MB39C503WQN-G-AMERE1 [CYPRESS]

High Efficiency Step Down DC/DC Controller Datasheet;
MB39C503WQN-G-AMERE1
型号: MB39C503WQN-G-AMERE1
厂家: CYPRESS    CYPRESS
描述:

High Efficiency Step Down DC/DC Controller Datasheet

文件: 总46页 (文件大小:1171K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MB39C502/503/504  
High Efficiency Step Down  
DC/DC Controller Datasheet  
Description  
MB39C502 is a single output step down DC/DC controller using external FETs. It achieves the high efficiency with  
“Enhanced Low Power Mode (LPM) Operation” in light load. In Enhanced LPM, this controller operates that the  
quiescent current is reduced only 30μA and the switching frequency is fallen by extending on time. These operations  
enable to improve the efficiency in light load. Internal compensation circuit with current mode architecture and internal  
boost switch allow reducing the BOM parts and the component area.  
Features  
High Efficiency with Enhanced LPM Operation  
Automatic Transition for PFM/PWM  
Enhanced LPM Operation Transferred by SLP_N Assertion  
Over Current Alerting  
Reference Voltage Accuracy: ±1%  
Output Voltage Range  
: 0.7V to 2.0V (MB39C502)  
: 2.4V to 3.5V (MB39C503)  
: fixed 5V  
(MB39C504)  
VIN Input Voltage Range  
: 4.0V to 25V (MB39C502/C503)  
: 5.4V to 25V (MB39C504)  
VDD Input Voltage Range: 4.5V to 5.5V (MB39C502/C503)  
Internal 5V LDO with Switchover (MB39C504)  
Fixed Frequency Emulated On-Time Control: 800kHz  
Current Mode Architecture with Internal Compensation Circuit  
Internal Boost Switch  
Fixed 700μs Soft Start Time without Load Dependence  
Internal Discharge FET  
Power Good Monitor  
Enhanced Protection Functions: OVP, UVP, ILIM  
Thermal Shutdown  
Small 3mm × 3mm × 0.75mm QFN16 Package  
Applications  
Point of Load VR for Note PC  
General Purpose Step Down Regulator  
Cypress Semiconductor Corporation  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Document Number: 002-08449 Rev *A  
Revised February 12, 2016  
MB39C502/503/504  
Contents  
1. Typical Application ................................................................................................................................ 3  
2. Pin Configuration................................................................................................................................... 4  
3. Pin Configuration................................................................................................................................... 6  
4. Block Diagram........................................................................................................................................ 8  
5. Absolute Maximum Rating.................................................................................................................. 10  
6. Recommended Operating Conditions.................................................................................................11  
7. Electrical Characteristics.................................................................................................................... 13  
8. Protections and Power Good function............................................................................................... 22  
8.1  
8.2  
Description......................................................................................................................................... 22  
Timing Chart ...................................................................................................................................... 23  
9. Enhanced LPM Description ................................................................................................................ 27  
9.1  
9.2  
9.3  
Ultra Low Quiescent Current.............................................................................................................. 28  
Extended On Time............................................................................................................................. 28  
Timing Chart of Enhanced LPM......................................................................................................... 29  
10.  
Over Current Alerting Description.................................................................................................. 30  
11.  
Application Note .............................................................................................................................. 31  
11.1  
11.1.1  
Setting Operating Conditions............................................................................................................. 31  
Setting Output Voltage................................................................................................................... 31  
11.1.2  
11.2  
Setting Over Current Limitation and Over Current Alerting ............................................................ 31  
Selection Parts................................................................................................................................... 32  
11.2.1  
11.2.2  
11.2.3  
11.2.4  
11.2.5  
11.2.6  
11.2.7  
11.2.8  
Selection of Smoothing Inductor .................................................................................................... 32  
Selection of Switching FET............................................................................................................ 33  
Selection of Fly Back Diode........................................................................................................... 35  
Selection of Boost Diode................................................................................................................ 35  
Selection of Input Capacitor........................................................................................................... 36  
Selection of Output Capacitor........................................................................................................ 37  
Selection of Boost Capacitor.......................................................................................................... 38  
Selection of VDD Capacitor ........................................................................................................... 39  
11.2.9  
11.3  
Selection of VCC Capacitor and Resistor ...................................................................................... 39  
Layout................................................................................................................................................ 40  
12.  
13.  
14.  
Ordering Information....................................................................................................................... 43  
Package Dimensions....................................................................................................................... 44  
Major Changes................................................................................................................................. 45  
Document Number: 002-08449 Rev *A  
Page 2 of 46  
MB39C502/503/504  
1. Typical Application  
(MB39C502/C503)  
VIN  
4.0V~25V  
V5  
CIND  
CIN  
VDD  
VCC  
VIN  
MH  
DRVH  
Power Good  
OC Alert  
PWRGD BST  
ALERT_N  
LX  
L
RS  
VOUT  
VOUT Sense  
FB  
VOUT Sense  
ML  
DRVL  
COUT  
LOAD  
EN  
EN  
PGND  
SLP#  
SLP_N  
ILIM  
VCC  
CSP  
CSN  
AGND  
Document Number: 002-08449 Rev *A  
Page 3 of 46  
MB39C502/503/504  
(MB39C504)  
VIN  
5.4V~25V  
CIND  
CIN  
LDO5 VIN  
VCC  
MH  
DRVH  
Power Good  
PWRGD BST  
LX  
L
RS  
VOUT  
VOUT  
VOUT  
VOUT Sense  
VOUT Sense  
VOUTS  
DRVL  
ML  
COUT  
LOAD  
EN  
EN  
PGND  
SLP#  
SLP_N  
ILIM  
VCC  
CSP  
CSN  
AGND  
2. Pin Configuration  
(MB39C502/C503)  
3.0 mm  
12  
11  
10  
9
13  
14  
15  
16  
8
7
6
5
FB  
SLP_N  
PWRGD  
VCC  
DRVH  
VIN  
(Top View)  
LX  
EP :AGND  
PGND  
1
2
3
4
Document Number: 002-08449 Rev *A  
Page 4 of 46  
MB39C502/503/504  
(MB39C504)  
3.0 mm  
12  
11  
10  
9
13  
14  
15  
16  
8
7
6
5
VOUTS  
SLP_N  
PWRGD  
VCC  
DRVH  
VIN  
(Top View)  
LX  
EP :AGND  
PGND  
1
2
3
4
Document Number: 002-08449 Rev *A  
Page 5 of 46  
MB39C502/503/504  
3. Pin Configuration  
(MB39C502/C503)  
Pin Number  
Pin Name  
ILIM(*1)  
I/O  
Description  
1
2
3
4
5
6
7
8
9
I
Connect to VCC terminal.  
Open drain output terminal with over current alerting.  
ALERT_N  
VDD  
O
I
Power supply voltage input terminal of switching FET gate driver.  
Low side switching FET gate driver output terminal.  
Power ground.  
DRVL  
PGND  
LX  
O
-
-
Inductor and high side switching FET source connection terminal.  
Power supply of switching regulator input terminal.  
High side switching FET gate driver output terminal.  
Boost capacitor connection terminal.  
VIN  
I
DRVH  
BST  
O
I
Enable input of PWM controller.  
10  
EN  
I
When turning on, apply greater than 0.65V and less than 5.5V. When turning off, apply less  
than 0.25V.  
11  
12  
13  
CSP  
CSN  
FB  
I
I
I
Current sensing positive input terminal.  
Current sensing negative input terminal.  
Feedback voltage input of switching regulator.  
Low power mode signal input terminal.  
Transferred to low power mode by connecting to “L” level  
Open drain output terminal with power good.  
Power supply voltage input terminal of PWM controller.  
Analog ground.  
14  
SLP_N  
I
15  
16  
EP  
PWRGD  
VCC  
O
I
AGND  
-
*1: ILIM terminal should be fixed to connect to VCC terminal.  
Document Number: 002-08449 Rev *A  
Page 6 of 46  
MB39C502/503/504  
(MB39C504)  
Pin Number  
Pin Name  
ILIM(*1)  
I/O  
Description  
1
2
3
4
5
6
7
8
9
I
I
Connect to VCC terminal whenever.  
VOUT  
LDO5  
DRVL  
PGND  
LX  
DCDC output voltage input for switchover.  
5V LDO output terminal.  
O
O
-
Low side switching FET gate driver output terminal.  
Power ground.  
-
Inductor and high side switching FET source connection terminal.  
Power supply of switching regulator input terminal.  
High side switching FET gate driver output terminal.  
Boost capacitor connection terminal.  
VIN  
I
DRVH  
BST  
O
I
Enable input of PWM controller.  
10  
EN  
I
When turning on, apply greater than 2.5V and less than 25V. When turning off, apply less  
than 0.6V.  
11  
12  
13  
CSP  
I
I
I
Current sensing positive input terminal.  
Current sensing negative input terminal.  
DCDC output voltage input terminal.  
CSN  
VOUTS  
Low power mode signal input terminal.  
Transferred to low power mode by connecting to “L” level  
Open drain output terminal with power good.  
Power supply voltage input terminal of PWM controller.  
Analog ground.  
14  
SLP_N  
I
15  
16  
EP  
PWRGD  
VCC  
O
I
AGND  
-
*1: ILIM terminal should be fixed to connect to VCC terminal.  
