MB3773PF-G-BND-JN-ERE1 [CYPRESS]

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO8, 6.35 X 5.30 MM, 2.25 MM HEIGHT, 1.27 MM PITCH, ROHS COMPLIANT, PLASTIC, SOP-8;
MB3773PF-G-BND-JN-ERE1
型号: MB3773PF-G-BND-JN-ERE1
厂家: CYPRESS    CYPRESS
描述:

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO8, 6.35 X 5.30 MM, 2.25 MM HEIGHT, 1.27 MM PITCH, ROHS COMPLIANT, PLASTIC, SOP-8

光电二极管
文件: 总28页 (文件大小:454K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MB3773  
Power Supply Monitor with  
Watch-Dog Timer  
Description  
MB3773 generates the reset signal to protect an arbitrary system when the power-supply voltage momentarily is intercepted or  
decreased. It is IC for the power-supply voltage watch and “Power on reset” is generated at the normal return of the power supply.  
MB3773 sends the microprocessor the reset signal when decreasing more than the voltage, which the power supply of the system  
specified, and the computer data is protected from an accidental deletion.  
In addition, the watch-dog timer for the operation diagnosis of the system is built into, and various microprocessor systems can provide  
the fail-safe function. If MB3773 does not receive the clock pulse from the processor for a specified period, MB3773 generates the  
reset signal.  
Features  
Precision voltage detection (VS = 4.2 V 2.5%)  
Detection threshold voltage has hysteresis function  
Low voltage output for reset signal (VCC = 0.8 V Typ)  
Precision reference voltage output (VR = 1.245 V 1.5%)  
With built-in watch-dog timer of edge trigger input.  
External parts are few.(1 piece in capacity)  
The reset signal outputs the positive and negative both theories reason.  
One type of package (SOP-8pin : 1 type)  
Application  
Industrial Equipment  
Arcade Amusement etc.  
Cypress Semiconductor Corporation  
Document Number: 002-08513 Rev. *C  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised June 28, 2017  
 
 
 
MB3773  
Contents  
Description ............................................................................. 1  
Features .................................................................................. 1  
Application ............................................................................. 1  
Contents ................................................................................. 2  
1. Pin Assignment ................................................................. 3  
2. Block Diagram ................................................................... 3  
3. Functional Descriptions .................................................... 4  
4. Operation Sequence .......................................................... 6  
5. Absolute Maximum Ratings ............................................ 7  
6. Recommended Operating Conditions ............................. 7  
7. Electrical Characteristics .................................................. 8  
7.1 DC Characteristics ..................................................... 8  
7.2 AC Characteristics ...................................................... 9  
8. Typical Characteristic Curves ........................................ 10  
9. Application Circuit ........................................................... 13  
10. Notes on Use .................................................................. 25  
11. Ordering Information ..................................................... 25  
12. RoHS Compliance Information of Lead (Pb)  
Free version ......................................................................... 25  
13. Package Dimension ....................................................... 26  
Document History ................................................................ 27  
Sales, Solutions, and Legal Information ........................... 28  
Document Number: 002-08513 Rev. *C  
Page 2 of 28  
 
MB3773  
1. Pin Assignment  
(TOP VIEW)  
CT  
RESET  
CK  
1
2
3
4
8
7
6
5
RESET  
VS  
VREF  
VCC  
GND  
(SOE008)  
2. Block Diagram  
VC  
5
Reference AMP  
1.24 V  
1.24 V  
COMP.O  
Reference Voltage Generator  
+
_
VREF  
6
100  
kΩ  
1.2 μA  
10 μA  
+
_
+
_
10 μA  
COMP.S  
+
_
R
S
Q
VS  
7
40 kΩ  
Inhibit  
Watch-  
Dog  
CK  
3
Timer  
P.G  
4
GND  
2
1
8
CT  
RESET  
RESET  
Document Number: 002-08513 Rev. *C  
Page 3 of 28  
 
