MB39C603 [CYPRESS]

Phase Dimmable PSR LED Driver IC for LED Lighting;
MB39C603
型号: MB39C603
厂家: CYPRESS    CYPRESS
描述:

Phase Dimmable PSR LED Driver IC for LED Lighting

文件: 总30页 (文件大小:1391K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MB39C603  
Phase Dimmable PSR LED Driver IC  
for LED Lighting  
Description  
MB39C603 is a Primary Side Regulation (PSR) LED driver IC for LED lighting. Using the information of the primary peak current and  
the transformer-energy-zero time, it is able to deliver a well regulated current to the secondary side without using an opto-coupler in  
an isolated flyback topology. Operating in critical conduction mode, a smaller transformer is required. In addition, MB39C603 has a  
built-in phase dimmable circuit and can constitute flicker less lighting systems for phase dimming with low-component count. It is  
most suitable for the general lighting applications, for example replacement of commercial and residential incandescent lamps.  
Features  
PSR topology in an isolated flyback circuit  
High power factor (>0.9 : without dimmer) in Single Conversion  
High efficiency (>80 % : without dimmer) and low EMI by detecting transformer zero energy  
Built-in phase dimmable circuit  
Dimming curve based on conduction angle  
Dimmer hold current control  
Highly reliable protection functions  
Under voltage lock out (UVLO)  
Over voltage protection (OVP)  
Over current protection (OCP)  
Over temperature protection (OTP)  
Switching frequency setting : 30 kHz to 133 kHz  
Input voltage range VDD : 9 V to 20 V  
Input voltage for LED lighting applications : AC110VRMS  
Output power range for LED lighting applications : 15 W to 50 W  
Package : SOP-14 (5.30 mm × 10.15 mm × 2.25 mm [Max])  
Applications  
Phase dimmable (Leading/Trailing) LED lighting  
LED lighting  
Cypress Semiconductor Corporation  
Document Number: 002-08450 Rev. *B  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised May 22, 2017  
 
 
 
MB39C603  
Contents  
Description  
Features  
................................................................................................................................................................... 1  
................................................................................................................................................................... 1  
................................................................................................................................................................... 1  
Applications  
1.  
Pin Assignment............................................................................................................................................................ 3  
Pin Descriptions........................................................................................................................................................... 3  
Block Diagram.............................................................................................................................................................. 4  
Absolute Maximum Ratings........................................................................................................................................ 5  
Recommended Operating Conditions........................................................................................................................ 6  
Electrical Characteristics ............................................................................................................................................ 7  
Standard Characteristics............................................................................................................................................. 9  
Function Explanations............................................................................................................................................... 10  
LED Current Control by PSR(Primary Side Regulation).............................................................................................. 10  
PFC (Power Factor Correction) Function .................................................................................................................... 11  
Phase Dimming Function ............................................................................................................................................ 11  
HOLD Current Control Function .................................................................................................................................. 12  
Power-On Sequence ................................................................................................................................................... 13  
Power-Off Sequence ................................................................................................................................................... 14  
IP_PEAK Detection Function ........................................................................................................................................... 14  
Zero Voltage Switching Function................................................................................................................................. 14  
Protection Functions.................................................................................................................................................... 15  
I/O Pin Equivalent Circuit Diagram........................................................................................................................... 16  
Application Examples................................................................................................................................................ 18  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.9  
9.  
10.  
10.1 17W Isolated and Phase Dimming Application............................................................................................................ 18  
11.  
12.  
13.  
14.  
15.  
Usage Precautions..................................................................................................................................................... 26  
RoHS Compliance Information ................................................................................................................................. 26  
Ordering Information................................................................................................................................................. 26  
Package Dimensions................................................................................................................................................. 27  
Major Changes ........................................................................................................................................................... 28  
Document History................................................................................................................................................................. 29  
Sales, Solutions, and Legal Information............................................................................................................................. 30  
Document Number: 002-08450 Rev. *B  
Page 2 of 30  
MB39C603  
1. Pin Assignment  
Figure 1-1 Pin Assignment  
(TOP VIEW)  
NC  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
NC  
VDD  
DRV  
GND  
CS  
TZE  
COMP  
ADJ  
HOLDDET  
HOLDCNT  
VAC  
NC  
8
NC  
(SOF014)  
2. Pin Descriptions  
Table 2-1 Pin Descriptions  
Pin No.  
Pin Name  
I/O  
-
Description  
1
2
NC  
VDD  
Not used. Leave this pin open.  
Power supply pin.  
-
3
TZE  
I
Transformer Zero Energy detecting pin.  
4
COMP  
HOLDDET  
HOLDCNT  
NC  
O
I
External Capacitor connection pin for the compensation.  
Phase Dimmer current detecting pin.  
External BIP base current control pin.  
Not used. Leave this pin open.  
5
6
O
-
7
8
NC  
-
Not used. Leave this pin open.  
9
VAC  
I
Phase Dimmer conduction angle detecting pin.  
Pin for adjusting the switch-on timing.  
Pin for detecting peak current of transformer primary winding.  
Ground pin.  
10  
11  
12  
13  
14  
ADJ  
O
I
CS  
GND  
DRV  
-
O
-
External MOSFET gate connection pin.  
Not used. Leave this pin open.  
NC  
Document Number: 002-08450 Rev. *B  
Page 3 of 30  
 
MB39C603  
3. Block Diagram  
Figure 3-1 Block Diagram (Isolated Flyback Application)  
Phase  
Dimmer  
VAC  
HOLDDET  
Hold Amp  
HOLDCNT  
VDD  
9
5
6
2
Phase Comp  
Err Ref  
generator  
Internal Bias  
Generator  
TZE  
OVP Comp  
3
LEB  
UVLO  
OTP  
TZE Comp  
Err Amp  
Ton Comp  
Err Ref  
PWM  
Driver  
DRV  
13  
Control  
Logic  
COMP  
ADJ  
4
OCP Comp  
LEB  
11  
CS  
Sawtooth  
Generator  
Current  
10  
Calculator  
12  
GND  
Peak Current  
Detector  
Document Number: 002-08450 Rev. *B  
Page 4 of 30  
 
MB39C603  
4. Absolute Maximum Ratings  
Table 4-1 Absolute Maximum Ratings  
Rating  
Parameter  
Symbol  
Condition  
Unit  
Min  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-1  
Max  
+25  
Power Supply Voltage  
VVDD  
VCS  
VDD pin  
CS pin  
V
V
+6.0  
+6.0  
+6.0  
+6.0  
+25  
VTZE  
TZE pin  
V
Input Voltage  
VHOLDDET  
VVAC  
HOLDDET pin  
VAC pin  
V
V
VDRV  
DRV pin  
V
Output Voltage  
Output Current  
VHOLDCNT  
IADJ  
HOLDCNT pin  
ADJ pin  
+6.0  
-
V
mA  
mA  
μA  
mW  
°C  
V
IDRV  
DRV pin DC level  
HOLDCNT pin  
Ta +25°C  
-
-50  
+50  
IHOLDCNT  
PD  
-400  
-
-
Power Dissipation  
Storage Temperature  
ESD Voltage 1  
500(*1)  
+125  
+2000  
+1000  
TSTG  
-55  
VESDH  
VESDC  
Human Body Model  
Charged Device Model  
-2000  
-1000  
ESD Voltage 2  
V
*1: The value when using two layers PCB.  