Document Number: 002-08449 Rev *A  
Page 7 of 46  
MB39C502/503/504  
4. Block Diagram  
(MB39C502/C503)  
VBIAS  
VCC  
VIN  
VIN  
SLP_N  
EN  
REF  
EN_SLP  
IBIAS  
BGR  
VREF  
EN  
SLP  
Logic  
IBIAS  
Control  
EN  
EN#  
DSB_SLP  
0.92x  
REF  
PWRGD Cmp  
OV Cmp  
PWRGD Logic  
(Open Drain)  
PWRGD  
ALERT_N  
VDD  
1.15x  
REF  
ALT  
OC Alert  
(Open Drain)  
REF  
VTH  
Control  
OVP  
OVP  
Logic  
0.70x  
REF  
VIN  
UV Cmp  
UVP  
UVP  
Logic  
BST SW  
Control  
TON  
CSN  
FB  
TON  
Timer  
BST  
FB Buffer  
DISCHG  
Logic  
High Side  
Driver  
DH  
DRVH  
LX  
Error Amp  
R
Q
Current Cmp  
PWM  
REF  
REF  
SS  
S
XQ  
Drive  
Logic  
VDD  
Low Side  
Driver  
ILIM  
OVP  
UVP  
ILIM  
ALT  
AST  
DL  
ZC  
DRVL  
PGND  
Current Sense Amp  
Alert Cmp  
CSP  
CSN  
EN#  
UVLO  
BSTUV  
BST  
UVLO  
PGND  
LX  
UVLO  
UVLO  
VCC  
AGND  
Document Number: 002-08449 Rev *A  
Page 8 of 46  
MB39C502/503/504  
(MB39C504)  
VBIAS  
VCC  
SLP_N  
EN  
VIN  
VIN  
EN  
REF  
EN_SLP  
IBIAS  
BGR  
VREF  
SLP  
Logic  
IBIAS  
Control  
EN  
EN#  
DSB_SLP  
0.92x  
REF  
PWRGD Cmp  
OV Cmp  
PWRGD Logic  
(Open Drain)  
PWRGD  
VIN  
1.15x  
REF  
REF  
VTH  
OVP  
OVP  
Control  
VOUT  
LDO5  
LDO5  
Switchover  
Logic  
0.70x  
REF  
VIN  
UV Cmp  
UVP  
UVP  
Logic  
BST SW  
Control  
TON  
VOUTS  
TON  
Timer  
BST  
FB Buffer  
High Side  
Driver  
DISCHG  
Logic  
DH  
DRVH  
LX  
Error Amp  
R
Q
Current Cmp  
PWM  
REF  
REF  
SS  
S
XQ  
Drive  
Logic  
VDD  
Low Side  
Driver  
ILIM  
OVP  
UVP  
ILIM  
AST  
DL  
ZC  
DRVL  
PGND  
Current Sense Amp  
CSP  
CSN  
EN#  
UVLO  
BSTUV  
BST  
UVLO  
PGND1  
UVLO  
UVLO  
VCC  
LX  
AGND  
Document Number: 002-08449 Rev *A  
Page 9 of 46  
MB39C502/503/504  
5. Absolute Maximum Rating  
(MB39C502/C503/C504)  
Rating  
Parameter  
Symbol  
VVIN  
Condition  
VIN input voltage  
Unit  
Min  
Max  
0.3  
0.3  
0.3  
0.3  
0.3  
2  
+28  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
VVCC  
VVDD  
VVOUT  
VBST  
VLX  
VCC input voltage  
+6.5  
+6.5  
+6.5  
+34.5  
+28  
Power supply voltage  
VDD input voltage (MB39C502/C503)  
VOUT input voltage (MB39C504)  
BST bias voltage  
LX switching voltage  
VFB  
FB input voltage (MB39C502/C503)  
VOUTS input voltage  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
VVCC +0.3  
+6.5  
VVOUTS  
VINPUT  
VCS  
ILIM input voltage  
VVCC +0.3  
+6.5  
Terminal voltage  
CSP, CSN input voltage  
EN input voltage (MB39C502/C503)  
EN input voltage (MB39C504)  
SLP_N input voltage  
+6.5  
VEN  
+28  
VSLP  
+6.5  
VNOD  
VBST-LX  
PWRGD, ALERT_N bias voltage  
BSTLX difference voltage  
+6.5  
+6.5  
BSTVDD difference voltage  
(MB39C502/C503)  
VBST-VDD  
VBST-LDO5  
-
-
+28  
+28  
V
V
Difference voltage  
Output current  
BSTVOUT, LDO5 difference voltage  
(MB39C504)  
VGND  
VCSP-CSN  
IDRV  
AGNDPGND difference voltage  
CSPCSN difference voltage  
DRVH, DRVL DC current  
PWRGD  
0.3  
0.3  
60  
-
+0.3  
+0.3  
+60  
V
V
mA  
mA  
mA  
mW  
°C  
INOD  
+2  
IALERT  
PD  
ALERT_N sink current (MB39C502/C503)  
Ta ≤ ±25°C  
-
+2  
Power dissipation  
-
2100(*1)  
+125  
Storage temperature  
TSTG  
-
55  
*1: When the IC is mounted on 10cm × 10cm four-layer square epoxy board. IC is mounted on a four-layer epoxy  
board, which terminal bias, and the IC’s thermal pad is connected to the epoxy board.  
WARNING  
Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature,  
etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
Document Number: 002-08449 Rev *A  
Page 10 of 46  
MB39C502/503/504  
6. Recommended Operating Conditions  
(MB39C502/C503/C504)  
Value  
Typ  
Parameter  
Symbol  
VVIN  
Condition  
Unit  
Min  
4.0  
Max  
VIN input voltage (MB39C502/C503)  
VIN input voltage (MB39C504)  
VCC input voltage  
-
-
-
-
-
-
-
-
25  
25  
V
V
V
V
V
V
V
V
VVIN  
5.4  
4.5  
4.5(*1)  
4.5  
4.5  
0
VVCC  
VVDD  
VVDD  
VLDO5  
VBST  
VLX  
5.5  
5.5  
5.5  
5.5  
30.5  
25  
Power supply voltage  
VDD input voltage (MB39C502)  
VDD input voltage (MB39C503)  
VOUT input voltage (MB39C504)  
BST bias voltage  
LX switching voltage  
1  
FB, ILIM input voltage  
(MB39C502/C503)  
VINPUT  
0
-
VVCC  
V
VINPUT  
VCS  
ILIM input voltage (MB39C504)  
0
0
0
-
-
-
VVCC  
2.0  
V
V
V
CSP, CSN input voltage (MB39C502)  
CSP, CSN input voltage (MB39C503)  
VCS  
3.5  
CSP, CSN, VOUTS input voltage  
(MB39C504)  
Terminal voltage  
VCS  
VEN  
0
0
-
-
5.5  
5.5  
V
V
EN, SLP_N input voltage  
(MB39C502/C503)  
VEN  
EN input voltage (MB39C504)  
0
0
-
-
25  
V
V
VSLP  
SLP_N input voltage (MB39C504)  
5.5  
PWRGD, ALERT_N bias voltage  
(MB39C502/C503)  
VNOD  
0
-
5.5  
V
VNOD  
PWRGD bias voltage (MB39C504)  
0
0
-
-
5.5  
5.5  
V
V
VBST-LX  
BSTLX difference voltage  
BSTVDD difference voltage  
(MB39C502/C503)  
VBST-VDD  
VBST-LDO5  
-
-
-
-
25  
25  
V
Difference voltage  
Output current  
BSTVOUT, LDO5 difference voltage  
(MB39C504)  
V
V
VGND  
VCSP-CSN  
IDRV  
AGNDPGND difference voltage  
CSPCSN difference voltage  
DRVH, DRVL DC current  
0.05  
-
-
-
-
0.05  
35  
45  
1
0
mV  
mA  
mA  
μF  
45  
INOD  
PWRGD, ALERT_N sink current  
Connect BST to LX capacitor  
Connect VCC to AGND capacitor  
-
-
-
BST capacitor  
VCC capacitor  
CBST  
0.47  
1.0  
-
CVCC  
-
μF  
Connect VDD to PGND capacitor  
(MB39C502/C503)  
VDD capacitor  
LDO5 capacitor  
CVDD  
CLDO5  
TA  
-
4.7  
4.7  
-
-
μF  
μF  
°C  
Connect LDO5 to PGND  
capacitor(MB39C504)  
-
-
Operating ambient  
temperature  
Ambient temperature  
30  
85  
*1: This VDD minimum input voltage indicates dynamic input range below 1ms. Refer to figure (next page) about the  
static VDD minimum input voltage.  
Document Number: 002-08449 Rev *A  
Page 11 of 46  
MB39C502/503/504  
VDD Static Input Voltage vs. Ambient Temprature  
(BAT54XV2T1G boost diode connected)  
5.6  
5.5  
5.4  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100  
Ambient Temprature / degC  
WARNING  
The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device’s electrical characteristics are warranted when the device is operated  
within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges.  
Operation outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to use, conditions, or combinations not represented on the data sheet. Users  
considering application outside the listed conditions are advised to contact their representatives beforehand.  
Document Number: 002-08449 Rev *A  
Page 12 of 46  
MB39C502/503/504  
7. Electrical Characteristics  
(MB39C502)  
VIN = 7.4V, VDD, BST and EN connect to 5V power supply, PGND, LX = 0V. TA = 30°C to +85°C, unless otherwise  
noted.  
