IMIC9816ATB [CYPRESS]

Clock Generator, PDSO56;
IMIC9816ATB
型号: IMIC9816ATB
厂家: CYPRESS    CYPRESS
描述:

Clock Generator, PDSO56

光电二极管
文件: 总15页 (文件大小:175K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
+/+…when timing is critical  
C9816  
133 MHz Clock Generator for Mobile Pentium®III/Rambus Systems  
Preliminary  
Product Features  
Supports Mobile Pentium®III systems.  
Designed to support high speed chipset with  
Rambus  
1 CPU/2 synchronous DRCG clock.  
1 Free Running PCI_F clock for Power  
Management Timing  
Supports power management.  
Integrates Spread Spectrum Technology for EMI  
reduction  
One CPU clock  
2 Synchronous IOAPIC clocks  
7 Synchronous Low Skew PCI clocks (<500pS)  
3 3.3V Synchronous Fixed 66.6MHz clocks  
1 48MHz USB clock.  
3 REF clocks for peripheral components.  
Available in 56 SSOP and TSSOP package  
Frequency Table (in MHz)  
Sel133/100#  
SEL0 SEL1  
CPU  
CPU/2  
3V66(0:2)  
PCI(_F,0:6)  
48MHz  
REF(0:2) IOAPIC  
(0:1)  
Function  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Reserved  
Hi-Z  
Hi-Z  
Hi-Z  
All outputs in Tri-state  
100  
100  
50  
50  
66.6  
66.6  
33.3  
33.3  
14.318  
14.318  
Tclk  
16.67  
16.67  
48MHz PLL2 off  
Normal mode, 100MHz  
Test Mode  
48  
Tclk/2  
Tclk/4  
Tclk/4  
Tclk/8  
Tclk/2  
Reserved  
Hi-Z  
Tclk/16  
133.3  
133.3  
66.6  
66.6  
66.6  
66.6  
33.3  
14.318  
14.318  
16.67  
16.67  
48MHz PLL2 off  
33.3  
48  
Normal mode, 133.3  
Table 1  
Block Diagram  
Pin Configuration  
XIN  
36pF  
36pF  
VDDR  
X
B
U
F
1
300K  
REF0  
REF1  
VDDR  
VSS  
REF0  
R1OFF#/REF1  
R2OFF#/REF2  
VDDR  
1
56  
VDDI  
XOUT  
1
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
IOAPIC1  
VSS  
IOAPIC0  
n/c  
VDDR  
REF2  
XIN  
XOUT  
VDD  
VSS  
VSS  
VDDI  
2
CPU/2  
VDDC/2  
n/c  
VSS  
n/c  
VDDC  
CPU  
VSS  
IOAPIC(0:1)  
CPU  
R1OFF#  
R2OFF#  
apic  
VDDC  
1
cpu  
SPREAD#  
VDDP  
VDDC/2  
1
Rin  
SEL1  
SEL0  
SEL133/100#  
CPU/2  
s1  
s0  
cpu/2  
PCI_F  
s133/100#  
P6OFF#/PCI6  
VSS  
PWR_DN#  
CPU_STP#  
PCI_STP#  
VDD3V66  
3
PD#  
CS#  
PS#  
3V66(0:2)  
66m  
pci  
VSS  
VSS  
SPREAD#  
sst#  
VDDP  
5
P50FF#/PCI5  
P4OFF#/PCI4  
VDDP  
3V66-2  
VDD3V66  
VDD3V66  
3V66-1  
3V66-0  
VSS  
P4OFF#  
P5OFF#  
P6OFF#  
PCI(_F,0:3)  
PCI6  
VDDP  
VDDP  
VDDP  
1
1
1
VDDP  
PCI3  
PCI2  
VSS  
VSS  
PCI1  
PLL1  
PCI5  
PCI4  
SEL0  
SEL1  
PCI_STP#  
CPU_STP#  
VDD48  
48MHz  
VSS  
PCI0  
VDDP  
PWR_DN#  
SEL133/100#  
VDD48  
1
Rin  
48MHZ  
48  
PD#  
PLL2  
Fig. 1  
INTERNATIONAL MICROCIRCUITS, INC. 525 LOS COCHES ST.  
MILPITAS, CA 95035 TEL: 408-263-6300 FAX 408-263-6571  
http://www.imicorp.com  
Rev 1.3  
11/1/1999  
Page 1 of 15  
+/+when timing is critical  
C9816  
133 MHz Clock Generator for Mobile Pentium®III/Rambus Systems  
Preliminary  
Pin Description  
PIN No.  
Pin Name  
PWR  
I/O TYPE  
Description  
2
3
VDD  
VDD  
O
I/O  
Buffered outputs of the signal applied at Xin, typically 14.318MHz  
This is a Power-on Bi-directional pin. (see app. note page 4 for strapping). At  
power-up this pin is an input R1OFF#.  
REF0  
R1OFF# /  
REF1  
PU  
If R1OFF# is strapped LOW, then REF1 will be disabled in a low state.  
If R1OFF# is strapped HIGH, then REF1 is running (default).  
When the supply reaches the rail, this pin becomes REF1, a buffered output of  
the signal applied at Xin, typically 14.318MHz  
4
VDD  
I/O  
PU  
This is a Power-on Bi-directional pin. (see app. note page 4 for strapping). At  
power-up this pin is an input R2OFF#.  
R2OFF# /  
REF2  
If R2OFF# is strapped LOW, then REF2 will be disabled in a low state.  
If R2OFF# is strapped HIGH, then REF2 is running (default).  
When the supply reaches the rail, this pin becomes REF2, a buffered output of  
the signal applied at Xin, typically 14.318MHz  
6
7
VDD  
VDD  
I
Crystal Buffer input pin. Connects to a crystal, or a Can Oscillator. Serves as  
input clock TCLK, in Test mode.  
Crystal Buffer output pin. Connects to a crystal only. When a Can Oscillator is  
used or in Test mode, this pin is kept unconnected.  
XIN  
O
XOUT  
10  
12  
13  
VDD  
VDD  
VDD  
I
O
I/O  
PU  
PU  
When this pin is low, Spread Spectrum is enabled. See description p.6  
This is a free running 3.3 V PCI clock output. Synchronous to CPU clock.  
This is a Power-on Bi-directional pin. (see app. note page 4 for strapping). At  
power-up this pin is an input P6OFF#.  
Spread#  
PCI_F  
P6OFF# /  
PCI6  
If P6OFF# is strapped LOW, then PCI6 will be disabled in a low state.  
If P6OFF# is strapped HIGH, then PCI6 is running (default).  
When the supply reaches the rail, this pin becomes PCI6, a 3.3V PCI clock.  
Synchronous to CPU clock.  
16  
17  
VDD  
VDD  
I/O  
I/O  
PU  
PU  
This is a Power-on Bi-directional pin. (see app. note page 4 for strapping). At  
power-up this pin is an input P5OFF#.  
If P5OFF# is strapped LOW, then PCI5 will be disabled in a low state.  
If P5OFF# is strapped HIGH, then PCI5 is running (default).  
When the supply reaches the rail, this pin becomes PCI5, a 3.3V PCI clock.  
Synchronous to CPU clock.  
P5OFF# /  
PCI5  
This is a Power-on Bi-directional pin. (see app. note page 4 for strapping). At  
power-up this pin is an input P4OFF#.  
P4OFF# /  
PCI4  
If P4OFF# is strapped LOW, then PCI4 will be disabled in a low state.  
If P4OFF# is strapped HIGH, then PCI4 is running (default).  
When the supply reaches the rail, this pin becomes PCI4, a 3.3V PCI clock.  
Synchronous to CPU clock.  
20,21,24,25  
27  
VDD  
VDD  
O
I
3.3 V PCI clock outputs. These signals are synchronous to CPU clocks.  
When this pin is asserted low, the device is in Low Power State and all outputs  
are low and internal circuitry are shutoff.  
Input for frequency selection (see table1, page1).  
3.3 V Fixed 48 Mhz USB clock output.  
When this pin is asserted low, CPU is synchronously shutdown in a low state.  
When this pin is asserted low, only PCI(0:6) are synchronously shutdown in a low  
state. PCI_F is not effected by this signal.  
PCI(0:3)  
PWR_DN#  
PU  
PU  
28  
30  
32  
33  
VDD  
VDD  
VDD  
VDD  
I
O
I
SEL133/100#  
48MHz  
CPU_stp#  
PCI_stp#  
PU  
PU  
I
34,35  
37,38, 41  
44  
50  
53,55  
VDD  
VDD  
VDDC  
VDDC/2  
VDDI  
I
PU  
Inputs for function selection (see table1, page1).  
SEL(0,1)  
3V66 (0:2)  
CPU  
CPU/2  
IOAPIC(0,1)  
O
O
O
O
3.3 V Fixed 66.6Mhz Hub-link clock outputs. Synchronous to CPU clocks.  
2.5 V Host bus clock output. Programmable per Table1, page1.  
2.5 V DRCG clock output. Half CPU frequency and synchronous to CPU clock.  
2.5 V IOAPIC clock outputs. Fixed at 16.67MHz and synchronous to CPU clock.  
PU = Internal 250K Pull-up  
INTERNATIONAL MICROCIRCUITS, INC. 525 LOS COCHES ST.  
MILPITAS, CA 95035 TEL: 408-263-6300 FAX 408-263-6571  
http://www.imicorp.com  
Rev 1.3  
11/1/1999  
Page 2 of 15  
+/+when timing is critical  
C9816  
133 MHz Clock Generator for Mobile Pentium®III/Rambus Systems  
Preliminary  
Power Plane Distribution  
PIN No.  
Pin Name  
Power to pins  
Description  
5
2,3,4,6,7  
3.3 V Power Supply for reference output clocks and crystal  
circuitry.  
VDDR  
8
3.3V Analog Core Power Supply.  
VDD  
11,18,19,26  
10,12,13,16,17, 3.3V common power supply pin for PCI clocks and input  
VDDP  
20,21,24,25,27, programming pins (Spread#, PWR_DN#, SEL133/100#)  
28  
31  
30  
3.3 V Power Supply for 48MHz output buffer and internal PLL  
circuitry.  
VDD48  
VDD3V66  
VDDC  
39, 40  
45  
32,33,34,35,37, 3.3 V Power Supply for 3V66M buffers, digital core circuitry, and  
38, 41  
44  
input programming pins (CPU_STP#, PCI_STP#, SEL(0:1)).  
Power Supply pin for CPU output buffer. Typically connected to  
2.5V  
49  
56  
50  
53,55  
Power Supply pin for CPU/2. Typically connected to 2.5V  
Power Supply pin for IOAPIC(0:1). Typically connected to 2.5V  
Common Ground pins.  
VDDC/2  
VDDI  
VSS  
1, 9, 14, 15, 22,  
23, 29, 36, 42,  
43, 47, 51, 54  
46, 48, 52  
No Connect  
N/C  
A bypass capacitor (0.1µF) should be placed as close as possible to each positive power pin. If these bypass capacitors are not close to the pins  
their high frequency filtering characteristic will be cancelled by the lead inductance of the traces.  
Power on Bi-Directional Pins  
Power Up Condition:  
Pins 3,4,13,16,and 17 are Power up bi-directional pins and are used for disabling their respective outputs in this device  
(see Pin description, Page 2). During power-up, these pins are in input mode (see Fig 2, below), therefore, they are  
considered input select pins internal to the IC. After a settling time, the selection data is latched into internal control  
registers and these pins become toggling clock outputs.  
VDD Rail  
Power Supply  
Ramp  
R1OFF# / REF1  
R2OFF# / REF2  
P6OFF# / PCI6  
P5OFF# / PCI5  
-
Hi-Z Input  
Toggle Outputs  
P4OFF# / PCI4  
Select data is latched into register, then pin becomes clock output signal.  
Fig. 2  
INTERNATIONAL MICROCIRCUITS, INC. 525 LOS COCHES ST.  
MILPITAS, CA 95035 TEL: 408-263-6300 FAX 408-263-6571  
http://www.imicorp.com  
Rev 1.3  
11/1/1999  
Page 3 of 15  
+/+when timing is critical  
C9816  
133 MHz Clock Generator for Mobile Pentium®III/Rambus Systems  
Preliminary  
Vdd  
Strapping Resistor Options:  
The power up bidirectional pins have a large value pull-  
up each (250KΩ), therefore, a selection 1is the  
default. If the system uses a slow power supply (over  
3mS settling time), then it is recommended to use an  
external Pullup (Rup) in order to insure a high  
Rup  
50K  
IMI C9816  
Rd  
Load  
Bidirectional  
selection. In this case, the designer may choose one of  
two configurations, see Fig. 3A and Fig. 3B.  
JP1  
JUMPER  
Fig. 3A represents an additional pull up resistor 50KΩ  
connected from the pin to the power line, which allows a  
faster pull to a high level.  
Fig.3A  
Rdn  
5K  
If a selection 0is desired, then a jumper is placed on  
JP1 to a 5Kresistor as implemented as shown in  
Fig.4A. Please note the selection resistors (Rup, and  
Rdn) are placed before the Damping resistor (Rd)  
close to the pin.  
JP2  
Vdd  
3 Way Jumper  
Fig. 3B represent a single resistor 10Kconnected to a  
3 way jumper, JP2. When a 1selection is desired, a  
jumper is placed between leads1 and 3. When a 0”  
selection is desired, a jumper is placed between leads 1  
and 2.  
Rsel  
10K  
IMI C9816  
Rd  
Load  
Bidirectional  
Fig.3B  
Power Management Functions  
Power Management on this device is controlled by CPU_STP# (pin32), PCI_STP# (pin33) and PWRDN# (pin27).  
When CPU_STP# is forced low, only CPU signal is synchronously (no glitch) disabled in a low state. CPU will not  
immediately stop, it will toggle one to three complete cycles before stopping on the falling edge, regardless of the  
number of cycles it completes, it will stop before the next PCI_F rising edge occurs. This is to ensure synchronous  
stopping after a full cycle without any glitches. When CPU_STP# is released to high, CPU is synchronously re-enabled.  
The clock will wait the equivalent of one to three cycles after CPU_stp# is asserted high then will start toggling on the  
rising edge. Regardless of the number of cycles it completes, it will start before the next PCI_F rising edge occurs. This  
also is to ensure a synchronous start of a full clock cycle.  
When PCI_STP# is forced low, only PCI(0:6) signals are synchronously disabled in a low state. These signals will  
complete one full cycle before stopping one the following falling edge. PCI_F is still running. When PCI_STP# is  
released to high, PCI(0:6) are synchronously re-enabled after the equivalent of one full PCI cycle latency.  
When PWRDN# is forced low, CPU, PCI(F,0:6), IOAPIC(0:1), 3V66-(0:2), CPU/2, 48MHz, and REF(0:2) signals are  
synchronously disabled, all internal circuitry (including the crystal buffer) is shutdown and the device is in Low Power (or  
in power down) Mode. After PWRDN# is forced low, all power supplies (3.3V and 2.5V) may be removed. All power  
supplies must be re-applied 200mS before releasing PWRDN# (to high), consequently, the device must be allowed 1mS  
before the clock outputs settle to their preset frequencies. (see Fig.4, and table 2 below)  
INTERNATIONAL MICROCIRCUITS, INC. 525 LOS COCHES ST.  
MILPITAS, CA 95035 TEL: 408-263-6300 FAX 408-263-6571  
http://www.imicorp.com  
Rev 1.3  
11/1/1999  
Page 4 of 15  
+/+when timing is critical  
C9816  
133 MHz Clock Generator for Mobile Pentium®III/Rambus Systems  
Preliminary  
Power Management Timing  
Tss  
Tss  
PCI_F  
PCI_STP  
PCI(0:6)  
CPU_STP  
CPU  
Fig. 4  
Tss is the stop clock setup time. All functionality is referenced to the rising edge of PCI_F. If the tss timing is met, with  
respect to the next occurring PCI_F low to high transition, then the CPU or PCI clocks that are controlled are guaranteed  
to stay low (stopped) or to rise (run) at the next rising edge of PCI_F. See the AC parameters for tss time.  
Power Management Function Table  
CPU_stp#  
PWRDN#  
PCI_stp#  
CPU  
CPU/2  
3V66  
(0:2)  
PCI(0:6)  
PCI_F  
48M /  
REF(0:2)  
IOAPIC  
(0:1)  
PLL1  
PLL2  
x
0
0
1
1
0
1
1
1
1
x
0
1
0
1
0
0
0
run  
run  
0
0
0
0
run  
0
0
0
0
off  
run  
run  
run  
run  
off  
run  
run  
run  
run  
run  
run  
run  
run  
run  
run  
run  
run  
run  
run  
run  
run  
run  
run  
run  
run  
run  
run  
run  
run  
run  
Table 2  
INTERNATIONAL MICROCIRCUITS, INC. 525 LOS COCHES ST.  
MILPITAS, CA 95035 TEL: 408-263-6300 FAX 408-263-6571  
http://www.imicorp.com  
Rev 1.3  
11/1/1999  
Page 5 of 15  
+/+when timing is critical  
C9816  
133 MHz Clock Generator for Mobile Pentium®III/Rambus Systems  
Preliminary  
Spectrum Spread Clocking  
Down Spread Description  
Spread Spectrum is a modulation technique for distributing clock period over a certain bandwidth (called Spread  
Bandwidth). This technique allows the distribution of the energy (EMI) over a range of frequencies therefore reducing  
the radiation generated from clocks. As the spread is a percentage of the rested (non-spread) frequency, it is effective  
at the fundamental and all its harmonics.  
In this device Spread Spectrum is enabled through pin 10 (Spread#). As the name suggests, spread spectrum is  
enabled when Spread# is low. This pin has a 250Kinternal pull up, therefore, defaults to a high (Spread Spectrum  
disabled) unless externally forced to a low.  
When Spread# is forced low, the device will be down spread (fig.5B) mode at 0.5%, and the center frequency is shifted  
down from its rested (non-spread) value by -0.25%. (ex.: assuming the center frequency is 100MHz in non-spread  
mode; when down spread is enabled, the center frequency shifts to 99.75MHz.), see fig.5 below.  
Spread off  
Spread on  
Center  
Center  
Frequency,  
Frequency,  
Fig.5  
INTERNATIONAL MICROCIRCUITS, INC. 525 LOS COCHES ST.  
MILPITAS, CA 95035 TEL: 408-263-6300 FAX 408-263-6571  
http://www.imicorp.com  
Rev 1.3  
11/1/1999  
Page 6 of 15  
+/+when timing is critical  
C9816  
133 MHz Clock Generator for Mobile Pentium®III/Rambus Systems  
Preliminary  
Maximum Ratings  
This device contains circuitry to protect the inputs  
against damage due to high static voltages or electric  
field; however, precautions should be taken to avoid  
application of any voltage higher than the maximum  
rated voltages to this circuit. For proper operation, Vin  
and Vout should be constrained to the range:  
Maximum Input Voltage Relative to VSS: VSS - 0.3V  
Maximum Input Voltage Relative to VDD: VDD + 0.3V  
Storage Temperature:  
Operating Temperature:  
Maximum ESD protection  
Maximum Power Supply:  
-65ºC to + 150ºC  
0ºC to +85ºC  
2000V  
VSS<(Vin or Vout)<VDD  
5.5V  
Unused inputs must always be tied to an appropriate  
logic voltage level (either VSS or VDD).  
DC Parameters (VDD = VDDR = VDD = VDD48 = VDD3V66 = 3.3V ±5%, VDDC = VDDC/2 = VDDI = 2.5 + 5%, TA = 0ºC to +85ºC)  
Characteristic  
Symbol Min  
Typ  
Max  
1.0  
Units  
Vdc  
Vdc  
Vdc  
Vdc  
µA  
Conditions  
Input Low Voltage  
Input High Voltage  
Input Low Voltage  
Input High Voltage  
VIL1  
VIH1  
VIL2  
VIH2  
IIL  
-
-
-
-
-
Note 1  
2.0  
-
-
1.0  
-
Note 2  
2.2  
-66  
Input Low Current (@VIL =  
VSS)  
-5  
For internal Pull up resistors, Note 1 and  
Note 3  
Input High Current (@VIL =  
VDD)  
IIH  
5
µA  
Tri-State leakage Current  
Dynamic Supply Current  
Dynamic Supply Current  
Static Supply Current  
Input pin capacitance  
Output pin capacitance  
Pin Inductance  
Ioz  
Idd3.3V  
Idd2.5V  
Isdd  
-
-
-
-
10  
160  
90  
400  
5
µA  
mA  
mA  
µA  
pF  
pF  
nH  
pF  
V
Sel133/100# = 1, Note 4  
Sel133/100# = 1, Note 4  
Sel133/100# = x, Note 4  
-
-
-
-
Cin  
-
-
Cout  
Lpin  
-
-
6
-
-
7
Crystal pin capacitance  
Crystal DC Bias Voltage  
Crystal Startup time  
Cxtal  
VBIAS  
Txs  
27  
36  
45  
Measured from Pin to Ground. Note 5  
From Stable 3.3V power supply.  
0.3Vdd Vdd/2 0.7Vdd  
-
-
40  
µS  
Note1: Applicable to input signals: Sel133/100#, Sel(0:1), Spread#, PWRDN#, CPU_stp#, PCI_stp#.  
Note2: Applicable to Sdata, and Sclk.  
Note3: Although internal pull-up resistors have a typical value of 250K, this value may vary between 200K and 500K.  
Note4: All outputs loaded as per table 3.  
Note5: Although the device will reliably interface with crystals of a 17pF 20pF CL range, it is optimized to interface with a typical CL = 18pF  
crystal specifications. See Suggested Crystal Parameters Table (Page 11).  
INTERNATIONAL MICROCIRCUITS, INC. 525 LOS COCHES ST.  
MILPITAS, CA 95035 TEL: 408-263-6300 FAX 408-263-6571  
http://www.imicorp.com  
Rev 1.3  
11/1/1999  
Page 7 of 15  
+/+when timing is critical  
C9816  
133 MHz Clock Generator for Mobile Pentium®III/Rambus Systems  
Preliminary  
AC Parameters  
133 MHz Host  
100 MHz Host  
Symbol  
Parameter  
Units  
Notes  
5, 6, 8  
6,10  
6, 11  
6, 7  
6, 8, 9  
Min  
7.5  
1.87  
1.67  
0.4  
-
Max  
8.0  
-
Min  
10.0  
3.0  
2.8  
0.4  
-
Max  
10.5  
-
TPeriod  
THIGH  
TLOW  
Tr / Tf  
CPU period  
CPU high time  
CPU low time  
nS  
nS  
nS  
nS  
pS  
-
-
CPU rise and fall times  
CPU Cycle to Cycle Jitter  
1.6  
250  
1.6  
250  
TCCJ  
TPeriod  
THIGH  
TLOW  
Tr / Tf  
TCCJ  
CPU/2 period  
CPU/2 high time  
CPU/2 low time  
CPU/2 rise and fall times  
CPU/2 Cycle to Cycle Jitter  
15.0  
5.25  
5.05  
0.4  
-
16.0  
-
-
1.6  
250  
20.0  
7.5  
7.3  
0.4  
-
21.0  
-
-
1.6  
250  
nS  
nS  
nS  
nS  
pS  
5, 6, 8  
6,10  
6, 11  
6, 7  
6, 8, 9  
TPeriod  
THIGH  
TLOW  
Tr / Tf  
TCCJ  
IOAPIC(0:1) period  
IOAPIC(0:1) high time  
IOAPIC(0:1) low time  
IOAPIC(0:1) rise and fall times  
IOAPIC(0:1) Cycle to Cycle Jitter  
60.0  
25.5  
25.3  
0.4  
-
-
-
-
60.0  
25.5  
25.3  
0.4  
-
-
-
nS  
nS  
nS  
nS  
pS  
5, 6, 8  
6,10  
6, 11  
6, 7  
N/S  
1.6  
500  
1.6  
500  
6, 8, 9  
TPeriod  
THIGH  
TLOW  
Tr / Tf  
TSKEW  
TCCJ  
3V66-(0:2) period  
3V66-(0:2) high time  
3V66-(0:2) low time  
3V66-(0:2) rise and fall times  
Any 3V66 clock to any 3V66 clock Skew time  
3V66-(0:2) Cycle to Cycle Jitter  
15.0  
5.25  
5.05  
0.4  
-
16.0  
-
-
1.6  
250  
500  
15.0  
5.25  
5.05  
0.4  
-
16.0  
-
-
1.6  
250  
500  
nS  
nS  
nS  
nS  
pS  
pS  
5, 6, 8  
6,10  
6, 11  
6, 7  
6, 8, 9  
6, 8, 9  
-
-
TPeriod  
THIGH  
TLOW  
Tr / Tf  
TSKEW  
TCCJ  
PCI(_F,0:6) period  
PCI(_F,0:6) period  
PCI(_F,0:6) low time  
PCI(_F,0:6) rise and fall times  
(Any PCI clock) to (Any PCI clock) Skew time  
PCI(_F,0:6) Cycle to Cycle Jitter  
30.0  
12.0  
12.0  
0.5  
-
-
-
-
30.0  
12.0  
12.0  
0.5  
-
-
-
-
nS  
nS  
nS  
nS  
pS  
pS  
5, 6, 8  
6,10  
6, 11  
6, 7  
6, 8, 9  
6, 8, 9  
2.0  
500  
500  
2.0  
500  
500  
-
-
TPeriod  
Tr / Tf  
TCCJ  
48MHz period ( conforms to +167ppm max)  
48MHz rise and fall times  
48MHz Cycle to Cycle Jitter  
20.8299 20.8333 20.8299 20.8333  
nS  
nS  
pS  
5, 6, 8  
6, 7  
6, 8, 9  
1.0  
-
4.0  
500  
1.0  
-
4.0  
500  
TPeriod  
Tr / Tf  
TCCJ  
REF(0:2) period  
REF(0:2) rise and fall times  
REF(0:2) Cycle to Cycle Jitter  
69.8413  
1.0  
-
71.0  
4.0  
1000  
69.8413  
1.0  
-
71.0  
4.0  
1000  
nS  
nS  
pS  
5, 6, 8  
6, 7  
6, 8  
tpZL, tpZH  
tpLZ, tpZH  
tstable  
Output enable delay (all outputs)  
Output disable delay (all outputs)  
All clock Stabilization from power-up  
Stopclock Set Up Time  
1.0  
1.0  
10.0  
10.0  
3
1.0  
1.0  
10.0  
10.0  
3
nS  
nS  
mS  
nS  
13  
13  
12  
14  
tss  
10.0  
-
-
-
INTERNATIONAL MICROCIRCUITS, INC. 525 LOS COCHES ST.  
MILPITAS, CA 95035 TEL: 408-263-6300 FAX 408-263-6571  
http://www.imicorp.com  
Rev 1.3  
11/1/1999  
Page 8 of 15  
+/+when timing is critical  
C9816  
133 MHz Clock Generator for Mobile Pentium®III/Rambus Systems  
Preliminary  
Group Limits and Parameter (applicable to all settings: Sel133/100# = x)  
Symbol Parameter  
Min Typ  
Max  
55  
Units  
%
Notes  
TDC  
Toff1  
Toff2  
Toff4  
Toff5  
Duty Cycle  
45  
0
50  
-
6, 8, 9  
6, 8, 9  
6, 8, 9  
6, 8, 9  
6, 8, 9  
CPU to 3V66-(0:2) offset, CPU leads  
3V66-(0:2) to PCI(_F,0:6) offset, 3V66 leads  
CPU to IOAPIC(0:1) offset, CPU leads  
CPU to CPU/2 offset, CPU leads  
1.5  
3.5  
4.0  
3.5  
nS  
1.0  
1.5  
0.5  
-
nS  
-
nS  
-
nS  
Note 5: This parameter is measured as an average over 1uS duration, with a crystal center frequency of 14.31818MHz  
Note 6: All outputs loaded as per table 5 below.  
Note 7: Probes are placed on the pins, and measurements are acquired between 0.4V and 2.4V for 3.3V signals and between 0.4V and 2.0V for  
2.5V signals (see Fig.7A and Fig.7B)  
Note 8: Probes are placed on the pins, and measurements are acquired at 1.5V for 3.3V signals and at 1.25V for 2.5V signals. (see Figs.7A & 7B)  
Note 9: This measurement is applicable with Spread ON or Spread OFF.  
Note 10: Probes are placed on the pins, and measurements are acquired at 2.4V for 3.3V signals and at 2.0V for 2.5V signals, (see Figs. 7A & 7B)  
Note 11: Probes are placed on the pins, and measurements are acquired at 0.4V.  
Note 12: The time specified is measured from when all VDDs reach their respective supply rail (3.3V and 2.5V) till the frequency output is stable  
and operating within the specifications  
Note 13: Measured from when both SEL1 And SEL0 are low  
Note 14: CPU_STP# and PCI_STP# setup time with respect to any PCI_F clock to guarantee that the effected clock will stop or start at the next  
PCI_F clocks rising edge.  
INTERNATIONAL MICROCIRCUITS, INC. 525 LOS COCHES ST.  
MILPITAS, CA 95035 TEL: 408-263-6300 FAX 408-263-6571  
http://www.imicorp.com  
Rev 1.3  
11/1/1999  
Page 9 of 15  
+/+when timing is critical  
C9816  
133 MHz Clock Generator for Mobile Pentium®III/Rambus Systems  
Preliminary  
Output name  
Max Load (in pF)  
CPU, IOAPIC(0:1), CPU/2  
PCI(_F,0:6), 3V66(0:2)  
48 MHz , REF(0:2)  
20  
30  
20  
Table 5.  
Test and Measurement Setup  
Output under Test  
Probe  
Load Cap  
3.3V signals  
2.5V signals  
tDC  
tDC  
-
-
-
-
3.3V  
2.5V  
2.4V  
1.5V  
2.0V  
1.25V  
0.4V  
0.4V  
0V  
0V  
Tr  
Tf  
Tr  
Tf  
Fig.7A  
Fig.7B  
INTERNATIONAL MICROCIRCUITS, INC. 525 LOS COCHES ST.  
MILPITAS, CA 95035 TEL: 408-263-6300 FAX 408-263-6571  
http://www.imicorp.com  
Rev 1.3  
11/1/1999  
Page 10 of 15  
+/+when timing is critical  
C9816  
133 MHz Clock Generator for Mobile Pentium®III/Rambus Systems  
Preliminary  
Output Buffer Characteristics  
Buffer Characteristics for CPU, CPU/2  
Characteristic  
Symbol  
IOH1  
IOH2  
IOL1  
IOL2  
Z0  
Min  
-17  
-26  
12  
Typ  
-31  
- 58  
24  
Max  
-51  
Units  
mA  
mA  
mA  
mA  
Conditions  
Pull-Up Current  
Pull-Up Current  
Pull-Down Current  
Pull-Down Current  
Output Impedance  
VDD-0.5  
1.2V  
-101  
40  
0.4V  
27  
56  
93  
1.2V  
13.5  
45  
Buffer Characteristics for IOAPIC(0:1)  
Characteristic  
Symbol  
IOH1  
IOH2  
IOL1  
IOL2  
Z0  
Min  
-22.5  
-39  
Typ  
-45  
- 85  
36  
Max  
Units  
mA  
mA  
mA  
mA  
Conditions  
Conditions  
Conditions  
Pull-Up Current  
Pull-Up Current  
Pull-Down Current  
Pull-Down Current  
Output Impedance  
-74  
-150  
59  
VDD-0.5  
1.2V  
18  
0.4V  
40  
82  
138  
45  
1.2V  
13.5  
Buffer Characteristics for PCI(F, 0:6), 3V66(0:2)  
Characteristic  
Symbol  
IOH1  
IOH2  
IOL1  
IOL2  
Z0  
Min  
-11  
-32  
9.4  
22.8  
12  
Typ  
-26  
-56.5  
18  
Max  
Units  
mA  
mA  
mA  
mA  
Pull-Up Current  
Pull-Up Current  
Pull-Down Current  
Pull-Down Current  
Output Impedance  
-33  
-191.5  
38  
VDD-0.5  
1.2V  
0.4V  
48  
118.5  
55  
1.2V  
Buffer Characteristics for 48 MHz and Ref(0:2)  
Characteristic  
Symbol  
IOH1  
IOH2  
IOL1  
IOL2  
Z0  
Min  
-12  
-28  
9
Typ  
-20  
-45  
13  
Max  
-50  
-96  
27  
Units  
mA  
mA  
mA  
mA  
Pull-Up Current  
Pull-Up Current  
Pull-Down Current  
Pull-Down Current  
Output Impedance  
VDD-0.5  
1.2V  
0.4V  
22  
33  
66  
1.2V  
20  
60  
INTERNATIONAL MICROCIRCUITS, INC. 525 LOS COCHES ST.  
MILPITAS, CA 95035 TEL: 408-263-6300 FAX 408-263-6571  
http://www.imicorp.com  
Rev 1.3  
11/1/1999  
Page 11 of 15  
+/+when timing is critical  
C9816  
133 MHz Clock Generator for Mobile Pentium®III/Rambus Systems  
Preliminary  
Suggested Oscillator Crystal Parameters  
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
MHz  
PPM  
PPM  
PPM  
Conditions  
Frequency  
Fo  
12.00  
14.31818  
16.00  
Tolerance  
TC  
-
-
-
-
-
-
-
-
+/-100  
Note 1  
TS  
+/- 100  
Stability (TA -10 to +60C) Note 1  
Aging (first year @ 25C) Note 1  
Parallel Resonant, Note 1  
The crystals rated load. Note 1  
Note 2  
TA  
-
5
-
Operating Mode  
-
-
Load Capacitance  
CXTAL  
RESR  
20  
40  
-
pF  
Effective Series  
-
Ohms  
Resistance (ESR)  
Note1: For best performance and accurate frequencies from this device, It is recommended but not mandatory that the  
chosen crystal meets or exceeds these specifications  
Note 2: Larger values may cause this device to exibit oscillator startup problems  
To obtain the maximum accuracy, the total circuit loading capacitance should be equal to CXTAL. This loading  
capacitance is the effective capacitance across the crystal pins and includes the clock generating device pin  
capacitance (CFTG), any circuit traces (CPCB), and any onboard discrete load capacitors (CDISC).  
The following formula and schematic may be used to understand and calculate either the loading specification of a crystal for a  
design or the additional discrete load capacitance that must be used to provide the correct load to a known load rated crystal.  
CL = (CXINPCB + CXINFTG + CXINDISC) X (CXOUTPCB + CXOUTFTG + CXOUTDISC  
(CXINPCB + CXINFTG + CXINDISC) + (CXOUTPCB + CXOUTFTG + COUTDISC  
)
)
Where:  
CXTAL  
= the load rating of the crystal  
CXOUTFTG = the clock generators XIN pin effective device internal capacitance to ground  
CXOUTFTG = the clock generators XOUT pin effective device internal capacitance to ground  
CXINPCB = the effective capacitance to ground of the crystal to device PCB trace  
CXOUTPCB = the effective capacitance to ground of the crystal to device PCB trace  
CXINDISC = any discrete capacitance that is placed between the XIN pin and ground  
CXOUTDISC = any discrete capacitance that is placed between the XOUT pin and ground  
XIN  
CXINPCB  
CXINDISC  
CXINFTG  
CXOUTPCB  
CXOUTDISC  
CXOUTFTG  
XOUT  
Clock Generator  
As an example, and using this formula for this datasheets device, a design that has no discrete loading capacitors (CDISC  
)
and each of the crystal to device PCB traces has a capacitance (CPCB) to ground of 4pF (typical value) would calculate as:  
INTERNATIONAL MICROCIRCUITS, INC. 525 LOS COCHES ST.  
MILPITAS, CA 95035 TEL: 408-263-6300 FAX 408-263-6571  
http://www.imicorp.com  
Rev 1.3  
11/1/1999  
Page 12 of 15  
+/+when timing is critical  
C9816  
133 MHz Clock Generator for Mobile Pentium®III/Rambus Systems  
Preliminary  
Suggested Oscillator Crystal Parameters (Cont.)  
CL = (4pF + 36pF + 0pF) X (4pF + 36pF + 0pF) = 40 X 40  
(4pF + 36pF + 0pF) + (4pF + 36pF + 0pF) 40 + 40  
= 1600  
80  
= 20pF  
Therefore to obtain output frequencies that are as close to this data sheets specified values as possible, in this design  
example, you should specify a parallel cut crystal that is designed to work into a load of 20pF.  
Package Drawing and Dimensions (56 Pin TSSOP)  
INTERNATIONAL MICROCIRCUITS, INC. 525 LOS COCHES ST.  
MILPITAS, CA 95035 TEL: 408-263-6300 FAX 408-263-6571  
http://www.imicorp.com  
Rev 1.3  
11/1/1999  
Page 13 of 15  
+/+when timing is critical  
C9816  
133 MHz Clock Generator for Mobile Pentium®III/Rambus Systems  
Preliminary  
Package Drawing and Dimensions (Cont.)  
56 Pin TSSOP Dimensions  
INCHES  
MILLIMETERS  
SYMBOL  
MIN  
-
NOM  
-
MAX  
MIN  
NOM  
MAX  
A
A1  
A2  
000  
b
b1  
bbb  
c
0.043  
.0059  
-
-
0.10  
0.90  
0.10  
-
0.20  
0.08  
-
1.10  
0.15  
0.95  
.00197 .00394  
0.0335 0.0354 0.0374  
0.00394  
0.0067  
0.0067 0.0079 0.0091  
0.0031  
0.0035  
0.0035 0.0050 0.0063  
0°  
0.05  
0.85  
-
0.106  
0.17  
0.17  
0.27  
0.23  
-
0.0079  
0.09  
0.09  
0°  
0.20  
0.16  
8°  
c1  
θ
0.127  
-
-
8°  
e
H
D
E
0.0197 BSC  
0.3189 BSC  
0.551  
0.50 BSC  
8.10 BSC  
13.90 14.00 14.10  
0.547  
0.236  
0.0197  
0.555  
0.244  
0.240  
6.00  
0.50  
6.10  
0.60  
6.20  
0.75  
L
0.236  
0.0295  
Notes:  
1. Die thickness allowable is 0.279 +/- 0.0127 (0.0110 +/-  
.005 inches)  
2. Dimensions & tolerance per ASME. Y14, 5M-1994.  
3. Datum Plane H located at mold parting line and concident  
with lead. Where lead exits plastic body at bottom of  
parting line.  
4. Datums A-B and D to be determined where centerline  
between leads exits plastic body at Datum Plane H.  
5. Dand Eare reference datums and do not include  
mode flash or protrusions, and are measured at the  
bottom parting line. Mold flash or protrusions shall not  
exceed 0.15mm on D and 0.25mm on E per side.  
6. Dimension is the length of terminal for soldering to a  
substrate.  
7. Terminal positions are shown for reference only.  
8. Formed leads shall be planar with respect to one another  
within 0.076mm at seating plane.  
9. The lead width dimension does not include Dambar  
protrusion. Allowable Dambar protrusion shall be 0.08mm  
total in excess of the lead width dimension located on the  
lower radius or the foot. Minimum space between  
protrusions and an adjacent lead to be 0.08mm for  
0.50mm pitch.  
10. Section C-Cto be determined at 0.10 to 0.25mm from  
the lead tip.  
11. This part is compliant with JEDEC specification MO-153,  
variations DB, DC, DE ED, EE, and FE.  
INTERNATIONAL MICROCIRCUITS, INC. 525 LOS COCHES ST.  
MILPITAS, CA 95035 TEL: 408-263-6300 FAX 408-263-6571  
http://www.imicorp.com  
Rev 1.3  
11/1/1999  
Page 14 of 15  
+/+when timing is critical  
C9816  
133 MHz Clock Generator for Mobile Pentium®III/Rambus Systems  
Preliminary  
Package Drawing and Dimensions (Cont.)  
56 Pin SSOP Outline Dimensions  
INCHES  
MILLIMETERS  
SYMBOL  
A
MIN  
NOM  
MAX  
MIN  
2.41  
NOM  
2.59  
MAX  
2.79  
C
0.095  
0.102  
0.012  
0.090  
0.010  
-
0.110  
A1  
A2  
B
C
D
E
e
0.008  
0.088  
0.008  
0.005  
.720  
0.016  
0.092  
0.0135  
0.010  
.730  
0.20  
2.24  
0.31  
2.29  
0.41  
2.34  
L
H
E
0.203 0.254 0.343  
0.127 0.254  
18.29 18.42 18.54  
-
.725  
D
0.292  
0.296  
0.025 BSC  
0.406  
0.013  
0.032  
5º  
0.299  
7.42  
7.52  
7.59  
a
0.635 BSC  
A2  
A
H
a
0.400  
0.10  
0.024  
0º  
0.410  
0.016  
0.040  
8º  
10.16 10.31 10.41  
A1  
0.25  
0.61  
0º  
0.33  
0.81  
5º  
0.41  
1.02  
8º  
e
B
L
a
X
0.085  
0.093  
0.100  
2.16  
2.36  
2.54  
Ordering Information  
Part Number  
C9816AYB  
C9816ATB  
Package Type  
56 PIN SSOP  
56 PIN TSSOP  
Production Flow  
Commercial, 0ºC to +70ºC  
Commercial, 0ºC to +70ºC  
Marking: Example: IMI  
C9816  
Date Code, Lot #  
IMIC9816AYB  
Flow  
B = Commercial, 0ºC to + 70ºC  
Package  
Y = SSOP  
T = TSSOP  
Revision  
IMI Device Number  
INTERNATIONAL MICROCIRCUITS, INC. 525 LOS COCHES ST.  
Rev 1.3  
11/1/1999  
MILPITAS, CA 95035 TEL: 408-263-6300 FAX 408-263-6571  
http://www.imicorp.com  
Page 15 of 15  

相关型号:

IMIC9827H

Clocks and Buffers
ETC

IMIC9835

Low-EMI Clock Generator for Intel Mobile 133-MHz/3 SO-DIMM Chipset Systems
CYPRESS

IMIC9835CT

Low-EMI Clock Generator for Intel Mobile 133-MHz/3 SO-DIMM Chipset Systems
CYPRESS

IMIC9835CTT

Low-EMI Clock Generator for Intel Mobile 133-MHz/3 SO-DIMM Chipset Systems
CYPRESS

IMIC9835CY

Low-EMI Clock Generator for Intel Mobile 133-MHz/3 SO-DIMM Chipset Systems
CYPRESS

IMIC9835CYT

Low-EMI Clock Generator for Intel Mobile 133-MHz/3 SO-DIMM Chipset Systems
CYPRESS

IMIC9850A

Clocks and Buffers
ETC

IMIC9870G

Clocks and Buffers
ETC

IMIC9914BT

Processor Specific Clock Generator, CMOS, PDSO28, TSSOP-28
CYPRESS

IMIC9914BY

Processor Specific Clock Generator, CMOS, PDSO28, SSOP-28
CYPRESS

IMIC9915AY

Processor Specific Clock Generator, 133.3MHz, CMOS, PDSO48, SSOP-48
CYPRESS

IMIC9915AYT

Processor Specific Clock Generator, 133.3MHz, CMOS, PDSO48, SSOP-48
CYPRESS