Reference: θja (wind speed 0m/s): 200°C/W  
Figure 4-1 Power Dissipation  
700  
600  
500  
400  
300  
200  
100  
0
-50 -25  
0
25  
50  
75 100 125 150  
Ta [°C]  
WARNING:  
1. Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or  
temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings.  
Document Number: 002-08450 Rev. *B  
Page 5 of 30  
MB39C603  
5. Recommended Operating Conditions  
Table 5-1 Recommended Operating Conditions  
Value  
Parameter  
Symbol  
Condition  
Unit  
Min  
9
Typ  
-
Max  
VDD pin Input Voltage  
VAC pin Resistance  
TZE pin Resistance  
ADJ pin Resistance  
COMP pin Capacitance  
VDD pin Capacitance  
VVDD  
RVAC  
RTZE  
RADJ  
CCOMP  
CBP  
VDD pin  
VAC pin  
TZE pin  
ADJ pin  
COMP pin  
20  
V
-
510  
-
-
kΩ  
kΩ  
kΩ  
μF  
μF  
50  
9.3  
-
200  
-
185.5  
4.7  
100  
-
-
Set between VDD pin and GND pin  
-
-
Operating Junction  
Temperature  
Tj  
-40  
-
+125  
°C  
WARNING:  
1. The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All  
of the device's electrical characteristics are warranted when the device is operated under these conditions.  
2. Any use of semiconductor devices will be under their recommended operating condition.  
3. Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device  
failure.  
4. No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If you  
are considering application under any conditions other than listed herein, please contact sales representatives beforehand.  
Document Number: 002-08450 Rev. *B  
Page 6 of 30  
MB39C603  
6. Electrical Characteristics  
Table 6-1 Electrical Characteristics  
(Ta = +25°C, VVDD = 12V)  
Value  
Unit  
Parameter  
Symbol  
Pin  
Condition  
Min  
Typ  
Max  
UVLO Turn-on  
threshold voltage  
VTH  
VDD  
-
-
9.6  
10.2  
10.8  
V
V
UVLO Turn-off  
threshold voltage  
UVLO  
VTL  
ISTART  
VDD  
VDD  
TZE  
TZE  
TZE  
TZE  
TZE  
TZE  
7.55  
-
8
65  
20  
0.7  
-160  
4.3  
1
8.5  
160  
-
Startup current  
VVDD = 7V  
TZE = “H” to “L”  
TZE = “L” to “H”  
ITZE = -10 μA  
-
μA  
mV  
V
Zero energy  
threshold voltage  
VTZETL  
VTZETH  
VTZECLAMP  
VTZEOVP  
tOVPBLANK  
ITZE  
-
Zero energy  
threshold voltage  
0.6  
-200  
4.15  
0.6  
-1  
0.8  
-100  
4.45  
1.7  
+1  
TZE clamp voltage  
TRANSFORMER  
mV  
V
ZERO ENERGY  
DETECTION  
OVP threshold  
voltage  
OVP blanking time  
TZE input current  
-
μs  
μA  
VTZE = 5V  
-
VCOMP = 2V, VCS = 0V,  
Conduction Angle =  
165deg  
COM  
P
Source current  
ISO  
-
-27  
-
μA  
COMPENSATION  
ADJUSTMENT  
COM  
P
μA/  
V
Trans conductance  
ADJ voltage  
gm  
VADJ  
IADJ  
VCOMP = 2.5V, VCS = 1V  
-
96  
1.85  
-450  
550  
7.5  
2
-
ADJ  
ADJ  
-
1.81  
-650  
490  
6.75  
1.9  
-
1.89  
-250  
610  
8.25  
2.1  
V
μA  
ns  
μs  
V
ADJ source current  
ADJ time  
VADJ = 0V  
TZE  
DRV  
tADJ (RADJ = 51 kΩ) -  
tADJ (RADJ = 9.1 kΩ)  
tADJ  
Minimum switching  
period  
TZE  
DRV  
TSW  
-
OCP threshold  
voltage  
VOCPTH  
tOCPDLY  
ICS  
CS  
CS  
CS  
-
CURRENT  
SENSE  
OCP delay time  
CS input current  
-
400  
-
500  
+1  
ns  
μA  
VCS = 5V  
-1  
Document Number: 002-08450 Rev. *B  
Page 7 of 30  
MB39C603  
(Ta = +25°C, VVDD = 12V)  
Value  
Unit  
Parameter  
DRV high voltage  
Symbol  
Pin  
Condition  
Min  
Typ  
Max  
VDD = 18V, IDRV = -30  
mA  
VDRVH  
DRV  
7.6  
9.4  
-
V
mV  
ns  
ns  
ns  
μs  
μs  
μs  
°C  
°C  
V
VDD = 18V, IDRV = 30  
mA  
DRV low voltage  
Rise time  
VDRVL  
tRISE  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
-
-
-
130  
94  
260  
-
VDD = 18V, CLOAD = 1  
nF  
VDD = 18V, CLOAD = 1  
nF  
Fall time  
tFALL  
-
16  
-
DRV  
Minimum on time  
Maximum on time  
Minimum off time  
Maximum off time  
OTP threshold  
OTP hysteresis  
tONMIN  
TZE trigger  
300  
27  
1
500  
44  
700  
60  
1.93  
55  
-
tONMAX  
tOFFMIN  
tOFFMAX  
TOTP  
-
-
1.5  
46  
TZE = GND  
37  
-
Tj, temperature rising  
150  
25  
OTP  
Tj, temperature falling,  
degrees below TOTP  
TOTPHYS  
VPHTH1  
VPHTH2  
VPHHYS  
IHOLDDET  
VHOLDTH  
-
-
-
Phase Comp  
VAC  
VAC  
VAC  
VAC = “L” to “H”  
0.9  
0.45  
-
1.0  
0.5  
0.5  
-9.7  
400  
1.1  
0.55  
-
threshold voltage  
DIMMER  
CONDUCTION  
ANGLE  
Phase Comp  