Value  
Parameter  
Symbol  
Condition  
Unit  
Min  
Typ  
Max  
REFERENCE VOLTAGE  
This voltage is compared to feedback  
voltage. Ta = 25°C  
0.693  
0.700  
0.707  
V
V
Internal reference voltage  
FB input current  
VREF  
Ta = 10°C to 85°C  
VFB = 1.0V  
0.686  
-
-
0.714  
0.1  
IFB  
0.1  
μA  
ENABLE, SLP_N  
Enable voltage range  
Disable voltage range  
VEN = 5.0V  
VEN  
0.65  
-
5.5  
V
Enable condition  
VDSB  
IEN  
0
-
0.25  
0.1  
V
EN input current  
-
0
-
μA  
V
VSLPDSB  
VSLPEN  
ISLP_N  
LPM disable voltage range  
LPM enable voltage range  
VSLP_N = 5.0V  
0.65  
5.5  
SLP_N enable condition  
SLP_N input current  
0
-
-
0.35  
0.1  
V
0
μA  
SUPPLY CURRENT  
VDD, VCC input current at PWM  
operating. TA = 25°C  
IVDDPWM  
-
-
380  
180  
760  
360  
μA  
μA  
VDD, VCC input current at idle state in  
PFM operation. Static 0A inductor  
current. TA = 25°C  
IVDDPFM  
VDD supply current  
VDD, VCC input current at idle state in  
LPM operation. Static 0A inductor  
current. TA = 25°C  
IVDDLPM  
-
30  
60  
μA  
VDD shutdown current  
VIN supply current  
IVDDSDN  
IVIN  
VDD, VCC input current at VEN = 0V  
VVIN = 25V  
-
-
-
0.1  
10  
1.0  
15  
μA  
μA  
μA  
VIN shutdown current  
IVINSDN  
VIN input current at VEN = 0V  
UNDER VOLTAGE LOCKOUT  
UVLO release voltage  
Hysteresis  
0.1  
1.0  
VUVLO  
VHYS  
3.99  
4.14  
4.29  
V
V
VCC UVLO threshold  
0.005  
0.070  
0.200  
SOFT START, DISCHARGE  
From enable ON to the switching  
initiating.  
Period of power on reset  
Ramp up time  
tPOR  
200  
598  
-
1000  
732  
μs  
μs  
From the switching initiating after  
enable ON to the output voltage  
reaches 95%.  
tSS  
665  
Discharge resistance  
RDISCHG  
VDISCHG  
VOUT = 0.2V, discharge enable.  
VCSN voltage.  
50  
100  
200  
Ω
Discharge ends voltage  
0.07  
0.10  
0.13  
V
Document Number: 002-08449 Rev *A  
Page 13 of 46  
MB39C502/503/504  
VIN = 7.4V, VDD, BST and EN connect to 5V power supply, PGND, LX = 0V. TA = 30°C to +85°C, unless otherwise  
noted.  
(MB39C502)  
Value  
Parameter  
Symbol  
Condition  
ON TIMER  
Unit  
Min  
Typ  
Max  
On time  
tON  
VVIN = 7.4V, VCSN = 1.2V  
VVIN = 7.4V, VCSN = 0.2V  
193  
80  
-
210  
120  
200  
227  
-
ns  
ns  
ns  
Minimum on time  
Minimum off time  
tMINON  
tMINOFF  
400  
CURRENTLIMITATION  
CSPCSN difference voltage at ILIM  
connects to VCC.  
Current limitation threshold  
VILIMIT  
19.0  
24.0  
29.0  
mV  
ILIM input current  
IILIM  
ICS  
VILIM = 5.0V  
VCS = 1.2V  
-
0
0.1  
-
μA  
μA  
CSP, CSN input current  
5.0  
2.0  
OVER AND UNDER VOLTAGE PROTECTION  
For target output voltage. At output  
voltage increasing.  
Over voltage threshold ratio  
Propagation delay of OV  
RTOV  
tOV  
110  
115  
10  
125  
25  
%
-
4
μs  
%
Under voltage threshold  
ratio  
For target output voltage. At output  
voltage decreasing.  
RTUV  
tUV  
65  
40  
70  
75  
Propagation delay of UV  
-
100  
200  
μs  
POWER GOOD MONITOR  
For target output voltage. At output  
voltage increasing.  
Power good threshold ratio  
Hysteresis Ratio  
RTPG  
86  
92  
98  
%
RTHYS  
tPG  
-
3
5
7
%
Power good  
Power bad  
VPWRGD = 5.5V  
20  
4
50  
10  
0
200  
25  
1
μs  
μs  
μA  
Propagation delay  
tPB  
PWRGD leak current  
ILKPG  
-
PWRGD output voltage “L”  
level  
VOLPG  
IPWRGD = 1mA sink  
-
0.05  
0.10  
V
THERMAL SHUT DOWN  
TTSDH  
TTSDL  
Shut down temperature.  
-
-
150(*1)  
125(*1)  
-
-
°C  
°C  
Shut down temperature  
Exited temperature from thermal shut  
down state.  
OVER CURRENT ALERTING  
Over current alerting  
threshold ratio  
For target current limitation. At output  
current increasing.  
RTALT  
78  
85  
92  
%
tALTON  
tALTOFF  
ILKALT  
On alerting assertion  
On alerting de-assertion  
VALERT_N = 5.5V  
20  
3
50  
10  
0
200  
25  
1
μs  
μs  
μA  
Propagation delay  
ALERT_N leak current  
-
ALERT_N output voltage “L”  
level  
VOLALT  
IALERT_N = 1mA sink  
-
0.05  
0.10  
V
*1: No production tested, ensure by design.  
Document Number: 002-08449 Rev *A  
Page 14 of 46  
MB39C502/503/504  
VIN = 7.4V, VDD, BST and EN connect to 5V power supply, PGND, LX = 0V. TA = 30°C to +85°C, unless otherwise  
noted.  
(MB39C502)  
Value  
Parameter  
Symbol  
Condition  
Unit  
Min  
Typ  
Max  
DRIVER  
At 100mA current sourcing  
At 100mA current sinking  
At 100mA current sourcing  
At 100mA current sinking  
VDRVH = 2.5V  
RHOH  
-
-
-
-
-
-
-
-
3(*1)  
-
-
-
-
-
-
-
-
Ω
Ω
Ω
Ω
A
A
A
A
High side on resistance  
Low side on resistance  
RHOL  
RLOH  
RLOL  
ISRCH  
ISINKH  
ISRCL  
ISINKL  
1(*1)  
4(*1)  
0.75(*1)  
0.7(*1)  
1.1(*1)  
0.5(*1)  
1.7(*1)  
High side source current  
High side sink current  
Low side source current  
Low side sink current  
VDRVH = 2.5V  
VDRVL = 2.5V  
VDRVL = 2.5V  
From DRVH turn off to DRVL turn on.  
And reverse it.  
Dead time  
tDEAD  
10  
20  
-
ns  
BOOST SWITCH  
IBST = 10mA  
Boost switch on resistance  
BST leak current  
RBST  
-
-
30  
50  
Ω
ILKBST  
VBST = 30V  
0.1  
1.0  
μA  
*1: No production tested, ensure by design.  
Document Number: 002-08449 Rev *A  
Page 15 of 46  
MB39C502/503/504  
VIN = 7.4V, VDD, BST and EN connect to 5V power supply, PGND, LX = 0V. TA = 30°C to +85°C, unless otherwise  
noted.  
(MB39C503)  
Value  
Parameter  
Symbol  
Condition  
Unit  
Min  
Typ  
Max  
REFERENCE VOLTAGE  
This voltage is compared to feedback  
voltage. Ta = 25°C  
0.99  
1.00  
1.01  
V
V
Internal reference voltage  
FB input current  
VREF  
Ta = 10°C to 85°C  
VFB = 1.0V  
0.98  
-
-
1.02  
0.1  
IFB  
0.1  
μA  
ENABLE, SLP_N  
Enable voltage range  
Disable voltage range  
VEN = 5.0V  
VEN  
0.65  
-
5.5  
V
Enable condition  
VDSB  
IEN  
0
-
0.25  
0.1  
V
EN input current  
-
0
-
μA  
V
VSLPDSB  
VSLPEN  
ISLP_N  
LPM disable voltage range  
LPM enable voltage range  
VSLP_N = 5.0V  
0.65  
5.5  
SLP_N enable condition  
SLP_N input current  
0
-
-
0.35  
0.1  
V
0
μA  
SUPPLY CURRENT  
VDD, VCC input current at PWM  
operating. TA = 25°C  
IVDDPWM  
-
-
380  
180  
760  
360  
μA  
μA  
VDD, VCC input current at idle state in  
PFM operation. Static 0A inductor  
current. TA = 25°C  
IVDDPFM  
VDD supply current  
VDD, VCC input current at idle state in  
LPM operation. Static 0A inductor  
current. TA = 25°C  
IVDDLPM  
-
30  
60  
μA  
VDD shutdown current  
VIN supply current  
IVDDSDN  
IVIN  
VDD, VCC input current at VEN = 0V  
VVIN = 25V  
-
-
-
0.1  
10  
1.0  
15  
μA  
μA  
μA  
VIN shutdown current  
IVINSDN  
VIN input current at VEN = 0V  
UNDER VOLTAGE LOCKOUT  
UVLO release voltage  
Hysteresis  
0.1  
1.0  
VUVLO  
VHYS  
3.99  
4.14  
4.29  
V
V
VCC UVLO threshold  
0.005  
0.070  
0.200  
SOFT START, DISCHARGE  
From enable ON to the switching  
initiating.  
Period of power on reset  
Ramp up time  
tPOR  
200  
598  
-
1000  
732  
μs  
μs  
From the switching initiating after  
enable ON to the output voltage  
reaches 95%.  
tSS  
665  
Discharge resistance  
RDISCHG  
VDISCHG  
VOUT = 0.2V, discharge enable.  
VCSN voltage.  
50  
100  
200  
Ω
Discharge ends voltage  
0.07  
0.10  
0.13  
V
Document Number: 002-08449 Rev *A  
Page 16 of 46  
MB39C502/503/504  
VIN = 7.4V, VDD, BST and EN connect to 5V power supply, PGND, LX = 0V. TA = 30°C to +85°C, unless otherwise  
noted.  
(MB39C503)  
Value  
Parameter  
ON TIMER  
Symbol  
Condition  
Unit  
Min  
Typ  
Max  
621  
180  
On time  
tON  
VVIN = 7.4V, VCSN = 3.3V  
529  
100  
575  
200  
90  
ns  
ns  
ns  
Minimum on time  
Minimum off time  
tMINON  
VVIN = 7.4V, VCSN = 0.2V  
-
tMINOFF  
CURRENTLIMITATION  
CSPCSN difference voltage at ILIM  
connects to VCC.  
Current limitation threshold  
VILIMIT  
21.0  
26.0  
31.0  
mV  
ILIM input current  
CSP input current  
CSN input current  
IILIM  
ICSP  
ICSN  
VILIM = 5.0V  
VCSP = 3.3V  
VCSP = 3.3V  
-
-
-
0
0.1  
μA  
μA  
μA  
2.0  
8.0  
5.0  
20.0  
OVER AND UNDER VOLTAGE PROTECTION  
For target output voltage. At output  
voltage increasing.  
Over voltage threshold ratio  
Propagation delay of OV  
RTOV  
tOV  
110  
115  
10  
125  
25  
%
-
4
μs  
%
Under voltage threshold  
ratio  
For target output voltage. At output  
voltage decreasing.  
RTUV  
tUV  
65  
40  
70  
75  
Propagation delay of UV  
-
100  
200  
μs  
POWER GOOD MONITOR  
For target output voltage. At output  
voltage increasing.  
Power good threshold ratio  
Hysteresis Ratio  
RTPG  
86  
92  
98  
%
RTHYS  
tPG  
-
3
5
7
%
Power good  
Power bad  
VPWRGD = 5.5V  
20  
4
50  
10  
0
200  
25  
1
μs  
μs  
μA  
Propagation delay  
tPB  
PWRGD leak current  
ILKPG  
-
PWRGD output voltage “L”  
level  
VOLPG  
IPWRGD = 1mA sink  
-
0.05  
0.10  
V
THERMAL SHUT DOWN  
TTSDH  
TTSDL  
Shut down temperature.  
-
-
150(*1)  
125(*1)  
-
-
°C  
°C  
Shut down temperature  
Exited temperature from thermal shut  
down state.  
OVER CURRENT ALERTING  
Over current alerting  
threshold ratio  
For target current limitation. At output  
current increasing.  
RTALT  
78  
85  
92  
%
tALTON  
tALTOFF  
ILKALT  
On alerting assertion  
On alerting de-assertion  
VALERT_N = 5.5V  
20  
3
50  
10  
0
200  
25  
1
μs  
μs  
μA  
Propagation delay  
ALERT_N leak current  
-
ALERT_N output voltage “L”  
level  
VOLALT  
IALERT_N = 1mA sink  
-
0.05  
0.10  
V
*1: No production tested, ensure by design.  
Document Number: 002-08449 Rev *A  
Page 17 of 46  
MB39C502/503/504  
VIN = 7.4V, VDD, BST and EN connect to 5V power supply, PGND, LX = 0V. TA = 30°C to +85°C, unless otherwise  
noted.  
(MB39C503)  
Value  
Parameter  
Symbol  
Condition  
Unit  
Min  
Typ  
Max  
DRIVER  
At 100mA current sourcing  
At 100mA current sinking  
At 100mA current sourcing  
At 100mA current sinking  
VDRVH = 2.5V  
RHOH  
-
-
-
-
-
-
-
-
3(*1)  
-
-
-
-
-
-
-
-
Ω
Ω
Ω
Ω
A
A
A
A
High side on resistance  
Low side on resistance  
RHOL  
RLOH  
RLOL  
ISRCH  
ISINKH  
ISRCL  
ISINKL  
1(*1)  
4(*1)  
0.75(*1)  
0.7(*1)  
1.1(*1)  
0.5(*1)  
1.7(*1)  
High side source current  
High side sink current  
Low side source current  
Low side sink current  
VDRVH = 2.5V  
VDRVL = 2.5V  
VDRVL = 2.5V  
From DRVH turn off to DRVL turn on.  
And reverse it.  
Dead time  
tDEAD  
10  
20  
-
ns  
BOOST SWITCH  
IBST = 10mA  
Boost switch on resistance  
BST leak current  
RBST  
-
-
30  
50  
Ω
ILKBST  
VBST = 30V  
0.1  
1.0  
μA  
*1: No production tested, ensure by design.  
Document Number: 002-08449 Rev *A  
Page 18 of 46  
MB39C502/503/504  
VIN = 7.4V, VOUT, BST and EN connect to 5V power supply, PGND, LX = 0V. TA = 30°C to +85°C, unless otherwise  
noted.  
(MB39C504)  
Value  
Parameter  
Symbol  
Condition  
Unit  
Min  
Typ  
Max  
REFERENCE VOLTAGE  
This voltage is compared to feedback  
voltage. Ta = 25°C  
4.95  
5.00  
5.05  
V
V
Internal reference voltage  
VOUTS input current  
VREF  
Ta = 10°C to 85°C  
VVOUTS = 5.0V  
4.90  
2.5  
-
5.10  
12.5  
IVOUTS  
5.0  
μA  
ENABLE, SLP_N  
Enable voltage range  
Disable voltage range  
VEN = 5.0V  
VEN  
2.5  
-
25  
V
Enable condition  
VDSB  
IEN  
0
-
0.6  
1.2  
5.5  
0.35  
0.1  
V
EN input current  
-
0.5  
μA  
V
VSLPDSB  
VSLPEN  
ISLP_N  
LPM disable voltage range  
LPM enable voltage range  
VSLP_N = 5.0V  
0.65  
-
SLP_N enable condition  
SLP_N input current  
0
-
-
V
0
μA  
SUPPLY CURRENT  
VOUT, VCC input current at PWM  
operating. TA = 25°C  
IVOUTPWM  
-
-
400  
200  
800  
400  
μA  
μA  
VOUT, VCC input current at idle state in  
PFM operation. Static 0A inductor  
current. TA = 25°C  
IVOUTPFM  
VOUT supply current  
VOUT, VCC input current at idle state in  
LPM operation. Static 0A inductor  
current. TA = 25°C  
IVOUTLPM  
-
50  
100  
μA  
VOUT shutdown current  
VIN supply current  
IVOUTSDN  
IVIN  
VOUT, VCC input current at VEN = 0V  
VVIN = 25V  
-
-
-
0.1  
20  
1.0  
30  
μA  
μA  
μA  
VIN shutdown current  
UNDER VOLTAGE LOCKOUT  
IVINSDN  
VIN input current at VEN = 0V  
0.1  
1.0  
VUVLO  
VHYS  
UVLO release voltage  
Hysteresis  
3.99  
4.14  
4.29  
V
V
VCC UVLO threshold  
0.005  
0.070  
0.200  
SOFT START, DISCHARGE  
From enable ON to the switching  
initiating.  
Period of power on reset  
Ramp up time  
tPOR  
300  
598  
-
1400  
732  
μs  
μs  
From the switching initiating after  
enable ON to the output voltage  
reaches 95%.  
tSS  
665  
Discharge resistance  
RDISCHG  
VDISCHG  
VOUT = 0.2V, discharge enable.  
VCSN voltage.  
50  
100  
200  
Ω
Discharge ends voltage  
0.07  
0.10  
0.13  
V
Document Number: 002-08449 Rev *A  
Page 19 of 46  
MB39C502/503/504  
VIN = 7.4V, VOUT, BST and EN connect to 5V power supply, PGND, LX = 0V. TA = 30°C to +85°C, unless otherwise  
noted.  
(MB39C504)  
Value  
Parameter  
ON TIMER  
Symbol  
Condition  
Unit  
Min  
Typ  
Max  
On time  
tON  
VVIN = 7.4V, VVOUT = 5.0V  
802  
100  
-
872  
200  
120  
942  
-
ns  
ns  
ns  
Minimum on time  
Minimum off time  
tMINON  
VVIN = 7.4V, VVOUT = 0.2V  
-
tMINOFF  
240  
CURRENTLIMITATION  
CSPCSN difference voltage at ILIM  
connects to VCC.  
Current limitation threshold  
VILIMIT  
21.0  
26.0  
31.0  
mV  
ILIM input current  
CSP input current  
CSN input current  
IILIM  
ICSP  
ICSN  
VILIM = 5.0V  
VCSP = 5.0V  
VCSN = 5.0V  
-
-
-
0
0.1  
μA  
μA  
μA  
2.0  
8.0  
5.0  
20.0  
OVER AND UNDER VOLTAGE PROTECTION  
For target output voltage. At output  
voltage increasing.  
Over voltage threshold ratio  
Propagation delay of OV  
RTOV  
tOV  
110  
115  
10  
125  
25  
%
-
4
μs  
%
Under voltage threshold  
ratio  
For target output voltage. At output  
voltage decreasing.  
RTUV  
tUV  
65  
40  
70  
75  
Propagation delay of UV  
-
100  
200  
μs  
POWER GOOD MONITOR  
For target output voltage. At output  
voltage increasing.  
Power good threshold ratio  
Hysteresis Ratio  
RTPG  
86  
92  
98  
%
RTHYS  
tPG  
-
3
5
7
%
Power good  
Power bad  
VPWRGD = 5.5V  
20  
4
50  
10  
0
200  
25  
1
μs  
μs  
μA  
Propagation delay  
tPB  
PWRGD leak current  
ILKPG  
-
PWRGD output voltage “L”  
level  
VOLPG  
IPWRGD = 1mA sink  
-
0.05  
0.10  
V
THERMAL SHUT DOWN  
Shut down temperature  
TTSDH  
TTSDL  
Shut down temperature.  
-
-
150(*1)  
125(*1)  
-
-
°C  
°C  
Exited temperature from thermal shut  
down state.  
*1: No production tested, ensure by design.  
Document Number: 002-08449 Rev *A  
Page 20 of 46  
MB39C502/503/504  
VIN = 7.4V, VOUT, BST and EN connect to 5V power supply, PGND, LX = 0V. TA = 30°C to +85°C, unless otherwise  
noted.  
(MB39C504)  
Value  
Parameter  
Symbol  
Condition  
5V LDO  
Unit  
Min  
Typ  
Max  
No switchover.  
Output voltage  
VLDO5  
4.75  
25  
-
5.00  
-
5.25  
-
V
VOUT input voltage < 4.4V  
No switchover.  
Output current  
ILDO5  
mA  
mA  
VVIN = 5.4V  
No switchover.  
Output short current  
Switchover voltage  
Startup time  
ILDO5S  
80  
125  
VLDO5 = 0V  
VSWOVR  
VHYS  
VOUT voltage rising.  
Hysteresis voltage.  
LDO5 voltage reaches to 4.2V.  
CLDO5, CVCC = 1.0μF  
DRIVER  
4.35  
0.08  
4.50  
0.10  
4.60  
0.12  
V
V
tSLDO5  
100  
150  
400  
μs  
RHOH  
RHOL  
RLOH  
RLOL  
ISRCH  
ISINKH  
ISRCL  
ISINKL  
At 100mA current sourcing  
At 100mA current sinking  
At 100mA current sourcing  
At 100mA current sinking  
VDRVH = 2.5V  
-
-
-
-
-
-
-
-
3(*1)  
-
-
-
-
-
-
-
-
Ω
Ω
Ω
Ω
A
A
A
A
High side on resistance  
Low side on resistance  
1(*1)  
4(*1)  
0.75(*1)  
0.7(*1)  
1.1(*1)  
0.5(*1)  
1.7(*1)  
High side source current  
High side sink current  
Low side source current  
Low side sink current  
VDRVH = 2.5V  
VDRVL = 2.5V  
VDRVL = 2.5V  
From DRVH turn off to DRVL turn on.  
And reverse it.  
Dead time  
tDEAD  
10  
20  
-
ns  
BOOST SWITCH  
IBST = 10mA  
Boost switch on resistance  
BST leak current  
RBST  
-
-
30  
50  
Ω
ILKBST  
VBST = 30V  
0.1  
1.0  
μA  
*1: No production tested, ensure by design.  
Document Number: 002-08449 Rev *A  
Page 21 of 46  
MB39C502/503/504  
8. Protections and Power Good function  
8.1 Description  
(MB39C502/C503/C504)  
This PWM Control IC has some protection functions UVLO, OVP, UVP, ILIM, and TSD for the assumed various power  
system failures. Details of these protections are written as follows.  
Under Voltage Lockout (UVLO)  
The under voltage lockout (UVLO) protects ICs from malfunction and protects the system from  
destruction/deterioration, according to the reasons mentioned below.  
Transitional state when the voltage inputs to VCC (5V power supply) terminal.  
Momentary decrease  
To prevent such a malfunction, this function detects a voltage drop of the 5V power supply, and stops IC operations.  
When the voltage of 5V power supply exceeds the threshold voltage of the under voltage lockout protection circuit, the  
system is restored.  
Over Voltage Protection (OVP)  
This function stops the output voltage when the output voltage has increased, and protects devices connected to the  
output. When the over voltage is detected, the controller is fixed that the high side switching FET is turned off and the  
low side switching FET is turned on with 10μs propagation delay. When the enable is reentered, this fixed state is  
released and beginning soft start.  
Under Voltage Protection (UVP)  
This function stops the output voltage when the output voltage has lowered, and protects devices connected to the  
output. When the under voltage is detected, the controller is fixed that the high side switching FET is turned off and the  
low side switching FET is turned off with 100μs propagation delay. When the enable is reentered, this fixed state is  
released and beginning soft start.  
Over Current Limitation (ILIM)  
This function limits the output current when it has increased, and protects devices connected to the output. This  
function detects the inductor valley current with current sense resister RSENSE. The differential voltage of the  
CSP-CSN terminals is amplified to x20 by internal current sense amplifier, and compared to the limit voltage of 480mV  
fixed at internal preset condition. Until the amplified voltage fall the limit voltage, the high side switching FET is held in  
the off state. After the voltage has fallen below the limit voltage, the high side switching FET is placed into the ON  
state. This limits the lower bound of the inductor current and also restricts the over current. As a result, it becomes  
operation that the output voltage droops.  
Thermal Shutdown (TSD)  
This function prevents the PWM Control IC from a thermal destruction. If the junction temperature reaches +150°C,  
the high side and low side switching FET are turned off. Then the discharge operation is carried out to discharge the  
output capacitor (The discharge operation continues until the state of the thermal shutdown released). If the junction  
temperature drops to +125°C, the soft start is automatically reactivated.  
Power Good (PWRGD)  
Power good flag is hoisted at PWRGD terminal (Open Drain) to “Hi-Z” level with 50μs propagation delay, when the  
output voltage becomes larger than 92% of the output setting voltage. It is related by the OVP protection written  
above. When the output voltage becomes lower than power good threshold level, the PWRGD terminal is changed to  
“L” level with 10μs propagation delay.  
Document Number: 002-08449 Rev *A  
Page 22 of 46  
MB39C502/503/504  
State Table of Protection Function  
(MB39C502/C503/C504)  
High Side  
FET  
Low Side  
FET  
Output  
state  
Protection Function  
Under Voltage Lockout (UVLO)  
Over Voltage Protection (OVP)  
Remarks  
After releasing UVLO, the System is an automatic  
restoration with soft start.  
OFF  
OFF  
ON  
OFF  
Latch  
OFF  
Latch  
OFF  
Latch stall.  
OFF  
OFF  
It returns the System by enable reentry.  
Latch stall.  
Under Voltage Protection (UVP)  
OFF  
It returns the System by enable reentry.  
The output voltage is drooped with current limitation.  
Over Current Limitation (ILIM)  
Thermal Shutdown (TSD)  
Switching  
OFF  
Switching  
OFF  
After releasing TSD, the System is an automatic  
restoration with soft start.  
OFF  
8.2 Timing Chart  
(MB39C502/C503/C504)  
Under Voltage Lockout Protection (UVLO)  
Turn On  
EN  
5V  
Power on Reset  
200us 1000us  
VCC  
Power on Reset  
240us  
UVLO  
DRVH  
DRVL  
VOUT 92% of  
Setting Voltage  
VOUT  
Power Good”  
Power Good”  
PGOOD  
To VCC  
50us  
Propagation Delay  
time  
Document Number: 002-08449 Rev *A  
Page 23 of 46  
MB39C502/503/504  
Over Voltage Protection (OVP)  
Turn On  
EN  
Turn Off  
5V  
VCC  
Power on Reset  
Power on Reset  
200us 1000us  
UVLO  
DRVH  
DRVL  
VOUT 92% of  
Setting Voltage  
VOUT  
OVP  
10us  
Propagation Delay  
Power Good”  
Power Good”  
PGOOD  
To VCC  
50us  
Propagation Delay  
time  
Document Number: 002-08449 Rev *A  
Page 24 of 46  
MB39C502/503/504  
Under Voltage Protection (UVP)  
Turn On  
EN  
Turn Off  
5V  
VCC  
Power on Reset  
Power on Reset  
200us 1000us  
UVLO  
DRVH  
DRVL  
VOUT 92% of  
Setting Voltage  
VOUT 87% of  
VOUT  
UVP  
Setting Voltage  
100us  
Propagation Delay  
10us  
Propagation Delay  
Power Good”  
Power Good”  
PGOOD  
To VCC  
50us  
Propagation Delay  
time  
Document Number: 002-08449 Rev *A  
Page 25 of 46  
MB39C502/503/504  
Over Current Limitation (ILIM)  
ILIM Detection Level  
Keep the off state of the high side FET until  
the detection value is gained  
IL  
IOUT  
DRVH  
DRVL  
VOUT  
VOUT Setting Voltage  
VOUT 87% of Setting Voltage  
Power Good”  
PGOOD  
To VCC  
10us  
Propagation Delay  
Power Bad”  
time  
Document Number: 002-08449 Rev *A  
Page 26 of 46  
MB39C502/503/504  
Thermal Shutdown (TSD)  
Turn On  
EN  
5V  
VCC  
Power on Reset  
200us 1000us  
Power on Reset  
UVLO  
DRVH  
DRVL  
VOUT 92% of  
Setting Voltage  
VOUT  
TSD  
Tj >150degC  
Tj <125degC  
Power Good”  
Power Good”  
PGOOD  
To VCC  
50us  
Propagation Delay  
time  
9. Enhanced LPM Description  
(MB39C502/C503/C504)  
This PWM controller has some features for high efficiency technology with “Ultra low quiescent current” and “Extended  
on time” on asserting SLP_L signal from the system.  
Notes  
Perform transferring to Enhanced LPM in the static switching state after 2ms from EN turn on. The soft starting  
on the enabling Enhanced LPM does not allow this controller.  
In Enhanced LPM, maximum loading current is less than critical current of “Discontinuous Conductive Mode”, in  
other words “pulse skip mode”.  
Document Number: 002-08449 Rev *A  
Page 27 of 46  
MB39C502/503/504  
Enhanced LPM Assertion Timming  
Maximum Loading Current in Enhanced LPM  
Switching  
Frequency  
EN turn on  
Discontinuous  
Continuous  
Conductive Mode  
(Pulse Skip Mode)  
Conductive Mode  
EN  
Brank 2ms from EN turn on  
Permission  
Prohibition  
Load Current  
SLP_N  
Enhanced LPM Assertion  
Critical Current  
9.1 Ultra Low Quiescent Current  
(MB39C502/C503/C504)  
This controller has the feature of “Ultra low quiescent current” 30uA in enhanced LPM. So that the IC power loss is  
effectively improved efficiency in DCDC light load.  
9.2 Extended On Time  
(MB39C502/C503/C504)  
This controller uses feed forward on-time architecture with the information of input and output voltage. And this  
controller is transferred “Extended on-time” keeping the input and output voltage information in enhanced LPM. BY the  
on time is extended, gate drive loss is reduced by decreasing the switching frequency.  
In Normal Operation  
In Enhanced LPM Operation  
On time depended on VIN and VOUT voltage  
and x1.41 for normal operation  
On time depended on VIN and VOUT voltage  
High side  
gate  
High side  
gate  
Inductor  
current  
Inductor  
current  
0A  
0A  
Document Number: 002-08449 Rev *A  
Page 28 of 46  
MB39C502/503/504  
9.3 Timing Chart of Enhanced LPM  
(MB39C502/C503/C504)  
This controller is transferred to enhanced LPM synchronized the zero crossing of inductor current, and transferred to  
normal operation with 100ns propagation delay avoid the switching period.  
ILOAD  
SLP_N  
ILOAD  
SLP_N  
< 100ns  
normal  
normal  
0A  
VR mode  
VR mode  
low power  
low power  
Inductor  
current  
Inductor  
current  
synchronized with zero cross  
flag of Inductor Current  
anytime for idle period  
Idle state  
0A  
Idle state  
Idle state  
Idle state  
ILOAD  
SLP_N  
ILOAD  
SLP_N  
-1  
< 1.25us (< fSW_CCM  
normal  
)
normal  
0A  
VR mode  
VR mode  
keep the normal mode  
low power  
Wait the timing  
becomes to an idle  
mode  
Inductor  
current  
Inductor  
current  
0A  
Idle state  
Idle state  
Idle state  
Idle state  
Document Number: 002-08449 Rev *A  
Page 29 of 46  
MB39C502/503/504  
10.Over Current Alerting Description  
(MB39C502/C503)  
This controller has “Over Current Alerting” function. In near over current limitation range, the ALERT_N with Nch open  
drain terminal is change to “L” level. Over current alerting level is set 85% for over current limitation level.  
Over Current  
Alerting Range  
VOUT  
Over current alerting level  
is set 85% of over current  
limitation level  
IOUT  
IOUT_MAX  
IOUT_OCALERT  
IOUT_LIMIT  
Document Number: 002-08449 Rev *A  
Page 30 of 46  
MB39C502/503/504  
11.Application Note  
11.1 Setting Operating Conditions  
11.1.1  
Setting Output Voltage  
The output voltage can be set by adjusting the setting output voltage resister ratio. Setting output voltage is calculated  
by the following formula.  
(MB39C502)  
R1R2  
R2  
VOUT  
0.7  
(MB39C503/C504)  
R1R2  
VOUT  
1.0  
R2  
VOUT  
: output setting voltage (V)  
R1, R2  
: Feedback resistor (Ω)  
The total resistor value (R1+R2) of the setting output resistor should be selected up to 300kΩ.  
When the output voltage setting value is higher than 1.2V, select resistance that the current of 300μA or more flows  
into feedback resistor.  
11.1.2  
Setting Over Current Limitation and Over Current Alerting  
The over current limitation value can be set by adjusting the current sense resistor. Calculate the resister value by the  
following formula.  
(MB39C502)  
1  
ΔIL VOUT 300109  
RSENSE 0.024ILIMIT  
2
L
(MB39C503/C504)  
1  
IL VOUT 300109  
RSENSE 0.025ILIMIT  
2
L
RSENSE  
ILIMIT  
ΔIL  
: Over current limitation value setting resister (Ω)  
: Over current limitation value (A)  
: Inductor ripple current peak to peak value (A)  
: Output Voltage (V)  
VOUT  
L
: Inductance (H)  
Document Number: 002-08449 Rev *A  
Page 31 of 46  
MB39C502/503/504  
The over current limitation value needs to set a sufficient margin against the maximum load current.  
The over current alerting value is set with over current limitation value as following formula.  
(MB39C503/C504)  
VOUT 300109  
2L  
ΔIL  
0.024  
I ALERT  
0.85  
RSENSE  
2
RSENSE  
IALERT  
ΔIL  
: Over current limitation value setting resister (Ω)  
: Over current Alerting value (A)  
: Inductor ripple current peak to peak value (A)  
: Output Voltage (V)  
VOUT  
L
: Inductance (H)  
11.2 Selection Parts  
11.2.1 Selection of Smoothing Inductor  
(MB39C502/C503/C504)  
As a rough guide, inductance of an inductor should keep the peak to peak value of inductor ripple current below 50%  
of the maximum output current. The inductance fulfilling the above condition can be found by the following formula.  
VIN VOUT  
LORIOUT _ MAX VIN fSW  
VOUT  
L   
L
: Inductance (H)  
IOUT_MAX : Maximum load current  
LOR  
VIN  
: Inductor ripple current peak to peak value Maximum output current ratio (less than 0.5)  
: Power supply voltage (V)  
: Output Voltage (V)  
VOUT  
fSW  
: Switching frequency (Hz)  
The minimum output current (critical current) in the condition that inductor current does not flow in reverse can be  
found by the following formula.  
VOUT VIN VOUT  
2L VIN fSW  
IOC  
IOC  
L
: Critical current (A)  
: Inductance (H)  
VIN  
VOUT  
fSW  
: Power supply voltage (V)  
: Output voltage (V)  
: Switching frequency (Hz)  
The maximum value of the current flowing through the inductor needs to be found in order to determine whether the  
current flowing through the inductor is within the rated value. The maximum current flowing through the inductor can  
be found by the following formula.  
Document Number: 002-08449 Rev *A  
Page 32 of 46  
MB39C502/503/504  
ΔIL  
IL _ MAX IOUT _ MAX  
2
IL_MAX  
: Maximum inductor current (A)  
IOUT_MAX : Maximum load current (A)  
ΔIL  
: Inductor ripple current peak to peak value (A)  
11.2.2  
Selection of Switching FET  
(MB39C502/C503/C504)  
In general, MOSFET should be used with a 30V absolute maximum rating. Obtain the maximum value of the current  
flowing through the switching FET in order to determine whether the current flowing through the switching FET is  
within the rated value. The maximum current flowing through the switching FET can be found by the following formula.  
ΔIL  
ID _ MAX IOUT _ MAX  
2
ID_MAX  
: Maximum switching FET drain current (A)  
IOUT_MAX : Maximum load current (A)  
ΔIL  
: Inductor ripple current peak to peak value (A)  
In addition, find the loss of the switching FET in order to determine whether the allowable loss of the switching is  
within the rated value. The allowable loss of the high side FET can be found by the following formula.  
P
P  
RSW _ HS  
FET _ HS  
RON _ HS  
PFET_HS : Overall Loss of high side FET (W)  
PRON_HS : Conduction loss of high side FET (W)  
PSW_HS  
: Switching loss of high side FET (W)  
The conduction loss of high side is followed as.  
VOUT  
PRON _ HS IOUT _ MAX 2   
RON  
_ HS  
VIN  
PRON_HS : Conduction loss of high side FET (W)  
IOUT_MAX : Maximum load current (A)  
VIN  
: Power supply voltage (V)  
: Output voltage (V)  
VOUT  
RON_HS  
: On resistance of high side FET (Ω)  
The switching loss of high side is followed as.  