MB3773  
3. Functional Descriptions  
Comp.S is comparator including hysteresis. it compare the reference voltage and the voltage of Vs, so that when the voltage of Vs  
terminal falls below approximately 1.23 V, reset signal outputs.  
Instantaneous breaks or drops in the power can be detected as abnormal conditions by the MB3773 within a 2 μs interval.  
However because momentary breaks or drops of this duration do not cause problems in actual systems in some cases, a delayed  
trigger function can be created by connecting capacitors to the Vs terminal.  
Comp.O is comparator for turning on/off the RESET/RESET outputs and, compare the voltage of the CT terminal and the threshold  
voltage. Because the RESET/RESET outputs have built-in pull-up circuit, there is no need to connect to external pull-up resistor when  
connected to a high impedance load such as CMOS logic IC.  
(It corresponds to 500 kat Vcc = 5 V.) when the voltage of the CK terminal changes from the “high” level into the “Low” level, pulse  
generator is sent to the watch-dog timer by generating the pulse momentarily at the time of drop from the threshold level.  
When power-supply voltages fall more than detecting voltages, the watch-dog timer becomes an interdiction.  
The Reference amplifier is an op-amp to output the reference voltage.  
If the comparator is put up outside, two or more power-supply voltage monitor and overvoltage monitor can be done.  
If it uses a comparator of the open-collector output, and the output of the comparator is connected with the Vs terminal of MB3773  
without the pull-up resistor, it is possible to voltage monitor with reset-hold time.  
Document Number: 002-08513 Rev. *C  
Page 4 of 28  
MB3773  
MB3773 Basic Operation  
VCC  
VCC  
Logic Circuit  
TPR (ms) 1000 · CT (μF)  
TWD (ms) 100 · CT (μF)  
RESET  
RESET  
CK  
CT  
RESET  
RESET  
CK  
TWR (ms) ≈  
20 · CT (μF)  
Example : CT = 0.1 μF  
TRR (ms) 100 (ms)  
GND  
TWD (ms) 10 (ms)  
TWR (ms) 2 (ms)  
V
CC  
V
V
SH  
SL  
0.8 V  
CK  
T
CK  
CT  
T
PR  
RESET  
T
T
WD  
WR  
T
PR  
(1) (2)  
(3)(4)(5)  
(5)  
(6)(7)  
(8)(9)  
(10)  
(11) (12)  
Document Number: 002-08513 Rev. *C  
Page 5 of 28  
MB3773  
4. Operation Sequence  
1. When Vcc rises to about 0.8 V, RESET goes “Low” and RESET goes “High”.  
The pull-up current of approximately 1 μA (Vcc = 0.8 V) is output from RESET.  
2. When Vcc rises to VSH (4.3V), the charge with CT starts.  
At this time, the output is being reset.  
3. When CT begins charging, RESET goes “High” and RESET goes “Low”.  
After TPR reset of the output is released.  
Reset hold time: TPR (ms) 1000 × CT (μF)  
After releasing reset, the discharge of CT starts, and watch-dog timer operation starts.  
TPR is not influenced by the CK input.  
4. C changes from the discharge into the charge if the clock (Negative edge) is input to the CK terminal while discharging CT.  
5. C changes from the charge into the discharge when the voltage of CT reaches a constant  
threshold (1.4 V).  
4 and 5 are repeated while a normal clock is input by the logic system.  
6. When the clock is cut off, gets, and the voltage of CT falls on threshold (0.4 V) of reset on, RESET goes “Low” and RESET goes  
“High”.  
Discharge time of CT until reset is output: TWD is watch-dog timer monitoring time.  
TWD (ms) 100 × CT (μF)  
Because the charging time of CT is added at accurate time from stop of the clock and getting to the output of reset of the clock,  
TWD becomes maximum TWD + TWR by minimum TWD  
.
7. Reset time in operating watch-dog timer: TWR is charging time where the voltage of CT goes up to off  
threshold (1.4 V) for reset.  
TWR (ms) 20 × CT (μF)  
Reset of the output is released after CT reaches an off threshold for reset, and CT starts the discharge, after that if the clock is  
normally input, operation repeats 4 and 5, when the clock is cut off, operationrepeats 6 and 7.  
8. When Vcc falls on VSL (4.2 V), reset is output. CT is rapidly discharged of at the same time.  
9. When Vcc goes up to VSH, the charge with CT is started.  
When Vcc is momentarily low,  
After falling VSL or less Vcc, the time to going up is the standard value of the Vcc input pulse width in VSH or more.  
After the charge of CT is discharged, the charge is started if it is TPI or more.  
10.Reset of the output is released after TPR, after Vcc becomes VSH or more, and the watch-dog timer starts. After that, when Vcc  
becomes VSL or less, 8 to 10 is repeated.  
11.While power supply is off, when Vcc becomes VSL or less, reset is output.  
12.The reset output is maintained until Vcc becomes 0.8 V when Vcc falls on 0 V.  
Document Number: 002-08513 Rev. *C  
Page 6 of 28  
MB3773  
5. Absolute Maximum Ratings  
Rating  
Parameter  
Supply voltage  
Symbol  
Unit  
Min  
- 0.3  
- 0.3  
- 0.3  
- 0.3  
Max  
+ 18  
VCC  
VS  
V
V
VCC + 0.3 ( +18)  
+ 18  
Input voltage  
VCK  
VOH  
PD  
V
RESET, RESET Supply voltage  
Power dissipation (Ta +85°C)  
Storage temperature  
VCC + 0.3 ( +18)  
200  
V
mW  
°C  
TSTG  
- 55  
+ 125  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in  
excess of absolute maximum ratings. Do not exceed these ratings.  
6. Recommended Operating Conditions  
Value  
Parameter  
Symbol  
Unit  
Min  
+ 3.5  
0
Max  
+ 16  
20  
Supply voltage  
VCC  
IOL  
IOUT  
tWD  
FC, tRC  
CT  
V
RESET, RESET sink current  
VREF output current  
mA  
μA  
ms  
μs  
- 200  
0.1  
+ 5  
Watch clock setting time  
CK Rising/falling time  
1000  
100  
10  
t
Terminal capacitance  
0.001  
- 40  
μF  
°C  
Operating ambient temperature  
Ta  
+ 85  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor  
device.All of the device’s electrical characteristics are warranted when the device is operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these  
ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet.  
Users considering application outside the listed conditions are advised to contact their Cypress representatives  
beforehand.  
Document Number: 002-08513 Rev. *C  
Page 7 of 28  
MB3773  
7. Electrical Characteristics  
7.1 DC Characteristics  
(VCC = 5 V, Ta = + 25°C)  
Value  
Unit  
Parameter  
Symbol  
ICC  
Condition  
Min  
Typ  
Max  
Supply current  
Watch-dog timer operating  
600  
900  
μA  
VCC  
4.10  
4.05  
4.20  
4.15  
50  
4.20  
4.20  
4.30  
4.30  
100  
4.30  
4.35  
4.40  
4.45  
150  
VSL  
Ta = - 40°C to + 85°C  
VCC  
Detection voltage  
V
VSH  
VHYS  
VREF  
Ta = - 40°C to + 85°C  
VCC  
Hysteresis width  
mV  
V
1.227  
1.215  
1.245  
1.245  
3
1.263  
1.275  
10  
Reference voltage  
Ta = - 40°C to + 85°C  
VCC = 3.5 V to 16 V  
Reference voltage change rate  
VREF1  
VREF2  
mV  
mV  
V
Reference voltage output  
loading change rate  
IOUT = - 200 μA to + 5 μA  
- 5  
+ 5  
CK threshold voltage  
VTH  
IIH  
Ta = - 40°C to + 85°C  
VCK = 5.0 V  
0.8  
1.25  
0
2.0  
1.0  
CK input current  
μA  
μA  
V
IIL  
VCK = 0.0 V  
- 1.0  
- 0.1  
Watch-dog timer operating  
CT discharge current  
ICTD  
7
10  
14  
VCT = 1.0 V  
VOH1  
VOH2  
VOL1  
VOL2  
VOL3  
VOL4  
IOL1  
VS open, IRESET = - 5 μA  
VS = 0 V, IRESET = - 5 μA  
VS = 0 V, IRESET = 3 mA  
VS = 0 V, IRESET = 10 mA  
VS open, IRESET = 3 mA  
VS open, IRESET = 10 mA  
VS = 0 V, VRESET = 1.0 V  
VS open, VRESET = 1.0 V  
Power on reset operating  
4.5  
4.5  
4.9  
4.9  
0.2  
0.3  
0.2  
0.3  
60  
High level output voltage  
0.4  
0.5  
0.4  
0.5  
Output saturation voltage  
Output sink current  
V
20  
20  
mA  
IOL2  
60  
CT charge current  
ICTU  
0.5  
1.2  
0.8  
0.8  
2.5  
1.2  
1.2  
μA  
V
VCT = 1.0 V  
VRESET = 0.4 V,  
Min supply voltage for RESET  
Min supply voltage for RESET  
VCCL1  
IRESET = 0.2 mA  
VRESET = VCC - 0.1 V,  
RL (between pin 2 and GND) = 1 MΩ  
VCCL2  
V
Document Number: 002-08513 Rev. *C  
Page 8 of 28  
MB3773  
7.2 AC Characteristics  
Parameter  
(VCC = 5 V, Ta = + 25°C)  
Value  
Unit  
Symbol  
TPI  
Condition  
Min  
Typ  
Max  
5 V  
4 V  
VCC input pulse width  
8.0  
μs  
μs  
VCC  
CK  
CK input pulse width  
TCKW  
3.0  
or  
CK input frequency  
TCK  
TWD  
TWR  
20  
5
10  
2
15  
3
μs  
ms  
ms  
Watch-dog timer watching time  
Watch-dog timer reset time  
CT = 0.1 μF  
CT = 0.1 μF  
1
Rising reset hold time  
TPR  
TPD1  
TPD2  
tR  
50  
100  
2
150  
10  
ms  
CT = 0.1 μF, VCC  
RESET, RL = 2.2 k,  
CL = 100 pF  
Output propagation  
delay time from VCC  
μs  
RESET, RL = 2.2 k,  
CL = 100 pF  
3
10  
RL = 2.2 k,  
CL = 100 pF  
Output rising time*  
Output falling time*  
1.0  
0.1  
1.5  
0.5  
μs  
RL = 2.2 k,  
CL = 100 pF  
tF  
* : Output rising/falling time are measured at 10 % to 90 % of voltage.  
Document Number: 002-08513 Rev. *C  
Page 9 of 28  
MB3773  
8. Typical Characteristic Curves  
Supply current vs. Supply voltage  
Output voltage vs. Supply voltage  
(RESET terminal)  
0.75  
6.0  
5.0  
Ta = + 85 °C  
Ta = + 25 °C  
0.65  
Ta = − 40 °C, + 25 °C, + 85 °C  
Ta = − 40 °C  
0.55  
0.45  
0.35  
4.0  
3.0  
2.0  
1.0  
CT = 0.1 μF  
Ta = − 40 °C  
Ta = + 25 °C  
Ta = + 85 °C  
0.25  
0.15  
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0 7.0  
0
2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0  
Supply voltage VCC (V)  
Supply voltage VCC (V)  
Detection voltage (VSH, VSL) vs.  
Output voltage vs. Supply voltage  
Operating ambient temperature  
(RESET terminal)  
(RESET, RESET terminal)  
6.0  
5.0  
4.0  
4.50  
VSH  
VSL  
4.44  
4.30  
4.20  
4.10  
Pull up 2.2 kΩ  
3.0  
2.0  
1.0  
Ta = + 85 °C  
Ta = + 25 °C  
Ta = − 40 °C  
4.00  
0
1.0 2.0  
3.0 4.0  
5.0  
6.0  
7.0  
40 20  
0
+20 +40 +60 +80 +100  
Supply voltage VCC (V)  
Operating ambient temperature Ta (°C)  
Output saturation voltage  
vs. Output sink current  
Output saturation voltage  
vs. Output sink current  
(RESET terminal)  
(RESET terminal)  
500  
CT = 0.1μF  
Ta = − 40 °C  
CT = 0.1μF  
400  
300  
200  
100  
Ta = −40 °C  
400  
Ta = + 25 °C  
Ta = + 85 °C  
300  
200  
Ta = +25 °C  
Ta = +85 °C  
100  
0
2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0  
0
2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0  
Output sink current IOL2 (mA)  
Output sink current IOL8 (mA)  
(Continued)  
Document Number: 002-08513 Rev. *C  
Page 10 of 28  
MB3773  
High level output voltage  
High level output voltage  
vs. High level output current  
vs. High level output current  
(RESET terminal)  
(RESET terminal)  
5.0  
4.5  
5.0  
4.5  
CT = 0.1 μF  
CT = 0.1 μF  
Ta = +25 °C  
Ta = +85 °C  
Ta = +25 °C  
Ta = +85 °C  
Ta = −40 °C  
Ta = −40 °C  
4.0  
4.0  
0
5  
10  
15  
0
5  
10  
15  
High level output current IOH8 (μA)  
High level output current IOH2 (μA)  
Reference voltage  
vs. Reference current  
Reference voltage  
vs. Supply voltage  
1.246  
1.244  
1.242  
1.240  
1.238  
1.236  
1.234  
1.255  
1.250  
Ta = +25 °C  
CT = 0.1 μF  
Ta = +85 °C  
Ta = −40 °C  
CT = 0.1 μF  
Ta = +25 °C  
Ta = +85 °C  
1.245  
1.240  
Ta = −40 °C  
0
3.0 5.0 7.0 9.0 11.0 13.0 15.0 17.0 19.0 21.0  
0
40  
80  
120  
160  
200 240  
Supply voltage VCC (V)  
Reference current IREF (μA)  
Reference voltage vs.  
Rising reset hold time vs.  
Operating ambient temperature  
Operating ambient temperature  
1.27  
160  
VCC = 5 V  
CT = 0.1 μF  
1.26  
1.25  
140  
120  
100  
80  
1.24  
1.23  
1.22  
1.21  
60  
40  
0
40 20  
0
+20 +40 +60 +80 +100  
40 20  
0
+20 +40 +60 +80 +100  
Operating ambient temperature Ta (°C)  
Operating ambient temperature Ta (°C)  
(Continued)  
Document Number: 002-08513 Rev. *C  
Page 11 of 28  
MB3773  
(Continued)  
Reset time vs.  
Operating ambient temperature  
Watch-dog timer watching time vs.  
Operating ambient temperature  
(At watch-dog timer)  
16  
14  
VCC = 5 V  
V
CC = 5 V  
T
3
2
CT = 0.1 μF  
C = 0.1 μF  
12  
10  
8
1
0
6
4
0
40 20  
0
+20 +40 +60 +80 +100  
40 20  
0
+20 +40 +60 +80 +100  
Operating ambient temperature Ta (°C)  
Operating ambient temperature Ta (°C)  
Watch-dog timer watching time  
vs.  
Reset time vs.  
CT terminal capacitance  
Rising reset hold time vs.  
CT terminal capacitance  
CT terminal capacitance  
(at watch-dog timer)  
10 6  
10 5  
10 4  
10 6  
10 5  
10 4  
10 2  
10 1  
10 0  
10 3  
10 3  
Ta = +25 °C,  
+85 °C  
Ta = −40 °C  
10 2  
10 2  
10 1  
Ta =  
Ta = −40 °C  
+25 °C, +85 °C  
10 1  
Ta =  
Ta = +25 °C, +85 °C  
10 1  
10 2  
10 3  
40 °C  
10 0  
10 1  
10 2  
10 0  
10 1  
10 2  
10 3  
10 3  
10 10 10 10 0 10 1 10 2  
3
2
1
10 3 10 2 10 1 10 0 10 1 10 2  
10 3 10 2 10 1 10 0 10 1 10 2  
CT terminal capacitance CT (μF)  
CT terminal capacitance CT (μF)  
CT terminal capacitance CT (μF)  
Document Number: 002-08513 Rev. *C  
Page 12 of 28  
MB3773  
9. Application Circuit  
EXAMPLE 1: Monitoring 5V Supply Voltage and Watch-dog Timer  
VCC (5V)  
MB3773  
Logic circuit  
8
7
6
5
1
2
3
4
RESET  
RESET  
CK  
CT  
GND  
Notes :  
• Supply voltage is monitored using VS.  
• Detection voltage are VSH and VSL  
.
EXAMPLE 2: 5V Supply Voltage Monitoring (external fine-tuning type)  
VCC (5V)  
Logic circuit  
MB3773  
R1  
R2  
1
2
3
4
8
7
6
5
RESET  
RESET  
CK  
CT  
GND  
Notes :  
• Vs detection voltage can be adjusted externally.  
• Based on selecting R1 and R2 values that are sufficiently lower than the resistance of the IC’s internal voltage  
divider, the detection voltage can be set according to the resistance ratio of R1 and R2 (Refer to the table  
below.)  
R1 (k)  
R2 (k)  
Detection voltage: VSL (V)  
Detection voltage: VSH (V)  
10  
3.9  
3.9  
4.4  
4.1  
4.5  
4.2  
9.1  
Document Number: 002-08513 Rev. *C  
Page 13 of 28  
MB3773  
EXAMPLE 3: With Forced Reset (with reset hold)  
(a)  
VCC  
MB3773  
Logic circuit  
1
2
3
4
8
7
6
5
RESET  
RESET  
CK  
CT  
SW  
GND  
Note : Grounding pin 7 at the time of SW ON sets RESET (pin 8) to Low and RESET (pin 2) to High.  
(b)  
VCC  
MB3773  
Logic circuit  
1
2
3
4
8
7
6
5
RESET  
RESET  
CK  
Tr  
10 kΩ  
10 kΩ  
Cr  
GND  
RESIN  
Note : Feeding the signal to terminal RESIN and turning on Tr sets the RESET terminal to Low and the  
RESET terminal to High.  
Document Number: 002-08513 Rev. *C  
Page 14 of 28  
MB3773  
EXAMPLE 4: Monitoring Two Supply Voltages (with hysteresis, reset output and NMI)  
VCC2(12  
VCC1 (5  
Logic circuit  
RESET  
MB3773  
1
2
3
4
8
7
6
5
RESET  
CK  
CT  
30 kΩ  
R3  
NMI or port  
GND  
180 kΩ  
10 kΩ  
R6  
R4  
+
+
_
_
Comp. 1  
1.2 kΩ  
Comp. 2  
R1  
4.7 kΩ  
R5  
5.1 kΩ  
R2  
Example : Comp. 1, Comp. 2  
: MB4204, MB47393  
Notes :  
• The 5 V supply voltage is monitored by the MB3773.  
• The 12 V supply voltage is monitored by the external circuit. Its output is connected to the NMI terminal and, when  
voltage drops, Comp. 2 interrupts the logic circuit.  
• Use VCC1 ( = 5 V) to power the comparators (Comp. 1 and Comp. 2) in the external circuit shown above.  
• The detection voltage of the VCC2 ( = 12 V) supply voltage is approximately 9.2 V/9.4 V and has a hysteresis width  
of approximately 0.2 V.  
VCC2 detection voltage and hysteresis width can be found using the following formulas:  
R3 + (R4 // R5)  
Detection voltage  
× VREF  
V2H  
=
R4 // R5  
(Approximately 9.4 V in the above illustration)  
(Approximately 9.2 V in the above illustration)  
R3 + R5  
V2L =  
Hysteresis width VHYS = V2H V2L  
× VREF  
R5  
Document Number: 002-08513 Rev. *C  
Page 15 of 28  
MB3773  
EXAMPLE 5: Monitoring Two Supply Voltages (with hysteresis and reset output)  
V
V
(12  
CC2  
1 (5 V)  
CC  
20 kΩ  
R6  
Logic circuit  
RESET  
MB3773  
1
2
3
4
8
7
6
5
RESET  
CK  
30 kΩ  
R3  
Diode  
CT  
GND  
180 kΩ  
R4  
+
+
_
_
Comp. 1  
1.2 kΩ  
R1  
Comp. 2  
5.1 kΩ  
R2  
4.7 kΩ  
R5  
Example : Comp. 1, Comp. 2  
: MB4204, MB47393  
Notes :  
• When either 5 V or 12 V supply voltage decreases below its detection voltage (VSL), the MB3773 RESET terminal  
is set to High and the MB3773 RESET terminal is set to Low.  
• Use VCC1 ( = 5 V) to power the comparators (Comp. 1 and Comp. 2) in the external circuit shown above.  
• The detection voltage of the VCC2 ( = 12 V) supply voltage is approximately 9.2 V/9.4 V and has a hysteresis width  
of approximately 0.2 V. For the formulas for finding hysteresis width and detection voltage, refer to section 4.  
Document Number: 002-08513 Rev. *C  
Page 16 of 28  
MB3773  
EXAMPLE 6: Monitoring Low voltage and Overvoltage Monitoring (with hysteresis)  
V
(5  
CC  
20 kΩ  
R6  
MB3773  
Logic circuit  
1
2
3
4
8
7
6
5
RESET  
RESET  
CK  
30 kΩ  
R3  
Diode  
CT  
GND  
180 kΩ  
R4  
+
_
+
_
Comp. 1  
1.2 kΩ  
R1  
Comp. 2  
5.6 kΩ  
R6  
4.7 kΩ  
R5  
Example : Comp. 1, Comp. 2  
: MB4204, MB47393  
RESET  
VCC  
0
V2L V2H  
V1L V1H  
Notes :  
• Comp. 1 and Comp. 2 are used to monitor for overvoltage while the MB3773 is used to monitor for low voltage.  
Detection voltages V1L/V1H at the time of low voltage are approximately 4.2 V/4.3 V. Detection voltages V2L/V2H at  
the time of overvoltage are approximately 6.0 V/6.1 V.For the formulas for finding hysteresis width and detection  
voltage, see EXAMPLE 4.  
• Use VCC ( = 5 V) to power the comparators (Comp. 1 and Comp. 2) in the external circuit shown above.  
Document Number: 002-08513 Rev. *C  
Page 17 of 28  
MB3773  
EXAMPLE 7: Monitoring Supply Voltage Using Delayed Trigger  
VCC  
5V  
VCC  
4V  
MB3773  
Logic circuit  
1
2
3
4
8
7
6
5
RESET  
RESET  
CK  
CT  
C1  
GND  
Note : Adding voltage such as shown in the figure to VCC increases the minimum input pulse  
width by 50 μs (C1 = 1000 pF).  
Document Number: 002-08513 Rev. *C  
Page 18 of 28  
MB3773  
EXAMPLE 8: Stopping Watch-dog Timer (Monitoring only supply voltage)  
These are example application circuits in which the MB3773 monitors supply voltage alone without resetting the micropro-  
cessor even if the latter, used in standby mode, stops sending the clock pulse to the MB3773.  
• The watch-dog timer is inhibited by clamping the CT terminal voltage to VREF  
.
The supply voltage is constantly monitored even while the watch-dog timer is inhibited.  
For this reason, a reset signal is output at the occurrence of either instantaneous disruption or a sudden drop to low voltage.  
Note that in application examples (a) and (b), the hold signal is inactive when the watch-dog timer is inhibited at the time of  
resetting.  
If the hold signal is active when tie microprocessor is reset, the solution is to add a gate, as in examples (c) and (d).  
(a) Using NPN transistor  
V
(5 V)  
CC  
MB3773  
Logic circuit  
RESET  
1
2
3
4
8
7
6
5
RESET  
CK  
HALT  
GND  
R2=1 kΩ  
R1=1 MΩ  
CT  
(b) Using PNP transistor  
V
(5 V)  
CC  
MB3773  
Logic circuit  
RESET  
1
8
7
6
5
2
3
4
RESET  
CK  
HALT  
GND  
R2=1 kΩ  
R1=51  
CT  
(Continued)  
Document Number: 002-08513 Rev. *C  
Page 19 of 28  
MB3773  
(Continued)  
(c) Using NPN transistor  
(5 V)  
V
CC  
MB3773  
Logic circuit  
1
2
3
4
8
7
6
5
RESET  
RESET  
CK  
R1=1 MΩ  
HALT  
GND  
R2=1 kΩ  
CT  
(d) Using PNP transistor  
V
(5 V)  
CC  
MB3773  
Logic circuit  
1
2
3
4
8
7
6
5
RESET  
RESET  
CK  
R1=51 kΩ  
HALT  
GND  
R2=1 kΩ  
CT  
Document Number: 002-08513 Rev. *C  
Page 20 of 28  
MB3773  
EXAMPLE 9: Reducing Reset Hold Time  
V
( = 5 V)  
VCC ( = 5 V)  
CC  
MB3773  
MB3773  
Logic circuit  
RESET  
Logic circuit  
RESET  
1
2
3
4
1
2
3
4
8
7
6
5
8
7
6
5
RESET  
CK  
RESET  
CK  
CT  
CT  
GND  
GND  
(a) TPR reduction method  
(b) Standard usage  
Notes :  
• RESET is the only output that can be used.  
• Standard TPR, TWD and TWR value can be found using the following formulas.  
Formulas:TPR (ms) 100 × CT (μF)  
T
WD (ms) 100 × CT (μF)  
TWR (ms) 16 × CT (μF)  
• The above formulas become standard values in determining TPR, TWD and TWR  
.
Reset hold time is compared below between the reduction circuit and the standard circuit.  
CT = 0.1 μF  
TPR reduction circuit  
10 ms  
Standard circuit  
100 ms  
TPR  
TWD  
TWR  
10 ms  
10 ms  
1.6 ms  
2.0 ms  
Document Number: 002-08513 Rev. *C  
Page 21 of 28  
MB3773  
EXAMPLE 10: Circuit for Monitoring Multiple Microprocessor  
VCC ( = 5  
FF1  
FF2  
FF3  
S
S
S
D1 Q1  
CK Q1  
R
D2 Q2  
CK2 Q2  
R
D3 Q3  
CK Q3  
R
R2  
R1  
*
*
*
RESET  
RESET  
RESET  
RESET  
CK  
RESET  
CK  
RESET  
CK  
GND  
GND  
GND  
1
2
8
7
3
4
6
5
CT  
Figure 1  
*: Microprocessor  
MB3773  
Notes :  
connects from FF1 and FF2 outputs Q1 and Q2 to the NOR input.  
• Depending on timing, these connections may not be necessary.  
• Example : R1 = R2 = 2.2 kΩ  
CT = 0.1 μF  
CK1  
Q1  
CK2  
Q2  
CK3  
Q3  
NOR  
Output  
Figure 2  
Document Number: 002-08513 Rev. *C  
Page 22 of 28  
MB3773  
Description of Application Circuits  
Using one MB3773, this application circuit monitors multiple microprocessor in one system. Signals from each microprocessor are  
sent to FF1, FF2 and FF3 clock inputs. Figure 2 shows these timings. Each flip-flop operates using signals sent from microprocessor  
as its clock pulse. When even one signal stops, the relevant receiving flip-flop stops operating. As a result, cyclical pulses are not  
generated at output Q3. Since the clock pulse stops arriving at the CK terminal of the MB3773, the MB3773 generates a reset signal.  
Note that output Q3 frequency f will be in the following range, where the clock frequencies of CK1, CK2 and CK3 are f1, f2 and f3  
respectively.  
1
f0  
1
f
1
1
1
---- --  
+
+
---- ---- ----  
f1 f2 f3  
where f0 is the lowest frequency among f1, f2 and f3.  
Document Number: 002-08513 Rev. *C  
Page 23 of 28  
MB3773  
EXAMPLE 11: Circuit for Limiting Upper Clock Input Frequency  
V
(5 V)  
CC  
R2  
RESET  
1
2
3
4
8
7
6
5
RESET  
CT  
R1=10 kΩ  
Tr1  
CK  
GND  
C2  
Notes :  
• This is an example application to limit upper frequency fH of clock pulses sent from the microprocessor.  
If the CK cycle sent from the microprocessor exceeds fH, the circuit generates a reset signal.  
(The lower frequency has already been set using CT.)  
• When a clock pulse such as shown below is sent to terminal CK, a short T2 prevents C2 voltage from reaching the  
CK input threshold level ( := 1.25 V), and will cause a reset signal to be output.  
The T1 value can be found using the following formula :  
T1 0.3 C2R2  
where VCC = 5 V, T3 3.0 μs, T2 20 μs  
T2  
CK waveform  
T3  
C2 voltage  
T
Example : Setting C and R allow the upper T value to be set (Refer to the table below).  
1
C
R
T1  
0.01 μF  
0.1 μF  
10 kΩ  
10 kΩ  
30 μs  
300 μs  
Document Number: 002-08513 Rev. *C  
Page 24 of 28  
MB3773  
10. Notes on Use  
Take account of common impedance when designing the earth line on a printed wiring board.  
Take measures against static electricity.  
For semiconductors, use antistatic or conductive containers.  
When storing or carrying a printed circuit board after chip mounting, put it in a conductive bag or container.  
The work table, tools and measuring instruments must be grounded.  
The worker must put on a grounding device containing 250 kto 1 Mresistors in series.  
Do not apply a negative voltage  
Applying a negative voltage of 0.3 V or less to an LSI may generate a parasitic transistor, resulting in  
malfunction.  
11. Ordering Information  
Part number  
MB3773PF-❏❏❏E1  
Package  
Remarks  
8-pin plastic SOP  
(SOE008)  
12. RoHS Compliance Information of Lead (Pb) Free version  
The LSI products of Cypress with “E1” are compliant with RoHS Directive , and has observed the standard of lead, cadmium, mercury,  
Hexavalent chromium, polybrominated biphenyls (PBB) , and polybrominated diphenyl ethers (PBDE) .  
The product that conforms to this standard is added “E1” at the end of the part number.  
Document Number: 002-08513 Rev. *C  
Page 25 of 28  
 
MB3773  
13. Package Dimension  
Package Code: SOE008  
0.25  
ꢃ;  
H
D
4
D
5
4
E1  
E
INDEX AREA  
0.25  
H D  
ꢃ;  
0.40  
C A-B D  
5
BOTTOM VIEW  
TOP VIEW  
DETAIL A  
L2  
GAUGE  
PLANE  
ș
c
A
A
SEATING  
PLANE  
C
A'  
b
A1  
10  
0.10  
A-B  
e
L
L1  
SECTION A-A'  
b
0.13  
C
D
8
DETAIL A  
SIDE VIEW  
127(6  
ꢁꢂ $/', 0(16, 21ꢂ $5ꢂ, ꢂ 0, //, 0(7( ꢁ  
ꢁꢂ ', 0(16, 21, 1 $1ꢂ 7 2/(5$1&, 1 ꢂ 3( ꢂꢂ $6 0ꢂ < ꢁ ꢅ ꢇꢇ ꢁ  
DIMENSION  
SYMBOL  
MIN. NOM. MAX.  
2.25  
ꢁꢂ ', 0(16, 21, 1 , 1&/ 8'ꢂ 02/ ꢂ )/$6  ', 0(16, 21, 1 ꢂ (ꢂ '2(ꢂ 12, 1&/ 8'(  
ꢂꢂꢂ, 17(5/($ ꢂ )/$6 ꢂ 2ꢂ 3527586, 2 , 17(5/($ ꢂ )/$6 ꢂ 2ꢂ 3527586, 216  
ꢂꢂꢂꢂ 6+$/ꢂ 12ꢂ (;&(( ꢂ ꢁ ꢂ Pꢂ 3( ꢂ 6, ' ꢂ ꢂ DQ(', 0(16, 2ꢂ $5ꢂ '(7(50, 1('  
A
0.20  
0.05  
A1  
D
ꢂꢂꢂꢂ $ꢂ '$78 ꢂ  
6.35 BSC  
7.80 BSC  
5.30 BSC  
ꢁꢂ 7+ꢂ 3$&.$*ꢂ 7 2ꢂ 0$ %ꢂ 6 0$//( ꢂ 7+$ ꢂ 7+ꢂ 3$&.$*ꢂ %277 2 ꢁ  
ꢂꢂꢂꢂ ', 0(16, 21, 1 ꢂꢂ ꢂ DQ(ꢂ $5ꢂ '(7(50, 1( $ꢂ 7+ꢂ 287(50267  
ꢂꢂꢂꢂ (;75( 0(2 7+ꢂ 3/$67, ꢂ %2'ꢂ (;&/ 86, 9 2ꢂ 02/ )/$6 ꢉ  
ꢂꢂꢂꢂ 7+ꢂ %$ ꢂ %855 ꢂ *$7 %855ꢂ $1ꢂ, 17(5/($ ꢂ )/$6 %8, 1&/ 8', 1*  
ꢂꢂꢂꢂ $1ꢂ 0, 6 0$7&ꢂ %(7 :(( ꢂ 7+ꢂ 7 2ꢂ $1ꢂ %277 2 ꢂ 2ꢂ 7+ꢂ 3/$67, ꢂ %2' ꢁ  
E
E
1
ș
0°  
0.13  
0.39  
0.45  
8°  
ꢁꢂ '$780ꢂ  
ꢂ ꢂ ꢂ 7 ꢂ %'(7(50, 1( $'$78 ꢂ ꢁ  
0.20  
0.55  
0.75  
c
b
L
L
L
e
ꢁꢂ ꢍ , ꢂ 7+ꢂ 0$;, 08 180%( ꢂ 2ꢂ 7(50, 1$ꢂ 326, 7, 21ꢂ ) 2ꢂ 7+ꢂ 63(&, ), ('  
ꢂꢂꢂꢂꢂ 3$&.$*ꢂ /(1*7 ꢁ  
0.47  
ꢁꢂ 7+ꢂ ', 0(16, 2ꢂ $33/ ꢂ 7 7+ꢂ )/$ꢂ 6(&7, 2 27+ꢂ /($ ꢂ %(7 :(( ꢂ  PP  
0.60  
ꢂꢂꢂꢂ 7 ꢂ ꢁ ꢃꢅ P )52 ꢂ 7+ꢂ /($ 7,  
1.25 REF  
0.25 BSC  
1.27 BSC  
1
ꢁꢂ ', 0(16, 2 E '2(ꢂ 12, 1&/ 8'ꢂ 7+ꢂ '$ 0%$ ꢂ 3527586, 2 ꢂ $// 2 :$%/(  
ꢂꢂꢂꢂ '$ 0%$ ꢂ 3527586, 2ꢂ 6+$/ꢂ %ꢂ P 7 27$ꢂ, ꢂ (;&(627+ꢂ E ', 0(16, 21  
ꢂꢂꢂꢂ $ꢂ 0$;, 08 ꢂ 0$7(5, $ꢂ &21', 7, 2 ꢁ  
2
ꢂꢂꢂꢂ 7+ꢂ '$ 0%$ ꢂ 0$ꢂ 12%ꢂ / 2&$7( ꢂ 2ꢂ 7+ꢂ / 2 :( ꢂ 5$', 8ꢂ 27+ꢂ ) 22ꢁ  
ꢁꢂ 7+, ꢂ &+$ 0)( ꢂ )($785, ꢂ 237, 21$ ꢁꢂ / , ꢂ, ꢂ 12ꢂ 35(6(1 7+( ꢂ ꢂ 3, ꢂ ꢀ  
ꢂꢂꢂ, '(17, ), ( 086 %ꢂ / 2&$7( ꢂ :, 7+, ꢂ 7+ꢂ, 1'(ꢂ $5(ꢂ, 1', &$7('  
ꢂ ꢍ $ꢀ, '(), 1( ꢂ $ꢂ 7+ꢂ 9(57, &$ꢂ ', 67$1&ꢂ )52 ꢂ 7+ꢂ 6($7, 1 3/$1ꢂ 7 2  
ꢂꢂꢂꢂꢂꢂꢂ 7+ꢂ / 2 :(6ꢂꢂ 32, 1ꢂ 2ꢂ 7+ꢂ 3$&.$*ꢂ %2'ꢂ (;&/ 8', 1 7+ꢂ /, ꢂ $1ꢂ 25  
ꢂꢂꢂꢂꢂꢂꢂ 7+(50$ꢂ (1+$1&( 0(1ꢂ 2ꢂ &$9, 7 ꢂ '2 : 3$&.$*ꢂ &21), *85$7, 21 ꢁ  
11. JEDEC SPECIFICATION NO. REF : N/A  
002-15857 Rev. **  
Document Number: 002-08513 Rev. *C  
Page 26 of 28  
 
MB3773  
Document History  
Spansion Publication Number: DS04-27401-8Ea  
Document Title: MB3773 Power Supply Monitor with Watch-Dog Timer  
Document Number: 002-08513  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
Migrated to Cypress and assigned document number 002-08513.  
No change to document contents or format.  
**  
TAOA  
TAOA  
05/11/2006  
*A  
5199075  
04/04/2016 Updated to Cypress format.  
Updated Pin Assignment: Change the package name from FPT-8P-M01 to SOE008  
Updated Ordering Information: Change the package name from FPT-8P-M01 to SOE008  
Updated Package Dimension: Updated to Cypress format  
Deleted “Marking Format (Lead Free version)”  
*B  
*C  
5592858  
5788613  
HIXT  
01/23/2017  
06/28/2017  
Deleted “Labeling Sample (Lead free version)”  
Deleted “MB3773PF-❏❏❏E1 Recommended Conditions of Moisture Sensitivity Level”  
Deleted the part number, “MB3773PF-❏❏❏”, from Ordering Information  
Deleted the words in the Remarks, “Lead Free version”, from Ordering Information  
MASG  
Adapted Cypress new logo.  
Document Number: 002-08513 Rev. *C  
Page 27 of 28  
MB3773  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
Products  
PSoC® Solutions  
ARM® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Forums | WICED IOT Forums | Projects | Video | Blogs | Training  
| Components  
Internet of Things  
Memory  
Technical Support  
cypress.com/memory  
cypress.com/mcu  
cypress.com/support  
Microcontrollers  
PSoC  
cypress.com/psoc  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/wireless  
ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries.  
© Cypress Semiconductor Corporation, 2003-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document,  
including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to  
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users  
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation  
of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent  
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any  
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is  
the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products  
are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or  
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the  
device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose failure to perform can be reasonably  
expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,  
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other  
liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners..  
Document Number: 002-08513 Rev. *C  
Revised June 28, 2017  
Page 28 of 28  

相关型号:

MB3773PF-XXXE1

Power Supply Management Circuit, Fixed, 1 Channel, BIPolar, PDSO8, 5.30 X 6.35 MM, 2.25 MM HEIGHT, 1.27 MM PITCH, ROHS COMPLIANT, PLASTIC, SOP-8
SPANSION

MB3773PS

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PSIP8, PLASTIC, SIP-8
FUJITSU

MB3773PS

1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PSIP8, PLASTIC, SIP-8
SPANSION

MB3775

SWITCHING REGULATOR CONTROLLER
FUJITSU

MB3775M

Dual Switching Controller, Voltage-mode, 0.75A, 500kHz Switching Freq-Max, PDIP16, PLASTIC, DIP-16
FUJITSU

MB3775PF

SWITCHING REGULATOR CONTROLLER
FUJITSU

MB3775PF

Dual Switching Controller
SPANSION

MB3775PF-XXX

Dual Switching Controller, 0.075A, 500kHz Switching Freq-Max, PDSO16, 5.30 X 10.15 MM, 2.25 MM HEIGHT, 1.27 MM PITCH, PLASTIC, SOP-16
FUJITSU

MB3775PF-XXXE1

Dual Switching Controller, 0.075A, 500kHz Switching Freq-Max, PDSO16, 5.30 X 10.15 MM, 2.25 MM HEIGHT, 1.27 MM PITCH, ROHS COMPLIANT, PLASTIC, SOP-16
FUJITSU

MB3775PFE1

Dual Switching Controller
SPANSION

MB3775PFE1

Dual Switching Controller, Voltage-mode, 0.05A, 500kHz Switching Freq-Max, BIPolar, PDSO16
CYPRESS

MB3775PFV

SWITCHING REGULATOR CONTROLLER
FUJITSU