threshold voltage  
VAC = “H” to “L”  
V
DETECTION  
Phase Comp  
hysteresis  
-
-
-
V
HOLDDET input  
current  
HOLD  
DET  
-
-9.32  
425  
μA  
mV  
10.09  
Hold Amp  
threshold voltage  
HOLD  
CNT  
375  
3.4  
HOLDCNT  
Maximum output  
voltage  
VHOLDDET = 0.6V,  
RBASE = 16 kΩ,  
VBASE = 0.7V  
VHOLDDET = 0.2V,  
RBASE = 16 kΩ,  
VBASE = 0.7V  
VHOLDDET = 0.6V,  
RBASE = 16 kΩ,  
VBASE = 0.7V  
TRIAC HOLD  
CURRENT  
CONTROL  
HOLD  
CNT  
VCNTOH  
VCNTOL  
ICNTSO  
-
-
V
V
HOLDCNT  
HOLD  
CNT  
Minimum output  
0.8  
-167  
voltage  
HOLDCNT  
source current  
HOLD  
CNT  
-250  
-200  
μA  
IVDD(STATIC)  
VDD  
VDD  
VVDD = 20V, VTZE = 1V  
-
-
3.3  
5.9  
4
-
mA  
mA  
POWER  
SUPPLY  
CURRENT  
Power supply  
current  
VVDD = 20V, Qg = 20 nC,  
fSW = 133 kHz  
IVDD(OPERATING)  
Document Number: 002-08450 Rev. *B  
Page 8 of 30  
MB39C603  
7. Standard Characteristics  
Figure 7-1 Standard Characteristics  
IVDD(OPERATING) - VDD  
IHOLDDET - Ta  
7.0  
-9.0  
-9.2  
VVAC=2.0V  
6.5  
VCS=1.0V  
VDD=12V  
VVAC=2.0V  
VCS=1.0V  
VCOMP=1.3V  
RADJ=51k  
6.0  
-9.4  
VCOMP=1.3V  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
-9.6  
-9.8  
-10.0  
-10.2  
-10.4  
Ta=-25  
Ta=25℃  
Ta=85  
8
10  
12  
14  
16  
18  
20  
-30  
-10  
10  
30  
50  
70  
90  
VDD[V]  
Ta[]  
tADJ - RADJ  
VDRVH - VDD  
14  
13  
12  
11  
10  
9
2500  
2000  
1500  
1000  
500  
VDD=12V  
VVAC=2.0V  
VCS=1.0V  
VCOMP=1.3V  
DRV pin : open  
VVAC=2.0V  
VCS=1.0V  
VCOMP=3.0V  
RADJ=51k  
Ta=-25  
Ta=25℃  
Ta=85℃  
Ta=-25  
Ta=25℃  
Ta=85℃  
8
7
6
0
8
10  
12  
14  
16  
18  
20  
0
50  
100  
150  
200  
VDD[V]  
RADJ[kΩ]  
TON - VCOMP  
60  
50  
40  
30  
20  
10  
0
VDD=12V  
VVAC=2.0V  
VCS=1.0V  
RADJ=51k  
Ta=-25  
Ta=25℃  
Ta=85℃  
1.4  
1.8  
2.2  
2.6  
3
3.4  
3.8  
VCOMP[V]  
Document Number: 002-08450 Rev. *B  
Page 9 of 30  
MB39C603  
8. Function Explanations  
8.1 LED Current Control by PSR(Primary Side Regulation)  
MB39C603 regulates the average LED current (ILED) by feeding back the information based on Primary Winding peak current  
(IP_PEAK), Secondary Winding energy discharge time (TDIS) and switching period (TSW). Figure 8-1 shows the operating waveform in  
steady state. IP is Primary Winding current and IS is Secondary Winding current. ILED as an average current of the Secondary  
Winding is described by the following equation.  
1
2
퐷ꢀ푆  
퐿퐸퐷  
=
× 퐼푆_푃퐸퐴퐾 ×  
푆푊  
Using IP_PEAK and the transformer Secondary to Primary turns ratio (NP/NS), Secondary Winding peak current (IS_PEAK) is described  
by the following equation.  
푃  
푆_푃퐸퐴퐾  
=
× 퐼푃_푃퐸퐴퐾  
푆  
Therefore,  
1
푃  
퐷ꢀ푆  
퐿퐸퐷  
=
×
× 퐼푃_푃퐸퐴퐾 ×  
2
푆  
푆푊  
MB39C603 detects TDIS by monitoring the TZE pin and IP_PEAK by monitoring the CS pin and then controls ILED. An internal Err Amp  
sinks gm current proportional to IP_PEAK from the COMP pin during TDIS period. In steady state, since the average of the gm current  
is equal to internal reference current (ISO), the voltage on the COMP pin (VCOMP) is nearly constant.  
푃_푃퐸퐴퐾 × 푅퐶푆 × 푔푚 × 퐷ꢀ푆 = 퐼푆푂 × 푇  
푆푊  
In above equation, gm is transconductance of the Err Amp and RCS is a sense resistance.  
Eventually, ILED can be calculated by the following equation.  
1
2
푆푂  
1
퐿퐸퐷  
=
×
×
×
푔푚 푅퐶푆  
Figure 8-1 LED Current Control Waveform  
IP_PEAK  
System Power supply  
through Diode Bridge  
IP  
(VBULK  
)
IS_PEAK  
IP  
ILED  
LP  
IS  
ILED  
VAUX  
IS  
TDIS  
TSW  
TON  
VD  
VTZE  
DRV  
TZE threshold  
TZE  
ADJ  
CS  
VD  
CD  
RCS  
(VAUX)  
1/4 x TRING  
GND  
VTZE  
1/4 x TRING  
Document Number: 002-08450 Rev. *B  
Page 10 of 30  
 
 
MB39C603  
8.2 PFC (Power Factor Correction) Function  
Switching on time (TON) is generated by comparing VCOMP with an internal sawtooth waveform (refer to Figure 3-1). Since VCOMP is  
slow varying with connecting an external capacitor (CCOMP) from the COMP pin to the GND pin, TON is nearly constant within an AC  
line cycle. In this state, IP_PEAK is nearly proportional to the AC line voltage (VBULK). It can bring the phase differences between the  
input voltage and the input current close to zero, so that high Power Factor can be achieved.  