P
1.56VIN fSW IOUT _ MAX QSW  
SW _ HS  
PSW_HS  
VIN  
: Switching loss of high side FET (W)  
: Power supply voltage (V)  
fSW  
: Switching frequency (Hz)  
IOUT_MAX : Maximum load current (A)  
QSW  
: Amount of high side FET gate switch electric charge (C)  
Document Number: 002-08449 Rev *A  
Page 33 of 46  
MB39C502/503/504  
MOSFET has a tendency where the gate drive loss increases because lower voltage product has the bigger amount  
of gate electric charge (QG). Normally, we recommend a 4V drive product, however, the idle period at light load (both  
the high side FET and the low side FET is off period) get longer and the gate drive voltage of the high side FET may  
decrease, in the automatic PFM/PWM transition. The voltage drops most at no load mode. At the time, confirm that the  
boost voltage (voltage between BST-LX pins) is a big enough value for the gate threshold value voltage of the high  
side FET.  
If it is not enough, consider adding the boost diode, increasing the capacitor value of the capacitor or using a 2.5V (or  
1.8V) drive product to the high side FET.  
The allowable loss of the low side FET can be found by the following formula.  
VOUT  
VIN  
2
PFET _ LS PRON _ LS IOUT _ MAX 1  
RON _ LS  
PFET_LS  
: Overall loss of low side FET (W)  
PRON_LS : Conduction loss of low side FET (W)  
IOUT_MAX : Maximum output current (A)  
VIN  
: Switching power supply voltage (V)  
: Output voltage (V)  
VOUT  
RON_LS  
: On resistance of low side FET (Ω)  
In switching of low side FET, the transiting voltage between drain to source is generally small. The switching FET loss  
is omitted in this document as it is negligible.  
Document Number: 002-08449 Rev *A  
Page 34 of 46  
MB39C502/503/504  
11.2.3  
Selection of Fly Back Diode  
(MB39C502/C503/C504)  
This device is improved by adding the fly back diode when the conversion efficiency improvement or the suppression  
of the low side FET fever is desired, although those are unnecessary to execute normally. The effect is achieved in the  
condition where the switching frequency is high or output voltage is lower. Select period for the electric current flow  
into fly back diode is limited to dead time period because the synchronous rectification system is adopted (as for the  
dead time, see “Electrical Characteristics”). Each rating for the fly back diode can be calculated by the following  
formula.  
ID IOUT _ MAX fSW  
tD1 tD2  
ID  
: Forward current rating of SBD (A)  
IOUT_MAX : Maximum load current (A)  
fSW  
: Switching frequency (Hz)  
: Dead times (s)  
tD1, tD2  
IL  
2
IFSM IOUT _ MAX  
IFSM  
: Rated value of fly back diode (V)  
IOUT_MAX : Maximum output current (A)  
ΔIL  
: Inductor ripple current peak to peak value (A)  
VR _ FLY VIN  
VR_FLY  
VIN  
: DC reversing voltage of fly back diode (V)  
: Switching power supply voltage (V)  
11.2.4  
Selection of Boost Diode  
(MB39C502)  
Select a schottky barrier diode (SBD) that has a small forward voltage drop. The current to drive the gate of High-side  
FET flows to the SBD of the boost circuit. The average current can be found by the following formula. Select a boost  
diode that keep the average current below the current rating.  
ID QG _ HS fSW  
ID  
: Forward current (A)  
QG_HS  
fSW  
: Total gate electric charge of high-side FET (C)  
: Switching Frequency (Hz)  
The rating of the boost diode can be found by the following formula.  
VR _ BOOST VIN  
VR_BOOST : Boost Diode DC reverse voltage (V)  
VIN  
: Switching power supply voltage (V)  
Document Number: 002-08449 Rev *A  
Page 35 of 46  
MB39C502/503/504  
11.2.5  
Selection of Input Capacitor  
(MB39C502/C503/C504)  
Select the input capacitor whose ESR is as small as possible. The ceramic capacitor is an ideal. Use the tantalum  
capacitor and the polymer capacitor of low ESR when a mass capacitor is needed as the ceramic capacitor cannot  
support.  
The ripple voltage is generated in the power supply voltage by the switching operation. Calculate the lower bound of  
input capacitor according to an allowable ripple voltage. Calculate the ripple voltage of the power supply from the  
following formula.  
IOUT _ MAX  
VOUT  
ΔIL  
ΔVIN  
ESRI  
OUT _ MAX  
CIN  
VIN fSW  
2
ΔVIN  
: Power supply ripple voltage peak to peak value (V)  
IOUT_MAX : Maximum load current (A)  
CIN  
: Input capacitance (F)  
VIN  
: Power supply voltage (V)  
VOUT  
fSW  
: Output voltage (V)  
: Switching frequency (Hz)  
ESR  
ΔIL  
: Series resistance component of input capacitor (Ω)  
: Ripple current peak to peak value of inductor (A)  
Capacitor has frequency characteristics, the temperature characteristics, and the voltage characteristics, etc. The  
effective capacitance might become extremely small depending on the use conditions. Note the effective capacitance  
in the use conditions.  
Calculate ratings of the input capacitor by following formula.  
VCIN VIN  
VCIN  
VIN  
: Withstand voltage of the input capacitor (V)  
: Power supply voltage (V)  
VOUT  
VIN VOUT  
Irms IOUT _ MAX  
VIN  
Irms  
: Allowable ripple current of input capacitor (effective value) (A)  
IOUT_MAX : Maximum load current (A)  
VIN  
: Power supply voltage (V)  
: Output voltage (V)  
VOUT  
Document Number: 002-08449 Rev *A  
Page 36 of 46  
MB39C502/503/504  
11.2.6  
Selection of Output Capacitor  
Since a high ESR causes the output ripple voltage to increase, a low ESR capacitor is needs to be used in order to  
reduce the output ripple voltage. Generally, the ceramic capacitor is used as the output capacitor. With the switching  
ripple voltage taken consideration, the minimum capacitance required can be found by the following formula.  
(MB39C502/C503/C504)  
1
COUT  
2π fSW  
ΔVOUT ΔIL ESR  
COUT  
ESR  
ΔVOUT  
ΔIL  
: Output capacitance (F)  
: Series resistance element of output capacitor (Ω)  
: Output ripple voltage (V)  
: Inductor ripple current peak to peak value (A)  
Also, it is necessary to unite a pole by the output capacitor and the output load with a zero by the internal  
compensation circuit, and to limit the crossover frequency. The minimum capacitance required can be found by the  
following formula.  
(MB39C502)  
IOUT_ MAX  
COUT 42.5106  
VOUT  
(MB39C503)  
IOUT_MAX  
VOUT  
COUT 49.0 106  
(MB39C504)  
COUT 21.7106 IOUT_ MAX  
(MB39C502)  
1
COUT 0.59106  
RSENSE VOUT  
(MB39C503)  
1
COUT 0.67106   
RSENSE VOUT  
(MB39C504)  
1
COUT 0.27106  
RSENSE  
IOUT_MAX : Maximum output load current (A)  
VOUT  
: Output voltage (V)  
RSENSE  
: Over current limitation value setting resister (Ω)  
Document Number: 002-08449 Rev *A  
Page 37 of 46  
MB39C502/503/504  
Moreover, the output capacitance is also derived from the allowable amount of overshoot and under shoot. Adjust the  
capacitance so that the overshoot/undershoot voltage should not exceed the target voltage range.  
11.2.7  
Selection of Boost Capacitor  
To drive the gate of high side FET, the boost capacitor must have enough stored charge. 0.47μF is assumed to be  
standard; however, it is necessary to adjust it when the high side FET QG is big. Consider the capacitance calculated  
by the following formula as the lowest value for the boost capacitance and select a thing anymore.  
(MB39C502/C503/C504)  
CBST 10QG _ HS  
CBST  
: Boost capacitance (F)  
QG_HS  
: Amount of high side FET gate charge (C)  
Calculate ratings of the boost capacitor by the following formula.  
(MB39C502/C503)  
VCBST VVDD  
(MB39C504)  
VCBST VLDO5  
VCBST  
VVDD  
: Withstand voltage of the boost capacitor (V)  
: Input voltage of VDD terminal (V)  
VLDO5  
: Input voltage of LDO5 terminal (V)  
Document Number: 002-08449 Rev *A  
Page 38 of 46  
MB39C502/503/504  
11.2.8  
Selection of VDD Capacitor  
4.7μF is assumed to be a standard, and when QG of switching FET used large, it is necessary to adjust it. To suppress  
the ripple voltage by the switching FET gate drive, consider the capacitance calculated by the following formula as the  
lowest value for VDD Capacitor and select a thing any more.  
Calculate ratings of the VDD terminal capacitor by the following formula.  
(MB39C502/C503)  
CVDD 50QG  
(MB39C504)  
CLDO5 50 QG  
CVDD  
CLDO5  
QG  
: VDD pin capacitance (F)  
: LDO5 pin capacitance (F)  
: Total amount of high and low side FETs gate charge (C)  
Calculate ratings of the VDD terminal capacitor by the following formula.  
(MB39C502/C503)  
VCVDD VVDD  
(MB39C504)  
VCLDO5 VLDO5  
VCVDD  
VVDD  
: Withstand voltage of the VDD terminal capacitor (V)  
: Input voltage of VDD terminal (V)  
VCLDO5  
VLDO5  
: Withstand voltage of the LDO5 terminal capacitor (V)  
: Input voltage of LDO5 terminal (V)  
11.2.9  
Selection of VCC Capacitor and Resistor  
(MB39C502/C503)  
Connect 1.0μF between VCC to AGND terminal. Connect 10Ω between VCC to VDD terminal.  
(MB39C504)  
Connect 1.0μF between VCC to AGND terminal. Connect 10Ω between VCC to LDO5 terminal.  
