MB39C811QN [CYPRESS]

Ultra Low Power Buck PMIC Solar/Vibrations Energy Harvesting;
MB39C811QN
型号: MB39C811QN
厂家: CYPRESS    CYPRESS
描述:

Ultra Low Power Buck PMIC Solar/Vibrations Energy Harvesting

集成电源管理电路
文件: 总36页 (文件大小:2519K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MB39C811  
Ultra Low Power Buck PMIC  
Solar/Vibrations Energy Harvesting  
The MB39C811 is the high efficient buck (Power Management) DC/DC converter IC which adopts the all-wave bridge  
rectifier using the low-dissipation and the comparator system. It achieves the energy harvest solution for the energy  
source of the high output impedance such as the piezoelectric transducer.  
It is possible to select from eight preset output voltages and supply up to 100 mA of the output current.  
Features  
Quiescent current (No load, Output in regulation):  
Output current: Up to 100mA  
Protection functions  
1.5µA  
Quiescent current (VIN = 2.5V UVLO): 550nA  
Integrated Low Loss Full-Wave Bridge Rectifier  
VIN input voltage range: 2.6V to 23V  
Shunt for input protection: VIN ≥ 21V, Up to 100mA  
Pull-down  
Over current limit  
Preset output voltage: 1.5V, 1.8V, 2.5V, 3.3V, 3.6V,  
I/O power-good detection signal output  
4.1V, 4.5V, 5.0V  
Applications  
Light energy harvesting  
Wireless HVAC sensor  
Piezoelectric energy harvesting  
Electro-Mechanical energy harvesting  
Stand-alone nano-power buck regulator  
Online Design Simulation  
Easy DesignSim  
This product supports the web-based design simulation tool.  
It can easily select external components and can display useful information.  
Please access from the following URL.  
http://cypress.transim.com/login.aspx  
Cypress Semiconductor Corporation  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Document Number: 002-08401 Rev *A  
Revised February 22, 2016  
MB39C811  
Contents  
1.  
2.  
3.  
4.  
5.  
6.  
6.1  
6.2  
6.3  
7.  
7.1  
7.2  
7.3  
8.  
Pin Assignments................................................................................................................................................... 3  
Pin Descriptions.................................................................................................................................................... 4  
Block Diagram....................................................................................................................................................... 5  
Absolute Maximum Ratings................................................................................................................................. 6  
Recommended Operating Conditions................................................................................................................. 7  
Electrical Characteristics ..................................................................................................................................... 8  
DC Characteristics ............................................................................................................................................... 8  
Characteristics of Built-in Bridge Rectification Circuit........................................................................................... 9  
AC Characteristics (Input/Output Power-Good).................................................................................................... 9  
Function............................................................................................................................................................... 10  
Operational Summary ........................................................................................................................................ 10  
Start-Up/Shut-Down Sequences ........................................................................................................................ 11  
Function Descriptions......................................................................................................................................... 11  
Typical Application Circuits............................................................................................................................... 13  
Application Notes................................................................................................................................................ 15  
9.  
10. Typical Characteristics....................................................................................................................................... 19  
11. Layout for Printed Circuit Board........................................................................................................................ 25  
12. Usage Precaution................................................................................................................................................ 26  
13. Ordering Information .......................................................................................................................................... 26  
14. Marking ................................................................................................................................................................ 26  
15. Product Labels.................................................................................................................................................... 27  
16. Recommended Mounting Conditions................................................................................................................ 30  
17. PackageDimensions ........................................................................................................................................... 32  
18. Major Changes .................................................................................................................................................... 33  
Document History........................................................................................................................................................ 35  
Document Number: 002-08401 Rev *A  
Page 2 of 36  
MB39C811  
1.  
Pin Assignments  
Figure 1. Pin Assignments  
(TOP VIEW)  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
N.C.  
GND  
VB  
2
N.C.  
3
N.C.  
VOUT  
IPGOOD  
OPGOOD  
GND  
4
N.C.  
5
VIN  
6
LX  
7
PGND  
S0  
8
N.C.  
S1  
9
S2  
GND  
10  
N.C.  
GND  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
(QFN_40PIN)  
Document Number: 002-08401 Rev *A  
Page 3 of 36  
 
MB39C811  
2.  
Pin Descriptions  
Table 1. Pin Descriptions.  
Pin  
Name  
Pin No.  
I/O  
Description  
1 to 4  
5
N.C.  
-
-
Non connection pins (Leavethese pins open)  
DC power supply input pin  
DC/DC output pin  
VIN  
LX  
6
O
-
7
PGND  
N.C.  
PGND pin  
8
-
Non connection pin (Leavethis pin open)  
GND pin  
9
GND  
-
10,11  
12  
N.C.  
-
Non connection pins (Leavethese pins open)  
Bridge Rectifier1 AC input pin 1  
Bridge Rectifier1 DC output pin  
Bridge Rectifier1 AC input pin 2  
GND pin  
AC1_1  
DCOUT1  
AC1_2  
DCGND1  
DCGND2  
AC2_2  
DCOUT2  
AC2_1  
N.C.  
I
13  
O
I
14  
15  
-
16  
-
GND pin  
17  
I
Bridge Rectifier2 AC input pin 2  
Bridge Rectifier2 DC output pin  
Bridge Rectifier2 AC input pin 1  
Non connection pin (Leavethis pin open)  
GND pin  
18  
O
I
19  
20  
-
21  
GND  
-
22  
S2  
I
Output voltage select pin 2  
Output voltage select pin 1  
Output voltage select pin 0  
GND pin  
23  
S1  
I
24  
S0  
I
25  
GND  
-
26  
OPGOOD  
IPGOOD  
VOUT  
VB  
O
O
I
Output power-good output pin  
Input power-good output pin  
Output voltage feedback pin  
Internal circuit power supply pin  
GND pin  
27  
28  
29  
O
-
30  
GND  
31 to 40  
N.C.  
-
Non connection pins (Leavethese pins open)  
Document Number: 002-08401 Rev *A  
Page 4 of 36  
 
MB39C811  
3.  
Block Diagram  
Figure 2. Block Diagram  
C1  
CVIN  
AC1_1  
SHUNT  
DCGND1  
AC1_2  
AC2_1  
L1  
LX  
VOUT  
CONTROL  
C2  
CVOUT  
DCGND2  
AC2_2  
PGND  
VOUT  
ERR  
CMP  
3
S2,S1,S0  
VOUT  
CTL  
VIN  
BGR  
IPGOOD  
UVLO  
VB  
OPGOOD  
VB REG.  
C3  
PGOOD  
CVB  
UVLO_VB  
Document Number: 002-08401 Rev *A  
Page 5 of 36  
 
 
MB39C811  
4.  
Absolute Maximum Ratings  
Table 2. Absolute Maximum Ratings  
Rating  
Parameter  
Symbol  
VVINMAX  
Condition  
VIN pin  
Unit  
Min  
Max  
+24  
VIN pin input voltage  
VIN pin input slew rate  
VIN pin input current  
-0.3  
V
SRMAX  
IINMAX  
VIN pin (VIN≥7V)  
VIN pin  
-
-
0.25  
100  
V/ms  
mA  
AC1_1 pin, AC1_2 pin,  
AC2_1 pin, AC2_2 pin  
AC1_1 pin, AC1_2 pin,  
AC2_1 pin, AC2_2 pin  
LX pin  
AC pin input voltage  
VACMAX  
-0.3  
+24  
50  
V
AC pin input current  
LX pin input voltage  
IPVMAX  
VLXMAX  
-
mA  
V
-0.3  
-0.3  
+24  
VVB + 0.3  
(≤+7.0)  
+7.0  
S0 pin, S1 pin, S2 pin  
V
Input voltage  
VVINPUTMAX  
VOUT pin  
Ta≤ +25°C  
-
-0.3  
-
V
Power dissipation  
PD  
2500  
mW  
°C  
Storage temperature  
TSTG  
VESDH  
-55  
+125  
Human Body Model  
(100pF, 5kΩ)  
ESD voltage 1  
-900  
+2000  
V
VESDM  
VCDM  
Machine Model (200pF,  
0Ω)  
ESD voltage 2  
ESD voltage3  
-150  
+150  
V
V
Charged Device Model  
-1000  
+1000  
Figure 3. Power Dissipation - Operating Ambient Temperature  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-50  
-25  
0
25  
50  
75  
100  
Temperature []  
WARNING:  
Semiconductor devices may be permanently damaged by application of stress (including, without limitation,  
voltage, current or temperature) in excess of absolute maximum ratings.Do not exceed any of these ratings.  
Document Number: 002-08401 Rev *A  
Page 6 of 36  
 
MB39C811  
5.  
Recommended Operating Conditions  
Table 3. Recommended operating conditions  
Value  
Typ  
Parameter  
Symbol  
Condition  
VIN pin  
Unit  
Min  
2.6  
Max  
23  
VIN pin input voltage  
VVIN  
-
V
AC1_1 pin, AC1_2 pin,  
AC2_1 pin, AC2_2 pin  
S0 pin, S1 pin, S2 pin  
VOUT pin  
AC pin input voltage  
VPV  
-
-
23  
V
VSI  
VFB  
Ta  
0
-
-
-
VVB  
5.5  
V
Input voltage  
0
V
Operating ambient temperature  
-
-40  
+85  
°C  
WARNING:  
The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device's electrical characteristics are warranted when the device is operated  
under these conditions.  
Any use of semiconductor devices will be under their recommended operating condition.  
Operation under any conditions other than these conditions may adversely affect reliability of device and could  
result in device failure.  
No warranty is made with respect to any use, operating conditions or combinations not represented on this data  
sheet. If you are considering application under any conditions other than listed herein, please contact sales  
representatives beforehand.  
Document Number: 002-08401 Rev *A  
Page 7 of 36  
 
MB39C811  
6.  
Electrical Characteristics  
6.1  
DC Characteristics  
Table 4. DC Characteristics  
(Ta = -40°C to +85°C, VVIN = 7.0V, L1 = 22µH, C2 = 47µF)  
Value  
Typ  
550  
1.5  
Parameter  
Symbol  
Condition  
Unit  
Min  
-
Max  
VVIN = 2.5V (UVLO), Ta = +25°C  
VVIN = 4.5V (sleep mode), Ta = +25°C  
VVIN = 18V (sleep mode), Ta =+25°C  
S2 = L, S1 = L, S0 = L, IOUT = 1mA  
S2 = L, S1 = L, S0 = H, IOUT = 1mA  
S2 = L, S1 = H, S0 = L, IOUT = 1mA  
S2 = L, S1 = H, S0 = H, IOUT = 1mA  
S2 = H, S1 = L, S0 = L, IOUT = 1mA  
S2 = H, S1 = L, S0 = H, IOUT = 1mA  
S2 = H, S1 = H, S0 = L, IOUT = 1mA  
S2 = H, S1 = H, S0 = H, IOUT = 1mA  
-
775  
nA  
µA  
µA  
V
Quiescent current  
IVIN  
-
2.25  
-
1.9  
2.85  
1.457  
1.748  
2.428  
3.214  
3.506  
3.993  
4.383  
4.870  
200  
1.5  
1.544  
1.852  
2.573  
3.386  
3.694  
4.207  
4.617  
5.130  
400  
1.8  
V
2.5  
V
3.3  
V
Preset output voltage  
VVOUT  
3.6  
V
4.1  
V
4.5  
V
5.0  
V
Peak switching current  
Maximum Output  
current  
IPEAK  
250  
mA  
Ta = +25°C  
IOUTMAX  
100*  
-
-
mA  
S2 = L, S1 = L, S0 = L  
S2 = L, S1 = L, S0 = H  
S2 = L, S1 = H, S0 = L  
S2 = L, S1 = H, S0 = H  
S2 = H, S1 = L, S0 = L  
S2 = H, S1 = L, S0 = H  
S2 = H, S1 = H, S0 = L  
S2 = H, S1 = H, S0 = H  
S2 = L, S1 = L, S0 = L  
S2 = L, S1 = L, S0 = H  
S2 = L, S1 = H, S0 = L  
S2 = L, S1 = H, S0 = H  
S2 = H, S1 = L, S0 = L  
S2 = H, S1 = L, S0 = H  
S2 = H, S1 = H, S0 = L  
S2 = H, S1 = H, S0 = H  
IVIN = 1mA  
3.8  
4.0  
5.2  
7.2  
4.2  
V
UVLO release voltage  
(Input power-good  
detectionvoltage)  
VUVLOH  
4.94  
6.84  
5.46  
7.56  
V
V
2.6  
3.8  
5.7  
2.8  
4.0  
6.0  
3.0  
4.2  
6.3  
V
V
V
UVLO detection  
voltage  
VUVLOL  
(Input power-good  
resetvoltage)  
VIN pin shunt voltage  
VIN pin shunt current  
Output power-good  
detectionvoltage  
(Rising)  
VSHUNT  
ISHUNT  
19  
21  
-
23  
-
V
-
100  
mA  
To preset voltage ratio  
VVOUT≥3.3V[2]  
VOPGH  
VOPGL  
VVB  
90  
65.5  
-
94  
70  
98  
74.5  
-
%
%
V
Output power-good  
resetvoltage (Falling)  
Power supply output  
voltage forinternal  
circuit  
To preset voltage ratio  
VVIN = 6V to 20V  
5.0[1]  
[1]: This parameter is not be specified. This should be used as a reference to support designing the circuits.  
Document Number: 002-08401 Rev *A  
Page 8 of 36  
 
 
MB39C811  
[2]: Please contact the department in charge if use this output power-good function under the conditions of  
VVOUT≤2.5V.  
6.2  
Characteristics of Built-in Bridge Rectification Circuit  
Table 5. Characteristics of Built-in Bridge Rectification Circuit  
(Ta = +25°C)  
Value  
Parameter  
Symbol  
Condition  
IF = 10µA  
Unit  
mV  
Min  
150  
Typ  
Max  
450  
Forward bias voltage  
Forward direction current  
Reverse bias leak current  
Break down voltage  
VF  
IF  
280  
-
-
-
50  
20  
-
mA  
nA  
V
IR  
VR = 18V  
IR = 1µA  
-
-
VBREAK  
VSHUNT  
25  
6.3  
AC Characteristics (Input/Output Power-Good)  
Table 6. AC Characteristics  
(Ta = +25°C, VOUT = 3.3V)  
Value  
Typ  
Parameter  
Symbol  
Condition  
Unit  
Min  
Max  
Input power-good detection delay time  
(Rising)  
tIPGH  
SRVIN = 0.1V/ms  
SRVIN = 0.1V/ms  
-
1
-
ms  
Input power-good reset delay time (Falling)  
Input power-good undefined time  
tIPGL  
tIPGX  
-
-
1
1
-
ms  
ms  
OPGOOD rising  
IOUT = 0mA,  
L1 = 22μH,  
3
Output power-good detection delay time  
(Rising)  
tOPGH  
tOPGL  
-
-
1
1
-
-
ms  
ms  
C2 = 47μF,  
IOUT = 1mA,  
Output power-good reset delay time (Falling)  
C2 = 47μF  
Figure 4. AC characteristics  
VUVLOH  
VUVLOL  
VIN  
VOPGH  
VOPGL  
VOUT  
tIPGH  
IPGOOD  
tIPGL  
tIPGX  
OPGOOD  
tOPGH  
tOPGL  
Document Number: 002-08401 Rev *A  
Page 9 of 36  
 
 
 
MB39C811  
7.  
Function  
7.1  
Operational Summary  
Bridge Rectifier  
The A/C voltage which is input to the AC1_1 and AC1_2 pins or the AC2_1 and AC2_2 pins is all-wave rectified at the  
bridge rectifier of the low-dissipation diode. The bridge rectifier output is output from the DCOUT1 pin and the  
DCOUT2 pin. By connecting those outputs to the VIN pin, the electric charge is accumulated to the capacitor and it is  
used as the energy condenser of the buck converter.  
Power Supply for Internal Circuit  
When the VIN pin voltage is 3.5V or lower, the power supply is supplied from the VIN pin to the internal circuit directly.  
If the VIN pin is over 3.5V, the internal regulator is activated and the power supply is supplied from the internal  
regulator to the internal circuit. Therefore, the stable output voltage is maintained in the wide input voltage range 2.6 V  
to 23V.  
DC/DC Start-Up/Shut-Down  
When the VIN pin voltage is over the release voltage VUVLOH for the under voltage lockout protection circuit (UVLO),  
the converter circuit is enabled and the electric charge is supplied from the input capacitor to the output capacitor.  
When the VIN pin voltage is below the UVLO detection voltage VUVLOL, the converter is disabled. The 12V hysteresis  
between the release voltage and the detection voltage for UVLO prevents the converter from noise or frequent  
ON/OFF which is caused by the VIN pin voltage-drop during start-up.  
Sleep/Auto Active Control  
When the feedback voltage VFB for the converter reaches the determinate voltage, the sleep state to stop the  
switching operation starts and that can reduce the consumption power from the internal circuit. When the VOUT voltage  
is below the threshold value, the VOUT voltage is maintained to the rated value by making the converter active again.  
Document Number: 002-08401 Rev *A  
Page 10 of 36  
 
MB39C811  
7.2  
Start-Up/Shut-Down Sequences  
Figure 5. Timing Chart  
AC1_1,  
AC1_2  
or  
AC2_1,  
AC2_2  
VSHUNT  
Charge  
Voltage  
VVB  
VIN  
VUVLOH  
VUVLOL  
VVB  
Internal  
Regulator  
Start-up  
VB  
UVLO  
Rising  
UVLO  
Falling  
UVLO  
(internal signal)  
UVLO  
Falling  
DC/DC  
Enable  
LX  
active  
Transfer Charge  
to the Output  
VOPGH  
VOPGL  
sleep  
VOUT  
Output  
IPGOOD  
Rest  
IPGOOD  
IPGOOD  
OPGOOD  
Output  
OPGOOD  
Reset  
OPGOOD  
7.3  
Function Descriptions  
Output Voltage Setting and Under Voltage Lockout Protection (UVLO) Function  
It is possible to select the output voltage from eight kinds of presets using the S2, S1 and S0 pins.  
Also, the under voltage lockout protection circuit is provided to prevent IC's malfunction by the transient state or the  
instant drop during the VIN pin voltage activation, system destroy and deterioration, and it is set as follows according  
to the preset voltage. When the VIN pin exceeds the release voltage for the UVLO circuit, the system is recovered.  
Table 7. Output Voltage Setting and Under Voltage Lockout Protection (UVLO) Function  
Under voltage lockout protection (UVLO) -Typ-  
S2  
S1  
S0  
VOUT[V]  
Detection voltage  
Release voltage  
(Falling) VUVLOL [V]  
(Rising) VUVLOH [V]  
L
L
L
L
L
H
L
1.5  
1.8  
2.5  
3.3  
3.6  
4.1  
4.5  
5.0  
2.8  
4.0  
6.0  
4.0  
5.2  
7.2  
L
H
H
L
L
H
L
H
H
H
H
L
H
L
H
H
H
Document Number: 002-08401 Rev *A  
Page 11 of 36  
 
 
MB39C811  
Input/output power-good signal output  
When the VIN pin input voltage is equal to the release voltage VUVLOH for UVLO or more, the output for the  
IPGOOD pin is set to the “H” level as the input power-good. When the VIN pin input voltage is equal to the detection  
voltage VUVLOL for UVLO or less, the output for the IPGOOD pin is reset to the “L” level. The IPGOOD output is  
enabled only when the following output power-good signal output OPGOOD is “H” level.  
The output power-good signal OPGOOD is set to the “H” level when the feedback voltage VFB for the VOUT pin is  
equal to the detection voltage VOPGH or more. When the feedback voltage VFB is equal to the reset voltage VOPGL  
or less, the output for the OPGOOD pin is reset to the “L” level.  
Table 8. Input Power-Good Signal Output (IPGOOD)  
OPGOOD  
UVLO  
IPGOOD  
L
Don’t care  
L
H
H
L
L
H
H
Table 9. Output Power-Good Signal Output (OPGOOD)  
VFB  
OPGOOD  
≤ VOPGL  
L
≥ VOPGH  
(VVOUT ≥ 3.3V) [1]  
H
[1]:Please contact the department in charge if use this output power-good function under the conditions of  
VVOUT≤2.5V.  
Figure 6. Input/Output Power-Good Signal Output  
Logic  
High  
Logic  
Low  
VOPGL  
VOPGH  
VOUT  
Input Over Voltage Protection  
If the voltage exceeding VSHUNT (Typ : 21V) is input to the VIN pin, the input level is clamped enabling the over  
voltage protection circuit. The flowing current is ISHUNT (Min 100mA) during clamp.  
Over Current Protection  
If the output current for the LX pin reaches the over current detection level IPEAK, the circuit is protected by  
controlling the peak value for the inductor current setting the main side FET to the OFF state.  
Document Number: 002-08401 Rev *A  
Page 12 of 36  
MB39C811  
8.  
Typical Application Circuits  
Figure 7. Application Circuit For Photovoltaic Energy Harvester  
PV  
AC1_1  
DCGND1  
DCOUT1  
VIN  
AC1_2  
VB  
C3  
C1  
4.7uF  
10uF  
L1  
22uH  
VOUT  
LX  
VOUT  
C2  
47uF  
S2  
S1  
S0  
IPGOOD  
OPGOOD  
Output voltage  
select  
GND  
PGND  
Figure 8. Application circuit for vibration energy harvester  
AC2_1  
DCGND2  
DCOUT2  
VIN  
PZ1  
AC2_2  
VB  
C3  
4.7uF  
C1  
10uF  
L1  
22uH  
VOUT  
LX  
VOUT  
C2  
47uF  
S2  
S1  
S0  
IPGOOD  
OPGOOD  
Output voltage  
select  
GND  
PGND  
Document Number: 002-08401 Rev *A  
Page 13 of 36  
 
MB39C811  
Figure 9. Voltage doubler rectification circuit for vibration harvester  
C4  
10uF  
PZ1  
AC1_1  
D
2
D
D
1
C5  
D
DCGND1  
DCOUT1  
VIN  
10uF  
AC1_2  
VB  
C3  
4.7uF  
L1  
22uH  
VOUT  
LX  
VOUT  
C2  
47uF  
S2  
S1  
S0  
IPGOOD  
OPGOOD  
Output voltage  
select  
GND  
PGND  
Operation of the double voltage rectifier circuit rectifying an AC input voltage  
When the AC1_1 input voltage is positive, the capacitor C4 charges up through the diode DD1, and when the AC1_1  
input voltage is negative, the capacitor C5 charges up through the diode DD2. Each capacitor takes on a charge of  
the positive peak of the AC input. The output voltage at the VIN pin is the series total of C4+C5.  
Table 10. Parts list  
Part number  
Value  
10μF[1]  
Description  
C1  
Capacitor  
C2  
C3  
C4  
C5  
L1  
47μF[1]  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Inductor  
4.7μF  
10μF[1]  
10μF[1]  
10μH to 22μH  
[1]: Adjust the values according to the source supply ability and the load power.  
Document Number: 002-08401 Rev *A  
Page 14 of 36  
MB39C811  
9.  
Application Notes  
Inductor  
The MB39C811 is optimized to work with an inductor in the range of 10µH to 22µH. Also, since the peak switching  
current is up to 400mA, select an inductor with a DC current rating greater than 400mA.  
Table 11. Manufactures of Recommended Inductors  
Part number  
Value  
Manufacture  
LPS5030-223ML  
22μH  
Coilcraft, Inc.  
VLF403215MT-220M  
22μH  
TDK Corporation  
Harvester (Photovoltaic Power Generator)  
In case of photovoltaic energy harvesting, such as solar or light energy harvesting, use a solar cell with high  
open-circuit voltage which must be higher than the UVLO release voltage. Electric power obtained from light or solar  
is increased in proportion to the ambient illuminance.  
There are silicone-based solar cells and organic-based solar cells about photovoltaic power  
generators.Silicone-based solar cells are single crystal silicon solar cell, polycrystalline silicon solar cell, and  
amorphous silicon solar cell. Organic-based solar cells are dye-sensitized solar cell (DSC), and organic thin film solar  
cell. Crystal silicon and polycrystalline silicon solar cells have high energy conversion efficiency. Amorphous silicon  
solar cells are lightweight, flexible, and produced at low cost. Dye-sensitized solar cells are composed by sensitizing  
dye and electrolytes, and are low-cost solar cell. Organic thin film solar cells are lightweight, flexible, and easily  
manufactured.  
Table 12. Manufactures Of Photovoltaic Harvesters  
Part number/Series name  
BCS4630B9  
Amorton  
Type  
Manufacture  
TDK Corporation  
Panasonic Corporation  
Film amorphous silicon solar cells  
Amorphous silicon solar cells  
Harvester (Vibration Power Generator,Piezoelectric Generator)  
Vibration power generators produce AC power by vibration. For AC to DC rectification, the MB39C811 integrates two  
bridge rectifiers. Electric power obtained from a vibration power generator depends on frequency of vibration and  
usage of the generator. Although, vibration generators produce high voltage, the shunt circuit protects from higher  
voltage than 21V.  
There are electromagnetic induction generators and piezoelectric generators about vibration harvesters. The  
electromagnetic induction generator is consists of coil and magnet. The piezoelectric generators are made from  
plastics or ceramics. Plastic-based piezoelectric generators made from polyvinylidene fluoride are lightweight, flexible.  
Ceramic-based piezoelectric generators are made from barium titanate or leas zirconate titanate ceramics.  
Table 13. Manufactures of Vibration Harvesters  
Part number  
EH12, EH13, EH15  
Type  
Manufacture  
Electromagnetic induction  
Star Micronics Co., Ltd.  
Document Number: 002-08401 Rev *A  
Page 15 of 36  
 
MB39C811  
Sizing of Input and Output Capacitors  
Energy from harvester should be stored on the Cin and Cout to operate the application block. If the size of these  
capacitors were too big, it would take too much time to charge energy into these capacitors, and the system cannot be  
operated frequently. On the other hand, if these capacitors were too small, enough energy cannot be stored on these  
capacitors for the application block. The sizing of the Cin and Cout is important.  
Common capacitors are layered ceramic capacitor, electrolytic capacitor, electric double layered capacitor, and so on.  
Electrostatic capacitance of layered ceramic capacitors is relatively small. However, layered ceramic capacitors are  
small and have high voltage resistance characteristic. Electrolytic capacitors have high electrostatic capacitance from  
µF order to mF order. The size of capacitor becomes large in proportion to the size of capacitance. Electric double  
layered capacitors have high electrostatic capacitance around 0.5F to 1F, but have low voltage resistance  
characteristics around 3V to 5V. Be very careful with a voltage resistance characteristic. Also, leak current, equivalent  
series resistance (ESR), and temperature characteristic are criteria for selecting,  
Table 14. Manufactures Of Capacitors  
Part number/Series name  
Type, Capacitance  
EDLC, 500mF  
Manufacture  
EDLC351420-501-2F-50  
EDLC082520-500-1F-81  
EDLC041720-050-2F-52  
Gold capacitor  
EDLC, 50mF  
EDLC, 5mF  
EDLC  
TDK Corporation  
Panasonic Corporation  
First of all, apply the following equation and calculate energy consumption for an application from voltage, current, and  
time during an operation.  
The energy stored on a capacitor is calculated by the following equation.  
Since the energy in a capacitor is proportional to the square of the voltage, it is energetically advantageous for the  
buck DC/DC converter to make the Cin larger.  
An example of an application using the power gating by the OPGOOD signal is shown in the Figure 10. The Cin and  
the Cout are sized so as to satisfy the following equation. The η, the efficiency of the MB39C811, is determined from  
the current of application and the graph shown in Figure 12, Efficiency vs IOUT.  
dECin and dECout are the available energies for the application.  
Document Number: 002-08401 Rev *A  
Page 16 of 36  
MB39C811  
Figure 10. Application example using the power gating by the OPGOOD signal  
OPGOOD  
VIN  
Cin  
VOUT  
Power  
Gating  
Appli.  
Cout  
MB39C811  
Harvester  
VUVLOH  
VUVLOL  
VVOUT  
VOPGL  
0V  
0V  
Efficiency(η)  
Available Energy  
+
Total Energy  
VUVLOH : UVLO release voltage  
VUVLOL : UVLO detection voltage  
VVOUT : Preset output voltage  
VUVLOL : Output power-good reset voltage  
Before calculating the initial charging time (TInitial[s]), calculate the total energy (ECin and ECout) stored on both Cin and  
Cout.  
A PHarvester[W] is a power generation capability of a harvester. An initial charging time (TInitial[s]) is calculated by the  
following equation.  
A repeat charging time (TRepeat[s]) is calculated by the following equation. The TRepeat[s] become shorter than the  
TInitial[s].  
Additionally, waiting for a period of time after the OPGOOD signal goes high can store more energy on the capacitor  
Cin Figure 11.  
Document Number: 002-08401 Rev *A  
Page 17 of 36  
 
MB39C811  
Figure 11. Waiting for a Period of Time after the OPGOOD Signal goes High  
OPGOOD  
Light  
VIN  
Cin  
VOUT  
Power  
Gating  
Open circuit  
voltage of  
solar cell  
Appli.  
Wait after  
OPGOOD  
was High.  
Solar  
Cell  
Cout  
MB39C811  
VUVLOL  
0V  
VVOUT  
VOPGL  
0V  
Available Energy  
+
Total Energy  
VVOUT : Preset output voltage  
VUVLOL : Output power-good reset voltage  
VUVLOL : UVLO detection voltage  
For more information about the energy calculation, refer to the APPLICATION NOTE, Energy Calculation For  
Energy Harvesting.  
Document Number: 002-08401 Rev *A  
Page 18 of 36  
 
MB39C811  
10.  
Typical Characteristics  
Figure 12. Typical characteristics of DC/DC Converter  
Line Regulation: VOUT vs VIN  
Line Regulation: VOUT vs VIN  
Line Regulation: VOUT vs VIN  
IOUT = 100mA, L = 22µH  
IOUT = 100mA, L = 22µH  
IOUT = 100mA, L = 22µH  
3.34  
3.32  
3.30  
3.28  
5.02  
5.00  
4.98  
4.96  
1.54  
1.52  
1.50  
1.48  
Preset output voltage = 3.3V  
Preset output voltage = 5.0V  
Preset output voltage = 1.5V  
1.46  
1.44  
3.26  
3.24  
4.94  
4.92  
6
8
10  
12  
14  
16  
18  
6
8
10  
12  
14  
16  
18  
6
8
10  
12  
14  
16  
18  
VIN [V]  
VIN [V]  
VIN [V]  
Load Regulation: VOUT vs IOUT  
Load Regulation: VOUT vs IOUT  
Load Regulation: VOUT vs IOUT  
VIN = 7.0V, L = 22µH  
VIN = 7.0V, L = 22µH  
VIN = 7.0V, L = 22µH  
1.54  
1.52  
1.50  
1.48  
3.34  
3.32  
3.30  
3.28  
5.02  
5.00  
4.98  
4.96  
Preset output voltage = 1.5V  
Preset output voltage = 3.3V  
Preset output voltage = 5.0V  
1.46  
1.44  
3.26  
3.24  
4.94  
4.92  
10µ  
100µ  
1m  
10m  
100m  
10µ  
100µ  
1m  
10m  
100m  
10µ  
100µ  
1m  
10m  
100m  
IOUT [A]  
IOUT [A]  
IOUT [A]  
Efficiency vs IOUT  
Efficiency in VOUT=3.3V vs VIN  
VIN = 7.0V, L = 22µH  
Efficiency in IOUT=100mA vs VIN  
100  
90  
80  
70  
60  
50  
40  
30  
20  
L = 22µH  
IOUT = 100mA, L = 22µH  
100  
Preset output voltage = 5.0V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
Preset output voltage = 3.3V  
IOUT = 100mA  
Preset output voltage = 5.0V  
90  
80  
70  
60  
50  
40  
30  
20  
IOUT = 30mA  
IOUT = 1mA  
IOUT = 100µA  
Preset output voltage = 3.3V  
Preset output voltage = 1.5V  
Preset output voltage = 3.3V  
Preset output voltage = 1.5V  
IOUT = 10µA  
10  
0
10  
0
10  
0
IOUT = 1µA  
1µ  
10µ  
100µ  
1m  
10m 100m  
2
4
6
8
10  
12  
14  
16  
18  
2
4
6
8
10  
12  
14  
16  
18  
IOUT [A]  
VIN [V]  
VIN [V]  
Document Number: 002-08401 Rev *A  
Page 19 of 36  
 
 
MB39C811  
Line Regulation: VOUT vs VIN  
Line Regulation: VOUT vs VIN  
Line Regulation: VOUT vs VIN  
IOUT = 100mA, L = 10µH  
IOUT = 100mA, L = 10µH  
IOUT = 100mA, L = 10µH  
1.54  
1.52  
1.50  
1.48  
3.38  
3.36  
3.34  
3.32  
5.02  
5.00  
4.98  
4.96  
Preset output voltage = 1.5V  
Preset output voltage = 3.3V  
Preset output voltage = 5.0V  
1.46  
1.44  
3.30  
3.28  
4.94  
4.92  
6
8
10  
12  
14  
16  
18  
6
8
10  
12  
14  
16  
18  
6
8
10  
12  
14  
16  
18  
VIN [V]  
VIN [V]  
VIN [V]  
Load Regulation: VOUT vs IOUT  
Load Regulation: VOUT vs IOUT  
Load Regulation: VOUT vs IOUT  
VIN = 7.0V, L = 10µH  
VIN = 7.0V, L = 10µH  
5.02  
5.00  
4.98  
4.96  
VIN = 7.0V, L = 10µH  
3.34  
3.32  
3.30  
3.28  
1.54  
1.52  
1.50  
1.48  
Preset output voltage = 5.0V  
Preset output voltage = 3.3V  
Preset output voltage = 1.5V  
4.94  
4.92  
3.26  
3.24  
1.46  
1.44  
10µ  
100µ  
1m  
10m  
100m  
10µ  
100µ  
1m  
10m  
100m  
10µ  
100µ  
1m  
10m  
100m  
IOUT [A]  
IOUT [A]  
IOUT [A]  
Efficiency vs IOUT  
Efficiency in VOUT=3.3V vs VIN  
VIN = 7.0V, L = 10µH  
Efficiency in IOUT=100mA vs VIN  
L = 10µH  
100  
90  
80  
70  
60  
50  
40  
30  
20  
IOUT = 100mA, L = 10µH  
100  
90  
80  
70  
60  
50  
40  
30  
20  
Preset output voltage = 5.0V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
Preset output voltage = 3.3V  
IOUT = 100mA  
Preset output voltage = 5.0V  
IOUT = 30mA  
IOUT = 1mA  
IOUT = 100µA  
Preset output voltage = 3.3V  
Preset output voltage = 1.5V  
Preset output voltage = 3.3V  
Preset output voltage = 1.5V  
IOUT = 10µA  
10  
0
10  
0
10  
0
IOUT = 1µA  
1µ  
10µ  
100µ  
1m  
10m 100m  
2
4
6
8
10  
12  
14  
16  
18  
2
4
6
8
10  
12  
14  
16  
18  
IOUT [A]  
VIN [V]  
VIN [V]  
Document Number: 002-08401 Rev *A  
Page 20 of 36  
MB39C811  
IVIN in Start-up vs VIN  
IVIN in Sleep mode vs Temp.  
IVIN in Sleep mode vs VIN  
IOUT = 0A, L = 22µH  
IOUT = 0A, L = 22µH  
3.0  
2.5  
2.0  
1.5  
1.0  
IOUT = 0A, L = 22µH  
3.0  
2.5  
2.0  
1.5  
1.0  
3.0  
2.5  
2.0  
1.5  
1.0  
Preset output voltage = 3.3V  
Preset output voltage = 1.5V  
Preset output voltage = 3.3V  
VIN=18V (Sleep mode)  
VUVLOH  
85oC  
25oC  
40oC  
VIN=4.5V (Sleep mode)  
VIN=2.5V  
85oC  
0.5  
0.0  
25oC  
0.5  
0.0  
0.5  
0.0  
40oC  
0
1
2
3
4
5
6
-40  
-20  
0
20  
40  
60  
80 90  
0
2
4
6
8
10 12 14 16 18  
VIN [V]  
Temp. [oC]  
VIN [V]  
VUVLOH vs Temp.  
VUVLOL vs Temp.  
VIN = 7.0V, L = 22µH  
8
7
6
5
4
3
VIN = 7.0V, L = 22µH  
VSHUNT vs Temp.  
8
7
6
5
4
IVIN = 1mA, IOUT = 0A, L = 22µH  
24  
23  
22  
21  
Preset output voltage = 1.5V  
Preset output voltage = 5.0V  
Preset output voltage = 5.0V  
Preset output voltage = 3.3V  
Preset output voltage = 1.5V  
Preset output voltage = 3.3V  
Preset output voltage = 1.5V  
20  
19  
3
2
2
-40  
-20  
0
20  
40  
60  
80 90  
-40  
-20  
0
20  
40  
60  
80 90  
-40  
-20  
0
20  
40  
60  
80 90  
Temp. [oC]  
Temp. [oC]  
Temp. [oC]  
IPEAK vs Temp.  
On-Resistance of PMOS/NMOS  
2.6 vs Temp.  
VIN = 7.0V, L = 22µH  
290  
280  
270  
260  
250  
Preset output voltage = 1.5V  
2.4  
2.2  
2.0  
NMOS  
1.8  
Preset output voltage = 3.3V  
Preset output voltage = 5.0V  
1.6  
PMOS  
1.4  
240  
230  
1.2  
-40  
-40  
-20  
0
20  
40  
60  
80 90  
-20  
0
20  
40  
60  
80 85  
Temp. [oC]  
Temp. [oC]  
Document Number: 002-08401 Rev *A  
Page 21 of 36  
MB39C811  
Figure 13. Typical Characteristics of Bridge Rectifier  
Bridge Rectifier  
Diode in Bridge Rectifier  
1 IF vs VF  
Diode in Bridge Rectifier  
1m IR vs VR  
Frequency Characteristics  
0.5  
0.4  
0.3  
0.2  
In applying 1.64Vp-p to AC1_1/AC1_2  
100m  
100µ  
85oC  
10m  
1m  
-40oC  
25oC  
10µ  
1µ  
100µ  
10µ  
1µ  
85oC  
25oC  
85oC  
100n  
10n  
1n  
25oC  
-40oC  
100n  
10n  
1n  
-40oC  
0.1  
0.0  
100p  
10p  
100p  
10p  
10  
100  
1k  
10k 100k 1M 10M 100M  
Freq. [Hz]  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0
10  
20  
30  
40  
50  
60  
70  
Forward Voltage: VF [V]  
Reverse Voltage: VR [V]  
Figure 14. DC/DC Converter Sudden Load Change  
Load Change Waveforms  
VIN = 5.0V, L = 22µH, IOUT = 5mA and 65mA  
Preset output voltage = 3.3V  
VOUT  
20mV/DIV  
17.2mV  
IOUT  
50mA/DIV  
200µs/DIV  
Document Number: 002-08401 Rev *A  
Page 22 of 36  
MB39C811  
Figure 15. Switching Waveforms of DC/DC Converter  
Waveforms  
Waveforms  
VIN = 7.0V, L = 22µH, IOUT = 1mA  
VIN = 7.0V, L = 22µH, IOUT = 1mA  
Preset output voltage = 3.3V  
Preset output voltage = 3.3V  
VOUT  
20mV/DIV  
VOUT  
20mV/DIV  
VLX  
5.0V/DIV  
VLX  
5.0V/DIV  
ILX  
200mA/DIV  
ILX  
200mA/DIV  
2µs/DIV  
100µs/DIV  
Waveforms  
Waveforms  
VIN = 7.0V, L = 22µH, IOUT = 30mA  
VIN = 7.0V, L = 22µH, IOUT = 30mA  
Preset output voltage = 3.3V  
Preset output voltage = 3.3V  
VOUT  
20mV/DIV  
VOUT  
20mV/DIV  
VLX  
5.0V/DIV  
VLX  
5.0V/DIV  
ILX  
200mA/DIV  
ILX  
200mA/DIV  
2µs/DIV  
5µs/DIV  
Waveforms  
Waveforms  
VIN = 7.0V, L = 22µH, IOUT = 100mA  
VIN = 7.0V, L = 22µH, IOUT = 100mA  
Presetoutput voltage = 3.3V  
Preset output voltage = 3.3V  
VOUT  
50mV/DIV  
VOUT  
50mV/DIV  
VLX  
5.0V/DIV  
VLX  
5.0V/DIV  
ILX  
200mA/DIV  
ILX  
200mA/DIV  
5µs/DIV  
10µs/DIV  
Document Number: 002-08401 Rev *A  
Page 23 of 36  
MB39C811  
Waveforms  
Waveforms  
VIN = 7.0V, L = 10µH, IOUT = 1mA  
VIN = 7.0V, L = 10µH, IOUT = 1mA  
Preset output voltage = 3.3V  
Preset output voltage = 3.3V  
VOUT  
20mV/DIV  
VOUT  
20mV/DIV  
VLX  
5.0V/DIV  
VLX  
5.0V/DIV  
ILX  
200mA/DIV  
ILX  
200mA/DIV  
2µs/DIV  
100µs/DIV  
Waveforms  
Waveforms  
VIN = 7.0V, L = 10µH, IOUT = 30mA  
VIN = 7.0V, L = 10µH, IOUT = 30mA  
Preset output voltage = 3.3V  
Preset output voltage = 3.3V  
VOUT  
20mV/DIV  
VOUT  
20mV/DIV  
VLX  
5.0V/DIV  
VLX  
5.0V/DIV  
ILX  
200mA/DIV  
ILX  
200mA/DIV  
2µs/DIV  
5µs/DIV  
Waveforms  
Waveforms  
VIN = 7.0V, L = 10µH, IOUT = 30mA  
VIN = 7.0V, L = 10µH, IOUT = 30mA  
Preset output voltage = 3.3V  
Preset output voltage = 3.3V  
VOUT  
50mV/DIV  
VOUT  
50mV/DIV  
VLX  
5.0V/DIV  
VLX  
5.0V/DIV  
ILX  
200mA/DIV  
ILX  
200mA/DIV  
5µs/DIV  
10µs/DIV  
Document Number: 002-08401 Rev *A  
Page 24 of 36  
MB39C811  
11.  
Layout for Printed Circuit Board  
Note the points listed below in layout design  
Place the switching parts[1] on top layer, and avoid connecting each other through through-holes.  
Make the through-holes connecting the ground plane close to the GND pins of the switching parts[1]  
Be very careful about the current loop consisting of the input capacitor CVIN, the VIN pin of IC, and the PGND pin.  
Place and connect these parts as close as possible to make the current loop small.  
The output capacitor CVOUT and the inductor L are placed adjacent to each other.  
Place the bypass capacitor CVB close to VB pin, and make the through-holes connecting the ground plane close to  
the GND pin of the bypass capacitor CVB.  
Draw the feedback wiring pattern from the VOUT pin to the output capacitor CVOUT pin. The wiring connected to  
the VOUT pin is very sensitive to noise so that the wiring should keep away from the switching parts[1]. Especially,  
be very careful about the leaked magnetic flux from the inductor L, even the back side of the inductor L.  
[1]: Switching parts: IC (MB39C811), Input capacitor (CVIN), Inductor (L), Output capacitor (CVOUT).  
Refer to Figure 2.  
Figure 16. Example of a Layout Design  
feedback wiring pattern  
L
through-holes  
CVB  
VB  
VOUT  
VIN  
LX  
PGND  
Top Layer  
Back Layer  
Document Number: 002-08401 Rev *A  
Page 25 of 36  
 
MB39C811  
12.  
Usage Precaution  
Do Not Configure the IC Over the Maximum Ratings  
If the IC is used over the maximum ratings, the LSI may be permanently damaged.  
It is preferable for the device to be normally operated within the recommended usage conditions. Usage outside of  
these conditions can have a bad effect on the reliability of the LSI.  
Use the Devices within Recommended Operating Conditions  
The recommended operating conditions are the recommended values that guarantee the normal operations of LSI.  
The electrical ratings are guaranteed when the device is used within the recommended operating conditions and  
under the conditions stated for each item.  
Printed Circuit Board Ground Lines should be set up with Consideration for Common Impedance  
Take Appropriate Measures against Static Electricity  
Containers for semiconductor materials should have anti-static protection or be made of conductive material.  
After mounting, printed circuit boards should be stored and shipped in conductive bags or containers.  
Work platforms, tools, and instruments should be properly grounded.  
Working personnel should be grounded with resistance of 250 kΩ to 1MΩ in series between body and ground.  
Do not apply Negative Voltages  
The use of negative voltages below -0.3V may cause the parasitic transistor to be activated on LSI lines, which can  
cause malfunctions.  
13. Ordering Information  
Table 15. Ordering Information  
Part number  
MB39C811QN  
Package  
40-pin plastic QFN (LCC-40P-M63)  
14. Marking  
Figure 17. Marking  
MB 3 9 C 8 1 1  
E 2  
INDEX  
Lead free mark  
Document Number: 002-08401 Rev *A  
Page 26 of 36  
 
 
 
MB39C811  
15.  
Product Labels  
Figure 18. Inner Box Label [Q-Pack Label (4 × 8.5 inch)]  
Ordering Part Number  
(P)+Part No.  
Quantity  
Mark lot information  
Label spec  
: Conformable JEDEC  
Barcode form : Code 39  
Document Number: 002-08401 Rev *A  
Page 27 of 36  
 
MB39C811  
Figure 19. Al(Aluminum) bag label [2-in-1 label (4 × 8.5 inch)]  
Ordering Part Number  
(P)+Part No.  
Mark lot information  
Quantity  
Caution  
JEDEC MSL, if available.  
Document Number: 002-08401 Rev *A  
Page 28 of 36  
MB39C811  
Figure 20. Reel label [Reel label (4 × 2.5 inch)]  
Ordering Part Number  
(P)+Part No.  
Mark lot information  
Quantity  
Figure 21. Reel label [Dry pack & Reel label (4 × 2.5 inch)]  
Document Number: 002-08401 Rev *A  
Page 29 of 36  
MB39C811  
Figure 22. Outer box label [Shopping label (4 × 8.5 inch)]  
Quantity  
Ordering Part Number : (1P)+Part No.  
16. Recommended Mounting Conditions  
Table 16. Recommended Mounting Conditions  
Items  
Method  
Contents  
IR(Infrared Reflow) / Convection  
3 times in succession  
Times  
Before unpacking  
Please use within 2 years after production.  
Within 7 days  
From unpacking to reflow  
Floor life  
In case over period of floor  
life[1]  
Baking with 125°C+/-3°C for 24hrs+2hrs/-0hrs is required. Then  
please use within 7 days. (Please remember baking is up to 2 times)  
Between 5°C and 30°C and also below 70%RH required.  
(It is preferred lower humidity in the required temp range.)  
Floor life  
condition  
[1]: Concerning the Tape & Reel product, please transfer product to heatproof tray and so on when you perform  
baking.Also please prevent lead deforming and ESD damage during baking process.  
Document Number: 002-08401 Rev *A  
Page 30 of 36  
 
MB39C811  
Figure 23. Recommended Mounting Conditions  
SupplierT T  
p
c
User T T  
p
c
T
c
T
-5°C  
c
Supplier t  
p
User t  
p
Tp  
TL  
T -5°C  
c
tp  
tL  
Max. Ramp Up Rate = 3°C/s  
Max. Ramp Down Rate = 6°C/s  
T
smax  
Preheat Area  
T
smin  
ts  
25  
Time 25°C to Peak  
Time  
Table 17. Recommended Mounting Conditions(J-STD-020D)  
(Temperature on the top of the package body is measured.)  
260°C Max.  
TL to TP: Ramp Up Rate  
TS: Preheat & Soak  
3°C/s Max.  
150 to 200°C, 60 to 120s  
260°C Down, within 30s  
217°C, 60 to 150s  
6°C/s Max.  
TP - tP: Peak Temperature  
TL tL: Liquidous Temperature  
TP to TL: Ramp Down Rate  
Time 25°C to Peak  
8min Max.  
Document Number: 002-08401 Rev *A  
Page 31 of 36  
MB39C811  
17. PackageDimensions  
40-pin plastic QFN  
Lead pitch  
0.50 mm  
Package width ×  
package length  
6.00 mm × 6.00 mm  
Plastic mold  
0.90 mm MAX  
0.10 g  
Sealing method  
Mounting height  
Weight  
(LCC-40P-M63)  
40-pin plastic QFN  
(LCC-40P-M63)  
6.00±0.10  
(.236±.004)  
4.50±0.10  
(.177±.004)  
0.25±0.05  
(.010±.002)  
6.00±0.10  
(.236±.004)  
4.50±0.10  
(.177±.004)  
INDEX AREA  
0.45  
(.017)  
1PIN INDEX  
R0.20(R.008)  
0.50(.020)  
(TYP)  
0.40±0.05  
(.016±.002)  
0.035+0.015 (.0014+.0006 )  
-0.035  
-.0014  
(0.20(.008))  
0.85±0.05  
(.033±.002)  
2013 FUJITSU SEMICONDUCTOR LIMITED HMbC40-63Sc-1-1  
C
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
Document Number: 002-08401 Rev *A  
Page 32 of 36  
 
MB39C811  
18. Major Changes  
Spansion Publication Number: MB39C811_DS405-00013….  
Page  
Section  
Change Results  
Preliminary 0.1 [June 14, 2013]  
-
-
Initial release  
Revision 1.0 [November 18, 2013]  
6
7
4.Pin Assignments  
5.Pin Descriptions  
Changed Pin8 PGND to N.C.  
Changed Pin8 PGND to N.C.  
Added Max in Power dissipation  
Added Figure [Power dissipation]  
Changed VIN pin input slew rate  
Added VIN pin , Input current  
AddedAC pin input current  
9
7.Absolute Maximum Rating  
Deleted Added VIN pin , Input current  
Deleted AC pin input current  
Changed values in "Input voltage range"  
Deleted Input slew rate  
10  
8.RecommendedOperatingConditions  
Added "IOUT=1mA" in "Preset output voltage" and changed values  
Changed "over current protection" to "peak switching current" and values  
Changed "Output current" to "Maximum output current" and values  
Changed values in "UVLO release voltage"  
Changed values in "UVLO detection voltage"  
Added new  
11  
9.1.DC Characteristics  
18  
22  
23  
24  
25  
11.Example  
14.OrderingInformation  
15.Marking  
Added "Table 14-2 EVB OrderingInformation"  
Added new  
16.Product Label  
Added new  
17.RecommendedMountingConditions  
Added new  
Revision 2.0 [August 29, 2014]  
9. Electrical Characteristics  
Table 9-1 DC characteristics  
11  
Deleted Input voltage range  
11. Typical Application Circuits  
Figure 11-3 Voltage doubler rectification circuit  
for vibration harvester  
18  
Added the explanation of the voltage doubler rectification circuit  
19 to 21  
22 to 26  
27  
12. Application Notes  
Added the “12. Application Notes”  
13. Typical Characteristics  
14. Layout for Printed Circuit Board  
18. Product Label  
Updated the “13. Typical Characteristics”  
Added the “14. Layout for Printed Circuit Board”  
Changed the “18. Product Label”  
30 to 32  
Revision 3.0  
Added descriptions for all N.C. pins in “Table 5-1 Pin descriptions”  
“Non connection pin”→“Non connection pin (Leavethis pin open)”  
Wiring correction in “Figure 6-1 Block diagram”  
Deleted the wire connections between DCGND1, DCGND2 pins and each  
bridge rectifier, then added the internal GNDs.  
7
5. Pin Descriptions  
6. Block Diagram  
8
Addedconditions and notes for output power-good detection voltage in  
“Table 9-1 DC characteristics”  
“To preset voltage ratio”→“To preset voltage ratio VVOUT ≥ 3.3V (*2)”  
Addedconditions and notes in “Table 10-3 Output power-good signal output  
(OPGOOD)”  
9. Electrical Characteristics  
9.1 DC characteristics  
11  
15  
10. Function  
10.3 Function descriptions  
“≥ VOPGH ”→“≥ VOPGH (VVOUT ≥ 3.3V) (*1)”  
Document Number: 002-08401 Rev *A  
Page 33 of 36  
 
MB39C811  
Page  
Section  
Change Results  
Wiring correction in “Figure 11-1 Application circuit for photovoltaic energy  
harvester”  
17  
11. Typical Application Circuits  
Deleted the wire connections between DCGND1 pin and the bridge  
rectifier, then added the internal GND.  
Wiring correction in “Figure 11-2 Application circuit for vibration energy  
harvester”  
17  
18  
11. Typical Application Circuits  
11. Typical Application Circuits  
Deleted the wire connections between DCGND2 pin and the bridge  
rectifier, then added the internal GND.  
Wiring correction in “Figure 11-3 Voltage doubler rectification circuit for  
vibration harvester”  
Deleted the wire connections between DCGND1 pin and the bridge  
rectifier, then added the internal GND.  
Added the “Table 12-1 Manufactures of recommended inductors”  
Added the “Table 12-2 Manufactures of photovoltaic harvesters”  
Added the “Table 12-3 Manufactures of vibration harvesters”  
Added the “Table 12-4 Manufactures of capacitors”  
19, 20  
12. Application Notes  
Inserted the data of 22μH and 10μH together into “Figure 13-1 Typical  
characteristics of DC/DC conveter”.  
23 to 28  
13. Typical Characteristics  
Inserted the data of 22μH and 10μH together into “Figure 13-4 Switching  
waveforms of DC/DC converter”.  
Replaced the line regulation datas of 22μH in “Figure 13-1 Typical  
characteristics of DC/DC conveter”  
23, 24  
31  
13. Typical Characteristics  
16. Ordering Information  
Replaced the load regulation datas of 22μH in “Figure 13-1”  
Added the line and load regulation data of 10μH in “Figure 13-1”.  
Deleted “Table 16-2 EVB Ordering information”  
NOTE: Please see “Document History” about later revised information.  
Document Number: 002-08401 Rev *A  
Page 34 of 36  
MB39C811  
Document History  
Document Title: MB39C811 Ultra Low Power Buck PMIC Solar/Vibrations Energy Harvesting  
Document Number: 002-08401  
Orig. of Submission  
Revision  
ECN  
Description of Change  
Change  
Date  
Migrated to Cypress and assigned document number 002-08401.  
No change to document contents or format.  
**  
TAOA  
12/05/2014  
*A  
TAOA  
02/22/2016 Updated to Cypress template  
5124887  
Document Number: 002-08401 Rev *A  
Page 35 of 36  
 
MB39C811  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors.  
To find the office closest to you, visit us at Cypress Locations.  
Products  
PSoC® Solutions  
Automotive  
Clocks & Buffers  
Interface  
cypress.com/go/automotive  
cypress.com/go/clocks  
psoc.cypress.com/solutions  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP  
Cypress Developer Community  
cypress.com/go/interface  
Lighting & Power Control cypress.com/go/powerpsoc  
Community | Forums | Blogs | Video | Training  
Technical Support  
Memory  
cypress.com/go/memory  
cypress.com/go/psoc  
PSoC  
cypress.com/go/support  
Touch Sensing  
USB Controllers  
Wireless/RF  
Spansion Products  
cypress.com/go/touch  
cypress.com/go/usb  
cypress.com/go/wireless  
cypress.com/spansionproducts  
© Cypress Semiconductor Corporation 2014-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress").  
This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of  
the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any  
license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a  
written agreement with Cypress governing the use of the Software, then Cypress hereby grants you under its copyright rights in the Software, a personal, non-exclusive,  
nontransferable license (without the right to sublicense) (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware  
products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and  
distributors), solely for use on Cypress hardware product units. Cypress also grants you a personal, non-exclusive, nontransferable, license (without the right to sublicense) under  
those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely to the minimum  
extent that is necessary for you to exercise your rights under the copyright license granted in the previous sentence. Any other use, reproduction, modification, translation, or  
compilation of the Software is prohibited. CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY  
SOFTWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the  
right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this  
document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility  
of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress  
products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear  
installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances  
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any  
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress  
is not liable, in whole or in part, and Company shall and hereby does release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of  
Cypress products. Company shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or  
death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of  
Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their  
respective owners  
Document Number: 002-08401 Rev *A  
Page 36 of 36  

相关型号:

MB39C831QN

Battery Charge Controller,
CYPRESS

MB39F101PFV

Analog Circuit, 1 Func, PDSO20, PLASTIC, SSOP-20
FUJITSU

MB3A

BiSS to PC-LPT ADAPTER
ICHAUS

MB3CG-S1

M23 B Series Traditional Cord Grip, IP67, Cable Range 7.5 -10.5mm
AMPHENOL

MB3CG-S3

Circular Connector
AMPHENOL

MB3G

Multipurpose Boxes
ETC

MB3S

0.5 Ampere Glass Passivated Bridge Rectifiers
FAIRCHILD

MB3S

GLASS PASSIVATED BRIDGE RECTIFIERS
CTC

MB3U

BiSS TO PC-USB ADAPTER
ICHAUS

MB3U-I2C

BiSS TO PC-USB ADAPTER
ICHAUS

MB4-080P

Board Connector, 80 Contact(s), 4 Row(s), Female, Straight, Solder Terminal,
AMPHENOL

MB4-080Q-(710)

Board Connector, 80 Contact(s), 4 Row(s), Female, Straight, Wire Wrap Terminal,
AMPHENOL