8.3 Phase Dimming Function  
MB39C603 is compatible with both leading-edge dimmers (TRIAC dimming) and trailing-edge dimmers.  
To realize the phase dimming, this device has two functions, dimmer conduction angle detect function for LED current control and  
TRIAC dimmer hold current control function.  
Figure 8-2 shows how MB39C603 detects the conduction angle. VBULK is scaled via a resistor divider connected to the VAC pin.  
The conduction angle is detected by monitoring the voltage on the VAC pin (VVAC).  
MB39C603 measures a half of power cycle period (Tpow) as duration between negative crossings of VVAC and a Phase Comp  
threshold voltage (VPHTH2). Dimmer-ON period (Tdim) is measured as duration between a positive crossing of VVAC and another  
Phase Comp threshold voltage (VPHTH1) and the following negative crossing. Conduction angle is defined as Tdim/Tpow × 180°.  
Figure 8-2 Conduction Angle Detection Waveform  
VBULK  
VVAC  
VPHTH1  
VPHTH2  
Phase Comp  
output  
Tdim  
Conduction angle = Tdim / Tpow × 180°  
Tpow  
MB39C603 regulates LED current by changing a reference of Err Amp as a function of the conduction angle. Table 8-1 shows ILED  
dimming ratio based on the conduction angle.  
In addition, the initial ILED ratio in PowerOn state is 5%.  
Table 8-1 ILED Ratio Based on Conduction Angles  
Conduction Angle  
ILED Ratio [%]  
θ < 45deg  
5
45deg ≤ θ < 90deg  
90deg ≤ θ < 135deg  
135deg ≤ θ  
(25/45) × θ -20  
(70/45) × θ -110  
100  
Document Number: 002-08450 Rev. *B  
Page 11 of 30  
 
 
 
MB39C603  
8.4 HOLD Current Control Function  
The hold current control function prevents LEDs from flickering caused by shortage of hold current. The hold current (IHOLD) is the  
minimum current required to flow through TRIAC dimmer in order to keep the TRIAC on (refer to Figure 8-3). In small conduction  
angle, since ILED can be low, AC/DC Converter current (IBULK) and TRIAC dimmer current (ITRIAC) are reduced. Once ITRIAC falls  
below IHOLD, TRIAC goes off and this results in LED flickering. MB39C603 controls ITRIAC larger than IHOLD by adding the current  
(IBIP) via a BIP transistor (M1) with sensing ITRIAC and keeps the TRIAC on.  
ITRIAC is sensed with a resistor (RS). A bypass diode (DBYPASS) is used to clamp the voltage between RS terminals (VRS) and prevent  
the voltage on the HOLDDET pin (VHOLDDET) from exceeding absolute maximum ratings. An offset resistor (ROFFSET) is used to add  
an offset voltage to VHOLDDET and prevent VHOLDDET from the above ratings.  
RS is set as the following equation.  
푂퐹퐹푆퐸ꢁ × 퐼퐻푂퐿퐷퐷퐸ꢁ 퐻푂퐿퐷ꢁ퐻  
=  
ꢁꢂꢀ퐴퐶푀ꢀꢃ  
where IHOLDDET is the current of the HOLDDET pin, VHOLDTH is Hold Amp threshold voltage, and ITRIACMIN is minimum TRIAC current  
chosen by designers.  
ROFFSET is set as the following equation.  
퐵푌푃퐴푆푆푀퐴푋 − 0.3푉  
푂퐹퐹푆퐸ꢁ  
>
퐻푂퐿퐷퐷퐸ꢁ  
where VBYPASSMAX is the maximum forward voltage of DBYPASS  
.
Hold Amp is designed only for driving BIP transistors. Connecting a resistor (RBASE) between the HOLDCNT pin and M1 base  
terminal limits the maximum IBIP value and clamp the rush current at TRIAC dimmer-on timing.  
Figure 8-3 HOLD Current Control Waveform  
IBULK  
ITRIAC = IBULK + IBIP  
VBULK  
AC/DC  
Converter  
Phase  
VBULK  
Dimmer  
DBYPASS  
IBIP  
RS  
ROFFSET  
M1  
RBASE  
IBIP  
IHOLDDET  
HOLDDET  
HOLDCNT  
5
6
Added  
IBIP  
ITRIAC  
Hold Amp  
ITRIACMIN  
VHOLDTH  
Document Number: 002-08450 Rev. *B  
Page 12 of 30  
 
MB39C603  
8.5 Power-On Sequence  
When the AC line voltage is supplied, VBULK is powered from the AC line through a diode bridge, and the VDD pin is charged from  
VBULK through an external source-follower BiasMOS.(Figure 8-4 red path)  
When the VDD pin is charged up and the voltage on the VDD pin (VVDD) rises above the UVLO threshold voltage, an internal Bias  
circuit starts operating, and MB39C603 starts the conduction angle detection (refer to 8.3). After the UVLO is released, this device  
enables switching and is operating in a forced switching mode (TON = 1.5 µs, TOFF = 78 µs to 320 µs). When the voltage on the TZE  
pin reaches the Zero energy threshold voltage (VTZETH = 0.7V), MB39C603 enters normal operation mode. After the switching  
begins, the VDD pin is also charged from Auxiliary Winding through an external diode (DBIAS).(Figure 8-4 blue path)  
During non-conduction period VVDD is not supplied from VBULK or Auxiliary Winding. It is necessary to set an appropriate capacitor  
of the VDD pin in order to keep VVDD above the UVLO threshold voltage in this period. An external diode (D1) between BiasMOS  
and the VDD pin is used to prevent discharge from the VDD pin to VBULK at zero cross points of the AC line voltage.  
Figure 8-4 VDD Supply Path at Power-On  
Phase  
Dimmer  
VBULK  
Rst  
Bias  
MOS  
Zbias  
To TZE  
DBIAS  
D1  
VDD  
2
Internal Bias  
Generator  
UVLO  
Driver  
DRV  
PWM  
13  
Control  
Logic  
11  
CS  
12  
GND  
Figure 8-5 Power-On Waveform  
VBULK  
UVLO Vth = 10.2V  
Force switching (ton=1.5us / toff=78us320us)  
Normal switching  
VDD  
DRV  
VLED  
TZE  
Switching start  
VTZETH = 0.7V  
Document Number: 002-08450 Rev. *B  
Page 13 of 30  
 
MB39C603  
8.6 Power-Off Sequence  
After the AC line voltage is removed, VBULK is discharged by switching operation and the Hold current circuit. Since any Secondary  
Winding current does not flow, ILED is supplied only from output capacitors and decreases gradually. VVDD also decreases because  
there is no current supply from both Auxiliary Winding and VBULK. When VVDD falls below the UVLO threshold voltage, MB39C603  
shuts down.  
Figure 8-6 Power-Off Waveform  
AC line removed  
VBULK  
VDD  
DRV  
UVLO Vth = 8V  
Shutdown  
VLED  
8.7 IP_PEAK Detection Function  
MB39C603 detects Primary Winding peak current (IP_PEAK) of Transformer. ILED is set by connecting a sense resistance (RCS  
)
between the CS pin and the GND pin. Maximum IP_PEAK (IP_PEAKMAX) limited by Over Current Protection (OCP) can also be set with  
the resistance.  
Using the Secondary to Primary turns ratio (NP/NS) and ILED, RCS is set as the following equation (refer to 8.1).  
0.132  
퐶푆  
=
×
푆  
퐿퐸퐷  
In addition, using the OCP threshold voltage (VOCPTH) and RCS, IP_PEAKMAX is calculated with the following equation.  
푂퐶푃ꢁ퐻  
푃_푃퐸퐴퐾푀퐴푋  
=
퐶푆  
8.8 Zero Voltage Switching Function  
MB39C603 has built-in zero voltage switching function to minimize switching loss of the external switching MOSFET. This device  
detects a zero crossing point through a resistor divider connected from the TZE pin to Auxiliary Winding. A zero energy detection  
circuit detects a negative crossing point of the voltage on the TZE pin to Zero energy threshold voltage (VTZETL). On-timing of  
switching MOSFET is decided with waiting an adjustment time (tADJ) after the negative crossing occurs.  
tADJ is set by connecting an external resistance (RADJ) between the ADJ pin and the GND pin. Using Primary Winding inductance  
(LP) and the parasitic drain capacitor of switching MOSFET (CD), tADJ is calculated with the following equation.  
휋 ꢄ × ꢅ  
퐴퐷퐽  
=
2
Using tADJ, RADJ is set as the following equation.  
[
]
[
]
퐴퐷퐽 푘훺 = 0.0927 × 푡퐴퐷퐽 푛푠  
Document Number: 002-08450 Rev. *B  
Page 14 of 30  
MB39C603  
8.9 Protection Functions  
Under Voltage Lockout Protection (UVLO)  
The under voltage lockout protection (UVLO) prevents IC from a malfunction in the transient state during VVDD startup and a  
malfunction caused by a momentary drop of VVDD, and protects the system from destruction/deterioration. An UVLO comparator  
detects the voltage decrease below the UVLO threshold voltage on the VDD pin, and then the DRV pin is turned to “L” and the  
switching stops. MB39C603 automatically returns to normal operation mode when VVDD increases above the UVLO threshold  
voltage.  
Over Voltage Protection (OVP)  
The over voltage protection (OVP) protects Secondary side components from an excessive stress voltage. If the LED is  
disconnected, the output voltage of Secondary Winding rises up. The output overvoltage can be detected by monitoring the TZE  
pin. During Secondary Winding energy discharge time, VTZE is proportional to VAUX and the voltage of Secondary Winding (refer to  
8.1). When VTZE rises higher than the OVP threshold voltage for 3 continues switching cycles, the DRV pin is turned to “L”, and the  
switching stops (latch off). When VVDD drops below the UVLO threshold voltage, the latch is removed.  
Over Current Protection (OCP)  
The over current protection (OCP) prevents inductor or transformer from saturation. The drain current of the external switching  
MOSFET is limited by OCP. When the voltage on the CS pin reaches the OCP threshold voltage, the DRV pin is turned to “L” and  
the switching cycle ends. After zero crossing is detected on the TZE pin again, the DRV pin is turned to “H” and the next switching  
cycle begins.  
Over Temperature Protection (OTP)  
The over temperature protection (OTP) protects IC from thermal destruction. When the junction temperature reaches +150°C, the  
DRV pin is turned to “L”, and the switching stops. It automatically returns to normal operation mode if the junction temperature falls  
back below +125°C.  
Table 8-2 Protection Functions Table  
PIN Operation  
Detection  
Condition  
Return  
Condition  
Function  
Remarks  
HOLD  
CNT  
DRV  
COMP  
ADJ  
Normal Operation  
Active  
Active  
Active  
Active  
-
-
-
Under Voltage Lockout  
Protection (UVLO)  
Auto  
Restart  
L
L
L
L
L
L
L
VDD < 8V  
TZE > 4.3V  
CS > 2V  
VDD > 10.2V  
Over Voltage  
Protection (OVP)  
1.5V  
fixed  
VDD < 8V  
→ VDD > 10.2V  
L
Active  
L
Active  
Active  
Active  
Latch off  
Over Current  
Protection (OCP)  
Auto  
Restart  
Active  
Cycle by cycle  
Tj < +125°C  
Over Temperature  
Protection (OTP)  
1.5V  
fixed  
Auto  
Restart  
Tj > +150°C  
Document Number: 002-08450 Rev. *B  
Page 15 of 30  
MB39C603  
9. I/O Pin Equivalent Circuit Diagram  
Figure 9-1 I/O Pin Equivalent Circuit Diagram  
Pin  
Pin No.  
Equivalent Circuit Diagram  
Name  
VREF5V  
GND  
VREF5V  
3
TZE  
3
TZE  
GND  
VREF5V  
GND  
12  
VREF5V  
GND  
VREF5V  
4
COMP  
GND  
4
COMP  
12  
VREF5V  
5,  
6
HOLDDET,  
HOLDCNT  
HOLDDET  
5
6
HOLDCNT  
12  
GND  
Document Number: 002-08450 Rev. *B  
Page 16 of 30  
MB39C603  
Pin  
Name  
Pin No.  
Equivalent Circuit Diagram  
VREF5V  
9
VAC  
ADJ  
CS  
9
VAC  
12  
GND  
VREF5V  
10  
11  
13  
10  
ADJ  
GND  
12  
VREF5V  
GND  
11  
CS  
VREF5V  
GND 12  
2
VDD  
GND  
VREF5V  
13  
DRV  
DRV  
12  
GND  
Document Number: 002-08450 Rev. *B  
Page 17 of 30  
MB39C603  
10.Application Examples  
10.1 17W Isolated and Phase Dimming Application  
Input: AC85VRMS to 145VRMS, Output: 470mA/32V to 42V, Ta = +25°C  
Figure 10-1 17W EVB Schematic  
MB39C603  
Document Number: 002-08450 Rev. *B  
Page 18 of 30  
MB39C603  
Table 10-1 17W BOM List  
No.  
1
Component  
Description  
LED driver IC, SOP-14  
Part No.  
MB39C603  
Vendor  
Cypress  
Fairchild  
Fairchild  
M1  
Q1  
Q2  
2
MOSFET, N-channel, 800V, 5.5A, TO-220F  
MOSFET, N-channel, 650V, 7.3A, TO-220  
FQPF8N80C  
FDPF10N60NZ  
3
Bipolar transistor, NPN, 60V, 3A, hfe = 250min,  
SOT-223  
4
Q3  
NZT560A  
Fairchild  
5
6
BR1  
D1  
Bridge rectifier, 1A, 600V, Micro-DIP  
Diode, ultra fast rectifier, 1A, 600V, SMA  
Diode, ultra fast rectifier, 3A, 200V, SMC  
Diode, fast rectifier, 1A, 800V, SMA  
Diode, ultra fast rectifier, 1A, 200V, SMA  
Diode, 200 mA, 200V, SOT-23  
MDB6S  
ES1J  
Fairchild  
Fairchild  
Fairchild  
Fairchild  
Fairchild  
Fairchild  
ON Semi  
-
7
D2  
ES3D  
8
D3  
RS1K  
9
D4  
ES1D  
10  
11  
12  
13  
14  
15  
D5  
MMBD1404  
MMSZ18T1G  
EI-2520  
ZD1, ZD2  
T1  
Diode, Zener, 18V, 500 mW, SOD-123  
Transformer, 600 μH  
L1  
Common mode inductor, 20 mH, 0.5A  
Inductor, 3.3 mH, 0.27A, 5.0Ω, ϕ10×14.4  
744821120  
RCH114NP-332KB  
B32921C3104M  
Wurth Electronic  
Sumida  
L3  
C1  
Capacitor, X2, 305VAC, 0.1 μF  
Capacitor, aluminum electrolytic, 100 μF, 25V,  
ϕ6.3×11  
EPCOS  
NIPPON-CHEMI-  
CON  
16  
C2  
EKMG250ELL101MF11D  
17  
18  
19  
C3  
C4  
C5  
Capacitor,polyester film, 220 nF, 400V, 18.5×5.9  
Capacitor,polyester film, 100 nF, 400V, 12×6.3  
Capacitor, ceramic, 10 μF, 50V, X7S, 1210  
ECQ-E4224KF  
Panasonic  
Panasonic  
-
ECQ-E4104KF  
-
Capacitor, aluminum electrolytic, 470 μF 50V,  
ϕ10.0×20  
NIPPON-CHEMI-  
CON  
20  
C6, C7  
EKMG500ELL471MJ20S  
21  
22  
23  
C8  
Capacitor, ceramic, 15 nF, 250V, X7R, 1206  
Capacitor, ceramic, 2.2 nF, X1/Y1 radial  
Capacitor, ceramic, 0.1 μF, 50V, X5R, 0603  
-
-
C9  
DE1E3KX222M  
-
muRata  
-
C10, C11  
C12, C15,  
C16  
24  
NA (Open), 0603  
-
-
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
C13  
C14  
C17  
C18  
C19  
R1, R17  
R2  
Capacitor, ceramic, 10 μF, 35V, X5R, 0805  
Capacitor, ceramic, 4.7 μF, 16V, JB, 0805  
NA (Open), 1206  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Capacitor, ceramic, 100 pF, 50V, CH, 0603  
NA (Open)  
Resistor, chip, 1 MΩ, 1/4W, 1206  
Resistor, metal film, 510Ω, 2W,  
NA (Open), 1206  
R3  
R4  
Resistor, metal oxide film, 68 kΩ, 3W  
Resistor, chip, 5.1Ω, 1W, 2512  
R5  
35  
36  
R6  
R7  
Resistor, chip, 62 kΩ, 1/10W, 0603  
Resistor, chip, 10Ω, 1/8W, 0805  
-
-
-
-
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
R8  
R9  
R10  
R11, R12  
R13  
R14  
R16  
R18  
R19  
R20, R15  
R21  
VR1  
F1  
Resistor, chip, 22Ω, 1/10W, 0603  
Resistor, chip, 91 kΩ, 1/10W, 0603  
Resistor, chip, 24 kΩ, 1/10W, 0603  
NA (Short), 0603  
Resistor, chip, 39 kΩ, 1/10W, 0603  
Resistor, chip, 1.1Ω, 1/4W, 1206  
Resistor, chip, 51 kΩ, 1/10W, 0603  
Resistor, chip, 33 kΩ, 1/10W, 0603  
Resistor, chip, 12 kΩ, 1/10W, 0603  
NA (Open), 1206  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Resistor, chip, 510 kΩ, 1/10W, 0603  
Varistor, 275VAC, 7 mm DISK  
Fuse, 1A, 300VAC  
ERZ-V07D431  
3691100000  
Panasonic  
Littelfuse  
Document Number: 002-08450 Rev. *B  
Page 19 of 30  
MB39C603  
Fairchild  
:
:
:
:
:
:
:
:
:
Fairchild Semiconductor International, lnc.  
ON Semiconductor  
On Semi  
Wurth Electronic  
Sumida  
Wurth Electronics Midcom Inc.  
SUMIDA CORPORATION  
EPCOS AG  
EPCOS  
NIPPON-CHEMI-CON  
Panasonic  
muRata  
Nippon Chemi-Con Corporation  
Panasonic Corporation  
Murata Manufacturing Co., Ltd.  
Littelfuse, Inc.  