Document Number: 002-08449 Rev *A  
Page 39 of 46  
MB39C502/503/504  
11.3 Layout  
(MB39C502/C503)  
Consider the points listed below and do the layout design.  
Provide the ground plane as much as possible on the IC mounted face. Connect bypass capacitor connected with  
the VCC and VDD pins, and AGND pin of the switching system parts with switching system GND (PGND). Connect  
other GND connection pins with control system GND (AGND), and separate each GND, and try not to pass the  
heavy current path through the control system GND (AGND) as much as possible. In that case, connect control  
system GND (AGND) and switching system GND (PGND) at the single point of GND (PGND) directly below IC.  
Switching system parts are Input capacitor (CIN), Switching FET, fly back diode (SBD), inductor (L) and Output  
capacitor (COUT).  
Connect the switching system parts as much as possible on the surface. Avoid the connection through the through  
hole as much as possible.  
As for AGND pins of the switching system parts, provide the through hole at the proximal place, and connect it with  
GND of internal layer.  
Pay the most attention to the loop composed of input capacitor (CIN), switching FET, and fly back diode (SBD).  
Consider parts are disposed mutually to be near for making the current loop as small as possible.  
Place the bootstrap capacitor (CBST) proximal to BST and LX pins of IC as much as possible.  
Connect the line to the LX pin proximal to the drain pin of low-side FET. Also large electric current flows momentary  
in this net. Wire the line of width of about 0.8 mm as standard, and as short as possible.  
Large electric current flows momentary in the net of DRVH and DRVL pins connected with the gate of switching  
FET. Wire the line width of about 0.8 mm to be a standard, as short as possible. Take special care about the line of  
the DRVL pin, and wire the line as short as possible.  
By-pass capacitor (CVCC, CVDD) connected with VCC, and VDD should be placed close to the pin as much as  
possible. Also connect the GND pin of the bypass capacitor with GND of internal layer in the proximal through-hole.  
Pull the feedback line to be connected to the FB pin of the IC separately from near the output capacitor pin,  
whenever possible. Consider the line connected with FB pins to keep away from a switching system parts as much  
as possible because it is sensitive to the noise.  
Also, place the output voltage setting resistor connected to this line near IC, and try to shorten the line to the FB pin.  
In addition, for the internal layer right under the component mounting place, provide the control system GND  
(AGND) of few ripple and few spike noises, or provide the ground plane of the power supply as much as possible.  
Consider that the discharge current momentary flows into the CSN pin (about 10mA at 1.0V output voltage) when  
the DC/DC operation stops, and then sustain the width for the feedback line.  
There is leaked magnetic flux around the inductor or backside of place equipped with inductor. Line and parts  
sensitive to noise should be considered to be placed away from the inductor (or backside of place equipped with  
inductor).  
Document Number: 002-08449 Rev *A  
Page 40 of 46  
MB39C502/503/504  
GND routing example  
Layout example of switching components  
High Side  
Switching FET  
Surface Layer  
VIN  
CBST  
To LX  
CVIN  
PGND  
Low Side  
Switching FET  
Output  
Capacitor  
SBD  
(Optional)  
CVCC  
CVIN  
(Top View)  
EP :AGND  
Sense  
Resistor  
PGND  
Inductor  
VOUT  
Inner Layer :  
AGND  
Inner Layer :  
PGND  
CVDD  
To CSP  
To CSN  
VOUT Sense  
Connect the PGND to the AGND at single  
point directly under the IC  
Document Number: 002-08449 Rev *A  
Page 41 of 46  
MB39C502/503/504  
(MB39C504)  
Consider the points listed below and do the layout design.  
Provide the ground plane as much as possible on the IC mounted face. Connect bypass capacitor connected with  
the VCC and LDO5 pins, and AGND pin of the switching system parts with switching system GND (PGND).  
Connect other GND connection pins with control system GND (AGND), and separate each GND, and try not to  
pass the heavy current path through the control system GND (AGND) as much as possible. In that case, connect  
control system GND (AGND) and switching system GND (PGND) at the single point of GND (PGND) directly below  
IC. Switching system parts are Input capacitor (CIN), Switching FET, fly back diode (SBD), inductor (L) and Output  
capacitor (COUT).  
Connect the switching system parts as much as possible on the surface. Avoid the connection through the through  
hole as much as possible.  
As for AGND pins of the switching system parts, provide the through hole at the proximal place, and connect it with  
GND of internal layer.  
Pay the most attention to the loop composed of input capacitor (CIN), switching FET, and fly back diode (SBD).  
Consider parts are disposed mutually to be near for making the current loop as small as possible.  
Place the bootstrap capacitor (CBST) proximal to BST and LX pins of IC as much as possible.  
Connect the line to the LX pin proximal to the drain pin of low-side FET. Also large electric current flows momentary  
in this net. Wire the line of width of about 0.8 mm as standard, and as short as possible.  
Large electric current flows momentary in the net of DRVH and DRVL pins connected with the gate of switching  
FET. Wire the line width of about 0.8 mm to be a standard, as short as possible. Take special care about the line of  
the DRVL pin, and wire the line as short as possible.  
By-pass capacitor (CVCC, CLDO5) connected with VCC, and LDO5 should be placed close to the pin as much as  
possible. Also connect the GND pin of the bypass capacitor with GND of internal layer in the proximal through-hole.  
Pull the feedback line to be connected to the FB pin of the IC separately from near the output capacitor pin,  
whenever possible. Consider the line connected with FB pins to keep away from a switching system parts as much  
as possible because it is sensitive to the noise.  
Also, place the output voltage setting resistor connected to this line near IC, and try to shorten the line to the FB pin.  
In addition, for the internal layer right under the component mounting place, provide the control system GND  
(AGND) of few ripple and few spike noises, or provide the ground plane of the power supply as much as possible.  
Consider that the discharge current momentary flows into the CSN pin (about 10mA at 1.0V output voltage) when  
the DC/DC operation stops, and then sustain the width for the feedback line.  
There is leaked magnetic flux around the inductor or backside of place equipped with inductor. Line and parts  
sensitive to noise should be considered to be placed away from the inductor (or backside of place equipped with  
inductor).  
Document Number: 002-08449 Rev *A  
Page 42 of 46  
MB39C502/503/504  
GND routing example  
Layout example of switching components  
High Side  
Surface Layer  
Switching FET  
VIN  
CBST  
To LX  
CVIN  
PGND  
Low Side  
Switching FET  
Output  
Capacitor  
SBD  
(Optional)  
CVCC  
CVIN  
(Top View)  
EP :AGND  
Sense  
Resistor  
PGND  
Inductor  
VOUT  
Inner Layer :  
AGND  
Inner Layer :  
PGND  
CLDO5  
To CSP  
To CSN  
VOUT Sense  
Connect the PGND to the AGND at single  
point directly under the IC  
12.Ordering Information  
Table 12-1 Ordering information  
Part number  
Package  
Remarks  
MB39C502WQN-G-AMERE1  
16-pin plastic QFN  
(WN2016)  
MB39C503WQN-G-AMERE1  
MB39C504WQN-G-AMERE1  
Document Number: 002-08449 Rev *A  
Page 43 of 46  
MB39C502/503/504  
13.Package Dimensions  
Document Number: 002-08449 Rev *A  
Page 44 of 46  
MB39C502/503/504  
14.Major Changes  
Spansion Publication Number: MB39C502_DS405-00020-1v0-E  
Page  
Section  
Change Results  
Revision 1.0  
-
-
Initial release  
NOTE: Please see “Document History” about later revised information.  
Document History  
Document Title: MB39C502/503/504 High Efficiency Step Down DC/DC Controller Datasheet  
Document Number: 002-08449  
Orig. of Submission  
Revision  
ECN  
Description of Change  
Change  
Date  
Migrated to Cypress and assigned document number 002-08449.  
No change to document contents or format.  
**  
TAOA  
09/09/2014  
*A  
5127378  
TAOA  
02/12/2016 Updated to Cypress template  
Document Number: 002-08449 Rev *A  
Page 45 of 46  
MB39C502/503/504  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors.  
To find the office closest to you, visit us at Cypress Locations.  
Products  
PSoC® Solutions  
Automotive  
Clocks & Buffers  
Interface  
cypress.com/go/automotive  
cypress.com/go/clocks  
psoc.cypress.com/solutions  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP  
Cypress Developer Community  
cypress.com/go/interface  
Lighting & Power Control cypress.com/go/powerpsoc  
Community | Forums | Blogs | Video | Training  
Technical Support  
Memory  
cypress.com/go/memory  
cypress.com/go/psoc  
cypress.com/go/touch  
cypress.com/go/USB  
cypress.com/go/wireless  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/go/support  
Spansion Products cypress.com/spansion products  
Cypress®, the Cypress logo, Spansion®, the Spansion logo, MirrorBit®, MirrorBit® EclipseTM, ORNANDTM, Easy DesignSimTM, TraveoTM and combinations thereof, are trademarks  
and registered trademarks of Cypress Semiconductor Corp. ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries. All other trademarks or  
registered trademarks referenced herein are the property of their respective owners.  
© Cypress Semiconductor Corporation, 2014-2016. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no  
responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress  
products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement  
with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be  
expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use  
and in doing so indemnifies Cypress against all charges.  
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United  
States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to  
copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in  
support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation,  
compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE  
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the  
materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion  
of Cypress’ product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 002-08449 Rev *A  
Page 46 of 46  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY