ZBT SRAM, 512KX18, 7.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, TQFP-100
CYPRESS

GVT71512ZB36-7.5I

ZBT SRAM, 512KX18, 7.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, TQFP-100
CYPRESS