Littelfuse  
Document Number: 002-08450 Rev. *B  
Page 20 of 30  
MB39C603  
Figure 10-2 17W Reference Data  
Efficiency  
LED: 470mA, 37V (without Dimmer)  
Power Factor  
LED: 470mA, 37V (without Dimmer)  
100%  
1.00  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
50Hz  
60Hz  
50Hz  
60Hz  
80  
90  
100  
110  
120  
130  
140  
150  
80  
90  
100  
110  
120  
130  
140  
150  
VIN [VRMS  
]
VIN [VRMS  
]
Line Regulation  
(without Dimmer)  
Load Regulation  
(without Dimmer)  
520  
500  
480  
460  
440  
420  
520  
100V/50Hz  
100V/60Hz  
50Hz  
60Hz  
500  
480  
460  
440  
420  
80  
90  
100  
110  
120  
130  
140  
150  
30  
35  
40  
45  
VIN [VRMS  
]
VOUT [V]  
Document Number: 002-08450 Rev. *B  
Page 21 of 30  
MB39C603  
Output Ripple Waveform  
VIN=100VRMS / 60Hz  
Switching Waveform  
VIN=100VRMS / 60Hz  
LED: 470mA, 37V (without Dimmer)  
LED: 470mA, 37V (without Dimmer)  
VBULKD1 +)  
VOUT  
VSW(Q1 drain)  
IOUT  
IOUT  
Turn-On Waveform  
VIN=100VRMS / 60Hz  
Turn-Off Waveform  
VIN=100VRMS / 60Hz  
LED: 470mA, 37V (without Dimmer)  
LED: 470mA, 37V (without Dimmer)  
VBULK  
VBULK  
VDD(M1 VDD)  
VOUT  
VDD  
VOUT  
IOUT  
IOUT  
LED Open Waveform  
VIN=100VRMS / 60Hz  
Total Harmonic Distortion(THD)  
LED: 470mA, 37V (without Dimmer)  
LED: 470mA, 37V (without Dimmer)  
40  
VSW  
35  
50Hz  
30  
60Hz  
25  
20  
15  
10  
5
VOUT  
IOUT  
0
80  
90  
100  
110  
120  
130  
140  
150  
VIN [VRMS  
]
Document Number: 002-08450 Rev. *B  
Page 22 of 30  
MB39C603  
Figure 10-3 17W Japan Dimmer Performance Data  
Dimming Curve  
VIN=100VRMS / 50Hz  
LED: 470mA, 37V  
Dimming Curve  
VIN=100VRMS / 60Hz  
LED: 470mA, 37V  
500  
500  
400  
300  
200  
100  
0
Leading Edge  
Leading Edge  
Trailing Edge  
400  
Trailing Edge  
300  
200  
100  
0
0
45  
90  
135  
180  
0
45  
90  
135  
180  
Conduction Angle [°]  
Conduction Angle [°]  
Table 10-2 17W Japan Dimmer Performance Data  
Dimmer  
Maximu  
m Angle  
(°)  
Maximu  
m IOUT  
(mA)  
Input  
Condition  
Minimum Minimum  
Type  
Angle (°)  
IOUT (mA)  
Vendor  
Parts Name  
LUTRON  
DVCL-123P-JA  
WTC57521  
WN575280K  
NQ20203T  
DP-37154  
DEM1003B  
DG9022H  
DG9048N  
31.9  
38.0  
27.7  
31.0  
32.4  
28.3  
46.4  
34.0  
30.4  
19.2  
19.2  
19.8  
19.4  
19.1  
19.7  
19.4  
19.2  
18.8  
141.8  
145.6  
147.2  
146.7  
142.9  
147.8  
151.9  
155.3  
145.4  
468.4  
467.6  
467.0  
466.9  
466.9  
466.9  
467.2  
466.6  
468.4  
Panasonic  
VIN=100VRMS  
50Hz  
(Japan Dimmer)  
Leading Edge  
Trailing Edge  
DAIKO  
Mitsubishi  
TOSHIBA  
LUTRON  
Panasonic  
WDG9001  
DVCL-123P-JA  
22.7  
19.1  
138.5  
468.7  
WTC57521  
WN575280K  
NQ20203T  
DP-37154  
DEM1003B  
DG9022H  
DG9048N  
WDG9001  
38.9  
27.4  
27.6  
33.0  
25.9  
22.0  
22.7  
35.9  
19.1  
19.6  
19.6  
19.1  
19.9  
18.8  
19.6  
18.7  
146.7  
146.2  
144.3  
144.3  
145.2  
150.8  
153.6  
150.1  
468.4  
466.8  
467.3  
467.0  
467.2  
467.0  
466.5  
468.3  
VIN=100VRMS  
60Hz  
(Japan Dimmer)  
Leading Edge  
Trailing Edge  
DAIKO  
Mitsubishi  
TOSHIBA  
Document Number: 002-08450 Rev. *B  
Page 23 of 30  
MB39C603  
Figure 10-4 17W USA Dimmer Performance Data  
Dimming Curve  
VIN=120VRMS / 60Hz  
LED: 470mA, 37V  
500  
400  
300  
200  
100  
0
Leading Edge  
Trailing Edge IPE04-1LZ  
Trailing Edge Other  
0
45  
90  
135  
180  
Conduction Angle [°]  
Table 10-3 17W USA Dimmer Performance Data  
Dimmer  
Maximu  
m Angle  
(°)  
Maximu  
m IOUT  
(mA)  
Input  
Minimum Minimum  
Type  
Condition  
Angle (°)  
IOUT (mA)  
Vendor  
Parts Name  
IPI06-1LZ  
6631-LW  
6641-W  
6683  
SLV-600-WH  
S-600P-WH  
TG-600PH-WH  
AY-600P-WH  
GL-600H-DK  
42.3  
21.8  
39.1  
35.2  
19.7  
35.0  
45.4  
40.2  
25.1  
25.3  
20.1  
19.5  
19.5  
18.0  
19.5  
19.8  
19.5  
20.0  
156.0  
144.1  
147.7  
155.5  
135.4  
137.6  
140.4  
143.6  
135.9  
477.5  
470.2  
471.5  
468.9  
454.2  
470.6  
470.5  
470.6  
457.3  
LEVITON  
TG-600PNLH-WH  
34.1  
19.5  
141.0  
470.8  
Leading Edge  
TGCL-153PH-WH  
TT-300NLH-WH  
DV-603PG-WH  
DVCL-153-WH  
DV603PH-WH  
LGCL-153PLH-WH  
D-603PH  
DV-600PH-WH  
52129  
18023  
33.3  
41.7  
35.6  
38.0  
33.0  
39.3  
24.2  
32.8  
23.8  
36.9  
19.4  
19.5  
19.4  
19.4  
19.5  
19.2  
20.0  
19.3  
20.2  
19.4  
135.0  
143.2  
116.4  
133.9  
136.9  
133.9  
133.5  
139.3  
157.0  
158.5  
455.4  
470.5  
316.5  
445.7  
471.2  
444.4  
439.1  
470.7  
469.8  
469.5  
VIN=120VRMS  
60Hz  
(USA Dimmer)  
LUTRON  
GE  
IPE04-1LZ  
SELV-300P-WH  
DVELV-300P-WH  
LEVITON  
LUTRON  
45.6  
34.1  
34.1  
33.1  
19.1  
19.0  
136.9  
130.9  
131.8  
477.3  
447.2  
455.2  
Trailing Edge  
Document Number: 002-08450 Rev. *B  
Page 24 of 30  
MB39C603  
Figure 10-5 17W Parts Surface Temperature  
Top Side Temperature Image  
VIN=100VRMS / 50Hz  
Bottom Side Temperature Image  
VIN=100VRMS / 50Hz  
LED: 470mA, 37V (without Dimmer)  
LED: 470mA, 37V (without Dimmer)  
Top Side Temperature Image  
VIN=100VRMS / 60Hz  
Bottom Side Temperature Image  
VIN=100VRMS / 60Hz  
LED: 470mA, 37V (without Dimmer)  
LED: 470mA, 37V (without Dimmer)  
Table 10-4 17W Parts Surface Temperature Data  
Surface Temperature []  
ΔTemperature [Δ]  
Side  
Cursor Point  
50Hz  
68.0  
61.8  
70.8  
52.8  
58.5  
44.5  
29.6  
55.1  
63.5  
58.0  
45.1  
28.3  
60Hz  
66.5  
61.8  
70.1  
52.5  
56.0  
43.8  
29.8  
56.6  
67.1  
61.6  
46.9  
31.4  
50Hz  
38.3  
32.2  
41.2  
23.1  
28.9  
14.8  
-
26.8  
35.2  
29.7  
16.7  
-
60Hz  
36.8  
32.0  
40.3  
22.8  
26.2  
14.0  
-
25.2  
35.8  
30.2  
15.5  
-
a
b
c
d
e
f
g
a
b
c
d
e
T2  
Q1  
R4  
R2  
Q2  
Top  
PCB  
Out of PCB  
M1  
Back side of R4  
BR1  
Bottom  
PCB  
Out of PCB  
Document Number: 002-08450 Rev. *B  
Page 25 of 30  
MB39C603  
11.Usage Precautions  
Do not configure the IC over the maximum ratings.  
If the IC is used over the maximum ratings, the LSI may be permanently damaged.  
It is preferable for the device to normally operate within the recommended usage conditions. Usage outside of these conditions can  
have an adverse effect on the reliability of the LSI.  
Use the device within the recommended operating conditions.  
The recommended values guarantee the normal LSI operation under the recommended operating conditions.  
The electrical ratings are guaranteed when the device is used within the recommended operating conditions and under the  
conditions stated for each item.  
Take appropriate measures against static electricity.  
Containers for semiconductor materials should have anti-static protection or be made of conductive material.  
After mounting, printed circuit boards should be stored and shipped in conductive bags or containers.  
Work platforms, tools, and instruments should be properly grounded.  
Working personnel should be grounded with resistance of 250 kΩ to 1 MΩ in serial between body and ground.  
Do not apply negative voltages.  
The use of negative voltages below - 0.3 V may make the parasitic transistor activated to the LSI, and can cause malfunctions.  
12.RoHS Compliance Information  
This product has observed the standard of lead, cadmium, mercury, Hexavalent chromium, polybrominated biphenyls (PBB), and  
polybrominated diphenyl ethers (PBDE).  
13.Ordering Information  
Table 13-1 Ordering Information  
Shipping Form  
Part Number  
Package  
MB39C603PF-G-JNEFE1  
Emboss  
Tube  
14-pin plastic SOP  
(SOF014)  
MB39C603PF-G-JNE1  
Document Number: 002-08450 Rev. *B  
Page 26 of 30  
 
 
MB39C603  
14.Package Dimensions  
Package Code: SOF014  
002-15859 Rev. **  
Page 27 of 30  
Document Number: 002-08450 Rev. *B  
 
MB39C603  
15.Major Changes  
Spansion Publication Number: MB39C603_DS405-00021  
Page  
Section  
Descriptions  
Revision1.0  
Initial release  
Removed ESD Voltage (Machine Model) from Table 7-1  
-
-
Revision2.0  
7
7. Absolute Maximum Ratings  
NOTE: Please see “Document History” about later revised information.  
Document Number: 002-08450 Rev. *B  
Page 28 of 30  
MB39C603  
Document History  
Document Title: MB39C603 Phase Dimmable PSR LED Driver IC for LED Lighting  
Document Number: 002-08450  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
Migrated to Cypress and assigned document number 002-08450.  
No change to document contents or format.  
**  
TOYO  
TOYO  
02/20/2015  
*A  
5211117  
04/07/2016 Updated to Cypress format.  
Updated Pin Assignment:  
Change the package name from FPT-14P-M04 to SOF014  
Added RoHS Compliance Information  
Updated Ordering Information:  
*B  
5742340  
HIXT  
05/22/2017  
Change the package name from FPT-14P-M04 to SOF014  
Deleted “Marking Format”  
Deleted “Recommended Mounting Condition [JEDEC Level3] Lead Free”  
Updated Package Dimensions: Updated to Cypress format  
Document Number: 002-08450 Rev. *B  
Page 29 of 30  
MB39C603  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the  
office closest to you, visit us at Cypress Locations.  
Products  
PSoC® Solutions  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6  
ARM® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
Automotive  
Cypress Developer Community  
Forums | WICED IOT Forums | Projects | Video | Blogs |  
Training | Components  
Clocks & Buffers  
Interface  
Technical Support  
cypress.com/support  
Internet of Things  
Memory  
cypress.com/memory  
cypress.com/mcu  
Microcontrollers  
PSoC  
cypress.com/psoc  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/wireless  
ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries.  
© Cypress Semiconductor Corporation, 2014-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document,  
including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then  
Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code  
form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to  
end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed by the  
Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation,  
or compilation of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent  
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any  
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It  
is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress  
products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support  
devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the  
failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose failure to perform  
can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress  
from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs,  
damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 002-08450 Rev. *B  
May 22, 2017  
Page 30 of 30  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY