S29PL127J55BFI002 [CYPRESS]

Flash Memory,;
S29PL127J55BFI002
型号: S29PL127J55BFI002
厂家: CYPRESS    CYPRESS
描述:

Flash Memory,

文件: 总114页 (文件大小:1040K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
S29PL-J  
128/128/64/32 Megabit (8/8/4/2 M x 16-Bit)  
CMOS 3.0 Volt-only, Simultaneous Read/Write  
Flash Memory with Enhanced VersatileIOTM Control  
Data Sheet  
Notice to Readers: This document indicates states the current technical  
specifications regarding the Spansion product(s) described herein. The  
Preliminary status of this document indicates that a product qualification has  
been completed, and that initial production has begun. Due to the phases of  
the manufacturing process that require maintaining efficiency and quality, this  
document may be revised by subsequent versions or modifications due to  
changes in technical specifications.  
Publication Number S29PL-J_00 Revision A Amendment 7 Issue Date March 2, 2005  
This page intentionally left blank.  
S29PL-J  
128/128/64/32 Megabit (8/8/4/2 M x 16-Bit)  
CMOS 3.0 Volt-only, Simultaneous Read/Write  
Flash Memory with Enhanced VersatileIOTM Control  
PRELIMINARY  
Data Sheet  
Distinctive Characteristics  
Bank 2B:  
Architectural Advantages  
PL129J - 16Mbit (4Kw x 8 and 32Kw x 31)  
„
128/128/64/32 Mbit Page Mode devices  
— Page size of 8 words: Fast page read access from  
random locations within the page  
„
Enhanced VersatileI/OTM (VIO) Control  
— Output voltage generated and input voltages  
tolerated on all control inputs and I/Os is determined  
by the voltage on the VIO pin  
„
Single power supply operation  
— Full Voltage range: 2.7 to 3.6 volt read, erase, and  
program operations for battery-powered applications  
— VIO options at 1.8 V and 3 V I/O for PL127J and  
PL129J devices  
„
„
Dual Chip Enable inputs (only in PL129J)  
Two CE# inputs control selection of each half of the  
memory space  
— 3V VIO for PL064J and PL032J devices  
„
Secured Silicon Sector region  
— Up to 128 words accessible through a command  
sequence  
Simultaneous Read/Write Operation  
— Data can be continuously read from one bank while  
executing erase/program functions in another bank  
— Zero latency switching from write to read operations  
— Up to 64 factory-locked words  
— Up to 64 customer-lockable words  
„
FlexBank Architecture (PL127J/PL064J/PL032J)  
— 4 separate banks, with up to two simultaneous  
operations per device  
„
„
„
„
Both top and bottom boot blocks in one device  
Manufactured on 110 nm process technology  
Data Retention: 20 years typical  
— Bank A:  
PL127J -16 Mbit (4 Kw x 8 and 32 Kw x 31)  
PL064J - 8 Mbit (4 Kw x 8 and 32 Kw x 15)  
PL032J - 4 Mbit (4 Kw x 8 and 32 Kw x 7)  
Cycling Endurance: 1 million cycles per sector  
typical  
— Bank B:  
Performance Characteristics  
PL127J - 48 Mbit (32 Kw x 96)  
PL064J - 24 Mbit (32 Kw x 48)  
PL032J - 12 Mbit (32 Kw x 24)  
„
High Performance  
— Page access times as fast as 20 ns  
— Random access times as fast as 55 ns  
— Bank C:  
„
Power consumption (typical values at 10 MHz)  
— 45 mA active read current  
PL127J - 48 Mbit (32 Kw x 96)  
PL064J - 24 Mbit (32 Kw x 48)  
PL032J - 12 Mbit (32 Kw x 24)  
— 17 mA program/erase current  
— 0.2 µA typical standby mode current  
— Bank D:  
PL127J -16 Mbit (4 Kw x 8 and 32 Kw x 31)  
PL064J - 8 Mbit (4 Kw x 8 and 32 Kw x 15)  
PL032J - 4 Mbit (4 Kw x 8 and 32 Kw x 7)  
Software Features  
„
Software command-set compatible with JEDEC  
42.4 standard  
„
FlexBank Architecture (PL129J)  
— 4 separate banks, with up to two simultaneous  
operations per device  
— Backward compatible with Am29F, Am29LV,  
Am29DL, and AM29PDL families and MBM29QM/RM,  
MBM29LV, MBM29DL, MBM29PDL families  
— CE#1 controlled banks:  
„
„
CFI (Common Flash Interface) compliant  
— Provides device-specific information to the system,  
allowing host software to easily reconfigure for  
different Flash devices  
Bank 1A:  
PL129J - 16Mbit (4Kw x 8 and 32Kw x 31)  
Bank 1B:  
PL129J - 48Mbit (32Kw x 96)  
— CE#2 controlled banks:  
Bank 2A:  
Erase Suspend / Erase Resume  
— Suspends an erase operation to allow read or  
program operations in other sectors of same bank  
PL129J - 48 Mbit (32Kw x 96)  
Publication Number S29PL-J_00 Revision A Amendment 7 Issue Date March 2, 2005  
This document states the current technical specifications regarding the Spansion product(s) described herein. The Preliminary status of this document indicates that  
product qualification has been completed, and that initial production has begun. Due to the phases of the manufacturing process that require maintaining efficiency and  
quality, this document may be revised by subsequent versions or modifications due to changes in technical specifications.  
P r e l i m i n a r y  
„
„
Program Suspend / Program Resume  
— Suspends a program operation to allow read  
operation from sectors other than the one being  
programmed  
to prevent program or erase operations within that  
sector  
— Sectors can be locked and unlocked in-system at VCC  
level  
Unlock Bypass Program command  
— Reduces overall programming time when issuing  
multiple program command sequences  
„
„
Password Sector Protection  
— A sophisticated sector protection method to lock  
combinations of individual sectors and sector groups  
to prevent program or erase operations within that  
sector using a user-defined 64-bit password  
Hardware Features  
„
„
„
Ready/Busy# pin (RY/BY#)  
— Provides a hardware method of detecting program or  
erase cycle completion  
Package options  
— Standard discrete pinouts  
11 x 8 mm, 80-ball Fine-pitch BGA (PL127J)  
(VBG080)  
Hardware reset pin (RESET#)  
— Hardware method to reset the device to reading  
array data  
8.15 x 6.15 mm, 48-ball Fine pitch BGA  
(PL064J/PL032J)  
(VBK048)  
WP#/ ACC (Write Protect/Acceleration) input  
— At VIL, hardware level protection for the first and  
last two 4K word sectors.  
— At VIH, allows removal of sector protection  
— At VHH, provides accelerated programming in a  
factory setting  
— MCP-compatible pinout  
8 x 11.6 mm, 64-ball Fine-pitch BGA (PL127J)  
7 x 9 mm, 56-ball Fine-pitch BGA (PL064J and  
PL032J)  
Compatible with MCP pinout, allowing easy  
integration of RAM into existing designs  
— 20 x 14 mm, 56-pin TSOP (PL127J) (TS056)  
„
Persistent Sector Protection  
— A command sector protection method to lock  
combinations of individual sectors and sector groups  
2
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Notice On Data Sheet Designations  
Spansion LLC issues data sheets with Advance Information or Preliminary designations to advise  
readers of product information or intended specifications throughout the product life cycle, in-  
cluding development, qualification, initial production, and full production. In all cases, however,  
readers are encouraged to verify that they have the latest information before finalizing their de-  
sign. The following descriptions of Spansion data sheet designations are presented here to high-  
light their presence and definitions.  
Advance Information  
The Advance Information designation indicates that Spansion LLC is developing one or more spe-  
cific products, but has not committed any design to production. Information presented in a doc-  
ument with this designation is likely to change, and in some cases, development on the product  
may discontinue. Spansion LLC therefore places the following conditions upon Advance Informa-  
tion content:  
“This document contains information on one or more products under development at Spansion LLC. The  
information is intended to help you evaluate this product. Do not design in this product without con-  
tacting the factory. Spansion LLC reserves the right to change or discontinue work on this proposed  
product without notice.”  
Preliminary  
The Preliminary designation indicates that the product development has progressed such that a  
commitment to production has taken place. This designation covers several aspects of the prod-  
uct life cycle, including product qualification, initial production, and the subsequent phases in the  
manufacturing process that occur before full production is achieved. Changes to the technical  
specifications presented in a Preliminary document should be expected while keeping these as-  
pects of production under consideration. Spansion places the following conditions upon Prelimi-  
nary content:  
“This document states the current technical specifications regarding the Spansion product(s) described  
herein. The Preliminary status of this document indicates that product qualification has been completed,  
and that initial production has begun. Due to the phases of the manufacturing process that require  
maintaining efficiency and quality, this document may be revised by subsequent versions or modifica-  
tions due to changes in technical specifications.”  
Combination  
Some data sheets will contain a combination of products with different designations (Advance In-  
formation, Preliminary, or Full Production). This type of document will distinguish these products  
and their designations wherever necessary, typically on the first page, the ordering information  
page, and pages with DC Characteristics table and AC Erase and Program table (in the table  
notes). The disclaimer on the first page refers the reader to the notice on this page.  
Full Production (No Designation on Document)  
When a product has been in production for a period of time such that no changes or only nominal  
changes are expected, the Preliminary designation is removed from the data sheet. Nominal  
changes may include those affecting the number of ordering part numbers available, such as the  
addition or deletion of a speed option, temperature range, package type, or VIO range. Changes  
may also include those needed to clarify a description or to correct a typographical error or incor-  
rect specification. Spansion LLC applies the following conditions to documents in this category:  
“This document states the current technical specifications regarding the Spansion product(s) described  
herein. Spansion LLC deems the products to have been in sufficient production volume such that sub-  
sequent versions of this document are not expected to change. However, typographical or specification  
corrections, or modifications to the valid combinations offered may occur.”  
Questions regarding these document designations may be directed to your local AMD or Fujitsu  
sales office.  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
3
P r e l i m i n a r y  
General Description  
The PL127J/PL129J/PL064J/PL032J is a 128/128/64/32 Mbit, 3.0 volt-only Page  
Mode and Simultaneous Read/Write Flash memory device organized as 8/8/4/2  
Mwords. The devices are offered in the following packages:  
„
„
„
„
11mm x 8mm, 80-ball Fine-pitch BGA standalone (PL127J)  
8mm x 11.6mm, 64-ball Fine-pitch BGA multi-chip compatible (PL127J)  
8.15mm x 6.15mm, 48-ball Fine-pitch BGA standalone (PL064J/PL032J)  
7mm x 9mm, 56-ball Fine-pitch BGA multi-chip compatible (PL064J and  
PL032J)  
„
20mm x 14mm, 56-pin TSOP (PL127J)  
The word-wide data (x16) appears on DQ15-DQ0. This device can be pro-  
grammed in-system or in standard EPROM programmers. A 12.0 V VPP is not  
required for write or erase operations.  
The device offers fast page access times of 20 to 30 ns, with corresponding ran-  
dom access times of 55 to 70 ns, respectively, allowing high speed  
microprocessors to operate without wait states. To eliminate bus contention the  
device has separate chip enable (CE#), write enable (WE#) and output enable  
(OE#) controls. Note: Device PL129J has 2 chip enable inputs (CE1#, CE2#).  
Simultaneous Read/Write Operation with Zero Latency  
The Simultaneous Read/Write architecture provides simultaneous operation  
by dividing the memory space into 4 banks, which can be considered to be four  
separate memory arrays as far as certain operations are concerned. The device  
can improve overall system performance by allowing a host system to program  
or erase in one bank, then immediately and simultaneously read from another  
bank with zero latency (with two simultaneous operations operating at any one  
time). This releases the system from waiting for the completion of a program or  
erase operation, greatly improving system performance.  
The device can be organized in both top and bottom sector configurations. The  
banks are organized as follows:  
Bank  
A
PL127J Sectors  
PL064J Sectors  
PL032J Sectors  
16 Mbit (4 Kw x 8 and 32 Kw x 31)  
48 Mbit (32 Kw x 96)  
8 Mbit (4 Kw x 8 and 32 Kw x 15)  
24 Mbit (32 Kw x 48)  
4 Mbit (4 Kw x 8 and 32 Kw x 7)  
12 Mbit (32 Kw x 24)  
B
C
48 Mbit (32 Kw x 96)  
24 Mbit (32 Kw x 48)  
12 Mbit (32 Kw x 24)  
D
16 Mbit (4 Kw x 8 and 32 Kw x 31)  
8 Mbit (4 Kw x 8 and 32 Kw x 15)  
4 Mbit (4 Kw x 8 and 32 Kw x 7)  
Bank  
1A  
PL129J Sectors  
CE# Control  
CE1#  
16 Mbit (4 Kw x 8 and 32 Kw x 31)  
1B  
48 Mbit (32 Kw x 96)  
48 Mbit (32 Kw x 96)  
CE1#  
2A  
CE2#  
2B  
16 Mbit (4 Kw x 8 and 32 Kw x 31)  
CE2#  
4
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Page Mode Features  
The page size is 8 words. After initial page access is accomplished, the page mode  
operation provides fast read access speed of random locations within that page.  
Standard Flash Memory Features  
The device requires a single 3.0 volt power supply (2.7 V to 3.6 V) for both  
read and write functions. Internally generated and regulated voltages are pro-  
vided for the program and erase operations.  
The device is entirely command set compatible with the JEDEC 42.4 sin-  
gle-power-supply Flash standard. Commands are written to the command  
register using standard microprocessor write timing. Register contents serve as  
inputs to an internal state-machine that controls the erase and programming cir-  
cuitry. Write cycles also internally latch addresses and data needed for the  
programming and erase operations. Reading data out of the device is similar to  
reading from other Flash or EPROM devices.  
Device programming occurs by executing the program command sequence. The  
Unlock Bypass mode facilitates faster programming times by requiring only two  
write cycles to program data instead of four. Device erasure occurs by executing  
the erase command sequence.  
The host system can detect whether a program or erase operation is complete by  
reading the DQ7 (Data# Polling) and DQ6 (toggle) status bits. After a program  
or erase cycle has been completed, the device is ready to read array data or ac-  
cept another command.  
The sector erase architecture allows memory sectors to be erased and repro-  
grammed without affecting the data contents of other sectors. The device is fully  
erased when shipped from the factory.  
Hardware data protection measures include a low VCC detector that automat-  
ically inhibits write operations during power transitions. The hardware sector  
protection feature disables both program and erase operations in any combina-  
tion of sectors of memory. This can be achieved in-system or via programming  
equipment.  
The Erase Suspend/Erase Resume feature enables the user to put erase on  
hold for any period of time to read data from, or program data to, any sector that  
is not selected for erasure. True background erase can thus be achieved. If a read  
is needed from the Secured Silicon Sector area (One Time Program area) after  
an erase suspend, then the user must use the proper command sequence to  
enter and exit this region.  
The Program Suspend/Program Resume feature enables the user to hold the  
program operation to read data from any sector that is not selected for program-  
ming. If a read is needed from the Secured Silicon Sector area, Persistent  
Protection area, Dynamic Protection area, or the CFI area, after a program sus-  
pend, then the user must use the proper command sequence to enter and exit  
this region.  
The device offers two power-saving features. When addresses have been stable  
for a specified amount of time, the device enters the automatic sleep mode.  
The system can also place the device into the standby mode. Power consumption  
is greatly reduced in both these modes.  
The device electrically erases all bits within a sector simultaneously via  
Fowler-Nordheim tunneling. The data is programmed using hot electron injection.  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
5
P r e l i m i n a r y  
Table Of Contents  
General Description . . . . . . . . . . . . . . . . . . . . . . . . 4  
Simultaneous Read/Write Operation with Zero Latency ......... 4  
Page Mode Features ................................................................................5  
Standard Flash Memory Features .......................................................5  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . .8  
Product Selector Guide . . . . . . . . . . . . . . . . . . . . . 14  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Simultaneous Read/Write Block Diagram . . . . . 16  
Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . 18  
80-Ball Fine-pitch BGA ........................................................................18  
Special Package Handling Instructions .............................................18  
64-Ball Fine-pitch BGA—MCP Compatible ...................................19  
Special Package Handling Instructions .............................................19  
48-Ball Fine-pitch BGA ........................................................................20  
Connection Diagram (PL064J and PL032J) . . . . . . 21  
56-pin TSOP 20 x 14 mm Configuration (PL127J) ........................22  
Special Package Handling Instructions ............................................22  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Selecting a Sector Protection Mode ............................................... 55  
Persistent Sector Protection . . . . . . . . . . . . . . . . 56  
Persistent Protection Bit (PPB) ........................................................ 56  
Persistent Protection Bit Lock (PPB Lock) ................................... 56  
Dynamic Protection Bit (DYB) ......................................................... 56  
Persistent Sector Protection Mode Locking Bit ..........................58  
Password Protection Mode . . . . . . . . . . . . . . . . . 59  
Password and Password Mode Locking Bit .................................. 59  
64-bit Password .....................................................................................60  
Write Protect (WP#) ..........................................................................60  
Persistent Protection Bit Lock .........................................................60  
High Voltage Sector Protection .......................................................60  
Figure 1. In-System Sector Protection/Sector  
Unprotection Algorithms .................................................... 61  
Temporary Sector Unprotect ..........................................................62  
Figure 2. Temporary Sector Unprotect Operation................... 62  
Secured Silicon Sector Flash Memory Region .............................62  
Factory-Locked Area (64 words) .................................................... 63  
Customer-Lockable Area (64 words) ............................................ 63  
Secured Silicon Sector Protection Bits .......................................... 63  
Figure 3. Secured Silicon Sector Protect Verify...................... 64  
Hardware Data Protection ................................................................64  
Device Bus Operations . . . . . . . . . . . . . . . . . . . . . .25  
Table 1. PL127J Device Bus Operations ................................25  
Table 2. PL129J Device Bus Operations ................................25  
Low VCC Write Inhibit ......................................................................64  
Write Pulse “Glitch” Protection ......................................................64  
Logical Inhibit .........................................................................................64  
Power-Up Write Inhibit .....................................................................64  
Common Flash Memory Interface (CFI). . . . . . . 65  
Table 17. CFI Query Identification String ............................. 65  
Table 18. System Interface String ...................................... 66  
Table 19. Device Geometry Definition ................................. 66  
Table 20. Primary Vendor-Specific Extended Query ............... 67  
Command Definitions . . . . . . . . . . . . . . . . . . . . . .69  
Reading Array Data .............................................................................69  
Reset Command ...................................................................................69  
Autoselect Command Sequence ......................................................70  
Enter Secured Silicon Sector/Exit Secured Silicon Sector Com-  
mand Sequence ......................................................................................70  
Word Program Command Sequence .............................................70  
Unlock Bypass Command Sequence ................................................ 71  
Figure 4. Program Operation .............................................. 72  
Chip Erase Command Sequence ...................................................... 72  
Requirements for Reading Array Data ..........................................26  
Random Read (Non-Page Read) ......................................................26  
Page Mode Read ....................................................................................26  
Table 3. Page Select ..........................................................26  
Simultaneous Read/Write Operation ............................................. 27  
Table 4. Bank Select .........................................................27  
Writing Commands/Command Sequences .................................. 27  
Accelerated Program Operation .....................................................28  
Autoselect Functions ...........................................................................28  
Automatic Sleep Mode ........................................................................28  
RESET#: Hardware Reset Pin ...........................................................29  
Output Disable Mode ..........................................................................29  
Table 5. PL127J Sector Architecture ....................................30  
Table 6. PL064J Sector Architecture ....................................37  
Table 7. PL032J Sector Architecture ....................................40  
Table 8. S29PL129J Sector Architecture ...............................42  
Table 9. Secured Silicon Sector Addresses ............................48  
Autoselect Mode ..................................................................................48  
Table 10. Autoselect Codes (High Voltage Method) ................49  
Table 11. Autoselect Codes for PL129J .................................49  
Table 12. PL127J Boot Sector/Sector Block Addresses  
for Protection/Unprotection ................................................50  
Table 13. PL129J Boot Sector/Sector Block Addresses  
for Protection/Unprotection ................................................51  
Table 14. PL064J Boot Sector/Sector Block Addresses  
for Protection/Unprotection ................................................52  
Table 15. PL032J Boot Sector/Sector Block Addresses  
Sector Erase Command Sequence ...................................................73  
Figure 5. Erase Operation .................................................. 74  
Erase Suspend/Erase Resume Commands .................................... 74  
Program Suspend/Program Resume Commands ........................ 75  
Command Definitions Tables ........................................................... 76  
Table 21. Memory Array Command Definitions ..................... 76  
Table 22. Sector Protection Command Definitions ................. 78  
for Protection/Unprotection ................................................53  
Write Operation Status . . . . . . . . . . . . . . . . . . . . 80  
Selecting a Sector Protection Mode ................................................53  
Table 16. Sector Protection Schemes ...................................54  
Sector Protection . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Persistent Sector Protection ............................................................. 55  
Password Sector Protection ............................................................. 55  
WP# Hardware Protection ............................................................... 55  
DQ7: Data# Polling ..............................................................................80  
Figure 6. Data# Polling Algorithm ....................................... 81  
DQ6: Toggle Bit I ..................................................................................82  
Figure 7. Toggle Bit Algorithm ............................................ 83  
DQ2: Toggle Bit II ................................................................................83  
Reading Toggle Bits DQ6/DQ2 ........................................................83  
6
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Figure 17. Back-to-back Read/Write Cycle Timings ................ 96  
Figure 18. Data# Polling Timings  
(During Embedded Algorithms)........................................... 97  
Figure 19. Toggle Bit Timings (During Embedded Algorithms) . 97  
Figure 20. DQ2 vs. DQ6..................................................... 98  
DQ5: Exceeded Timing Limits ..........................................................84  
DQ3: Sector Erase Timer ..................................................................84  
Table 23. Write Operation Status ........................................85  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . .86  
Figure 8. Maximum Overshoot Waveforms ........................... 86  
Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . .87  
Industrial (I) Devices ............................................................................87  
Extended (E) Devices ..........................................................................87  
Supply Voltages ......................................................................................87  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .88  
Table 24. CMOS Compatible ...............................................88  
AC Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . .89  
Test Conditions .....................................................................................89  
Figure 9. Test Setups ....................................................... 89  
Table 25. Test Specifications ..............................................89  
Protect/Unprotect. . . . . . . . . . . . . . . . . . . . . . . . . 99  
Table 30. Temporary Sector Unprotect ................................ 99  
Figure 21. Temporary Sector Unprotect Timing Diagram......... 99  
Figure 22. Sector/Sector Block Protect and  
Unprotect Timing Diagram ............................................... 100  
Controlled Erase Operations ...........................................................101  
Table 31. Alternate CE# Controlled Erase and  
Program Operations ........................................................101  
Figure 23. Alternate CE# Controlled Write  
(Erase/Program) Operation Timings................................... 102  
Table 32. CE1#/CE2# Timing (S29PL129J only) ..................103  
Figure 24. Timing Diagram for Alternating Between  
Switching Waveforms ..........................................................................90  
Table 26. Key To Switching Waveforms ................................90  
Figure 10. Input Waveforms and Measurement Levels............ 90  
CE1# and CE2# Control................................................... 103  
Table 33. Erase And Programming Performance ..................103  
BGA Pin Capacitance . . . . . . . . . . . . . . . . . . . . . 104  
Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . 105  
VBG080—80-Ball Fine-pitch Ball Grid Array 8 x 11 mm Package  
(PL127J) ....................................................................................................105  
VBH064—64-Ball Fine-pitch Ball Grid Array 8 x 11.6 mm package  
(PL127J) ...................................................................................................106  
VBK048—48-Ball Fine-pitch Ball Grid Array 8.15 x 6.15 mm pack-  
age (PL127J) ...........................................................................................107  
VBU056—56-Ball Fine-pitch BGA 7 x 9mm package (PL064J and  
PL032J) ................................................................................................... 108  
TS056—20 x 14 mm, 56-pin TSOP (PL127J) ................................109  
Revision Summary . . . . . . . . . . . . . . . . . . . . . . . . 110  
VCC RampRate .....................................................................................90  
Read Operations ....................................................................................91  
Table 27. Read-Only Operations ..........................................91  
Figure 11. Read Operation Timings...................................... 92  
Figure 12. Page Read Operation Timings.............................. 92  
Reset ......................................................................................................... 93  
Table 28. Hardware Reset (RESET#) ...................................93  
Figure 13. Reset Timings ................................................... 93  
Erase/Program Operations ................................................................94  
Table 29. Erase and Program Operations ..............................94  
Timing Diagrams ................................................................................... 95  
Figure 14. Program Operation Timings................................. 95  
Figure 15. Accelerated Program Timing Diagram ................... 95  
Figure 16. Chip/Sector Erase Operation Timings.................... 96  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
7
P r e l i m i n a r y  
Ordering Information  
The order number (Valid Combination) is formed by the following:  
S29PL-J  
55 BA 00  
W
0
PACKING TYPE  
0
1
2
3
=
=
=
=
Tray  
Tube  
7” Tape and Reel  
13” Tape and Reel  
MODEL NUMBER (ADDITIONAL ORDERING OPTIONS)  
00  
01  
02  
12  
13  
15  
=
=
=
=
=
=
3.0V VIO, 80-ball 11 x 8 mm FBGA (VBG080)  
1.8V VIO, 80-ball 11 x 8 mm FBGA (VBG080)  
3.0V VIO, 64-ball 8 x 11.6 mm FBGA (VBH064)  
3.0V VIO, 48-ball 8 x 6 mm FBGA (VBK048)  
3.0V VIO, 56-ball 20 x 14 mm TSOP (TS056)  
3.0V VIO, 56-ball 7 x 9 mm FBGA (VBU056)  
TEMPERATURE RANGE  
W
I
=
=
Wireless (–25  
Industrial (–40  
°
C to +85  
°
C)  
C)  
°
C to +85  
°
PACKAGE TYPE  
BA  
BF  
TA  
TF  
=
=
=
=
Fine-Pitch Grid Array (FBGA)  
Lead (Pb)- free compliant  
Fine-Pitch Grid Array (FBGA)  
Lead (Pb)- free  
Thin Small Outline Package (TSOP) Standard Pinout  
Lead (Pb)- free compliant  
Thin Small Outline Package (TSOP) Standard Pinout  
Lead (Pb)- free  
CLOCK SPEED  
55  
60  
65  
70  
=
=
=
=
55 ns (Contact factory for availability)  
60 ns  
65 ns  
70 ns  
DEVICE NUMBER/DESCRIPTION  
128 Megabit (8 M x 16-Bit), 64 Megabit (4 M x 16-Bit), 32 Megabit (2 M x 16-Bit) CMOS Flash  
Memory,  
Simultaneous Read/Write, Page Mode Flash Memory, 3.0 Volt-only Read, Program, and Erase  
Valid Combinations  
Valid Combination configuration planned to be supported for this device.  
8
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
128 Mb Products Based on 110 nm Floating Gate Technology  
Valid FBGA Package  
Combinations  
CE#  
Configuration  
Package Marking  
Temperature  
Speed  
VIO  
Package Type  
S29PL127J55BAI00  
S29PL127J55BFI00  
S29PL127J55BAW00  
S29PL127J55BFW00  
S29PL127J60BAI00  
S29PL127J60BFI00  
S29PL127J60BAW00  
S29PL127J60BFW00  
S29PL127J65BAI00  
S29PL127J65BFI00  
S29PL127J65BAW00  
S29PL127J65BFW00  
S29PL127J70BAI00  
S29PL127J70BFI00  
S29PL127J70BAW00  
S29PL127J70BFW00  
S29PL127J65BAI01  
S29PL127J65BFI01  
S29PL127J65BAW01  
S29PL127J65BFW01  
S29PL127J70BAI01  
S29PL127J70BFI01  
S29PL127J70BAW01  
S29PL127J70BFW01  
PL127J55BAI00  
PL127J55BFI00  
PL127J55BAW00  
PL127J55BFW00  
PL127J60BAI00  
PL127J60BFI00  
PL127J60BAW00  
PL127J60BFW00  
PL127J65BAI00  
PL127J65BFI00  
PL127J65BAW00  
PL127J65BFW00  
PL127J70BAI00  
PL127J70BFI00  
PL127J70BAW00  
PL127J70BFW00  
PL127J60BAI01  
PL127J60BFI01  
PL127J60BAW01  
PL127J60BFW01  
PL127J70BAI01  
PL127J70BFI01  
PL127J70BAW01  
PL127J70BFW01  
(-40 - +85 º C)  
55 ns  
(Note)  
(-25 - +85 º C)  
(-40 - +85 º C)  
(-25 - +85 º C)  
(-40 - +85 º C)  
(-25 - +85 º C)  
(-40 - +85 º C)  
(-25 - +85 º C)  
(-40 - +85 º C)  
(-25 - +85 º C)  
(-40 - +85 º C)  
(-25 - +85 º C)  
60 ns  
65 ns  
70 ns  
65 ns  
70 ns  
3.0 V  
Single CE#  
11 x 8 mm  
80 ball FBGA  
Standalone Package  
VBG080  
1.8 V  
Single CE#  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
9
P r e l i m i n a r y  
128 Mb Products Based on 110 nm Floating Gate Technology  
Valid FBGA Package  
Combinations  
CE#  
Configuration  
Package Marking  
Temperature  
Speed  
VIO  
Package Type  
S29PL127J55BAI02  
S29PL127J55BFI02  
S29PL127J55BAW02  
S29PL127J55BFW02  
S29PL127J60BAI02  
S29PL127J60BFI02  
S29PL127J60BAW02  
S29PL127J60BFW02  
S29PL127J65BAI02  
S29PL127J65BFI02  
S29PL127J65BAW02  
S29PL127J65BFW02  
S29PL127J70BAI02  
S29PL127J70BFI02  
S29PL127J70BAW02  
S29PL127J70BFW02  
S29PL127J55TAI13  
S29PL127J55TFI13  
S29PL127J55TAW13  
S29PL127J55TFW13  
S29PL127J60TAI13  
S29PL127J60TFI13  
S29PL127J60TAW13  
S29PL127J60TFW13  
S29PL127J70TAI13  
S29PL127J70TFI13  
S29PL127J70TAW13  
S29PL127J70TFW13  
PL127J55BAI02  
PL127J55BFI02  
PL127J55BAW02  
PL127J55BFW02  
PL127J60BAI02  
PL127J60BFI02  
PL127J60BAW02  
PL127J60BFW02  
PL127J65BAI02  
PL127J65BFI02  
PL127J65BAW02  
PL127J65BFW02  
PL127J70BAI02  
PL127J70BFI02  
PL127J70BAW02  
PL127J70BFW02  
PL127J55TAI13  
PL127J55TFI13  
PL127J55TAW13  
PL127J55TFW13  
PL127J60TAI13  
PL127J60TFI13  
PL127J60TAW13  
PL127J60TFW13  
PL127J70TAI13  
PL127J70TFI13  
PL127J70TAW13  
PL127J70TFW13  
(-40 - +85 º C)  
55 ns  
(Note)  
(-25 - +85 º C)  
(-40 - +85 º C)  
(-25 - +85 º C)  
(-40 - +85 º C)  
(-25 - +85 º C)  
(-40 - +85 º C)  
(-25 - +85 º C)  
(-40 - +85 º C)  
(-25 - +85 º C)  
(-40 - +85 º C)  
(-25 - +85 º C)  
(-40 - +85 º C)  
60 ns  
65 ns  
70 ns  
8 x 11.6 mm  
64 ball FBGA  
MCP-Compatible  
VBH064  
3.0 V  
Single CE#  
55  
(Note)  
60  
70  
20 x 14 mm  
56-pin TSOP  
TS056  
3.0 V  
Single CE#  
(-25 - +85 º C)  
(-40 - +85 º C)  
55  
(Note)  
S29PL127J55TFI13  
PL127J55TFI13  
S29PL127J55TFW13  
S29PL127J60TFI13  
S29PL127J60TFW13  
S29PL127J70TFI13  
S29PL127J70TFW13  
PL127J55TFW13  
S29PL127J60TFI13  
PL127J60TFW13  
PL127J70TFI13  
PL127J70TFW13  
(-25 - +85 º C)  
(-40 - +85 º C)  
(-25 - +85 º C)  
(-40 - +85 º C)  
(-25 - +85 º C)  
60  
70  
20 x 14 mm  
56-pin TSOP  
TS056  
3.0 V  
Single CE#  
10  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
64 Mb Products Based on 110 nm Floating Gate Technology  
Valid Combinations  
BGA Packages  
Package Marking  
PL064J55BAI12  
PL064J55BFI12  
PL064J55BAW12  
PL064J55BFW12  
PL064J60BAI12  
PL064J60BFI12  
PL064J60BAW12  
PL064J60BFW12  
PL064J70BAI12  
PL064J70BAFI12  
PL064J70BAW12  
PL064J70BFW12  
PL064J55BAI15  
PL064J55BFI15  
PL064J55BAW15  
PL064J55BFW15  
PL064J60BAI15  
PL064J60BFI15  
PL064J60BAW15  
PL064J60BFW15  
PL064J70BAI15  
PL064J70BFI15  
PL064J70BAW15  
PL064J70BFW15  
Temperature  
Speed  
VIO  
Package Type  
S29PL064J55BAI12  
S29PL064J55BFI12  
S29PL064J55BAW12  
S29PL064J55BFW12  
S29PL064J60BAI12  
S29PL064J60BFI12  
S29PL064J60BAW12  
S29PL064J60BFW12  
S29PL064J70BAI12  
S29PL064J70BFI12  
S29PL064J70BAW12  
S29PL064J70BFW12  
S29PL064J55BAI15  
S29PL064J55BFI15  
S29PL064J55BAW15  
S29PL064J55BFW15  
S29PL064J60BAI15  
S29PL064J60BFI15  
S29PL064J60BAW15  
S29PL064J60BFW15  
S29PL064J70BAI15  
S29PL064J70BFI15  
S29PL064J70BAW15  
S29PL064J70BFW15  
(-40 - +85 º C)  
55 ns  
(Note)  
(-25 - +85 º C)  
(-40 - +85 º C)  
(-25 - +85 º C)  
(-40 - +85 º C)  
(-25 - +85 º C)  
(-40 - +85 º C)  
(-25 - +85 º C)  
(-40 - +85 º C)  
(-25 - +85 º C)  
(-40 - +85 º C)  
(-25 - +85 º C)  
8 x 6 mm  
48-ball  
Standalone Package  
60 ns  
70 ns  
3.0 V  
VBK048  
55 ns  
(Note)  
7 x 9 mm  
56-ball  
MCP-Compatible  
60 ns  
70 ns  
3.0 V  
VBU056  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
11  
P r e l i m i n a r y  
32 Mb Products Based on 110 nm Floating Gate Technology  
Valid Combinations  
GA Packages  
Package Marking  
PL032J55BAI12  
PL032J55BFI12  
PL032J55BAW12  
PL032J55BFW12  
PL032J60BAI12  
PL032J60BFI12  
PL032J60BAW12  
PL032J60BFW12  
PL032J70BAI12  
PL032J70BFI12  
PL032J70BAW12  
PL032J70BFW12  
PL032J55BAI15  
PL032J55BFI15  
PL032J55BAW15  
PL032J55BFW15  
PL032J60BAI15  
PL032J60BFI15  
PL032J60BAW15  
PL032J60BFW15  
PL032J70BAI15  
PL032J70BFI15  
PL032J70BAW15  
PL032J70BFW15  
Temperature  
Speed  
VIO  
Package Type  
S29PL032J55BAI12  
S29PL032J55BFI12  
S29PL032J55BAW12  
S29PL032J55BFW12  
S29PL032J60BAI12  
S29PL032J60BFI12  
S29PL032J60BAW12  
S29PL032J60BFW12  
S29PL032J70BAI12  
S29PL032J70BFI12  
S29PL032J70BAW12  
S29PL032J70BFW12  
S29PL032J55BAI15  
S29PL032J55BFI15  
S29PL032J55BAW15  
S29PL032J55BFW15  
S29PL032J60BAI15  
S29PL032J60BFI15  
S29PL032J60BAW15  
S29PL032J60BFW15  
S29PL032J70BAI15  
S29PL032J70BFI15  
S29PL032J70BAW15  
S29PL032J70BFW15  
(-40 - +85 º C)  
55 ns  
(Note)  
(-25 - +85 º C)  
(-40 - +85 º C)  
(-25 - +85 º C)  
(-40 - +85 º C)  
(-25 - +85 º C)  
(-40 - +85 º C)  
(-25 - +85 º C)  
(-40 - +85 º C)  
(-25 - +85 º C)  
(-40 - +85 º C)  
(-25 - +85 º C)  
8 x 6 mm  
48-ball  
Standalone Package  
VBK048  
60 ns  
70 ns  
3.0 V  
55 ns  
(Note)  
7 x 9 mm  
56-ball  
MCP-Compatible  
VBU056  
60 ns  
70 ns  
3.0 V  
12  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Valid Combinations for BGA Packages  
Speed  
Order Number (note 1)  
VIO Range  
PL129J, PL127J  
PL064J, PL032J  
55 (note 2)  
PL129J, PL127J  
PL064J, PL032J  
60  
65  
70  
2.7–3.6  
PL129J, PL127J  
PL064J, PL032J  
PL129J, PL127J  
PL064J, PL032J  
PL129J, PL127J  
PL129J, PL127J  
65  
70  
1.65–1.95  
Notes:  
1. Please contact the factory for PL129J availability.  
2. Please contact the factory for availability.  
Valid Combinations for TSOP Packages  
Order Number  
Speed  
55  
VIO Range  
PL127J  
60  
2.7–3.6  
70  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
13  
P r e l i m i n a r y  
Product Selector Guide  
Part Number  
S29PL032J/S29PL064J/S29PL-J/S29PL129J  
VCC,VIO = 2.7–3.6 V  
55 (Note)  
60  
65  
70  
VCC = 2.7–3.6 V,  
Speed Option  
VIO = 1.65–1.95 V (PL127J and  
PL129J only)  
65  
70  
Max Access Time, ns (tACC  
Max CE# Access, ns (tCE)  
)
55 (Note)  
20 (Note)  
60  
25  
25  
65  
25  
70  
30  
70  
30  
Max Page Access, ns (tPACC  
Max OE# Access, ns (tOE)  
)
Note: Contact factory for availability  
14  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Block Diagram  
DQ15–DQ0  
RY/BY# (See Note)  
V
CC  
V
Sector  
SS  
Switches  
V
IO  
Input/Output  
Buffers  
RESET#  
WE#  
Erase Voltage  
Generator  
State  
Control  
Command  
Register  
PGM Voltage  
Generator  
Chip Enable  
Output Enable  
Logic  
CE#  
OE#  
Data Latch  
Y-Gating  
Y-Decoder  
X-Decoder  
V
Detector  
Timer  
CC  
Amax–A3  
Cell Matrix  
A2–A0  
Notes:  
1. RY/BY# is an open drain output.  
2. Amax = A22 (PL127J), A21 (PL129J and PL064J), A20 (PL032J)  
3. For PL129J there are two CE# (CE1# and CE2#)  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
15  
P r e l i m i n a r y  
Simultaneous Read/Write Block Diagram  
V
V
CC  
OE#  
SS  
Mux  
Bank A  
Bank A Address  
Amax–A0  
X-Decoder  
Bank B Address  
RY/BY#  
Bank B  
X-Decoder  
Amax–A0  
RESET#  
STATE  
CONTROL  
&
COMMAND  
REGISTER  
Status  
WE#  
DQ15–DQ0  
CE#  
WP#/ACC  
Control  
Mux  
X-Decoder  
Bank C  
DQ0–DQ15  
Bank C Address  
Bank D Address  
X-Decoder  
Bank D  
Amax–A0  
Mux  
Note: Amax = A22 (PL127J), A21 (PL064J), A20 (PL032J)  
16  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Simultaneous Read/Write Block Diagram (PL129J)  
V
V
CC  
SS  
OE#  
CE1#=L  
CE2#=H  
Mux  
Bank 1A  
Bank 1A Address  
Bank 1B Address  
A21–A0  
X-Decoder  
RY/BY#  
Bank 1B  
X-Decoder  
A21–A0  
RESET#  
STATE  
CONTROL  
&
Status  
WE#  
CE1#  
DQ15–DQ0  
CE2#  
COMMAND  
REGISTER  
Control  
Mux  
WP#/ACC  
CE1#=H  
CE2#=L  
X-Decoder  
Bank 2A  
DQ0–DQ15  
Bank 2A Address  
Bank 2B Address  
X-Decoder  
Bank 2B  
A21–A0  
Mux  
Notes:  
1. Amax = A21 (PL129J)  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
17  
P r e l i m i n a r y  
Connection Diagrams  
80-Ball Fine-pitch BGA  
80-Ball Fine-pitch BGA  
(PL127J)  
Top View, Balls Facing Down  
A8  
NC  
B8  
NC  
C8  
NC  
D8  
E8  
F8  
G8  
H8  
NC  
J8  
K8  
NC  
L8  
M8  
NC  
A22  
NC  
V
V
NC  
NC  
IO  
SS  
A7  
NC  
B7  
NC  
C7  
D7  
E7  
F7  
G7  
H7  
NC  
J7  
K7  
L7  
M7  
NC  
A13  
A12  
A14  
A15  
A16  
DQ15  
V
NC  
SS  
C6  
A9  
D6  
A8  
E6  
F6  
G6  
H6  
J6  
K6  
A10  
A11  
DQ7  
DQ14  
DQ13  
DQ6  
C5  
D5  
E5  
F5  
G5  
H5  
J5  
K5  
WE#  
RESET#  
A21  
A19  
DQ5  
DQ12  
V
DQ4  
CC  
C4  
D4  
E4  
F4  
G4  
H4  
J4  
K4  
RY/BY# WP#/ACC  
A18  
A20  
DQ2  
DQ10  
DQ11  
DQ3  
C3  
A7  
D3  
E3  
A6  
F3  
A5  
G3  
H3  
J3  
K3  
A17  
DQ0  
DQ8  
DQ9  
DQ1  
A2  
NC  
B2  
NC  
C2  
A3  
D2  
A4  
E2  
A2  
F2  
A1  
G2  
A0  
H2  
J2  
K2  
L2  
M2  
NC  
CE#  
OE#  
V
NC  
SS  
A1  
NC  
B1  
NC  
C1  
NC  
D1  
NC  
E1  
F1  
G1  
NC  
H1  
J1  
K1  
NC  
L1  
M1  
NC  
NC  
NC  
V
NC  
NC  
IO  
Note: Pinout shown for PL127J.  
Special Package Handling Instructions  
Special handling is required for Flash Memory products in molded packages  
(TSOP, BGA, PDIP, SSOP, PLCC).  
The package and/or data integrity may be compromised if the package body is  
exposed to temperatures above 150°C for prolonged periods of time.  
18  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
64-Ball Fine-pitch BGA—MCP Compatible  
64-Ball Fine-pitch BGA—MCP Compatible  
(PL127J)  
Top View, Balls Facing Down  
A1  
NC  
A10  
NC  
B5  
B6  
RFU  
RFU  
C3  
A7  
C4  
C5  
C6  
C7  
A8  
C8  
A11  
RFU  
WP#/ACC WE#  
D2  
A3  
D3  
A6  
D4  
D5  
D6  
D7  
D8  
D9  
A12  
A15  
RFU  
RESET# RFU  
A19  
E2  
A2  
E3  
A5  
E4  
E5  
E6  
E7  
A9  
E8  
E9  
RY/BY # A20  
A13  
A21  
A18  
F2  
A1  
F3  
A4  
F4  
F7  
F8  
F9  
A17  
A10  
A14  
CE2#  
G2  
A0  
G3  
G4  
G7  
G8  
G9  
VSS  
DQ1  
DQ6  
RFU  
A16  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
CE#f1  
OE#  
DQ9  
DQ3  
DQ4  
DQ13  
DQ15  
RFU  
J2  
J3  
J4  
DQ10  
K4  
J5  
VCCf  
K5  
J6  
J7  
DQ12  
K7  
J8  
J9  
RFU  
DQ0  
K3  
RFU  
K6  
DQ7  
K8  
VSS  
DQ8  
DQ2  
DQ11  
RFU  
DQ5  
DQ14  
L5  
L6  
VCCf  
RFU  
M1  
NC  
M10  
NC  
Note: Pinout shown for PL127J.  
Special Package Handling Instructions  
Special handling is required for Flash Memory products in molded packages  
(TSOP, BGA, PDIP, SSOP, PLCC).  
The package and/or data integrity may be compromised if the package body is  
exposed to temperatures above 150°C for prolonged periods of time.  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
19  
P r e l i m i n a r y  
48-Ball Fine-pitch BGA  
48-Ball Fine-pitch BGA (PL064J/PL032J)  
Top View, Balls Facing Down  
A6  
B6  
C6  
D6  
E6  
F6  
G6  
H6  
V
A13  
A12  
A14  
A15  
A16  
NC  
DQ15  
SS  
A5  
A9  
B5  
A8  
C5  
D5  
E5  
F5  
G5  
H5  
A10  
A11  
DQ7  
DQ14  
DQ13  
DQ6  
A4  
B4  
C4  
D4  
E4  
F4  
G4  
H4  
WE#  
RESET#  
A21  
A19  
DQ5  
DQ12  
V
DQ4  
CC  
A3  
B3  
C3  
D3  
E3  
F3  
G3  
H3  
RY/BY# WP#/ACC  
A18  
A20  
DQ2  
DQ10  
DQ11  
DQ3  
A2  
A7  
B2  
C2  
A6  
D2  
A5  
E2  
F2  
G2  
H2  
A17  
DQ0  
DQ8  
DQ9  
DQ1  
A1  
A3  
B1  
A4  
C1  
A2  
D1  
A1  
E1  
A0  
F1  
G1  
H1  
CE#  
OE#  
V
SS  
Note: Pinout shows for PL064J. For PL032J, C4(A21) = NC  
20  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Connection Diagram (PL064J and PL032J)  
56-ball Fine-Pitch Ball Grid Array  
(Top View, Balls Facing Down)  
A2  
A7  
A3  
LB#  
B3  
A4  
WP#/ACC  
B4  
A5  
WE#  
B5  
A6  
A8  
A7  
A11  
B7  
B1  
A3  
B2  
B6  
B8  
A15  
C8  
A6  
UB#  
C3  
RST#  
C4  
CE2s  
C5  
A19  
C6  
A12  
C7  
C1  
C2  
A2  
A5  
A18  
D3  
RY/BY#  
A20  
A9  
A13  
D7  
A21  
D8  
D1  
D2  
D6  
A1  
A4  
A17  
E3  
A10  
E6  
A14  
E7  
RFU  
E8  
E1  
E2  
A0  
VSS  
F2  
DQ1  
F3  
DQ6  
F6  
RFU  
F7  
A16  
F8  
F1  
F4  
DQ3  
G4  
F5  
DQ4  
G5  
CE1#f  
G1  
OE#  
G2  
DQ0  
H2  
DQ9  
G3  
DQ13  
G6  
DQ15  
G7  
RFU  
G8  
CE1#s  
DQ10  
H3  
VCCf  
H4  
VCCs  
H5  
DQ12  
H6  
DQ7  
H7  
VSS  
DQ8  
DQ2  
DQ11  
RFU  
DQ5  
DQ14  
Special Handling Instructions for FBGA Package  
Special handling is required for Flash Memory products in FBGA packages.  
Flash memory devices in FBGA packages may be damaged if exposed to ultra-  
sonic cleaning methods. The package and/or data integrity may be compromised  
if the package body is exposed to temperatures above 150°C for prolonged peri-  
ods of time.  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
21  
P r e l i m i n a r y  
56-pin TSOP 20 x 14 mm Configuration (PL127J)  
RESET#  
RY/BY#  
A0  
1
2
WP#/ACC  
WE#  
NC  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
3
A1  
4
A22  
A2  
5
A21  
A3  
6
A20  
A4  
7
OE#  
NC  
A5  
8
VCC  
9
CE#  
VSS  
DQ0  
DQ1  
DQ2  
DQ3  
VSSQ  
VCCQ  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
DQ15  
DQ14  
DQ13  
DQ12  
VSSQ  
VCCQ  
DQ11  
DQ10  
DQ9  
DQ8  
VCC  
56-pin TSOP  
DQ4  
DQ5  
DQ6  
DQ7  
VSS  
NC  
A6  
A19  
A7  
A18  
A8  
A17  
A9  
A16  
A10  
A11  
A12  
A15  
A14  
A13  
For this family of products, a single multi-chip compatible package is offered for  
each density to allow both standalone and multi-chip qualification using a single,  
adaptable package. This new methodology allows package standardization  
resulting in faster development. The multi-chip compatible package includes all  
the pins required for standalone device operation and verification. In addition,  
extra pins are included for insertion of common data storage or logic devices to  
be used for multi-chip products. If a standalone device is required, the extra  
multi-chip specific pins are not connected and the standalone device operates  
normally. The multi-chip compatible package sizes were chosen to serve the  
largest number of combinations possible. There are only a few cases where a  
larger package size would be required to accommodate the multi-chip  
combination. This multi-chip compatible package set does not allow for direct  
package migration from the Am29BDS128H, Am29BDS128G, Am29BDS640G  
products, which use legacy standalone packages.  
Special Package Handling Instructions  
Special handling is required for Flash Memory products in molded packages  
(TSOP, BGA, PDIP, SSOP, PLCC). The package and/or data integrity may be  
compromised if the package body is exposed to temperatures above 150°C for  
prolonged periods of time.  
22  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Pin Description  
Amax–A0  
DQ15–DQ0  
CE#  
OE#  
WE#  
VSS  
NC  
RY/BY#  
=
=
=
=
=
=
=
=
Address bus  
16-bit data inputs/outputs/float  
Chip Enable Inputs  
Output Enable Input  
Write Enable  
Device Ground  
Pin Not Connected Internally  
Ready/Busy output and open drain.  
When RY/BY#= VIH, the device is ready to accept  
read operations and commands. When RY/BY#=  
VOL, the device is either executing an embedded  
algorithm or the device is executing a hardware  
reset operation.  
WP#/ACC  
=
Write Protect/Acceleration Input.  
When WP#/ACC= VIL, the highest and lowest two  
4K-word sectors are write protected regardless of  
other sector protection configurations. When  
WP#/ACC= VIH, these sector are unprotected unless  
the DYB or PPB is programmed. When WP#/ACC=  
12V, program and erase operations are accelerated.  
VIO  
=
=
Input/Output Buffer Power Supply  
(1.65 V to 1.95 V (for PL127J and PL129J) or 2.7 V  
to 3.6 V (for all PLxxxJ devices))  
Chip Power Supply  
VCC  
(2.7 V to 3.6 V or 2.7 to 3.3 V)  
RESET#  
CE1#, CE2#  
=
=
Hardware Reset Pin  
Chip Enable Inputs.  
CE1# controls the 64Mb in Banks 1A and 1B. CE2#  
controls the 64 Mb in Banks 2A and 2B. (Only for  
PL129J)  
Notes:  
1. Amax = A22 (PL127J), A21 (PL129J and PL064J), A20 (PL032J)  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
23  
P r e l i m i n a r y  
Logic Symbol  
max+1  
Amax–A0  
16  
DQ15–DQ0  
CE#  
OE#  
WE#  
WP#/ACC  
RESET#  
RY/BY#  
VIO (VCCQ  
)
24  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Device Bus Operations  
This section describes the requirements and use of the device bus operations,  
which are initiated through the internal command register. The command register  
itself does not occupy any addressable memory location. The register is a latch  
used to store the commands, along with the address and data information  
needed to execute the command. The contents of the register serve as inputs to  
the internal state machine. The state machine outputs dictate the function of the  
device. Table 1 lists the device bus operations, the inputs and control levels they  
require, and the resulting output. The following subsections describe each of  
these operations in further detail.  
Table 1. PL127J Device Bus Operations  
Addresses  
(Amax–A0)  
DQ15–  
DQ0  
Operation  
CE#  
L
OE#  
L
WE#  
RESET#  
WP#/ACC  
X
Read  
Write  
H
L
H
H
AIN  
AIN  
DOUT  
DIN  
L
H
X (Note 2)  
VIO  
0.3 V  
±
VIO ±  
0.3 V  
Standby  
X
X
X (Note 2)  
X
High-Z  
Output Disable  
Reset  
L
X
X
H
X
X
H
X
X
H
X
X
X
X
X
High-Z  
High-Z  
DIN  
L
Temporary Sector Unprotect (High Voltage)  
VID  
AIN  
Table 2. PL129J Device Bus Operations  
Addresses  
(A21–A0)  
DQ15–  
DQ0  
Operation  
CE1#  
CE2#  
OE#  
WE#  
RESET#  
WP#/ACC  
L
H
L
H
L
Read  
L
H
H
X
AIN  
DOUT  
H
L
X
Write  
H
X
L
H
AIN  
X
DIN  
(Note 2)  
H
VIO  
0.3 V  
±
VIO  
0.3 V  
±
VIO ±  
0.3 V  
Standby  
X
X
High-Z  
Output Disable  
Reset  
L
L
H
X
H
X
H
L
X
X
X
X
High-Z  
High-Z  
X
X
Temporary Sector Unprotect  
(High Voltage)  
X
X
X
X
VID  
X
AIN  
DIN  
Legend: L = Logic Low = VIL, H = Logic High = VIH, VID = 11.5–12.5 V, VHH = 8.5–9.5 V, X = Don’t Care, SA = Sector  
Address, AIN = Address In, DIN = Data In, DOUT = Data Out  
Notes:  
1. The sector protect and sector unprotect functions may also be implemented via programming equipment. See the  
"High Voltage Sector Protection" section section.  
2. WP#/ACC must be high when writing to upper two and lower two sectors.  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
25  
P r e l i m i n a r y  
Requirements for Reading Array Data  
To read array data from the outputs, the system must drive the OE# and appro-  
priate CE# pins (For PL129J - CE1#/CE2# pins) to VIL. In PL129J, CE1# and  
CE2# are the power control and select the lower (CE1#) or upper (CE2#) halves  
of the device. CE# is the power control. OE# is the output control and gates array  
data to the output pins. WE# should remain at VIH.  
The internal state machine is set for reading array data upon device power-up,  
or after a hardware reset. This ensures that no spurious alteration of the memory  
content occurs during the power transition. No command is necessary in this  
mode to obtain array data. Standard microprocessor read cycles that assert valid  
addresses on the device address inputs produce valid data on the device data  
outputs. Each bank remains enabled for read access until the command register  
contents are altered.  
Refer to Table 32 for timing specifications and to Figure 11 for the timing diagram.  
ICC1 in the DC Characteristics table represents the active current specification for  
reading array data.  
Random Read (Non-Page Read)  
Address access time (tACC) is equal to the delay from stable addresses to valid  
output data. The chip enable access time (tCE) is the delay from the stable ad-  
dresses and stable CE# to valid data at the output inputs. The output enable  
access time is the delay from the falling edge of the OE# to valid data at the out-  
put inputs (assuming the addresses have been stable for at least tACC–tOE time).  
Page Mode Read  
The device is capable of fast page mode read and is compatible with the page  
mode Mask ROM read operation. This mode provides faster read access speed for  
random locations within a page. Address bits Amax–A3 select an 8 word page,  
and address bits A2–A0 select a specific word within that page. This is an asyn-  
chronous operation with the microprocessor supplying the specific word location.  
The random or initial page access is tACC or tCE and subsequent page read ac-  
cesses (as long as the locations specified by the microprocessor falls within that  
page) is equivalent to tPACC. When CE# (CE1# and CE#2 in PL129J) is deasserted  
(=VIH), the reassertion of CE# (CE1# or CE#2 in PL129J) for subsequent access  
has access time of tACC or tCE. Here again, CE# (CE1# /CE#2 in PL129J)selects  
the device and OE# is the output control and should be used to gate data to the  
output inputs if the device is selected. Fast page mode accesses are obtained by  
keeping Amax–A3 constant and changing A2–A0 to select the specific word within  
that page.  
Table 3. Page Select  
Word  
A2  
0
A1  
0
A0  
0
Word 0  
Word 1  
Word 2  
Word 3  
Word 4  
Word 5  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
26  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Table 3. Page Select (Continued)  
Word 6  
Word 7  
1
1
1
1
0
1
Simultaneous Read/Write Operation  
In addition to the conventional features (read, program, erase-suspend read,  
erase-suspend program, and program-suspend read), the device is capable of  
reading data from one bank of memory while a program or erase operation is in  
progress in another bank of memory (simultaneous operation). The bank can be  
selected by bank addresses (PL127J: A22–A20, PL129J and PL064J: A21–A19,  
PL032J: A20–A18) with zero latency.  
The simultaneous operation can execute multi-function mode in the same bank.  
Table 4. Bank Select  
PL127J: A22–A20  
PL064J: A21–A19  
PL032J: A20–A18  
Bank  
Bank A  
Bank B  
Bank C  
Bank D  
000  
001, 010, 011  
100, 101, 110  
111  
Bank  
CE1#  
CE2#  
PL129J: A21–A20  
00  
Bank 1A  
Bank 1B  
Bank 2A  
Bank 2B  
0
0
1
1
1
1
0
0
01, 10, 11  
00, 01, 10  
11  
Writing Commands/Command Sequences  
To write a command or command sequence (which includes programming data  
to the device and erasing sectors of memory), the system must drive WE# and  
CE# (CE1# or CE#2 in PL129J) to VIL, and OE# to VIH.  
The device features an Unlock Bypass mode to facilitate faster programming.  
Once a bank enters the Unlock Bypass mode, only two write cycles are required  
to program a word, instead of four. The “Word Program Command Sequence”  
section has details on programming data to the device using both standard and  
Unlock Bypass command sequences.  
An erase operation can erase one sector, multiple sectors, or the entire device.  
Table 4 indicates the set of address space that each sector occupies. A “bank ad-  
dress” is the set of address bits required to uniquely select a bank. Similarly, a  
“sector address” refers to the address bits required to uniquely select a sector.  
The “Command Definitions” section has details on erasing a sector or the entire  
chip, or suspending/resuming the erase operation.  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
27  
P r e l i m i n a r y  
ICC2 in the DC Characteristics table represents the active current specification for  
the write mode. See the timing specification tables and timing diagrams in the  
"Reset" section for write operations.  
Accelerated Program Operation  
The device offers accelerated program operations through the ACC function. This  
function is primarily intended to allow faster manufacturing throughput at the  
factory.  
If the system asserts VHH on this pin, the device automatically enters the afore-  
mentioned Unlock Bypass mode, temporarily unprotects any protected sectors,  
and uses the higher voltage on the pin to reduce the time required for program  
operations. The system would use a two-cycle program command sequence as  
required by the Unlock Bypass mode. Removing VHH from the WP#/ACC pin re-  
turns the device to normal operation. Note that VHH must not be asserted on  
WP#/ACC for operations other than accelerated programming, or device damage  
may result. In addition, the WP#/ACC pin should be raised to VCC when not in  
use. That is, the WP#/ACC pin should not be left floating or unconnected; incon-  
sistent behavior of the device may result.  
Autoselect Functions  
If the system writes the autoselect command sequence, the device enters the au-  
toselect mode. The system can then read autoselect codes from the internal  
register (which is separate from the memory array) on DQ15–DQ0. Standard  
read cycle timings apply in this mode. Refer to the "Secured Silicon Sector Ad-  
dresses" section and "Autoselect Command Sequence" section for more  
information.  
Standby Mode  
When the system is not reading or writing to the device, it can place the device  
in the standby mode. In this mode, current consumption is greatly reduced, and  
the outputs are placed in the high impedance state, independent of the OE#  
input.  
The device enters the CMOS standby mode when the CE# (CE1#,CE#2 in  
PL129J) and RESET# pins are both held at VIO ± 0.3 V. (Note that this is a more  
restricted voltage range than VIH.) If CE# (CE1#,CE#2 in PL129J) and RESET#  
are held at VIH, but not within VIO ± 0.3 V, the device will be in the standby mode,  
but the standby current will be greater. The device requires standard access time  
(tCE) for read access when the device is in either of these standby modes, before  
it is ready to read data.  
If the device is deselected during erasure or programming, the device draws ac-  
tive current until the operation is completed.  
ICC3 in “DC Characteristics” represents the CMOS standby current specification.  
Automatic Sleep Mode  
The automatic sleep mode minimizes Flash device energy consumption. The de-  
vice automatically enables this mode when addresses remain stable for tACC  
+
30 ns. The automatic sleep mode is independent of the CE#, WE#, and OE# con-  
trol signals. Standard address access timings provide new data when addresses  
are changed. While in sleep mode, output data is latched and always available to  
the system. Note that during automatic sleep mode, OE# must be at VIH before  
28  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
the device reduces current to the stated sleep mode specification. ICC5 in “DC  
Characteristics” represents the automatic sleep mode current specification.  
RESET#: Hardware Reset Pin  
The RESET# pin provides a hardware method of resetting the device to reading  
array data. When the RESET# pin is driven low for at least a period of tRP, the  
device immediately terminates any operation in progress, tristates all output  
pins, and ignores all read/write commands for the duration of the RESET# pulse.  
The device also resets the internal state machine to reading array data. The op-  
eration that was interrupted should be reinitiated once the device is ready to  
accept another command sequence, to ensure data integrity.  
Current is reduced for the duration of the RESET# pulse. When RESET# is held  
at VSS±0.3 V, the device draws CMOS standby current (ICC4). If RESET# is held  
at VIL but not within VSS±0.3 V, the standby current will be greater.  
The RESET# pin may be tied to the system reset circuitry. A system reset would  
thus also reset the Flash memory, enabling the system to read the boot-up firm-  
ware from the Flash memory.  
If RESET# is asserted during a program or erase operation, the RY/BY# pin re-  
mains a “0” (busy) until the internal reset operation is complete, which requires  
a time of tREADY (during Embedded Algorithms). The system can thus monitor  
RY/BY# to determine whether the reset operation is complete. If RESET# is as-  
serted when a program or erase operation is not executing (RY/BY# pin is “1”),  
the reset operation is completed within a time of tREADY (not during Embedded Al-  
gorithms). The system can read data tRH after the RESET# pin returns to VIH.  
Refer to the "AC Characteristic" section tables for RESET# parameters and to 13  
for the timing diagram.  
Output Disable Mode  
When the OE# input is at VIH, output from the device is disabled. The output pins  
(except for RY/BY#) are placed in the highest Impedance state  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
29  
P r e l i m i n a r y  
Table 5. PL127J Sector Architecture  
Bank  
Sector  
SA0  
Sector Address (A22-A12)  
00000000000  
00000000001  
00000000010  
00000000011  
00000000100  
00000000101  
00000000110  
00000000111  
00000001XXX  
00000010XXX  
00000011XXX  
00000100XXX  
00000101XXX  
00000110XXX  
00000111XXX  
00001000XXX  
00001001XXX  
00001010XXX  
00001011XXX  
00001100XXX  
00001101XXX  
00001110XXX  
00001111XXX  
00010000XXX  
00010001XXX  
00010010XXX  
00010011XXX  
00010100XXX  
00010101XXX  
00010110XXX  
00010111XXX  
00011000XXX  
00011001XXX  
00011010XXX  
00011011XXX  
00011100XXX  
00011101XXX  
00011110XXX  
00011111XXX  
Sector Size (Kwords)  
Address Range (x16)  
000000h–000FFFh  
001000h–001FFFh  
002000h–002FFFh  
003000h–003FFFh  
004000h–004FFFh  
005000h–005FFFh  
006000h–006FFFh  
007000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
4
SA1  
4
SA2  
4
SA3  
4
SA4  
4
SA5  
4
SA6  
4
SA7  
4
SA8  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
30  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Table 5. PL127J Sector Architecture (Continued)  
Bank  
Sector  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
Sector Address (A22-A12)  
00100000XXX  
00100001XXX  
00100010XXX  
00100011XXX  
00100100XXX  
00100101XXX  
00100110XXX  
00100111XXX  
00101000XXX  
00101001XXX  
00101010XXX  
00101011XXX  
00101100XXX  
00101101XXX  
00101110XXX  
00101111XXX  
00110000XXX  
00110001XXX  
00110010XXX  
00110011XXX  
00110100XXX  
00110101XXX  
00110110XXX  
00110111XXX  
00111000XXX  
00111001XXX  
00111010XXX  
00111011XXX  
00111100XXX  
00111101XXX  
00111110XXX  
00111111XXX  
01000000XXX  
01000001XXX  
01000010XXX  
01000011XXX  
01000100XXX  
01000101XXX  
01000110XXX  
01000111XXX  
Sector Size (Kwords)  
Address Range (x16)  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
31  
P r e l i m i n a r y  
Table 5. PL127J Sector Architecture (Continued)  
Bank  
Sector  
SA79  
Sector Address (A22-A12)  
01001000XXX  
01001001XXX  
01001010XXX  
01001011XXX  
01001100XXX  
01001101XXX  
01001110XXX  
01001111XXX  
01010000XXX  
01010001XXX  
01010010XXX  
01010011XXX  
01010100XXX  
01010101XXX  
01010110XXX  
01010111XXX  
01011000XXX  
01011001XXX  
01011010XXX  
01011011XXX  
01011100XXX  
01011101XXX  
01011110XXX  
01011111XXX  
01100000XXX  
01100001XXX  
01100010XXX  
01100011XXX  
01100100XXX  
01100101XXX  
01100110XXX  
01100111XXX  
01101000XXX  
01101001XXX  
01101010XXX  
01101011XXX  
01101100XXX  
01101101XXX  
01101110XXX  
01101111XXX  
Sector Size (Kwords)  
Address Range (x16)  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
260000h–267FFFh  
268000h–26FFFFh  
270000h–277FFFh  
278000h–27FFFFh  
280000h–287FFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
2C8000h–2CFFFFh  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2F7FFFh  
2F8000h–2FFFFFh  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
358000h–35FFFFh  
360000h–367FFFh  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
32  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Table 5. PL127J Sector Architecture (Continued)  
Bank  
Sector  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
SA128  
SA129  
SA130  
SA131  
SA132  
SA133  
SA134  
SA135  
SA136  
SA137  
SA138  
SA139  
SA140  
SA141  
SA142  
SA143  
SA144  
SA145  
SA146  
SA147  
SA148  
SA149  
SA150  
SA151  
SA152  
SA153  
SA154  
SA155  
SA156  
SA157  
SA158  
Sector Address (A22-A12)  
01110000XXX  
01110001XXX  
01110010XXX  
01110011XXX  
01110100XXX  
01110101XXX  
01110110XXX  
01110111XXX  
01111000XXX  
01111001XXX  
01111010XXX  
01111011XXX  
01111100XXX  
01111101XXX  
01111110XXX  
01111111XXX  
10000000XXX  
10000001XXX  
10000010XXX  
10000011XXX  
10000100XXX  
10000101XXX  
10000110XXX  
10000111XXX  
10001000XXX  
10001001XXX  
10001010XXX  
10001011XXX  
10001100XXX  
10001101XXX  
10001110XXX  
10001111XXX  
10010000XXX  
10010001XXX  
10010010XXX  
10010011XXX  
10010100XXX  
10010101XXX  
10010110XXX  
10010111XXX  
Sector Size (Kwords)  
Address Range (x16)  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
3F8000h–3FFFFFh  
400000h–407FFFh  
408000h–40FFFFh  
410000h–417FFFh  
418000h–41FFFFh  
420000h–427FFFh  
428000h–42FFFFh  
430000h–437FFFh  
438000h–43FFFFh  
440000h–447FFFh  
448000h–44FFFFh  
450000h–457FFFh  
458000h–45FFFFh  
460000h–467FFFh  
468000h–46FFFFh  
470000h–477FFFh  
478000h–47FFFFh  
480000h–487FFFh  
488000h–48FFFFh  
490000h–497FFFh  
498000h–49FFFFh  
4A0000h–4A7FFFh  
4A8000h–4AFFFFh  
4B0000h–4B7FFFh  
4B8000h–4BFFFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
33  
P r e l i m i n a r y  
Table 5. PL127J Sector Architecture (Continued)  
Bank  
Sector  
SA159  
SA160  
SA161  
SA162  
SA163  
SA164  
SA165  
SA166  
SA167  
SA168  
SA169  
SA170  
SA171  
SA172  
SA173  
SA174  
SA175  
SA176  
SA177  
SA178  
SA179  
SA180  
SA181  
SA182  
SA183  
SA184  
SA185  
SA186  
SA187  
SA188  
SA189  
SA190  
SA191  
SA192  
SA193  
SA194  
SA195  
SA196  
SA197  
SA198  
Sector Address (A22-A12)  
10011000XXX  
10011001XXX  
10011010XXX  
10011011XXX  
10011100XXX  
10011101XXX  
10011110XXX  
10011111XXX  
10100000XXX  
10100001XXX  
10100010XXX  
10100011XXX  
10100100XXX  
10100101XXX  
10100110XXX  
10100111XXX  
10101000XXX  
10101001XXX  
10101010XXX  
10101011XXX  
10101100XXX  
10101101XXX  
10101110XXX  
10101111XXX  
10110000XXX  
10110001XXX  
10110010XXX  
10110011XXX  
10110100XXX  
10110101XXX  
10110110XXX  
10110111XXX  
10111000XXX  
10111001XXX  
10111010XXX  
10111011XXX  
10111100XXX  
10111101XXX  
10111110XXX  
10111111XXX  
Sector Size (Kwords)  
Address Range (x16)  
4C0000h–4C7FFFh  
4C8000h–4CFFFFh  
4D0000h–4D7FFFh  
4D8000h–4DFFFFh  
4E0000h–4E7FFFh  
4E8000h–4EFFFFh  
4F0000h–4F7FFFh  
4F8000h–4FFFFFh  
500000h–507FFFh  
508000h–50FFFFh  
510000h–517FFFh  
518000h–51FFFFh  
520000h–527FFFh  
528000h–52FFFFh  
530000h–537FFFh  
538000h–53FFFFh  
540000h–547FFFh  
548000h–54FFFFh  
550000h–557FFFh  
558000h–15FFFFh  
560000h–567FFFh  
568000h–56FFFFh  
570000h–577FFFh  
578000h–57FFFFh  
580000h–587FFFh  
588000h–58FFFFh  
590000h–597FFFh  
598000h–59FFFFh  
5A0000h–5A7FFFh  
5A8000h–5AFFFFh  
5B0000h–5B7FFFh  
5B8000h–5BFFFFh  
5C0000h–5C7FFFh  
5C8000h–5CFFFFh  
5D0000h–5D7FFFh  
5D8000h–5DFFFFh  
5E0000h–5E7FFFh  
5E8000h–5EFFFFh  
5F0000h–5F7FFFh  
5F8000h–5FFFFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
34  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Table 5. PL127J Sector Architecture (Continued)  
Bank  
Sector  
SA199  
SA200  
SA201  
SA202  
SA203  
SA204  
SA205  
SA206  
SA207  
SA208  
SA209  
SA210  
SA211  
SA212  
SA213  
SA214  
SA215  
SA216  
SA217  
SA218  
SA219  
SA220  
SA221  
SA222  
SA223  
SA224  
SA225  
SA226  
SA227  
SA228  
SA229  
SA230  
Sector Address (A22-A12)  
11000000XXX  
11000001XXX  
11000010XXX  
11000011XXX  
11000100XXX  
11000101XXX  
11000110XXX  
11000111XXX  
11001000XXX  
11001001XXX  
11001010XXX  
11001011XXX  
11001100XXX  
11001101XXX  
11001110XXX  
11001111XXX  
11010000XXX  
11010001XXX  
11010010XXX  
11010011XXX  
11010100XXX  
11010101XXX  
11010110XXX  
11010111XXX  
11011000XXX  
11011001XXX  
11011010XXX  
11011011XXX  
11011100XXX  
11011101XXX  
11011110XXX  
11011111XXX  
Sector Size (Kwords)  
Address Range (x16)  
600000h–607FFFh  
608000h–60FFFFh  
610000h–617FFFh  
618000h–61FFFFh  
620000h–627FFFh  
628000h–62FFFFh  
630000h–637FFFh  
638000h–63FFFFh  
640000h–647FFFh  
648000h–64FFFFh  
650000h–657FFFh  
658000h–65FFFFh  
660000h–667FFFh  
668000h–66FFFFh  
670000h–677FFFh  
678000h–67FFFFh  
680000h–687FFFh  
688000h–68FFFFh  
690000h–697FFFh  
698000h–69FFFFh  
6A0000h–6A7FFFh  
6A8000h–6AFFFFh  
6B0000h–6B7FFFh  
6B8000h–6BFFFFh  
6C0000h–6C7FFFh  
6C8000h–6CFFFFh  
6D0000h–6D7FFFh  
6D8000h–6DFFFFh  
6E0000h–6E7FFFh  
6E8000h–6EFFFFh  
6F0000h–6F7FFFh  
6F8000h–6FFFFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
35  
P r e l i m i n a r y  
Table 5. PL127J Sector Architecture (Continued)  
Bank  
Sector  
SA231  
SA232  
SA233  
SA234  
SA235  
SA236  
SA237  
SA238  
SA239  
SA240  
SA241  
SA242  
SA243  
SA244  
SA245  
SA246  
SA247  
SA248  
SA249  
SA250  
SA251  
SA252  
SA253  
SA254  
SA255  
SA256  
SA257  
SA258  
SA259  
SA260  
SA261  
SA262  
SA263  
SA264  
SA265  
SA266  
SA267  
SA268  
SA269  
Sector Address (A22-A12)  
11100000XXX  
11100001XXX  
11100010XXX  
11100011XXX  
11100100XXX  
11100101XXX  
11100110XXX  
11100111XXX  
11101000XXX  
11101001XXX  
11101010XXX  
11101011XXX  
11101100XXX  
11101101XXX  
11101110XXX  
11101111XXX  
11110000XXX  
11110001XXX  
11110010XXX  
11110011XXX  
11110100XXX  
11110101XXX  
11110110XXX  
11110111XXX  
11111000XXX  
11111001XXX  
11111010XXX  
11111011XXX  
11111100XXX  
11111101XXX  
11111110XXX  
11111111000  
11111111001  
11111111010  
11111111011  
11111111100  
11111111101  
11111111110  
11111111111  
Sector Size (Kwords)  
Address Range (x16)  
700000h–707FFFh  
708000h–70FFFFh  
710000h–717FFFh  
718000h–71FFFFh  
720000h–727FFFh  
728000h–72FFFFh  
730000h–737FFFh  
738000h–73FFFFh  
740000h–747FFFh  
748000h–74FFFFh  
750000h–757FFFh  
758000h–75FFFFh  
760000h–767FFFh  
768000h–76FFFFh  
770000h–777FFFh  
778000h–77FFFFh  
780000h–787FFFh  
788000h–78FFFFh  
790000h–797FFFh  
798000h–79FFFFh  
7A0000h–7A7FFFh  
7A8000h–7AFFFFh  
7B0000h–7B7FFFh  
7B8000h–7BFFFFh  
7C0000h–7C7FFFh  
7C8000h–7CFFFFh  
7D0000h–7D7FFFh  
7D8000h–7DFFFFh  
7E0000h–7E7FFFh  
7E8000h–7EFFFFh  
7F0000h–7F7FFFh  
7F8000h–7F8FFFh  
7F9000h–7F9FFFh  
7FA000h–7FAFFFh  
7FB000h–7FBFFFh  
7FC000h–7FCFFFh  
7FD000h–7FDFFFh  
7FE000h–7FEFFFh  
7FF000h–7FFFFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
4
4
4
4
4
4
4
4
36  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Table 6. PL064J Sector Architecture  
Bank  
Sector  
SA0  
Sector Address (A22-A12)  
0000000000  
0000000001  
0000000010  
0000000011  
0000000100  
0000000101  
0000000110  
0000000111  
0000001XXX  
0000010XXX  
0000011XXX  
0000100XXX  
0000101XXX  
0000110XXX  
0000111XXX  
0001000XXX  
0001001XXX  
0001010XXX  
0001011XXX  
0001100XXX  
0001101XXX  
0001110XXX  
0001111XXX  
0010000XXX  
0010001XXX  
0010010XXX  
0010011XXX  
0010100XXX  
0010101XXX  
0010110XXX  
0010111XXX  
0011000XXX  
0011001XXX  
0011010XXX  
0011011XXX  
0011100XXX  
0011101XXX  
0011110XXX  
0011111XXX  
0100000XXX  
0100001XXX  
0100010XXX  
0100011XXX  
0100100XXX  
0100101XXX  
0100110XXX  
0100111XXX  
0101000XXX  
Sector Size (Kwords)  
Address Range (x16)  
000000h–000FFFh  
001000h–001FFFh  
002000h–002FFFh  
003000h–003FFFh  
004000h–004FFFh  
005000h–005FFFh  
006000h–006FFFh  
007000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
4
SA1  
4
SA2  
4
SA3  
4
SA4  
4
SA5  
4
SA6  
4
SA7  
4
SA8  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
37  
P r e l i m i n a r y  
Table 6. PL064J Sector Architecture (Continued)  
Bank  
Sector  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
Sector Address (A22-A12)  
0101001XXX  
0101010XXX  
0101011XXX  
0101100XXX  
0101101XXX  
0101110XXX  
0101111XXX  
0110000XXX  
0110001XXX  
0110010XXX  
0110011XXX  
0110100XXX  
0110101XXX  
0110110XXX  
0110111XXX  
0111000XXX  
0111001XXX  
0111010XXX  
0111011XXX  
0111100XXX  
0111101XXX  
0111110XXX  
0111111XXX  
1000000XXX  
1000001XXX  
1000010XXX  
1000011XXX  
1000100XXX  
1000101XXX  
1000110XXX  
1000111XXX  
1001000XXX  
1001001XXX  
1001010XXX  
1001011XXX  
1001100XXX  
1001101XXX  
1001110XXX  
1001111XXX  
1010000XXX  
1010001XXX  
1010010XXX  
1010011XXX  
1010100XXX  
1010101XXX  
1010110XXX  
1010111XXX  
1011000XXX  
Sector Size (Kwords)  
Address Range (x16)  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
260000h–267FFFh  
268000h–26FFFFh  
270000h–277FFFh  
278000h–27FFFFh  
280000h–287FFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
38  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Table 6. PL064J Sector Architecture (Continued)  
Bank  
Sector  
SA96  
Sector Address (A22-A12)  
1011001XXX  
1011010XXX  
1011011XXX  
1011100XXX  
1011101XXX  
1011110XXX  
1011111XXX  
1100000XXX  
1100001XXX  
1100010XXX  
1100011XXX  
1100100XXX  
1100101XXX  
1100110XXX  
1100111XXX  
1101000XXX  
1101001XXX  
1101010XXX  
1101011XXX  
1101100XXX  
1101101XXX  
1101110XXX  
1101111XXX  
1110000XXX  
1110001XXX  
1110010XXX  
1110011XXX  
1110100XXX  
1110101XXX  
1110110XXX  
1110111XXX  
1111000XXX  
1111001XXX  
1111010XXX  
1111011XXX  
1111100XXX  
1111101XXX  
1111110XXX  
1111111000  
1111111001  
1111111010  
1111111011  
1111111100  
1111111101  
1111111110  
1111111111  
Sector Size (Kwords)  
Address Range (x16)  
2C8000h–2CFFFFh  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2F7FFFh  
2F8000h–2FFFFFh  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
358000h–35FFFFh  
360000h–367FFFh  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
3F8000h–3F8FFFh  
3F9000h–3F9FFFh  
3FA000h–3FAFFFh  
3FB000h–3FBFFFh  
3FC000h–3FCFFFh  
3FD000h–3FDFFFh  
3FE000h–3FEFFFh  
3FF000h–3FFFFFh  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
4
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
SA128  
SA129  
SA130  
SA131  
SA132  
SA133  
SA134  
SA135  
SA136  
SA137  
SA138  
SA139  
SA140  
SA141  
4
4
4
4
4
4
4
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
39  
P r e l i m i n a r y  
Table 7. PL032J Sector Architecture  
Bank  
Sector  
Sector Address (A22-A12)  
Sector Size (Kwords)  
Address Range (x16)  
SA0  
SA1  
000000000  
000000001  
000000010  
000000011  
000000100  
000000101  
000000110  
000000111  
000001XXX  
000010XXX  
000011XXX  
000100XXX  
000101XXX  
000110XXX  
000111XXX  
001000XXX  
001001XXX  
001010XXX  
001011XXX  
001100XXX  
001101XXX  
001110XXX  
001111XXX  
010000XXX  
010001XXX  
010010XXX  
010011XXX  
010100XXX  
010101XXX  
010110XXX  
010111XXX  
011000XXX  
011001XXX  
011010XXX  
011011XXX  
011100XXX  
011101XXX  
011110XXX  
011111XXX  
4
000000h–000FFFh  
001000h–001FFFh  
002000h–002FFFh  
003000h–003FFFh  
004000h–004FFFh  
005000h–005FFFh  
006000h–006FFFh  
007000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
4
SA2  
4
SA3  
4
SA4  
4
SA5  
4
SA6  
4
SA7  
4
SA8  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
40  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Table 7. PL032J Sector Architecture (Continued)  
Bank  
Sector  
Sector Address (A22-A12)  
Sector Size (Kwords)  
Address Range (x16)  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
100000XXX  
100001XXX  
100010XXX  
100011XXX  
100100XXX  
100101XXX  
100110XXX  
100111XXX  
101000XXX  
101001XXX  
101010XXX  
101011XXX  
101100XXX  
101101XXX  
101110XXX  
101111XXX  
110000XXX  
110001XXX  
110010XXX  
110011XXX  
110100XXX  
110101XXX  
110110XXX  
110111XXX  
111000XXX  
111001XXX  
111010XXX  
111011XXX  
111100XXX  
111101XXX  
111110XXX  
111111000  
111111001  
111111010  
111111011  
111111100  
111111101  
111111110  
111111111  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
4
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1F8FFFh  
1F9000h–1F9FFFh  
1FA000h–1FAFFFh  
1FB000h–1FBFFFh  
1FC000h–1FCFFFh  
1FD000h–1FDFFFh  
1FE000h–1FEFFFh  
1FF000h–1FFFFFh  
4
4
4
4
4
4
4
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
41  
P r e l i m i n a r y  
Table 8. S29PL129J Sector Architecture  
Sector Address  
Sector Size  
(Kwords)  
Bank  
Sector  
SA1-0  
CE1#  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CE2#  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
(A21-A12)  
Address Range (x16)  
000000h–000FFFh  
001000h–001FFFh  
002000h–002FFFh  
003000h–003FFFh  
004000h–004FFFh  
005000h–005FFFh  
006000h–006FFFh  
007000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
0000000000  
0000000001  
0000000010  
0000000011  
0000000100  
0000000101  
0000000110  
0000000111  
0000001XXX  
0000010XXX  
0000011XXX  
0000100XXX  
0000101XXX  
0000110XXX  
0000111XXX  
0001000XXX  
0001001XXX  
0001010XXX  
0001011XXX  
0001100XXX  
0001101XXX  
0001110XXX  
0001111XXX  
0010000XXX  
0010001XXX  
0010010XXX  
0010011XXX  
0010100XXX  
0010101XXX  
0010110XXX  
0010111XXX  
0011000XXX  
0011001XXX  
0011010XXX  
0011011XXX  
0011100XXX  
0011101XXX  
0011110XXX  
0011111XXX  
4
SA1-1  
4
SA1-2  
4
SA1-3  
4
SA1-4  
4
SA1-5  
4
SA1-6  
4
SA1-7  
4
SA1-8  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA1-9  
SA1-10  
SA1-11  
SA1-12  
SA1-13  
SA1-14  
SA1-15  
SA1-16  
SA1-17  
SA1-18  
SA1-19  
SA1-20  
SA1-21  
SA1-22  
SA1-23  
SA1-24  
SA1-25  
SA1-26  
SA1-27  
SA1-28  
SA1-29  
SA1-30  
SA1-31  
SA1-32  
SA1-33  
SA1-34  
SA1-35  
SA1-36  
SA1-37  
SA1-38  
42  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Table 8. S29PL129J Sector Architecture (Continued)  
Sector Address  
(A21-A12)  
Sector Size  
Bank  
Sector  
SA1-39  
SA1-40  
SA1-41  
SA1-42  
SA1-43  
SA1-44  
SA1-45  
SA1-46  
SA1-47  
SA1-48  
SA1-49  
SA1-50  
SA1-51  
SA1-52  
SA1-53  
SA1-54  
SA1-55  
SA1-56  
SA1-57  
SA1-58  
SA1-59  
SA1-60  
SA1-61  
SA1-62  
SA1-63  
SA1-64  
SA1-65  
SA1-66  
SA1-67  
SA1-68  
SA1-69  
SA1-70  
SA1-71  
SA1-72  
SA1-73  
SA1-74  
SA1-75  
SA1-76  
SA1-77  
SA1-78  
SA1-79  
SA1-80  
SA1-81  
SA1-82  
CE1#  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CE2#  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
(Kwords)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
Address Range (x16)  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
0100000XXX  
0100001XXX  
0100010XXX  
0100011XXX  
0100100XXX  
0100101XXX  
0100110XXX  
0100111XXX  
0101000XXX  
0101001XXX  
0101010XXX  
0101011XXX  
0101100XXX  
0101101XXX  
0101110XXX  
0101111XXX  
0110000XXX  
0110001XXX  
0110010XXX  
0110011XXX  
0110100XXX  
0110101XXX  
0110110XXX  
0110111XXX  
0111000XXX  
0111001XXX  
0111010XXX  
0111011XXX  
0111100XXX  
0111101XXX  
0111110XXX  
0111111XXX  
1000000XXX  
1000001XXX  
1000010XXX  
1000011XXX  
1000100XXX  
1000101XXX  
1000110XXX  
1000111XXX  
1001000XXX  
1001001XXX  
1001010XXX  
1001011XXX  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
43  
P r e l i m i n a r y  
Table 8. S29PL129J Sector Architecture (Continued)  
Sector Address  
(A21-A12)  
Sector Size  
Bank  
Sector  
SA1-83  
CE1#  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CE2#  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
(Kwords)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
Address Range (x16)  
260000h–267FFFh  
268000h–26FFFFh  
270000h–277FFFh  
278000h–27FFFFh  
280000h–287FFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
2C8000h–2CFFFFh  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2F7FFFh  
2F8000h–2FFFFFh  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
358000h–35FFFFh  
360000h–367FFFh  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
1001100XXX  
1001101XXX  
1001110XXX  
1001111XXX  
1010000XXX  
1010001XXX  
1010010XXX  
1010011XXX  
1010100XXX  
1010101XXX  
1010110XXX  
1010111XXX  
1011000XXX  
1011001XXX  
1011010XXX  
1011011XXX  
1011100XXX  
1011101XXX  
1011110XXX  
1011111XXX  
1100000XXX  
1100001XXX  
1100010XXX  
1100011XXX  
1100100XXX  
1100101XXX  
1100110XXX  
1100111XXX  
1101000XXX  
1101001XXX  
1101010XXX  
1101011XXX  
1101100XXX  
1101101XXX  
1101110XXX  
1101111XXX  
1110000XXX  
1110001XXX  
1110010XXX  
1110011XXX  
1110100XXX  
1110101XXX  
1110110XXX  
1110111XXX  
SA1-84  
SA1-85  
SA1-86  
SA1-87  
SA1-88  
SA1-89  
SA1-90  
SA1-91  
SA1-92  
SA1-93  
SA1-94  
SA1-95  
SA1-96  
SA1-97  
SA1-98  
SA1-99  
SA1-100  
SA1-101  
SA1-102  
SA1-103  
SA1-104  
SA1-105  
SA1-106  
SA1-107  
SA1-108  
SA1-109  
SA1-110  
SA1-111  
SA1-112  
SA1-113  
SA1-114  
SA1-115  
SA1-116  
SA1-117  
SA1-118  
SA1-119  
SA1-120  
SA1-121  
SA1-122  
SA1-123  
SA1-124  
SA1-125  
SA1-126  
44  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Table 8. S29PL129J Sector Architecture (Continued)  
Sector Address  
(A21-A12)  
Sector Size  
Bank  
Sector  
SA1-127  
SA1-128  
SA1-129  
SA1-130  
SA1-131  
SA1-132  
SA1-133  
SA1-134  
SA2-0  
CE1#  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CE2#  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
(Kwords)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
Address Range (x16)  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
3F8000h–3FFFFFh  
000000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
1111000XXX  
1111001XXX  
1111010XXX  
1111011XXX  
1111100XXX  
1111101XXX  
1111110XXX  
1111111XXX  
0000000XXX  
0000001XXX  
0000010XXX  
0000011XXX  
0000100XXX  
0000101XXX  
0000110XXX  
0000111XXX  
0001000XXX  
0001001XXX  
0001010XXX  
0001011XXX  
0001100XXX  
0001101XXX  
0001110XXX  
0001111XXX  
0010000XXX  
0010001XXX  
0010010XXX  
0010011XXX  
0010100XXX  
0010101XXX  
0010110XXX  
0010111XXX  
0011000XXX  
0011001XXX  
0011010XXX  
0011011XXX  
0011100XXX  
0011101XXX  
0011110XXX  
0011111XXX  
0100000XXX  
0100001XXX  
0100010XXX  
0100011XXX  
SA2-1  
SA2-2  
SA2-3  
SA2-4  
SA2-5  
SA2-6  
SA2-7  
SA2-8  
SA2-9  
SA2-10  
SA2-11  
SA2-12  
SA2-13  
SA2-14  
SA2-15  
SA2-16  
SA2-17  
SA2-18  
SA2-19  
SA2-20  
SA2-21  
SA2-22  
SA2-23  
SA2-24  
SA2-25  
SA2-26  
SA2-27  
SA2-28  
SA2-29  
SA2-30  
SA2-31  
SA2-32  
SA2-33  
SA2-34  
SA2-35  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
45  
P r e l i m i n a r y  
Table 8. S29PL129J Sector Architecture (Continued)  
Sector Address  
(A21-A12)  
Sector Size  
Bank  
Sector  
SA2-36  
SA2-37  
SA2-38  
SA2-39  
SA2-40  
SA2-41  
SA2-42  
SA2-43  
SA2-44  
SA2-45  
SA2-46  
SA2-47  
SA2-48  
SA2-49  
SA2-50  
SA2-51  
SA2-52  
SA2-53  
SA2-54  
SA2-55  
SA2-56  
SA2-57  
SA2-58  
SA2-59  
SA2-60  
SA2-61  
SA2-62  
SA2-63  
SA2-64  
SA2-65  
SA2-66  
SA2-67  
SA2-68  
SA2-69  
SA2-70  
SA2-71  
SA2-72  
SA2-73  
SA2-74  
SA2-75  
SA2-76  
SA2-77  
SA2-78  
SA2-79  
CE1#  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CE2#  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
(Kwords)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
Address Range (x16)  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
260000h–267FFFh  
268000h–26FFFFh  
270000h–277FFFh  
278000h–27FFFFh  
0100100XXX  
0100101XXX  
0100110XXX  
0100111XXX  
0101000XXX  
0101001XXX  
0101010XXX  
0101011XXX  
0101100XXX  
0101101XXX  
0101110XXX  
0101111XXX  
0110000XXX  
0110001XXX  
0110010XXX  
0110011XXX  
0110100XXX  
0110101XXX  
0110110XXX  
0110111XXX  
0111000XXX  
0111001XXX  
0111010XXX  
0111011XXX  
0111100XXX  
0111101XXX  
0111110XXX  
0111111XXX  
1000000XXX  
1000001XXX  
1000010XXX  
1000011XXX  
1000100XXX  
1000101XXX  
1000110XXX  
1000111XXX  
1001000XXX  
1001001XXX  
1001010XXX  
1001011XXX  
1001100XXX  
1001101XXX  
1001110XXX  
1001111XXX  
46  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Table 8. S29PL129J Sector Architecture (Continued)  
Sector Address  
(A21-A12)  
Sector Size  
Bank  
Sector  
SA2-80  
SA2-81  
SA2-82  
SA2-83  
SA2-84  
SA2-85  
SA2-86  
SA2-87  
SA2-88  
SA2-89  
SA2-90  
SA2-91  
SA2-92  
SA2-93  
SA2-94  
SA2-95  
SA2-96  
SA2-97  
SA2-98  
SA2-99  
SA2-100  
SA2-101  
SA2-102  
SA2-103  
SA2-104  
SA2-105  
SA2-106  
SA2-107  
SA2-108  
SA2-109  
SA2-110  
SA2-111  
SA2-112  
SA2-113  
SA2-114  
SA2-115  
SA2-116  
SA2-117  
SA2-118  
SA2-119  
SA2-120  
SA2-121  
SA2-122  
SA2-123  
CE1#  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CE2#  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
(Kwords)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
Address Range (x16)  
280000h–287FFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
2C8000h–2CFFFFh  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2F7FFFh  
2F8000h–2FFFFFh  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
358000h–35FFFFh  
360000h–367FFFh  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
1010000XXX  
1010001XXX  
1010010XXX  
1010011XXX  
1010100XXX  
1010101XXX  
1010110XXX  
1010111XXX  
1011000XXX  
1011001XXX  
1011010XXX  
1011011XXX  
1011100XXX  
1011101XXX  
1011110XXX  
1011111XXX  
1100000XXX  
1100001XXX  
1100010XXX  
1100011XXX  
1100100XXX  
1100101XXX  
1100110XXX  
1100111XXX  
1101000XXX  
1101001XXX  
1101010XXX  
1101011XXX  
1101100XXX  
1101101XXX  
1101110XXX  
1101111XXX  
1110000XXX  
1110001XXX  
1110010XXX  
1110011XXX  
1110100XXX  
1110101XXX  
1110110XXX  
1110111XXX  
1111000XXX  
1111001XXX  
1111010XXX  
1111011XXX  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
47  
P r e l i m i n a r y  
Table 8. S29PL129J Sector Architecture (Continued)  
Sector Address  
(A21-A12)  
Sector Size  
(Kwords)  
Bank  
Sector  
CE1#  
1
CE2#  
Address Range (x16)  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
3F8000h–3F8FFFh  
3F9000h–3F9FFFh  
3FA000h–3FAFFFh  
3FB000h–3FBFFFh  
3FC000h–3FCFFFh  
3FD000h–3FDFFFh  
3FE000h–3FEFFFh  
3FF000h–3FFFFFh  
SA2-124  
SA2-125  
SA2-126  
SA2-127  
SA2-128  
SA2-129  
SA2-130  
SA2-131  
SA2-132  
SA2-133  
SA2-134  
0
0
0
0
0
0
0
0
0
0
0
1111100XXX  
1111101XXX  
1111110XXX  
1111111000  
1111111001  
1111111010  
1111111011  
1111111100  
1111111101  
1111111110  
1111111111  
32  
32  
32  
4
1
1
1
1
4
1
4
1
4
1
4
1
4
1
4
1
4
Table 9. Secured Silicon Sector Addresses  
Sector Size  
64 words  
Address Range  
Factory-Locked Area  
000000h-00003Fh  
000040h-00007Fh  
Customer-Lockable Area  
64 words  
Autoselect Mode  
The autoselect mode provides manufacturer and device identification, and sector  
protection verification, through identifier codes output on DQ7–DQ0. This mode  
is primarily intended for programming equipment to automatically match a device  
to be programmed with its corresponding programming algorithm. However, the  
autoselect codes can also be accessed in-system through the command register.  
When using programming equipment, the autoselect mode requires VID on ad-  
dress pin A9. Address pins must be as shown in Table 10 and Table 11. In  
addition, when verifying sector protection, the sector address must appear on the  
appropriate highest order address bits (see Table 4). Table 10 and Table 11 show  
the remaining address bits that are don’t care. When all necessary bits have been  
set as required, the programming equipment may then read the corresponding  
identifier code on DQ7–DQ0. However, the autoselect codes can also be accessed  
in-system through the command register, for instances when the device is erased  
or programmed in a system without access to high voltage on the A9 pin. The  
command sequence is illustrated in Table 21. Note that if a Bank Address (BA)  
(on address bits PL127J: A22A20, PL129J and PL064J: A21A19, PL032J:  
A20–A18) is asserted during the third write cycle of the autoselect command, the  
host system can read autoselect data that bank and then immediately read array  
data from the other bank, without exiting the autoselect mode.  
To access the autoselect codes in-system, the host system can issue the autose-  
lect command via the command register, as shown in Table 21. This method does  
not require VID. Refer to the "Autoselect Command Sequence" section for more  
information.  
48  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Table 10. Autoselect Codes (High Voltage Method)  
Amax  
to  
A5  
to  
DQ15  
Description  
CE#  
OE# WE#  
A12 A10 A9 A8  
A7  
A6  
A4  
A3 A2  
A1 A0  
to DQ0  
Manufacturer  
ID  
products  
:
Spansion  
L
L
H
H
BA  
BA  
X
X
VID  
X
X
L
L
X
L
L
L
L
L
L
L
L
H
L
0001h  
227Eh  
Read  
Cycle 1  
L
L
2220h (PL127J)  
2202h (PL064J)  
220Ah (PL032J)  
Read  
Cycle 2  
H
H
H
L
VID  
L
L
2200h (PL127J)  
2201h (PL064J)  
2201h (PL032J)  
Read  
Cycle 3  
L
L
H
L
H
L
H
H
H
L
Sector  
0001h (protected),  
0000h (unprotected)  
Protection  
Verification  
L
L
H
H
SA  
BA  
X
X
VID  
X
X
L
L
L
L
Secured  
DQ7=1 (factory locked),  
DQ6=1 (factory and  
customer locked)  
Silicon  
L
VID  
X
X
L
L
H
H
Indicator Bit  
(DQ7, DQ6)  
Table 11. Autoselect Codes for PL129J  
A21  
to  
A5  
to  
DQ15  
Description  
CE1# CE2# OE# WE# A12  
A10 A9 A8 A7 A6  
A4  
A3 A2 A1 A0  
to DQ0  
Manufacturer  
L
H
L
VI  
ID:  
Spansion  
L
H
X
X
X
X
X
X
L
L
L
L
X
L
L
L
L
L
0001h  
D
H
products  
L
H
L
H
L
Read  
Cycle 1  
L
L
L
H
L
227Eh  
2221h  
2200h  
H
L
Read  
Cycle 2  
VI  
L
H
H
H
H
H
H
H
D
H
L
H
L
Read  
Cycle 3  
H
H
L
Sector  
Protection  
Verification  
H
VI  
0001h (protected),  
0000h (unprotected)  
L
L
H
H
SA  
X
X
X
X
X
L
L
L
L
L
L
L
L
H
H
L
D
H
L
L
Secured  
Silicon  
Indicator Bit  
(DQ7, DQ6)  
H
DQ7=1 (factory locked),  
DQ6=1 (factory and  
customer locked)  
VI  
X
X
H
D
H
L
Legend: L = Logic Low = VIL, H = Logic High = VIH, BA = Bank Address, SA = Sector Address, X = Don’t care.  
Note: The autoselect codes may also be accessed in-system via command sequences  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
49  
P r e l i m i n a r y  
Table 12. PL127J Boot Sector/Sector Block Addresses for Protection/Unprotection  
Sector/  
Sector/  
Sector  
SA0  
A22-A12  
Sector Block Size  
Sector  
A22-A12  
Sector Block Size  
00000000000  
00000000001  
00000000010  
00000000011  
00000000100  
00000000101  
00000000110  
00000000111  
00000001XXX  
00000010XXX  
00000011XXX  
000001XXXXX  
000010XXXXX  
000011XXXXX  
000100XXXXX  
000101XXXXX  
000110XXXXX  
000111XXXXX  
001000XXXXX  
001001XXXXX  
001010XXXXX  
001011XXXXX  
001100XXXXX  
001101XXXXX  
001110XXXXX  
001111XXXXX  
010000XXXXX  
010001XXXXX  
010010XXXXX  
010011XXXXX  
010100XXXXX  
010101XXXXX  
010110XXXXX  
010111XXXXX  
011000XXXXX  
011001XXXXX  
011010XXXXX  
011011XXXXX  
011100XXXXX  
011101XXXXX  
011110XXXXX  
4 Kwords  
SA131-SA134  
SA135-SA138  
SA139-SA142  
SA143-SA146  
SA147-SA150  
SA151-SA154  
SA155-SA158  
SA159-SA162  
SA163-SA166  
SA167-SA170  
SA171-SA174  
SA175-SA178  
SA179-SA182  
SA183-SA186  
SA187-SA190  
SA191-SA194  
SA195-SA198  
SA199-SA202  
SA203-SA206  
SA207-SA210  
SA211-SA214  
SA215-SA218  
SA219-SA222  
SA223-SA226  
SA227-SA230  
SA231-SA234  
SA235-SA238  
SA239-SA242  
SA243-SA246  
SA247-SA250  
SA251-SA254  
SA255-SA258  
SA259  
011111XXXXX  
100000XXXXX  
100001XXXXX  
100010XXXXX  
100011XXXXX  
100100XXXXX  
100101XXXXX  
100110XXXXX  
100111XXXXX  
101000XXXXX  
101001XXXXX  
101010XXXXX  
101011XXXXX  
101100XXXXX  
101101XXXXX  
101110XXXXX  
101111XXXXX  
110000XXXXX  
110001XXXXX  
110010XXXXX  
110011XXXXX  
110100XXXXX  
110101XXXXX  
110110XXXXX  
110111XXXXX  
111000XXXXX  
111001XXXXX  
111010XXXXX  
111011XXXXX  
111100XXXXX  
111101XXXXX  
111110XXXXX  
11111100XXX  
11111101XXX  
11111110XXX  
11111111000  
11111111001  
11111111010  
11111111011  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
32 Kwords  
SA1  
4 Kwords  
SA2  
4 Kwords  
SA3  
4 Kwords  
SA4  
4 Kwords  
SA5  
4 Kwords  
SA6  
4 Kwords  
SA7  
4 Kwords  
SA8  
32 Kwords  
SA9  
32 Kwords  
SA10  
32 Kwords  
SA11-SA14  
SA15-SA18  
SA19-SA22  
SA23-SA26  
SA27-SA30  
SA31-SA34  
SA35-SA38  
SA39-SA42  
SA43-SA46  
SA47-SA50  
SA51-SA54  
SA55-SA58  
SA59-SA62  
SA63-SA66  
SA67-SA70  
SA71-SA74  
SA75-SA78  
SA79-SA82  
SA83-SA86  
SA87-SA90  
SA91-SA94  
SA95-SA98  
SA99-SA102  
SA103-SA106  
SA107-SA110  
SA111-SA114  
SA115-SA118  
SA119-SA122  
SA123-SA126  
SA127-SA130  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
SA260  
32 Kwords  
SA261  
32 Kwords  
SA262  
4 Kwords  
SA263  
4 Kwords  
SA264  
4 Kwords  
SA265  
4 Kwords  
50  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Table 13. PL129J Boot Sector/Sector Block Addresses for Protection/Unprotection  
CE1# Control  
CE2# Control  
Sector/Sector Block  
Size  
Sector/Sector Block  
Size  
Sector Group  
SA1-0  
A21-12  
Sector Group  
SA2-0–SA2-3  
SA2-4–SA2-7  
SA2-8–SA2-11  
SA2-12–SA2-15  
SA2-16–SA2-19  
SA2-20–SA2-23  
SA2-24–SA2-27  
SA2-28–SA2-31  
SA2-32–SA2-35  
SA2-36–SA2-39  
SA2-40–SA2-43  
SA2-44–SA2-47  
SA2-48–SA2-51  
SA2-52–SA2-55  
SA2-56–SA2-59  
SA2-60–SA2-63  
SA2-64–SA2-67  
SA2-68–SA2-71  
SA2-72–SA2-75  
SA2-76–SA2-79  
SA2-80–SA2-83  
SA2-84–SA2-87  
SA2-88–SA2-91  
SA2-92–SA2-95  
SA2-96–SA2-99  
SA2-100–SA2-103  
SA2-104–SA2-107  
SA2-108–SA2-111  
SA2-112–SA2-115  
SA2-116–SA2-119  
SA2-120–SA2-123  
SA2-124  
A21-12  
0000000000  
0000000001  
0000000010  
0000000011  
0000000100  
0000000101  
0000000110  
0000000111  
0000001XXX  
0000010XXX  
0000011XXX  
00001XXXXX  
00010XXXXX  
00011XXXXX  
00100XXXXX  
00101XXXXX  
00110XXXXX  
00111XXXXX  
01000XXXXX  
01001XXXXX  
01010XXXXX  
01011XXXXX  
01100XXXXX  
01101XXXXX  
01110XXXXX  
01111XXXXX  
10000XXXXX  
10001XXXXX  
10010XXXXX  
10011XXXXX  
10100XXXXX  
10101XXXXX  
10110XXXXX  
10111XXXXX  
11000XXXXX  
11001XXXXX  
11010XXXXX  
11011XXXXX  
11100XXXXX  
11101XXXXX  
11110XXXXX  
11111XXXXX  
4 Kwords  
00000XXXXX  
00001XXXXX  
00010XXXXX  
00011XXXXX  
00100XXXXX  
00101XXXXX  
00110XXXXX  
00111XXXXX  
01000XXXXX  
01001XXXXX  
01010XXXXX  
01011XXXXX  
01100XXXXX  
01101XXXXX  
01110XXXXX  
01111XXXXX  
10000XXXXX  
10001XXXXX  
10010XXXXX  
10011XXXXX  
10100XXXXX  
10101XXXXX  
10110XXXXX  
10111XXXXX  
11000XXXXX  
11001XXXXX  
11010XXXXX  
11011XXXXX  
11100XXXXX  
11101XXXXX  
11110XXXXX  
1111100XXX  
1111101XXX  
1111110XXX  
1111111000  
1111111001  
1111111010  
1111111011  
1111111100  
1111111101  
1111111110  
1111111111  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
32 Kwords  
SA1-1  
4 Kwords  
SA1-2  
4 Kwords  
SA1-3  
4 Kwords  
SA1-4  
4 Kwords  
SA1-5  
4 Kwords  
SA1-6  
4 Kwords  
SA1-7  
4 Kwords  
SA1-8  
32 Kwords  
SA1-9  
32 Kwords  
SA1-10  
32 Kwords  
SA1-11 - SA1-14  
SA1-15 - SA1-18  
SA1-19 - SA1-22  
SA1-23 - SA1-26  
SA1-27 - SA1-30  
SA1-31 - SA1-34  
SA1-35 - SA1-38  
SA1-39 - SA1-42  
SA1-43 - SA1-46  
SA1-47 - SA1-50  
SA1-51 - SA1-54  
SA1-55 - SA1-58  
SA1-59 - SA1-62  
SA1-63 - SA1-66  
SA1-67 - SA1-70  
SA1-71 - SA1-74  
SA1-75 - SA1-78  
SA1-79 - SA1-82  
SA1-83 - SA1-86  
SA1-87 - SA1-90  
SA1-91 - SA1-94  
SA1-95 - SA1-98  
SA1-99 - SA1-102  
SA1-103 - SA1-106  
SA1-107 - SA1-110  
SA1-111 - SA1-114  
SA1-115 - SA1-118  
SA1-119 - SA1-122  
SA1-123 - SA1-126  
SA1-127 - SA1-130  
SA1-131 - SA1-134  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
SA2-125  
32 Kwords  
SA2-126  
32 Kwords  
SA2-127  
4 Kwords  
SA2-128  
4 Kwords  
SA2-129  
4 Kwords  
SA2-130  
4 Kwords  
SA2-131  
4 Kwords  
SA2-132  
4 Kwords  
SA2-133  
4 Kwords  
SA2-134  
4 Kwords  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
51  
P r e l i m i n a r y  
Table 14. PL064J Boot Sector/Sector Block Addresses for Protection/Unprotection  
Sector  
SA0  
A21-A12  
Sector/Sector Block Size  
4 Kwords  
0000000000  
0000000001  
0000000010  
0000000011  
0000000100  
0000000101  
0000000110  
0000000111  
0000001XXX  
0000010XXX  
0000011XXX  
00001XXXXX  
00010XXXXX  
00011XXXXX  
00100XXXXX  
00101XXXXX  
00110XXXXX  
00111XXXXX  
01000XXXXX  
01001XXXXX  
01010XXXXX  
01011XXXXX  
01100XXXXX  
01101XXXXX  
01110XXXXX  
01111XXXXX  
10000XXXXX  
10001XXXXX  
10010XXXXX  
10011XXXXX  
10100XXXXX  
10101XXXXX  
10110XXXXX  
10111XXXXX  
11000XXXXX  
11001XXXXX  
11010XXXXX  
11011XXXXX  
11100XXXXX  
11101XXXXX  
11110XXXXX  
1111100XXX  
1111101XXX  
1111110XXX  
1111111000  
1111111001  
1111111010  
1111111011  
1111111100  
1111111101  
1111111110  
1111111111  
SA1  
4 Kwords  
SA2  
4 Kwords  
SA3  
4 Kwords  
SA4  
4 Kwords  
SA5  
4 Kwords  
SA6  
4 Kwords  
SA7  
4 Kwords  
SA8  
32 Kwords  
SA9  
32 Kwords  
SA10  
32 Kwords  
SA11-SA14  
SA15-SA18  
SA19-SA22  
SA23-SA26  
SA27-SA30  
SA31-SA34  
SA35-SA38  
SA39-SA42  
SA43-SA46  
SA47-SA50  
SA51-SA54  
SA55-SA58  
SA59-SA62  
SA63-SA66  
SA67-SA70  
SA71-SA74  
SA75-SA78  
SA79-SA82  
SA83-SA86  
SA87-SA90  
SA91-SA94  
SA95-SA98  
SA99-SA102  
SA103-SA106  
SA107-SA110  
SA111-SA114  
SA115-SA118  
SA119-SA122  
SA123-SA126  
SA127-SA130  
SA131  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
32 Kwords  
SA132  
32 Kwords  
SA133  
32 Kwords  
SA134  
4 Kwords  
SA135  
4 Kwords  
SA136  
4 Kwords  
SA137  
4 Kwords  
SA138  
4 Kwords  
SA139  
4 Kwords  
SA140  
4 Kwords  
SA141  
4 Kwords  
52  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Table 15. PL032J Boot Sector/Sector Block Addresses for Protection/Unprotection  
Sector  
SA0  
A21-A12  
Sector/Sector Block Size  
4 Kwords  
000000000  
000000001  
000000010  
000000011  
000000100  
000000101  
000000110  
000000111  
000001XXX  
000010XXX  
000011XXX  
0001XXXXX  
0010XXXXX  
0011XXXXX  
0100XXXXX  
0101XXXXX  
0110XXXXX  
0111XXXXX  
1000XXXXX  
1001XXXXX  
1010XXXXX  
1011XXXXX  
1100XXXXX  
1101XXXXX  
1110XXXXX  
111100XXX  
111101XXX  
111110XXX  
111111000  
111111001  
111111010  
111111011  
111111100  
111111101  
111111110  
111111111  
SA1  
4 Kwords  
SA2  
4 Kwords  
SA3  
4 Kwords  
SA4  
4 Kwords  
SA5  
4 Kwords  
SA6  
4 Kwords  
SA7  
4 Kwords  
SA8  
32 Kwords  
SA9  
32 Kwords  
SA10  
32 Kwords  
SA11-SA14  
SA15-SA18  
SA19-SA22  
SA23-SA26  
SA27-SA30  
SA31-SA34  
SA35-SA38  
SA39-SA42  
SA43-SA46  
SA47-SA50  
SA51-SA54  
SA55-SA58  
SA59-SA62  
SA63-SA66  
SA67  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
32 Kwords  
SA68  
32 Kwords  
SA69  
32 Kwords  
SA70  
4 Kwords  
SA71  
4 Kwords  
SA72  
4 Kwords  
SA73  
4 Kwords  
SA74  
4 Kwords  
SA75  
4 Kwords  
SA76  
4 Kwords  
SA77  
4 Kwords  
Selecting a Sector Protection Mode  
The device is shipped with all sectors unprotected. Optional Spansion program-  
ming services enable programming and protecting sectors at the factory prior to  
shipping the device. Contact your local sales office for details.  
It is possible to determine whether a sector is protected or unprotected. See the  
"Secured Silicon Sector Addresses" section for details.  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
53  
P r e l i m i n a r y  
Table 16. Sector Protection Schemes  
DYB  
0
PPB  
0
PPB Lock  
Sector State  
0
1
0
0
0
1
1
1
Unprotected—PPB and DYB are changeable  
0
0
Unprotected—PPB not changeable, DYB is changeable  
0
1
1
0
Protected—PPB and DYB are changeable  
1
1
0
1
1
0
Protected—PPB not changeable, DYB is changeable  
1
1
54  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Sector Protection  
The PL127J, PL129J, PL064J, and PL032J features several levels of sector protec-  
tion, which can disable both the program and erase operations in certain sectors  
or sector groups:  
Persistent Sector Protection  
A command sector protection method that replaces the old 12 V controlled pro-  
tection method.  
Password Sector Protection  
A highly sophisticated protection method that requires a password before  
changes to certain sectors or sector groups are permitted  
WP# Hardware Protection  
A write protect pin that can prevent program or erase operations in sectors  
SA1-133, SA1-134, SA2-0 and SA2-1.  
The WP# Hardware Protection feature is always available, independent of the  
software managed protection method chosen.  
Selecting a Sector Protection Mode  
All parts default to operate in the Persistent Sector Protection mode. The cus-  
tomer must then choose if the Persistent or Password Protection method is most  
desirable. There are two one-time programmable non-volatile bits that define  
which sector protection method will be used. If the Persistent Sector Protection  
method is desired, programming the Persistent Sector Protection Mode Locking  
Bit permanently sets the device to the Persistent Sector Protection mode. If the  
Password Sector Protection method is desired, programming the Password Mode  
Locking Bit permanently sets the device to the Password Sector Protection mode.  
It is not possible to switch between the two protection modes once a locking bit  
has been set. One of the two modes must be selected when the device is first  
programmed. This prevents a program or virus from later setting the Password  
Mode Locking Bit, which would cause an unexpected shift from the default Per-  
sistent Sector Protection Mode into the Password Protection Mode.  
The device is shipped with all sectors unprotected. Optional Spansion program-  
ming services enable programming and protecting sectors at the factory prior to  
shipping the device. Contact your local sales office for details.  
It is possible to determine whether a sector is protected or unprotected. See Au-  
toselect Mode for details.  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
55  
P r e l i m i n a r y  
Persistent Sector Protection  
The Persistent Sector Protection method replaces the 12 V controlled protection  
method in previous flash devices. This new method provides three different sec-  
tor protection states:  
„
„
Persistently Locked—The sector is protected and cannot be changed.  
Dynamically Locked—The sector is protected and can be changed by a simple  
command.  
„
Unlocked—The sector is unprotected and can be changed by a simple com-  
mand.  
To achieve these states, three types of “bits” are used:  
„
„
„
Persistent Protection Bit  
Persistent Protection Bit Lock  
Persistent Sector Protection Mode Locking Bit  
Persistent Protection Bit (PPB)  
A single Persistent (non-volatile) Protection Bit is assigned to a maximum four  
sectors (see the sector address tables for specific sector protection groupings).  
All 4 Kword boot-block sectors have individual sector Persistent Protection Bits  
(PPBs) for greater flexibility. Each PPB is individually modifiable through the PPB  
Write Command.  
The device erases all PPBs in parallel. If any PPB requires erasure, the device  
must be instructed to preprogram all of the sector PPBs prior to PPB erasure. Oth-  
erwise, a previously erased sector PPBs can potentially be over-erased. The flash  
device does not have a built-in means of preventing sector PPBs over-erasure.  
Persistent Protection Bit Lock (PPB Lock)  
The Persistent Protection Bit Lock (PPB Lock) is a global volatile bit. When set to  
“1, the PPBs cannot be changed. When cleared (“0”), the PPBs are changeable.  
There is only one PPB Lock bit per device. The PPB Lock is cleared after power-up  
or hardware reset. There is no command sequence to unlock the PPB Lock.  
Dynamic Protection Bit (DYB)  
A volatile protection bit is assigned for each sector. After power-up or hardware  
reset, the contents of all DYBs is “0. Each DYB is individually modifiable through  
the DYB Write Command.  
When the parts are first shipped, the PPBs are cleared, the DYBs are cleared, and  
PPB Lock is defaulted to power up in the cleared state – meaning the PPBs are  
changeable.  
When the device is first powered on the DYBs power up cleared (sectors not pro-  
tected). The Protection State for each sector is determined by the logical OR of  
the PPB and the DYB related to that sector. For the sectors that have the PPBs  
cleared, the DYBs control whether or not the sector is protected or unprotected.  
By issuing the DYB Write command sequences, the DYBs will be set or cleared,  
thus placing each sector in the protected or unprotected state. These are the  
so-called Dynamic Locked or Unlocked states. They are called dynamic states be-  
cause it is very easy to switch back and forth between the protected and  
unprotected conditions. This allows software to easily protect sectors against in-  
advertent changes yet does not prevent the easy removal of protection when  
changes are needed. The DYBs maybe set or cleared as often as needed.  
56  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
The PPBs allow for a more static, and difficult to change, level of protection. The  
PPBs retain their state across power cycles because they are non-volatile. Indi-  
vidual PPBs are set with a command but must all be cleared as a group through  
a complex sequence of program and erasing commands. The PPBs are also lim-  
ited to 100 erase cycles.  
The PPB Lock bit adds an additional level of protection. Once all PPBs are pro-  
grammed to the desired settings, the PPB Lock may be set to “1. Setting the PPB  
Lock disables all program and erase commands to the non-volatile PPBs. In ef-  
fect, the PPB Lock Bit locks the PPBs into their current state. The only way to clear  
the PPB Lock is to go through a power cycle. System boot code can determine if  
any changes to the PPB are needed; for example, to allow new system code to  
be downloaded. If no changes are needed then the boot code can set the PPB  
Lock to disable any further changes to the PPBs during system operation.  
The WP#/ACC write protect pin adds a final level of hardware protection to sec-  
tors SA1-133, SA1-134, SA2-0 and SA2-1. When this pin is low it is not possible  
to change the contents of these sectors. These sectors generally hold system  
boot code. The WP#/ACC pin can prevent any changes to the boot code that could  
override the choices made while setting up sector protection during system  
initialization.  
For customers who are concerned about malicious viruses there is another level  
of security - the persistently locked state. To persistently protect a given sector  
or sector group, the PPBs associated with that sector need to be set to “1. Once  
all PPBs are programmed to the desired settings, the PPB Lock should be set to  
“1. Setting the PPB Lock automatically disables all program and erase commands  
to the Non-Volatile PPBs. In effect, the PPB Lock “freezes” the PPBs into their cur-  
rent state. The only way to clear the PPB Lock is to go through a power cycle.  
It is possible to have sectors that have been persistently locked, and sectors that  
are left in the dynamic state. The sectors in the dynamic state are all unprotected.  
If there is a need to protect some of them, a simple DYB Write command se-  
quence is all that is necessary. The DYB write command for the dynamic sectors  
switch the DYBs to signify protected and unprotected, respectively. If there is a  
need to change the status of the persistently locked sectors, a few more steps  
are required. First, the PPB Lock bit must be disabled by either putting the device  
through a power-cycle, or hardware reset. The PPBs can then be changed to re-  
flect the desired settings. Setting the PPB lock bit once again will lock the PPBs,  
and the device operates normally again.  
The best protection is achieved by executing the PPB lock bit set command early  
in the boot code, and protect the boot code by holding WP#/ACC = VIL.  
Table 17 contains all possible combinations of the DYB, PPB, and PPB lock relating  
to the status of the sector.  
In summary, if the PPB is set, and the PPB lock is set, the sector is protected and  
the protection can not be removed until the next power cycle clears the PPB lock.  
If the PPB is cleared, the sector can be dynamically locked or unlocked. The DYB  
then controls whether or not the sector is protected or unprotected.  
If the user attempts to program or erase a protected sector, the device ignores  
the command and returns to read mode. A program command to a protected sec-  
tor enables status polling for approximately 1 µs before the device returns to read  
mode without having modified the contents of the protected sector. An erase  
command to a protected sector enables status polling for approximately 50 µs  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
57  
P r e l i m i n a r y  
after which the device returns to read mode without having erased the protected  
sector.  
The programming of the DYB, PPB, and PPB lock for a given sector can be verified  
by writing a DYB/PPB/PPB lock verify command to the device. There is an alter-  
native means of reading the protection status. Take RESET# to VIL and hold WE#  
at VIH.(The high voltage A9 Autoselect Mode also works for reading the status of  
the PPBs). Scanning the addresses (A18–A11) while (A6, A1, A0) = (0, 1, 0) will  
produce a logical ‘1” code at device output DQ0 for a protected sector or a “0” for  
an unprotected sector. In this mode, the other addresses are don’t cares. Address  
location with A1 = VIL are reserved for autoselect manufacturer and device  
codes.  
Persistent Sector Protection Mode Locking Bit  
Like the password mode locking bit, a Persistent Sector Protection mode locking  
bit exists to guarantee that the device remain in software sector protection. Once  
set, the Persistent Sector Protection locking bit prevents programming of the  
password protection mode locking bit. This guarantees that a hacker could not  
place the device in password protection mode.  
58  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Password Protection Mode  
The Password Sector Protection Mode method allows an even higher level of se-  
curity than the Persistent Sector Protection Mode. There are two main differences  
between the Persistent Sector Protection and the Password Sector Protection  
Mode:  
When the device is first powered on, or comes out of a reset cycle, the PPB Lock  
bit set to the locked state, rather than cleared to the unlocked state.  
The only means to clear the PPB Lock bit is by writing a unique 64-bit Password  
to the device.  
The Password Sector Protection method is otherwise identical to the Persistent  
Sector Protection method.  
A 64-bit password is the only additional tool utilized in this method.  
Once the Password Mode Locking Bit is set, the password is permanently set with  
no means to read, program, or erase it. The password is used to clear the PPB  
Lock bit. The Password Unlock command must be written to the flash, along with  
a password. The flash device internally compares the given password with the  
pre-programmed password. If they match, the PPB Lock bit is cleared, and the  
PPBs can be altered. If they do not match, the flash device does nothing. There  
is a built-in 2 µs delay for each “password check.This delay is intended to thwart  
any efforts to run a program that tries all possible combinations in order to crack  
the password.  
Password and Password Mode Locking Bit  
In order to select the Password sector protection scheme, the customer must first  
program the password. The password may be correlated to the unique Electronic  
Serial Number (ESN) of the particular flash device. Each ESN is different for every  
flash device; therefore each password should be different for every flash device.  
While programming in the password region, the customer may perform Password  
Verify operations.  
Once the desired password is programmed in, the customer must then set the  
Password Mode Locking Bit. This operation achieves two objectives:  
Permanently sets the device to operate using the Password Protection Mode. It is  
not possible to reverse this function.  
Disables all further commands to the password region. All program, and read op-  
erations are ignored.  
Both of these objectives are important, and if not carefully considered, may lead  
to unrecoverable errors. The user must be sure that the Password Protection  
method is desired when setting the Password Mode Locking Bit. More importantly,  
the user must be sure that the password is correct when the Password Mode  
Locking Bit is set. Due to the fact that read operations are disabled, there is no  
means to verify what the password is afterwards. If the password is lost after set-  
ting the Password Mode Locking Bit, there will be no way to clear the PPB Lock bit.  
The Password Mode Locking Bit, once set, prevents reading the 64-bit password  
on the DQ bus and further password programming. The Password Mode Locking  
Bit is not erasable. Once Password Mode Locking Bit is programmed, the Persis-  
tent Sector Protection Locking Bit is disabled from programming, guaranteeing  
that no changes to the protection scheme are allowed.  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
59  
P r e l i m i n a r y  
64-bit Password  
The 64-bit Password is located in its own memory space and is accessible through  
the use of the Password Program and Verify commands (see “Password Verify  
Command”). The password function works in conjunction with the Password  
Mode Locking Bit, which when set, prevents the Password Verify command from  
reading the contents of the password on the pins of the device.  
Write Protect (WP#)  
The Write Protect feature provides a hardware method of protecting the upper  
two and lower two sectors without using VID. This function is provided by the WP#  
pin and overrides the previously discussed "High Voltage Sector Protection" sec-  
tion method.  
If the system asserts VIL on the WP#/ACC pin, the device disables program and  
erase functions in the two outermost 4 Kword sectors on both ends of the flash  
array independent of whether it was previously protected or unprotected.  
If the system asserts VIH on the WP#/ACC pin, the device reverts the upper two  
and lower two sectors to whether they were last set to be protected or unpro-  
tected. That is, sector protection or unprotection for these sectors depends on  
whether they were last protected or unprotected using the method described in  
the "High Voltage Sector Protection" section.  
Note that the WP#/ACC pin must not be left floating or unconnected; inconsistent  
behavior of the device may result.  
Persistent Protection Bit Lock  
The Persistent Protection Bit (PPB) Lock is a volatile bit that reflects the state of  
the Password Mode Locking Bit after power-up reset. If the Password Mode Lock  
Bit is also set after a hardware reset (RESET# asserted) or a power-up reset, the  
ONLY means for clearing the PPB Lock Bit in Password Protection Mode is to issue  
the Password Unlock command. Successful execution of the Password Unlock  
command clears the PPB Lock Bit, allowing for sector PPBs modifications. Assert-  
ing RESET#, taking the device through a power-on reset, or issuing the PPB Lock  
Bit Set command sets the PPB Lock Bit to a “1” when the Password Mode Lock Bit  
is not set.  
If the Password Mode Locking Bit is not set, including Persistent Protection Mode,  
the PPB Lock Bit is cleared after power-up or hardware reset. The PPB Lock Bit is  
set by issuing the PPB Lock Bit Set command. Once set the only means for clear-  
ing the PPB Lock Bit is by issuing a hardware or power-up reset. The Password  
Unlock command is ignored in Persistent Protection Mode.  
High Voltage Sector Protection  
Sector protection and unprotection may also be implemented using programming  
equipment. The procedure requires high voltage (VID) to be placed on the RE-  
SET# pin. Refer to Figure 1 for details on this procedure. Note that for sector  
unprotect, all unprotected sectors must first be protected prior to the first sector  
write cycle.  
60  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
START  
START  
Protect all sectors:  
PLSCNT = 1  
PLSCNT = 1  
RESET# = VID  
The indicated portion  
of the sector protect  
algorithm must be  
performed for all  
unprotected sectors  
prior to issuing the  
first sector  
RESET# = VID  
Wait 1 µs  
Wait 1 µs  
unprotect address  
No  
No  
First Write  
Cycle = 60h?  
First Write  
Cycle = 60h?  
Temporary Sector  
Unprotect Mode  
Temporary Sector  
Unprotect Mode  
Yes  
Yes  
Set up sector  
address  
No  
All sectors  
protected?  
Sector Protect:  
Write 60h to sector  
address with  
Yes  
Set up first sector  
address  
A7-A0 = 00000010  
Sector Unprotect:  
Wait 150 µs  
Write 60h to sector  
address with  
A7-A0 =  
Verify Sector  
Protect: Write 40h  
to sector address  
with A7-A0 =  
01000010  
Reset  
PLSCNT = 1  
Increment  
PLSCNT  
Wait 15 ms  
00000010  
Verify Sector  
Unprotect: Write  
40h to sector  
address with  
A7-A0 =  
Read from  
sector address  
with A7-A0 =  
00000010  
Increment  
PLSCNT  
No  
00000010  
No  
PLSCNT  
= 25?  
Read from  
sector address  
with A7-A0 =  
00000010  
Data = 01h?  
Yes  
No  
Yes  
Set up  
next sector  
address  
Yes  
No  
PLSCNT  
= 1000?  
Protect another  
sector?  
Remove V  
ID  
Data = 00h?  
Yes  
from RESET#  
No  
Yes  
Write reset  
command  
Remove VID  
from RESET#  
No  
Last sector  
verified?  
Remove V  
from RESET#  
ID  
Sector Protect  
complete  
Write reset  
command  
Yes  
Write reset  
command  
Remove VID  
from RESET#  
Device failed  
Sector Protect  
complete  
Sector Protect  
complete  
Write reset  
command  
Sector Protect  
Algorithm  
Device failed  
Sector Unprotect  
complete  
Sector Unprotect  
Algorithm  
Figure 1. In-System Sector Protection/Sector Unprotection Algorithms  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
61  
P r e l i m i n a r y  
Temporary Sector Unprotect  
This feature allows temporary unprotection of previously protected sectors to  
change data in-system. The Sector Unprotect mode is activated by setting the  
RESET# pin to VID. During this mode, formerly protected sectors can be pro-  
grammed or erased by selecting the sector addresses. Once VID is removed from  
the RESET# pin, all the previously protected sectors are protected again. 2 shows  
the algorithm, and 21 shows the timing diagrams, for this feature. While PPB lock  
is set, the device cannot enter the Temporary Sector Unprotection Mode.  
START  
RESET# = VID  
(Note 1)  
Perform Erase or  
Program Operations  
RESET# = VIH  
Temporary Sector  
Unprotect Completed  
(Note 2)  
Notes:  
1. All protected sectors unprotected (If WP#/ACC = VIL, upper two and lower two  
sectors will remain protected).  
2. All previously protected sectors are protected once again  
Figure 2. Temporary Sector Unprotect Operation  
Secured Silicon Sector Flash Memory Region  
The Secured Silicon Sector feature provides a Flash memory region that enables  
permanent part identification through an Electronic Serial Number (ESN) The  
128-word Secured Silicon sector is divided into 64 factory-lockable words that  
can be programmed and locked by the customer. The Secured Silicon sector is  
located at addresses 000000h-00007Fh in both Persistent Protection mode and  
Password Protection mode. Indicator bits DQ6 and DQ7 are used to indicate the  
factory-locked and customer locked status of the part.  
The system accesses the Secured Silicon Sector through a command sequence  
(see the "Enter Secured Silicon Sector/Exit Secured Silicon Sector Command Se-  
quence" section). After the system has written the Enter Secured Silicon Sector  
command sequence, it may read the Secured Silicon Sector by using the ad-  
dresses normally occupied by the boot sectors. This mode of operation continues  
until the system issues the Exit Secured Silicon Sector command sequence, or  
until power is removed from the device. On power-up, or following a hardware  
reset, the device reverts to sending commands to the normal address space. Note  
that the ACC function and unlock bypass modes are not available when the Se-  
cured Silicon Sector is enabled.  
62  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Factory-Locked Area (64 words)  
The factory-locked area of the Secured Silicon Sector (000000h-00003Fh) is  
locked when the part is shipped, whether or not the area was programmed at the  
factory. The Secured Silicon Sector Factory-locked Indicator Bit (DQ7) is perma-  
nently set to a “1. Optional Spansion programming services can program the  
factory-locked area with a random ESN, a customer-defined code, or any combi-  
nation of the two. Because only Spansion can program and protect the  
factory-locked area, this method ensures the security of the ESN once the prod-  
uct is shipped to the field. Contact your local sales office for details on using  
Spansion’s programming services. Note that the ACC function and unlock bypass  
modes are not available when the Secured Silicon sector is enabled.  
Customer-Lockable Area (64 words)  
The customer-lockable area of the Secured Silicon Sector (000040h-00007Fh) is  
shipped unprotected, which allows the customer to program and optionally lock  
the area as appropriate for the application. The Secured Silicon Sector Cus-  
tomer-locked Indicator Bit (DQ6) is shipped as “0” and can be permanently  
locked to “1” by issuing the Secured Silicon Protection Bit Program Command.  
The Secured Silicon Sector can be read any number of times, but can be pro-  
grammed and locked only once. Note that the accelerated programming (ACC)  
and unlock bypass functions are not available when programming the Secured  
Silicon Sector.  
The Customer-lockable Secured Silicon Sector area can be protected using one  
of the following procedures:  
„
Write the three-cycle Enter Secured Silicon Sector Region command se-  
quence, and then follow the in-system sector protect algorithm as shown in  
Figure 1, except that RESET# may be at either VIH or VID. This allows in-sys-  
tem protection of the Secured Silicon Sector Region without raising any de-  
vice pin to a high voltage. Note that this method is only applicable to the  
Secured Silicon Sector.  
„
To verify the protect/unprotect status of the Secured Silicon Sector, follow the  
algorithm shown in Figure 3.  
Once the Secured Silicon Sector is locked and verified, the system must write the  
Exit Secured Silicon Sector Region command sequence to return to reading and  
writing the remainder of the array.  
The Secured Silicon Sector lock must be used with caution since, once locked,  
there is no procedure available for unlocking the Secured Silicon Sector area and  
none of the bits in the Secured Silicon Sector memory space can be modified in  
any way.  
Secured Silicon Sector Protection Bits  
The Secured Silicon Sector Protection Bits prevent programming of the Secured  
Silicon Sector memory area. Once set, the Secured Silicon Sector memory area  
contents are non-modifiable.  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
63  
P r e l i m i n a r y  
START  
If data = 00h,  
SecSi Sector is  
unprotected.  
If data = 01h,  
SecSi Sector is  
protected.  
RESET# =  
VIH or VID  
Wait 1 µs  
Write 60h to  
any address  
Remove VIH or VID  
from RESET#  
Write 40h to SecSi  
Sector address  
with A6 = 0,  
Write reset  
command  
A1 = 1, A0 = 0  
SecSi Sector  
Protect Verify  
complete  
Read from SecSi  
Sector address  
with A6 = 0,  
A1 = 1, A0 = 0  
Figure 3. Secured Silicon Sector Protect Verify  
Hardware Data Protection  
The command sequence requirement of unlock cycles for programming or erasing  
provides data protection against inadvertent writes. In addition, the following  
hardware data protection measures prevent accidental erasure or programming,  
which might otherwise be caused by spurious system level signals during VCC  
power-up and power-down transitions, or from system noise.  
Low VCC Write Inhibit  
When VCC is less than VLKO, the device does not accept any write cycles. This pro-  
tects data during VCC power-up and power-down. The command register and all  
internal program/erase circuits are disabled, and the device resets to the read  
mode. Subsequent writes are ignored until VCC is greater than VLKO. The system  
must provide the proper signals to the control pins to prevent unintentional writes  
when VCC is greater than VLKO  
.
Write Pulse “Glitch” Protection  
Noise pulses of less than 3 ns (typical) on OE#, CE#, (CE1#, CE2# in PL129J) or  
WE# do not initiate a write cycle.  
Logical Inhibit  
Write cycles are inhibited by holding any one of OE# = VIL, CE# (CE1# = CE2#  
in PL129J)= VIH or WE# = VIH. To initiate a write cycle, CE# (CE1# / CE2# in  
PL129J) and WE# must be a logical zero while OE# is a logical one.  
Power-Up Write Inhibit  
If WE# = CE# (CE1#, CE2# in PL129J) = VIL and OE# = VIH during power up,  
the device does not accept commands on the rising edge of WE#. The internal  
state machine is automatically reset to the read mode on power-up.  
64  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Common Flash Memory Interface (CFI)  
The Common Flash Interface (CFI) specification outlines device and host system  
software interrogation handshake, which allows specific vendor-specified soft-  
ware algorithms to be used for entire families of devices. Software support can  
then be device-independent, JEDEC ID-independent, and forward- and back-  
ward-compatible for the specified flash device families. Flash vendors can  
standardize their existing interfaces for long-term compatibility.  
This device enters the CFI Query mode when the system writes the CFI Query  
command, 98h, to address 55h, any time the device is ready to read array data.  
The system can read CFI information at the addresses given in Tables 17–20. To  
terminate reading CFI data, the system must write the reset command. The CFI  
Query mode is not accessible when the device is executing an Embedded Program  
or embedded Erase algorithm.  
The system can also write the CFI query command when the device is in the au-  
toselect mode. The device enters the CFI query mode, and the system can read  
CFI data at the addresses given in Tables 17–20. The system must write the reset  
command to return the device to reading array data.  
For further information, please refer to the CFI Specification and CFI Publication  
100. Contact your local sales office for copies of these documents.  
Table 17. CFI Query Identification String  
Addresses  
Data  
Description  
10h  
11h  
12h  
0051h  
0052h  
0059h  
Query Unique ASCII string “QRY”  
13h  
14h  
0002h  
0000h  
Primary OEM Command Set  
15h  
16h  
0040h  
0000h  
Address for Primary Extended Table  
17h  
18h  
0000h  
0000h  
Alternate OEM Command Set (00h = none exists)  
19h  
1Ah  
0000h  
0000h  
Address for Alternate OEM Extended Table (00h = none exists)  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
65  
P r e l i m i n a r y  
Table 18. System Interface String  
Addresses  
Data  
Description  
VCC Min. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
1Bh  
0027h  
VCC Max. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
1Ch  
0036h  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
0000h  
0000h  
0003h  
0000h  
0009h  
0000h  
0004h  
0000h  
0004h  
0000h  
VPP Min. voltage (00h = no VPP pin present)  
VPP Max. voltage (00h = no VPP pin present)  
Typical timeout per single byte/word write 2N µs  
Typical timeout for Min. size buffer write 2N  
µs (00h = not supported)  
Typical timeout per individual block erase 2N ms  
Typical timeout for full chip erase 2N ms (00h = not supported)  
Max. timeout for byte/word write 2N times typical  
Max. timeout for buffer write 2N times typical  
Max. timeout per individual block erase 2N times typical  
Max. timeout for full chip erase 2N times typical (00h = not supported)  
Table 19. Device Geometry Definition  
Addresses  
Data  
Description  
0018h (PL127J)  
0018h (PL129J)  
0017h (PL064J)  
0016h (PL032J)  
27h  
Device Size = 2N byte  
28h  
29h  
0001h  
0000h  
Flash Device Interface description (refer to CFI publication 100)  
2Ah  
2Bh  
0000h  
0000h  
Max. number of byte in multi-byte write = 2N  
(00h = not supported)  
2Ch  
0003h  
Number of Erase Block Regions within device  
2Dh  
2Eh  
2Fh  
30h  
0007h  
0000h  
0020h  
0000h  
Erase Block Region 1 Information  
(refer to the CFI specification or CFI publication 100)  
00FDh (PL127J)  
00FDh (PL129J)  
007Dh (PL064J)  
003Dh (PL032J)  
31h  
Erase Block Region 2 Information  
(refer to the CFI specification or CFI publication 100)  
32h  
33h  
34h  
0000h  
0000h  
0001h  
35h  
36h  
37h  
38h  
0007h  
0000h  
0020h  
0000h  
Erase Block Region 3 Information  
(refer to the CFI specification or CFI publication 100)  
39h  
3Ah  
3Bh  
3Ch  
0000h  
0000h  
0000h  
0000h  
Erase Block Region 4 Information  
(refer to the CFI specification or CFI publication 100)  
66  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Table 20. Primary Vendor-Specific Extended Query  
Addresses  
Data  
Description  
40h  
41h  
42h  
0050h  
0052h  
0049h  
Query-unique ASCII string “PRI”  
43h  
44h  
0031h  
0033h  
Major version number, ASCII (reflects modifications to the silicon)  
Minor version number, ASCII (reflects modifications to the CFI table)  
Address Sensitive Unlock (Bits 1-0)  
0 = Required, 1 = Not Required  
45h  
TBD  
Silicon Revision Number (Bits 7-2)  
Erase Suspend  
46h  
47h  
48h  
49h  
0002h  
0001h  
0 = Not Supported, 1 = To Read Only, 2 = To Read & Write  
Sector Protect  
0 = Not Supported, X = Number of sectors in per group  
Sector Temporary Unprotect  
00 = Not Supported, 01 = Supported  
0001h  
Sector Protect/Unprotect scheme  
07 = Advanced Sector Protection  
0007h (PLxxxJ)  
00E7h (PL127J)  
00E7h (PL129J)  
0077h (PL064J)  
003Fh (PL032J)  
Simultaneous Operation  
00 = Not Supported, X = Number of Sectors excluding Bank 1  
4Ah  
Burst Mode Type  
00 = Not Supported, 01 = Supported  
4Bh  
4Ch  
4Dh  
4Eh  
0000h  
0002h (PLxxxJ)  
0085h  
Page Mode Type  
00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page  
ACC (Acceleration) Supply Minimum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
ACC (Acceleration) Supply Maximum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
0095h  
Top/Bottom Boot Sector Flag  
00h = Uniform device, 01h = Both top and bottom boot with write protect,  
02h = Bottom Boot Device, 03h = Top Boot Device,  
04h = Both Top and Bottom  
4Fh  
0001h  
Program Suspend  
0 = Not supported, 1 = Supported  
50h  
57h  
0001h  
0004h  
Bank Organization  
00 = Data at 4Ah is zero, X = Number of Banks  
0027h (PL127J)  
0027h (PL129J)  
0017h (PL064J)  
000Fh (PL032J)  
Bank 1 Region Information  
X = Number of Sectors in Bank 1  
58h  
59h  
0060h (PL127J)  
0060h (PL129J)  
0030h (PL064J)  
0018h (PL032J)  
Bank 2 Region Information  
X = Number of Sectors in Bank 2  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
67  
P r e l i m i n a r y  
Table 20. Primary Vendor-Specific Extended Query (Continued)  
Addresses  
Data  
Description  
0060h (PL127J)  
0060h (PL129J)  
0030h (PL064J)  
0018h (PL032J)  
Bank 3 Region Information  
X = Number of Sectors in Bank 3  
5Ah  
0027h (PL127J)  
0027h (PL129J)  
0017h (PL064J)  
000Fh (PL032J)  
Bank 4 Region Information  
X = Number of Sectors in Bank 4  
5Bh  
68  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Command Definitions  
Writing specific address and data commands or sequences into the command  
register initiates device operations. Table 21 defines the valid register command  
sequences. Writing incorrect address and data values or writing them in the  
improper sequence may place the device in an unknown state. A reset com-  
mand is then required to return the device to reading array data.  
All addresses are latched on the falling edge of WE# or CE# (CE1# / CE2# in  
PL129J), whichever happens later. All data is latched on the rising edge of WE#  
or CE# (CE1# / CE2# in PL129J), whichever happens first. Refer to the "AC Char-  
acteristic" section section for timing diagrams.  
Reading Array Data  
The device is automatically set to reading array data after device power-up. No  
commands are required to retrieve data. Each bank is ready to read array data  
after completing an Embedded Program or Embedded Erase algorithm.  
After the device accepts an Erase Suspend command, the corresponding bank  
enters the erase-suspend-read mode, after which the system can read data from  
any non-erase-suspended sector within the same bank. The system can read  
array data using the standard read timing, except that if it reads at an address  
within erase-suspended sectors, the device outputs status data. After completing  
a programming operation in the Erase Suspend mode, the system may once  
again read array data with the same exception. See the "Erase Suspend/Erase  
Resume Commands" section section for more information.  
After the device accepts a Program Suspend command, the corresponding bank  
enters the program-suspend-read mode, after which the system can read data  
from any non-program-suspended sector within the same bank. See the "Pro-  
gram Suspend/Program Resume Commands" section for more information.  
The system must issue the reset command to return a bank to the read (or  
erase-suspend-read) mode if DQ5 goes high during an active program or erase  
operation, or if the bank is in the autoselect mode. See the next section, "Reset  
Command" section, for more information.  
See also "Requirements for Reading Array Data" section in the "Device Bus Op-  
erations" section section for more information. The "AC Characteristic" section  
table provides the read parameters, and Figure 12 shows the timing diagram.  
Reset Command  
Writing the reset command resets the banks to the read or erase-suspend-read  
mode. Address bits are don’t cares for this command.  
The reset command may be written between the sequence cycles in an erase  
command sequence before erasing begins. This resets the bank to which the sys-  
tem was writing to the read mode. Once erasure begins, however, the device  
ignores reset commands until the operation is complete.  
The reset command may be written between the sequence cycles in a program  
command sequence before programming begins. This resets the bank to which  
the system was writing to the read mode. If the program command sequence is  
written to a bank that is in the Erase Suspend mode, writing the reset command  
returns that bank to the erase-suspend-read mode. Once programming begins,  
however, the device ignores reset commands until the operation is complete.  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
69  
P r e l i m i n a r y  
The reset command may be written between the sequence cycles in an autoselect  
command sequence. Once in the autoselect mode, the reset command must be  
written to return to the read mode. If a bank entered the autoselect mode while  
in the Erase Suspend mode, writing the reset command returns that bank to the  
erase-suspend-read mode.  
If DQ5 goes high during a program or erase operation, writing the reset command  
returns the banks to the read mode (or erase-suspend-read mode if that bank  
was in Erase Suspend and program-suspend-read mode if that bank was in  
Pro-gram Suspend).  
Autoselect Command Sequence  
The autoselect command sequence allows the host system to access the manu-  
facturer and device codes, and determine whether or not a sector is protected.  
The autoselect command sequence may be written to an address within a bank  
that is either in the read or erase-suspend-read mode. The autoselect command  
may not be written while the device is actively programming or erasing in the  
other bank.  
The autoselect command sequence is initiated by first writing two unlock cycles.  
This is followed by a third write cycle that contains the bank address and the au-  
toselect command. The bank then enters the autoselect mode. The system may  
read any number of autoselect codes without reinitiating the command sequence.  
Table 21 shows the address and data requirements. To determine sector protec-  
tion information, the system must write to the appropriate bank address (BA) and  
sector address (SA). Table 4 shows the address range and bank number associ-  
ated with each sector.  
The system must write the reset command to return to the read mode (or  
erase-suspend-read mode if the bank was previously in Erase Suspend).  
Enter Secured Silicon Sector/Exit Secured Silicon Sector  
Command Sequence  
The Secured Silicon Sector region provides a secured data area containing a ran-  
dom, eight word electronic serial number (ESN). The system can access the  
Secured Silicon Sector region by issuing the three-cycle Enter Secured Silicon  
Sector command sequence. The device continues to access the Secured Silicon  
Sector region until the system issues the four-cycle Exit Secured Silicon Sector  
command sequence. The Exit Secured Silicon Sector command sequence returns  
the device to normal operation. The Secured Silicon Sector is not accessible when  
the device is executing an Embedded Program or embedded Erase algorithm.  
Table 21 shows the address and data requirements for both command sequences.  
See also “Secured Silicon Sector Flash Memory Region” for further information.  
Note that the ACC function and unlock bypass modes are not available when the  
Secured Silicon Sector is enabled.  
Word Program Command Sequence  
Programming is a four-bus-cycle operation. The program command sequence is  
initiated by writing two unlock write cycles, followed by the program set-up com-  
mand. The program address and data are written next, which in turn initiate the  
Embedded Program algorithm. The system is not required to provide further con-  
trols or timings. The device automatically provides internally generated program  
pulses and verifies the programmed cell margin. Table 21 shows the address and  
70  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
data requirements for the program command sequence. Note that the Secured  
Silicon Sector, autoselect, and CFI functions are unavailable when a [pro-  
gram/erase] operation is in progress.  
When the Embedded Program algorithm is complete, that bank then returns to  
the read mode and addresses are no longer latched. The system can determine  
the status of the program operation by using DQ7, DQ6, or RY/BY#. Refer to the  
"Write Operation Status" section section for information on these status bits.  
Any commands written to the device during the Embedded Program Algorithm  
are ignored. Note that a hardware reset immediately terminates the program  
operation. The program command sequence should be reinitiated once that bank  
has returned to the read mode, to ensure data integrity. Note that the Secured  
Silicon Sector, autoselect and CFI functions are unavailable when the Secured Sil-  
icon Sector is enabled.  
Programming is allowed in any sequence and across sector boundaries. A bit  
cannot be programmed from “0” back to a “1.” Attempting to do so may  
cause that bank to set DQ5 = 1, or cause the DQ7 and DQ6 status bits to indicate  
the operation was successful. However, a succeeding read will show that the data  
is still “0.Only erase operations can convert a “0” to a “1.”  
Unlock Bypass Command Sequence  
The unlock bypass feature allows the system to program data to a bank faster  
than using the standard program command sequence. The unlock bypass com-  
mand sequence is initiated by first writing two unlock cycles. This is followed by  
a third write cycle containing the unlock bypass command, 20h. That bank then  
enters the unlock bypass mode. A two-cycle unlock bypass program command  
sequence is all that is required to program in this mode. The first cycle in this se-  
quence contains the unlock bypass program command, A0h; the second cycle  
contains the program address and data. Additional data is programmed in the  
same manner. This mode dispenses with the initial two unlock cycles required in  
the standard program command sequence, resulting in faster total programming  
time. Table 21 shows the requirements for the command sequence.  
During the unlock bypass mode, only the Unlock Bypass Program and Unlock By-  
pass Reset commands are valid. To exit the unlock bypass mode, the system  
must issue the two-cycle unlock bypass reset command sequence. (See Table 22)  
The device offers accelerated program operations through the WP#/ACC pin.  
When the system asserts VHH on the WP#/ACC pin, the device automatically en-  
ters the Unlock Bypass mode. The system may then write the two-cycle Unlock  
Bypass program command sequence. The device uses the higher voltage on the  
WP#/ACC pin to accelerate the operation. Note that the WP#/ACC pin must not  
be at VHH any operation other than accelerated programming, or device damage  
may result. In addition, the WP#/ACC pin must not be left floating or uncon-  
nected; inconsistent behavior of the device may result.  
4 illustrates the algorithm for the program operation. Refer to the "Erase/Program  
Operations" section table in the AC Characteristics section for parameters, and  
Figure 14 for timing diagrams.  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
71  
P r e l i m i n a r y  
START  
Write Program  
Command Sequence  
Data Poll  
from System  
Embedded  
Program  
algorithm  
in progress  
Verify Data?  
Yes  
No  
No  
Increment Address  
Last Address?  
Yes  
Programming  
Completed  
Note: See Table 21 for program command sequence.  
Figure 4. Program Operation  
Chip Erase Command Sequence  
Chip erase is a six bus cycle operation. The chip erase command sequence is ini-  
tiated by writing two unlock cycles, followed by a set-up command. Two  
additional unlock write cycles are then followed by the chip erase command,  
which in turn invokes the Embedded Erase algorithm. The device does not require  
the system to preprogram prior to erase. The Embedded Erase algorithm auto-  
matically preprograms and verifies the entire memory for an all zero data pattern  
prior to electrical erase. The system is not required to provide any controls or tim-  
ings during these operations. Table 21 shows the address and data requirements  
for the chip erase command sequence.  
When the Embedded Erase algorithm is complete, that bank returns to the read  
mode and addresses are no longer latched. The system can determine the status  
of the erase operation by using DQ7, DQ6, DQ2, or RY/BY#. Refer to the "Write  
Operation Status" section section for information on these status bits.  
Any commands written during the chip erase operation are ignored. Note that Se-  
cured Silicon Sector, autoselect, and CFI functions are unavailable when a  
[program/erase] operation is in progress. However, note that a hardware reset  
immediately terminates the erase operation. If that occurs, the chip erase com-  
mand sequence should be reinitiated once that bank has returned to reading  
array data, to ensure data integrity.  
72  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
5 illustrates the algorithm for the erase operation. Refer to the "Erase/Program  
Operations" section tables in the AC Characteristics section for parameters, and  
Figure 16 section for timing diagrams.  
Sector Erase Command Sequence  
Sector erase is a six bus cycle operation. The sector erase command sequence is  
initiated by writing two unlock cycles, followed by a set-up command. Two addi-  
tional unlock cycles are written, and are then followed by the address of the  
sector to be erased, and the sector erase command. Table 21 shows the address  
and data requirements for the sector erase command sequence.  
The device does not require the system to preprogram prior to erase. The Em-  
bedded Erase algorithm automatically programs and verifies the entire memory  
for an all zero data pattern prior to electrical erase. The system is not required to  
provide any controls or timings during these operations.  
After the command sequence is written, a sector erase time-out of 50 µs occurs.  
During the time-out period, additional sector addresses and sector erase com-  
mands may be written. Loading the sector erase buffer may be done in any  
sequence, and the number of sectors may be from one sector to all sectors. The  
time between these additional cycles must be less than 50 µs, otherwise erasure  
may begin. Any sector erase address and command following the exceeded  
time-out may or may not be accepted. It is recommended that processor inter-  
rupts be disabled during this time to ensure all commands are accepted. The  
interrupts can be re-enabled after the last Sector Erase command is written. If  
any command other than 30h, B0h, F0h is input during the time-out pe-  
riod, the normal operation will not be guaranteed. The system must rewrite  
the command sequence and any additional addresses and commands. Note that  
Secured Silicon Sector, autoselect, and CFI functions are unavailable when a  
[program/erase] operation is in progress.  
The system can monitor DQ3 to determine if the sector erase timer has timed out  
(See the section on DQ3: Sector Erase Timer). The time-out begins from the ris-  
ing edge of the final WE# pulse in the command sequence.  
When the Embedded Erase algorithm is complete, the bank returns to reading  
array data and addresses are no longer latched. Note that while the Embedded  
Erase operation is in progress, the system can read data from the non-erasing  
bank. The system can determine the status of the erase operation by reading  
DQ7, DQ6, DQ2, or RY/BY# in the erasing bank. Refer to the "Write Operation  
Status" section section for information on these status bits.  
Once the sector erase operation has begun, only the Erase Suspend command is  
valid. All other commands are ignored. However, note that a hardware reset im-  
mediately terminates the erase operation. If that occurs, the sector erase  
command sequence should be reinitiated once that bank has returned to reading  
array data, to ensure data integrity.  
5 illustrates the algorithm for the erase operation. Refer to the "Erase/Program  
Operations" section tables in the AC Characteristics section for parameters, and  
Figure 16 section for timing diagrams.  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
73  
P r e l i m i n a r y  
START  
Write Erase  
Command Sequence  
(Notes 1, 2)  
Data Poll to Erasing  
Bank from System  
Embedded  
Erase  
algorithm  
in progress  
No  
Data = FFh?  
Yes  
Erasure Completed  
Notes:  
1. See Table 21 for erase command sequence.  
2. See the section on DQ3 for information on the sector erase timer.  
Figure 5. Erase Operation  
Erase Suspend/Erase Resume Commands  
The Erase Suspend command, B0h, allows the system to interrupt a sector erase  
operation and then read data from, or program data to, any sector not selected  
for erasure. The bank address is required when writing this command. This com-  
mand is valid only during the sector erase operation, including the 80 µs time-out  
period during the sector erase command sequence. The Erase Suspend command  
is ignored if written during the chip erase operation or Embedded Program  
algorithm.  
When the Erase Suspend command is written during the sector erase operation,  
the device requires a maximum of 35 µs to suspend the erase operation. How-  
ever, when the Erase Suspend command is written during the sector erase  
time-out, the device immediately terminates the time-out period and suspends  
the erase operation. Addresses are “don’t-cares” when writing the Erase suspend  
command.  
After the erase operation has been suspended, the bank enters the erase-sus-  
pend-read mode. The system can read data from or program data to any sector  
not selected for erasure. (The device “erase suspends” all sectors selected for  
erasure.) Reading at any address within erase-suspended sectors produces sta-  
tus information on DQ7–DQ0. The system can use DQ7, or DQ6 and DQ2  
together, to determine if a sector is actively erasing or is erase-suspended. Refer  
to the "Write Operation Status" section section for information on these status  
bits.  
After an erase-suspended program operation is complete, the bank returns to the  
erase-suspend-read mode. The system can determine the status of the program  
74  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
operation using the DQ7 or DQ6 status bits, just as in the standard Word Program  
operation. Refer to the "Write Operation Status" section section for more  
information.  
In the erase-suspend-read mode, the system can also issue the autoselect com-  
mand sequence. The device allows reading autoselect codes even at addresses  
within erasing sectors, since the codes are not stored in the memory array. When  
the device exits the autoselect mode, the device reverts to the Erase Suspend  
mode, and is ready for another valid operation. Refer to the "Secured Silicon Sec-  
tor Addresses" section and the "Autoselect Command Sequence" section sections  
for details.  
To resume the sector erase operation, the system must write the Erase Resume  
command (address bits are don’t care). The bank address of the erase-sus-  
pended bank is required when writing this command. Further writes of the  
Resume command are ignored. Another Erase Suspend command can be written  
after the chip has resumed erasing.  
If the Persistent Sector Protection Mode Locking Bit is verified as programmed  
without margin, the Persistent Sector Protection Mode Locking Bit Program Com-  
mand should be reissued to improve program margin. If the Secured Silicon  
Sector Protection Bit is verified as programmed without margin, the Secured Sil-  
icon Sector Protection Bit Program Command should be reissued to improve  
program margin. µµAfter programming a PPB, two additional cycles are needed  
to determine whether the PPB has been programmed with margin. If the PPB has  
been programmed without margin, the program command should be reissued to  
improve the program margin. Also note that the total number of PPB pro-  
gram/erase cycles is limited to 100 cycles. Cycling the PPBs beyond 100 cycles is  
not guaranteed.  
After erasing the PPBs, two additional cycles are needed to determine whether  
the PPB has been erased with margin. If the PPBs has been erased without mar-  
gin, the erase command should be reissued to improve the program margin. The  
programming of either the PPB or DYB for a given sector or sector group can be  
verified by writing a Sector Protection Status command to the device.  
Note that there is no single command to independently verify the programming  
of a DYB for a given sector group.  
Program Suspend/Program Resume Commands  
The Program Suspend command allows the system to interrupt an embedded  
programming operation so that data can read from any non-suspended sector.  
When the Program Suspend command is written during a programming process,  
the device halts the programming operation within tPSL (program suspend la-  
tency) and updates the status bits. Addresses are “don’t-cares” when writing the  
Program Suspend command. After the programming operation has been sus-  
pended, the system can read array data from any non-suspended sector. The  
Program Suspend command may also be issued during a programming operation  
while an erase is suspended. In this case, data may be read from any addresses  
not in Erase Suspend or Program Suspend. If a read is needed from the Secured  
Silicon Sector area, then user must use the proper command sequences to enter  
and exit this region. The system may also write the autoselect command se-  
quence when the device is in Program Suspend mode. The device allows reading  
autoselect codes in the suspended sectors, since the codes are not stored in the  
memory array. When the device exits the autoselect mode, the device reverts to  
Program Suspend mode, and is ready for another valid operation. See “Autoselect  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
75  
P r e l i m i n a r y  
Command Sequence” for more information. After the Program Resume command  
is written, the device reverts to programming. The system can determine the sta-  
tus of the program operation using the DQ7 or DQ6 status bits, just as in the  
standard program operation. See “Write Operation Status” for more information.  
The system must write the Program Resume command (address bits are “don’t  
care”) to exit the Program Suspend mode and continue the programming opera-  
tion. Further writes of the Program Resume command are ignored. Another  
Program Suspend command can be written after the device has resumed  
programming.  
Command Definitions Tables  
Table 21. Memory Array Command Definitions  
Bus Cycles (Notes 14)  
Command (Notes)  
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data  
Read (Note 5)  
Reset (Note 6)  
1
1
RA  
RD  
F0  
XXX  
(BA)  
555  
(BA)  
X00  
Manufacturer ID  
4
6
4
4
555  
555  
555  
555  
AA  
AA  
2AA  
2AA  
2AA  
2AA  
55  
55  
55  
55  
90  
90  
90  
90  
01  
(BA)  
555  
(BA)  
X01  
(BA)  
X0E  
(Note  
10)  
(BA)  
X0F  
(Note  
10)  
Device ID (Note 10)  
227E  
Autoselect  
(Note 7)  
Secured Silicon Sector  
Factory Protect (Note 8)  
(BA)  
555  
(Note  
8)  
AA  
X03  
Sector Group Protect  
Verify (Note 9)  
(BA)  
555  
(SA) XX00/  
X02  
AAA  
XX01  
Program  
4
6
6
1
1
1
2
3
2
2
1
2
555  
555  
555  
BA  
AA  
AA  
AA  
B0  
30  
98  
A0  
AA  
A0  
80  
98  
90  
2AA  
2AA  
2AA  
55  
55  
55  
555  
555  
555  
A0  
80  
80  
PA  
PD  
Chip Erase  
Sector Erase  
555  
555  
AA  
2AA  
2AA  
55  
55  
555  
SA  
10  
30  
AA  
Program/Erase Suspend (Note 11)  
Program/Erase Resume (Note 12)  
CFI Query (Note 13)  
BA  
55  
Accelerated Program (Note 15)  
Unlock Bypass Entry (Note 15)  
Unlock Bypass Program (Note 15)  
Unlock Bypass Erase (Note 15)  
Unlock Bypass CFI (Notes 13, 15)  
Unlock Bypass Reset (Note 15)  
XX  
PA  
2AA  
PA  
PD  
55  
PD  
10  
555  
XX  
555  
20  
XX  
XX  
XX  
XXX  
XXX  
00  
Legend:  
BA = Address of bank switching to autoselect mode, bypass mode, or erase operation. Determined by PL127J: Amax:A20, PL064J  
and PL129J: Amax:A19, PL032J: Amax:A18.  
PA = Program Address (Amax:A0). Addresses latch on falling edge of WE# or CE# (CE1#/CE2# for PL129J) pulse, whichever  
happens later.  
PD = Program Data (DQ15:DQ0) written to location PA. Data latches on rising edge of WE# or CE# (CE1#/CE2# for PL129J) pulse,  
whichever happens first.  
RA = Read Address (Amax:A0).  
RD = Read Data (DQ15:DQ0) from location RA.  
SA = Sector Address (Amax:A12) for verifying (in autoselect mode) or erasing.  
WD = Write Data. See “Configuration Register” definition for specific write data. Data latched on rising edge of WE#.  
X = Don’t care  
Notes:  
1. See Table 1 for description of bus operations.  
2. All values are in hexadecimal.  
3. Shaded cells in table denote read cycles. All other cycles are write operations.  
76  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
4. During unlock and command cycles, when lower address bits are 555 or 2AAh as shown in table, address bits higher than  
A11 (except where BA is required) and data bits higher than DQ7 are don’t cares.  
5. No unlock or command cycles required when bank is reading array data.  
6. The Reset command is required to return to reading array (or to erase-suspend-read mode if previously in Erase Suspend)  
when bank is in autoselect mode, or if DQ5 goes high (while bank is providing status information).  
7. Fourth cycle of autoselect command sequence is a read cycle. System must provide bank address to obtain manufacturer ID  
or device ID information. See "Autoselect Command Sequence" section section for more information.  
8. The data is DQ6=1 for factory and customer locked and DQ7=1 for factory locked.  
9. The data is 00h for an unprotected sector group and 01h for a protected sector group.  
10. Device ID must be read across cycles 4, 5, and 6. PL127J (X0Eh = 2220h, X0Fh = 2200h), PL129J (X0Eh = 2221h, X0Fh =  
2200h),PL064J (X0Eh = 2202h, X0Fh = 2201h), PL032J (X0Eh = 220Ah, X0Fh = 2201h).  
11. System may read and program in non-erasing sectors, or enter autoselect mode, when in Program/Erase Suspend mode.  
Program/Erase Suspend command is valid only during a sector erase operation, and requires bank address.  
12. Program/Erase Resume command is valid only during Erase Suspend mode, and requires bank address.  
13. Command is valid when device is ready to read array data or when device is in autoselect mode.  
14. WP#/ACC must be at VID during the entire operation of command.  
15. Unlock Bypass Entry command is required prior to any Unlock Bypass operation. Unlock Bypass Reset command is required  
to return to the reading array.  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
77  
P r e l i m i n a r y  
Table 22. Sector Protection Command Definitions  
Bus Cycles (Notes 1-4)  
Command  
(Notes)  
Addr Data Addr Data Addr Data  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Reset  
1
3
XXX  
555  
F0  
Secured  
Silicon  
Sector Entry  
AA  
2AA  
2AA  
55  
55  
555  
555  
88  
90  
Secured  
Silicon  
4
6
555  
555  
AA  
AA  
XX  
00  
68  
Sector Exit  
Secured  
Silicon  
ProtectionBit  
Program  
(Notes 5, 6)  
2AA  
2AA  
55  
55  
555  
555  
60  
60  
OW  
OW  
OW  
48  
OW  
RD(0)  
Secured  
Silicon  
ProtectionBit  
Status  
5
555  
AA  
OW  
48  
RD(0)  
Password  
Program  
(Notes 5, 7,  
8)  
4
4
7
555  
555  
555  
AA  
AA  
AA  
2AA  
2AA  
2AA  
55  
55  
55  
555  
555  
555  
38  
C8  
28  
XX[0-3]  
PD[0-3]  
Password  
Verify (Notes  
6, 8, 9)  
PWA[0-3] PWD[0-3]  
Password  
Unlock  
(Notes 7, 10,  
11)  
PWA[0]  
PWD[0] PWA[1] PWD[1] PWA[2] PWD[2] PWA[3] PWD[3]  
PPB Program  
(Notes 5, 6,  
12)  
6
4
6
555  
555  
555  
AA  
AA  
AA  
2AA  
2AA  
2AA  
55  
55  
55  
555  
555  
555  
60  
90  
60  
(SA)WP  
(SA)WP  
WP  
68  
RD(0)  
60  
(SA)WP  
(SA)  
48  
40  
(SA)WP RD(0)  
(SA)WP RD(0)  
PPB Status  
All PPB Erase  
(Notes 5, 6,  
13, 14)  
PPB Lock Bit  
Set  
3
4
555  
555  
AA  
AA  
2AA  
2AA  
55  
55  
555  
555  
78  
58  
PPB Lock Bit  
Status (Note  
15)  
SA  
RD(1)  
DYB Write  
(Note 7)  
4
4
4
555  
555  
555  
AA  
AA  
AA  
2AA  
2AA  
2AA  
55  
55  
55  
555  
555  
555  
48  
48  
58  
SA  
SA  
SA  
X1  
X0  
DYB Erase  
(Note 7)  
DYB Status  
(Note 6)  
RD(0)  
PPMLB  
Program  
(Notes 5, 6,  
12)  
6
5
6
5
555  
555  
555  
555  
AA  
AA  
AA  
AA  
2AA  
2AA  
2AA  
2AA  
55  
55  
55  
55  
555  
555  
555  
555  
60  
60  
60  
60  
PL  
PL  
SL  
SL  
68  
48  
68  
48  
PL  
PL  
SL  
SL  
48  
RD(0)  
48  
PL  
SL  
RD(0)  
RD(0)  
PPMLB  
Status (Note  
5)  
SPMLB  
Program  
(Notes 5, 6,  
12)  
SPMLB  
Status (Note  
5)  
RD(0)  
Legend:  
DYB = Dynamic Protection Bit  
OW = Address (A7:A0) is (00011010)  
PD[3:0] = Password Data (1 of 4 portions)  
PPB = Persistent Protection Bit  
PWA = Password Address. A1:A0 selects portion of password.  
78  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
PWD = Password Data being verified.  
PL = Password Protection Mode Lock Address (A7:A0) is (00001010)  
RD(0) = Read Data DQ0 for protection indicator bit.  
RD(1) = Read Data DQ1 for PPB Lock status.  
SA = Sector Address where security command applies. Address bits Amax:A12 uniquely select any sector.  
SL = Persistent Protection Mode Lock Address (A7:A0) is (00010010)  
WP = PPB Address (A7:A0) is (00000010)  
X = Don’t care  
PPMLB = Password Protection Mode Locking Bit  
SPMLB = Persistent Protection Mode Locking Bit  
Notes:  
1. See Table 1 for description of bus operations.  
2. All values are in hexadecimal.  
3. Shaded cells in table denote read cycles. All other cycles are write operations.  
4. During unlock and command cycles, when lower address bits are 555 or 2AAh as shown in table, address bits higher than  
A11 (except where BA is required) and data bits higher than DQ7 are don’t cares.  
5. The reset command returns device to reading array.  
6. Cycle 4 programs the addressed locking bit. Cycles 5 and 6 validate bit has been fully programmed when DQ0 = 1. If DQ0 =  
0 in cycle 6, program command must be issued and verified again.  
7. Data is latched on the rising edge of WE#.  
8. Entire command sequence must be entered for each portion of password.  
9. Command sequence returns FFh if PPMLB is set.  
10. The password is written over four consecutive cycles, at addresses 0-3.  
11. A 2 µs timeout is required between any two portions of password.  
12. A 100 µs timeout is required between cycles 4 and 5.  
13. A 1.2 ms timeout is required between cycles 4 and 5.  
14. Cycle 4 erases all PPBs. Cycles 5 and 6 validate bits have been fully erased when DQ0 = 0. If DQ0 = 1 in cycle 6, erase  
command must be issued and verified again. Before issuing erase command, all PPBs should be programmed to prevent PPB  
overerasure.  
15. DQ1 = 1 if PPB locked, 0 if unlocked.  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
79  
P r e l i m i n a r y  
Write Operation Status  
The device provides several bits to determine the status of a program or erase opera-  
tion: DQ2, DQ3, DQ5, DQ6, and DQ7. Table 23 and the following subsections describe  
the function of these bits. DQ7 and DQ6 each offer a method for determining whether  
a program or erase operation is complete or in progress. The device also provides a  
hardware-based output signal, RY/BY#, to determine whether an Embedded Program  
or Erase operation is in progress or has been completed.  
DQ7: Data# Polling  
The Data# Polling bit, DQ7, indicates to the host system whether an Embedded Pro-  
gram or Erase algorithm is in progress or completed, or whether a bank is in Erase  
Suspend. Data# Polling is valid after the rising edge of the final WE# pulse in the com-  
mand sequence.  
During the Embedded Program algorithm, the device outputs on DQ7 the complement  
of the datum programmed to DQ7. This DQ7 status also applies to programming during  
Erase Suspend. When the Embedded Program algorithm is complete, the device out-  
puts the datum programmed to DQ7. The system must provide the program address  
to read valid status information on DQ7. If a program address falls within a protected  
sector, Data# Polling on DQ7 is active for approximately 1 µs, then that bank returns  
to the read mode.  
During the Embedded Erase algorithm, Data# Polling produces a “0” on DQ7.  
When the Embedded Erase algorithm is complete, or if the bank enters the Erase  
Suspend mode, Data# Polling produces a “1” on DQ7. The system must provide  
an address within any of the sectors selected for erasure to read valid status in-  
formation on DQ7.  
After an erase command sequence is written, if all sectors selected for erasing  
are protected, Data# Polling on DQ7 is active for approximately 400 µs, then the  
bank returns to the read mode. If not all selected sectors are protected, the Em-  
bedded Erase algorithm erases the unprotected sectors, and ignores the selected  
sectors that are protected. However, if the system reads DQ7 at an address within  
a protected sector, the status may not be valid.  
When the system detects DQ7 has changed from the complement to true data,  
it can read valid data at DQ15–DQ0 on the following read cycles. Just prior to the  
completion of an Embedded Program or Erase operation, DQ7 may change asyn-  
chronously with DQ15–DQ0 while Output Enable (OE#) is asserted low. That is,  
the device may change from providing status information to valid data on DQ7.  
Depending on when the system samples the DQ7 output, it may read the status  
or valid data. Even if the device has completed the program or erase operation  
and DQ7 has valid data, the data outputs on DQ15–DQ0 may be still invalid. Valid  
data on DQ15–DQ0 will appear on successive read cycles.  
Table 23 shows the outputs for Data# Polling on DQ7. 6 shows the Data# Polling  
algorithm. 18 in the "AC Characteristic" section section shows the Data# Polling  
timing diagram.  
80  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
START  
Read DQ7–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
No  
DQ5 = 1?  
Yes  
Read DQ7–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
PASS  
FAIL  
Notes:  
1. VA = Valid address for programming. During a sector erase operation, a valid address is  
any sector address within the sector being erased. During chip erase, a valid address is  
any non-protected sector address.  
2. DQ7 should be rechecked even if DQ5 = “1” because DQ7 may change simultaneously  
with DQ5.  
Figure 6. Data# Polling Algorithm  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
81  
P r e l i m i n a r y  
RY/BY#: Ready/Busy#  
The RY/BY# is a dedicated, open-drain output pin which indicates whether an  
Embedded Algorithm is in progress or complete. The RY/BY# status is valid after  
the rising edge of the final WE# pulse in the command sequence. Since RY/BY#  
is an open-drain output, several RY/BY# pins can be tied together in parallel with  
a pull-up resistor to VCC  
.
If the output is low (Busy), the device is actively erasing or programming. (This  
includes programming in the Erase Suspend mode.) If the output is high (Ready),  
the device is in the read mode, the standby mode, or one of the banks is in the  
erase-suspend-read mode.  
Table 23 shows the outputs for RY/BY#.  
DQ6: Toggle Bit I  
Toggle Bit I on DQ6 indicates whether an Embedded Program or Erase algorithm  
is in progress or complete, or whether the device has entered the Erase Suspend  
mode. Toggle Bit I may be read at any address, and is valid after the rising edge  
of the final WE# pulse in the command sequence (prior to the program or erase  
operation), and during the sector erase time-out.  
During an Embedded Program or Erase algorithm operation, successive read cy-  
cles to any address cause DQ6 to toggle. The system may use either OE# or CE#  
to control the read cycles. When the operation is complete, DQ6 stops toggling.  
After an erase command sequence is written, if all sectors selected for erasing  
are protected, DQ6 toggles for approximately 400 µs, then returns to reading  
array data. If not all selected sectors are protected, the Embedded Erase algo-  
rithm erases the unprotected sectors, and ignores the selected sectors that are  
protected.  
The system can use DQ6 and DQ2 together to determine whether a sector is ac-  
tively erasing or is erase-suspended. When the device is actively erasing (that is,  
the Embedded Erase algorithm is in progress), DQ6 toggles. When the device en-  
ters the Erase Suspend mode, DQ6 stops toggling. However, the system must  
also use DQ2 to determine which sectors are erasing or erase-suspended. Alter-  
natively, the system can use DQ7 (see the "DQ7: Data# Polling" section).  
If a program address falls within a protected sector, DQ6 toggles for approxi-  
mately 1 µs after the program command sequence is written, then returns to  
reading array data.  
DQ6 also toggles during the erase-suspend-program mode, and stops toggling  
once the Embedded Program algorithm is complete.  
Table 23 shows the outputs for Toggle Bit I on DQ6. Figure 7 shows the toggle bit  
algorithm. Figure 19 in “Read Operation Timings” shows the toggle bit timing di-  
agrams. Figure 20 shows the differences between DQ2 and DQ6 in graphical  
form. See also the "DQ2: Toggle Bit II" section.  
82  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
START  
Read Byte  
(DQ7–DQ0)  
Address =VA  
Read Byte  
(DQ7–DQ0)  
Address =VA  
No  
Toggle Bit  
= Toggle?  
Yes  
No  
DQ5 = 1?  
Yes  
Read Byte Twice  
(DQ7–DQ0)  
Address = VA  
Toggle Bit  
= Toggle?  
No  
Yes  
Program/Erase  
Operation Not  
Complete, Write  
Reset Command  
Program/Erase  
Operation Complete  
Note: The system should recheck the toggle bit even if DQ5 = “1” because the toggle  
bit may stop toggling as DQ5 changes to “1.” See the "DQ6: Toggle Bit I" section and  
"DQ2: Toggle Bit II" section for more information.  
Figure 7. Toggle Bit Algorithm  
DQ2: Toggle Bit II  
The “Toggle Bit II” on DQ2, when used with DQ6, indicates whether a particular  
sector is actively erasing (that is, the Embedded Erase algorithm is in progress),  
or whether that sector is erase-suspended. Toggle Bit II is valid after the rising  
edge of the final WE# pulse in the command sequence.  
DQ2 toggles when the system reads at addresses within those sectors that have  
been selected for erasure. (The system may use either OE# or CE# (CE1# / CE2#  
for PL129J) to control the read cycles.) But DQ2 cannot distinguish whether the  
sector is actively erasing or is erase-suspended. DQ6, by comparison, indicates  
whether the device is actively erasing, or is in Erase Suspend, but cannot distin-  
guish which sectors are selected for erasure. Thus, both status bits are required  
for sector and mode information. Refer to Table 23 to compare outputs for DQ2  
and DQ6.  
Figure 7 shows the toggle bit algorithm in flowchart form, and the "DQ2: Toggle  
Bit II" section explains the algorithm. See also the "DQ6: Toggle Bit I" section.  
Figure 19 shows the toggle bit timing diagram. Figure 20 shows the differences  
between DQ2 and DQ6 in graphical form.  
Reading Toggle Bits DQ6/DQ2  
Refer to Figure 7 for the following discussion. Whenever the system initially be-  
gins reading toggle bit status, it must read DQ7–DQ0 at least twice in a row to  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
83  
P r e l i m i n a r y  
determine whether a toggle bit is toggling. Typically, the system would note and  
store the value of the toggle bit after the first read. After the second read, the  
system would compare the new value of the toggle bit with the first. If the toggle  
bit is not toggling, the device has completed the program or erase operation. The  
system can read array data on DQ7–DQ0 on the following read cycle.  
However, if after the initial two read cycles, the system determines that the toggle  
bit is still toggling, the system also should note whether the value of DQ5 is high  
(see the section on DQ5). If it is, the system should then determine again  
whether the toggle bit is toggling, since the toggle bit may have stopped toggling  
just as DQ5 went high. If the toggle bit is no longer toggling, the device has suc-  
cessfully completed the program or erase operation. If it is still toggling, the  
device did not completed the operation successfully, and the system must write  
the reset command to return to reading array data.  
The remaining scenario is that the system initially determines that the toggle bit  
is toggling and DQ5 has not gone high. The system may continue to monitor the  
toggle bit and DQ5 through successive read cycles, determining the status as de-  
scribed in the previous paragraph. Alternatively, it may choose to perform other  
system tasks. In this case, the system must start at the beginning of the algo-  
rithm when it returns to determine the status of the operation (top of Figure 7).  
DQ5: Exceeded Timing Limits  
DQ5 indicates whether the program or erase time has exceeded a specified inter-  
nal pulse count limit. Under these conditions DQ5 produces a “1,indicating that the  
program or erase cycle was not successfully completed.  
The device may output a “1” on DQ5 if the system tries to program a “1” to a  
location that was previously programmed to “0.Only an erase operation can  
change a “0” back to a “1.” Under this condition, the device halts the opera-  
tion, and when the timing limit has been exceeded, DQ5 produces a “1.”  
Under both these conditions, the system must write the reset command to return  
to the read mode (or to the erase-suspend-read mode if a bank was previously  
in the erase-suspend-program mode).  
DQ3: Sector Erase Timer  
After writing a sector erase command sequence, the system may read DQ3 to de-  
termine whether or not erasure has begun. (The sector erase timer does not  
apply to the chip erase command.) If additional sectors are selected for erasure,  
the entire time-out also applies after each additional sector erase command.  
When the time-out period is complete, DQ3 switches from a “0” to a “1.See also  
the "Sector Erase Command Sequence" section.  
After the sector erase command is written, the system should read the status of  
DQ7 (Data# Polling) or DQ6 (Toggle Bit I) to ensure that the device has accepted  
the command sequence, and then read DQ3. If DQ3 is “1,the Embedded Erase  
algorithm has begun; all further commands (except Erase Suspend) are ignored  
until the erase operation is complete. If DQ3 is “0,the device will accept addi-  
tional sector erase commands. To ensure the command has been accepted, the  
system software should check the status of DQ3 prior to and following each sub-  
sequent sector erase command. If DQ3 is high on the second status check, the  
last command might not have been accepted.  
Table 23 shows the status of DQ3 relative to the other status bits.  
84  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Table 23. Write Operation Status  
DQ7  
(Note 2)  
DQ5  
(Note 1)  
DQ2  
(Note 2)  
Status  
DQ6  
DQ3  
RY/BY#  
Embedded Program Algorithm  
Embedded Erase Algorithm  
Erase  
DQ7#  
0
Toggle  
Toggle  
0
0
N/A  
1
No toggle  
Toggle  
0
0
Standard  
Mode  
1
No toggle  
0
N/A  
Toggle  
1
Suspended Sector  
Erase-Suspend-  
Read  
Erase  
Suspend  
Mode  
Non-Erase  
Data  
Data  
Data  
0
Data  
N/A  
Data  
N/A  
1
0
1
Suspended Sector  
Erase-Suspend-Program  
DQ7#  
Toggle  
Reading within Program Suspended  
Sector  
Invalid (Not Invalid (Not Invalid (Not Invalid (Not Invalid (Not  
Allowed)  
Program  
Suspend  
Mode  
Allowed)  
Allowed)  
Allowed)  
Allowed)  
Reading within Non-program  
Suspended Sector  
Data  
Data  
Data  
Data  
Data  
1
(Note 3)  
Notes:  
1. DQ5 switches to ‘1’ when an Embedded Program or Embedded Erase operation has exceeded the maximum timing  
limits. Refer to the section on DQ5 for more information.  
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for  
further details.  
3. When reading write operation status bits, the system must always provide the bank address where the Embedded  
Algorithm is in progress. The device outputs array data if the system addresses a non-busy bank.  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
85  
P r e l i m i n a r y  
Absolute Maximum Ratings  
Storage Temperature Plastic Packages . . . . . . . . . . . . . . . . –65°C to +150°C  
Ambient Temperature with Power Applied . . . . . . . . . . . . . . –65°C to +125°C  
Voltage with Respect to Ground  
VCC (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.5 V to +4.0 V  
A9, OE#, and RESET# (Note 2) . . . . . . . . . . . . . . . . . . . . .0.5 V to +13.0 V  
WP#/ACC (Note 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.5 V to +10.5 V  
All other pins (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VCC +0.5 V  
Output Short Circuit Current (Note 3). . . . . . . . . . . . . . . . . . . . . . . . 200 mA  
Notes:  
1. Minimum DC voltage on input or I/O pins is –0.5 V. During voltage transitions,  
input or I/O pins may overshoot VSS to –2.0 V for periods of up to 20 ns. Maximum  
DC voltage on input or I/O pins is VCC +0.5 V. During voltage transitions, input or  
I/O pins may overshoot to VCC +2.0 V for periods up to 20 ns. See Figure 8.  
2. Minimum DC input voltage on pins A9, OE#, RESET#, and WP#/ACC is –0.5 V.  
During voltage transitions, A9, OE#, WP#/ACC, and RESET# may overshoot VSS  
to –2.0 V for periods of up to 20 ns. See Figure 8. Maximum DC input voltage on  
pin A9, OE#, and RESET# is +12.5 V which may overshoot to +14.0 V for periods  
up to 20 ns. Maximum DC input voltage on WP#/ACC is +9.5 V which may  
overshoot to +12.0 V for periods up to 20 ns.  
3. No more than one output may be shorted to ground at a time. Duration of the  
short circuit should not be greater than one second.  
4. Stresses above those listed under “Absolute Maximum Ratings” may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
sections of this data sheet is not implied. Exposure of the device to absolute max-  
imum rating conditions for extended periods may affect device reliability.  
20 ns  
20 ns  
20 ns  
VCC  
+2.0 V  
+0.8 V  
VCC  
–0.5 V  
–2.0 V  
+0.5 V  
2.0 V  
20 ns  
20 ns  
20 ns  
Maximum Negative Overshoot Waveform  
Maximum Positive Overshoot Waveform  
Figure 8. Maximum Overshoot Waveforms  
86  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Operating Ranges  
Operating ranges define those limits between which the functionality of the de-  
vice is guaranteed.  
Industrial (I) Devices  
Ambient Temperature (TA) . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
Extended (E) Devices  
Ambient Temperature (TA) . . . . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C  
Supply Voltages  
VCC  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.7–3.6 V  
VIO (see Note)1.65–1.95 V (for PL127J and PL129J) or 2.7–3.6 V (for all PLxxxJ  
devices)  
Notes:  
For all AC and DC specifications, VIO = VCC; contact your local sales office for other VIO  
options.  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
87  
P r e l i m i n a r y  
DC Characteristics  
Table 24. CMOS Compatible  
Parameter  
Parameter Description  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
VIN = VSS to VCC  
,
ILI  
Input Load Current  
±1.0  
µA  
VCC = VCC  
max  
ILIT  
ILR  
A9, OE#, RESET# Input Load Current  
Reset Leakage Current  
VCC = VCC max; VID= 12.5 V  
VCC = VCC max; VID= 12.5 V  
35  
35  
µA  
µA  
VOUT = VSS to VCC, OE# = VIH  
VCC = VCC max  
ILO  
Output Leakage Current  
±1.0  
µA  
5 MHz  
20  
45  
15  
30  
55  
25  
OE# = VIH, VCC = VCC max  
(Note 1)  
ICC1  
VCC Active Read Current (Notes 1, 2)  
mA  
10 MHz  
ICC2  
ICC3  
ICC4  
ICC5  
VCC Active Write Current (Notes 2, 3)  
VCC Standby Current (Note 2)  
VCC Reset Current (Note 2)  
OE# = VIH, WE# = VIL  
mA  
µA  
µA  
µA  
CE#, RESET#, WP#/ACC  
= VIO ± 0.3 V  
0.2  
0.2  
0.2  
5
5
5
RESET# = VSS ± 0.3 V  
VIH = VIO ± 0.3 V;  
VIL = VSS ± 0.3 V  
Automatic Sleep Mode (Notes 2, 4)  
5 MHz  
10 MHz  
5 MHz  
21  
46  
21  
46  
45  
70  
45  
70  
VCC Active Read-While-Program Current  
(Notes 1, 2)  
ICC6  
OE# = VIH  
,
,
mA  
VCC Active Read-While-Erase Current  
(Notes 1, 2)  
ICC7  
OE# = VIH  
OE# = VIH  
mA  
mA  
10 MHz  
VCC Active Program-While-Erase-  
Suspended Current (Notes 2, 5)  
ICC8  
ICC9  
17  
10  
25  
VCC Active Page Read Current (Note 2)  
OE# = VIH, 8 word Page Read  
15  
0.4  
mA  
V
VIO = 1.65–1.95 V (PL127J and PL129J)  
VIO = 2.7–3.6 V  
–0.4  
–0.5  
VIO–0.4  
2.0  
VIL  
VIH  
Input Low Voltage  
0.8  
V
VIO = 1.65–1.95 V (PL127J AND PL129J)  
VIO = 2.7–3.6 V  
VIO+0.4  
VCC+0.3  
9.5  
V
Input High Voltage  
V
VHH  
VID  
Voltage for ACC Program Acceleration  
VCC = 3.0 V ± 10%  
8.5  
V
Voltage for Autoselect and Temporary  
Sector Unprotect  
VCC = 3.0 V ± 10%  
11.5  
12.5  
V
IOL = 100 µA, VCC = VCC min, VIO = 1.65–1.95  
V (PL127J AND PL129J)  
0.1  
0.4  
V
V
V
VOL  
Output Low Voltage  
I
OL = 2.0 mA, VCC = VCC min, VIO = 2.7–3.6 V  
IOH = –100 µA, VCC = VCC min, VIO  
=
VIO–0.1  
1.65–1.95 V (PL127J AND PL129J)  
VOH  
Output High Voltage  
IOH = –2.0 mA, VCC = VCC min, VIO = 2.7–3.6  
V
2.4  
2.3  
V
V
VLKO  
Low VCC Lock-Out Voltage (Note 5)  
2.5  
Notes:  
1. The ICC current listed is typically less than 5 mA/MHz, with OE# at VIH  
2. Maximum ICC specifications are tested with VCC = VCCmax  
3. ICC active while Embedded Erase or Embedded Program is in progress.  
.
.
4. Automatic sleep mode enables the low power mode when addresses remain stable for tACC + 30 ns. Typical sleep  
mode current is 1 mA.  
5. Not 100% tested.  
6. In S29PL129J there are two CE# (CE1#, CE2#).  
7. Valid CE1#/CE2# conditions: (CE1# = VIL, CE2# = VIH,) or (CE1# = VIH, CE2# = VIL) or (CE1# = VIH, CE2# = VIH  
)
88  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
AC Characteristic  
Test Conditions  
3.6 V  
2.7 kΩ  
Device  
Under  
Test  
Device  
Under  
Test  
C
L
C
6.2 kΩ  
L
VIO = 3.0 V  
Note: Diodes are IN3064 or equivalent  
VIO = 1.8 V (PL127J and PL129J)  
Figure 9. Test Setups  
Table 25. Test Specifications  
Test Condition  
All Speeds  
1 TTL gate  
30  
Unit  
Output Load  
Output Load Capacitance, CL (including jig capacitance)  
pF  
ns  
VIO = 1.8 V  
(PL127J AND PL129J)  
Input Rise and Fall Times  
5
VIO = 3.0 V  
VIO = 1.8 V  
(PL127J AND PL129J)  
0.0 - 1.8  
Input Pulse Levels  
V
VIO = 3.0 V  
0.0–3.0  
VIO/2  
Input timing measurement reference levels  
Output timing measurement reference levels  
V
V
VIO/2  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
89  
P r e l i m i n a r y  
Switching Waveforms  
Table 26. Key To Switching Waveforms  
WAVEFORM  
INPUTS  
OUTPUTS  
Steady  
Changing from H to L  
Changing from L to H  
Don’t Care, Any Change Permitted  
Does Not Apply  
Changing, State Unknown  
Center Line is High Impedance State (High Z)  
VIO  
VIO/2  
VIO/2  
In  
Measurement Level  
Output  
0.0 V  
Figure 10. Input Waveforms and Measurement Levels  
VCC RampRate  
All DC characteristics are specified for a VCC ramp rate > 1V/100 µs and VCC  
>=VCCQ - 100 mV. If the VCC ramp rate is < 1V/100 µs, a hardware reset  
required.+  
90  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Read Operations  
Table 27. Read-Only Operations  
Parameter  
Speed Options  
JEDEC  
tAVAV  
Std. Description  
tRC Read Cycle Time (Note 1)  
tACC Address to Output Delay  
tCE Chip Enable to Output Delay  
tPACC Page Access Time  
Te st S e tup  
55  
55  
55  
55  
20  
20  
60  
60  
60  
60  
25  
25  
65  
65  
65  
65  
25  
70  
70  
70  
70  
30  
Unit  
ns  
Min  
Max  
Max  
Max  
Max  
Max  
tAVQV  
tELQV  
CE#, OE# = VIL  
OE# = VIL  
ns  
ns  
ns  
tGLQV  
tEHQZ  
tOE  
tDF  
Output Enable to Output Delay  
30  
ns  
Chip Enable to Output High Z (Note 3)  
16  
16  
ns  
Output Enable to Output High Z (Notes 1,  
3)  
tGHQZ  
tDF  
Max  
ns  
Output Hold Time From Addresses, CE# or  
OE#, Whichever Occurs First (Note 3)  
tAXQX  
tOH  
Min  
Min  
Min  
5
0
ns  
ns  
ns  
Read  
Output Enable Hold  
Time (Note 1)  
tOEH  
Toggle and  
10  
Data# Polling  
Notes:  
1. Not 100% tested.  
2. See Figure 9 and Table 25 for test specifications  
3. Measurements performed by placing a 50 ohm termination on the data pin with a bias of VCC /2. The time from OE#  
high to the data bus driven to VCC /2 is taken as tDF  
.
4. S29PL129J has two CE# (CE1#, CE2#).  
5. Valid CE1# / CE2# conditions: (CE1# = VIL,CE2# = VIH) or (CE1# = VIH,CE2# = VIL) or (CE1# = VIH, CE2# = VIH  
)
6. Valid CE1# / CE2# transitions: (CE1# = VIL,CE2# = VIH) or (CE1# = VIH,CE2# = VIL) to (CE1# = CE2# = VIH  
)
7. Valid CE1# / CE2# transitions: (CE1# = CE2# = VIH) to (CE1# = VIL,CE2# = VIH) or (CE1# = VIH,CE2# = VIL)  
8. For 70pF Output Load Capacitance, 2 ns will be added to the above tACC,tCE,tPACC,tOE values for all speed grades  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
91  
P r e l i m i n a r y  
tRC  
Addresses Stable  
tACC  
Addresses  
CE#  
tRH  
tRH  
tDF  
tOE  
OE#  
tOEH  
WE#  
Data  
tCE  
tOH  
Valid Data  
HIGH Z  
HIGH Z  
RESET#  
RY/BY#  
0 V  
Notes:  
1. S29PL129J - During CE1# transitions, CE2# = VIH; During CE2# transitions, CE1# = VIH  
2. S29PL129J - There are two CE# (CE1#, CE2#). In the above waveform CE# = CE1# or CE2#  
Figure 11. Read Operation Timings  
Same Page  
Amax  
-
-
A3  
A0  
A2  
Ad  
Aa  
Ab  
Ac  
tPACC  
tPACC  
tPACC  
tACC  
Data  
Qa  
Qb  
Qc  
Qd  
CE#  
OE#  
Notes:  
1. S29PL129J - During CE1# transitions, CE2# = VIH; During CE2# transitions, CE1# = VIH  
2. S29PL129J - There are two CE# (CE1#, CE2#). In the above waveform CE# = CE1# or CE2#  
Figure 12. Page Read Operation Timings  
92  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Reset  
Table 28. Hardware Reset (RESET#)  
Parameter  
JEDEC  
Std  
Description  
All Speed Options  
Unit  
RESET# Pin Low (During Embedded Algorithms)  
to Read Mode (See Note)  
tReady  
Max  
Max  
20  
µs  
RESET# Pin Low (NOT During Embedded  
Algorithms) to Read Mode (See Note)  
tReady  
500  
ns  
tRP  
tRH  
RESET# Pulse Width  
Min  
Min  
Min  
Min  
500  
50  
20  
0
ns  
ns  
µs  
ns  
Reset High Time Before Read (See Note)  
RESET# Low to Standby Mode  
RY/BY# Recovery Time  
tRPD  
tRB  
Note: Not 100% tested.  
RY/BY#  
CE#, OE#  
RESET#  
tRH  
tRP  
tReady  
Reset Timings NOT during Embedded Algorithms  
Reset Timings during Embedded Algorithms  
tReady  
RY/BY#  
tRB  
CE#, OE#  
RESET#  
tRP  
Notes:  
1. S29PL129J - During CE1# transitions, CE2# = VIH; During CE2# transitions, CE1# = VIH  
2. S29PL129J - There are two CE# (CE1#, CE2#). In the below waveform CE# = CE1# or CE2#  
Figure 13. Reset Timings  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
93  
P r e l i m i n a r y  
Erase/Program Operations  
Table 29. Erase and Program Operations  
Parameter  
Speed Options  
JEDEC  
tAVAV  
tAVWL  
Std  
tWC  
tAS  
Description  
55  
60  
65  
70  
Unit  
ns  
Write Cycle Time (Note 1)  
Address Setup Time  
Min  
Min  
55  
60  
65  
70  
0
ns  
Address Setup Time to OE# low during toggle bit  
polling  
tASO  
tAH  
Min  
Min  
Min  
15  
ns  
ns  
ns  
tWLAX  
Address Hold Time  
30  
25  
35  
30  
Address Hold Time From CE# (CE1#, CE#2 in PL129J)  
or OE# high during toggle bit polling  
tAHT  
0
tDVWH  
tWHDX  
tDS  
tDH  
Data Setup Time  
Min  
Min  
Min  
ns  
ns  
ns  
Data Hold Time  
0
tOEPH  
Output Enable High during toggle bit polling  
10  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHWL  
tGHWL  
Min  
0
ns  
tELWL  
tWHEH  
tWLWH  
tWHDL  
tCS  
tCH  
CE# (CE1# or CE#2 in PL129J) Setup Time  
CE# (CE1# or CE#2 in PL129J) Hold Time  
Write Pulse Width  
Min  
Min  
Min  
Min  
Min  
Typ  
Typ  
Typ  
Min  
Min  
Max  
Min  
Max  
0
0
ns  
ns  
ns  
ns  
ns  
µs  
µs  
sec  
µs  
ns  
ns  
ns  
µs  
tWP  
35  
tWPH  
tSR/W  
Write Pulse Width High  
20  
25  
Latency Between Read and Write Operations  
0
6
tWHWH1  
tWHWH1  
tWHWH2  
tWHWH1 Programming Operation (Note 4)  
tWHWH1 Accelerated Programming Operation (Note 4)  
tWHWH2 Sector Erase Operation (Note 4)  
4
0.5  
50  
0
tVCS  
tRB  
VCC Setup Time (Note 1)  
Write Recovery Time from RY/BY#  
90  
35  
35  
tBUSY  
tPSL  
Program/Erase Valid to RY/BY# Delay  
Program Suspend Latency  
Notes:  
1. Not 100% tested.  
2. S29PL129J - During CE1# transitions, CE2# = VIH; During CE2# transitions, CE1# = VIH  
3. S29PL129J - There are two CE# (CE1#, CE2#).  
4. See the “Erase And Programming Performance” section for more information.  
94  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Timing Diagrams  
Program Command Sequence (last two cycles)  
Read Status Data (last two cycles)  
tAS  
PA  
tWC  
Addresses  
555h  
PA  
PA  
tAH  
CE#  
OE#  
tCH  
tWHWH1  
tWP  
WE#  
Data  
tWPH  
tCS  
tDS  
tDH  
PD  
DOUT  
A0h  
Status  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes:  
1. PA = program address, PD = program data, DOUT is the true data at the program address  
2. S29PL129J - During CE1# transitions, CE2# = VIH; During CE2# transitions, CE1# = VIH  
3. S29PL129J - There are two CE# (CE1#, CE2#). In the above waveform CE# = CE1# or CE2#  
Figure 14. Program Operation Timings  
VHH  
VIL or VIH  
WP#/ACC  
VIL or VIH  
tVHH  
tVHH  
Figure 15. Accelerated Program Timing Diagram  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
95  
P r e l i m i n a r y  
Erase Command Sequence (last two cycles)  
Read Status Data  
VA  
tAS  
SA  
tWC  
VA  
Addresses  
CE#  
2AAh  
555h for chip erase  
tAH  
tCH  
OE#  
tWP  
WE#  
tWPH  
tWHWH2  
tCS  
tDS  
tDH  
Data  
Status  
D
OUT  
55h  
30h  
10 for Chip Erase  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes:  
1. SA = sector address (for Sector Erase), VA = Valid Address for reading status data (see “Write Operation Status”  
2. S29PL129J - During CE1# transitions, CE2# = VIH; During CE2# transitions, CE1# = VIH  
3. S29PL129J - There are two CE# (CE1#, CE2#). In the above waveform CE# = CE1# or CE2#  
Figure 16. Chip/Sector Erase Operation Timings  
tWC  
tWC  
tRC  
tWC  
Valid PA  
tAH  
Valid RA  
Valid PA  
Valid PA  
Addresses  
tAS  
tCPH  
tAS  
tAH  
tACC  
tCE  
CE#  
OE#  
tCP  
tOE  
tOEH  
tGHWL  
tWP  
WE#  
Data  
tDF  
tWPH  
tDS  
tOH  
tDH  
Valid  
Out  
Valid  
In  
Valid  
In  
Valid  
In  
tSR/W  
WE# Controlled Write Cycle  
Read Cycle  
CE# Controlled Write Cycles  
Figure 17. Back-to-back Read/Write Cycle Timings  
96  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
tRC  
VA  
tACC  
tCE  
Addresses  
CE#  
VA  
VA  
tCH  
tOE  
OE#  
WE#  
tOEH  
tDF  
tOH  
High Z  
High Z  
DQ7  
Valid Data  
Complement  
Complement  
True  
DQ6–DQ0  
Status Data  
True  
Valid Data  
Status Data  
tBUSY  
RY/BY#  
Note: VA = Valid address. Illustration shows first status cycle after command sequence, last status read cycle, and  
array data read cycle  
Figure 18. Data# Polling Timings (During Embedded Algorithms)  
tAHT  
tAS  
Addresses  
CE#  
tAHT  
tASO  
tCEPH  
tOEH  
WE#  
OE#  
tOEPH  
tDH  
Valid Data  
tOE  
Valid  
Status  
Valid  
Status  
Valid  
Status  
DQ6/DQ2  
RY/BY#  
Valid Data  
(first read)  
(second read)  
(stops toggling)  
Notes:  
1. VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command sequence, last  
status read cycle, and array data read cycle  
2. S29PL129J - During CE1# transitions, CE2# = VIH; During CE2# transitions, CE1# = VIH  
3. S29PL129J - There are two CE# (CE1#, CE2#). In the above waveform CE# = CE1# or CE2#  
Figure 19. Toggle Bit Timings (During Embedded Algorithms)  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
97  
P r e l i m i n a r y  
Enter  
Embedded  
Erasing  
Erase  
Suspend  
Enter Erase  
Suspend Program  
Erase  
Resume  
Erase  
Erase Suspend  
Read  
Erase  
Suspend  
Program  
Erase  
Complete  
WE#  
Erase  
Erase Suspend  
Read  
DQ6  
DQ2  
Note: DQ2 toggles only when read at an address within an erase-suspended sector. The system may use OE# or CE#  
to toggle DQ2 and DQ6.  
Figure 20. DQ2 vs. DQ6  
98  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Protect/Unprotect  
Table 30. Temporary Sector Unprotect  
Parameter  
JEDEC  
Std  
tVIDR  
tVHH  
Description  
All Speed Options  
Unit  
ns  
VID Rise and Fall Time (See Note)  
VHH Rise and Fall Time (See Note)  
Min  
Min  
500  
250  
ns  
RESET# Setup Time for Temporary Sector  
Unprotect  
tRSP  
Min  
Min  
4
4
µs  
µs  
RESET# Hold Time from RY/BY# High for  
Temporary Sector Unprotect  
tRRB  
Note: Not 100% tested.  
VID  
VID  
RESET#  
VIL or VIH  
VIL or VIH  
tVIDR  
tVIDR  
Program or Erase Command Sequence  
CE#  
WE#  
tRRB  
tRSP  
RY/BY#  
Figure 21. Temporary Sector Unprotect Timing Diagram  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
99  
P r e l i m i n a r y  
V
V
ID  
IH  
RESET#  
SA, A6,  
A1, A0  
Valid*  
Valid*  
Valid*  
Status  
Sector Group Protect/Unprotect  
Verify  
40h  
Data  
60h  
60h  
1 µs  
Sector Group Protect: 150 µs  
Sector Group Unprotect: 15 ms  
CE#  
WE#  
OE#  
Notes:  
1. For sector protect, A6 = 0, A1 = 1, A0 = 0. For sector unprotect, A6 = 1, A1 = 1, A0 = 0.  
2. S29PL129J - During CE1# transitions, CE2# = VIH; During CE2# transitions, CE1# = VIH  
3. S29PL129J - There are two CE# (CE1#, CE2#). In the above waveform CE# = CE1# or CE2#  
Figure 22. Sector/Sector Block Protect and Unprotect Timing Diagram  
100  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Controlled Erase Operations  
Table 31. Alternate CE# Controlled Erase and Program Operations  
Parameter  
JEDEC  
Speed Options  
Std  
tWC  
tAS  
tAH  
tDS  
tDH  
Description  
55  
60  
65  
70  
Unit  
ns  
tAVAV  
tAVWL  
tELAX  
tDVEH  
tEHDX  
Write Cycle Time (Note 1)  
Address Setup Time  
Address Hold Time  
Data Setup Time  
Data Hold Time  
Min  
Min  
Min  
Min  
Min  
55  
60  
65  
70  
0
ns  
30  
25  
35  
30  
ns  
ns  
0
0
ns  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHEL  
tGHEL  
Min  
ns  
tWLEL  
tEHWH  
tELEH  
tWS  
tWH  
WE# Setup Time  
Min  
Min  
Min  
Min  
Typ  
Typ  
Typ  
0
0
ns  
ns  
ns  
ns  
µs  
µs  
sec  
WE# Hold Time  
tCP  
CE# (CE1# or CE#2 in PL129J) Pulse Width  
CE# (CE1# or CE#2 in PL129J) Pulse Width High  
Programming Operation (Note 2)  
Accelerated Programming Operation (Note 2)  
Sector Erase Operation (Note 2)  
35  
20  
40  
25  
tEHEL  
tCPH  
tWHWH1  
tWHWH1  
tWHWH2  
tWHWH1  
tWHWH1  
tWHWH2  
6
4
0.5  
Notes:  
1. Not 100% tested.  
2. See the “Erase And Programming Performance” section for more information.  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
101  
P r e l i m i n a r y  
555 for program  
2AA for erase  
PA for program  
SA for sector erase  
555 for chip erase  
Data# Polling  
Addresses  
PA  
tWC  
tWH  
tAS  
tAH  
WE#  
OE#  
tGHEL  
tWHWH1 or 2  
tCP  
CE#  
Data  
tWS  
tCPH  
tDS  
tBUSY  
tDH  
DQ7#  
DOUT  
tRH  
A0 for program  
55 for erase  
PD for program  
30 for sector erase  
10 for chip erase  
RESET#  
RY/BY#  
Notes:  
1. Figure indicates last two bus cycles of a program or erase operation.  
2. PA = program address, SA = sector address, PD = program data.  
3. DQ7# is the complement of the data written to the device. DOUT is the data written to the device  
4. S29PL129J - During CE1# transitions, CE2# = VIH; During CE2# transitions, CE1# = VIH  
5. S29PL129J - There are two CE# (CE1#, CE2#). In the above waveform CE# = CE1# or CE2#  
Figure 23. Alternate CE# Controlled Write (Erase/Program) Operation Timings  
102  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Table 32. CE1#/CE2# Timing (S29PL129J only)  
Parameter  
JEDEC  
Std  
tCCR  
Description  
All Speed Options  
Unit  
CE1#/CE2# Recover Time (Note 1)  
Min  
0
ns  
Notes:  
1. This parameter is defined for CE1#/CE2# recover time for read/read, program/read, and read/program operations.  
Program/program operation are not allowed and only a single program operation is allowed at one time.  
CE1#  
tCCR  
tCCR  
CE2#  
Figure 24. Timing Diagram for Alternating Between CE1# and CE2# Control  
Table 33. Erase And Programming Performance  
Parameter  
Typ (Note 1)  
Max (Note 2)  
Unit  
sec  
sec  
sec  
sec  
Comments  
0.5  
135  
71  
2
Sector Erase Time  
PL127J/129J  
PL064J  
216  
Excludes 00h programming  
prior to erasure (Note 4)  
113.6  
62.4  
Chip Erase Time  
PL032J  
39  
Excludes system level  
overhead (Note 5)  
6
100  
µs  
Word Program Time  
4
60  
µs  
Accelerated Word Program Time  
PL127J/129J  
50.4  
25.2  
12.6  
200  
50.4  
25.2  
sec  
sec  
sec  
Chip Program Time  
PL064J  
PL032J  
(Note 3)  
Notes:  
1. Typical program and erase times assume the following conditions: 25°C, 3.0 V VCC, 100,000 cycles. Additionally,  
programming typicals assume checkerboard pattern. All values are subject to change.  
2. Under worst case conditions of 90°C, VCC = 2.7 V, 1,000,000 cycles. All values are subject to change.  
3. The typical chip programming time is considerably less than the maximum chip programming time listed, since most  
bytes program faster than the maximum program times listed.  
4. In the pre-programming step of the Embedded Erase algorithm, all bytes are programmed to 00h before erasure.  
5. System-level overhead is the time required to execute the two- or four-bus-cycle sequence for the program  
command. See Table 21 for further information on command definitions.  
6. The device has a minimum erase and program cycle endurance of 100,000 cycles.  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
103  
P r e l i m i n a r y  
BGA Pin Capacitance  
Parameter Symbol  
Parameter Description  
Test Setup  
VIN = 0  
Typ  
6.3  
7.0  
5.5  
11  
Max  
7
Unit  
pF  
CIN  
COUT  
CIN2  
CIN3  
Input Capacitance  
Output Capacitance  
VOUT = 0  
VIN = 0  
8
pF  
Control Pin Capacitance  
WP#/ACC Pin Capacitance  
8
pF  
VIN = 0  
12  
pF  
Notes:  
1. Sampled, not 100% tested.  
2. Test conditions TA = 25°C, f = 1.0 MHz.  
104  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Physical Dimensions  
VBG080—80-Ball Fine-pitch Ball Grid Array 8 x 11 mm Package  
(PL127J)  
0.05  
(2X)  
C
D1  
D
A
e
8
7
6
5
4
3
2
1
e
7
SE  
E1  
E
M
L
K
J
H
G
F
E
D
C
B
A
A1 CORNER  
INDEX MARK  
10  
PIN A1  
CORNER  
B
6
SD  
NXφb  
7
0.05  
(2X)  
C
φ 0.08  
φ 0.15  
M
M
C
C A  
B
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
0.10  
0.08  
C
C
A2  
A
C
A1  
SEATING PLANE  
NOTES:  
PACKAGE  
JEDEC  
VBG 080  
N/A  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
11.00 mm x 8.00 mm NOM  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010 (EXCEPT  
AS NOTED).  
SYMBOL  
MIN  
---  
NOM  
MAX  
1.00  
---  
NOTE  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
A2  
D
---  
---  
OVERALL THICKNESS  
BALL HEIGHT  
5. SYMBOL "MD" IS THE BALL ROW MATRIX SIZE IN THE  
"D" DIRECTION.  
0.18  
0.62  
SYMBOL "ME" IS THE BALL COLUMN MATRIX SIZE IN THE  
"E" DIRECTION.  
---  
0.76  
BODY THICKNESS  
BODY SIZE  
11.00 BSC.  
8.00 BSC.  
8.80 BSC.  
5.60 BSC.  
12  
N IS THE TOTAL NUMBER OF SOLDER BALLS.  
E
BODY SIZE  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
D1  
E1  
MD  
ME  
N
BALL FOOTPRINT  
BALL FOOTPRINT  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS  
A AND B AND DEFINE THE POSITION OF THE CENTER  
SOLDER BALL IN THE OUTER ROW.  
ROW MATRIX SIZE D DIRECTION  
ROW MATRIX SIZE E DIRECTION  
TOTAL BALL COUNT  
8
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN  
THE OUTER ROW PARALLEL TO THE D OR E DIMENSION,  
RESPECTIVELY, SD OR SE = 0.000.  
80  
φb  
0.33  
---  
0.43  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN  
THE OUTER ROW, SD OR SE = e/2  
e
0.80 BSC.  
0.40 BSC.  
BALL PITCH  
SD / SE  
SOLDER BALL PLACEMENT  
8. NOT USED.  
(A3-A6,B3-B6,L3-L6,M3-M6) DEPOPULATED SOLDER BALLS  
9. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
3329 \ 16-038.25b  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
105  
P r e l i m i n a r y  
VBH064—64-Ball Fine-pitch Ball Grid Array 8 x 11.6 mm package  
(PL127J)  
0.05  
(2X)  
C
D1  
D
A
e
10  
9
e
7
8
SE  
7
6
E1  
E
5
4
3
2
1
M
L
K
J
H
G
F
E
D
C
B
A
A1 CORNER  
A1 CORNER  
INDEX MARK  
B
SD  
7
6
0.05  
(2X)  
C
10  
NXφb  
φ 0.08  
φ 0.15  
M
M
C
TOP VIEW  
C A  
B
BOTTOM VIEW  
0.10  
C
A2  
A
0.08  
C
C
A1  
SEATING PLANE  
SIDE VIEW  
NOTES:  
PACKAGE  
JEDEC  
VBH 064  
N/A  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
11.60 mm x 8.00 mm NOM  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010 (EXCEPT  
AS NOTED).  
SYMBOL  
MIN  
---  
NOM  
---  
MAX  
1.00  
---  
NOTE  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
A2  
D
OVERALL THICKNESS  
BALL HEIGHT  
5. SYMBOL "MD" IS THE BALL ROW MATRIX SIZE IN THE  
"D" DIRECTION.  
0.18  
0.62  
---  
SYMBOL "ME" IS THE BALL COLUMN MATRIX SIZE IN THE  
"E" DIRECTION.  
---  
0.76  
BODY THICKNESS  
BODY SIZE  
11.60 BSC.  
8.00 BSC.  
8.80 BSC.  
7.20 BSC.  
12  
N IS THE TOTAL NUMBER OF SOLDER BALLS.  
E
BODY SIZE  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
D1  
E1  
MD  
ME  
N
BALL FOOTPRINT  
BALL FOOTPRINT  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS  
A AND B AND DEFINE THE POSITION OF THE CENTER  
SOLDER BALL IN THE OUTER ROW.  
ROW MATRIX SIZE D DIRECTION  
ROW MATRIX SIZE E DIRECTION  
TOTAL BALL COUNT  
10  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN  
THE OUTER ROW PARALLEL TO THE D OR E DIMENSION,  
RESPECTIVELY, SD OR SE = 0.000.  
64  
φb  
0.33  
---  
0.43  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN  
THE OUTER ROW, SD OR SE = e/2  
e
0.80 BSC.  
0.40 BSC.  
BALL PITCH  
SD / SE  
SOLDER BALL PLACEMENT  
DEPOPULATED SOLDER BALLS  
8. NOT USED.  
(A2-9,B1-4,B7-10,C1-K1,  
M2-9,C10-K10,L1-4,L7-10,  
G5-6,F5-6)  
9. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
3330 \ 16-038.25b  
106  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
VBK048—48-Ball Fine-pitch Ball Grid Array 8.15 x 6.15 mm  
package (PL127J)  
0.10 (4X)  
D1  
A
D
6
5
4
3
2
1
7
e
SE  
E1  
E
H
G
F
E
D
C
B
A
INDEX MARK  
10  
6
B
A1 CORNER  
PIN A1  
CORNER  
7
φb  
φ 0.08  
φ 0.15  
SD  
M
M
C
TOP VIEW  
C A B  
BOTTOM VIEW  
0.10  
C
A2  
A
SEATING PLANE  
SIDE VIEW  
0.08  
C
C
A1  
NOTES:  
PACKAGE  
JEDEC  
VBK 048  
N/A  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
8.15 mm x 6.15 mm NOM  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010 (EXCEPT  
AS NOTED).  
SYMBOL  
MIN  
---  
NOM  
MAX  
1.00  
---  
NOTE  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
A2  
D
---  
OVERALL THICKNESS  
BALL HEIGHT  
5. SYMBOL "MD" IS THE BALL ROW MATRIX SIZE IN THE  
"D" DIRECTION.  
0.18  
0.62  
---  
SYMBOL "ME" IS THE BALL COLUMN MATRIX SIZE IN THE  
"E" DIRECTION.  
---  
8.15 BSC.  
6.15 BSC.  
5.60 BSC.  
4.00 BSC.  
8
0.76  
BODY THICKNESS  
BODY SIZE  
N IS THE TOTAL NUMBER OF SOLDER BALLS.  
E
BODY SIZE  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
D1  
E1  
MD  
ME  
N
BALL FOOTPRINT  
BALL FOOTPRINT  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS  
A AND B AND DEFINE THE POSITION OF THE CENTER  
SOLDER BALL IN THE OUTER ROW.  
ROW MATRIX SIZE D DIRECTION  
ROW MATRIX SIZE E DIRECTION  
TOTAL BALL COUNT  
6
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN  
THE OUTER ROW PARALLEL TO THE D OR E DIMENSION,  
RESPECTIVELY, SD OR SE = 0.000.  
48  
φb  
0.33  
---  
0.43  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN  
THE OUTER ROW, SD OR SE = e/2  
e
0.80 BSC.  
0.40 BSC.  
---  
BALL PITCH  
SD / SE  
SOLDER BALL PLACEMENT  
DEPOPULATED SOLDER BALLS  
8. NOT USED.  
9. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
3338 \ 16-038.25b  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
107  
P r e l i m i n a r y  
VBU056—56-Ball Fine-pitch BGA 7 x 9mm package (PL064J and  
PL032J)  
D1  
A
D
e
0.05  
(2X)  
C
8
7
6
SE  
7
5
4
E
B
E1  
3
e
2
1
H
G
F
E
D
C
B
A
A1 CORNER  
A1 CORNER  
INDEX MARK  
6
10  
NXφb  
SD  
7
φ 0.08  
φ 0.15  
M
C
0.05  
(2X)  
C
TOP VIEW  
M
C A B  
BOTTOM VIEW  
0.10  
C
C
A2  
A
0.08  
C
SEATING PLANE  
A1  
SIDE VIEW  
NOTES:  
PACKAGE  
JEDEC  
VBU 056  
N/A  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
9.00 mm x 7.00 mm NOM  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010 (EXCEPT  
AS NOTED).  
SYMBOL  
MIN  
---  
NOM  
---  
MAX  
NOTE  
OVERALL THICKNESS  
BALL HEIGHT  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
A2  
D
1.00  
---  
5. SYMBOL "MD" IS THE BALL ROW MATRIX SIZE IN THE  
"D" DIRECTION.  
0.17  
0.62  
---  
SYMBOL "ME" IS THE BALL COLUMN MATRIX SIZE IN THE  
"E" DIRECTION.  
---  
0.76  
BODY THICKNESS  
BODY SIZE  
9.00 BSC.  
7.00 BSC.  
5.60 BSC.  
5.60 BSC.  
8
N IS THE TOTAL NUMBER OF SOLDER BALLS.  
E
BODY SIZE  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
D1  
E1  
MD  
ME  
N
BALL FOOTPRINT  
BALL FOOTPRINT  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS  
A AND B AND DEFINE THE POSITION OF THE CENTER  
SOLDER BALL IN THE OUTER ROW.  
ROW MATRIX SIZE D DIRECTION  
ROW MATRIX SIZE E DIRECTION  
TOTAL BALL COUNT  
8
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN  
THE OUTER ROW PARALLEL TO THE D OR E DIMENSION,  
RESPECTIVELY, SD OR SE = 0.000.  
56  
φb  
0.35  
0.40  
0.45  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN  
THE OUTER ROW, SD OR SE = e/2  
e
0.80 BSC.  
0.40 BSC.  
BALL PITCH  
SD / SE  
SOLDER BALL PLACEMENT  
DEPOPULATED SOLDER BALLS  
8. NOT USED.  
A1,A8,D4,D5,E4,E5,H1,H8  
9. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
3440\ 16-038.25 \ 01.13.05  
108  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
TS056—20 x 14 mm, 56-pin TSOP (PL127J)  
A2  
2
0.10 C  
1
N
SEE DETAIL B  
-A-  
-B-  
5
E
e
N
2
N
2
+1  
5
A1  
D1  
4
C
D
SEATING  
PLANE  
B
A
0.08MM (0.0031")  
M
C
A-B  
6
S
B
b
7
SEE DETAIL A  
WITH PLATING  
c1  
(c)  
7
b1  
BASE METAL  
R
SECTION B-B  
e/2  
c
GAGE LINE  
0.25MM (0.0098") BSC  
0˚  
-X-  
X = A OR B  
PARALLEL TO  
SEATING PLANE  
L
DETAIL A  
DETAIL B  
NOTES:  
Package  
TS 056  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS (MM).  
(DIMENSIONING AND TOLERANCING CONFORMS TO ANSI Y14.5M-1982)  
MO-142 (B) EC  
Jedec  
1
2
3
4
MIN  
NOM MAX  
1.20  
Symbol  
PIN 1 IDENTIFIER FOR STANDARD PIN OUT (DIE UP).  
A
A1  
A2  
b1  
b
c1  
c
D
PIN 1 IDENTIFIER FOR REVERSE PIN OUT (DIE DOWN), INK OR LASER MARK.  
0.15  
0.05  
0.95  
0.17  
0.17  
0.10  
0.10  
1.00  
0.20  
1.05  
0.23  
0.27  
0.16  
0.21  
TO BE DETERMINED AT THE SEATING PLANE -C- . THE SEATING PLANE IS DEFINED AS THE PLANE OF  
CONTACT THAT IS MADE WHEN THE PACKAGE LEADS ARE ALLOWED TO REST FREELY ON A FLAT  
HORIZONTAL SURFACE.  
0.22  
5
6
DIMENSIONS D1 AND E DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTUSION IS  
0.15MM (.0059") PER SIDE.  
19.80 20.00 20.20  
18.30 18.40 18.50  
13.90 14.00 14.10  
DIMENSION b DOES NOT INCLUDE DAMBAR PROTUSION. ALLOWABLE DAMBAR PROTUSION SHALL BE  
0.08 (0.0031") TOTAL IN EXCESS OF b DIMENSION AT MAX. MATERIAL CONDITION. MINIMUM SPACE  
BETWEEN PROTRUSION AND AN ADJACENT LEAD TO BE 0.07 (0.0028").  
D1  
E
e
7
THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10MM (.0039") AND  
0.25MM (0.0098") FROM THE LEAD TIP.  
0.50 BASIC  
L
0
R
N
0.50  
0˚  
0.60  
3˚  
0.70  
5˚  
8
9
LEAD COPLANARITY SHALL BE WITHIN 0.10MM (0.004") AS MEASURED FROM THE SEATING PLANE.  
DIMENSION "e" IS MEASURED AT THE CENTERLINE OF THE LEADS.  
0.08  
0.20  
56  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
109  
P r e l i m i n a r y  
Revision Summary  
Revision A (January 29, 2004)  
Initial release.  
Revision A1 (February 12, 2004)  
Software Features  
Included backward compatibility with MBM29xx families.  
General Description  
48-ball BGA package is not supported and was removed.  
Ordering Information  
Model numbers for the 48-ball BGA configurations were removed.  
64-Ball Fine Pitch BGA—MCP Compatible  
An illustration was added to show the pin-out configuration.  
Table 20  
Added the description of 01h for address 4Fh and removed the 0004 data.  
Table 34  
Provided the time units of measure for the erase and programming  
performances.  
Revision A2 (February 17, 2004)  
Table 21, “Memory Array Command Definitions”  
Corrected typo in device ID.  
Revision A3 (February 25, 2004)  
Architectural Advantages  
Added 3V VIO for PL064J and PL032J devices.  
Ordering Information  
Corrected the voltage rating, ball configuration, and physical dimensions for  
model numbers 12 and 13.  
Connection Diagrams  
Removed the 64-ball, 8x9 mm diagram.  
Operating Ranges  
Clarified the supply voltages that apply to the PL127J/PL129J and all other PLxxxJ  
products.  
BGA Pin Capacitance  
Added information applicable to the CIN3 symbol.  
Package Drawings  
Removed the 9x8 mm package drawing.  
110  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  
P r e l i m i n a r y  
Revision A4 (February 27, 2004)  
Connection Diagrams  
Added the 56-ball 7x9 mm pinout diagram.  
Package Options  
Updated to include the 8 x 6 mm, 48-ball Fine pitch BGA and 7 x 9 mm, 56-ball  
Fine-pitch BGA options.  
Physical Dimensions  
Added the VBK048 package drawing.  
Revision A5 (March 15, 2004)  
Connection Diagrams  
Changed name of "VBH064—64-Ball Fine-pitch Ball Grid Array 8 x 11.6 mm pack-  
age (PL127J)" section.  
Revision A6 (August 30, 2004)  
Global  
Removed VIO, added TSOP, fixed Secured Silicon DQ bits.  
Product Selector Guide  
Updated specs in this table.  
Ordering Information  
Updated the Model Number offerings.  
Valid Combinations Table (128Mb)  
Corrected the Package Markings for the 64-ball FBGA packages.  
Added combinations for the TLC056 package on the PL064J and PL032J devices.  
Valid Combinations for BGA Packages (128Mb)  
Updated information in this table.  
Package Options  
Added the 7 x 9mm 56-ball package.  
Connection Diagram  
56-ball connection diagram  
Erase/Programming Performance Table  
Notes 1 and 2 corrected to reflect accurate temperature ranges and cycling.  
Revision A7 (March 2, 2005)  
Ordering Information  
Updated the Model Number offerings  
Valid Combinations table  
Updated the Package Types information.  
March 2, 2005 S29PL-J_00_A7  
S29PL-J  
111  
P r e l i m i n a r y  
Figure 1, “In-System Sector Protection/Sector Unprotection  
Algorithms,” on page 61  
Updated the illustration.  
Program Suspend/Program Resume Commands  
New section added. Made global changes to include program suspend/resume  
commands.  
Table 29 on page 94  
Added Erase Suspend Latency.  
Table 32 on page 103  
Updated table and added a notes section.  
Physical Dimensions  
Added the VBU056 package.  
Colophon  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary  
industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for any use that  
includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal  
injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control,  
medical life support system, missile launch control in weapon system), or (2) for any use where chance of failure is intolerable (i.e., submersible repeater and  
artificial satellite). Please note that Spansion will not be liable to you and/or any third party for any claims or damages arising in connection with above-men-  
tioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures  
by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other  
abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under  
the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior au-  
thorization by the respective government entity will be required for export of those products.  
Trademarks and Notice  
The contents of this document are subject to change without notice. This document may contain information on a Spansion LLC product under development  
by Spansion LLC. Spansion LLC reserves the right to change or discontinue work on any product without notice. The information in this document is provided  
as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement  
of third-party rights, or any other warranty, express, implied, or statutory. Spansion LLC assumes no liability for any damages of any kind arising out of the  
use of the information in this document.  
Copyright ©2004-2005 Spansion LLC. All rights reserved. Spansion, the Spansion logo, and MirrorBit are trademarks of Spansion LLC. Other company and  
product names used in this publication are for identification purposes only and may be trademarks of their respective companies.  
112  
S29PL-J  
S29PL-J_00_A7 March 2, 2005  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY