MT54W1MH18JF-3 [CYPRESS]

QDR SRAM, 1MX18, 0.45ns, CMOS, PBGA165, 13 X 15 MM, 1 MM PITCH, FBGA-165;
MT54W1MH18JF-3
型号: MT54W1MH18JF-3
厂家: CYPRESS    CYPRESS
描述:

QDR SRAM, 1MX18, 0.45ns, CMOS, PBGA165, 13 X 15 MM, 1 MM PITCH, FBGA-165

静态存储器
文件: 总28页 (文件大小:413K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2 MEG x 8, 1 MEG x 18, 512K x 36  
1.8V VDD, HSTL, QDRIIb4 SRAM  
MT54W2MH8J  
MT54W1MH18J  
MT54W512H36J  
18Mb QDRII SRAM  
4-WORD BURST  
Features  
DLL circuitry for accurate output data placement  
Separate independent read and write data ports with  
concurrent transactions  
Figure 1: 165-Ball FBGA  
100 percent bus utilization DDR READ and WRITE  
operation  
Fast clock to valid data times  
Full data coherency, providing most current data  
Four-tick burst counter for reduced-address frequency  
Double data rate operation on read and write ports  
Two input clocks (K and K#) for precise DDR timing at  
clock rising edges only  
Two output clocks (C and C#) for precise flight time  
and clock skew matching—clock and data delivered  
together to receiving device  
Optional-use echo clocks (CQ and CQ#) for flexible  
receive data synchronization  
Table 1:  
Valid Part Numbers  
Single address bus  
Simple control logic for easy depth expansion  
Internally self-timed, registered writes  
Core VDD = 1.8V ( 0.1V); I/O VDDQ = 1.5V to VDD  
( 0.1V) HSTL  
Clock-stop capability with µs restart  
13mm x 15mm, 1mm pitch, 11 x 15 grid FBGA package  
User-programmable impedance output  
JTAG boundary scan  
PART NUMBER  
DESCRIPTION  
MT54W2MH8JF-xx  
MT54W1MH18JF-xx  
MT54W512H36JF-xx  
2 Meg x 8,QDRIIb4 FBGA  
1 Meg x 18, QDRIIb4 FBGA  
512K x 36, QDRIIb4 FBGA  
General Description  
The Micron® QDR™II (Quad Data Rate™) synchro-  
nous, pipelined burst SRAM employs high-speed, low-  
power CMOS designs using an advanced 6T CMOS  
process.  
Options  
Marking1  
Clock Cycle Timing  
3ns (333 MHz)  
3.3ns (300 MHz)  
4ns (250 MHz)  
5ns (200 MHz)  
6ns (167 MHz)  
7.5ns (133 MHz)  
Configurations  
2 Meg x 8  
1 Meg x 18  
512K x 36  
-3  
-3.3  
-4  
-5  
-6  
The QDR architecture consists of two separate DDR  
(double data rate) ports to access the memory array.  
The read port has dedicated data outputs to support  
READ operations. The write port has dedicated data  
inputs to support WRITE operations. This architecture  
eliminates the need for high-speed bus turnaround.  
Access to each port is accomplished using a common  
address bus. Addresses for reads and writes are latched  
on alternate rising edges of the K clock. Each address  
location is associated with four words that burst  
sequentially into or out of the device. Since data can be  
transferred into and out of the device on every rising  
edge of both clocks (K and K# and C and C#) memory  
bandwidth is maximized and system design is simpli-  
fied by eliminating bus turnarounds.  
-7.5  
MT54W2MH8J  
MT54W1MH18J  
MT54W512H36J  
Package  
165-ball, 13mm x 15mm FBGA  
Operating Temperature Range  
Commercial (0°C ? TA ? +70°C)  
F
None  
NOTE:  
1. A Part Marking Guide for the FBGA devices can be found on  
Micron’s Web site—http://www.micron.com/numberguide.  
18Mb: 1.8V VDD, HSTL, QDRIIb4 SRAM  
MT54W1MH18J_H.fm – Rev. H, Pub. 3/03  
©2003 Micron Technology, Inc.  
1
2 MEG x 8, 1 MEG x 18, 512K x 36  
1.8V VDD, HSTL, QDRIIb4 SRAM  
Depth expansion is accomplished with port selects  
for each port (read R#, write W#) which are received at  
K rising edge. Port selects permit independent port  
operation.  
READ cycles are pipelined. The request is initiated  
by asserting R# LOW at K rising edge. Data is delivered  
after the next rising edge of K# (t + 1), using C and C#  
as the output timing references, or using K and K# if C  
and C# are tied HIGH. If C and C# are tied HIGH, they  
may not be toggled during device operation. Output  
tri-stating is automatically controlled such that the bus  
is released if no data is being delivered. This permits  
banked SRAM systems with no complex output enable  
(OE) timing generation. Back-to-back READ cycles are  
initiated every K rising edge. Any read request in  
between is ignored, since the burst sequence may not  
be interrupted and requires two full clock cycles.  
WRITE cycles are initiated by W# LOW at K rising  
edge. Data is expected at both rising edges of K and K#,  
beginning one clock period later. Write registers are  
incorporated to facilitate pipelined self-timed WRITE  
cycles and provide fully coherent data for all combina-  
tions of reads and writes. A read can immediately fol-  
low a write even if they are to the same address.  
Although the write data has not been written to the  
memory array, the SRAM will deliver the data from the  
write register instead of using the older data from the  
memory array. The latest data is always utilized for all  
bus transactions. WRITE cycles are initiated every sec-  
ond K rising edge. Any in-between WRITE request is  
ignored, since the burst sequence may not be inter-  
rupted.  
All synchronous inputs pass through registers con-  
trolled by the K or K# input clock rising edges. Active  
LOW byte writes (BWx#) permit byte write or nibble  
write selection. Write data and byte writes are regis-  
tered on the rising edges of both K and K#. The  
addressing within each burst of four is fixed and  
sequential, beginning with the lowest and ending with  
the highest address. All synchronous data outputs pass  
through output registers controlled by the rising edges  
of the output clocks (C and C# if provided, otherwise K  
and K#).  
Four balls are used to implement JTAG test capabili-  
ties: test mode select (TMS), test data-in (TDI), test  
clock (TCK), and test data-out (TDO). JTAG circuitry is  
used to serially shift data to and from the SRAM. JTAG  
inputs use JEDEC-standard 1.8V I/O levels to shift data  
during this testing mode of operation.  
The SRAM operates from a 1.8V power supply, and  
all inputs and outputs are HSTL-compatible. The  
device is ideally suited for applications that benefit  
from a high-speed, fully-utilized DDR data bus.  
Please refer to Microns Web site (www.micron.com/  
sramds) for the latest data sheet.  
READ/WRITE Operations  
All bus transactions operate on an uninterruptable  
burst of four data, requiring one full clock cycle of bus  
utilization. Any request that attempts to interrupt a  
burst-in-progress is ignored. The resulting benefit is  
that the address rate is kept down to the clock fre-  
quency even when both buses are 100 percent utilized.  
PARTIAL WRITE Operations  
BYTE WRITE operations are supported, except for  
x8 devices in which nibble write is supported. The  
active LOW write controls, BWx# (NWx#), are regis-  
tered coincident with their corresponding data. This  
feature can eliminate the need for some READ-MOD-  
IFY-WRITE cycles, collapsing it to a single BYTE/NIB-  
BLE WRITE operation in some instances.  
18Mb: 1.8V VDD, HSTL, QDRIIb4 SRAM  
MT54W1MH18J_H.fm – Rev. H, Pub. 3/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
2
2 MEG x 8, 1 MEG x 18, 512K x 36  
1.8V VDD, HSTL, QDRIIb4 SRAM  
automatically resets the DLL when the absence of  
input clock is detected. See Micron Technical Note TN-  
54-02 for more information on clock DLL start-up pro-  
cedures.  
Programmable Impedance Output  
Buffer  
The QDR SRAM is equipped with programmable  
impedance output buffers. This allows a user to match  
the driver impedance to the system. To adjust the  
impedance, an external precision resistor (RQ) is con-  
nected between the ZQ ball and VSS. The value of the  
resistor must be five times the desired impedance. For  
example, a 350resistor is required for an output  
impedance of 70. To ensure that output impedance  
is one-fifth the value of RQ (within 15 percent), the  
range of RQ is 175to 350. Alternately, the ZQ ball  
can be connected directly to VDDQ, which will place  
the device in a minimum impedance mode.  
Single Clock Mode  
The SRAM can be used with the single K, K# clock  
pair by tying C and C# HIGH. In this mode, the SRAM  
will use K and K# in place of C and C#. This mode pro-  
vides the most rapid data output but does not com-  
pensate for system clock skew and flight times.  
The output echo clocks are precise references to  
output data. CQ and CQ# are both rising edge and fall-  
ing edge accurate and are 180° out of phase. Either or  
both may be used for output data capture. K or C rising  
edge triggers CQ rising and CQ# falling edge. CQ rising  
edge indicates first data response for QDRI and DDRI  
(version 1, non-DLL) SRAM, while CQ# rising edge  
indicates first data response for QDRII and DDRII (ver-  
sion 2, DLL) SRAM.  
Output impedance updates may be required  
because over time variations may occur in supply volt-  
age and temperature. The device samples the value of  
RQ. Impedance updates are transparent to the system;  
they do not affect device operation, and all data sheet  
timing and current specifications are met during an  
update.  
The device will power up with an output impedance  
set at 50. To guarantee optimum output driver  
impedance after power-up, the SRAM needs 1,024  
cycles to update the impedance. The user can operate  
the part with fewer than 1,024 clock cycles, but optimal  
output impedance is not guaranteed.  
Depth Expansion  
Port select inputs are provided for the read and  
write ports. This allows for easy depth expansion. Both  
port selects are sampled on the rising edge of K only.  
Each port can be independently selected and dese-  
lected and does not affect the operation of the oppo-  
site port. All pending transactions are completed prior  
to a port deselect. Depth expansion requires replicat-  
ing R# and W# control signals for each bank if it is  
desired to have bank independent READ and WRITE  
operations.  
Clock Considerations  
The device utilizes internal delay-locked loops for  
maximum output, data valid window. It can be placed  
into a stopped-clock state to minimize power with a  
modest restart time of 1,024 clock cycles. Circuitry  
18Mb: 1.8V VDD, HSTL, QDRIIb4 SRAM  
MT54W1MH18J_H.fm – Rev. H, Pub. 3/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
3
2 MEG x 8, 1 MEG x 18, 512K x 36  
1.8V VDD, HSTL, QDRIIb4 SRAM  
Figure 2: Functional Block Diagram  
2 Meg x 8; 1 Meg x 18; 512K x 36  
n
n
ADDRESS  
R#  
ADDRESS  
REGISTRY  
& LOGIC  
W#  
K
W#  
MUX  
2a  
2a  
2a  
O
U
T
B
U
F
D
R
I
V
E
R
O
U
T
O
U
T
S
E
L
E
C
T
W R  
R E  
I G  
T
W
R
I
T
E
S
E
N
S
R
E
NWx# or BWx#  
D (Data In)  
n x a  
A
M
P
2
DATA  
REGISTRY  
& LOGIC  
3a  
a
a
G
Q
MEMORY  
ARRAY  
P
F
P
P
2a  
U
T
E
R
(Data Out)  
2
U
T
U
T
R#  
A
S
E 2  
E
K
C
K
K#  
MUX  
CQ, CQ#  
C,C#  
or  
K,K#  
(Echo Clock Out)  
NOTE:  
1. Figure 2 illustrates simplified device operation. See truth table, ball descriptions, and timing diagrams for detailed  
information.  
2. For 2 Meg x 8, n = 21, a = 8; NWx# = 2 separate nibble writes.  
For 1 Meg x 18, n = 20, a = 18; BWx# = 2 separate byte writes.  
For 512K x 36, n = 19, a = 36; BWx# = 4 separate byte writes.  
18Mb: 1.8V VDD, HSTL, QDRIIb4 SRAM  
MT54W1MH18J_H.fm – Rev. H, Pub. 3/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
4
2 MEG x 8, 1 MEG x 18, 512K x 36  
1.8V VDD, HSTL, QDRIIb4 SRAM  
Figure 3: Application Example  
R = 250  
R = 250Ω  
SRAM 1  
SRAM 2  
B
ZQ  
Q
ZQ  
Q
Vt  
CQ  
CQ#  
K#  
CQ  
CQ#  
K#  
B
D
D
SA  
R W W  
R W W  
R
# # #  
SA  
C
C#  
K
#
#
#
C C# K  
DATA IN  
DATA OUT  
Address  
Read#  
Vt  
Vt  
R
Write#  
BW#  
BUS  
MASTER  
(CPU  
or  
ASIC)  
SRAM 1 Input CQ  
SRAM 1 Input CQ#  
SRAM 4 Input CQ  
SRAM 4 Input CQ#  
Source K  
Source K#  
Delayed K  
Delayed K#  
R
R = 50Ω  
Vt = VREF  
NOTE:  
1. In this approach, the second clock pair drives the C and C# clocks but is delayed such that return data meets data  
setup and hold times at the bus master.  
2. Consult Micron Technical Notes for more thorough discussions of clocking schemes.  
3. Data capture is possible using only one of the two signals. CQ and CQ# clocks are optional use outputs.  
4. For high frequency applications (200 MHz and faster) the CQ and CQ# clocks (for data capture) are recommended  
over the C and C# clocks (for data alignment). The C and C# clocks are optional use inputs.  
18Mb: 1.8V VDD, HSTL, QDRIIb4 SRAM  
MT54W1MH18J_H.fm – Rev. H, Pub. 3/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
5
2 MEG x 8, 1 MEG x 18, 512K x 36  
1.8V VDD, HSTL, QDRIIb4 SRAM  
Table 2:  
2 Meg x 8 Ball Layout (Top View)  
165-Ball FBGA  
1
2
3
4
5
6
K#  
K
7
8
9
10  
11  
VSS/SA1  
NC  
NC/SA3  
VSS/SA4  
NC  
A
B
CQ#  
SA  
W#  
SA  
NW1#2  
R#  
SA  
SA  
CQ  
NC/SA5  
SA  
NW0#6  
SA  
NC  
NC  
NC  
NC  
NC  
Q4  
NC  
Q5  
VDDQ  
NC  
NC  
D6  
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
SA  
Q3  
D3  
NC  
Q2  
NC  
NC  
ZQ  
D1  
NC  
Q0  
D0  
NC  
NC  
TDI  
C
NC  
VSS  
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SA  
C
VSS  
VSS  
NC  
D
NC  
D4  
VSS  
VSS  
NC  
E
NC  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VSS  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
D2  
F
NC  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
NC  
G
NC  
D5  
NC  
H
DLL#  
NC  
VREF  
NC  
VREF  
Q1  
J
K
NC  
NC  
NC  
L
NC  
Q6  
NC  
M
NC  
NC  
NC  
NC  
Q7  
SA  
VSS  
VSS  
NC  
N
P
NC  
D7  
VSS  
SA  
SA  
VSS  
NC  
NC  
NC  
SA  
SA  
SA  
SA  
NC  
R
TDO  
TCK  
SA  
SA  
C#  
SA  
SA  
TMS  
NOTE:  
1. Expansion address: 2A for 72Mb  
2. NW1# controls writes to D4:D7  
3. Expansion address: 7A for 144Mb  
4. Expansion address: 10A for 36Mb  
5. Expansion address: 5B for 288Mb  
6. NW0# controls writes to D0:D3  
18Mb: 1.8V VDD, HSTL, QDRIIb4 SRAM  
MT54W1MH18J_H.fm – Rev. H, Pub. 3/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
6
2 MEG x 8, 1 MEG x 18, 512K x 36  
1.8V VDD, HSTL, QDRIIb4 SRAM  
Table 3:  
1 Meg x 18 Ball Layout (Top View)  
165-Ball FBGA  
1
CQ#  
NC  
2
VSS/SA1  
Q9  
3
NC/SA2  
D9  
4
5
BW1#3  
NC  
6
7
NC/SA4  
BW0#6  
SA  
8
9
SA  
10  
VSS/SA5  
NC  
11  
CQ  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
Q0  
TDI  
A
W#  
K#  
K
R#  
B
SA  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
SA  
C
NC  
NC  
D10  
Q10  
Q11  
D12  
Q13  
VDDQ  
D14  
Q14  
D15  
D16  
Q16  
Q17  
SA  
VSS  
SA  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SA  
C
VSS  
Q7  
D
NC  
D11  
NC  
VSS  
VSS  
VSS  
VSS  
NC  
E
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VSS  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
D6  
F
NC  
Q12  
D13  
VREF  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
NC  
G
NC  
NC  
H
DLL#  
NC  
VREF  
Q4  
J
K
NC  
NC  
D3  
L
NC  
Q15  
NC  
NC  
M
NC  
VSS  
VSS  
Q1  
N
P
NC  
D17  
NC  
VSS  
SA  
SA  
VSS  
NC  
NC  
SA  
SA  
SA  
SA  
D0  
R
TDO  
TCK  
SA  
SA  
C#  
SA  
SA  
TMS  
NOTE:  
1. Expansion address: 2A for 144Mb  
2. Expansion address: 3A for 36Mb  
3. BW1# controls writes to D9:D17  
4. Expansion address: 7A for 288Mb  
5. Expansion address: 10A for 72Mb  
6. BW0# controls writes to D0:D8  
18Mb: 1.8V VDD, HSTL, QDRIIb4 SRAM  
MT54W1MH18J_H.fm – Rev. H, Pub. 3/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
7
2 MEG x 8, 1 MEG x 18, 512K x 36  
1.8V VDD, HSTL, QDRIIb4 SRAM  
Table 4:  
512K x 36 Ball Layout (Top View)  
165-Ball FBGA  
1
2
VSS/SA1  
Q18  
Q28  
D20  
D29  
Q21  
D22  
VREF  
Q31  
D32  
Q24  
Q34  
D26  
D35  
TCK  
3
NC/SA2  
D18  
D19  
Q19  
Q20  
D21  
Q22  
VDDQ  
D23  
Q23  
D24  
D25  
Q25  
Q26  
SA  
4
5
BW2#3  
BW3#7  
SA  
6
7
BW1#4  
BW0#8  
SA  
8
9
NC/SA5  
D17  
D16  
Q16  
Q15  
D14  
Q13  
VDDQ  
D12  
Q12  
D11  
D10  
Q10  
Q9  
10  
VSS/SA6  
Q17  
Q7  
11  
CQ  
Q8  
D8  
D7  
Q6  
Q5  
D5  
ZQ  
D4  
Q3  
Q2  
D2  
D1  
Q0  
TDI  
A
CQ#  
Q27  
D27  
D28  
Q29  
Q30  
D30  
DLL#  
D31  
Q32  
Q33  
D33  
D34  
Q35  
TDO  
W#  
K#  
K
R#  
B
SA  
SA  
C
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SA  
C
VSS  
D
VSS  
VSS  
VSS  
VSS  
D15  
D6  
E
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VSS  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
F
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
Q14  
D13  
VREF  
Q4  
G
H
J
K
D3  
L
Q11  
Q1  
M
VSS  
VSS  
N
P
VSS  
SA  
SA  
VSS  
D9  
SA  
SA  
SA  
SA  
D0  
R
SA  
SA  
C#  
SA  
SA  
SA  
TMS  
NOTE:  
1. Expansion address: 2A for 288Mb  
2. Expansion address: 3A for 72Mb  
3. BW2# controls writes to D18:D26  
4. BW1# controls writes to D9:D17  
5. Expansion address: 9A for 36Mb  
6. Expansion address: 10A for 144Mb  
7. BW3# controls writes to D27:D35  
8. BW0# controls writes to D0:D8  
18Mb: 1.8V VDD, HSTL, QDRIIb4 SRAM  
MT54W1MH18J_H.fm – Rev. H, Pub. 3/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
8
2 MEG x 8, 1 MEG x 18, 512K x 36  
1.8V VDD, HSTL, QDRIIb4 SRAM  
Table 5:  
Ball Descriptions  
SYMBOL  
TYPE  
DESCRIPTION  
BW_#  
NW_#  
Input  
Synchronous Byte Writes (or Nibble Writes on x8): When LOW, these inputs cause their  
respective bytes to be registered and written if W# had initiated a WRITE cycle. These signals  
must meet setup and hold times around the rising edges of K and K# for each of the four  
rising edges comprising the WRITE cycle. See Ball Layout figures for signal to data  
relationships.  
C
C#  
Input  
Output Clock: This clock pair provides a user-controlled means of tuning device output data.  
The rising edge of C# is used as the output timing reference for first output data. The rising  
edge of C is used as the output reference for second output data. Ideally, C# is 180 degrees  
out of phase with C. C and C# may be tied HIGH to force the use of K and K# as the output  
reference clocks instead of having to provide C and C# clocks. If tied HIGH, these inputs may  
not be allowed to toggle during device operation.  
D_  
Input  
Synchronous Data Inputs: Input data must meet setup and hold times around the rising edges  
of K and K# during WRITE operations. See Ball Layout figures for ball site location of  
individual signals. The x8 device uses D0:D7. Remaining signals are NC. The x18 device uses  
D0:D17. Remaining signals are NC. The x36 device uses D0:D35. Remaining signals are NC.  
DLL#  
Input  
Input  
DLL Disable: When LOW, this input causes the DLL to be bypassed for stable, low-frequency  
operation.  
K
K#  
Input Clock: This input clock pair registers address and control inputs on the rising edge of K,  
and registers data on the rising edge of K and the rising edge of K#. K# is ideally 180 degrees  
out of phase with K. All synchronous inputs must meet setup and hold times around the clock  
rising edges.  
R#  
SA  
Input  
Input  
Synchronous Read: When LOW, this input causes the address inputs to be registered and a  
READ cycle to be initiated. This input must meet setup and hold times around the rising edge  
of K and is ignored on the subsequent rising edge of K.  
Synchronous Address Inputs: These inputs are registered and must meet the setup and hold  
times around the rising edge of K for READ cycles and must meet the setup and hold times  
around the rising edge of K# for WRITE cycles. See Ball Layout figures for address expansion  
inputs. All transactions operate on a burst of four words (two clock periods of bus activity).  
These inputs are ignored when both ports are deselected.  
TCK  
Input  
Input  
Input  
Input  
IEEE 1149.1 Clock Input: 1.8V I/O levels. This ball must be tied to VSS if the JTAG function is not  
used in the circuit.  
TMS  
TDI  
IEEE 1149.1 Test Inputs: 1.8V I/O levels. These balls may be left as No Connects if the JTAG  
function is not used in the circuit.  
VREF  
HSTL Input Reference Voltage: Nominally VDDQ/2, but may be adjusted to improve system  
noise margin. Provides a reference voltage for the HSTL input buffer trip point.  
W#  
Synchronous Write: When LOW, this input causes the address inputs to be registered and a  
WRITE cycle to be initiated. This input must meet setup and hold times around the rising  
edge of K.  
ZQ  
Input  
Output Impedance Matching Input: This input is used to tune the device outputs to the  
system data bus impedance. DQ output impedance is set to 0.2 x RQ, where RQ is a resistor  
from this ball to ground. Alternately, this ball can be connected directly to VDDQ to enable  
the minimum impedance mode. This ball cannot be connected directly to GND or left  
unconnected.  
CQ#, CQ  
Q_  
Output  
Output  
Synchronous Echo Clock Outputs: The edges of these outputs are tightly matched to the  
synchronous data outputs and can be used as data valid indication. These signals run freely  
and do not stop when Q tri-states.  
Synchronous Data Outputs: Output data is synchronized to the respective C and C# or to K  
and K# rising edges if C and C# are tied HIGH. This bus operates in response to R# commands.  
See Ball Layout figures for ball site location of individual signals. The x8 device uses Q0:Q7.  
Remaining signals are NC. The x18 device uses Q0:Q17. Remaining signals are NC. The x36  
device uses Q0:Q35. Remaining signals are NC.  
18Mb: 1.8V VDD, HSTL, QDRIIb4 SRAM  
MT54W1MH18J_H.fm – Rev. H, Pub. 3/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
9
©2003 Micron Technology, Inc.  
2 MEG x 8, 1 MEG x 18, 512K x 36  
1.8V VDD, HSTL, QDRIIb4 SRAM  
Table 5:  
Ball Descriptions (continued)  
SYMBOL  
TYPE  
DESCRIPTION  
TDO  
VDD  
Output  
Supply  
IEEE 1149.1 Test Output: 1.8V I/0 level.  
Power Supply: 1.8V nominal. See DC Electrical Characteristics and Operating Conditions for  
range.  
VDDQ  
Supply  
Power Supply: Isolated Output Buffer Supply. Nominally, 1.5V. 1.8V is also permissible. See DC  
Electrical Characteristics and Operating Conditions for range.  
VSS  
NC  
Supply  
Power Supply: GND.  
No Connect: These balls are internally connected to the die, but have no function and may be  
left not connected to the board to minimize ball count.  
18Mb: 1.8V VDD, HSTL, QDRIIb4 SRAM  
MT54W1MH18J_H.fm – Rev. H, Pub. 3/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
10  
©2003 Micron Technology, Inc.  
2 MEG x 8, 1 MEG x 18, 512K x 36  
1.8V VDD, HSTL, QDRIIb4 SRAM  
Figure 4:  
Bus Cycle State Diagram  
RD  
RD & R_Count=4  
always  
LOAD NEW  
READ ADDRESS;  
R_Count=0;  
R_Init=1  
always  
INCREMENT READ  
ADDRESS BY TWO  
R_Init=0  
READ DOUBLE;  
R_Count=R_Count+2  
READ PORT NOP  
R_Init=0  
/RD  
1
R_Count=2  
Supply  
voltage  
/RD & R_Count=4  
provided  
POWER-UP  
WT & R_Init=0  
Supply  
voltage  
provided  
WT & W_Count=4  
always  
LOAD NEW  
WRITE ADDRESS;  
W_Count=0  
always  
INCREMENT WRITE  
ADDRESS BY TWO  
WRITE DOUBLE;  
W_Count=W_Count+2  
/WT  
1
WRITE PORT NOP  
W_Count=2  
/WT & W_Count=4  
NOTE:  
1. The address is concatenated with two additional internal LSBs to facilitate BURST operation. The address order is  
always fixed as: xxx...xxx+0, +1, +2, +3. Bus cycle is terminated at the end of this sequence (burst count = 4).  
2. State transitions: RD = (R# = LOW); WT = (W# = LOW).  
3. Read and write state machines can be simultaneously active.  
4. State machine, control timing sequence is controlled by K.  
18Mb: 1.8V VDD, HSTL, QDRIIb4 SRAM  
MT54W1MH18J_H.fm – Rev. H, Pub. 3/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
11  
2 MEG x 8, 1 MEG x 18, 512K x 36  
1.8V VDD, HSTL, QDRIIb4 SRAM  
Table 6:  
Notes 1–8  
Truth Table  
OPERATION  
K
R#  
W#  
D or Q  
D or Q  
D or Q  
D or Q  
LJH  
X
L
DA(A0)  
at  
K(t)I  
DA(A0 + 1)  
at  
K#(t + 1)I  
DA(A0 + 2)  
at  
K(t + 2)I  
DA(A0 + 3)  
at  
K#(t + 3)I  
WRITE Cycle:  
Load address, input write data on  
two consecutive K and K# rising  
edges  
LJH  
L
X
QA(A0)  
at  
C#(t)I  
QA(A0 + 1)  
at  
C(t + 1)I  
QA(A + 2)  
at  
C#(t + 2)I  
QA(A0 + 3)  
at  
C(t + 3)I  
READ Cycle:  
Load address, output data on two  
consecutive C and C# rising edges  
LJH  
H
X
H
X
D = X  
Q = High-Z  
D = X  
Q = High-Z  
D = X  
Q = High-Z  
D = X  
Q = High-Z  
NOP: No operation  
Stopped  
Previous  
State  
Previous  
State  
Previous  
State  
Previous  
State  
STANDBY: Clock stopped  
Table 7:  
Notes 9, 10  
BYTE WRITE Operation  
OPERATION  
K
K#  
BW0#  
BW1#  
LJH  
LJH  
LJH  
LJH  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
WRITE D0:17 at K rising edge  
WRITE D0:17 at K# rising edge  
WRITE D0:8 at K rising edge  
WRITE D0:8 at K# rising edge  
WRITE D9:17 at K rising edge  
WRITE D9:17 at K# rising edge  
WRITE nothing at K rising edge  
WRITE nothing at K# rising edge  
LJH  
LJH  
LJH  
LJH  
NOTE:  
1. X means “Don’t Care.” H means logic HIGH. L means logic LOW. Iꢀmeans rising edge; Kꢀmeans falling edge.  
2. Data inputs are registered at K and K# rising edges. Data outputs are delivered at C and C# rising edges, except if C  
and C# are HIGH, then data outputs are delivered at K and K# rising edges.  
3. R# and W# must meet setup and hold times around the rising edge (LOW to HIGH) of K and are registered at the ris-  
ing edge of K.  
4. This device contains circuitry that will ensure the outputs will be in High-Z during power-up.  
5. Refer to state diagram and timing diagrams for clarification.  
6. It is recommended that K = K# = C = C# when clock is stopped. This is not essential, but permits most rapid restart by  
overcoming transmission line charging symmetrically.  
7. If this signal was LOW to initiate the previous cycle, this signal becomes a “Don’t Care” for this operation; however,  
it is strongly recommended that this signal is brought HIGH, as shown in the truth table.  
8. This signal was HIGH on previous K clock rising edge. Initiating consecutive READ or WRITE operations on consecu-  
tive K clock rising edges is not permitted. The device will ignore the second request.  
9. Assumes a WRITE cycle was initiated. BW0# and BW1# can be altered for any portion of the BURST WRITE operation,  
provided that the setup and hold requirements are satisfied.  
10.This table illustrates operation for x18 devices. The x36 device operation is similar except for the addition of BW2#  
(controls D18:D26) and BW3# (controls D27:D35). The x8 device operation is similar except that NW0# controls D0:D3  
and NW1# controls D4:D7.  
18Mb: 1.8V VDD, HSTL, QDRIIb4 SRAM  
MT54W1MH18J_H.fm – Rev. H, Pub. 3/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
12  
2 MEG x 8, 1 MEG x 18, 512K x 36  
1.8V VDD, HSTL, QDRIIb4 SRAM  
Stresses greater than those listed under Absolute  
Maximum Ratings may cause permanent damage to  
the device. This is a stress rating only, and functional  
operation of the device at these or any other condi-  
tions above those indicated in the operational sections  
of this specification is not implied. Exposure to abso-  
lute maximum rating conditions for extended periods  
may affect reliability.  
Absolute Maximum Ratings  
Voltage on VDD Supply Relative to VSS.....-0.5V to +2.8V  
Voltage on VDDQ Supply  
Relative to VSS ....................................... -0.5V to +VDD  
VIN ..................................................... -0.5V to VDD + 0.5V  
Storage Temperature..............................-55ºC to +125ºC  
Junction Temperature .......................................... +125ºC  
Short Circuit Output Current .............................. 70mA  
Maximum Junction Temperature depends upon  
package type, cycle time, loading, ambient tempera-  
ture, and airflow.  
Table 8:  
DC Electrical Characteristics and Operating Conditions  
Notes appear following parameter tables on page 17; 0°C ? TA ? +70°C; VDD = 1.8V 0.1V unless otherwise noted  
DESCRIPTION  
CONDITIONS  
SYMBOL  
VIH(DC)  
VIL(DC)  
VIN  
MIN  
VREF + 0.1  
-0.3  
MAX  
VDDQ + 0.3  
VREF - 0.1  
VDDQ + 0.3  
5
UNITS NOTES  
Input High (Logic 1) Voltage  
Input Low (Logic 0) Voltage  
Clock Input Signal Voltage  
Input Leakage Current  
Output Leakage Current  
V
V
3, 4  
3, 4  
3, 4  
-0.3  
V
0V ? VIN ? VDDQ  
ILI  
-5  
µA  
µA  
Output(s) disabled,  
ILO  
-5  
5
0V ? VIN ? VDDQ (Q)  
Output High Voltage  
Output Low Voltage  
|IOH| ? 0.1mA  
Note 1  
VOH (LOW)  
VOH  
VDDQ - 0.2  
VDDQ  
V
V
V
V
V
V
V
3, 5, 6  
3, 5, 6  
3, 5, 6  
3, 5, 6  
3
VDDQ/2 - 0.12 VDDQ/2 + 0.12  
VSS 0.2  
VDDQ/2 - 0.12 VDDQ/2 + 0.12  
IOL ? 0.1mA  
Note 2  
VOL (LOW)  
VOL  
VDD  
1.7  
1.4  
1.9  
VDD  
0.95  
Supply Voltage  
VDDQ  
VREF  
3, 7  
Isolated Output Buffer Supply  
Reference Voltage  
0.68  
3
Table 9:  
AC Electrical Characteristics and Operating Conditions  
Notes appear following parameter tables on page 17; 0°C ? TA ? +70°C; VDD = 1.8V 0.1V unless otherwise noted  
DESCRIPTION  
CONDITIONS  
SYMBOL  
VIH(AC)  
MIN  
VREF + 0.2  
-
MAX  
-
UNITS NOTES  
V
V
3, 4, 8  
3, 4, 8  
Input High (Logic 1) Voltage  
Input Low (Logic 1) Voltage  
VIL(AC)  
VREF - 0.2  
18Mb: 1.8V VDD, HSTL, QDRIIb4 SRAM  
MT54W1MH18J_H.fm – Rev. H, Pub. 3/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
13  
2 MEG x 8, 1 MEG x 18, 512K x 36  
1.8V VDD, HSTL, QDRIIb4 SRAM  
.
Table 10: IDD Operating Conditions and Maximum Limits  
Notes appear following parameter tables on page 17; 0°C ? TA ? +70°C; VDD = 1.8V 0.1V unless otherwise noted  
MAX  
DESCRIPTION  
CONDITIONS  
SYM  
TYP  
-3  
-3.3  
-4  
-5  
-6  
-7.5 UNITS NOTES  
Operating  
Supply  
Current: DDR  
All inputs ? VIL or O VIH; Cycle  
t
time Oꢀ KHKH (MIN); Outputs  
TBD  
mA  
9, 10  
open; 100% bus utilization;  
50% address and data bits  
toggling on each clock cycle  
IDD  
x8, x18  
x36  
525  
710  
475  
640  
400  
545  
330  
445  
280  
380  
235  
310  
tKHKH = tKHKH (MIN);  
Device in NOP state;  
All addresses/data static  
ISB1  
x8, x18  
x36  
Standby  
Supply  
Current: NOP  
TBD  
TBD  
mA  
mA  
10, 11  
12  
255  
265  
235  
245  
200  
210  
170  
180  
145  
155  
125  
135  
Output Supply  
Current: DDR  
(Information  
only)  
IDDQ  
x8  
x18  
x36  
CL = 15pF  
42  
95  
189  
38  
85  
170  
32  
71  
142  
32  
71  
142  
25  
57  
113  
21  
47  
95  
Table 11: Capacitance  
Note 13; notes appear following parameter tables on page 17  
DESCRIPTION  
CONDITIONS  
SYMBOL  
TYP  
MAX  
UNITS  
CI  
4.5  
6
5.5  
7
pF  
pF  
pF  
Address/Control Input Capacitance  
Output Capacitance (Q)  
Clock Capacitance  
TA = 25ºC; f = 1 MHz  
CO  
CCK  
5.5  
6.5  
Table 12: Thermal Resistance  
Note 13; notes appear following parameter tables on page 17  
DESCRIPTION  
CONDITIONS  
SYMBOL  
TYP  
UNITS  
NOTES  
JA  
19.4  
ºC/W  
14  
Junction to Ambient  
(Airflow of 1m/s)  
Soldered on a 4.25 x 1.125 inch,  
4-layer printed circuit board  
JC  
JB  
1.0  
9.6  
ºC/W  
ºC/W  
Junction to Case (Top)  
15  
Junction to Balls (Bottom)  
18Mb: 1.8V VDD, HSTL, QDRIIb4 SRAM  
MT54W1MH18J_H.fm – Rev. H, Pub. 3/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
14  
2 MEG x 8, 1 MEG x 18, 512K x 36  
1.8V VDD, HSTL, QDRIIb4 SRAM  
Table 13: AC Electrical Characteristics And Recommended Operating Conditions  
Notes 16–19, 22, notes appear following paramater tables on page 17; 0°C ? TA ? +70°C; TJ ? +95°C; VDD = 1.8V 0.1V  
-3  
-3.3  
-4  
-5  
-6  
-7.5  
DESCRIPTION  
Clock  
SYM  
UNITS NOTES  
MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX  
Clock cycle  
time  
(K, K#, C, C#)  
tKHKH  
tKC var  
tKHKL  
tKLKH  
3.00 3.47 3.30 4.20 4.00 5.25 5.00 6.30 6.00 7.88 7.50 8.40  
ns  
ns  
ns  
ns  
20  
21  
Clock Phase  
Jitter (K, K#,  
C, C#)  
0.20  
0.20  
0.20  
0.20  
0.20  
0.20  
Clock HIGH  
time  
(K, K#, C, C#)  
1.20  
1.20  
1.32  
1.32  
1.60  
1.60  
2.00  
2.00  
2.40  
2.40  
3.00  
3.00  
Clock LOW  
time  
(K, K#, C, C#)  
Clock to  
clock#  
(KIJK#I,  
CIJC#I) at  
tKHKH  
tKHK#H  
tK#HKH  
1.35  
1.35  
1.49  
1.49  
1.80  
1.80  
2.20  
2.20  
2.70  
2.70  
3.38  
3.38  
ns  
minimum  
Clock# to  
clock  
(K#IJKI,  
C#IJCI) at  
tKHKH  
ns  
ns  
minimum  
Clock to data  
clock (KIJCI,  
K#IJC#I)  
tKHCH  
0.00 1.30 0.00 1.45 0.00 1.80 0.00 2.30 0.00 2.80 0.00 3.55  
DLL lock time  
(K, C)  
tKC lock  
1,024  
30  
1,024  
30  
1,024  
30  
1,024  
30  
1,024  
30  
1,024  
30  
cycles  
ns  
22  
tKC  
reset  
K static to  
DLL reset  
Output Times  
C, C# HIGH to  
output valid  
tCHQV  
0.45  
0.45  
0.45  
0.45  
0.45  
0.45  
0.45  
0.45  
0.50  
0.50  
0.50  
0.50  
ns  
ns  
C, C# HIGH to  
output hold  
tCHQX -0.45  
tCHCQV  
-0.45  
-0.45  
-0.45  
-0.45  
-0.45  
-0.45  
-0.50  
-0.50  
-0.50  
-0.50  
C, C# HIGH to  
echo clock  
valid  
ns  
ns  
ns  
C, C# HIGH to  
echo clock  
hold  
tCHCQX -0.45  
tCQHQV  
CQ, CQ# HIGH  
to output  
valid  
0.25  
0.27  
0.30  
0.35  
0.40  
0.40  
23  
18Mb: 1.8V VDD, HSTL, QDRIIb4 SRAM  
MT54W1MH18J_H.fm – Rev. H, Pub. 3/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
15  
2 MEG x 8, 1 MEG x 18, 512K x 36  
1.8V VDD, HSTL, QDRIIb4 SRAM  
Table 13: AC Electrical Characteristics And Recommended Operating Conditions  
(continued)  
-3  
-3.3  
-4  
-5  
-6  
-7.5  
DESCRIPTION  
SYM  
UNITS NOTES  
MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX  
CQ, CQ# HIGH  
to output  
hold  
tCQHQX -0.25  
tCHQZ  
-0.27  
-0.45  
-0.30  
-0.45  
-0.35  
-0.45  
-0.40  
-0.50  
-0.40  
-0.50  
ns  
23  
C HIGH to  
output High-  
Z
0.45  
0.45  
0.45  
0.45  
0.50  
0.50  
ns  
ns  
C HIGH to  
output Low-Z  
tCHQX1  
-0.45  
Setup Times  
Address valid  
to K rising  
edge  
tAVKH  
tIVKH  
0.40  
0.40  
0.28  
0.40  
0.40  
0.30  
0.50  
0.50  
0.35  
0.60  
0.60  
0.40  
0.70  
0.70  
0.50  
0.70  
0.70  
0.50  
ns  
ns  
ns  
16  
Control  
inputs valid  
to K rising  
edge  
16  
16  
Data-in valid  
to K, K# rising  
edge  
tDVKH  
Hold Times  
K rising edge  
to address  
hold  
tKHAX  
tKHIX  
0.40  
0.40  
0.28  
0.40  
0.40  
0.30  
0.50  
0.50  
0.35  
0.60  
0.60  
0.40  
0.70  
0.70  
0.50  
0.80  
0.80  
0.50  
ns  
ns  
ns  
16  
K rising edge  
to control  
inputs hold  
16  
17  
K, K# rising  
edge to data-  
in hold  
tKHDX  
18Mb: 1.8V VDD, HSTL, QDRIIb4 SRAM  
MT54W1MH18J_H.fm – Rev. H, Pub. 3/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
16  
2 MEG x 8, 1 MEG x 18, 512K x 36  
1.8V VDD, HSTL, QDRIIb4 SRAM  
Notes  
1. Outputs are impedance-controlled. |IOH|  
=
12. Average I/O current and power is provided for  
informational purposes only and is not tested.  
Calculation assumes that all outputs are loaded  
with CL (in farads), f = input clock frequency, half  
of outputs toggle at each transition (n = 18 for the  
x36), CO = 6pF, VDDQ = 1.5V and uses the equa-  
tions: Average I/O Power as dissipated by the  
SRAM is: P = 0.5 × n × f × VDDQ2 x (CL + 2CO).  
Average IDDQ = n × f × VDDQ x (CL + CO).  
13. This parameter is sampled.  
14. Average thermal resistance between the die and  
the case top surface per MIL SPEC 883 Method  
1012.1.  
15. Junction temperature is a function of total device  
power dissipation and device mounting environ-  
ment. Measured per SEMI G38-87.8.  
16. This is a synchronous device. All addresses, data,  
and control lines must meet the specified setup  
and hold times for all latching clock edges.  
17. Test conditions as specified with the output load-  
ing as shown in Figure 5 unless otherwise noted.  
18. Control input signals may not be operated with  
(VDDQ/2)/(RQ/5) for values of 175ꢀ ? RQ ? 350ꢀꢁ.  
2. Outputs are impedance-controlled. IOL = (VDDQ/  
2)/(RQ/5) for values of 175ꢀ ? RQ ? 350ꢀꢁ.  
3. All voltages referenced to Vss (GND).  
t
4. Overshoot: VIH(AC) ? VDD + 0.7V for t ? KHKH/2  
t
Undershoot:VIL(AC) O -0.5V for t ? KHKH/2  
Power-up: VIH ? VDDQ + 0.3V and VDD ? 1.7V  
and VDDQ ? 1.4V for t ? 200ms  
During normal operation, VDDQ must not exceed  
VDD. R# and W# signals may not have pulse  
t
widths less than KHKL (MIN) or operate at cycle  
rates less than tKHKH (MIN).  
5. AC load current is higher than the shown DC val-  
ues. AC I/O curves are available upon request.  
6. HSTL outputs meet JEDEC HSTL Class I and Class  
II standards.  
7. The nominal value of VDDQ may be set within the  
range of 1.5V to 1.8V DC, and the variation of  
VDDQ must be limited to 0.1V DC.  
8. To maintain a valid level, the transitioning edge of  
the input must:  
pulse widths less than tKHKL (MIN).  
a. Sustain a constant slew rate from the current AC  
level through the target AC level, VIL(AC) or  
VIH(AC).  
b. Reach at least the target AC level.  
c. After the AC target level is reached, continue to  
maintain at least the target DC level, VIL(DC) or  
VIH(DC).  
19. If C and C# are tied HIGH, then K and K# become  
the references for C and C# timing parameters.  
20. The device will operate at clock frequencies  
t
slower than KHKH (MAX). See Micron Technical  
Note TN-54-02 for more information.  
21. Clock phase jitter is the variance from clock rising  
edge to the next expected clock rising edge.  
22. VDD slew rate must be less than 0.1V DC per 50ns  
for DLL lock retention. DLL lock time begins once  
VDD and input clock are stable.  
23. Echo clock is tightly controlled to data valid/data  
hold. By design, there is a 0.1ns variation from  
echo clock to data. The data sheet parameters  
reflect tester guardbands and test setup varia-  
tions.  
9. IDD is specified with no output current. IDD is lin-  
ear with frequency. Typical value is measured at  
6ns cycle time.  
10. Typical values are measured at VDD = 1.8V, VDDQ =  
1.5V, and temperature = 25°C.  
11. NOP currents are valid when entering NOP after  
all pending READ and WRITE cycles are com-  
pleted.  
18Mb: 1.8V VDD, HSTL, QDRIIb4 SRAM  
MT54W1MH18J_H.fm – Rev. H, Pub. 3/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
17  
2 MEG x 8, 1 MEG x 18, 512K x 36  
1.8V VDD, HSTL, QDRIIb4 SRAM  
AC Test Conditions  
Figure 5:  
Output Load Equivalent  
Input pulse levels ................................ 0.25V to 1.25V  
Input rise and fall times...................................... 0.7ns  
Input timing reference levels .............................0.75V  
Output reference levels...................................VDDQ/2  
ZQ for 50impedance...........................................250ꢀ  
Output load ..............................................See Figure 5  
0.75V  
VDDQ/2  
VREF  
50  
ZO= 50  
SRAM  
250Ω  
ZQ  
18Mb: 1.8V VDD, HSTL, QDRIIb4 SRAM  
MT54W1MH18J_H.fm – Rev. H, Pub. 3/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
18  
2 MEG x 8, 1 MEG x 18, 512K x 36  
1.8V VDD, HSTL, QDRIIb4 SRAM  
Figure 6:  
READ/WRITE Timing  
NOP  
1
READ  
2
WRITE  
3
READ  
4
WRITE  
5
NOP  
6
7
K
t
t
t
t
KHKL KLKH  
KHKH  
KHK#H  
K#  
R#  
t
t
t
t
IVKH  
KHIX  
IVKH KHIX  
W#  
A
(Note 3)  
A0  
A1  
A2  
A3  
t
t
KHDX  
KHDX  
t
t
AVKH KHAX  
t
t
DVKH  
DVKH  
D
Q
D30  
D31  
Q21  
D32  
D33  
Q23  
D10  
(Note 1)  
Q00  
D11  
D12  
D13  
Qx2  
Qx3  
Q01  
t
Q02  
Q03  
Q20  
Q22  
t
t
CHQV  
CHQX  
CHQZ  
t
KHCH  
t
t
CQHQV  
CHQX1  
t
t
CQHQX  
CHQX  
t
CHQV  
C
t
t
t
t
KHCH  
KHKH  
KHKL KLKH  
t
KHK#H  
C#  
t
CHCQV  
CHCQX  
t
CQ  
t
t
CHCQV  
CHCQX  
CQ#  
NOTE:  
1. Q00 refers to output from address A0 + 1. Q01 refers to output from the next internal burst address following  
A0, i.e., A0 + 1.  
2. Outputs are disabled (High-Z) one clock cycle after a NOP.  
3. In this example, if address A2 A1, then data Q20 = D10 and Q21 = D11. Write data is forwarded immediately as  
read results. (This note applies to whole diagram.)  
18Mb: 1.8V VDD, HSTL, QDRIIb4 SRAM  
MT54W1MH18J_H.fm – Rev. H, Pub. 3/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
19  
2 MEG x 8, 1 MEG x 18, 512K x 36  
1.8V VDD, HSTL, QDRIIb4 SRAM  
IEEE 1149.1 Serial Boundary Scan  
(JTAG)  
Figure 7:  
TAP Controller State Diagram  
The SRAM incorporates a serial boundary scan test  
access port (TAP). This port operates in accordance  
with IEEE Standard 1149.1-1990 but does not have the  
set of functions required for full 1149.1 compliance.  
These functions from the IEEE specification are  
excluded because their inclusion places an added  
delay in the critical speed path of the SRAM. Note that  
the TAP controller functions in a manner that does not  
conflict with the operation of other devices using  
1149.1 fully-compliant TAPs. The TAP operates using  
JEDEC-standard 1.8V I/O logic levels.  
TEST-LOGIC  
1
RESET  
0
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
1
1
EXIT1-DR  
EXIT1-IR  
The SRAM contains a TAP controller, instruction  
register, boundary scan register, bypass register, and  
ID register.  
0
0
PAUSE-DR  
1
0
PAUSE-IR  
1
0
0
0
EXIT2-DR  
1
EXIT2-IR  
1
Disabling the JTAG Feature  
It is possible to operate the SRAM without using the  
JTAG feature. To disable the TAP controller, TCK must  
be tied LOW (VSS) to prevent clocking of the device.  
TDI and TMS are internally pulled up and may be  
unconnected. Alternately, they may be connected to  
VDD through a pull-up resistor. TDO should be left  
unconnected. Upon power-up, the device will come up  
in a reset state which will not interfere with the opera-  
tion of the device.  
UPDATE-DR  
UPDATE-IR  
1
0
1
0
NOTE:  
The 0/1 next to each state represents the value  
of TMS at the rising edge of TCK.  
Test MODE SELECT (TMS)  
The TMS input is used to give commands to the TAP  
controller and is sampled on the rising edge of TCK. It  
is allowable to leave this ball unconnected if the TAP is  
not used. The ball is pulled up internally, resulting in a  
logic HIGH level.  
Test Access Port (TAP)  
Test Clock (TCK)  
The test clock is used only with the TAP controller.  
All inputs are captured on the rising edge of TCK. All  
outputs are driven from the falling edge of TCK.  
Test Data-In (TDI)  
The TDI ball is used to serially input information  
into the registers and can be connected to the input of  
any of the registers. The register between TDI and TDO  
is chosen by the instruction that is loaded into the TAP  
instruction register. For information on loading the  
instruction register, see Figure 7. TDI is pulled up  
internally and can be unconnected if the TAP is  
unused in an application. TDI is connected to the most  
significant bit (MSB) of any register, as illustrated in  
Figure 8.  
18Mb: 1.8V VDD, HSTL, QDRIIb4 SRAM  
MT54W1MH18J_H.fm – Rev. H, Pub. 3/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
20  
2 MEG x 8, 1 MEG x 18, 512K x 36  
1.8V VDD, HSTL, QDRIIb4 SRAM  
Test Data-Out (TDO)  
Figure 8:  
TAP Controller Block Diagram  
The TDO output ball is used to serially clock data-  
out from the registers. The output is active depending  
upon the current state of the TAP state machine, as  
illustrated in Figure 7. The output changes on the fall-  
ing edge of TCK. TDO is connected to the least signifi-  
cant bit (LSB) of any register, as depicted in Figure 8.  
0
Bypass Register  
2
1 0  
Selection  
Circuitry  
Selection  
Circuitry  
Instruction Register  
31 30 29  
Identification Register  
TDI  
TDO  
.
.
. 2 1 0  
Performing a TAP RESET  
A reset is performed by forcing TMS HIGH (VDD) for  
five rising edges of TCK. This RESET does not affect the  
operation of the SRAM and may be performed while  
the SRAM is operating.  
x
.
.
.
.
. 2 1 0  
Boundary Scan Register  
TCK  
TMS  
At power-up, the TAP is reset internally to ensure  
that TDO comes up in a High-Z state.  
TAP CONTROLLER  
TAP Registers  
NOTE:  
Registers are connected between the TDI and TDO  
balls and allow data to be scanned into and out of the  
SRAM test circuitry. Only one register can be selected  
at a time through the instruction register. Data is seri-  
ally loaded into the TDI ball on the rising edge of TCK.  
Data is output on the TDO ball on the falling edge of  
TCK.  
X = 106.  
Boundary Scan Register  
The boundary scan register is connected to all the  
input and bidirectional balls on the SRAM. The SRAM  
has a 107-bit-long register.  
The boundary scan register is loaded with the con-  
tents of the RAM I/O ring when the TAP controller is in  
the Capture-DR state and is then placed between the  
TDI and TDO balls when the controller is moved to the  
Shift-DR state. The EXTEST, SAMPLE/PRELOAD, and  
SAMPLE Z instructions can be used to capture the  
contents of the I/O ring.  
The Boundary Scan Order tables show the order in  
which the bits are connected. Each bit corresponds to  
one of the balls on the SRAM package. The MSB of the  
register is connected to TDI, and the LSB is connected  
to TDO.  
Instruction Register  
Three-bit instructions can be serially loaded into  
the instruction register. This register is loaded when it  
is placed between the TDI and TDO balls, as shown in  
Figure 8. Upon power-up, the instruction register is  
loaded with the IDCODE instruction. It is also loaded  
with the IDCODE instruction if the controller is placed  
in a reset state, as described in the previous section.  
When the TAP controller is in the Capture-IR state,  
the two LSBs are loaded with a binary “01” pattern to  
allow for fault isolation of the board-level serial test  
data path.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific, 32-  
bit code during the Capture-DR state when the  
IDCODE command is loaded in the instruction regis-  
ter. The IDCODE is hardwired into the SRAM and can  
be shifted out when the TAP controller is in the Shift-  
DR state. The ID register has a vendor code and other  
information described in the Identification Register  
Definitions table.  
Bypass Register  
To save time when serially shifting data through reg-  
isters, it is sometimes advantageous to skip certain  
chips. The bypass register is a single-bit register that  
can be placed between the TDI and TDO balls. This  
allows data to be shifted through the SRAM with mini-  
mal delay. The bypass register is set LOW (Vss) when  
the BYPASS instruction is executed.  
18Mb: 1.8V VDD, HSTL, QDRIIb4 SRAM  
MT54W1MH18J_H.fm – Rev. H, Pub. 3/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
21  
2 MEG x 8, 1 MEG x 18, 512K x 36  
1.8V VDD, HSTL, QDRIIb4 SRAM  
and TDO balls and allows the IDCODE to be shifted  
out of the device when the TAP controller enters the  
Shift-DR state. The IDCODE instruction is loaded into  
the instruction register upon power-up or whenever  
the TAP controller is given a test logic reset state.  
TAP Instruction Set  
Overview  
Eight different instructions are possible with the  
three-bit instruction register. All combinations are  
listed in the Instruction Codes table. Three of these  
instructions are listed as RESERVED and should not be  
used. The other five instructions are described in detail  
below.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary  
scan register to be connected between the TDI and  
TDO balls when the TAP controller is in a Shift-DR  
state. It also places all SRAM outputs into a High-Z  
state.  
The TAP controller used in this SRAM is not fully  
compliant to the 1149.1 convention because some of  
the mandatory 1149.1 instructions are not fully imple-  
mented. The TAP controller cannot be used to load  
address, data or control signals into the SRAM and  
cannot preload the I/O buffers. The SRAM does not  
implement the 1149.1 commands EXTEST or INTEST  
or the PRELOAD portion of SAMPLE/PRELOAD;  
rather, it performs a capture of the I/O ring when these  
instructions are executed.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1 mandatory instruc-  
tion. The PRELOAD portion of this instruction is not  
implemented, so the device TAP controller is not fully  
1149.1-compliant.  
Note that since the PRELOAD part of the command  
is not implemented, putting the TAP into the Update-  
DR state while performing a SAMPLE/PRELOAD  
instruction will have the same effect as the Pause-DR  
command.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is  
to be executed whenever the instruction register is  
loaded with all 0s. EXTEST is not implemented in this  
SRAM TAP controller; therefore, this device is not  
1149.1-compliant.  
BYPASS  
The TAP controller does recognize an all-0 instruc-  
tion. When an EXTEST instruction is loaded into the  
instruction register, the SRAM responds as if a  
SAMPLE/PRELOAD instruction has been loaded.  
EXTEST does not place the SRAM outputs (including  
CQ and CQ#) in a High-Z state.  
When the BYPASS instruction is loaded in the  
instruction register and the TAP is placed in a Shift-DR  
state, the bypass register is placed between the TDI  
and TDO balls. The advantage of the BYPASS instruc-  
tion is that it shortens the boundary scan path when  
multiple devices are connected together on a board.  
IDCODE  
Reserved  
The IDCODE instruction causes a vendor-specific,  
32-bit code to be loaded into the instruction register. It  
also places the instruction register between the TDI  
These instructions are not implemented but are  
reserved for future use. Do not use these instructions.  
18Mb: 1.8V VDD, HSTL, QDRIIb4 SRAM  
MT54W1MH18J_H.fm – Rev. H, Pub. 3/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
22  
2 MEG x 8, 1 MEG x 18, 512K x 36  
1.8V VDD, HSTL, QDRIIb4 SRAM  
Figure 9: TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
t
THTH  
THTL  
TLTH  
t
t
MVTH  
DVTH  
THMX  
Test Mode Select  
(TMS)  
t
THDX  
Test Data-In  
(TDI)  
t
TLOV  
t
TLOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
NOTE:  
Timing for SRAM inputs and outputs is congruent with TDI and TDO, respectively, as shown in Figure 9.  
Table 14: TAP DC Electrical Characteristics  
Notes 1, 2; 0°C ? TA ? +70°C; VDD ꢂꢀ1.8V 0.1V  
DESCRIPTION  
SYMBOL  
MIN  
MAX  
UNITS  
Clock  
tTHTH  
fTF  
tTHTL  
tTLTH  
Clock cycle time  
100  
ns  
MHz  
ns  
10  
Clock frequency  
Clock HIGH time  
Clock LOW time  
40  
40  
ns  
Output Times  
tTLOX  
tTLOV  
tDVTH  
tTHDX  
0
ns  
ns  
ns  
ns  
TCK LOW to TDO unknown  
20  
TCK LOW to TDO valid  
TDI valid to TCK HIGH  
TCK HIGH to TDI invalid  
10  
10  
Setup Times  
tMVTH  
tCS  
10  
10  
ns  
ns  
TMS setup  
Capture setup  
Hold Times  
tTHMX  
tCH  
10  
10  
ns  
ns  
TMS hold  
Capture hold  
NOTE:  
t
1. CS and tCH refer to the setup and hold time requirements of latching data from the boundary scan register.  
2. Test conditions are specified using the load in Figure 10.  
18Mb: 1.8V VDD, HSTL, QDRIIb4 SRAM  
MT54W1MH18J_H.fm – Rev. H, Pub. 3/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
23  
2 MEG x 8, 1 MEG x 18, 512K x 36  
1.8V VDD, HSTL, QDRIIb4 SRAM  
TAP AC Test Conditions  
Figure 10:  
TAP AC Output Load Equivalent  
Input pulse levels ....................................... VSS to 1.8V  
Input rise and fall times......................................... 1ns  
Input timing reference levels ...............................0.9V  
Output reference levels.........................................0.9V  
Test load termination supply voltage ..................0.9V  
0.9V  
50  
TDO  
ZO= 50Ω  
20pF  
Table 15: TAP DC Electrical Characteristics and Operating Conditions  
Note 2; 0°C ? TA ? +70°C; VDD ꢂꢀ1.8V 0.1V unless otherwise noted  
DESCRIPTION  
CONDITIONS  
SYMBOL  
MIN  
MAX  
UNITS  
NOTES  
VIH  
VIL  
1.3  
VDD + 0.3  
0.5  
V
V
1, 2  
1, 2  
Input High (Logic 1) Voltage  
-0.3  
Input Low (Logic 0) Voltage  
Input Leakage Current  
0V ? VIN ? VDD  
ILI  
-5.0  
-5.0  
5.0  
5.0  
µA  
µA  
2
2
Output(s) disabled,  
ILO  
Output Leakage Current  
0V ? VIN ? VDD (DQx)  
IOLC = 100µA  
IOLT = 2mA  
VOL1  
VOL2  
VOH1  
VOH1  
0.2  
0.4  
V
V
V
V
1, 2  
1, 2  
1, 2  
1, 2  
Output Low Voltage  
Output Low Voltage  
Output High Voltage  
Output High Voltage  
IOHC = -100µA  
IOHT = -2mA  
1.6  
1.4  
NOTE:  
1. All voltages referenced to VSS (GND).  
2. This table defines DC values for TAP control and data balls only. The DQ SRAM balls used in JTAG operation will have  
the DC values as defined in Table 8, “DC Electrical Characteristics and Operating Conditions,” on page 13.  
18Mb: 1.8V VDD, HSTL, QDRIIb4 SRAM  
MT54W1MH18J_H.fm – Rev. H, Pub. 3/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
24  
2 MEG x 8, 1 MEG x 18, 512K x 36  
1.8V VDD, HSTL, QDRIIb4 SRAM  
Table 16: Identification Register Definitions  
INSTRUCTION FIELD  
ALL DEVICES  
DESCRIPTION  
Revision number.  
REVISION NUMBER (31:28)  
DEVICE ID (28:12)  
000  
00def0wx0t0q0b0s0 def = 010 for 36Mb density  
def = 001 for 18Mb density  
wx = 11 for x36 width  
wx = 10 for x18 width  
wx = 01 for x8 width  
t = 1 for DLL version  
t = 0 for non-DLL version  
q = 1 for QDR  
q = 0 for DDR  
b = 1 for 4-word burst  
b = 0 for 2-word burst  
s = 1 for separate I/O  
s = 0 for common I/O  
MICRON JEDEC ID CODE  
(11:1)  
00000101100  
1
Allows unique identification of SRAM vendor.  
Indicates the presence of an ID register.  
ID Register Presence  
Indicator (0)  
Table 17: Scan Register Sizes  
REGISTER NAME  
BIT SIZE  
Instruction  
Bypass  
3
1
ID  
32  
107  
Boundary Scan  
Table 18: Instruction Codes  
INSTRUCTION  
CODE  
DESCRIPTION  
000  
EXTEST  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. This  
instruction is not 1149.1-compliant.  
001  
010  
IDCODE  
Loads the ID register with the vendor ID code and places the register between TDI and TDO.  
This operation does not affect SRAM operations.  
SAMPLE Z  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces  
all SRAM output drivers to a High-Z state.  
011  
100  
RESERVED  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/  
PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. This  
instruction does not implement 1149.1 preload function and is therefore not 1149.1-  
compliant.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect  
SRAM operations.  
18Mb: 1.8V VDD, HSTL, QDRIIb4 SRAM  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
MT54W1MH18J_H.fm – Rev. H, Pub. 3/03  
25  
©2003 Micron Technology, Inc.  
2 MEG x 8, 1 MEG x 18, 512K x 36  
1.8V VDD, HSTL, QDRIIb4 SRAM  
Table 19: Boundary Scan (Exit) Order  
BIT#  
FBGA BALL  
BIT#  
FBGA BALL  
BIT#  
FBGA BALL  
1
6R  
6P  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
10D  
9E  
73  
74  
2C  
3E  
2D  
2E  
1E  
2F  
2
3
6N  
10C  
11D  
9C  
75  
4
7P  
76  
5
7N  
77  
6
7R  
9D  
11B  
11C  
9B  
78  
7
8R  
79  
3F  
8
8P  
80  
1G  
1F  
9
9R  
81  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
11P  
10P  
10N  
9P  
10B  
11A  
10A  
9A  
8B  
82  
3G  
2G  
1J  
83  
84  
85  
2J  
10M  
11N  
9M  
9N  
86  
3K  
3J  
7C  
87  
6C  
88  
2K  
1K  
2L  
8A  
7A  
7B  
89  
11L  
11M  
9L  
90  
91  
3L  
6B  
92  
1M  
1L  
10L  
11K  
10K  
9J  
6A  
5B  
93  
94  
3N  
3M  
1N  
2M  
3P  
2N  
2P  
1P  
3R  
4R  
4P  
5P  
5N  
5R  
5A  
4A  
5C  
95  
96  
9K  
97  
10J  
11J  
11H  
10G  
9G  
4B  
98  
3A  
2A  
1A  
2B  
99  
100  
101  
102  
103  
104  
105  
106  
107  
11F  
11G  
9F  
3B  
1C  
1B  
10F  
11E  
10E  
3D  
3C  
1D  
18Mb: 1.8V VDD, HSTL, QDRIIb4 SRAM  
MT54W1MH18J_H.fm – Rev. H, Pub. 3/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
26  
2 MEG x 8, 1 MEG x 18, 512K x 36  
1.8V VDD, HSTL, QDRIIb4 SRAM  
Figure 11:  
165-Ball FBGA  
0.85 0.075  
0.12  
C
SEATING PLANE  
C
BALL A11  
165X Ø 0.45  
10.00  
SOLDER BALL DIAMETER REFERS  
TO POST REFLOW CONDITION. THE  
PRE-REFLOW DIAMETER IS Ø 0.40  
BALL A1  
PIN A1 ID  
1.20 MAX  
1.00  
TYP  
PIN A1 ID  
7.50 0.05  
14.00  
15.00 0.10  
7.00 0.05  
1.00  
TYP  
MOLD COMPOUND: EPOXY NOVOLAC  
SUBSTRATE: PLASTIC LAMINATE  
6.50 0.05  
5.00 0.05  
13.00 0.10  
SOLDER BALL MATERIAL: EUTECTIC 63% Sn, 37% Pb  
SOLDER BALL PAD: Ø .33mm  
NOTE:  
1. All dimensions are in millimeters.  
Data Sheet Designation  
No Marking: This data sheet contains minimum and maximum limits specified over the complete power  
supply and temperature range for production devices. Although considered final, these specifications are sub-  
ject to change, as further product development and data characterization sometimes occur.  
®
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900  
E-mail: prodmktg@micron.com, Internet: http://www.micron.com, Customer Comment Line: 800-932-4992  
Micron, the M logo, and the Micron logo are trademarks and/or service marks of Micron Technology, Inc.  
QDR RAMs and Quad Data Rate RAMs comprise a new family of products developed by Cypress Semiconductor, IDT, and Micron Technology, Inc.,  
NEC, and Samsung.  
18Mb: 1.8V VDD, HSTL, QDRIIb4 SRAM  
MT54W1MH18J_H.fm – Rev. H, Pub. 3/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
27  
2 MEG x 8, 1 MEG x 18, 512K x 36  
1.8V VDD, HSTL, QDRIIb4 SRAM  
Document Revision History  
Rev. H, Pub 3/03 ..............................................................................................................................................................3/03  
Updated JTAG Section  
Removed Preliminary Status  
Rev. G, Pub 2/03...............................................................................................................................................................2/03  
Added definitive notes to Figure 3  
Added definitive note to Table 9  
Added definitive note concerning bit# 64 to Table 19  
Removed Errata specifications  
Updated AC timing values with new codevelopment values  
Updated JTAG description to reflect 1149.1 specification compliance with EXTEST feature  
Added definitive note concerning SRAM (DQ) I/O balls used for JTAG DC values and timing  
Changed process information in header to die revision indicator  
Updated Thermal Resistance Values to Table 12:  
CI = 4.5 TYP; 5.5 MAX  
CO = 6 TYP; 7 MAX  
CCK = 5.5 TYP; 6.5 MAX  
Updated Thermal Resistance values to Table 12:  
JA = 19.4 TYP  
JC = 1.0 TYP  
JB = 9.6 TYP  
Added TJ ? +95°C to Table 13  
Modified Figure 2 regarding depth, configuration, and byte controls  
Added definitive notes regarding I/O behavior during JTAG operation  
Added definitive notes regarding IDD test conditions for read to write ratio  
Removed note regarding AC derating information for full I/O range  
Remove references to JTAG scan chain logic levels being at logic zero for NC pins in Tables 5 and 19  
Revised ball description for NC balls:  
These balls are internally connected to the die, but have no function and may be left not connected to the  
board to minimize ball count.  
Rev. 6, Pub 9/02 ...............................................................................................................................................................9/02  
Reverted data sheet to PRELIMINARY designation  
Rev. 5, Pub. 9/02, ADVANCE ...........................................................................................................................................9/02  
Added new Output Times values  
Added Errata to back of data sheet  
Removed ADVANCE designation  
Removed TJ references  
Rev. 4, Pub. 8/02, ADVANCE ...........................................................................................................................................8/02  
Updated format  
Rev. 3, Pub. 12/01, ADVANCE .......................................................................................................................................12/01  
Changed AC timing  
Rev. 2, Pub. 11/01, ADVANCE .......................................................................................................................................11/01  
New ADVANCE data sheet  
18Mb: 1.8V VDD, HSTL, QDRIIb4 SRAM  
MT54W1MH18J_H.fm – Rev. H, Pub. 3/03  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2003 Micron Technology, Inc.  
28  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY