S29PL127J60BAI132 [CYPRESS]

Flash, 8MX16, 60ns, PDSO56, TSOP-56;
S29PL127J60BAI132
型号: S29PL127J60BAI132
厂家: CYPRESS    CYPRESS
描述:

Flash, 8MX16, 60ns, PDSO56, TSOP-56

光电二极管
文件: 总101页 (文件大小:7830K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S29PL-J  
128-/128-/64-/32-Mbit (8/8/4/2M x 16-Bit)  
3V, Flash with Enhanced VersatileIO™  
Distinctive Characteristics  
– Output voltage generated and input voltages tolerated on  
all control inputs and I/Os is determined by the voltage on  
the VIO pin  
– VIO options at 1.8 V and 3 V I/O for PL127J and PL129J  
devices  
Architectural Advantages  
128-/128-/64-/32-Mbit Page Mode devices  
– Page size of 8 words: Fast page read access from random  
locations within the page  
Single power supply operation  
– 3V VIO for PL064J and PL032J devices  
Secured Silicon Sector region  
– Full Voltage range: 2.7 to 3.6 V read, erase, and program  
operations for battery-powered applications  
Dual Chip Enable inputs (only in PL129J)  
– Two CE# inputs control selection of each half of the  
memory space  
Simultaneous Read/Write Operation  
– Data can be continuously read from one bank while  
executing erase/program functions in another bank  
– Zero latency switching from write to read operations  
FlexBank Architecture (PL127J/PL064J/PL032J)  
– 4 separate banks, with up to two simultaneous operations  
per device  
– Up to 128 words accessible through a command sequence  
– Up to 64 factory-locked words  
– Up to 64 customer-lockable words  
Both top and bottom boot blocks in one device  
Manufactured on 110-nm process technology  
Data Retention: 20 years typical  
Cycling Endurance: 1 million cycles per sector typical  
Performance Characteristics  
High Performance  
– Page access times as fast as 20 ns  
– Random access times as fast as 55 ns  
Power consumption (typical values at 10 MHz)  
– 45 mA active read current  
– Bank A:  
PL127J -16 Mbit (4 Kw 8 and 32 Kw 31)  
PL064J - 8 Mbit (4 Kw 8 and 32 Kw 15)  
PL032J - 4 Mbit (4 Kw 8 and 32 Kw 7)  
– Bank B:  
– 17 mA program/erase current  
– 0.2 A typical standby mode current  
PL127J - 48 Mbit (32 Kw 96)  
PL064J - 24 Mbit (32 Kw 48)  
PL032J - 12 Mbit (32 Kw 24)  
Software Features  
Software command-set compatible with JEDEC 42.4  
standard  
– Bank C:  
PL127J - 48 Mbit (32 Kw 96)  
PL064J - 24 Mbit (32 Kw 48)  
PL032J - 12 Mbit (32 Kw 24)  
– Backward compatible with Am29F, Am29LV, Am29DL, and  
AM29PDL families and MBM29QM/RM, MBM29LV,  
MBM29DL, MBM29PDL families  
– Bank D:  
CFI (Common Flash Interface) compliant  
– Provides device-specific information to the system,  
allowing host software to easily reconfigure for different  
Flash devices  
PL127J -16 Mbit (4 Kw 8 and 32 Kw 31)  
PL064J - 8 Mbit (4 Kw 8 and 32 Kw 15)  
PL032J - 4 Mbit (4 Kw 8 and 32 Kw 7)  
FlexBank Architecture (PL129J)  
– 4 separate banks, with up to two simultaneous operations  
per device  
Erase Suspend / Erase Resume  
– Suspends an erase operation to allow read or program  
operations in other sectors of same bank  
Program Suspend / Program Resume  
– Suspends a program operation to allow read operation  
from sectors other than the one being programmed  
Unlock Bypass Program command  
– CE#1 controlled banks:  
Bank 1A: PL129J - 16-Mbit (4Kw 8 and 32Kw 31)  
Bank 1B: PL129J - 48-Mbit (32Kw 96)  
– CE#2 controlled banks:  
Bank 2A: PL129J - 48-Mbit (32 Kw 96)  
Bank 2B: PL129J - 16-Mbit (4 Kw 8 and 32 Kw 31)  
Enhanced VersatileI/O (VIO) Control  
Reduces overall programming time when issuing multiple  
program command sequences  
Cypress Semiconductor Corporation  
Document Number: 002-00615 Rev. *B  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised August 10, 2016  
S29PL-J  
Hardware Features  
Password Sector Protection  
– A sophisticated sector protection method to lock  
combinations of individual sectors and sector groups to  
prevent program or erase operations within that sector  
using a user-defined 64-bit password  
Ready/Busy# pin (RY/BY#)  
– Provides a hardware method of detecting program or  
erase cycle completion  
Hardware reset pin (RESET#)  
Package options  
– Hardware method to reset the device to reading array data  
WP#/ ACC (Write Protect/Acceleration) input  
– At VIL, hardware level protection for the first and last two  
4K word sectors.  
– Standard discrete pinouts  
11 8 mm, 80-ball Fine-pitch BGA (PL127J) (VBG080)  
8.15 6.15 mm, 48-ball Fine pitch BGA (PL064J/PL032J)  
(VBK048)  
– At VIH, allows removal of sector protection  
– At VHH, provides accelerated programming in a factory  
setting  
– MCP-compatible pinout  
8 11.6 mm, 64-ball Fine-pitch BGA (PL127J)  
7 9 mm, 56-ball Fine-pitch BGA (PL064J and PL032J)  
Compatible with MCP pinout, allowing easy integration of  
RAM into existing designs  
Persistent Sector Protection  
– A command sector protection method to lock  
combinations of individual sectors and sector groups to  
prevent program or erase operations within that sector  
– Sectors can be locked and unlocked in-system at VCC  
level  
– 20 14 mm, 56-pin TSOP (PL127J) (TS056)  
Document Number: 002-00615 Rev. *B  
Page 2 of 105  
S29PL-J  
Contents  
1.  
General Description..................................................... 4  
14.6 Secured Silicon Sector Flash Memory Region ............. 55  
14.7 Hardware Data Protection............................................. 57  
2.  
Simultaneous Read/Write  
Operation with Zero Latency ...................................... 4  
15. Common Flash Memory Interface (CFI).................... 58  
2.1 Page Mode Features ..................................................... 5  
2.2 Standard Flash Memory Features ................................. 5  
16. Command Definitions................................................. 61  
16.1 Reading Array Data ...................................................... 61  
16.2 Reset Command........................................................... 61  
16.3 Autoselect Command Sequence .................................. 62  
16.4 Enter/Exit Secured Silicon Sector  
Command Sequence.................................................... 62  
16.5 Word Program Command Sequence............................ 63  
16.6 Chip Erase Command Sequence ................................. 64  
16.7 Sector Erase Command Sequence .............................. 65  
16.8 Erase Suspend/Erase Resume Commands ................. 66  
16.9 Program Suspend/Program Resume Commands ........ 67  
16.10Command Definitions Tables ....................................... 67  
3.  
4.  
5.  
6.  
7.  
Ordering Information................................................... 6  
Product Selector Guide............................................... 8  
Block Diagram.............................................................. 8  
Simultaneous Read/Write Block Diagram.................. 9  
Simultaneous Read/Write  
Block Diagram (PL129J)............................................ 10  
8.  
Connection Diagrams................................................ 11  
8.1 Special Package Handling Instructions........................ 11  
8.2 80-Ball Fine-Pitch BGA—PL127J ................................ 11  
8.3 64-Ball Fine-Pitch BGA—  
MCP Compatible—PL127J.......................................... 12  
8.4 48-Ball Fine-Pitch BGA,  
PL064J and PL032J..................................................... 13  
8.5 56-Pin TSOP 20 x 14 mm............................................ 14  
8.6 56-Ball Fine-Pitch Ball Grid Array,  
17. Write Operation Status ............................................... 71  
17.1 DQ7: Data# Polling....................................................... 71  
17.2 RY/BY#: Ready/Busy#.................................................. 72  
17.3 DQ6: Toggle Bit I .......................................................... 72  
17.4 DQ2: Toggle Bit II ......................................................... 74  
17.5 Reading Toggle Bits DQ6/DQ2..................................... 74  
17.6 DQ5: Exceeded Timing Limits ...................................... 74  
17.7 DQ3: Sector Erase Timer.............................................. 75  
PL064J and PL032J..................................................... 15  
9.  
Pin Description........................................................... 16  
18. Absolute Maximum Ratings....................................... 76  
19. Operating Ranges....................................................... 77  
20. DC Characteristics...................................................... 78  
10. Logic Symbol ............................................................. 17  
11. Device Bus Operations.............................................. 17  
11.1 Requirements for Reading Array Data......................... 18  
11.2 Simultaneous Read/Write Operation ........................... 19  
11.3 Writing Commands/Command Sequences.................. 19  
11.4 Standby Mode.............................................................. 20  
11.5 Automatic Sleep Mode................................................. 20  
11.6 RESET#: Hardware Reset Pin..................................... 20  
11.7 Output Disable Mode ................................................... 21  
11.8 Autoselect Mode .......................................................... 43  
11.9 Selecting a Sector Protection Mode............................. 47  
21. AC Characteristic........................................................ 79  
21.1 Test Conditions............................................................. 79  
21.2 Switching Waveforms ................................................... 80  
21.3 Read Operations........................................................... 80  
21.4 Reset ............................................................................ 82  
21.5 Erase/Program Operations........................................... 83  
21.6 Timing Diagrams........................................................... 84  
22. Protect/Unprotect........................................................ 88  
22.1 Controlled Erase Operations......................................... 90  
12. Sector Protection....................................................... 49  
12.1 Persistent Sector Protection ........................................ 49  
12.2 Password Sector Protection......................................... 49  
12.3 WP# Hardware Protection ........................................... 49  
12.4 Selecting a Sector Protection Mode............................. 49  
23. Pin Capacitance .......................................................... 93  
23.1 BGA Pin Capacitance................................................... 93  
23.2 TSOP Pin Capacitance................................................. 93  
24. Physical Dimensions.................................................. 94  
24.1 VBG080—80-Ball Fine-pitch  
Ball Grid Array 8 x 11 mm Package (PL127J) .............. 94  
24.2 VBH064—64-Ball Fine-pitch  
Ball Grid Array 8 x 11.6 mm package (PL127J)............ 95  
24.3 VBK048—48-Ball Fine-pitch  
13. Persistent Sector Protection..................................... 50  
13.1 Persistent Protection Bit (PPB).................................... 50  
13.2 Persistent Protection Bit Lock (PPB Lock)................... 50  
13.3 Dynamic Protection Bit (DYB)...................................... 50  
13.4 Persistent Sector Protection Mode Locking Bit............ 51  
Ball Grid Array 8.15 x 6.15 mm package  
(PL032J and PL064J)...................................................... 96  
24.4 VBU056—56-Ball Fine-pitch  
BGA 7 x 9mm package (PL064J and PL032J) ............. 97  
24.5 TS056—20 x 14 mm, 56-pin TSOP (PL127J)............... 98  
14. Password Protection Mode....................................... 52  
14.1 Password and Password Mode Locking Bit................. 52  
14.2 64-bit Password ........................................................... 52  
14.3 Write Protect (WP#)..................................................... 53  
14.4 High Voltage Sector Protection.................................... 53  
14.5 Temporary Sector Unprotect........................................ 55  
25. Revision Summary...................................................... 99  
Document Number: 002-00615 Rev. *B  
Page 3 of 101  
S29PL-J  
1. General Description  
The PL127J/PL129J/PL064J/PL032J is a 128/128/64/32 Mbit, 3.0 volt-only Page Mode and Simultaneous Read/Write Flash  
memory device organized as 8/8/4/2 Mwords. The devices are offered in the following packages:  
– 11 mm 8 mm, 80-ball Fine-pitch BGA standalone (PL127J)  
– 8 mm 11.6 mm, 64-ball Fine-pitch BGA multi-chip compatible (PL127J)  
– 8.15 mm 6.15 mm, 48-ball Fine-pitch BGA standalone (PL064J/PL032J)  
– 7 mm 9 mm, 56-ball Fine-pitch BGA multi-chip compatible (PL064J and PL032J)  
– 20 mm 14 mm, 56-pin TSOP (PL127J)  
The word-wide data (x16) appears on DQ15-DQ0. This device can be programmed in-system or in standard EPROM programmers.  
A 12.0 V VPP is not required for write or erase operations.  
2. Simultaneous Read/Write Operation with Zero Latency  
The Simultaneous Read/Write architecture provides simultaneous operation by dividing the memory space into 4 banks, which  
can be considered to be four separate memory arrays as far as certain operations are concerned. The device can improve overall  
system performance by allowing a host system to program or erase in one bank, then immediately and simultaneously read from  
another bank with zero latency (with two simultaneous operations operating at any one time). This releases the system from waiting  
for the completion of a program or erase operation, greatly improving system performance.  
The device can be organized in both top and bottom sector configurations. The banks are organized as follows:  
Bank  
PL127J Sectors  
16 Mbit (4 Kw 8 and 32 Kw 31)  
48 Mbit (32 Kw 96)  
48 Mbit (32 Kw 96)  
16 Mbit (4 Kw x 8 and 32 Kw 31)  
PL064J Sectors  
8 Mbit (4 Kw 8 and 32 Kw 15)  
24 Mbit (32 Kw 48)  
24 Mbit (32 Kw 48)  
8 Mbit (4 Kw 8 and 32 Kw 15)  
PL032J Sectors  
4 Mbit (4 Kw 8 and 32 Kw 7)  
12 Mbit (32 Kw 24)  
12 Mbit (32 Kw 24)  
4 Mbit (4 Kw 8 and 32 Kw 7)  
A
B
C
D
Bank  
1A  
PL129J Sectors  
CE# Control  
CE1#  
16 Mbit (4 Kw 8 and 32 Kw 31)  
48 Mbit (32 Kw 96)  
1B  
CE1#  
2A  
48 Mbit (32 Kw 96)  
CE2#  
2B  
16 Mbit (4 Kw 8 and 32 Kw 31)  
CE2#  
Document Number: 002-00615 Rev. *B  
Page 4 of 101  
S29PL-J  
2.1  
Page Mode Features  
The page size is 8 words. After initial page access is accomplished, the page mode operation provides fast read access speed of  
random locations within that page.  
2.2  
Standard Flash Memory Features  
The device requires a single 3.0 volt power supply (2.7 V to 3.6 V) for both read and write functions. Internally generated and  
regulated voltages are provided for the program and erase operations.  
The device is entirely command set compatible with the JEDEC 42.4 single-power-supply Flash standard. Commands are written  
to the command register using standard microprocessor write timing. Register contents serve as inputs to an internal state-machine  
that controls the erase and programming circuitry. Write cycles also internally latch addresses and data needed for the programming  
and erase operations. Reading data out of the device is similar to reading from other Flash or EPROM devices.  
Device programming occurs by executing the program command sequence. The Unlock Bypass mode facilitates faster  
programming times by requiring only two write cycles to program data instead of four. Device erasure occurs by executing the erase  
command sequence.  
The host system can detect whether a program or erase operation is complete by reading the DQ7 (Data# Polling) and DQ6 (toggle)  
status bits. After a program or erase cycle has been completed, the device is ready to read array data or accept another command.  
The sector erase architecture allows memory sectors to be erased and reprogrammed without affecting the data contents of other  
sectors. The device is fully erased when shipped from the factory.  
Hardware data protection measures include a low VCC detector that automatically inhibits write operations during power  
transitions. The hardware sector protection feature disables both program and erase operations in any combination of sectors of  
memory. This can be achieved in-system or via programming equipment.  
The Erase Suspend/Erase Resume feature enables the user to put erase on hold for any period of time to read data from, or  
program data to, any sector that is not selected for erasure. True background erase can thus be achieved. If a read is needed from  
the Secured Silicon Sector area (One Time Program area) after an erase suspend, then the user must use the proper command  
sequence to enter and exit this region.  
The Program Suspend/Program Resume feature enables the user to hold the program operation to read data from any sector that  
is not selected for programming. If a read is needed from the Secured Silicon Sector area, Persistent Protection area, Dynamic  
Protection area, or the CFI area, after a program suspend, then the user must use the proper command sequence to enter and exit  
this region.  
The device offers two power-saving features. When addresses have been stable for a specified amount of time, the device enters  
the automatic sleep mode. The system can also place the device into the standby mode. Power consumption is greatly reduced in  
both these modes. The device electrically erases all bits within a sector simultaneously via Fowler-Nordheim tunneling. The data is  
programmed using hot electron injection.  
Document Number: 002-00615 Rev. *B  
Page 5 of 101  
S29PL-J  
3. Ordering Information  
The order number (Valid Combination) is formed by a valid combinations of the following:  
S29PL-J  
55  
BA  
W
00  
0
Packing Type  
0 = Tray  
1 = Tube  
2 = 7-inch Tape and Reel  
3 = 13-inch Tape and Reel  
Model Number (Additional Ordering Options)  
00 = 3.0V V , 80-ball 11 x 8 mm FBGA (VBG080)  
IO  
01 = 1.8V V , 80-ball 11 x 8 mm FBGA (VBG080)  
IO  
02 = 3.0V V , 64-ball 8 x 11.6 mm FBGA (VBH064)  
IO  
12 = 3.0V V , 48-ball 8 x 6 mm FBGA (VBK048)  
IO  
13 = 3.0V V , 56-pin 20 x 14 mm TSOP (TS056)  
IO  
14 = 1.8V V , 56-pin 20 x 14 mm TSOP (TS056)  
IO  
15 = 3.0V V , 56-ball 7 x 9 mm FBGA (VBU056)  
IO  
Temperature Range  
W = Wireless (–25°C to +85°C)  
I = Industrial (–40°C to +85°C)  
Package Type  
BA = Fine-Pitch Grid Array (FBGA),  
Standard  
BF = Fine-Pitch Grid Array (FBGA)  
Lead (Pb)-free  
TA = Thin Small Outline Package (TSOP) Standard Pinout  
Standard  
TF = Thin Small Outline Package (TSOP) Standard Pinout  
Lead (Pb)-free  
Clock Speed  
55 = 55 ns (Contact factory for availability)  
60 = 60 ns  
65 = 65 ns  
70 = 70 ns  
80 = 80 ns  
Device Number/Description  
128 Mbit (8 M x 16-Bit), 64 Megabit (4 M x 16-Bit), 32 Megabit (2 M x 16-Bit)  
CMOS Flash Memory, Simultaneous-Read/Write, Page-Mode Flash Memory,  
3.0 V-only Read, Program, and Erase  
Document Number: 002-00615 Rev. *B  
Page 6 of 101  
S29PL-J  
Valid Combinations to be Supported for this Device  
128 Mb Products Based on 110 nm Floating Gate Technology  
Device Number/  
Description  
Package  
Type  
Temperature  
Range  
Additional  
Ordering Options  
CE#  
Configuration  
Speed (ns)  
60, 65, 70  
80  
S29PL127J  
S29PL127J  
S29PL127J  
BA, BF, TA, TF  
BA, BF  
W, I  
W, I  
W, I  
00, 13  
01  
Single CE#  
Single CE#  
Single CE#  
80  
TA, TF  
14  
64 Mb Products Based on 110 nm Floating Gate Technology  
Device Number/  
Description  
Package  
Type  
Temperature  
Range  
Additional  
Ordering Options  
Speed (ns)  
S29PL064J  
55, 60, 70  
BA, BF  
W, I  
12, 15  
32 Mb Products Based on 110 nm Floating Gate Technology  
Device Number/  
Description  
Additional Ordering  
Options  
Speed (ns)  
Package Type Temperature Range  
BA, BF W, I  
S29PL032J  
55, 60, 70  
12, 15  
Valid Combinations for BGA Packages  
Order Number (Note 1)  
Speed (ns)  
55, 60, 65, 70 (3)  
80  
VIO Range  
2.7–3.6  
PL129J, PL127J,PL064J, PL032J  
PL129J, PL127J  
1.65–1.95  
Notes  
1. Please contact the factory for PL129J availability.  
2. BGA package marking omits leading S29 and packing type designator from ordering part number.  
3. 55 ns speed only supported for PL032J and PL127J.  
Valid Combinations for TSOP Packages  
Order Number  
Speed (ns)  
VIO Range  
S29PL127J  
60, 70  
2.7–3.6  
Note  
TSOP package markings omit packing type designator from ordering part number.  
Document Number: 002-00615 Rev. *B  
Page 7 of 101  
S29PL-J  
4. Product Selector Guide  
Part Number   
S29PL032J/S29PL064J/S29PL0127J/S29PL129J  
V
CC,VIO = 2.7 V – 3.6 V  
55 (See Note)  
60  
65  
70  
VCC = 2.7 V – 3.6 V,  
Speed Option  
VIO = 1.65 V – 1.95 V  
80  
(PL127J and PL129J only)  
Max Access Time, ns (tACC  
Max CE# Access, ns (tCE  
Max Page Access, ns (tPACC  
)
55 (See Note)  
20 (See Note)  
60  
25  
65  
80  
30  
70  
30  
)
)
Max OE# Access, ns (tOE  
)
Note  
55 ns speed bin only supported for PL032J and PL064J.  
5. Block Diagram  
DQ15–DQ0  
RY/BY#  
V
CC  
V
SS  
Sector  
Switches  
V
IO  
Input/Output  
Buffers  
RESET#  
WE#  
Erase Voltage  
Generator  
State  
Control  
Command  
Register  
PGM Voltage  
Generator  
Chip Enable  
Output Enable  
Logic  
CE#  
OE#  
Data Latch  
Y-Gating  
Y-Decoder  
X-Decoder  
V
CC  
Detector  
Timer  
Amax–A3  
Cell Matrix  
A2–A0  
Notes  
1. RY/BY# is an open drain output.  
2. Amax = A22 (PL127J), A21 (PL129J and PL064J), A20 (PL032J)  
3. For PL129J, there are two CE# (CE1# and CE2#).  
Document Number: 002-00615 Rev. *B  
Page 8 of 101  
S29PL-J  
6. Simultaneous Read/Write Block Diagram  
V
V
CC  
OE#  
SS  
Mux  
Bank A  
Bank A Address  
Amax–A0  
X-Decoder  
Bank B Address  
RY/BY#  
Bank B  
X-Decoder  
Amax–A0  
RESET#  
STATE  
CONTROL  
&
COMMAND  
REGISTER  
Status  
WE#  
DQ15–DQ0  
CE#  
WP#/ACC  
Control  
Mux  
X-Decoder  
Bank C  
DQ0–DQ15  
Bank C Address  
Bank D Address  
X-Decoder  
Bank D  
Amax–A0  
Mux  
Note  
Amax = A22 (PL127J), A21 (PL064J), A20 (PL032J)  
Document Number: 002-00615 Rev. *B  
Page 9 of 101  
S29PL-J  
7. Simultaneous Read/Write Block Diagram (PL129J)  
V
V
CC  
OE#  
SS  
CE1#=L  
CE2#=H  
Mux  
Bank 1A  
Bank 1A Address  
Bank 1B Address  
A21–A0  
X-Decoder  
RY/BY#  
Bank 1B  
X-Decoder  
A21–A0  
RESET#  
WE#  
CE1#  
STATE  
CONTROL  
&
Status  
DQ15–DQ0  
CE2#  
COMMAND  
REGISTER  
Control  
Mux  
WP#/ACC  
CE1#=H  
CE2#=L  
X-Decoder  
Bank 2A  
DQ0–DQ15  
Bank 2A Address  
Bank 2B Address  
X-Decoder  
Bank 2B  
A21–A0  
Mux  
Note  
Amax = A21 (PL129J)  
Document Number: 002-00615 Rev. *B  
Page 10 of 101  
S29PL-J  
8. Connection Diagrams  
8.1  
Special Package Handling Instructions  
TSOP, BGA, PDIP, SSOP, and PLCC Packages  
8.1.1  
Special handling is required for Flash Memory products in molded packages.  
The package and/or data integrity may be compromised if the package body is exposed to temperatures above 150°C for prolonged  
periods of time.  
8.1.2  
FBGA Packages  
Special handling is required for Flash Memory products in FBGA packages.  
Flash memory devices in FBGA packages may be damaged if exposed to ultrasonic cleaning methods. The package and/or data  
integrity may be compromised if the package body is exposed to temperatures above 150°C for prolonged periods of time.  
8.2  
80-Ball Fine-Pitch BGA—PL127J  
Figure 8.1 80-Ball Fine-Pitch BGA, Top View, Balls Facing Down—PL127J  
A8  
NC  
B8  
NC  
C8  
NC  
D8  
E8  
F8  
G8  
H8  
NC  
J8  
K8  
NC  
L8  
M8  
NC  
A22  
NC  
V
IO  
V
SS  
NC  
NC  
A7  
NC  
B7  
NC  
C7  
D7  
E7  
F7  
G7  
H7  
NC  
J7  
K7  
L7  
M7  
NC  
A13  
A12  
A14  
A15  
A16  
DQ15  
V
SS  
NC  
C6  
A9  
D6  
A8  
E6  
F6  
G6  
H6  
J6  
K6  
A10  
A11  
DQ7  
DQ14  
DQ13  
DQ6  
C5  
D5  
E5  
F5  
G5  
H5  
J5  
K5  
WE#  
RESET#  
A21  
A19  
DQ5  
DQ12  
V
DQ4  
CC  
C4  
D4  
E4  
F4  
G4  
H4  
J4  
K4  
RY/BY# WP#/ACC  
A18  
A20  
DQ2  
DQ10  
DQ11  
DQ3  
C3  
A7  
D3  
E3  
A6  
F3  
A5  
G3  
H3  
J3  
K3  
A17  
DQ0  
DQ8  
DQ9  
DQ1  
A2  
NC  
B2  
NC  
C2  
A3  
D2  
A4  
E2  
A2  
F2  
A1  
G2  
A0  
H2  
J2  
K2  
L2  
M2  
NC  
CE#  
OE#  
V
SS  
NC  
A1  
NC  
B1  
NC  
C1  
NC  
D1  
NC  
E1  
F1  
G1  
NC  
H1  
J1  
K1  
NC  
L1  
M1  
NC  
NC  
NC  
V
IO  
NC  
NC  
Document Number: 002-00615 Rev. *B  
Page 11 of 101  
S29PL-J  
8.3  
64-Ball Fine-Pitch BGA—MCP Compatible—PL127J  
Figure 8.2 64-Ball Fine-Pitch BGA, MCP Compatible, Top View, Balls Facing Down—PL127J  
A1  
NC  
A10  
NC  
B5  
B6  
RFU  
RFU  
C3  
A7  
C4  
C5  
C6  
C7  
A8  
C8  
A11  
RFU  
WP#/ACC WE#  
D2  
A3  
D3  
A6  
D4  
D5  
D6  
D7  
D8  
D9  
A12  
A15  
RFU  
RESET# RFU  
A19  
E2  
A2  
E3  
A5  
E4  
E5  
E6  
E7  
A9  
E8  
E9  
RY/BY # A20  
A13  
A21  
A18  
F2  
A1  
F3  
A4  
F4  
F7  
F8  
F9  
A17  
A10  
A14  
A22  
G2  
A0  
G3  
G4  
G7  
G8  
G9  
VSS  
DQ1  
DQ6  
RFU  
A16  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
CE#f1  
OE#  
DQ9  
DQ3  
DQ4  
DQ13  
DQ15  
VCCf  
J2  
J3  
J4  
DQ10  
K4  
J5  
VCCf  
K5  
J6  
J7  
DQ12  
K7  
J8  
J9  
RFU  
DQ0  
K3  
RFU  
K6  
DQ7  
K8  
VSS  
DQ8  
DQ2  
DQ11  
RFU  
DQ5  
DQ14  
L5  
L6  
RFU  
RFU  
M1  
NC  
M10  
NC  
Document Number: 002-00615 Rev. *B  
Page 12 of 101  
S29PL-J  
8.4  
48-Ball Fine-Pitch BGA, PL064J and PL032J  
Figure 8.3 48-Ball Fine-Pitch BGA, Top View, Balls Facing Down—PL064J—PL032J: C4(A21)=NC  
A6  
B6  
C6  
D6  
E6  
F6  
G6  
H6  
VSS  
A13  
A12  
A14  
A15  
A16  
NC  
DQ15  
A5  
A9  
B5  
A8  
C5  
D5  
E5  
F5  
G5  
H5  
A10  
A11  
DQ7  
DQ14  
DQ13  
DQ6  
A4  
B4  
C4  
D4  
E4  
F4  
G4  
H4  
WE#  
RESET#  
A21  
A19  
DQ5  
DQ12  
V
DQ4  
CC  
A3  
B3  
C3  
D3  
E3  
F3  
G3  
H3  
RY/BY# WP#/ACC  
A18  
A20  
DQ2  
DQ10  
DQ11  
DQ3  
A2  
A7  
B2  
C2  
A6  
D2  
A5  
E2  
F2  
G2  
H2  
A17  
DQ0  
DQ8  
DQ9  
DQ1  
A1  
A3  
B1  
A4  
C1  
A2  
D1  
A1  
E1  
A0  
F1  
G1  
H1  
CE#  
OE#  
VSS  
Document Number: 002-00615 Rev. *B  
Page 13 of 101  
S29PL-J  
8.5  
56-Pin TSOP 20 x 14 mm  
Figure 8.4 56-Pin TSOP 20 x 14 mm Configuration—PL127J  
RESET#  
RY/BY#  
A0  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
WP#/ACC  
WE#  
NC  
A22  
A21  
A20  
OE#  
NC  
CE#  
VSS  
DQ15  
DQ14  
DQ13  
DQ12  
VSSQ  
VCCQ  
DQ11  
DQ10  
DQ9  
DQ8  
VCC  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
A1  
A2  
A3  
A4  
A5  
VCC  
DQ0  
DQ1  
DQ2  
DQ3  
VSSQ  
VCCQ  
DQ4  
DQ5  
DQ6  
DQ7  
VSS  
NC  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
A19  
A18  
A17  
A16  
A15  
A14  
A13  
For this family of products, a single multi-chip compatible package (TSOP) is offered for each density to allow both standalone and  
multi-chip qualification using a single, adaptable package. This new methodology allows package standardization resulting in faster  
development. The multi-chip compatible package includes all the pins required for standalone device operation and verification. In  
addition, extra pins are included for insertion of common data storage or logic devices to be used for multi-chip products. If a  
standalone device is required, the extra multi-chip specific pins are not connected and the standalone device operates normally. The  
multi-chip compatible package sizes were chosen to serve the largest number of combinations possible. There are only a few cases  
where a larger package size would be required to accommodate the multi-chip combination. This multi-chip compatible package set  
does not allow for direct package migration from the Am29BDS128H, Am29BDS128G, Am29BDS640G products, which use legacy  
standalone packages.  
Document Number: 002-00615 Rev. *B  
Page 14 of 101  
S29PL-J  
8.6  
56-Ball Fine-Pitch Ball Grid Array, PL064J and PL032J  
Figure 8.5 56-ball Fine-Pitch BGA, Top View, Balls Facing Down,—PL064J and PL032J,  
A2  
A7  
B2  
A6  
C2  
A3  
RFU  
B3  
A4  
WP/ACC  
B4  
A5  
WE#  
B5  
A6  
A8  
A7  
A11  
B7  
B1  
A3  
C1  
A2  
D1  
A1  
B6  
B8  
A15  
C8  
RFU  
C3  
RST#  
C4  
RFU  
C5  
A19  
C6  
A12  
C7  
A5  
D2  
A4  
A18  
D3  
RY/BY#  
A20  
A9  
D6  
A13  
D7  
A21  
D8  
A17  
A10  
A14  
RFU  
E1  
A0  
E2  
E3  
E6  
E7  
E8  
VSS  
DQ1  
DQ6  
RFU  
A16  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
CE1#f  
OE#  
DQ9  
DQ3  
DQ4  
DQ13  
DQ15  
RFU  
G8  
G1  
G2  
G3  
DQ10  
H3  
G4  
G5  
G6  
G7  
RFU  
DQ0  
VCCf  
RFU  
DQ12  
DQ7  
VSS  
H7  
H2  
H4  
H6  
H5  
DQ14  
DQ8  
DQ2  
DQ5  
DQ11  
RFU  
Document Number: 002-00615 Rev. *B  
Page 15 of 101  
S29PL-J  
9. Pin Description  
Table 9.1 Pin Description  
Amax–A0  
DQ15–DQ0  
CE#  
Address bus  
16-bit data inputs/outputs/float  
Chip Enable Inputs  
Output Enable Input  
Write Enable  
OE#  
WE#  
VSS  
Device Ground  
Not Connected. No device internal signal is connected to the package connector nor is there any future  
plan to use the connector for a signal. The connection may safely be used for routing space for a signal  
on a Printed Circuit Board (PCB).  
NC  
Reserved for Future Use. Not currently connected internally but the pin/ball location should be left  
unconnected and unused by PCB routing channel for future compatibility. The pin/ball may be used by a  
signal in the future.  
RFU  
Ready/Busy output and open drain.  
When RY/BY#= VIH, the device is ready to accept read operations and commands. When RY/BY#= VOL  
the device is either executing an embedded algorithm or the device is executing a hardware reset  
operation.  
,
RY/BY#  
Write Protect/Acceleration Input.  
When WP#/ACC= VIL, the highest and lowest two 4K-word sectors are write protected regardless of  
other sector protection configurations. When WP#/ACC= VIH, these sector are unprotected unless the  
DYB or PPB is programmed. When WP#/ACC= VHH, program and erase operations are accelerated.  
WP#/ACC  
VIO  
Input/Output Buffer Power Supply  
(1.65 V to 1.95 V (for PL127J and PL129J) or 2.7 V to 3.6 V (for all PLxxxJ devices))  
Chip Power Supply  
VCC  
(2.7 V to 3.6 V or 2.7 to 3.3 V)  
RESET#  
Hardware Reset Pin  
Chip Enable Inputs.  
CE1#, CE2#  
CE1# controls the 64Mb in Banks 1A and 1B.  
CE2# controls the 64 Mb in Banks 2A and 2B. (Only for PL129J)  
Note  
Amax = A22 (PL127J), A21 (PL129J and PL064J), A20 (PL032J)  
Document Number: 002-00615 Rev. *B  
Page 16 of 101  
S29PL-J  
10. Logic Symbol  
max+1  
Amax–A0  
16  
DQ15–DQ0  
CE#  
OE#  
WE#  
WP#/ACC  
RESET#  
RY/BY#  
V
(V  
)
CCQ  
IO  
11. Device Bus Operations  
This section describes the requirements and use of the device bus operations, which are initiated through the internal command  
register. The command register itself does not occupy any addressable memory location. The register is a latch used to store the  
commands, along with the address and data information needed to execute the command. The contents of the register serve as  
inputs to the internal state machine. The state machine outputs dictate the function of the device. Table 11.1 lists the device bus  
operations, the inputs and control levels they require, and the resulting output. The following subsections describe each of these  
operations in further detail.  
Table 11.1 PL127J Device Bus Operations  
WP#/  
ACC  
Addresses  
(Amax–A0)  
Operation  
CE#  
OE#  
WE#  
RESET#  
DQ15–DQ0  
Read  
Write  
L
L
H
H
X
AIN  
AIN  
DOUT  
X
L
H
X
L
H
DIN  
(Note 2)  
X
Standby  
VIO0.3 V  
X
VIO 0.3 V  
X
High-Z  
(Note 2)  
Output Disable  
Reset  
L
H
X
H
X
H
L
X
X
X
X
High-Z  
High-Z  
X
Temporary Sector Unprotect (High  
Voltage)  
X
X
X
VID  
X
AIN  
DIN  
Document Number: 002-00615 Rev. *B  
Page 17 of 101  
S29PL-J  
Table 11.2 PL129J Device Bus Operations  
Addresses  
(A21–A0)  
Operation  
CE1#  
CE2#  
OE#  
WE#  
RESET# WP#/ACC  
DQ15–DQ0  
L
H
L
H
L
Read  
L
H
H
H
X
AIN  
DOUT  
H
L
Write  
H
X
L
X (Note 2)  
X
AIN  
X
DIN  
H
VIO 0.3  
Standby  
VIO0.3 V VIO 0.3 V  
X
High-Z  
V
Output Disable  
Reset  
L
L
H
X
H
X
H
L
X
X
X
X
High-Z  
High-Z  
X
X
Temporary Sector Unprotect  
(High Voltage)  
X
X
X
X
VID  
X
AIN  
DIN  
Legend:  
L = Logic Low = V , H = Logic High = V , V = 11.5–12.5 V, V = 8.5–9.5 V, X = Don’t Care, SA = Sector Address, A = Address In, D = Data In, D = Data Out  
OUT  
IL  
IH  
ID  
HH  
IN  
IN  
Notes  
1. The sector protect and sector unprotect functions may also be implemented via programming equipment. See High Voltage Sector Protection on page 53.  
2. WP#/ACC must be high when writing to upper two and lower two sectors.  
11.1 Requirements for Reading Array Data  
To read array data from the outputs, the system must drive the OE# and appropriate CE# pins (For PL129J - CE1#/CE2# pins) to  
VIL. In PL129J, CE1# and CE2# are the power control and select the lower (CE1#) or upper (CE2#) halves of the device. CE# is the  
power control. OE# is the output control and gates array data to the output pins. WE# should remain at VIH.  
The internal state machine is set for reading array data upon device power-up, or after a hardware reset. This ensures that no  
spurious alteration of the memory content occurs during the power transition. No command is necessary in this mode to obtain array  
data. Standard microprocessor read cycles that assert valid addresses on the device address inputs produce valid data on the  
device data outputs. Each bank remains enabled for read access until the command register contents are altered.  
Refer to Table 22.3 on page 91 for timing specifications and to Figure 21.3 on page 81 for the timing diagram. ICC1 in the DC  
Characteristics table represents the active current specification for reading array data.  
11.1.1  
Random Read (Non-Page Read)  
Address access time (tACC) is equal to the delay from stable addresses to valid output data. The chip enable access time (tCE) is the  
delay from the stable addresses and stable CE# to valid data at the output inputs. The output enable access time is the delay from  
the falling edge of the OE# to valid data at the output inputs (assuming the addresses have been stable for at least tACC–tOE time).  
11.1.2  
Page Mode Read  
The device is capable of fast page mode read and is compatible with the page mode Mask ROM read operation. This mode provides  
faster read access speed for random locations within a page. Address bits Amax–A3 select an 8 word page, and address bits A2–A0  
select a specific word within that page. This is an asynchronous operation with the microprocessor supplying the specific word  
location.  
The random or initial page access is tACC or tCE and subsequent page read accesses (as long as the locations specified by the  
microprocessor falls within that page) is equivalent to tPACC. When CE# (CE1# and CE#2 in PL129J) is deasserted (=VIH), the  
reassertion of CE# (CE1# or CE#2 in PL129J) for subsequent access has access time of tACC or tCE. Here again, CE# (CE1# /CE#2  
in PL129J)selects the device and OE# is the output control and should be used to gate data to the output inputs if the device is  
selected. Fast page mode accesses are obtained by keeping Amax–A3 constant and changing A2–A0 to select the specific word  
within that page.  
Document Number: 002-00615 Rev. *B  
Page 18 of 101  
S29PL-J  
Table 11.3 Page Select  
Word  
A2  
0
A1  
0
A0  
0
Word 0  
Word 1  
Word 2  
Word 3  
Word 4  
Word 5  
Word 6  
Word 7  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
11.2 Simultaneous Read/Write Operation  
In addition to the conventional features (read, program, erase-suspend read, erase-suspend program, and program-suspend read),  
the device is capable of reading data from one bank of memory while a program or erase operation is in progress in another bank of  
memory (simultaneous operation). The bank can be selected by bank addresses (PL127J: A22–A20, PL129J and PL064J: A21–  
A19, PL032J: A20–A18) with zero latency.  
The simultaneous operation can execute multi-function mode in the same bank.  
Table 11.4 Bank Select  
Bank  
PL127J: A22–A20, PL064J: A21–A19, PL032J: A20–A18  
Bank A  
Bank B  
Bank C  
Bank D  
000  
001, 010, 011  
100, 101, 110  
111  
Bank  
CE1#  
CE2#  
PL129J: A21–A20  
Bank 1A  
Bank 1B  
Bank 2A  
Bank 2B  
0
0
1
1
1
1
0
0
00  
01, 10, 11  
00, 01, 10  
11  
11.3 Writing Commands/Command Sequences  
To write a command or command sequence (which includes programming data to the device and erasing sectors of memory), the  
system must drive WE# and CE# (CE1# or CE#2 in PL129J) to VIL, and OE# to VIH.  
The device features an Unlock Bypass mode to facilitate faster programming. Once a bank enters the Unlock Bypass mode, only  
two write cycles are required to program a word, instead of four. Word Program Command Sequence on page 63 has details on  
programming data to the device using both standard and Unlock Bypass command sequences.  
An erase operation can erase one sector, multiple sectors, or the entire device. Table 11.4 on page 19 indicates the set of address  
space that each sector occupies. A “bank address” is the set of address bits required to uniquely select a bank. Similarly, a “sector  
address” refers to the address bits required to uniquely select a sector. Command Definitions on page 61 has details on erasing a  
sector or the entire chip, or suspending/resuming the erase operation.  
ICC2 in the DC Characteristics on page 78 represents the active current specification for the write mode. See the timing specification  
tables and timing diagrams in section Reset on page 82 for write operations.  
Document Number: 002-00615 Rev. *B  
Page 19 of 101  
S29PL-J  
11.3.1  
Accelerated Program Operation  
The device offers accelerated program operations through the ACC function. This function is primarily intended to allow faster  
manufacturing throughput at the factory.  
If the system asserts VHH on this pin, the device automatically enters the aforementioned Unlock Bypass mode, temporarily  
unprotects any protected sectors, and uses the higher voltage on the pin to reduce the time required for program operations. The  
system would use a two-cycle program command sequence as required by the Unlock Bypass mode. Removing VHH from the WP#/  
ACC pin returns the device to normal operation. Note that VHH must not be asserted on WP#/ACC for operations other than  
accelerated programming, or device damage may result. In addition, the WP#/ACC pin should be raised to VCC when not in use.  
That is, the WP#/ACC pin should not be left floating or unconnected; inconsistent behavior of the device may result.  
11.3.2  
Autoselect Functions  
If the system writes the autoselect command sequence, the device enters the autoselect mode. The system can then read  
autoselect codes from the internal register (which is separate from the memory array) on DQ15–DQ0. Standard read cycle timings  
apply in this mode. Refer to the Table 11.9, Secured Silicon Sector Addresses on page 42 and Autoselect Command Sequence  
on page 62 for more information.  
11.4 Standby Mode  
When the system is not reading or writing to the device, it can place the device in the standby mode. In this mode, current  
consumption is greatly reduced, and the outputs are placed in the high impedance state, independent of the OE# input.  
The device enters the CMOS standby mode when the CE# (CE1#,CE#2 in PL129J) and RESET# pins are both held at VIO ± 0.3 V.  
(Note that this is a more restricted voltage range than VIH.) If CE# (CE1#,CE#2 in PL129J) and RESET# are held at VIH, but not  
within VIO ± 0.3 V, the device will be in the standby mode, but the standby current will be greater. The device requires standard  
access time (tCE) for read access when the device is in either of these standby modes, before it is ready to read data.  
If the device is deselected during erasure or programming, the device draws active current until the operation is completed.  
ICC3 in DC Characteristics on page 78 represents the CMOS standby current specification.  
11.5 Automatic Sleep Mode  
The automatic sleep mode minimizes Flash device energy consumption. The device automatically enables this mode when  
addresses remain stable for tACC + 30 ns. The automatic sleep mode is independent of the CE#, WE#, and OE# control signals.  
Standard address access timings provide new data when addresses are changed. While in sleep mode, output data is latched and  
always available to the system. Note that during automatic sleep mode, OE# must be at VIH before the device reduces current to the  
stated sleep mode specification. ICC5 in DC Characteristics on page 78 represents the automatic sleep mode current specification.  
11.6 RESET#: Hardware Reset Pin  
The RESET# pin provides a hardware method of resetting the device to reading array data. When the RESET# pin is driven low for  
at least a period of tRP, the device immediately terminates any operation in progress, tristates all output pins, and ignores all read/  
write commands for the duration of the RESET# pulse. The device also resets the internal state machine to reading array data. The  
operation that was interrupted should be reinitiated once the device is ready to accept another command sequence, to ensure data  
integrity.  
Current is reduced for the duration of the RESET# pulse. When RESET# is held at VSS±0.3 V, the device draws CMOS standby  
current (ICC4). If RESET# is held at VIL but not within VSS±0.3 V, the standby current will be greater.  
The RESET# pin may be tied to the system reset circuitry. A system reset would thus also reset the Flash memory, enabling the  
system to read the boot-up firmware from the Flash memory.  
If RESET# is asserted during a program or erase operation, the RY/BY# pin remains a “0” (busy) until the internal reset operation is  
complete, which requires a time of tREADY (during Embedded Algorithms). The system can thus monitor RY/BY# to determine  
whether the reset operation is complete. If RESET# is asserted when a program or erase operation is not executing (RY/BY# pin is  
“1”), the reset operation is completed within a time of tREADY (not during Embedded Algorithms). The system can read data tRH after  
the RESET# pin returns to VIH.  
Refer to the tables in AC Characteristic on page 79 for RESET# parameters and to Figure 21.5 on page 82 for the timing diagram.  
Document Number: 002-00615 Rev. *B  
Page 20 of 101  
S29PL-J  
11.7 Output Disable Mode  
When the OE# input is at VIH, output from the device is disabled. The output pins (except for RY/BY#) are placed in the highest  
Impedance state  
Table 11.5 PL127J Sector Architecture  
Bank  
Sector  
SA0  
Sector Address (A22-A12)  
00000000000  
00000000001  
00000000010  
00000000011  
00000000100  
00000000101  
00000000110  
00000000111  
00000001XXX  
00000010XXX  
00000011XXX  
00000100XXX  
00000101XXX  
00000110XXX  
00000111XXX  
00001000XXX  
00001001XXX  
00001010XXX  
00001011XXX  
00001100XXX  
00001101XXX  
00001110XXX  
00001111XXX  
00010000XXX  
00010001XXX  
00010010XXX  
00010011XXX  
00010100XXX  
00010101XXX  
00010110XXX  
00010111XXX  
00011000XXX  
00011001XXX  
00011010XXX  
00011011XXX  
00011100XXX  
00011101XXX  
00011110XXX  
00011111XXX  
Sector Size (Kwords)  
Address Range (x16)  
000000h–000FFFh  
001000h–001FFFh  
002000h–002FFFh  
003000h–003FFFh  
004000h–004FFFh  
005000h–005FFFh  
006000h–006FFFh  
007000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
4
SA1  
4
SA2  
4
SA3  
4
SA4  
4
SA5  
4
SA6  
4
SA7  
4
SA8  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
Document Number: 002-00615 Rev. *B  
Page 21 of 101  
S29PL-J  
Table 11.5 PL127J Sector Architecture (Continued)  
Bank  
Sector  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
Sector Address (A22-A12)  
00100000XXX  
00100001XXX  
00100010XXX  
00100011XXX  
00100100XXX  
00100101XXX  
00100110XXX  
00100111XXX  
00101000XXX  
00101001XXX  
00101010XXX  
00101011XXX  
00101100XXX  
00101101XXX  
00101110XXX  
00101111XXX  
00110000XXX  
00110001XXX  
00110010XXX  
00110011XXX  
00110100XXX  
00110101XXX  
00110110XXX  
00110111XXX  
00111000XXX  
00111001XXX  
00111010XXX  
Sector Size (Kwords)  
Address Range (x16)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
Document Number: 002-00615 Rev. *B  
Page 22 of 101  
S29PL-J  
Table 11.5 PL127J Sector Architecture (Continued)  
Bank  
Sector  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
SA86  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
Sector Address (A22-A12)  
00111011XXX  
00111100XXX  
00111101XXX  
00111110XXX  
00111111XXX  
01000000XXX  
01000001XXX  
01000010XXX  
01000011XXX  
01000100XXX  
01000101XXX  
01000110XXX  
01000111XXX  
01001000XXX  
01001001XXX  
01001010XXX  
01001011XXX  
01001100XXX  
01001101XXX  
01001110XXX  
01001111XXX  
01010000XXX  
01010001XXX  
01010010XXX  
01010011XXX  
01010100XXX  
01010101XXX  
01010110XXX  
01010111XXX  
01011000XXX  
01011001XXX  
01011010XXX  
01011011XXX  
01011100XXX  
01011101XXX  
01011110XXX  
01011111XXX  
01100000XXX  
01100001XXX  
01100010XXX  
01100011XXX  
01100100XXX  
01100101XXX  
01100110XXX  
01100111XXX  
01101000XXX  
Sector Size (Kwords)  
Address Range (x16)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
260000h–267FFFh  
268000h–26FFFFh  
270000h–277FFFh  
278000h–27FFFFh  
280000h–287FFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
2C8000h–2CFFFFh  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2F7FFFh  
2F8000h–2FFFFFh  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
Document Number: 002-00615 Rev. *B  
Page 23 of 101  
S29PL-J  
Table 11.5 PL127J Sector Architecture (Continued)  
Bank  
Sector  
SA115  
SA116  
SA117  
SA118  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
SA128  
SA129  
SA130  
SA131  
SA132  
SA133  
SA134  
Sector Address (A22-A12)  
01101100XXX  
01101101XXX  
01101110XXX  
01101111XXX  
01110000XXX  
01110001XXX  
01110010XXX  
01110011XXX  
01110100XXX  
01110101XXX  
01110110XXX  
01110111XXX  
01111000XXX  
01111001XXX  
01111010XXX  
01111011XXX  
01111100XXX  
01111101XXX  
01111110XXX  
01111111XXX  
Sector Size (Kwords)  
Address Range (x16)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
360000h–367FFFh  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
3F8000h–3FFFFFh  
Document Number: 002-00615 Rev. *B  
Page 24 of 101  
S29PL-J  
Table 11.5 PL127J Sector Architecture (Continued)  
Bank  
Sector  
SA135  
SA136  
SA137  
SA138  
SA139  
SA140  
SA141  
SA142  
SA143  
SA144  
SA145  
SA146  
SA147  
SA148  
SA149  
SA150  
SA151  
SA152  
SA153  
SA154  
SA155  
SA156  
SA157  
SA158  
SA159  
SA160  
SA161  
SA162  
SA163  
Sector Address (A22-A12)  
10000000XXX  
10000001XXX  
10000010XXX  
10000011XXX  
10000100XXX  
10000101XXX  
10000110XXX  
10000111XXX  
10001000XXX  
10001001XXX  
10001010XXX  
10001011XXX  
10001100XXX  
10001101XXX  
10001110XXX  
10001111XXX  
10010000XXX  
10010001XXX  
10010010XXX  
10010011XXX  
10010100XXX  
10010101XXX  
10010110XXX  
10010111XXX  
10011000XXX  
10011001XXX  
10011010XXX  
10011011XXX  
10011100XXX  
Sector Size (Kwords)  
Address Range (x16)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
400000h–407FFFh  
408000h–40FFFFh  
410000h–417FFFh  
418000h–41FFFFh  
420000h–427FFFh  
428000h–42FFFFh  
430000h–437FFFh  
438000h–43FFFFh  
440000h–447FFFh  
448000h–44FFFFh  
450000h–457FFFh  
458000h–45FFFFh  
460000h–467FFFh  
468000h–46FFFFh  
470000h–477FFFh  
478000h–47FFFFh  
480000h–487FFFh  
488000h–48FFFFh  
490000h–497FFFh  
498000h–49FFFFh  
4A0000h–4A7FFFh  
4A8000h–4AFFFFh  
4B0000h–4B7FFFh  
4B8000h–4BFFFFh  
4C0000h–4C7FFFh  
4C8000h–4CFFFFh  
4D0000h–4D7FFFh  
4D8000h–4DFFFFh  
4E0000h–4E7FFFh  
Document Number: 002-00615 Rev. *B  
Page 25 of 101  
S29PL-J  
Table 11.5 PL127J Sector Architecture (Continued)  
Bank  
Sector  
SA164  
SA165  
SA166  
SA167  
SA168  
SA169  
SA170  
SA171  
SA172  
SA173  
SA174  
SA175  
SA176  
SA177  
SA178  
SA179  
SA180  
SA181  
SA182  
SA183  
SA184  
SA185  
SA186  
SA187  
SA188  
SA189  
SA190  
SA191  
SA192  
SA193  
SA194  
SA195  
SA196  
SA197  
SA198  
SA199  
SA200  
SA201  
SA202  
SA203  
SA204  
SA205  
SA206  
SA207  
SA208  
SA209  
SA210  
Sector Address (A22-A12)  
10011101XXX  
10011110XXX  
10011111XXX  
10100000XXX  
10100001XXX  
10100010XXX  
10100011XXX  
10100100XXX  
10100101XXX  
10100110XXX  
10100111XXX  
10101000XXX  
10101001XXX  
10101010XXX  
10101011XXX  
10101100XXX  
10101101XXX  
10101110XXX  
10101111XXX  
10110000XXX  
10110001XXX  
10110010XXX  
10110011XXX  
10110100XXX  
10110101XXX  
10110110XXX  
10110111XXX  
10111000XXX  
10111001XXX  
10111010XXX  
10111011XXX  
10111100XXX  
10111101XXX  
10111110XXX  
10111111XXX  
11000000XXX  
11000001XXX  
11000010XXX  
11000011XXX  
11000100XXX  
11000101XXX  
11000110XXX  
11000111XXX  
11001000XXX  
11001001XXX  
11001010XXX  
11001011XXX  
Sector Size (Kwords)  
Address Range (x16)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
4E8000h–4EFFFFh  
4F0000h–4F7FFFh  
4F8000h–4FFFFFh  
500000h–507FFFh  
508000h–50FFFFh  
510000h–517FFFh  
518000h–51FFFFh  
520000h–527FFFh  
528000h–52FFFFh  
530000h–537FFFh  
538000h–53FFFFh  
540000h–547FFFh  
548000h–54FFFFh  
550000h–557FFFh  
558000h–15FFFFh  
560000h–567FFFh  
568000h–56FFFFh  
570000h–577FFFh  
578000h–57FFFFh  
580000h–587FFFh  
588000h–58FFFFh  
590000h–597FFFh  
598000h–59FFFFh  
5A0000h–5A7FFFh  
5A8000h–5AFFFFh  
5B0000h–5B7FFFh  
5B8000h–5BFFFFh  
5C0000h–5C7FFFh  
5C8000h–5CFFFFh  
5D0000h–5D7FFFh  
5D8000h–5DFFFFh  
5E0000h–5E7FFFh  
5E8000h–5EFFFFh  
5F0000h–5F7FFFh  
5F8000h–5FFFFFh  
600000h–607FFFh  
608000h–60FFFFh  
610000h–617FFFh  
618000h–61FFFFh  
620000h–627FFFh  
628000h–62FFFFh  
630000h–637FFFh  
638000h–63FFFFh  
640000h–647FFFh  
648000h–64FFFFh  
650000h–657FFFh  
658000h–65FFFFh  
Document Number: 002-00615 Rev. *B  
Page 26 of 101  
S29PL-J  
Table 11.5 PL127J Sector Architecture (Continued)  
Bank  
Sector  
SA213  
SA214  
SA215  
SA216  
SA217  
SA218  
SA219  
SA220  
SA221  
SA222  
SA223  
SA224  
SA225  
SA226  
SA227  
SA228  
SA229  
SA230  
Sector Address (A22-A12)  
11001110XXX  
11001111XXX  
11010000XXX  
11010001XXX  
11010010XXX  
11010011XXX  
11010100XXX  
11010101XXX  
11010110XXX  
11010111XXX  
11011000XXX  
11011001XXX  
11011010XXX  
11011011XXX  
11011100XXX  
11011101XXX  
11011110XXX  
11011111XXX  
Sector Size (Kwords)  
Address Range (x16)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
670000h–677FFFh  
678000h–67FFFFh  
680000h–687FFFh  
688000h–68FFFFh  
690000h–697FFFh  
698000h–69FFFFh  
6A0000h–6A7FFFh  
6A8000h–6AFFFFh  
6B0000h–6B7FFFh  
6B8000h–6BFFFFh  
6C0000h–6C7FFFh  
6C8000h–6CFFFFh  
6D0000h–6D7FFFh  
6D8000h–6DFFFFh  
6E0000h–6E7FFFh  
6E8000h–6EFFFFh  
6F0000h–6F7FFFh  
6F8000h–6FFFFFh  
Document Number: 002-00615 Rev. *B  
Page 27 of 101  
S29PL-J  
Table 11.5 PL127J Sector Architecture (Continued)  
Bank  
Sector  
SA231  
SA232  
SA233  
SA234  
SA235  
SA236  
SA237  
SA238  
SA239  
SA240  
SA241  
SA242  
SA243  
SA244  
SA245  
SA246  
SA247  
SA248  
SA249  
SA250  
SA251  
SA252  
SA253  
SA254  
SA255  
SA256  
SA257  
SA258  
SA259  
SA260  
SA261  
SA262  
SA263  
SA264  
SA265  
SA266  
SA267  
SA268  
SA269  
Sector Address (A22-A12)  
11100000XXX  
11100001XXX  
11100010XXX  
11100011XXX  
11100100XXX  
11100101XXX  
11100110XXX  
11100111XXX  
11101000XXX  
11101001XXX  
11101010XXX  
11101011XXX  
11101100XXX  
11101101XXX  
11101110XXX  
11101111XXX  
11110000XXX  
11110001XXX  
11110010XXX  
11110011XXX  
11110100XXX  
11110101XXX  
11110110XXX  
11110111XXX  
11111000XXX  
11111001XXX  
11111010XXX  
11111011XXX  
11111100XXX  
11111101XXX  
11111110XXX  
11111111000  
Sector Size (Kwords)  
Address Range (x16)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
4
700000h–707FFFh  
708000h–70FFFFh  
710000h–717FFFh  
718000h–71FFFFh  
720000h–727FFFh  
728000h–72FFFFh  
730000h–737FFFh  
738000h–73FFFFh  
740000h–747FFFh  
748000h–74FFFFh  
750000h–757FFFh  
758000h–75FFFFh  
760000h–767FFFh  
768000h–76FFFFh  
770000h–777FFFh  
778000h–77FFFFh  
780000h–787FFFh  
788000h–78FFFFh  
790000h–797FFFh  
798000h–79FFFFh  
7A0000h–7A7FFFh  
7A8000h–7AFFFFh  
7B0000h–7B7FFFh  
7B8000h–7BFFFFh  
7C0000h–7C7FFFh  
7C8000h–7CFFFFh  
7D0000h–7D7FFFh  
7D8000h–7DFFFFh  
7E0000h–7E7FFFh  
7E8000h–7EFFFFh  
7F0000h–7F7FFFh  
7F8000h–7F8FFFh  
7F9000h–7F9FFFh  
7FA000h–7FAFFFh  
7FB000h–7FBFFFh  
7FC000h–7FCFFFh  
7FD000h–7FDFFFh  
7FE000h–7FEFFFh  
7FF000h–7FFFFFh  
11111111001  
4
11111111010  
4
11111111011  
4
11111111100  
4
11111111101  
4
11111111110  
4
11111111111  
4
Document Number: 002-00615 Rev. *B  
Page 28 of 101  
S29PL-J  
Table 11.6 PL064J Sector Architecture  
Bank  
Sector  
SA0  
Sector Address (A22-A12)  
0000000000  
0000000001  
0000000010  
0000000011  
0000000100  
0000000101  
0000000110  
0000000111  
0000001XXX  
0000010XXX  
0000011XXX  
0000100XXX  
0000101XXX  
0000110XXX  
0000111XXX  
0001000XXX  
0001001XXX  
0001010XXX  
0001011XXX  
0001100XXX  
0001101XXX  
0001110XXX  
0001111XXX  
0010000XXX  
0010001XXX  
0010010XXX  
0010011XXX  
0010100XXX  
0010101XXX  
0010110XXX  
0010111XXX  
0011000XXX  
0011001XXX  
0011010XXX  
0011011XXX  
0011100XXX  
0011101XXX  
Sector Size (Kwords)  
Address Range (x16)  
4
000000h–000FFFh  
001000h–001FFFh  
002000h–002FFFh  
003000h–003FFFh  
004000h–004FFFh  
005000h–005FFFh  
006000h–006FFFh  
007000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
SA1  
4
SA2  
4
SA3  
4
SA4  
4
SA5  
4
SA6  
4
SA7  
4
SA8  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
Document Number: 002-00615 Rev. *B  
Page 29 of 101  
S29PL-J  
Table 11.6 PL064J Sector Architecture (Continued)  
Bank  
Sector  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
Sector Address (A22-A12)  
0011110XXX  
0011111XXX  
0100000XXX  
0100001XXX  
0100010XXX  
0100011XXX  
0100100XXX  
0100101XXX  
0100110XXX  
0100111XXX  
0101000XXX  
0101001XXX  
0101010XXX  
0101011XXX  
0101100XXX  
0101101XXX  
0101110XXX  
0101111XXX  
0110000XXX  
0110001XXX  
0110010XXX  
0110011XXX  
0110100XXX  
0110101XXX  
0110110XXX  
0110111XXX  
0111000XXX  
0111001XXX  
0111010XXX  
0111011XXX  
0111100XXX  
0111101XXX  
0111110XXX  
0111111XXX  
Sector Size (Kwords)  
Address Range (x16)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
Document Number: 002-00615 Rev. *B  
Page 30 of 101  
S29PL-J  
Table 11.6 PL064J Sector Architecture (Continued)  
Bank  
Sector  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
SA78  
SA79  
SA80  
SA81  
SA82  
SA83  
SA84  
SA85  
Sector Address (A22-A12)  
1000000XXX  
1000001XXX  
1000010XXX  
1000011XXX  
1000100XXX  
1000101XXX  
1000110XXX  
1000111XXX  
1001000XXX  
1001001XXX  
1001010XXX  
1001011XXX  
1001100XXX  
1001101XXX  
1001110XXX  
Sector Size (Kwords)  
Address Range (x16)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
260000h–267FFFh  
268000h–26FFFFh  
270000h–277FFFh  
Document Number: 002-00615 Rev. *B  
Page 31 of 101  
S29PL-J  
Table 11.6 PL064J Sector Architecture (Continued)  
Bank  
Sector  
SA86  
Sector Address (A22-A12)  
1001111XXX  
1010000XXX  
1010001XXX  
1010010XXX  
1010011XXX  
1010100XXX  
1010101XXX  
1010110XXX  
1010111XXX  
1011000XXX  
1011001XXX  
1011010XXX  
1011011XXX  
1011100XXX  
1011101XXX  
1011110XXX  
1011111XXX  
1100000XXX  
1100001XXX  
1100010XXX  
1100011XXX  
1100100XXX  
1100101XXX  
1100110XXX  
1100111XXX  
1101000XXX  
1101001XXX  
1101010XXX  
1101011XXX  
1101100XXX  
1101101XXX  
1101110XXX  
1101111XXX  
Sector Size (Kwords)  
Address Range (x16)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
278000h–27FFFFh  
280000h–287FFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
2C8000h–2CFFFFh  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2F7FFFh  
2F8000h–2FFFFFh  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
358000h–35FFFFh  
360000h–367FFFh  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
SA87  
SA88  
SA89  
SA90  
SA91  
SA92  
SA93  
SA94  
SA95  
SA96  
SA97  
SA98  
SA99  
SA100  
SA101  
SA102  
SA103  
SA104  
SA105  
SA106  
SA107  
SA108  
SA109  
SA110  
SA111  
SA112  
SA113  
SA114  
SA115  
SA116  
SA117  
SA118  
Document Number: 002-00615 Rev. *B  
Page 32 of 101  
S29PL-J  
Table 11.6 PL064J Sector Architecture (Continued)  
Bank  
Sector  
SA119  
SA120  
SA121  
SA122  
SA123  
SA124  
SA125  
SA126  
SA127  
SA128  
SA129  
SA130  
SA131  
SA132  
SA133  
SA134  
SA135  
SA136  
SA137  
SA138  
SA139  
SA140  
SA141  
Sector Address (A22-A12)  
1110000XXX  
1110001XXX  
1110010XXX  
1110011XXX  
1110100XXX  
1110101XXX  
1110110XXX  
1110111XXX  
1111000XXX  
1111001XXX  
1111010XXX  
1111011XXX  
1111100XXX  
1111101XXX  
1111110XXX  
1111111000  
Sector Size (Kwords)  
Address Range (x16)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
4
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
3F8000h–3F8FFFh  
3F9000h–3F9FFFh  
3FA000h–3FAFFFh  
3FB000h–3FBFFFh  
3FC000h–3FCFFFh  
3FD000h–3FDFFFh  
3FE000h–3FEFFFh  
3FF000h–3FFFFFh  
1111111001  
4
1111111010  
4
1111111011  
4
1111111100  
4
1111111101  
4
1111111110  
4
1111111111  
4
Table 11.7 PL032J Sector Architecture  
Bank  
Sector  
SA0  
Sector Address (A22-A12)  
000000000  
Sector Size (Kwords)  
Address Range (x16)  
000000h–000FFFh  
001000h–001FFFh  
002000h–002FFFh  
003000h–003FFFh  
004000h–004FFFh  
005000h–005FFFh  
006000h–006FFFh  
007000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
4
4
SA1  
000000001  
SA2  
000000010  
4
SA3  
000000011  
4
SA4  
000000100  
4
SA5  
000000101  
4
SA6  
000000110  
4
SA7  
000000111  
4
SA8  
000001XXX  
000010XXX  
000011XXX  
000100XXX  
000101XXX  
000110XXX  
000111XXX  
32  
32  
32  
32  
32  
32  
32  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
Document Number: 002-00615 Rev. *B  
Page 33 of 101  
S29PL-J  
Table 11.7 PL032J Sector Architecture (Continued)  
Bank  
Sector  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
Sector Address (A22-A12)  
001000XXX  
001001XXX  
001010XXX  
001011XXX  
001100XXX  
001101XXX  
001110XXX  
001111XXX  
010000XXX  
010001XXX  
010010XXX  
010011XXX  
010100XXX  
010101XXX  
010110XXX  
010111XXX  
011000XXX  
011001XXX  
011010XXX  
011011XXX  
011100XXX  
011101XXX  
011110XXX  
011111XXX  
Sector Size (Kwords)  
Address Range (x16)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
Bank B  
Document Number: 002-00615 Rev. *B  
Page 34 of 101  
S29PL-J  
Table 11.7 PL032J Sector Architecture (Continued)  
Bank  
Sector  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
SA71  
SA72  
SA73  
SA74  
SA75  
SA76  
SA77  
Sector Address (A22-A12)  
100000XXX  
100001XXX  
100010XXX  
100011XXX  
100100XXX  
100101XXX  
100110XXX  
100111XXX  
101000XXX  
101001XXX  
101010XXX  
101011XXX  
101100XXX  
101101XXX  
101110XXX  
101111XXX  
110000XXX  
110001XXX  
110010XXX  
110011XXX  
110100XXX  
110101XXX  
110110XXX  
110111XXX  
111000XXX  
111001XXX  
111010XXX  
111011XXX  
111100XXX  
111101XXX  
111110XXX  
111111000  
Sector Size (Kwords)  
Address Range (x16)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
4
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1F8FFFh  
1F9000h–1F9FFFh  
1FA000h–1FAFFFh  
1FB000h–1FBFFFh  
1FC000h–1FCFFFh  
1FD000h–1FDFFFh  
1FE000h–1FEFFFh  
1FF000h–1FFFFFh  
111111001  
4
111111010  
4
111111011  
4
111111100  
4
111111101  
4
111111110  
4
111111111  
4
Document Number: 002-00615 Rev. *B  
Page 35 of 101  
S29PL-J  
Table 11.8 S29PL129J Sector Architecture  
Bank  
Sector  
SA1-0  
CE1#  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CE2#  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Sector Address (A21-A12)  
0000000000  
0000000001  
0000000010  
0000000011  
0000000100  
0000000101  
0000000110  
0000000111  
0000001XXX  
0000010XXX  
0000011XXX  
0000100XXX  
0000101XXX  
0000110XXX  
0000111XXX  
0001000XXX  
0001001XXX  
0001010XXX  
0001011XXX  
0001100XXX  
0001101XXX  
0001110XXX  
0001111XXX  
0010000XXX  
0010001XXX  
0010010XXX  
0010011XXX  
0010100XXX  
0010101XXX  
0010110XXX  
0010111XXX  
0011000XXX  
0011001XXX  
0011010XXX  
0011011XXX  
0011100XXX  
0011101XXX  
0011110XXX  
0011111XXX  
0100000XXX  
0100001XXX  
0100010XXX  
0100011XXX  
0100100XXX  
0100101XXX  
0100110XXX  
0100111XXX  
0101000XXX  
Sector Size (Kwords)  
Address Range (x16)  
4
000000h–000FFFh  
001000h–001FFFh  
002000h–002FFFh  
003000h–003FFFh  
004000h–004FFFh  
005000h–005FFFh  
006000h–006FFFh  
007000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
SA1-1  
4
SA1-2  
4
SA1-3  
4
SA1-4  
4
SA1-5  
4
SA1-6  
4
SA1-7  
4
SA1-8  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
SA1-9  
SA1-10  
SA1-11  
SA1-12  
SA1-13  
SA1-14  
SA1-15  
SA1-16  
SA1-17  
SA1-18  
SA1-19  
SA1-20  
SA1-21  
SA1-22  
SA1-23  
SA1-24  
SA1-25  
SA1-26  
SA1-27  
SA1-28  
SA1-29  
SA1-30  
SA1-31  
SA1-32  
SA1-33  
SA1-34  
SA1-35  
SA1-36  
SA1-37  
SA1-38  
SA1-39  
SA1-40  
SA1-41  
SA1-42  
SA1-43  
SA1-44  
SA1-45  
SA1-46  
SA1-47  
Document Number: 002-00615 Rev. *B  
Page 36 of 101  
S29PL-J  
Table 11.8 S29PL129J Sector Architecture (Continued)  
Bank  
Sector  
SA1-48  
SA1-49  
SA1-50  
SA1-51  
SA1-52  
SA1-53  
SA1-54  
SA1-55  
SA1-56  
SA1-57  
SA1-58  
SA1-59  
SA1-60  
SA1-61  
SA1-62  
SA1-63  
SA1-64  
SA1-65  
SA1-66  
SA1-67  
SA1-68  
SA1-69  
SA1-70  
SA1-71  
SA1-72  
SA1-73  
SA1-74  
SA1-75  
SA1-76  
SA1-77  
SA1-78  
SA1-79  
SA1-80  
SA1-81  
SA1-82  
SA1-83  
SA1-84  
SA1-85  
SA1-86  
SA1-87  
SA1-88  
SA1-89  
SA1-90  
SA1-91  
SA1-92  
SA1-93  
SA1-94  
SA1-95  
SA1-96  
CE1#  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CE2#  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Sector Address (A21-A12)  
0101001XXX  
0101010XXX  
0101011XXX  
0101100XXX  
0101101XXX  
0101110XXX  
0101111XXX  
0110000XXX  
0110001XXX  
0110010XXX  
0110011XXX  
0110100XXX  
0110101XXX  
0110110XXX  
0110111XXX  
0111000XXX  
0111001XXX  
0111010XXX  
0111011XXX  
0111100XXX  
0111101XXX  
0111110XXX  
0111111XXX  
1000000XXX  
1000001XXX  
1000010XXX  
1000011XXX  
1000100XXX  
1000101XXX  
1000110XXX  
1000111XXX  
1001000XXX  
1001001XXX  
1001010XXX  
1001011XXX  
1001100XXX  
1001101XXX  
1001110XXX  
1001111XXX  
1010000XXX  
1010001XXX  
1010010XXX  
1010011XXX  
1010100XXX  
1010101XXX  
1010110XXX  
1010111XXX  
1011000XXX  
1011001XXX  
Sector Size (Kwords)  
Address Range (x16)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
260000h–267FFFh  
268000h–26FFFFh  
270000h–277FFFh  
278000h–27FFFFh  
280000h–287FFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
2C8000h–2CFFFFh  
Document Number: 002-00615 Rev. *B  
Page 37 of 101  
S29PL-J  
Table 11.8 S29PL129J Sector Architecture (Continued)  
Bank  
Sector  
SA1-97  
CE1#  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CE2#  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Sector Address (A21-A12)  
1011010XXX  
1011011XXX  
1011100XXX  
1011101XXX  
1011110XXX  
1011111XXX  
1100000XXX  
1100001XXX  
1100010XXX  
1100011XXX  
1100100XXX  
1100101XXX  
1100110XXX  
1100111XXX  
1101000XXX  
1101001XXX  
1101010XXX  
1101011XXX  
1101100XXX  
1101101XXX  
1101110XXX  
1101111XXX  
1110000XXX  
1110001XXX  
1110010XXX  
1110011XXX  
1110100XXX  
1110101XXX  
1110110XXX  
1110111XXX  
1111000XXX  
1111001XXX  
1111010XXX  
1111011XXX  
1111100XXX  
1111101XXX  
1111110XXX  
1111111XXX  
Sector Size (Kwords)  
Address Range (x16)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2F7FFFh  
2F8000h–2FFFFFh  
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
358000h–35FFFFh  
360000h–367FFFh  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
3F8000h–3FFFFFh  
SA1-98  
SA1-99  
SA1-100  
SA1-101  
SA1-102  
SA1-103  
SA1-104  
SA1-105  
SA1-106  
SA1-107  
SA1-108  
SA1-109  
SA1-110  
SA1-111  
SA1-112  
SA1-113  
SA1-114  
SA1-115  
SA1-116  
SA1-117  
SA1-118  
SA1-119  
SA1-120  
SA1-121  
SA1-122  
SA1-123  
SA1-124  
SA1-125  
SA1-126  
SA1-127  
SA1-128  
SA1-129  
SA1-130  
SA1-131  
SA1-132  
SA1-133  
SA1-134  
Document Number: 002-00615 Rev. *B  
Page 38 of 101  
S29PL-J  
Table 11.8 S29PL129J Sector Architecture (Continued)  
Bank  
Sector  
SA2-0  
SA2-1  
SA2-2  
SA2-3  
SA2-4  
SA2-5  
SA2-6  
SA2-7  
SA2-8  
SA2-9  
SA2-10  
CE1#  
CE2#  
Sector Address (A21-A12)  
0000000XXX  
0000001XXX  
0000010XXX  
0000011XXX  
Sector Size (Kwords)  
Address Range (x16)  
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
000000h–007FFFh  
008000h–00FFFFh  
010000h–017FFFh  
018000h–01FFFFh  
020000h–027FFFh  
028000h–02FFFFh  
030000h–037FFFh  
038000h–03FFFFh  
040000h–047FFFh  
048000h–04FFFFh  
050000h–057FFFh  
0000100XXX  
0000101XXX  
0000110XXX  
0000111XXX  
0001000XXX  
0001001XXX  
0001010XXX  
Document Number: 002-00615 Rev. *B  
Page 39 of 101  
S29PL-J  
Table 11.8 S29PL129J Sector Architecture (Continued)  
Bank  
Sector  
SA2-11  
SA2-12  
SA2-13  
SA2-14  
SA2-15  
SA2-16  
SA2-17  
SA2-18  
SA2-19  
SA2-20  
SA2-21  
SA2-22  
SA2-23  
SA2-24  
SA2-25  
SA2-26  
SA2-27  
SA2-28  
SA2-29  
SA2-30  
SA2-31  
SA2-32  
SA2-33  
SA2-34  
SA2-35  
SA2-36  
SA2-37  
SA2-38  
SA2-39  
SA2-40  
SA2-41  
SA2-42  
SA2-43  
SA2-44  
SA2-45  
SA2-46  
SA2-47  
SA2-48  
SA2-49  
SA2-50  
SA2-51  
SA2-52  
SA2-53  
SA2-54  
SA2-55  
SA2-56  
SA2-57  
SA2-58  
SA2-59  
CE1#  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CE2#  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Sector Address (A21-A12)  
0001011XXX  
0001100XXX  
0001101XXX  
0001110XXX  
0001111XXX  
0010000XXX  
0010001XXX  
0010010XXX  
0010011XXX  
0010100XXX  
0010101XXX  
0010110XXX  
0010111XXX  
0011000XXX  
0011001XXX  
0011010XXX  
0011011XXX  
0011100XXX  
0011101XXX  
0011110XXX  
0011111XXX  
0100000XXX  
0100001XXX  
0100010XXX  
0100011XXX  
0100100XXX  
0100101XXX  
0100110XXX  
0100111XXX  
0101000XXX  
0101001XXX  
0101010XXX  
0101011XXX  
0101100XXX  
0101101XXX  
0101110XXX  
0101111XXX  
0110000XXX  
0110001XXX  
0110010XXX  
0110011XXX  
0110100XXX  
0110101XXX  
0110110XXX  
0110111XXX  
0111000XXX  
0111001XXX  
0111010XXX  
0111011XXX  
Sector Size (Kwords)  
Address Range (x16)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
058000h–05FFFFh  
060000h–067FFFh  
068000h–06FFFFh  
070000h–077FFFh  
078000h–07FFFFh  
080000h–087FFFh  
088000h–08FFFFh  
090000h–097FFFh  
098000h–09FFFFh  
0A0000h–0A7FFFh  
0A8000h–0AFFFFh  
0B0000h–0B7FFFh  
0B8000h–0BFFFFh  
0C0000h–0C7FFFh  
0C8000h–0CFFFFh  
0D0000h–0D7FFFh  
0D8000h–0DFFFFh  
0E0000h–0E7FFFh  
0E8000h–0EFFFFh  
0F0000h–0F7FFFh  
0F8000h–0FFFFFh  
100000h–107FFFh  
108000h–10FFFFh  
110000h–117FFFh  
118000h–11FFFFh  
120000h–127FFFh  
128000h–12FFFFh  
130000h–137FFFh  
138000h–13FFFFh  
140000h–147FFFh  
148000h–14FFFFh  
150000h–157FFFh  
158000h–15FFFFh  
160000h–167FFFh  
168000h–16FFFFh  
170000h–177FFFh  
178000h–17FFFFh  
180000h–187FFFh  
188000h–18FFFFh  
190000h–197FFFh  
198000h–19FFFFh  
1A0000h–1A7FFFh  
1A8000h–1AFFFFh  
1B0000h–1B7FFFh  
1B8000h–1BFFFFh  
1C0000h–1C7FFFh  
1C8000h–1CFFFFh  
1D0000h–1D7FFFh  
1D8000h–1DFFFFh  
Document Number: 002-00615 Rev. *B  
Page 40 of 101  
S29PL-J  
Table 11.8 S29PL129J Sector Architecture (Continued)  
Bank  
Sector  
SA2-60  
SA2-61  
SA2-62  
SA2-63  
SA2-64  
SA2-65  
SA2-66  
SA2-67  
SA2-68  
SA2-69  
SA2-70  
SA2-71  
SA2-72  
SA2-73  
SA2-74  
SA2-75  
SA2-76  
SA2-77  
SA2-78  
SA2-79  
SA2-80  
SA2-81  
SA2-82  
SA2-83  
SA2-84  
SA2-85  
SA2-86  
SA2-87  
SA2-88  
SA2-89  
SA2-90  
SA2-91  
SA2-92  
SA2-93  
SA2-94  
SA2-95  
CE1#  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CE2#  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Sector Address (A21-A12)  
0111100XXX  
0111101XXX  
0111110XXX  
0111111XXX  
1000000XXX  
1000001XXX  
1000010XXX  
1000011XXX  
1000100XXX  
1000101XXX  
1000110XXX  
1000111XXX  
1001000XXX  
1001001XXX  
1001010XXX  
1001011XXX  
1001100XXX  
1001101XXX  
1001110XXX  
1001111XXX  
1010000XXX  
1010001XXX  
1010010XXX  
1010011XXX  
1010100XXX  
1010101XXX  
1010110XXX  
1010111XXX  
1011000XXX  
1011001XXX  
1011010XXX  
1011011XXX  
1011100XXX  
1011101XXX  
1011110XXX  
1011111XXX  
Sector Size (Kwords)  
Address Range (x16)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
1E0000h–1E7FFFh  
1E8000h–1EFFFFh  
1F0000h–1F7FFFh  
1F8000h–1FFFFFh  
200000h–207FFFh  
208000h–20FFFFh  
210000h–217FFFh  
218000h–21FFFFh  
220000h–227FFFh  
228000h–22FFFFh  
230000h–237FFFh  
238000h–23FFFFh  
240000h–247FFFh  
248000h–24FFFFh  
250000h–257FFFh  
258000h–25FFFFh  
260000h–267FFFh  
268000h–26FFFFh  
270000h–277FFFh  
278000h–27FFFFh  
280000h–287FFFh  
288000h–28FFFFh  
290000h–297FFFh  
298000h–29FFFFh  
2A0000h–2A7FFFh  
2A8000h–2AFFFFh  
2B0000h–2B7FFFh  
2B8000h–2BFFFFh  
2C0000h–2C7FFFh  
2C8000h–2CFFFFh  
2D0000h–2D7FFFh  
2D8000h–2DFFFFh  
2E0000h–2E7FFFh  
2E8000h–2EFFFFh  
2F0000h–2F7FFFh  
2F8000h–2FFFFFh  
Document Number: 002-00615 Rev. *B  
Page 41 of 101  
S29PL-J  
Table 11.8 S29PL129J Sector Architecture (Continued)  
Bank  
Sector  
SA2-96  
CE1#  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CE2#  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Sector Address (A21-A12)  
1100000XXX  
1100001XXX  
1100010XXX  
1100011XXX  
1100100XXX  
1100101XXX  
1100110XXX  
1100111XXX  
1101000XXX  
1101001XXX  
1101010XXX  
1101011XXX  
1101100XXX  
1101101XXX  
1101110XXX  
1101111XXX  
1110000XXX  
1110001XXX  
1110010XXX  
1110011XXX  
1110100XXX  
1110101XXX  
1110110XXX  
1110111XXX  
1111000XXX  
1111001XXX  
1111010XXX  
1111011XXX  
1111100XXX  
1111101XXX  
1111110XXX  
1111111000  
Sector Size (Kwords)  
Address Range (x16)  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
4
300000h–307FFFh  
308000h–30FFFFh  
310000h–317FFFh  
318000h–31FFFFh  
320000h–327FFFh  
328000h–32FFFFh  
330000h–337FFFh  
338000h–33FFFFh  
340000h–347FFFh  
348000h–34FFFFh  
350000h–357FFFh  
358000h–35FFFFh  
360000h–367FFFh  
368000h–36FFFFh  
370000h–377FFFh  
378000h–37FFFFh  
380000h–387FFFh  
388000h–38FFFFh  
390000h–397FFFh  
398000h–39FFFFh  
3A0000h–3A7FFFh  
3A8000h–3AFFFFh  
3B0000h–3B7FFFh  
3B8000h–3BFFFFh  
3C0000h–3C7FFFh  
3C8000h–3CFFFFh  
3D0000h–3D7FFFh  
3D8000h–3DFFFFh  
3E0000h–3E7FFFh  
3E8000h–3EFFFFh  
3F0000h–3F7FFFh  
3F8000h–3F8FFFh  
3F9000h–3F9FFFh  
3FA000h–3FAFFFh  
3FB000h–3FBFFFh  
3FC000h–3FCFFFh  
3FD000h–3FDFFFh  
3FE000h–3FEFFFh  
3FF000h–3FFFFFh  
SA2-97  
SA2-98  
SA2-99  
SA2-100  
SA2-101  
SA2-102  
SA2-103  
SA2-104  
SA2-105  
SA2-106  
SA2-107  
SA2-108  
SA2-109  
SA2-110  
SA2-111  
SA2-112  
SA2-113  
SA2-114  
SA2-115  
SA2-116  
SA2-117  
SA2-118  
SA2-119  
SA2-120  
SA2-121  
SA2-122  
SA2-123  
SA2-124  
SA2-125  
SA2-126  
SA2-127  
SA2-128  
SA2-129  
SA2-130  
SA2-131  
SA2-132  
SA2-133  
SA2-134  
1111111001  
4
1111111010  
4
1111111011  
4
1111111100  
4
1111111101  
4
1111111110  
4
1111111111  
4
Table 11.9 Secured Silicon Sector Addresses  
Sector Size  
64 words  
Address Range  
000000h-00003Fh  
000040h-00007Fh  
Factory-Locked Area  
Customer-Lockable Area  
64 words  
Document Number: 002-00615 Rev. *B  
Page 42 of 101  
S29PL-J  
11.8 Autoselect Mode  
The autoselect mode provides manufacturer and device identification, and sector protection verification, through identifier codes  
output on DQ7–DQ0. This mode is primarily intended for programming equipment to automatically match a device to be  
programmed with its corresponding programming algorithm. However, the autoselect codes can also be accessed in-system  
through the command register.  
When using programming equipment, the autoselect mode requires VID on address pin A9. Address pins must be as shown in  
Table 11.10 on page 43 and Table 11.11 on page 44. In addition, when verifying sector protection, the sector address must appear  
on the appropriate highest order address bits (see Table 11.4 on page 19). Table 11.10 and Table 11.11 show the remaining  
address bits that are don’t care. When all necessary bits have been set as required, the programming equipment may then read the  
corresponding identifier code on DQ7–DQ0. However, the autoselect codes can also be accessed in-system through the command  
register, for instances when the device is erased or programmed in a system without access to high voltage on the A9 pin. The  
command sequence is illustrated in Table 16.1 on page 68. Note that if a Bank Address (BA) (on address bits PL127J: A22A20,  
PL129J and PL064J: A21A19, PL032J: A20–A18) is asserted during the third write cycle of the autoselect command, the host  
system can read autoselect data that bank and then immediately read array data from the other bank, without exiting the autoselect  
mode.  
To access the autoselect codes in-system, the host system can issue the autoselect command via the command register, as shown  
in Table 16.1 on page 68. This method does not require VID. Refer to the Autoselect Command Sequence on page 62 for more  
information.  
Table 11.10 Autoselect Codes (High Voltage Method)  
Amax to  
A12  
Description  
CE# OE# WE#  
A10 A9 A8 A7 A6 A5 to A4 A3 A2 A1 A0  
DQ15 to DQ0  
0001h  
Manufacturer ID:  
Cypress products  
L
L
L
L
H
H
BA  
X
VID  
X
L
L
X
L
L
L
L
L
L
L
Read Cycle 1  
H
227Eh  
2220h (PL127J)  
2202h (PL064J)  
220Ah (PL032J)  
Read Cycle 2  
L
L
H
H
H
H
H
H
L
BA  
SA  
X
VID  
X
L
L
L
2200h (PL127J)  
2201h (PL064J)  
2201h (PL032J)  
Read Cycle 3  
H
0001h  
(protected),  
0000h  
Sector Protection  
Verification  
L
L
L
L
H
H
X
X
VID  
X
X
L
L
L
L
L
L
L
L
H
H
L
(unprotected)  
DQ7=1  
(factory locked),  
DQ6=1  
(factory and  
customer locked)  
Secured Silicon  
BA  
(See Note)  
VID  
X
X
H
Indicator Bit  
(DQ7, DQ6)  
Legend  
L = Logic Low = V , H = Logic High = V , BA = Bank Address, SA = Sector Address, X = Don’t care.  
IL  
IH  
Note  
When Polling the Secured Silicon indicator bit the Bank Address (BA) should be set within the address range 004000h-03FFFFh.  
Document Number: 002-00615 Rev. *B  
Page 43 of 101  
S29PL-J  
Table 11.11 Autoselect Codes for PL129J  
A21 to  
A12  
A5 to  
A4  
Description  
CE1# CE2# OE# WE#  
A10 A9 A8 A7 A6  
A3 A2 A1 A0  
DQ15 to DQ0  
Manufacturer  
ID:  
Cypress  
L
H
L
L
L
H
X
X
VID  
X
L
L
X
L
L
L
L
0001h  
H
products  
L
H
L
H
L
Read  
Cycle 1  
L
H
H
L
H
H
L
H
H
H
L
227Eh  
2221h  
2200h  
H
L
Read  
Cycle 2  
H
X
X
VID  
X
L
L
L
H
L
H
L
Read  
Cycle 3  
H
H
L
H
0001h  
(protected),  
0000h  
Sector  
Protection  
Verification  
L
L
H
H
SA  
X
X
VID  
X
X
L
L
L
L
L
L
L
L
H
H
L
H
L
L
(unprotected)  
H
DQ7=1  
(factory locked),  
DQ6=1  
(factory and  
customer locked)  
Secured Silicon  
Indicator Bit  
(DQ7, DQ6)  
X
VID  
X
X
H
(Note 1)  
H
L
Legend  
L = Logic Low = V , H = Logic High = V , BA = Bank Address, SA = Sector Address, X = Don’t care.  
IL  
IH  
Note  
1. When Polling the Secured Silicon indicator bit the A21 to A12 should be set within the address range 004000h-03FFFFh.  
2. The autoselect codes may also be accessed in-system by using the command sequences  
Document Number: 002-00615 Rev. *B  
Page 44 of 101  
S29PL-J  
Table 11.12 PL127J Boot Sector/Sector Block Addresses for Protection/Unprotection  
Sector  
SA0  
A22-A12  
Sector/Sector Block Size  
4 Kwords  
Sector  
A22-A12  
Sector/Sector Block Size  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
32 Kwords  
00000000000  
00000000001  
00000000010  
00000000011  
00000000100  
00000000101  
00000000110  
00000000111  
00000001XXX  
00000010XXX  
00000011XXX  
000001XXXXX  
000010XXXXX  
000011XXXXX  
000100XXXXX  
000101XXXXX  
000110XXXXX  
000111XXXXX  
001000XXXXX  
001001XXXXX  
001010XXXXX  
001011XXXXX  
001100XXXXX  
001101XXXXX  
001110XXXXX  
001111XXXXX  
010000XXXXX  
010001XXXXX  
010010XXXXX  
010011XXXXX  
010100XXXXX  
010101XXXXX  
010110XXXXX  
010111XXXXX  
011000XXXXX  
011001XXXXX  
011010XXXXX  
011011XXXXX  
011100XXXXX  
011101XXXXX  
011110XXXXX  
SA131-SA134  
SA135-SA138  
SA139-SA142  
SA143-SA146  
SA147-SA150  
SA151-SA154  
SA155-SA158  
SA159-SA162  
SA163-SA166  
SA167-SA170  
SA171-SA174  
SA175-SA178  
SA179-SA182  
SA183-SA186  
SA187-SA190  
SA191-SA194  
SA195-SA198  
SA199-SA202  
SA203-SA206  
SA207-SA210  
SA211-SA214  
SA215-SA218  
SA219-SA222  
SA223-SA226  
SA227-SA230  
SA231-SA234  
SA235-SA238  
SA239-SA242  
SA243-SA246  
SA247-SA250  
SA251-SA254  
SA255-SA258  
SA259  
011111XXXXX  
100000XXXXX  
100001XXXXX  
100010XXXXX  
100011XXXXX  
100100XXXXX  
100101XXXXX  
100110XXXXX  
100111XXXXX  
101000XXXXX  
101001XXXXX  
101010XXXXX  
101011XXXXX  
101100XXXXX  
101101XXXXX  
101110XXXXX  
101111XXXXX  
110000XXXXX  
110001XXXXX  
110010XXXXX  
110011XXXXX  
110100XXXXX  
110101XXXXX  
110110XXXXX  
110111XXXXX  
111000XXXXX  
111001XXXXX  
111010XXXXX  
111011XXXXX  
111100XXXXX  
111101XXXXX  
111110XXXXX  
11111100XXX  
11111101XXX  
11111110XXX  
11111111000  
SA1  
4 Kwords  
SA2  
4 Kwords  
SA3  
4 Kwords  
SA4  
4 Kwords  
SA5  
4 Kwords  
SA6  
4 Kwords  
SA7  
4 Kwords  
SA8  
32 Kwords  
SA9  
32 Kwords  
SA10  
32 Kwords  
SA11-SA14  
SA15-SA18  
SA19-SA22  
SA23-SA26  
SA27-SA30  
SA31-SA34  
SA35-SA38  
SA39-SA42  
SA43-SA46  
SA47-SA50  
SA51-SA54  
SA55-SA58  
SA59-SA62  
SA63-SA66  
SA67-SA70  
SA71-SA74  
SA75-SA78  
SA79-SA82  
SA83-SA86  
SA87-SA90  
SA91-SA94  
SA95-SA98  
SA99-SA102  
SA103-SA106  
SA107-SA110  
SA111-SA114  
SA115-SA118  
SA119-SA122  
SA123-SA126  
SA127-SA130  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
SA260  
32 Kwords  
SA261  
32 Kwords  
SA262  
4 Kwords  
SA263  
11111111001  
4 Kwords  
SA264  
11111111010  
4 Kwords  
SA265  
11111111011  
4 Kwords  
Document Number: 002-00615 Rev. *B  
Page 45 of 101  
S29PL-J  
Table 11.13 PL129J Boot Sector/Sector Block Addresses for Protection/Unprotection  
CE1# Control  
CE2# Control  
A21-12  
Sector Group  
SA1-0  
A21-12  
Sector/Sector Block Size  
4 Kwords  
Sector Group  
SA2-0–SA2-3  
SA2-4–SA2-7  
SA2-8–SA2-11  
SA2-12–SA2-15  
SA2-16–SA2-19  
SA2-20–SA2-23  
SA2-24–SA2-27  
SA2-28–SA2-31  
SA2-32–SA2-35  
SA2-36–SA2-39  
SA2-40–SA2-43  
SA2-44–SA2-47  
SA2-48–SA2-51  
SA2-52–SA2-55  
SA2-56–SA2-59  
SA2-60–SA2-63  
SA2-64–SA2-67  
SA2-68–SA2-71  
SA2-72–SA2-75  
SA2-76–SA2-79  
SA2-80–SA2-83  
SA2-84–SA2-87  
SA2-88–SA2-91  
SA2-92–SA2-95  
SA2-96–SA2-99  
SA2-100–SA2-103  
SA2-104–SA2-107  
SA2-108–SA2-111  
SA2-112–SA2-115  
SA2-116–SA2-119  
SA2-120–SA2-123  
SA2-124  
Sector/Sector Block Size  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
32 Kwords  
0000000000  
0000000001  
0000000010  
0000000011  
0000000100  
0000000101  
0000000110  
0000000111  
0000001XXX  
0000010XXX  
0000011XXX  
00001XXXXX  
00010XXXXX  
00011XXXXX  
00100XXXXX  
00101XXXXX  
00110XXXXX  
00111XXXXX  
01000XXXXX  
01001XXXXX  
01010XXXXX  
01011XXXXX  
01100XXXXX  
01101XXXXX  
01110XXXXX  
01111XXXXX  
10000XXXXX  
10001XXXXX  
10010XXXXX  
10011XXXXX  
10100XXXXX  
10101XXXXX  
10110XXXXX  
10111XXXXX  
11000XXXXX  
11001XXXXX  
11010XXXXX  
11011XXXXX  
11100XXXXX  
11101XXXXX  
11110XXXXX  
11111XXXXX  
00000XXXXX  
00001XXXXX  
00010XXXXX  
00011XXXXX  
00100XXXXX  
00101XXXXX  
00110XXXXX  
00111XXXXX  
01000XXXXX  
01001XXXXX  
01010XXXXX  
01011XXXXX  
01100XXXXX  
01101XXXXX  
01110XXXXX  
01111XXXXX  
10000XXXXX  
10001XXXXX  
10010XXXXX  
10011XXXXX  
10100XXXXX  
10101XXXXX  
10110XXXXX  
10111XXXXX  
11000XXXXX  
11001XXXXX  
11010XXXXX  
11011XXXXX  
11100XXXXX  
11101XXXXX  
11110XXXXX  
1111100XXX  
1111101XXX  
1111110XXX  
1111111000  
SA1-1  
4 Kwords  
SA1-2  
4 Kwords  
SA1-3  
4 Kwords  
SA1-4  
4 Kwords  
SA1-5  
4 Kwords  
SA1-6  
4 Kwords  
SA1-7  
4 Kwords  
SA1-8  
32 Kwords  
SA1-9  
32 Kwords  
SA1-10  
32 Kwords  
SA1-11 - SA1-14  
SA1-15 - SA1-18  
SA1-19 - SA1-22  
SA1-23 - SA1-26  
SA1-27 - SA1-30  
SA1-31 - SA1-34  
SA1-35 - SA1-38  
SA1-39 - SA1-42  
SA1-43 - SA1-46  
SA1-47 - SA1-50  
SA1-51 - SA1-54  
SA1-55 - SA1-58  
SA1-59 - SA1-62  
SA1-63 - SA1-66  
SA1-67 - SA1-70  
SA1-71 - SA1-74  
SA1-75 - SA1-78  
SA1-79 - SA1-82  
SA1-83 - SA1-86  
SA1-87 - SA1-90  
SA1-91 - SA1-94  
SA1-95 - SA1-98  
SA1-99 - SA1-102  
SA1-103 - SA1-106  
SA1-107 - SA1-110  
SA1-111 - SA1-114  
SA1-115 - SA1-118  
SA1-119 - SA1-122  
SA1-123 - SA1-126  
SA1-127 - SA1-130  
SA1-131 - SA1-134  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
SA2-125  
32 Kwords  
SA2-126  
32 Kwords  
SA2-127  
4 Kwords  
SA2-128  
1111111001  
4 Kwords  
SA2-129  
1111111010  
4 Kwords  
SA2-130  
1111111011  
4 Kwords  
SA2-131  
1111111100  
4 Kwords  
SA2-132  
1111111101  
4 Kwords  
SA2-133  
1111111110  
4 Kwords  
SA2-134  
1111111111  
4 Kwords  
The device is shipped with all sectors unprotected. Optional Cypress programming services enable programming and protecting  
sectors at the factory prior to shipping the device. Contact your local sales office for details.  
It is possible to determine whether a sector is protected or unprotected. See the Table 11.9, Secured Silicon Sector Addresses  
on page 42 for details.  
Document Number: 002-00615 Rev. *B  
Page 46 of 101  
S29PL-J  
11.9 Selecting a Sector Protection Mode  
Table 11.14 PL064J Boot Sector/Sector Block Addresses for Protection/Unprotection  
Sector  
SA0  
A21-A12  
Sector/Sector Block Size  
0000000000  
0000000001  
0000000010  
0000000011  
0000000100  
0000000101  
0000000110  
0000000111  
0000001XXX  
0000010XXX  
0000011XXX  
00001XXXXX  
00010XXXXX  
00011XXXXX  
00100XXXXX  
00101XXXXX  
00110XXXXX  
00111XXXXX  
01000XXXXX  
01001XXXXX  
01010XXXXX  
01011XXXXX  
01100XXXXX  
01101XXXXX  
01110XXXXX  
01111XXXXX  
10000XXXXX  
10001XXXXX  
10010XXXXX  
10011XXXXX  
10100XXXXX  
10101XXXXX  
10110XXXXX  
10111XXXXX  
11000XXXXX  
11001XXXXX  
11010XXXXX  
11011XXXXX  
11100XXXXX  
11101XXXXX  
11110XXXXX  
4 Kwords  
SA1  
4 Kwords  
SA2  
4 Kwords  
SA3  
4 Kwords  
SA4  
4 Kwords  
SA5  
4 Kwords  
SA6  
4 Kwords  
SA7  
4 Kwords  
SA8  
32 Kwords  
SA9  
32 Kwords  
SA10  
32 Kwords  
SA11-SA14  
SA15-SA18  
SA19-SA22  
SA23-SA26  
SA27-SA30  
SA31-SA34  
SA35-SA38  
SA39-SA42  
SA43-SA46  
SA47-SA50  
SA51-SA54  
SA55-SA58  
SA59-SA62  
SA63-SA66  
SA67-SA70  
SA71-SA74  
SA75-SA78  
SA79-SA82  
SA83-SA86  
SA87-SA90  
SA91-SA94  
SA95-SA98  
SA99-SA102  
SA103-SA106  
SA107-SA110  
SA111-SA114  
SA115-SA118  
SA119-SA122  
SA123-SA126  
SA127-SA130  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
128 (4x32) Kwords  
Document Number: 002-00615 Rev. *B  
Page 47 of 101  
S29PL-J  
Table 11.14 PL064J Boot Sector/Sector Block Addresses for Protection/Unprotection (Continued)  
Sector  
SA131  
SA132  
SA133  
SA134  
SA135  
SA136  
SA137  
SA138  
A21-A12  
1111100XXX  
1111101XXX  
1111110XXX  
1111111000  
1111111001  
1111111010  
1111111011  
1111111100  
Sector/Sector Block Size  
32 Kwords  
32 Kwords  
32 Kwords  
4 Kwords  
4 Kwords  
4 Kwords  
4 Kwords  
4 Kwords  
Table 11.15 Sector Protection Schemes  
DYB  
PPB  
0
PPB Lock  
Sector State  
0
0
0
1
1
0
1
1
0
1
0
0
0
1
1
1
Unprotected—PPB and DYB are changeable  
0
Unprotected—PPB not changeable, DYB is changeable  
1
0
Protected—PPB and DYB are changeable  
1
1
0
Protected—PPB not changeable, DYB is changeable  
1
Document Number: 002-00615 Rev. *B  
Page 48 of 101  
S29PL-J  
12. Sector Protection  
The PL127J, PL129J, PL064J, and PL032J features several levels of sector protection, which can disable both the program and  
erase operations in certain sectors or sector groups:  
12.1 Persistent Sector Protection  
A command sector protection method that replaces the old 12 V controlled protection method.  
12.2 Password Sector Protection  
A highly sophisticated protection method that requires a password before changes to certain sectors or sector groups are permitted  
12.3 WP# Hardware Protection  
A write protect pin that can prevent program or erase operations in sectors SA1-133, SA1-134, SA2-0 and SA2-1.  
The WP# Hardware Protection feature is always available, independent of the software managed protection method chosen.  
12.4 Selecting a Sector Protection Mode  
All parts default to operate in the Persistent Sector Protection mode. The customer must then choose if the Persistent or Password  
Protection method is most desirable. There are two one-time programmable non-volatile bits that define which sector protection  
method will be used. If the Persistent Sector Protection method is desired, programming the Persistent Sector Protection Mode  
Locking Bit permanently sets the device to the Persistent Sector Protection mode. If the Password Sector Protection method is  
desired, programming the Password Mode Locking Bit permanently sets the device to the Password Sector Protection mode. It is  
not possible to switch between the two protection modes once a locking bit has been set. One of the two modes must be selected  
when the device is first programmed. This prevents a program or virus from later setting the Password Mode Locking Bit, which  
would cause an unexpected shift from the default Persistent Sector Protection Mode into the Password Protection Mode.  
The device is shipped with all sectors unprotected. Optional Cypress programming services enable programming and protecting  
sectors at the factory prior to shipping the device. Contact your local sales office for details.  
It is possible to determine whether a sector is protected or unprotected. See Autoselect Mode on page 43 for details.  
Document Number: 002-00615 Rev. *B  
Page 49 of 101  
S29PL-J  
13. Persistent Sector Protection  
The Persistent Sector Protection method replaces the 12 V controlled protection method in previous flash devices. This new method  
provides three different sector protection states:  
Persistently Locked—The sector is protected and cannot be changed.  
Dynamically Locked—The sector is protected and can be changed by a simple command.  
Unlocked—The sector is unprotected and can be changed by a simple command.  
To achieve these states, three types of “bits” are used:  
Persistent Protection Bit  
Persistent Protection Bit Lock  
Persistent Sector Protection Mode Locking Bit  
13.1 Persistent Protection Bit (PPB)  
A single Persistent (non-volatile) Protection Bit is assigned to a maximum four sectors (see the sector address tables for specific  
sector protection groupings). All 4 Kword boot-block sectors have individual sector Persistent Protection Bits (PPBs) for greater  
flexibility. Each PPB is individually modifiable through the PPB Write Command.  
The device erases all PPBs in parallel. If any PPB requires erasure, the device must be instructed to preprogram all of the sector  
PPBs prior to PPB erasure. Otherwise, a previously erased sector PPBs can potentially be over-erased. The flash device does not  
have a built-in means of preventing sector PPBs over-erasure.  
13.2 Persistent Protection Bit Lock (PPB Lock)  
The Persistent Protection Bit Lock (PPB Lock) is a global volatile bit. When set to “1”, the PPBs cannot be changed. When cleared  
(“0”), the PPBs are changeable. There is only one PPB Lock bit per device. The PPB Lock is cleared after power-up or hardware  
reset. There is no command sequence to unlock the PPB Lock.  
13.3 Dynamic Protection Bit (DYB)  
A volatile protection bit is assigned for each sector. After power-up or hardware reset, the contents of all DYBs is “0”. Each DYB is  
individually modifiable through the DYB Write Command.  
When the parts are first shipped, the PPBs are cleared, the DYBs are cleared, and PPB Lock is defaulted to power up in the cleared  
state – meaning the PPBs are changeable.  
When the device is first powered on the DYBs power up cleared (sectors not protected). The Protection State for each sector is  
determined by the logical OR of the PPB and the DYB related to that sector. For the sectors that have the PPBs cleared, the DYBs  
control whether or not the sector is protected or unprotected. By issuing the DYB Write command sequences, the DYBs will be set or  
cleared, thus placing each sector in the protected or unprotected state. These are the so-called Dynamic Locked or Unlocked states.  
They are called dynamic states because it is very easy to switch back and forth between the protected and unprotected conditions.  
This allows software to easily protect sectors against inadvertent changes yet does not prevent the easy removal of protection when  
changes are needed. The DYBs maybe set or cleared as often as needed.  
The PPBs allow for a more static, and difficult to change, level of protection. The PPBs retain their state across power cycles  
because they are non-volatile. Individual PPBs are set with a command but must all be cleared as a group through a complex  
sequence of program and erasing commands. The PPBs are also limited to 100 erase cycles.  
The PPB Lock bit adds an additional level of protection. Once all PPBs are programmed to the desired settings, the PPB Lock may  
be set to “1”. Setting the PPB Lock disables all program and erase commands to the non-volatile PPBs. In effect, the PPB Lock Bit  
locks the PPBs into their current state. The only way to clear the PPB Lock is to go through a power cycle. System boot code can  
determine if any changes to the PPB are needed; for example, to allow new system code to be downloaded. If no changes are  
needed then the boot code can set the PPB Lock to disable any further changes to the PPBs during system operation.  
Document Number: 002-00615 Rev. *B  
Page 50 of 101  
S29PL-J  
The WP#/ACC write protect pin adds a final level of hardware protection to sectors SA1-133, SA1-134, SA2-0 and SA2-1. When this  
pin is low it is not possible to change the contents of these sectors. These sectors generally hold system boot code. The WP#/ACC  
pin can prevent any changes to the boot code that could override the choices made while setting up sector protection during system  
initialization.  
For customers who are concerned about malicious viruses there is another level of security - the persistently locked state. To  
persistently protect a given sector or sector group, the PPBs associated with that sector need to be set to “1”. Once all PPBs are  
programmed to the desired settings, the PPB Lock should be set to “1”. Setting the PPB Lock automatically disables all program and  
erase commands to the Non-Volatile PPBs. In effect, the PPB Lock “freezes” the PPBs into their current state. The only way to clear  
the PPB Lock is to go through a power cycle.  
It is possible to have sectors that have been persistently locked, and sectors that are left in the dynamic state. The sectors in the  
dynamic state are all unprotected. If there is a need to protect some of them, a simple DYB Write command sequence is all that is  
necessary. The DYB write command for the dynamic sectors switch the DYBs to signify protected and unprotected, respectively. If  
there is a need to change the status of the persistently locked sectors, a few more steps are required. First, the PPB Lock bit must  
be disabled by either putting the device through a power-cycle, or hardware reset. The PPBs can then be changed to reflect the  
desired settings. Setting the PPB lock bit once again will lock the PPBs, and the device operates normally again.  
The best protection is achieved by executing the PPB lock bit set command early in the boot code, and protect the boot code by  
holding WP#/ACC = VIL.  
Table 11.15 on page 48 contains all possible combinations of the DYB, PPB, and PPB lock relating to the status of the sector.  
In summary, if the PPB is set, and the PPB lock is set, the sector is protected and the protection can not be removed until the next  
power cycle clears the PPB lock. If the PPB is cleared, the sector can be dynamically locked or unlocked. The DYB then controls  
whether or not the sector is protected or unprotected.  
If the user attempts to program or erase a protected sector, the device ignores the command and returns to read mode. A program  
command to a protected sector enables status polling for approximately 1 µs before the device returns to read mode without having  
modified the contents of the protected sector. An erase command to a protected sector enables status polling for approximately  
50 µs after which the device returns to read mode without having erased the protected sector.  
The programming of the DYB, PPB, and PPB lock for a given sector can be verified by writing a DYB/PPB/PPB lock verify command  
to the device. There is an alternative means of reading the protection status. Take RESET# to VIL and hold WE# at VIH. (The high  
voltage A9 Autoselect Mode also works for reading the status of the PPBs). Scanning the addresses (A18–A11) while (A6, A1, A0) =  
(0, 1, 0) will produce a logical ‘1” code at device output DQ0 for a protected sector or a “0” for an unprotected sector. In this mode,  
the other addresses are don’t cares. Address location with A1 = VIL are reserved for autoselect manufacturer and device codes.  
13.4 Persistent Sector Protection Mode Locking Bit  
Like the password mode locking bit, a Persistent Sector Protection mode locking bit exists to guarantee that the device remain in  
software sector protection. Once set, the Persistent Sector Protection locking bit prevents programming of the password protection  
mode locking bit. This guarantees that a hacker could not place the device in password protection mode.  
Document Number: 002-00615 Rev. *B  
Page 51 of 101  
S29PL-J  
14. Password Protection Mode  
The Password Sector Protection Mode method allows an even higher level of security than the Persistent Sector Protection Mode.  
There are two main differences between the Persistent Sector Protection and the Password Sector Protection Mode:  
When the device is first powered on, or comes out of a reset cycle, the PPB Lock bit set to the locked state, rather than cleared to  
the unlocked state.  
The only means to clear the PPB Lock bit is by writing a unique 64-bit Password to the device.  
The Password Sector Protection method is otherwise identical to the Persistent Sector Protection method.  
A 64-bit password is the only additional tool utilized in this method.  
Once the Password Mode Locking Bit is set, the password is permanently set with no means to read, program, or erase it. The  
password is used to clear the PPB Lock bit. The Password Unlock command must be written to the flash, along with a password.  
The flash device internally compares the given password with the pre-programmed password. If they match, the PPB Lock bit is  
cleared, and the PPBs can be altered. If they do not match, the flash device does nothing. There is a built-in 2 µs delay for each  
“password check.” This delay is intended to thwart any efforts to run a program that tries all possible combinations in order to crack  
the password.  
14.1 Password and Password Mode Locking Bit  
In order to select the Password sector protection scheme, the customer must first program the password. The password may be  
correlated to the unique Electronic Serial Number (ESN) of the particular flash device. Each ESN is different for every flash device;  
therefore each password should be different for every flash device. While programming in the password region, the customer may  
perform Password Verify operations.  
Once the desired password is programmed in, the customer must then set the Password Mode Locking Bit. This operation achieves  
two objectives:  
Permanently sets the device to operate using the Password Protection Mode. It is not possible to reverse this function.  
Disables all further commands to the password region. All program, and read operations are ignored.  
Both of these objectives are important, and if not carefully considered, may lead to unrecoverable errors. The user must be sure that  
the Password Protection method is desired when setting the Password Mode Locking Bit. More importantly, the user must be sure  
that the password is correct when the Password Mode Locking Bit is set. Due to the fact that read operations are disabled, there is  
no means to verify what the password is afterwards. If the password is lost after setting the Password Mode Locking Bit, there will be  
no way to clear the PPB Lock bit.  
The Password Mode Locking Bit, once set, prevents reading the 64-bit password on the DQ bus and further password programming.  
The Password Mode Locking Bit is not erasable. Once Password Mode Locking Bit is programmed, the Persistent Sector Protection  
Locking Bit is disabled from programming, guaranteeing that no changes to the protection scheme are allowed.  
14.2 64-bit Password  
The 64-bit Password is located in its own memory space and is accessible through the use of the Password Program and Verify  
commands (see “Password Verify Command”). The password function works in conjunction with the Password Mode Locking Bit,  
which when set, prevents the Password Verify command from reading the contents of the password on the pins of the device.  
Document Number: 002-00615 Rev. *B  
Page 52 of 101  
S29PL-J  
14.3 Write Protect (WP#)  
The Write Protect feature provides a hardware method of protecting the upper two and lower two sectors without using VID. This  
function is provided by the WP# pin and overrides the previously discussed High Voltage Sector Protection on page 53 method.  
If the system asserts VIL on the WP#/ACC pin, the device disables program and erase functions in the two outermost 4 Kword  
sectors on both ends of the flash array independent of whether it was previously protected or unprotected.  
If the system asserts VIH on the WP#/ACC pin, the device reverts the upper two and lower two sectors to whether they were last set  
to be protected or unprotected. That is, sector protection or unprotection for these sectors depends on whether they were last  
protected or unprotected using the method described in the High Voltage Sector Protection on page 53.  
Note that the WP#/ACC pin must not be left floating or unconnected; inconsistent behavior of the device may result.  
14.3.1  
Persistent Protection Bit Lock  
The Persistent Protection Bit (PPB) Lock is a volatile bit that reflects the state of the Password Mode Locking Bit after power-up  
reset. If the Password Mode Lock Bit is also set after a hardware reset (RESET# asserted) or a power-up reset, the ONLY means for  
clearing the PPB Lock Bit in Password Protection Mode is to issue the Password Unlock command. Successful execution of the  
Password Unlock command clears the PPB Lock Bit, allowing for sector PPBs modifications. Asserting RESET#, taking the device  
through a power-on reset, or issuing the PPB Lock Bit Set command sets the PPB Lock Bit to a “1” when the Password Mode Lock  
Bit is not set.  
If the Password Mode Locking Bit is not set, including Persistent Protection Mode, the PPB Lock Bit is cleared after power-up or  
hardware reset. The PPB Lock Bit is set by issuing the PPB Lock Bit Set command. Once set the only means for clearing the PPB  
Lock Bit is by issuing a hardware or power-up reset. The Password Unlock command is ignored in Persistent Protection Mode.  
14.4 High Voltage Sector Protection  
Sector protection and unprotection may also be implemented using programming equipment. The procedure requires high voltage  
(VID) to be placed on the RESET# pin. Refer to Figure 14.1 on page 54 for details on this procedure. Note that for sector unprotect,  
all unprotected sectors must first be protected prior to the first sector write cycle.  
Document Number: 002-00615 Rev. *B  
Page 53 of 101  
S29PL-J  
Figure 14.1 In-System Sector Protection/Sector Unprotection Algorithms  
START  
START  
Protect all sectors:  
PLSCNT = 1  
PLSCNT = 1  
The indicated portion  
of the sector protect  
algorithm must be  
performed for all  
unprotected sectors  
prior to issuing the  
first sector  
RESET# = VID  
RESET# = VID  
Wait 1 μs  
Wait 1 μs  
unprotect address  
No  
No  
First Write  
First Write  
Cycle = 60h?  
Temporary Sector  
Unprotect Mode  
Temporary Sector  
Unprotect Mode  
Cycle = 60h?  
Yes  
Yes  
Set up sector  
address  
No  
All sectors  
protected?  
Sector Protect:  
Write 60h to sector  
address with  
Yes  
Set up first sector  
address  
A7-A0 = 00000010  
Sector Unprotect:  
Wait 150 µs  
Write 60h to sector  
address with  
A7-A0 =  
Verify Sector  
Protect: Write 40h  
to sector address  
with A7-A0 =  
01000010  
Reset  
PLSCNT = 1  
Increment  
PLSCNT  
Wait 15 ms  
00000010  
Verify Sector  
Unprotect: Write  
40h to sector  
address with  
A7-A0 =  
Read from  
sector address  
with A7-A0 =  
00000010  
Increment  
PLSCNT  
No  
00000010  
No  
PLSCNT  
= 25?  
Read from  
sector address  
with A7-A0 =  
00000010  
Data = 01h?  
Yes  
No  
Yes  
Set up  
next sector  
address  
Yes  
No  
PLSCNT  
= 1000?  
Protect another  
sector?  
Remove V  
ID  
Data = 00h?  
Yes  
from RESET#  
No  
Yes  
Write reset  
command  
Remove VID  
from RESET#  
No  
Last sector  
verified?  
Remove V  
from RESET#  
ID  
Sector Protect  
complete  
Write reset  
command  
Yes  
Write reset  
command  
Remove VID  
from RESET#  
Device failed  
Sector Protect  
complete  
Sector Protect  
complete  
Write reset  
command  
Sector Protect  
Algorithm  
Device failed  
Sector Unprotect  
complete  
Sector Unprotect  
Algorithm  
Document Number: 002-00615 Rev. *B  
Page 54 of 101  
S29PL-J  
14.5 Temporary Sector Unprotect  
This feature allows temporary unprotection of previously protected sectors to change data in-system. The Sector Unprotect mode is  
activated by setting the RESET# pin to VID. During this mode, formerly protected sectors can be programmed or erased by selecting  
the sector addresses. Once VID is removed from the RESET# pin, all the previously protected sectors are protected again.  
Figure 14.2 on page 55 shows the algorithm, and Figure 22.1 on page 88 shows the timing diagrams, for this feature. While PPB  
lock is set, the device cannot enter the Temporary Sector Unprotection Mode.  
Figure 14.2 Temporary Sector Unprotect Operation  
START  
RESET# = VID  
(Note 1)  
Perform Erase or  
Program Operations  
RESET# = VIH  
Temporary Sector  
Unprotect Completed  
(Note 2)  
Notes:  
1. All protected sectors unprotected (If WP#/ACC = V , upper two and lower two sectors will remain protected).  
IL  
2. All previously protected sectors are protected once again  
14.6 Secured Silicon Sector Flash Memory Region  
The Secured Silicon Sector feature provides a Flash memory region that enables permanent part identification through an Electronic  
Serial Number (ESN) The 128-word Secured Silicon sector is divided into 64 factory-lockable words that can be programmed and  
locked by the customer. The Secured Silicon sector is located at addresses 000000h-00007Fh in both Persistent Protection mode  
and Password Protection mode. Indicator bits DQ6 and DQ7 are used to indicate the factory-locked and customer locked status of  
the part.  
The system accesses the Secured Silicon Sector through a command sequence (see the Enter/Exit Secured Silicon Sector  
Command Sequence on page 62). After the system has written the Enter Secured Silicon Sector command sequence, it may read  
the Secured Silicon Sector by using the addresses normally occupied by the boot sectors. This mode of operation continues until the  
system issues the Exit Secured Silicon Sector command sequence, or until power is removed from the device. Once the Enter SecSi  
Sector Command sequence has been entered, the standard array cannot be accessed until the Exit SecSi Sector command has  
been entered or the device has been reset. On power-up, or following a hardware reset, the device reverts to sending commands to  
the normal address space. Note that the ACC function and unlock bypass modes are not available when the Secured Silicon Sector  
is enabled.  
Document Number: 002-00615 Rev. *B  
Page 55 of 101  
S29PL-J  
14.6.1  
Factory-Locked Area (64 words)  
The factory-locked area of the Secured Silicon Sector (000000h-00003Fh) is locked when the part is shipped, whether or not the  
area was programmed at the factory. The Secured Silicon Sector Factory-locked Indicator Bit (DQ7) is permanently set to a “1”.  
Optional Cypress programming services can program the factory-locked area with a random ESN, a customer-defined code, or any  
combination of the two. Because only Cypress can program and protect the factory-locked area, this method ensures the security of  
the ESN once the product is shipped to the field. Contact your local sales office for details on using Cypress’s programming  
services. Note that the ACC function and unlock bypass modes are not available when the Secured Silicon sector is enabled.  
14.6.2  
Customer-Lockable Area (64 words)  
The customer-lockable area of the Secured Silicon Sector (000040h-00007Fh) is shipped unprotected, which allows the customer to  
program and optionally lock the area as appropriate for the application. The Secured Silicon Sector Customer-locked Indicator Bit  
(DQ6) is shipped as “0” and can be permanently locked to “1” by issuing the Secured Silicon Protection Bit Program Command. The  
Secured Silicon Sector can be read any number of times, but can be programmed and locked only once. Note that the accelerated  
programming (ACC) and unlock bypass functions are not available when programming the Secured Silicon Sector.  
The Customer-lockable Secured Silicon Sector area can be protected using one of the following procedures:  
Write the three-cycle Enter Secured Silicon Sector Region command sequence, and then follow the in-system sector  
protect algorithm as shown in Figure 14.1 on page 54, except that RESET# may be at either VIH or VID. This allows in-  
system protection of the Secured Silicon Sector Region without raising any device pin to a high voltage. Note that this  
method is only applicable to the Secured Silicon Sector.  
To verify the protect/unprotect status of the Secured Silicon Sector, follow the algorithm shown in Figure on page 56.  
Once the Secured Silicon Sector is locked and verified, the system must write the Exit Secured Silicon Sector Region  
command sequence to return to reading and writing the remainder of the array.  
The Secured Silicon Sector lock must be used with caution since, once locked, there is no procedure available for unlocking the  
Secured Silicon Sector area and none of the bits in the Secured Silicon Sector memory space can be modified in any way.  
14.6.3  
Secured Silicon Sector Protection Bits  
The Secured Silicon Sector Protection Bits prevent programming of the Secured Silicon Sector memory area. Once set, the Secured  
Silicon Sector memory area contents are non-modifiable.  
Figure 14.3 Secured Silicon Sector Protect Verify  
START  
If data = 00h,  
RESET# =  
SecSi Sector is  
VIH or VID  
unprotected.  
If data = 01h,  
SecSi Sector is  
protected.  
Wait 1 µs  
Write 60h to  
any address  
Remove VIH or VID  
from RESET#  
Write 40h to SecSi  
Sector address  
Write reset  
with A6 = 0,  
command  
A1 = 1, A0 = 0  
SecSi Sector  
Read from SecSi  
Protect Verify  
Sector address  
complete  
with A6 = 0,  
A1 = 1, A0 = 0  
Document Number: 002-00615 Rev. *B  
Page 56 of 101  
S29PL-J  
14.7 Hardware Data Protection  
The command sequence requirement of unlock cycles for programming or erasing provides data protection against inadvertent  
writes. In addition, the following hardware data protection measures prevent accidental erasure or programming, which might  
otherwise be caused by spurious system level signals during VCC power-up and power-down transitions, or from system noise.  
14.7.1  
Low VCC Write Inhibit  
When VCC is less than VLKO, the device does not accept any write cycles. This protects data during VCC power-up and power-down.  
The command register and all internal program/erase circuits are disabled, and the device resets to the read mode. Subsequent  
writes are ignored until VCC is greater than VLKO. The system must provide the proper signals to the control pins to prevent  
unintentional writes when VCC is greater than VLKO  
.
14.7.2  
Write Pulse “Glitch” Protection  
Noise pulses of less than 3 ns (typical) on OE#, CE#, (CE1#, CE2# in PL129J) or WE# do not initiate a write cycle.  
14.7.3  
Logical Inhibit  
Write cycles are inhibited by holding any one of OE# = VIL, CE# (CE1# = CE2# in PL129J)= VIH or  
WE# = VIH. To initiate a write cycle, CE# (CE1# / CE2# in PL129J) and WE# must be a logical zero while OE# is a logical one.  
14.7.4  
Power-Up Write Inhibit  
If WE# = CE# (CE1#, CE2# in PL129J) = VIL and OE# = VIH during power up, the device does not accept commands on the rising  
edge of WE#. The internal state machine is automatically reset to the read mode on power-up.  
Document Number: 002-00615 Rev. *B  
Page 57 of 101  
S29PL-J  
15. Common Flash Memory Interface (CFI)  
The Common Flash Interface (CFI) specification outlines device and host system software interrogation handshake, which allows  
specific vendor-specified software algorithms to be used for entire families of devices. Software support can then be device-  
independent, JEDEC ID-independent, and forward- and backward-compatible for the specified flash device families. Flash vendors  
can standardize their existing interfaces for long-term compatibility.  
This device enters the CFI Query mode when the system writes the CFI Query command, 98h, to address 55h, any time the device  
is ready to read array data. The system can read CFI information at the addresses given in Table 15.1 on page 58 to Table 15.4  
on page 59. To terminate reading CFI data, the system must write the reset command. The CFI Query mode is not accessible when  
the device is executing an Embedded Program or embedded Erase algorithm.  
The system can also write the CFI query command when the device is in the autoselect mode. The device enters the CFI query  
mode, and the system can read CFI data at the addresses given in Table 15.1 to Table 15.4. The system must write the reset  
command to return the device to reading array data.  
For further information, please refer to the CFI Specification and CFI Publication 100. Contact your local sales office for copies of  
these documents.  
Table 15.1 CFI Query Identification String  
Addresses  
Data  
Description  
Query Unique ASCII string “QRY”  
10h  
11h  
12h  
0051h  
0052h  
0059h  
13h  
14h  
0002h  
0000h  
Primary OEM Command Set  
15h  
16h  
0040h  
0000h  
Address for Primary Extended Table  
17h  
18h  
0000h  
0000h  
Alternate OEM Command Set (00h = none exists)  
Address for Alternate OEM Extended Table (00h = none exists)  
19h  
1Ah  
0000h  
0000h  
Table 15.2 System Interface String  
Addresses  
Data  
Description  
VCC Min. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
1Bh  
1Ch  
0027h  
0036h  
VCC Max. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
0000h  
0000h  
0003h  
0000h  
0009h  
0000h  
0004h  
0000h  
0004h  
0000h  
VPP Min. voltage (00h = no VPP pin present)  
VPP Max. voltage (00h = no VPP pin present)  
Typical timeout per single byte/word write 2N µs  
Typical timeout for Min. size buffer write 2N µs (00h = not supported)  
Typical timeout per individual block erase 2N ms  
Typical timeout for full chip erase 2N ms (00h = not supported)  
Max. timeout for byte/word write 2N times typical  
Max. timeout for buffer write 2N times typical  
Max. timeout per individual block erase 2N times typical  
Max. timeout for full chip erase 2N times typical (00h = not supported)  
Document Number: 002-00615 Rev. *B  
Page 58 of 101  
S29PL-J  
Table 15.3 Device Geometry Definition  
Addresses  
Data  
Description  
0018h (PL127J)  
0018h (PL129J)  
0017h (PL064J)  
0016h (PL032J)  
27h  
Device Size = 2N byte  
28h  
29h  
0001h  
0000h  
Flash Device Interface description (refer to CFI publication 100)  
2Ah  
2Bh  
0000h  
0000h  
Max. number of byte in multi-byte write = 2N  
(00h = not supported)  
2Ch  
0003h  
Number of Erase Block Regions within device  
2Dh  
2Eh  
2Fh  
30h  
0007h  
0000h  
0020h  
0000h  
Erase Block Region 1 Information  
(refer to the CFI specification or CFI publication 100)  
00FDh (PL127J)  
00FDh (PL129J)  
007Dh (PL064J)  
003Dh (PL032J)  
31h  
Erase Block Region 2 Information  
(refer to the CFI specification or CFI publication 100)  
32h  
33h  
34h  
0000h  
0000h  
0001h  
35h  
36h  
37h  
38h  
0007h  
0000h  
0020h  
0000h  
Erase Block Region 3 Information  
(refer to the CFI specification or CFI publication 100)  
39h  
3Ah  
3Bh  
3Ch  
0000h  
0000h  
0000h  
0000h  
Erase Block Region 4 Information  
(refer to the CFI specification or CFI publication 100)  
Table 15.4 Primary Vendor-Specific Extended Query  
Addresses  
Data  
Description  
40h  
41h  
42h  
0050h  
0052h  
0049h  
Query-unique ASCII string “PRI”  
43h  
44h  
0031h  
0033h  
Major version number, ASCII (reflects modifications to the silicon)  
Minor version number, ASCII (reflects modifications to the CFI table)  
Address Sensitive Unlock (Bits 1-0)  
0 = Required, 1 = Not Required  
45h  
TBD  
Silicon Revision Number (Bits 7-2)  
Erase Suspend  
0 = Not Supported, 1 = To Read Only, 2 = To Read & Write  
46h  
47h  
48h  
49h  
0002h  
0001h  
Sector Protect  
0 = Not Supported, X = Number of sectors in per group  
Sector Temporary Unprotect  
00 = Not Supported, 01 = Supported  
0001h  
Sector Protect/Unprotect scheme  
07 = Advanced Sector Protection  
0007h (PLxxxJ)  
Document Number: 002-00615 Rev. *B  
Page 59 of 101  
S29PL-J  
Table 15.4 Primary Vendor-Specific Extended Query (Continued)  
Addresses  
Data  
Description  
00E7h (PL127J)  
00E7h (PL129J)  
0077h (PL064J)  
003Fh (PL032J)  
Simultaneous Operation  
00 = Not Supported, X = Number of Sectors excluding Bank 1  
4Ah  
Burst Mode Type  
00 = Not Supported, 01 = Supported  
4Bh  
4Ch  
4Dh  
4Eh  
0000h  
0002h (PLxxxJ)  
0085h  
Page Mode Type  
00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page  
ACC (Acceleration) Supply Minimum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
ACC (Acceleration) Supply Maximum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
0095h  
Top/Bottom Boot Sector Flag  
00h = Uniform device, 01h = Both top and bottom boot with write protect,  
02h = Bottom Boot Device, 03h = Top Boot Device,  
04h = Both Top and Bottom  
4Fh  
0001h  
Program Suspend  
0 = Not supported, 1 = Supported  
50h  
57h  
0001h  
0004h  
Bank Organization  
00 = Data at 4Ah is zero, X = Number of Banks  
0027h (PL127J)  
0027h (PL129J)  
0017h (PL064J)  
000Fh (PL032J)  
Bank 1 Region Information  
X = Number of Sectors in Bank 1  
58h  
59h  
5Ah  
5Bh  
0060h (PL127J)  
0060h (PL129J)  
0030h (PL064J)  
0018h (PL032J)  
Bank 2 Region Information  
X = Number of Sectors in Bank 2  
0060h (PL127J)  
0060h (PL129J)  
0030h (PL064J)  
0018h (PL032J)  
Bank 3 Region Information  
X = Number of Sectors in Bank 3  
0027h (PL127J)  
0027h (PL129J)  
0017h (PL064J)  
000Fh (PL032J)  
Bank 4 Region Information  
X = Number of Sectors in Bank 4  
Document Number: 002-00615 Rev. *B  
Page 60 of 101  
S29PL-J  
16. Command Definitions  
Writing specific address and data commands or sequences into the command register initiates device operations. Table 16.1  
on page 68 defines the valid register command sequences. Writing incorrect address and data values or writing them in the  
improper sequence may place the device in an unknown state. A reset command is then required to return the device to reading  
array data.  
All addresses are latched on the falling edge of WE# or CE# (CE1# / CE2# in PL129J), whichever happens later. All data is latched  
on the rising edge of WE# or CE# (CE1# / CE2# in PL129J), whichever happens first. Refer to AC Characteristic on page 79 for  
timing diagrams.  
16.1 Reading Array Data  
The device is automatically set to reading array data after device power-up. No commands are required to retrieve data. Each bank  
is ready to read array data after completing an Embedded Program or Embedded Erase algorithm.  
After the device accepts an Erase Suspend command, the corresponding bank enters the erase-suspend-read mode, after which  
the system can read data from any non-erase-suspended sector within the same bank. The system can read array data using the  
standard read timing, except that if it reads at an address within erase-suspended sectors, the device outputs status data. After  
completing a programming operation in the Erase Suspend mode, the system may once again read array data with the same  
exception. See Erase Suspend/Erase Resume Commands on page 66 for more information.  
After the device accepts a Program Suspend command, the corresponding bank enters the program-suspend-read mode, after  
which the system can read data from any non-program-suspended sector within the same bank. See Program Suspend/Program  
Resume Commands on page 67 for more information.  
The system must issue the reset command to return a bank to the read (or erase-suspend-read) mode if DQ5 goes high during an  
active program or erase operation, or if the bank is in the autoselect mode. See the next section, Reset Command on page 61, for  
more information.  
See also Requirements for Reading Array Data on page 18 for more information. The table AC Characteristic on page 79 provides  
the read parameters, and Figure 17.2 on page 73 shows the timing diagram.  
16.2 Reset Command  
Writing the reset command resets the banks to the read or erase-suspend-read mode. Address bits are don’t cares for this  
command.  
The reset command may be written between the sequence cycles in an erase command sequence before erasing begins. This  
resets the bank to which the system was writing to the read mode. Once erasure begins, however, the device ignores reset  
commands until the operation is complete.  
The reset command may be written between the sequence cycles in a program command sequence before programming begins.  
This resets the bank to which the system was writing to the read mode. If the program command sequence is written to a bank that  
is in the Erase Suspend mode, writing the reset command returns that bank to the erase-suspend-read mode. Once programming  
begins, however, the device ignores reset commands until the operation is complete.  
The reset command may be written between the sequence cycles in an autoselect command sequence. Once in the autoselect  
mode, the reset command must be written to return to the read mode. If a bank entered the autoselect mode while in the Erase  
Suspend mode, writing the reset command returns that bank to the erase-suspend-read mode.  
If DQ5 goes high during a program or erase operation, writing the reset command returns the banks to the read mode (or erase-  
suspend-read mode if that bank was in Erase Suspend and program-suspend-read mode if that bank was in Program Suspend).  
Document Number: 002-00615 Rev. *B  
Page 61 of 101  
S29PL-J  
16.3 Autoselect Command Sequence  
The autoselect command sequence allows the host system to access the manufacturer and device codes, and determine whether or  
not a sector is protected. The autoselect command sequence may be written to an address within a bank that is either in the read or  
erase-suspend-read mode. The autoselect command may not be written while the device is actively programming or erasing in the  
other bank.  
The autoselect command sequence is initiated by first writing two unlock cycles. This is followed by a third write cycle that contains  
the bank address and the autoselect command. The bank then enters the autoselect mode. The system may read any number of  
autoselect codes without reinitiating the command sequence.  
Table 16.1 on page 68 shows the address and data requirements. To determine sector protection information, the system must write  
to the appropriate bank address (BA) and sector address (SA). Table 11.4 on page 19 shows the address range and bank number  
associated with each sector.  
The system must write the reset command to return to the read mode (or erase-suspend-read mode if the bank was previously in  
Erase Suspend).  
16.4 Enter/Exit Secured Silicon Sector Command Sequence  
The Secured Silicon Sector region provides a secured data area containing a random, eight word electronic serial number (ESN).  
The system can access the Secured Silicon Sector region by issuing the three-cycle Enter Secured Silicon Sector command  
sequence. The device continues to access the Secured Silicon Sector region until the system issues the four-cycle Exit Secured  
Silicon Sector command sequence. The Exit Secured Silicon Sector command sequence returns the device to normal operation.  
The Secured Silicon Sector is not accessible when the device is executing an Embedded Program or embedded Erase algorithm.  
Table 16.1 on page 68 shows the address and data requirements for both command sequences. See also Secured Silicon Sector  
Flash Memory Region on page 55 for further information. Note that the ACC function and unlock bypass modes are not available  
when the Secured Silicon Sector is enabled.  
Document Number: 002-00615 Rev. *B  
Page 62 of 101  
S29PL-J  
16.5 Word Program Command Sequence  
Programming is a four-bus-cycle operation. The program command sequence is initiated by writing two unlock write cycles, followed  
by the program set-up command. The program address and data are written next, which in turn initiate the Embedded Program  
algorithm. The system is not required to provide further controls or timings. The device automatically provides internally generated  
program pulses and verifies the programmed cell margin. Table 16.1 on page 68 shows the address and data requirements for the  
program command sequence. Note that the Secured Silicon Sector, autoselect, and CFI functions are unavailable when a [program/  
erase] operation is in progress.  
When the Embedded Program algorithm is complete, that bank then returns to the read mode and addresses are no longer latched.  
The system can determine the status of the program operation by using DQ7, DQ6, or RY/BY#. Refer to Write Operation Status  
on page 71 for information on these status bits.  
Any commands written to the device during the Embedded Program Algorithm are ignored. Note that a hardware reset immediately  
terminates the program operation. The program command sequence should be reinitiated once that bank has returned to the read  
mode, to ensure data integrity. Note that the Secured Silicon Sector, autoselect and CFI functions are unavailable when the Secured  
Silicon Sector is enabled.  
Programming is allowed in any sequence and across sector boundaries. A bit cannot be programmed from “0” back to a “1.”  
Attempting to do so may cause that bank to set DQ5 = 1, or cause the DQ7 and DQ6 status bits to indicate the operation was  
successful. However, a succeeding read will show that the data is still “0.” Only erase operations can convert a “0” to a “1.”  
16.5.1  
Unlock Bypass Command Sequence  
The unlock bypass feature allows the system to program data to a bank faster than using the standard program command  
sequence. The unlock bypass command sequence is initiated by first writing two unlock cycles. This is followed by a third write cycle  
containing the unlock bypass command, 20h. That bank then enters the unlock bypass mode. A two-cycle unlock bypass program  
command sequence is all that is required to program in this mode. The first cycle in this sequence contains the unlock bypass  
program command, A0h; the second cycle contains the program address and data. Additional data is programmed in the same  
manner. This mode dispenses with the initial two unlock cycles required in the standard program command sequence, resulting in  
faster total programming time. Table 16.1 on page 68 shows the requirements for the command sequence.  
During the unlock bypass mode, only the Unlock Bypass Program and Unlock Bypass Reset commands are valid. To exit the unlock  
bypass mode, the system must issue the two-cycle unlock bypass reset command sequence. (See Table 16.2 on page 69)  
The device offers accelerated program operations through the WP#/ACC pin. When the system asserts VHH on the WP#/ACC pin,  
the device automatically enters the Unlock Bypass mode. The system may then write the two-cycle Unlock Bypass program  
command sequence. The device uses the higher voltage on the WP#/ACC pin to accelerate the operation. Note that the WP#/ACC  
pin must not be at VHH any operation other than accelerated programming, or device damage may result. In addition, the WP#/ACC  
pin must not be left floating or unconnected; inconsistent behavior of the device may result.  
Figure 16.1 on page 64 illustrates the algorithm for the program operation. Refer to the table Erase/Program Operations on page 83  
for parameters, and Figure 21.6 on page 84 for timing diagrams.  
Document Number: 002-00615 Rev. *B  
Page 63 of 101  
S29PL-J  
Figure 16.1 Program Operation  
START  
Write Program  
Command Sequence  
Data Poll  
from System  
Embedded  
Program  
algorithm  
in progress  
Verify Data?  
No  
Yes  
No  
Increment Address  
Last Address?  
Yes  
Programming  
Completed  
Note  
See Table 16.1 on page 68 for program command sequence.  
16.6 Chip Erase Command Sequence  
Chip erase is a six bus cycle operation. The chip erase command sequence is initiated by writing two unlock cycles, followed by a  
set-up command. Two additional unlock write cycles are then followed by the chip erase command, which in turn invokes the  
Embedded Erase algorithm. The device does not require the system to preprogram prior to erase. The Embedded Erase algorithm  
automatically preprograms and verifies the entire memory for an all zero data pattern prior to electrical erase. The system is not  
required to provide any controls or timings during these operations. Table 16.1 on page 68 shows the address and data  
requirements for the chip erase command sequence.  
When the Embedded Erase algorithm is complete, that bank returns to the read mode and addresses are no longer latched. The  
system can determine the status of the erase operation by using DQ7, DQ6, DQ2, or  
RY/BY#. Refer to Write Operation Status on page 71 for information on these status bits.  
Any commands written during the chip erase operation are ignored. Note that Secured Silicon Sector, autoselect, and CFI functions  
are unavailable when a [program/erase] operation is in progress. However, note that a hardware reset immediately terminates the  
erase operation. If that occurs, the chip erase command sequence should be reinitiated once that bank has returned to reading array  
data, to ensure data integrity.  
Figure 16.2 on page 65 illustrates the algorithm for the erase operation. Refer to the tables in Erase/Program Operations on page 83  
for parameters, and Figure 21.8 on page 85 for timing diagrams.  
Document Number: 002-00615 Rev. *B  
Page 64 of 101  
S29PL-J  
16.7 Sector Erase Command Sequence  
Sector erase is a six bus cycle operation. The sector erase command sequence is initiated by writing two unlock cycles, followed by  
a set-up command. Two additional unlock cycles are written, and are then followed by the address of the sector to be erased, and  
the sector erase command. Table 16.1 on page 68 shows the address and data requirements for the sector erase command  
sequence.  
The device does not require the system to preprogram prior to erase. The Embedded Erase algorithm automatically programs and  
verifies the entire memory for an all zero data pattern prior to electrical erase. The system is not required to provide any controls or  
timings during these operations.  
After the command sequence is written, a sector erase time-out of 50 µs occurs. During the time-out period, additional sector  
addresses and sector erase commands may be written. Loading the sector erase buffer may be done in any sequence, and the  
number of sectors may be from one sector to all sectors. The time between these additional cycles must be less than 50 µs,  
otherwise erasure may begin. Any sector erase address and command following the exceeded time-out may or may not be  
accepted. It is recommended that processor interrupts be disabled during this time to ensure all commands are accepted. The  
interrupts can be re-enabled after the last Sector Erase command is written. If any command other than 30h, B0h, F0h is input  
during the time-out period, the normal operation will not be guaranteed. The system must rewrite the command sequence and  
any additional addresses and commands. Note that Secured Silicon Sector, autoselect, and CFI functions are unavailable when a  
[program/erase] operation is in progress.  
The system can monitor DQ3 to determine if the sector erase timer has timed out (See the section on DQ3: Sector Erase Timer).  
The time-out begins from the rising edge of the final WE# pulse in the command sequence.  
When the Embedded Erase algorithm is complete, the bank returns to reading array data and addresses are no longer latched. Note  
that while the Embedded Erase operation is in progress, the system can read data from the non-erasing bank. The system can  
determine the status of the erase operation by reading DQ7, DQ6, DQ2, or RY/BY# in the erasing bank. Refer to Write Operation  
Status on page 71 for information on these status bits.  
Once the sector erase operation has begun, only the Erase Suspend command is valid. All other commands are ignored. However,  
note that a hardware reset immediately terminates the erase operation. If that occurs, the sector erase command sequence should  
be reinitiated once that bank has returned to reading array data, to ensure data integrity.  
Figure 8.2 on page 12 illustrates the algorithm for the erase operation. Refer to the tables in Erase/Program Operations on page 83  
for parameters, and Figure 21.8 on page 85 for timing diagrams.  
Figure 16.2 Erase Operation  
START  
Write Erase  
Command Sequence  
(Notes 1, 2)  
Data Poll to Erasing  
Bank from System  
Embedded  
Erase  
algorithm  
in progress  
No  
Data = FFh?  
Yes  
Erasure Completed  
Notes  
1. See Table 16.1 on page 68 for erase command sequence.  
2. See the section on DQ3 for information on the sector erase timer.  
Document Number: 002-00615 Rev. *B  
Page 65 of 101  
S29PL-J  
16.8 Erase Suspend/Erase Resume Commands  
The Erase Suspend command, B0h, allows the system to interrupt a sector erase operation and then read data from, or program  
data to, any sector not selected for erasure. The bank address is required when writing this command. This command is valid only  
during the sector erase operation, including the 50 µs time-out period during the sector erase command sequence. The Erase  
Suspend command is ignored if written during the chip erase operation or Embedded Program algorithm.  
When the Erase Suspend command is written during the sector erase operation, the device requires a maximum of 35 µs to  
suspend the erase operation. However, when the Erase Suspend command is written during the sector erase time-out, the device  
immediately terminates the time-out period and suspends the erase operation. Addresses are “don’t-cares” when writing the Erase  
suspend command.  
After the erase operation has been suspended, the bank enters the erase-suspend-read mode. The system can read data from or  
program data to any sector not selected for erasure. (The device “erase suspends” all sectors selected for erasure.) Reading at any  
address within erase-suspended sectors produces status information on DQ7–DQ0. The system can use DQ7, or DQ6 and DQ2  
together, to determine if a sector is actively erasing or is erase-suspended. Refer to Write Operation Status on page 71 for  
information on these status bits.  
After an erase-suspended program operation is complete, the bank returns to the erase-suspend-read mode. The system can  
determine the status of the program operation using the DQ7 or DQ6 status bits, just as in the standard Word Program operation.  
Refer to Write Operation Status on page 71 for more information.  
In the erase-suspend-read mode, the system can also issue the autoselect command sequence. The device allows reading  
autoselect codes even at addresses within erasing sectors, since the codes are not stored in the memory array. When the device  
exits the autoselect mode, the device reverts to the Erase Suspend mode, and is ready for another valid operation. Refer to  
Table 11.9, Secured Silicon Sector Addresses on page 42 and Autoselect Command Sequence on page 62 for details.  
To resume the sector erase operation, the system must write the Erase Resume command (address bits are don’t care). The bank  
address of the erase-suspended bank is required when writing this command. Further writes of the Resume command are ignored.  
Another Erase Suspend command can be written after the chip has resumed erasing.  
If the Persistent Sector Protection Mode Locking Bit is verified as programmed without margin, the Persistent Sector Protection  
Mode Locking Bit Program Command should be reissued to improve program margin. If the Secured Silicon Sector Protection Bit is  
verified as programmed without margin, the Secured Silicon Sector Protection Bit Program Command should be reissued to improve  
program margin. µµAfter programming a PPB, two additional cycles are needed to determine whether the PPB has been  
programmed with margin. If the PPB has been programmed without margin, the program command should be reissued to improve  
the program margin. Also note that the total number of PPB program/erase cycles is limited to 100 cycles. Cycling the PPBs beyond  
100 cycles is not guaranteed.  
After erasing the PPBs, two additional cycles are needed to determine whether the PPB has been erased with margin. If the PPBs  
has been erased without margin, the erase command should be reissued to improve the program margin. The programming of either  
the PPB or DYB for a given sector or sector group can be verified by writing a Sector Protection Status command to the device.  
Note that there is no single command to independently verify the programming of a DYB for a given sector group.  
Document Number: 002-00615 Rev. *B  
Page 66 of 101  
S29PL-J  
16.9 Program Suspend/Program Resume Commands  
The Program Suspend command allows the system to interrupt an embedded programming operation so that data can read from  
any non-suspended sector. When the Program Suspend command is written during a programming process, the device halts the  
programming operation within tPSL (program suspend latency) and updates the status bits. Addresses are “don’t-cares” when writing  
the Program Suspend command. After the programming operation has been suspended, the system can read array data from any  
non-suspended sector. The Program Suspend command may also be issued during a programming operation while an erase is  
suspended. In this case, data may be read from any addresses not in Erase Suspend or Program Suspend. If a read is needed from  
the Secured Silicon Sector area, then user must use the proper command sequences to enter and exit this region. The system may  
also write the autoselect command sequence when the device is in Program Suspend mode. The device allows reading autoselect  
codes in the suspended sectors, since the codes are not stored in the memory array. When the device exits the autoselect mode,  
the device reverts to Program Suspend mode, and is ready for another valid operation. See Autoselect Command Sequence  
on page 62 for more information. After the Program Resume command is written, the device reverts to programming. The system  
can determine the status of the program operation using the DQ7 or DQ6 status bits, just as in the standard program operation. See  
Write Operation Status on page 71 for more information. The system must write the Program Resume command (address bits are  
“don’t care”) to exit the Program Suspend mode and continue the programming operation. Further writes of the Program Resume  
command are ignored. Another Program Suspend command can be written after the device has resumed programming.  
16.10 Command Definitions Tables  
Table 16.1 on page 68 contains the Memory Array Command Definitions.  
Document Number: 002-00615 Rev. *B  
Page 67 of 101  
S29PL-J  
Table 16.1 Memory Array Command Definitions  
Bus Cycles (Notes 14)  
Command (Notes)  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Read (5)  
Reset (6)  
1
1
RA  
RD  
F0  
XXX  
(BA)  
555  
(BA)  
X00  
Manufacturer ID  
4
6
4
4
555  
555  
555  
555  
AA  
AA  
2AA  
2AA  
2AA  
2AA  
55  
55  
55  
55  
90  
90  
90  
90  
01  
227E  
(8)  
(BA)  
555  
(BA)  
X01  
(BA)  
X0E  
(BA)  
X0F  
Device ID (10)  
(10)  
(10)  
Secured Silicon Sector  
Factory Protect (8)  
(BA)  
555  
AA  
X03  
Sector Group  
Protect Verify(9)  
(BA)  
555  
XX00/  
XX01  
AAA  
(SA) X02  
Program  
4
6
6
1
1
1
2
3
2
2
1
2
555  
555  
555  
BA  
AA  
AA  
AA  
B0  
30  
98  
A0  
AA  
A0  
80  
98  
90  
2AA  
2AA  
2AA  
55  
55  
55  
555  
555  
555  
A0  
80  
80  
PA  
555  
555  
PD  
AA  
AA  
Chip Erase  
2AA  
2AA  
55  
55  
555  
SA  
10  
30  
Sector Erase  
Program/Erase Suspend (11)  
Program/Erase Resume (12)  
CFI Query (13)  
BA  
55  
Accelerated Program (14)  
Unlock Bypass Entry (14)  
Unlock Bypass Program (14)  
Unlock Bypass Erase (14)  
Unlock Bypass CFI (13)(14)  
Unlock Bypass Reset (14)  
Legend  
XX  
PA  
2AA  
PA  
PD  
55  
555  
XX  
555  
20  
PD  
10  
XX  
XX  
XX  
XXX  
XXX  
00  
BA = Address of bank switching to autoselect mode, bypass mode, or erase operation. Determined by PL127J: Amax:A20, PL064J and PL129J: Amax:A19, PL032J:  
Amax:A18.  
PA = Program Address (Amax:A0). Addresses latch on falling edge of WE# or CE# (CE1#/CE2# for PL129J) pulse, whichever happens later.  
PD = Program Data (DQ15:DQ0) written to location PA. Data latches on rising edge of WE# or CE# (CE1#/CE2# for PL129J) pulse, whichever happens first.  
RA = Read Address (Amax:A0).  
RD = Read Data (DQ15:DQ0) from location RA.  
SA = Sector Address (Amax:A12) for verifying (in autoselect mode) or erasing.  
WD = Write Data. See “Configuration Register” definition for specific write data. Data latched on rising edge of WE#.  
X = Don’t care  
Notes  
1. See Table 11.1 on page 17 for description of bus operations.  
2. All values are in hexadecimal.  
3. Shaded cells in table denote read cycles. All other cycles are write operations.  
4. During unlock and command cycles, when lower address bits are 555 or 2AAh as shown in table, address bits higher than A11 (except where BA is required) and data  
bits higher than DQ7 are don’t cares.  
5. No unlock or command cycles required when bank is reading array data.  
6. The Reset command is required to return to reading array (or to erase-suspend-read mode if previously in Erase Suspend) when bank is in autoselect mode, or if DQ5  
goes high (while bank is providing status information).  
7. Fourth cycle of autoselect command sequence is a read cycle. System must provide bank address to obtain manufacturer ID or device ID information. See Autoselect  
Command Sequence on page 62 for more information.  
8. The data is DQ6=1 for factory and customer locked and DQ7=1 for factory locked.  
9. The data is 00h for an unprotected sector group and 01h for a protected sector group.  
10. Device ID must be read across cycles 4, 5, and 6. PL127J (X0Eh = 2220h, X0Fh = 2200h), PL129J (X0Eh = 2221h, X0Fh = 2200h),PL064J (X0Eh = 2202h, X0Fh =  
2201h), PL032J (X0Eh = 220Ah, X0Fh = 2201h).  
11. System may read and program in non-erasing sectors, or enter autoselect mode, when in Program/Erase Suspend mode. Program/Erase Suspend command is valid  
only during a sector erase operation, and requires bank address.  
12. Program/Erase Resume command is valid only during Erase Suspend mode, and requires bank address.  
13.Command is valid when device is ready to read array data or when device is in autoselect mode.  
14. WP#/ACC must be at V during the entire operation of command.  
ID  
Document Number: 002-00615 Rev. *B  
Page 68 of 101  
S29PL-J  
Table 16.2 Sector Protection Command Definitions  
Bus Cycles (Notes 1-4)  
Command (Notes)  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Addr  
Data  
Reset  
1
3
XXX  
F0  
Secured Silicon  
Sector Entry (16)  
555  
555  
AA  
AA  
2AA  
2AA  
55  
55  
555  
555  
88  
90  
Secured Silicon  
Sector Exit (16)  
4
6
XX  
OW  
OW  
00  
68  
48  
Secured Silicon  
Protection Bit  
RD  
(0)  
555  
AA  
2AA  
55  
555  
60  
OW  
OW  
48  
OW  
Program (Notes 5, 6)  
Secured Silicon  
Protection Bit Status  
RD  
(0)  
5
4
4
7
6
4
555  
555  
555  
555  
555  
555  
AA  
AA  
AA  
AA  
AA  
AA  
2AA  
2AA  
2AA  
2AA  
2AA  
2AA  
55  
55  
55  
55  
55  
55  
555  
555  
555  
555  
555  
60  
38  
C8  
28  
60  
90  
Password Program  
(Notes 5, 7, 8)  
XX  
[0-3]  
PD  
[0-3]  
Password Verify  
(Notes 6, 8, 9)  
PWA  
[0-3]  
PWD  
[0-3]  
Password Unlock  
(Notes 7, 10, 11)  
PWA  
[0]  
PWD  
[0]  
PWA  
[1]  
PWD  
[1]  
PWA  
[2]  
PWD  
[2]  
PWA  
[3]  
PWD  
[3]  
PPB Program  
(Notes 5, 6, 11)  
(SA)  
WP  
(SA)  
WP  
(SA)  
WP  
68  
48  
RD(0)  
BA+55  
5
(SA)  
WP  
RD  
(0)  
PPB Status  
All PPB Erase  
(Notes 5, 6, 13, 14)  
(SA)  
WP  
6
3
4
555  
555  
555  
AA  
AA  
AA  
2AA  
2AA  
2AA  
55  
55  
55  
555  
555  
60  
78  
58  
WP  
60  
(SA)  
40  
RD(0)  
PPB Lock Bit Set  
BA+55  
5
RD  
(1)  
PPB Lock Bit Status (15)  
SA  
DYB Write (7)  
DYB Erase (7)  
4
4
555  
555  
AA  
AA  
2AA  
2AA  
55  
55  
555  
555  
48  
48  
SA  
SA  
X1  
X0  
BA+55  
5
RD  
(0)  
DYB Status (6)  
4
6
5
6
5
555  
555  
555  
555  
555  
AA  
AA  
AA  
AA  
AA  
2AA  
2AA  
2AA  
2AA  
2AA  
55  
55  
55  
55  
55  
58  
60  
60  
60  
60  
SA  
PL  
PL  
SL  
SL  
PPMLB Program  
(Notes 5, 6, 12)  
555  
555  
555  
555  
68  
48  
68  
48  
PL  
PL  
SL  
SL  
48  
PL  
SL  
RD(0)  
RD(0)  
RD  
(0)  
PPMLB Status (5)  
SPMLB Program  
(Notes 5, 6, 12)  
48  
RD  
(0)  
SPMLB Status (5)  
Legend  
DYB = Dynamic Protection Bit  
OW = Address (A7:A0) is (00011010)  
PD[3:0] = Password Data (1 of 4 portions)  
PPB = Persistent Protection Bit  
PWA = Password Address. A1:A0 selects portion of password.  
PWD = Password Data being verified.  
PL = Password Protection Mode Lock Address (A7:A0) is (00001010)  
RD(0) = Read Data DQ0 for protection indicator bit.  
RD(1) = Read Data DQ1 for PPB Lock status.  
SA = Sector Address where security command applies. Address bits Amax:A12 uniquely select any sector.  
SL = Persistent Protection Mode Lock Address (A7:A0) is (00010010)  
WP = PPB Address (A7:A0) is (00000010)  
X = Don’t care  
PPMLB = Password Protection Mode Locking Bit  
SPMLB = Persistent Protection Mode Locking Bit  
Document Number: 002-00615 Rev. *B  
Page 69 of 101  
S29PL-J  
Notes  
1. See Table 11.1 on page 17 for description of bus operations.  
2. All values are in hexadecimal.  
3. Shaded cells in table denote read cycles. All other cycles are write operations.  
4. During unlock and command cycles, when lower address bits are 555 or 2AAh as shown in table, address bits higher than A11 (except where BA is required) and data  
bits higher than DQ7 are don’t cares.  
5. The reset command returns device to reading array.  
6. Cycle 4 programs the addressed locking bit. Cycles 5 and 6 validate bit has been fully programmed when DQ0 = 1. If DQ0 = 0 in cycle 6, program command must be  
issued and verified again.  
7. Data is latched on the rising edge of WE#.  
8. Entire command sequence must be entered for each portion of password.  
9. Command sequence returns FFh if PPMLB is set.  
10. The password is written over four consecutive cycles, at addresses 0-3.  
11. A 2 µs timeout is required between any two portions of password.  
12. A 100 µs timeout is required between cycles 4 and 5.  
13. A 1.2 ms timeout is required between cycles 4 and 5.  
14. Cycle 4 erases all PPBs. Cycles 5 and 6 validate bits have been fully erased when DQ0 = 0. If DQ0 = 1 in cycle 6, erase command must be issued and verified again.  
Before issuing erase command, all PPBs should be programmed to prevent PPB overerasure.  
15. DQ1 = 1 if PPB locked, 0 if unlocked.  
16.Once the Secured Silicon Sector Entry Command sequence has been entered, the standard array cannot be accessed until the Exit SecSi Sector command has been  
entered or the device has been reset.  
Document Number: 002-00615 Rev. *B  
Page 70 of 101  
S29PL-J  
17. Write Operation Status  
The device provides several bits to determine the status of a program or erase operation: DQ2, DQ3, DQ5, DQ6, and DQ7.  
Table 17.1 on page 75 and the following subsections describe the function of these bits. DQ7 and DQ6 each offer a method for  
determining whether a program or erase operation is complete or in progress. The device also provides a hardware-based output  
signal, RY/BY#, to determine whether an Embedded Program or Erase operation is in progress or has been completed.  
17.1 DQ7: Data# Polling  
The Data# Polling bit, DQ7, indicates to the host system whether an Embedded Program or Erase algorithm is in progress or  
completed, or whether a bank is in Erase Suspend. Data# Polling is valid after the rising edge of the final WE# pulse in the command  
sequence.  
During the Embedded Program algorithm, the device outputs on DQ7 the complement of the datum programmed to DQ7. This DQ7  
status also applies to programming during Erase Suspend. When the Embedded Program algorithm is complete, the device outputs  
the datum programmed to DQ7. The system must provide the program address to read valid status information on DQ7. If a program  
address falls within a protected sector, Data# Polling on DQ7 is active for approximately 1 µs, then that bank returns to the read  
mode.  
During the Embedded Erase algorithm, Data# Polling produces a “0” on DQ7. When the Embedded Erase algorithm is complete, or  
if the bank enters the Erase Suspend mode, Data# Polling produces a “1” on DQ7. The system must provide an address within any  
of the sectors selected for erasure to read valid status information on DQ7.  
After an erase command sequence is written, if all sectors selected for erasing are protected, Data# Polling on DQ7 is active for  
approximately 400 µs, then the bank returns to the read mode. If not all selected sectors are protected, the Embedded Erase  
algorithm erases the unprotected sectors, and ignores the selected sectors that are protected. However, if the system reads DQ7 at  
an address within a protected sector, the status may not be valid.  
When the system detects DQ7 has changed from the complement to true data, it can read valid data at DQ15–DQ0 on the following  
read cycles. Just prior to the completion of an Embedded Program or Erase operation, DQ7 may change asynchronously with  
DQ15–DQ0 while Output Enable (OE#) is asserted low. That is, the device may change from providing status information to valid  
data on DQ7. Depending on when the system samples the DQ7 output, it may read the status or valid data. Even if the device has  
completed the program or erase operation and DQ7 has valid data, the data outputs on DQ15–DQ0 may be still invalid. Valid data  
on DQ15–DQ0 will appear on successive read cycles.  
Table 17.1 on page 75 shows the outputs for Data# Polling on DQ7. Figure 17.1 on page 72 shows the Data# Polling algorithm.  
Figure 21.10 on page 86 shows the Data# Polling timing diagram.  
Document Number: 002-00615 Rev. *B  
Page 71 of 101  
S29PL-J  
Figure 17.1 Data# Polling Algorithm  
START  
Read DQ7–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
No  
DQ5 = 1?  
Yes  
Read DQ7–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
PASS  
FAIL  
Notes  
1. VA = Valid address for programming. During a sector erase operation, a valid address is any sector address within the sector being erased. During chip erase, a valid  
address is any non-protected sector address.  
2. DQ7 should be rechecked even if DQ5 = “1” because DQ7 may change simultaneously with DQ5.  
17.2 RY/BY#: Ready/Busy#  
The RY/BY# is a dedicated, open-drain output pin which indicates whether an Embedded Algorithm is in progress or complete. The  
RY/BY# status is valid after the rising edge of the final WE# pulse in the command sequence. Since RY/BY# is an open-drain output,  
several RY/BY# pins can be tied together in parallel with a pull-up resistor to VCC  
.
If the output is low (Busy), the device is actively erasing or programming. (This includes programming in the Erase Suspend mode.)  
If the output is high (Ready), the device is in the read mode, the standby mode, or one of the banks is in the erase-suspend-read  
mode.  
Table 17.1 on page 75 shows the outputs for RY/BY#.  
17.3 DQ6: Toggle Bit I  
Toggle Bit I on DQ6 indicates whether an Embedded Program or Erase algorithm is in progress or complete, or whether the device  
has entered the Erase Suspend mode. Toggle Bit I may be read at any address, and is valid after the rising edge of the final WE#  
pulse in the command sequence (prior to the program or erase operation), and during the sector erase time-out.  
During an Embedded Program or Erase algorithm operation, successive read cycles to any address cause DQ6 to toggle. The  
system may use either OE# or CE# to control the read cycles. When the operation is complete, DQ6 stops toggling.  
After an erase command sequence is written, if all sectors selected for erasing are protected, DQ6 toggles for approximately 400 µs,  
then returns to reading array data. If not all selected sectors are protected, the Embedded Erase algorithm erases the unprotected  
sectors, and ignores the selected sectors that are protected.  
Document Number: 002-00615 Rev. *B  
Page 72 of 101  
S29PL-J  
The system can use DQ6 and DQ2 together to determine whether a sector is actively erasing or is erase-suspended. When the  
device is actively erasing (that is, the Embedded Erase algorithm is in progress), DQ6 toggles. When the device enters the Erase  
Suspend mode, DQ6 stops toggling. However, the system must also use DQ2 to determine which sectors are erasing or erase-  
suspended. Alternatively, the system can use DQ7 (see the DQ7: Data# Polling on page 71).  
If a program address falls within a protected sector, DQ6 toggles for approximately 1 µs after the program command sequence is  
written, then returns to reading array data.  
DQ6 also toggles during the erase-suspend-program mode, and stops toggling once the Embedded Program algorithm is complete.  
Table 17.1 on page 75 shows the outputs for Toggle Bit I on DQ6. Figure 17.2 on page 73 shows the toggle bit algorithm.  
Figure 21.11 on page 87 in shows the toggle bit timing diagrams. Figure 21.12 on page 87 shows the differences between DQ2 and  
DQ6 in graphical form. See also the DQ2: Toggle Bit II on page 74.  
Figure 17.2 Toggle Bit Algorithm  
START  
Read Byte  
(DQ7–DQ0)  
Address =VA  
Read Byte  
(DQ7–DQ0)  
Address =VA  
No  
Toggle Bit  
= Toggle?  
Yes  
No  
DQ5 = 1?  
Yes  
Read Byte Twice  
(DQ7–DQ0)  
Address = VA  
Toggle Bit  
= Toggle?  
No  
Yes  
Program/Erase  
Operation Not  
Complete, Write  
Reset Command  
Program/Erase  
Operation Complete  
Note:  
The system should recheck the toggle bit even if DQ5 = “1” because the toggle bit may stop toggling as DQ5 changes to “1.” See the DQ6: Toggle Bit I on page 72 and  
DQ2: Toggle Bit II on page 74 for more information.  
Document Number: 002-00615 Rev. *B  
Page 73 of 101  
S29PL-J  
17.4 DQ2: Toggle Bit II  
The “Toggle Bit II” on DQ2, when used with DQ6, indicates whether a particular sector is actively erasing (that is, the Embedded  
Erase algorithm is in progress), or whether that sector is erase-suspended. Toggle Bit II is valid after the rising edge of the final WE#  
pulse in the command sequence.  
DQ2 toggles when the system reads at addresses within those sectors that have been selected for erasure. (The system may use  
either OE# or CE# (CE1# / CE2# for PL129J) to control the read cycles.) But DQ2 cannot distinguish whether the sector is actively  
erasing or is erase-suspended. DQ6, by comparison, indicates whether the device is actively erasing, or is in Erase Suspend, but  
cannot distinguish which sectors are selected for erasure. Thus, both status bits are required for sector and mode information. Refer  
to Table 17.1 on page 75 to compare outputs for DQ2 and DQ6.  
Figure 17.2 on page 73 shows the toggle bit algorithm in flowchart form, and the DQ2: Toggle Bit II on page 74 explains the  
algorithm. See also the DQ6: Toggle Bit I on page 72. Figure 21.11 on page 87 shows the toggle bit timing diagram. Figure 21.12  
on page 87 shows the differences between DQ2 and DQ6 in graphical form.  
17.5 Reading Toggle Bits DQ6/DQ2  
Refer to Figure 17.2 on page 73 for the following discussion. Whenever the system initially begins reading toggle bit status, it must  
read DQ7–DQ0 at least twice in a row to determine whether a toggle bit is toggling. Typically, the system would note and store the  
value of the toggle bit after the first read. After the second read, the system would compare the new value of the toggle bit with the  
first. If the toggle bit is not toggling, the device has completed the program or erase operation. The system can read array data on  
DQ7–DQ0 on the following read cycle.  
However, if after the initial two read cycles, the system determines that the toggle bit is still toggling, the system also should note  
whether the value of DQ5 is high (see the section on DQ5). If it is, the system should then determine again whether the toggle bit is  
toggling, since the toggle bit may have stopped toggling just as DQ5 went high. If the toggle bit is no longer toggling, the device has  
successfully completed the program or erase operation. If it is still toggling, the device did not completed the operation successfully,  
and the system must write the reset command to return to reading array data.  
The remaining scenario is that the system initially determines that the toggle bit is toggling and DQ5 has not gone high. The system  
may continue to monitor the toggle bit and DQ5 through successive read cycles, determining the status as described in the previous  
paragraph. Alternatively, it may choose to perform other system tasks. In this case, the system must start at the beginning of the  
algorithm when it returns to determine the status of the operation (top of Figure 17.2 on page 73).  
17.6 DQ5: Exceeded Timing Limits  
DQ5 indicates whether the program or erase time has exceeded a specified internal pulse count limit. Under these conditions DQ5  
produces a “1,” indicating that the program or erase cycle was not successfully completed.  
The device may output a “1” on DQ5 if the system tries to program a “1” to a location that was previously programmed to “0.” Only  
an erase operation can change a “0” back to a “1.” Under this condition, the device halts the operation, and when the timing limit  
has been exceeded, DQ5 produces a “1.”  
Under both these conditions, the system must write the reset command to return to the read mode (or to the erase-suspend-read  
mode if a bank was previously in the erase-suspend-program mode).  
Document Number: 002-00615 Rev. *B  
Page 74 of 101  
S29PL-J  
17.7 DQ3: Sector Erase Timer  
After writing a sector erase command sequence, the system may read DQ3 to determine whether or not erasure has begun. (The  
sector erase timer does not apply to the chip erase command.) If additional sectors are selected for erasure, the entire time-out also  
applies after each additional sector erase command. When the time-out period is complete, DQ3 switches from a “0” to a “1.” See  
also the Sector Erase Command Sequence on page 65.  
After the sector erase command is written, the system should read the status of DQ7 (Data# Polling) or DQ6 (Toggle Bit I) to ensure  
that the device has accepted the command sequence, and then read DQ3. If DQ3 is “1,” the Embedded Erase algorithm has begun;  
all further commands (except Erase Suspend) are ignored until the erase operation is complete. If DQ3 is “0,” the device will accept  
additional sector erase commands. To ensure the command has been accepted, the system software should check the status of  
DQ3 prior to and following each subsequent sector erase command. If DQ3 is high on the second status check, the last command  
might not have been accepted.  
Table 17.1 shows the status of DQ3 relative to the other status bits.  
Table 17.1 Write Operation Status  
DQ7  
(Note 2)  
DQ5  
(Note 1)  
DQ2  
(Note 2)  
Status  
DQ6  
DQ3  
N/A  
1
RY/BY#  
Embedded Program  
Algorithm  
DQ7#  
0
Toggle  
Toggle  
0
0
No toggle  
Toggle  
0
0
Standard  
Mode  
Embedded Erase  
Algorithm  
Erase  
Suspended  
Sector  
1
No toggle  
Data  
0
N/A  
Toggle  
Data  
1
1
Erase  
Suspend-  
Read  
Erase  
Suspend  
Mode  
Non-Erase  
Data  
Data  
Data  
Suspended  
Sector  
Erase-Suspend  
-Program  
DQ7#  
Toggle  
Invalid  
0
N/A  
N/A  
0
1
Reading within  
Program  
Suspended Sector  
Invalid  
Invalid  
Invalid  
Invalid  
Program  
Suspend  
Mode  
(Not Allowed) (Not Allowed) (Not Allowed) (Not Allowed) (Not Allowed)  
Reading within  
Non-program  
(Note 3)  
Data  
Data  
Data  
Data  
Data  
1
Suspended Sector  
Notes:  
1. DQ5 switches to ‘1’ when an Embedded Program or Embedded Erase operation has exceeded the maximum timing limits. Refer to DQ5: Exceeded Timing Limits  
on page 74 for more information.  
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further details.  
3. When reading write operation status bits, the system must always provide the bank address where the Embedded Algorithm is in progress. The device outputs array  
data if the system addresses a non-busy bank.  
Document Number: 002-00615 Rev. *B  
Page 75 of 101  
S29PL-J  
18. Absolute Maximum Ratings  
Storage Temperature Plastic Packages  
Ambient Temperature with Power Applied  
Voltage with Respect to Ground  
VCC (Note 1)  
–65°C to +150°C  
–65°C to +125°C  
–0.5 V to +4.0 V  
–0.5 V to +12.5 V  
–0.5 V to +10.5 V  
–0.5 V to VCC +0.5 V  
200 mA  
A9, OE#, and RESET# (Note 2)  
WP#/ACC (Note 2)  
All other pins (Note 1)  
Output Short Circuit Current (Note 3)  
Notes:  
1. Minimum DC voltage on input or I/O pins is –0.5 V. During voltage transitions, input or I/O pins may overshoot V to –2.0 V for periods of up to 20 ns. Maximum DC  
SS  
voltage on input or I/O pins is V +0.5 V. During voltage transitions, input or I/O pins may overshoot to V +2.0 V for periods up to 20 ns. See Figure 18.1  
CC  
CC  
on page 76.  
2. Minimum DC input voltage on pins A9, OE#, RESET#, and WP#/ACC is –0.5 V. During voltage transitions, A9, OE#, WP#/ACC, and RESET# may overshoot V to –  
SS  
2.0 V for periods of up to 20 ns. See Figure 18.1 on page 76. Maximum DC input voltage on pin A9, OE#, and RESET# is +12.5 V which may overshoot to +14.0 V for  
periods up to 20 ns. Maximum DC input voltage on WP#/ACC is +9.5 V which may overshoot to +12.0 V for periods up to 20 ns.  
3. No more than one output may be shorted to ground at a time. Duration of the short circuit should not be greater than one second.  
4. Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational sections of this data sheet is not implied. Exposure of the device to absolute maximum  
rating conditions for extended periods may affect device reliability  
Figure 18.1 Maximum Overshoot Waveforms  
20 ns  
20 ns  
20 ns  
V
+0.8 V  
CC  
+2.0 V  
V
–0.5 V  
–2.0 V  
CC  
+0.5 V  
2.0 V  
20 ns  
20 ns  
20 ns  
Maximum Negative Overshoot Waveform  
Maximum Positive Overshoot Waveform  
Document Number: 002-00615 Rev. *B  
Page 76 of 101  
S29PL-J  
19. Operating Ranges  
Operating ranges define those limits between which the functionality of the device is guaranteed.  
Industrial (I) Devices  
Ambient Temperature (TA)................ –40°C to +85°C  
Wireless (W) Devices  
Ambient Temperature (TA)................ –25°C to +85°C  
Supply Voltages  
VCC .................................................. 2.7–3.6 V  
VIO (see Note)................................... 1.65–1.95 V (for PL127J and PL129J) or 2.7–3.6 V (for all PLxxxJ devices)  
Note:  
For all AC and DC specifications, V = V ; contact your local sales office for other V options.  
IO  
CC  
IO  
Document Number: 002-00615 Rev. *B  
Page 77 of 101  
S29PL-J  
20. DC Characteristics  
Table 20.1 CMOS Compatible  
Parameter  
Parameter Description (notes)  
Test Conditions  
Min  
Typ  
Max  
Unit  
ILI  
Input Load Current  
VIN = VSS to VCC, VCC = VCC max  
1.0  
µA  
A9, OE#, RESET#  
Input Load Current  
ILIT  
ILR  
ILO  
VCC = VCC max; VID= 12.5 V  
35  
35  
µA  
µA  
µA  
Reset Leakage Current  
VCC = VCC max; VID= 12.5 V  
VOUT = VSS to VCC, OE# = VIH  
VCC = VCC max  
Output Leakage Current  
1.0  
5 MHz  
10 MHz  
20  
45  
30  
55  
25  
5
VCC Active Read Current  
(1, 2)  
ICC1  
OE# = VIH, VCC = VCC max  
OE# = VIH, WE# = VIL  
mA  
ICC2  
ICC3  
ICC4  
VCC Active Write Current (2, 3)  
VCC Standby Current (2)  
VCC Reset Current (2)  
15  
mA  
µA  
µA  
CE#, RESET#, WP#/ACC = VIO 0.3 V  
RESET# = VSS 0.3 V  
0.2  
0.2  
5
Automatic Sleep Mode  
(Notes 2, 4)  
ICC5  
ICC6  
V
IH = VIO 0.3 V; VIL = VSS 0.3 V  
0.2  
5
µA  
5 MHz  
10 MHz  
5 MHz  
10 MHz  
21  
46  
21  
46  
45  
70  
45  
70  
VCC Active Read-While-Program  
Current (1, 2)  
OE# = VIH,  
mA  
VCC Active Read-While-Erase  
Current (1, 2)  
ICC7  
OE# = VIH,  
OE# = VIH  
mA  
VCC Active Program-While-Erase-  
Suspended Current (2, 5)  
ICC8  
ICC9  
17  
10  
25  
15  
mA  
mA  
V
VCC Active Page Read Current (2) OE# = VIH, 8 word Page Read  
VIO = 1.65–1.95 V  
Input Low Voltage  
–0.4  
–0.5  
0.4  
(PL127J and PL129J)  
VIL  
VIO = 2.7–3.6 V  
0.8  
V
VIO = 1.65–1.95 V  
(PL127J AND PL129J)  
VIO–0.4  
2.0  
VIO+0.4  
VCC+0.3  
9.5  
V
VIH  
Input High Voltage  
VIO = 2.7–3.6 V  
V
Voltage for ACC  
Program Acceleration  
VHH  
VID  
VCC = 3.0 V ± 10%  
8.5  
V
Voltage for Autoselect and  
Temporary Sector Unprotect  
V
CC = 3.0 V 10%  
11.5  
12.5  
0.1  
V
V
IOL = 100 µA, VCC = VCC min  
,
VIO = 1.65–1.95 V  
VOL  
Output Low Voltage  
(PL127J AND PL129J)  
I
OL = 2.0 mA, VCC = VCC min  
VIO = 2.7–3.6 V  
OH = –100 µA, VCC = VCC min  
,
0.4  
V
V
I
,
VIO = 1.65–1.95 V  
VIO–0.1  
VOH  
Output High Voltage  
(PL127J AND PL129J)  
IOH = ––100 µA, VIO = VCC min  
VCC–0.2V  
2.3  
V
V
VLKO  
Low VCC Lock-Out Voltage (5)  
2.5  
Notes  
1. The I current listed is typically less than 5 mA/MHz, with OE# at V  
.
IH  
CC  
2. Maximum I specifications are tested with V = V .  
CCmax  
CC  
CC  
3.  
I
active while Embedded Erase or Embedded Program is in progress.  
CC  
4. Automatic sleep mode enables the low power mode when addresses remain stable for t  
5. Not 100% tested.  
+ 30 ns. Typical sleep mode current is 2 µA.  
ACC  
6. In S29PL129J there are two CE# (CE1#, CE2#). Valid CE1#/CE2# conditions: (CE1# = V CE2# = V ) or (CE1# = V CE2# = V ) or (CE1# = V CE2# = V )  
IH  
IL,  
IH,  
IH,  
IL  
IH,  
Document Number: 002-00615 Rev. *B  
Page 78 of 101  
S29PL-J  
21. AC Characteristic  
21.1 Test Conditions  
Figure 21.1 Test Setups  
3.6 V  
2.7 k  
Device  
Under  
Test  
Device  
Under  
Test  
C
L
C
6.2 k  
L
VIO = 3.0 V  
VIO = 1.8 V (PL127J and PL129J)  
Note  
Diodes are IN3064 or equivalent  
Table 21.1 Test Specifications  
Test Conditions  
All Speeds  
Unit  
Output Load  
Output Load Capacitance, CL (including jig capacitance)  
IO = 1.8 V  
1 TTL gate  
30  
pF  
ns  
V
(PL127J AND PL129J)  
Input Rise and Fall Times  
5
VIO = 3.0 V  
VIO = 1.8 V  
(PL127J AND PL129J)  
0.0 - 1.8  
Input Pulse Levels  
V
VIO = 3.0 V  
0.0–3.0  
VIO/2  
Input timing measurement reference levels  
Output timing measurement reference levels  
V
V
VIO/2  
Document Number: 002-00615 Rev. *B  
Page 79 of 101  
S29PL-J  
21.2 Switching Waveforms  
Table 21.2 Key To Switching Waveforms  
Waveform  
Inputs  
Outputs  
Steady  
Changing from H to L  
Changing from L to H  
Don’t Care, Any Change Permitted  
Does Not Apply  
Changing, State Unknown  
Center Line is High Impedance State (High Z)  
Figure 21.2 Input Waveforms and Measurement Levels  
VIO  
VIO/2  
VIO/2  
Input  
Measurement Level  
Output  
0.0 V  
21.3 Read Operations  
Table 21.3 Read-Only Operations  
Parameter  
Speed Options  
Description (Notes)  
Read Cycle Time (1)  
Test Setup  
Unit  
JEDEC  
tAVAV  
Std.  
55  
55  
55  
55  
20  
20  
60  
60  
60  
60  
25  
25  
65  
65  
65  
65  
25  
70  
70  
70  
70  
30  
80  
80  
80  
80  
30  
35  
tRC  
Min  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAVQV  
tELQV  
tACC Address to Output Delay  
tCE Chip Enable to Output Delay  
tPACC Page Access Time  
CE#, OE# = VIL Max  
OE# = VIL  
Max  
Max  
Max  
Max  
Max  
tGLQV  
tEHQZ  
tGHQZ  
tOE  
tDF  
tDF  
Output Enable to Output Delay  
30  
Chip Enable to Output High Z (3)  
16  
16  
Output Enable to Output High Z (1, 3)  
Output Hold Time From Addresses,  
CE# or OE#, Whichever Occurs First (3)  
tAXQX  
tOH  
Min  
Min  
Min  
5
0
ns  
ns  
ns  
Read  
Output Enable Hold  
tOEH  
Toggle and Data#  
Time (1)  
10  
Polling  
Notes  
1. Not 100% tested.  
2. See Figure 21.1 on page 79 and Table 21.1 on page 79 for test specifications  
3. Measurements performed by placing a 50 ohm termination on the data pin with a bias of V /2. The time from OE# high to the data bus driven to V /2 is taken as  
CC  
CC  
t
.
DF  
4. S29PL129J has two CE# (CE1#, CE2#).  
5. Valid CE1# / CE2# conditions: (CE1# = V ,CE2# = V ) or (CE1# = V ,CE2# = V ) or (CE1# = V CE2# = V )  
IH  
IL  
IH  
IH  
IL  
IH,  
6. Valid CE1# / CE2# transitions: (CE1# = V ,CE2# = V ) or (CE1# = V ,CE2# = V ) to (CE1# = CE2# = V  
IH  
)
)
IL  
IH  
IH  
IL  
7. Valid CE1# / CE2# transitions: (CE1# = CE2# = V ) to (CE1# = V ,CE2# = V ) or (CE1# = V ,CE2# = V  
IL  
IH  
IL  
IH  
IH  
8. For 70 pF Output Load Capacitance, 2 ns will be added to the above t  
,t ,t  
,t values for all speed grades  
ACC CE PACC OE  
Document Number: 002-00615 Rev. *B  
Page 80 of 101  
S29PL-J  
Figure 21.3 Read Operation Timings  
tRC  
Addresses Stable  
tACC  
Addresses  
CE#  
tRH  
tRH  
tD  
tOE  
OE#  
WE  
tOEH  
tCE  
tOH  
Valid Data  
High Z  
High Z  
Data  
RESET#  
RY/BY#  
0 V  
Notes  
1. S29PL129J - During CE1# transitions, CE2# = V ; During CE2# transitions, CE1# = V  
IH  
IH  
2. S29PL129J - There are two CE# (CE1#, CE2#). In the above waveform CE# = CE1# or CE2#  
Figure 21.4 Page Read Operation Timings  
Same Page  
Amax  
-
-
A3  
A0  
A2  
Ad  
Aa  
tACC  
Ab  
tPACC  
Ac  
tPACC  
tPACC  
Data  
Qa  
Qb  
Qc  
Qd  
CE#  
OE#  
Notes  
1. S29PL129J - During CE1# transitions, CE2# = V ; During CE2# transitions, CE1# = V  
IH  
IH  
2. S29PL129J - There are two CE# (CE1#, CE2#). In the above waveform CE# = CE1# or CE2#  
Document Number: 002-00615 Rev. *B  
Page 81 of 101  
S29PL-J  
21.4 Reset  
Table 21.4 Hardware Reset (RESET#)  
Parameter  
All Speed  
Options  
Description  
Unit  
JEDEC  
Std  
RESET# Pin Low (During Embedded Algorithms) to Read Mode  
(See Note)  
tReady  
Max  
20  
µs  
tReady RESET# Pin Low (NOT During Embedded Algorithms) to Read Mode (See Note)  
Max  
Min  
Min  
Min  
Min  
500  
500  
50  
ns  
ns  
ns  
µs  
ns  
tRP  
tRH  
RESET# Pulse Width  
Reset High Time Before Read (See Note)  
tRPD RESET# Low to Standby Mode  
tRB RY/BY# Recovery Time  
20  
0
Note  
Not 100% tested.  
Figure 21.5 Reset Timings  
RY/BY#  
CE#, OE#  
RESET#  
tRH  
tRP  
tReady  
Reset Timings NOT during Embedded Algorithms  
Reset Timings during Embedded Algorithms  
tReady  
RY/BY#  
tRB  
CE#, OE#  
RESET#  
tRP  
Notes  
1. S29PL129J - During CE1# transitions, CE2# = V ; During CE2# transitions, CE1# = V  
IH  
IH  
2. S29PL129J - There are two CE# (CE1#, CE2#). In the below waveform CE# = CE1# or CE2#  
Document Number: 002-00615 Rev. *B  
Page 82 of 101  
S29PL-J  
21.5 Erase/Program Operations  
Table 21.5 Erase and Program Operations  
Parameter  
Speed Options (ns)  
JEDEC  
tAVAV  
Std  
tWC  
tAS  
Description  
55  
60  
65  
65  
0
70  
80  
Unit  
Write Cycle Time (Note 1)  
Address Setup Time  
Min  
Min  
Min  
Min  
55  
60  
70  
80  
tAVWL  
ns  
ns  
ns  
tASO  
tAH  
Address Setup Time to OE# low during toggle bit polling  
Address Hold Time  
15  
tWLAX  
30  
25  
35  
30  
Address Hold Time From CE# (CE1#, CE#2 in PL129J) or OE# high  
during toggle bit polling  
tAHT  
Min  
0
ns  
tDVWH  
tWHDX  
tDS  
tDH  
Data Setup Time  
Min  
Min  
Min  
ns  
ns  
ns  
Data Hold Time  
0
tOEPH  
Output Enable High during toggle bit polling  
10  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHWL  
tGHWL  
Min  
0
ns  
tELWL  
tWHEH  
tWLWH  
tWHDL  
tCS  
tCH  
CE# (CE1# or CE#2 in PL129J) Setup Time  
CE# (CE1# or CE#2 in PL129J) Hold Time  
Write Pulse Width  
Min  
Min  
Min  
Min  
Min  
Typ  
Typ  
Typ  
Min  
Min  
Max  
Min  
Max  
Max  
0
0
ns  
ns  
ns  
ns  
ns  
µs  
µs  
sec  
µs  
ns  
ns  
ns  
µs  
µs  
tWP  
35  
tWPH  
tSR/W  
Write Pulse Width High  
20  
25  
Latency Between Read and Write Operations  
0
6
tWHWH1  
tWHWH1  
tWHWH2  
tWHWH1 Programming Operation (Note 4)  
tWHWH1 Accelerated Programming Operation (Note 4)  
tWHWH2 Sector Erase Operation (Note 4)  
4
0.5  
50  
0
tVCS  
tRB  
VCC Setup Time (Note 1)  
Write Recovery Time from RY/BY#  
Program/Erase Valid to RY/BY# Delay  
90  
35  
35  
35  
tBUSY  
tPSL  
tESL  
Program Suspend Latency  
Erase Suspend Latency  
Notes:  
1. Not 100% tested.  
2. S29PL129J - During CE1# transitions, CE2# = V ; During CE2# transitions, CE1# = V  
IH  
IH  
3. S29PL129J - There are two CE# (CE1#, CE2#).  
4. See Table 22.4 on page 92 for more information.  
Document Number: 002-00615 Rev. *B  
Page 83 of 101  
S29PL-J  
21.6 Timing Diagrams  
Figure 21.6 Program Operation Timings  
Program Command Sequence (last two cycles)  
Read Status Data (last two cycles)  
tAS  
PA  
tWC  
Addresses  
555h  
PA  
PA  
tAH  
CE#  
OE#  
tCH  
tWHWH1  
tWP  
WE#  
Data  
tWPH  
tCS  
tDS  
tDH  
PD  
DOUT  
A0h  
Status  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes  
1. PA = program address, PD = program data, D  
is the true data at the program address  
OUT  
2. S29PL129J - During CE1# transitions, CE2# = V ; During CE2# transitions, CE1# = V  
IH  
IH  
3. S29PL129J - There are two CE# (CE1#, CE2#). In the above waveform CE# = CE1# or CE2#  
Document Number: 002-00615 Rev. *B  
Page 84 of 101  
S29PL-J  
Figure 21.7 Accelerated Program Timing Diagram  
VHH  
VIL or VIH  
VIL or VIH  
WP#/ACC  
tVHH  
tVHH  
Figure 21.8 Chip/Sector Erase Operation Timings  
Erase Command Sequence (last two cycles)  
Read Status Data  
VA  
tAS  
SA  
tWC  
VA  
Addresses  
CE#  
2AAh  
555h for chip erase  
tAH  
tCH  
OE#  
tWP  
WE#  
tWPH  
tWHWH2  
tCS  
tDS  
tDH  
Data  
Status  
D
OUT  
55h  
30h  
10 for Chip Erase  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes  
1. SA = sector address (for Sector Erase), VA = Valid Address for reading status data (see Write Operation Status on page 71  
2. S29PL129J - During CE1# transitions, CE2# = V ; During CE2# transitions, CE1# = V  
IH  
IH  
3. S29PL129J - There are two CE# (CE1#, CE2#). In the above waveform CE# = CE1# or CE2#.  
Document Number: 002-00615 Rev. *B  
Page 85 of 101  
S29PL-J  
Figure 21.9 Back-to-back Read/Write Cycle Timings  
tWC  
tWC  
tRC  
tWC  
Valid PA  
tAH  
Valid RA  
Valid PA  
Valid PA  
Addresses  
tAS  
tCPH  
tAS  
tAH  
tACC  
tCE  
CE#  
OE#  
tCP  
tOE  
tOEH  
tGHWL  
tWP  
WE#  
Data  
tDF  
tWPH  
tDS  
tOH  
tDH  
Valid  
Out  
Valid  
In  
Valid  
In  
Valid  
In  
tSR/W  
WE# Controlled Write Cycle  
Read Cycle  
CE# Controlled Write Cycles  
Figure 21.10 Data# Polling Timings (During Embedded Algorithms)  
tRC  
Addresses  
CE#  
VA  
tACC  
tCE  
VA  
VA  
tCH  
tOE  
OE#  
WE#  
tOEH  
tDF  
tOH  
High Z  
High Z  
DQ7  
Valid Data  
Complement  
Complement  
True  
DQ6–DQ0  
Status Data  
True  
Valid Data  
Status Data  
tBUSY  
RY/BY#  
Note  
VA = Valid address. The illustration shows first status cycle after command sequence, last status read cycle, and array data read cycle  
Document Number: 002-00615 Rev. *B  
Page 86 of 101  
S29PL-J  
Figure 21.11 Toggle Bit Timings (During Embedded Algorithms)  
tAHT  
tAS  
Addresses  
CE#  
tAHT  
tASO  
tCEPH  
tOEH  
WE#  
OE#  
tOEPH  
tDH  
Valid Data  
tOE  
Valid  
Status  
Valid  
Status  
Valid  
Status  
DQ6/DQ2  
Valid Data  
(first read)  
(second read)  
(stops toggling)  
RY/BY#  
Notes  
1. VA = Valid address; not required for DQ6. The illustration shows first two status cycle after command sequence, last status read cycle, and array data read cycle  
2. S29PL129J - During CE1# transitions, CE2# = V ; During CE2# transitions, CE1# = V  
IH  
IH  
3. S29PL129J - There are two CE# (CE1#, CE2#). In the above waveform CE# = CE1# or CE2#  
Figure 21.12 DQ2 vs. DQ6  
Enter  
Embedded  
Erasing  
Erase  
Suspend  
Enter Erase  
Suspend Program  
Erase  
Resume  
Erase  
Erase Suspend  
Read  
Erase  
Suspend  
Program  
Erase  
Complete  
WE#  
Erase  
Erase Suspend  
Read  
DQ6  
DQ2  
Note  
DQ2 toggles only when read at an address within an erase-suspended sector. The system may use OE# or CE# to toggle DQ2 and DQ6.  
Document Number: 002-00615 Rev. *B  
Page 87 of 101  
S29PL-J  
22. Protect/Unprotect  
Table 22.1 Temporary Sector Unprotect  
Parameter  
Unit  
JEDEC  
Std  
tVIDR  
tVHH  
tRSP  
Description  
VID Rise and Fall Time (See Note)  
All Speed Options  
Min  
Min  
Min  
500  
250  
4
ns  
ns  
µs  
VHH Rise and Fall Time (See Note)  
RESET# Setup Time for Temporary Sector Unprotect  
RESET# Hold Time from RY/BY# High for Temporary  
Sector Unprotect  
tRRB  
Min  
4
µs  
Note  
Not 100% tested.  
Figure 22.1 Temporary Sector Unprotect Timing Diagram  
VID  
VID  
RESET#  
VIL or VIH  
VIL or VIH  
tVIDR  
tVIDR  
Program or Erase Command Sequence  
CE#  
WE#  
tRRB  
tRSP  
RY/BY#  
Document Number: 002-00615 Rev. *B  
Page 88 of 101  
S29PL-J  
Figure 22.2 Sector/Sector Block Protect and Unprotect Timing Diagram  
V
V
ID  
IH  
RESET#  
SA, A6,  
A1, A0  
Valid*  
Valid*  
Valid*  
Status  
Sector Group Protect/Unprotect  
Verify  
40h  
Data  
60h  
60h  
1 µs  
Sector Group Protect: 150 µs  
Sector Group Unprotect: 15 ms  
CE#  
WE#  
OE#  
Notes  
1. For sector protect, A6 = 0, A1 = 1, A0 = 0. For sector unprotect, A6 = 1, A1 = 1, A0 = 0.  
2. S29PL129J - During CE1# transitions, CE2# = V ; During CE2# transitions, CE1# = V  
IH  
IH  
3. S29PL129J - There are two CE# (CE1#, CE2#). In the above waveform CE# = CE1# or CE2#  
Document Number: 002-00615 Rev. *B  
Page 89 of 101  
S29PL-J  
22.1 Controlled Erase Operations  
Table 22.2 Alternate CE# Controlled Erase and Program Operations  
Parameter  
Speed Options  
JEDEC  
tAVAV  
Std  
tWC  
tAS  
tAH  
tDS  
tDH  
Description (Notes)  
Write Cycle Time (Note 1)  
55  
60  
60  
65  
65  
0
70  
70  
80  
Unit  
ns  
Min  
Min  
Min  
Min  
Min  
55  
80  
tAVWL  
tELAX  
tDVEH  
tEHDX  
Address Setup Time  
Address Hold Time  
Data Setup Time  
Data Hold Time  
ns  
30  
25  
35  
30  
ns  
ns  
0
0
ns  
Read Recovery Time Before Write (OE# High to  
WE# Low)  
tGHEL  
tGHEL  
Min  
ns  
tWLEL  
tEHWH  
tELEH  
tWS  
tWH  
tCP  
WE# Setup Time  
Min  
Min  
Min  
0
0
ns  
ns  
WE# Hold Time  
CE# (CE1# or CE#2 in PL129J) Pulse Width  
35  
20  
40  
25  
ns  
tEHEL  
tCPH  
CE# (CE1# or CE#2 in PL129J) Pulse Width High Min  
ns  
tWHWH1  
tWHWH1  
tWHWH2  
tWHWH1 Programming Operation (Note 2)  
tWHWH1 Accelerated Programming Operation (Note 2)  
tWHWH2 Sector Erase Operation (Note 2)  
Typ  
Typ  
Typ  
6
4
µs  
µs  
sec  
0.5  
Notes  
1. Not 100% tested.  
2. See Erase And Programming Performance on page 92 for more information.  
Document Number: 002-00615 Rev. *B  
Page 90 of 101  
S29PL-J  
Figure 22.3 Alternate CE# Controlled Write (Erase/Program) Operation Timings  
555 for program  
2AA for erase  
PA for program  
SA for sector erase  
555 for chip erase  
Data# Polling  
Addresses  
PA  
tWC  
tWH  
tAS  
tAH  
WE#  
OE#  
tGHEL  
tWHWH1 or 2  
tCP  
CE#  
Data  
tWS  
tCPH  
tDS  
tBUSY  
tDH  
DQ7#  
DOUT  
tRH  
A0 for program  
55 for erase  
PD for program  
30 for sector erase  
10 for chip erase  
RESET#  
RY/BY#  
Notes  
1. Figure indicates last two bus cycles of a program or erase operation.  
2. PA = program address, SA = sector address, PD = program data.  
3. DQ7# is the complement of the data written to the device. D  
is the data written to the device  
OUT  
4. S29PL129J - During CE1# transitions, CE2# = V ; During CE2# transitions, CE1# = V  
IH  
IH  
5. S29PL129J - There are two CE# (CE1#, CE2#). In the above waveform CE# = CE1# or CE2#  
Table 22.3 CE1#/CE2# Timing (S29PL129J only)  
Parameter  
Description  
All Speed Options  
Unit  
JEDEC  
Std  
CE1#/CE2# Recover Time  
(See Note)  
tCCR  
Min  
0
ns  
Note  
This parameter is defined for CE1#/CE2# recover time for read/read, program/read, and read/program operations. Program/program operation are not allowed and only a  
single program operation is allowed at one time.  
Document Number: 002-00615 Rev. *B  
Page 91 of 101  
S29PL-J  
Figure 22.4 Timing Diagram for Alternating Between CE1# and CE2# Control  
CE1#  
CE2#  
tCCR  
tCCR  
Table 22.4 Erase And Programming Performance  
Max  
(Note 2)  
Parameter  
Typ (Note 1)  
Unit  
Comments  
Sector Erase Time  
PL127J/129J  
0.5  
135  
71  
2
sec  
sec  
sec  
sec  
216  
Excludes 00h programming prior to  
erasure (Note 4)  
Chip Erase Time  
PL064J  
PL032J  
113.6  
62.4  
39  
Excludes system level overhead  
(Note 5)  
Word Program Time  
6
100  
µs  
Accelerated Word Program  
4
60  
µs  
PL127J/129J  
PL064J  
50.4  
25.2  
12.6  
200  
50.4  
25.2  
sec  
sec  
sec  
Chip Program Time  
(Note 3)  
PL032J  
Notes  
1. Typical program and erase times assume the following conditions: 25°C, 3.0 V V , 100,000 cycles. Additionally, programming typicals assume checkerboard pattern.  
CC  
All values are subject to change.  
2. Under worst case conditions of 90°C, V = 2.7 V, 1,000,000 cycles. All values are subject to change.  
CC  
3. The typical chip programming time is considerably less than the maximum chip programming time listed, since most bytes program faster than the maximum program  
times listed.  
4. In the pre-programming step of the Embedded Erase algorithm, all bytes are programmed to 00h before erasure.  
5. System-level overhead is the time required to execute the two- or four-bus-cycle sequence for the program command. See Table 16.1 on page 68 for further  
information on command definitions.  
6. The device has a minimum erase and program cycle endurance of 100,000 cycles.  
Document Number: 002-00615 Rev. *B  
Page 92 of 101  
S29PL-J  
23. Pin Capacitance  
23.1 BGA Pin Capacitance  
Parameter Symbol  
Parameter Description  
Test Setup  
VIN = 0  
Typ  
6.3  
7.0  
5.5  
11  
Max  
7
Unit  
pF  
CIN  
COUT  
CIN2  
CIN3  
Input Capacitance  
Output Capacitance  
VOUT = 0  
VIN = 0  
8
pF  
Control Pin Capacitance  
WP#/ACC Pin Capacitance  
8
pF  
VIN = 0  
12  
pF  
Notes  
1. Sampled, not 100% tested.  
2. Test conditions T = 25°C, f = 1.0 MHz.  
A
23.2 TSOP Pin Capacitance  
Parameter Symbol  
Parameter Description  
Test Setup  
VIN = 0  
Typ  
10  
Max  
10.5  
6.5  
10  
Unit  
pF  
CIN  
COUT  
CIN2  
CIN3  
Input Capacitance  
Output Capacitance  
VOUT = 0  
VIN = 0  
5.5  
8
pF  
Control Pin Capacitance  
WP#/ACC Pin Capacitance  
pF  
VIN = 0  
9.5  
10  
pF  
Notes  
1. Sampled, not 100% tested.  
2. Test conditions T = 25°C, f = 1.0 MHz.  
A
Document Number: 002-00615 Rev. *B  
Page 93 of 101  
S29PL-J  
24. Physical Dimensions  
24.1 VBG080—80-Ball Fine-pitch Ball Grid Array 8 x 11 mm Package (PL127J)  
0.05  
(2X)  
C
D1  
D
A
e
8
7
6
5
4
3
2
1
e
7
SE  
E1  
E
M
L
K
J
H
G
F
E
D
C
B
A
A1 CORNER  
INDEX MARK  
10  
PIN A1  
CORNER  
B
6
SD  
NXφb  
7
0.05  
(2X)  
C
φ 0.08  
φ 0.15  
M
M
C
C A  
B
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
0.10  
0.08  
C
C
A2  
A
C
A1  
SEATING PLANE  
NOTES:  
PACKAGE  
JEDEC  
VBG 080  
N/A  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
11.00 mm x 8.00 mm NOM  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010 (EXCEPT  
AS NOTED).  
SYMBOL  
MIN  
---  
NOM  
MAX  
1.00  
---  
NOTE  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
A2  
D
---  
---  
OVERALL THICKNESS  
BALL HEIGHT  
5. SYMBOL "MD" IS THE BALL ROW MATRIX SIZE IN THE  
"D" DIRECTION.  
0.18  
0.62  
SYMBOL "ME" IS THE BALL COLUMN MATRIX SIZE IN THE  
"E" DIRECTION.  
---  
0.76  
BODY THICKNESS  
BODY SIZE  
11.00 BSC.  
8.00 BSC.  
8.80 BSC.  
5.60 BSC.  
12  
N IS THE TOTAL NUMBER OF SOLDER BALLS.  
E
BODY SIZE  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
D1  
E1  
MD  
ME  
N
BALL FOOTPRINT  
BALL FOOTPRINT  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS  
A AND B AND DEFINE THE POSITION OF THE CENTER  
SOLDER BALL IN THE OUTER ROW.  
ROW MATRIX SIZE D DIRECTION  
ROW MATRIX SIZE E DIRECTION  
TOTAL BALL COUNT  
8
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN  
THE OUTER ROW PARALLEL TO THE D OR E DIMENSION,  
RESPECTIVELY, SD OR SE = 0.000.  
80  
φb  
0.33  
---  
0.43  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN  
THE OUTER ROW, SD OR SE = e/2  
e
0.80 BSC.  
0.40 BSC.  
BALL PITCH  
SD / SE  
SOLDER BALL PLACEMENT  
8. NOT USED.  
(A3-A6,B3-B6,L3-L6,M3-M6) DEPOPULATED SOLDER BALLS  
9. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
3329 \ 16-038.25b  
Document Number: 002-00615 Rev. *B  
Page 94 of 101  
S29PL-J  
24.2 VBH064—64-Ball Fine-pitch Ball Grid Array 8 x 11.6 mm package (PL127J)  
0.05  
(2X)  
C
D1  
D
A
e
10  
9
8
7
6
5
4
3
2
1
e
7
SE  
E1  
E
M
L
K
J
H
G
F
E
D
C
B
A
A1 CORNER  
A1 CORNER  
INDEX MARK  
B
SD  
7
6
0.05  
(2X)  
C
10  
NXφb  
φ 0.08  
φ 0.15  
M
M
C
C
TOP VIEW  
A
B
BOTTOM VIEW  
0.10  
C
A2  
A
0.08  
C
C
A1  
SEATING PLANE  
SIDE VIEW  
NOTES:  
PACKAGE  
JEDEC  
VBH 064  
N/A  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
11.60 mm x 8.00 mm NOM  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010 (EXCEPT  
AS NOTED).  
SYMBOL  
MIN  
---  
NOM  
---  
MAX  
1.00  
---  
NOTE  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
A2  
D
OVERALL THICKNESS  
BALL HEIGHT  
5. SYMBOL "MD" IS THE BALL ROW MATRIX SIZE IN THE  
"D" DIRECTION.  
0.18  
0.62  
---  
SYMBOL "ME" IS THE BALL COLUMN MATRIX SIZE IN THE  
"E" DIRECTION.  
---  
0.76  
BODY THICKNESS  
BODY SIZE  
11.60 BSC.  
8.00 BSC.  
8.80 BSC.  
7.20 BSC.  
12  
N IS THE TOTAL NUMBER OF SOLDER BALLS.  
E
BODY SIZE  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
D1  
E1  
MD  
ME  
N
BALL FOOTPRINT  
BALL FOOTPRINT  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS  
A AND B AND DEFINE THE POSITION OF THE CENTER  
SOLDER BALL IN THE OUTER ROW.  
ROW MATRIX SIZE D DIRECTION  
ROW MATRIX SIZE E DIRECTION  
TOTAL BALL COUNT  
10  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN  
THE OUTER ROW PARALLEL TO THE D OR E DIMENSION,  
RESPECTIVELY, SD OR SE = 0.000.  
64  
φb  
0.33  
---  
0.43  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN  
THE OUTER ROW, SD OR SE = e/2  
e
0.80 BSC.  
0.40 BSC.  
BALL PITCH  
SD / SE  
SOLDER BALL PLACEMENT  
DEPOPULATED SOLDER BALLS  
8. NOT USED.  
(A2-9,B1-4,B7-10,C1-K1,  
M2-9,C10-K10,L1-4,L7-10,  
G5-6,F5-6)  
9. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
3330 \ 16-038.25b  
Document Number: 002-00615 Rev. *B  
Page 95 of 101  
S29PL-J  
24.3 VBK048—48-Ball Fine-pitch Ball Grid Array 8.15 x 6.15 mm package  
(PL032J and PL064J)  
0.10 (4X)  
D1  
A
D
6
5
4
3
2
1
7
e
SE  
E1  
E
H
G
F
E
D
C
B
A
INDEX MARK  
10  
6
B
A1 CORNER  
PIN A1  
CORNER  
7
φb  
φ 0.08  
φ 0.15  
SD  
M
M
C
TOP VIEW  
C A B  
BOTTOM VIEW  
0.10  
C
A2  
A
SEATING PLANE  
SIDE VIEW  
0.08  
C
C
A1  
NOTES:  
PACKAGE  
JEDEC  
VBK 048  
N/A  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
8.15 mm x 6.15 mm NOM  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010 (EXCEPT  
AS NOTED).  
SYMBOL  
MIN  
---  
NOM  
MAX  
1.00  
---  
NOTE  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
A2  
D
---  
OVERALL THICKNESS  
BALL HEIGHT  
5. SYMBOL "MD" IS THE BALL ROW MATRIX SIZE IN THE  
"D" DIRECTION.  
0.18  
0.62  
---  
SYMBOL "ME" IS THE BALL COLUMN MATRIX SIZE IN THE  
"E" DIRECTION.  
---  
8.15 BSC.  
6.15 BSC.  
5.60 BSC.  
4.00 BSC.  
8
0.76  
BODY THICKNESS  
BODY SIZE  
N IS THE TOTAL NUMBER OF SOLDER BALLS.  
E
BODY SIZE  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
D1  
E1  
MD  
ME  
N
BALL FOOTPRINT  
BALL FOOTPRINT  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS  
A AND B AND DEFINE THE POSITION OF THE CENTER  
SOLDER BALL IN THE OUTER ROW.  
ROW MATRIX SIZE D DIRECTION  
ROW MATRIX SIZE E DIRECTION  
TOTAL BALL COUNT  
6
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN  
THE OUTER ROW PARALLEL TO THE D OR E DIMENSION,  
RESPECTIVELY, SD OR SE = 0.000.  
48  
φb  
0.33  
---  
0.43  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN  
THE OUTER ROW, SD OR SE = e/2  
e
0.80 BSC.  
0.40 BSC.  
---  
BALL PITCH  
SD / SE  
SOLDER BALL PLACEMENT  
DEPOPULATED SOLDER BALLS  
8. NOT USED.  
9. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
3338 \ 16-038.25b  
Document Number: 002-00615 Rev. *B  
Page 96 of 101  
S29PL-J  
24.4 VBU056—56-Ball Fine-pitch BGA 7 x 9mm package (PL064J and PL032J)  
D1  
A
D
e
0.05  
(2X)  
C
8
7
6
SE  
7
5
4
E
B
E1  
3
e
2
1
H
G
F
E
D
C
B
A
A1 CORNER  
A1 CORNER  
INDEX MARK  
6
10  
NXφb  
SD  
7
φ 0.08  
φ 0.15  
M
C
C
0.05  
(2X)  
C
TOP VIEW  
M
A B  
BOTTOM VIEW  
0.10  
C
C
A2  
A
0.08  
C
SEATING PLANE  
A1  
SIDE VIEW  
NOTES:  
PACKAGE  
JEDEC  
VBU 056  
N/A  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
9.00 mm x 7.00 mm NOM  
PACKAGE  
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010 (EXCEPT  
AS NOTED).  
SYMBOL  
MIN  
---  
NOM  
---  
MAX  
NOTE  
OVERALL THICKNESS  
BALL HEIGHT  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
A
A1  
A2  
D
1.00  
---  
5. SYMBOL "MD" IS THE BALL ROW MATRIX SIZE IN THE  
"D" DIRECTION.  
0.17  
0.62  
---  
SYMBOL "ME" IS THE BALL COLUMN MATRIX SIZE IN THE  
"E" DIRECTION.  
---  
0.76  
BODY THICKNESS  
BODY SIZE  
9.00 BSC.  
7.00 BSC.  
5.60 BSC.  
5.60 BSC.  
8
N IS THE TOTAL NUMBER OF SOLDER BALLS.  
E
BODY SIZE  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
D1  
E1  
MD  
ME  
N
BALL FOOTPRINT  
BALL FOOTPRINT  
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS  
A AND B AND DEFINE THE POSITION OF THE CENTER  
SOLDER BALL IN THE OUTER ROW.  
ROW MATRIX SIZE D DIRECTION  
ROW MATRIX SIZE E DIRECTION  
TOTAL BALL COUNT  
8
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN  
THE OUTER ROW PARALLEL TO THE D OR E DIMENSION,  
RESPECTIVELY, SD OR SE = 0.000.  
56  
φb  
0.35  
0.40  
0.45  
BALL DIAMETER  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN  
THE OUTER ROW, SD OR SE = e/2  
e
0.80 BSC.  
0.40 BSC.  
BALL PITCH  
SD / SE  
SOLDER BALL PLACEMENT  
DEPOPULATED SOLDER BALLS  
8. NOT USED.  
A1,A8,D4,D5,E4,E5,H1,H8  
9. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
3440\ 16-038.25 \ 01.13.05  
Document Number: 002-00615 Rev. *B  
Page 97 of 101  
S29PL-J  
24.5 TS056—20 x 14 mm, 56-pin TSOP (PL127J)  
STANDARD PIN OUT (TOP VIEW)  
A2  
2
0.10 C  
1
N
SEE DETAIL B  
-A-  
-B-  
5
E
e
N
2
N
2
+1  
5
A1  
D1  
4
C
D
SEATING  
PLANE  
B
A
0.08MM (0.0031")  
M
C
A-B  
6
S
B
b
7
SEE DETAIL A  
WITH PLATING  
c1  
(c)  
7
b1  
BASE METAL  
R
SECTION B-B  
e/2  
c
GAGE LINE  
0.25MM (0.0098") BSC  
0˚  
-X-  
X = A OR B  
PARALLEL TO  
SEATING PLANE  
L
DETAIL A  
DETAIL B  
NOTES:  
Package  
TS 056  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS (MM).  
(DIMENSIONING AND TOLERANCING CONFORMS TO ANSI Y14.5M-1982)  
MO-142 (B) EC  
Jedec  
1
2
3
4
MIN  
NOM MAX  
1.20  
Symbol  
PIN 1 IDENTIFIER FOR STANDARD PIN OUT (DIE UP).  
A
A1  
A2  
b1  
b
PIN 1 IDENTIFIER FOR REVERSE PIN OUT (DIE DOWN), INK OR LASER MARK.  
0.15  
0.05  
0.95  
0.17  
0.17  
0.10  
0.10  
1.00  
0.20  
1.05  
0.23  
0.27  
0.16  
0.21  
TO BE DETERMINED AT THE SEATING PLANE -C- . THE SEATING PLANE IS DEFINED AS THE PLANE OF  
CONTACT THAT IS MADE WHEN THE PACKAGE LEADS ARE ALLOWED TO REST FREELY ON A FLAT  
HORIZONTAL SURFACE.  
0.22  
5
6
c1  
c
D
D1  
E
DIMENSIONS D1 AND E DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTUSION IS  
0.15MM (.0059") PER SIDE.  
19.80 20.00 20.20  
18.30 18.40 18.50  
13.90 14.00 14.10  
DIMENSION b DOES NOT INCLUDE DAMBAR PROTUSION. ALLOWABLE DAMBAR PROTUSION SHALL BE  
0.08 (0.0031") TOTAL IN EXCESS OF b DIMENSION AT MAX. MATERIAL CONDITION. MINIMUM SPACE  
BETWEEN PROTRUSION AND AN ADJACENT LEAD TO BE 0.07 (0.0028").  
7
e
THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10MM (.0039") AND  
0.25MM (0.0098") FROM THE LEAD TIP.  
0.50 BASIC  
L
0
R
N
0.50  
0˚  
0.60  
3˚  
0.70  
5˚  
8
9
LEAD COPLANARITY SHALL BE WITHIN 0.10MM (0.004") AS MEASURED FROM THE SEATING PLANE.  
DIMENSION "e" IS MEASURED AT THE CENTERLINE OF THE LEADS.  
0.08  
0.20  
56  
Document Number: 002-00615 Rev. *B  
Page 98 of 101  
S29PL-J  
25. Revision Summary  
Document History Page  
Document Title: S29PL-J 128-/128-/64-/32-Mbit (8/8/4/2M x 16-Bit) 3V, Flash with Enhanced VersatileIO™  
Document Number: 002-00615  
Orig. of  
Change  
Submission  
Date  
Rev.  
ECN No.  
Description of Change  
Initial release  
Included backward compatibility with MBM29xx families.  
48-ball BGA package is not supported and was removed.  
Model numbers for the 48-ball BGA configurations were removed.  
An illustration was added to show the pin-out configuration.  
Added the description of 01h for address 4Fh and removed the 0004 data.  
Provided the time units of measure for the erase and programming performances.  
Corrected typo in device ID.  
Added 3V VIO for PL064J and PL032J devices.  
Corrected the voltage rating, ball configuration, and physical dimensions for model num-  
bers 12 and 13.  
Removed the 64-ball, 8x9 mm diagram.  
Clarified the supply voltages that apply to the PL127J/PL129J and all other PLxxxJ  
products.  
Added information applicable to the CIN3 symbol.  
Removed the 9x8 mm package drawing.  
Added the 56-ball 7x9 mm pinout diagram.  
Updated to include the 8 x 6 mm, 48-ball Fine pitch BGA and 7 x 9 mm, 56-ball Fine-pitch  
BGA options.  
Added the VBK048 package drawing.  
Changed names.  
01/29/2004 to  
04/18/2013  
**  
RYSU  
Updated specs in this table.  
Updated the Model Number offerings.  
Corrected the Package Markings for the 64-ball FBGA packages.  
Added combinations for the TLC056 package on the PL064J and PL032J devices.  
Valid Combinations for BGA Packages (128Mb)  
Package Options  
Added the 7 x 9mm 56-ball package.  
56-ball connection diagram  
Notes 1 and 2 corrected to reflect accurate temperature ranges and cycling.  
Updated the Model Number offerings  
Updated the Package Types information.  
Figure 6, In-System Sector Protection/Sector Unprotection Algorithms  
Program Suspend/Program Resume Commands  
New section added. Made global changes to include program suspend/resume com-  
mands.  
Added Erase Suspend Latency.  
Updated table and added a notes section.  
Added the VBU056 package  
Document Number: 002-00615 Rev. *B  
Page 99 of 101  
S29PL-J  
Document History Page (Continued)  
Document Title: S29PL-J 128-/128-/64-/32-Mbit (8/8/4/2M x 16-Bit) 3V, Flash with Enhanced VersatileIO™  
Document Number: 002-00615  
Orig. of  
Change  
Submission  
Date  
Rev.  
ECN No.  
Description of Change  
Added note: When Polling the SecSi indicator bit the A21 to A12 should be set within the  
address range 004000h-03FFFFh.  
Added sentence: Once the Enter Secured Silicon Sector Command sequence has been  
entered, the standard array cannot be accessed until the Exit Secured Silicon Sector  
command has been entered or the device has been reset.  
Added note 16: Once the Secured Silicon Sector Entry Command sequence has been  
entered, the standard array cannot be accessed until the Exit Secured Silicon Sector  
command has been entered or the device has been reset.  
Content the same, tables consolidated to match Ordering Information Descriptions  
Consolidated Special Package Handling Instructions and put the information before the  
package/pinout descriptions.  
Added Figure numbers to the connection diagram graphics.  
Updated operating temperatures.  
Updated VOH parameter.  
Added tESL parameter  
Updated the product that uses this package from PL127J to PL064J and PL032J  
64-Ball Fine-Pitch BGA—MCP Compatible—PL127JChanged ball F9 to A22  
Pin DescriptionCorrected WP#/ACC description.  
GlobalChanged data sheet status from Advanced Information to Full Production  
Ordering InformationModified/Added note to the Valid Combinations to be Supported for  
this Device tables  
VCC Ramp RateRemoved Section  
01/29/2004 to  
04/18/2013  
** (cont'd)  
RYSU  
Connection DiagramCorrected 64-Ball Fine-Pitch BGA ball description (H9 and L5)  
Ordering InformationUnder Package Type, changed wording of “Lead (Pb)-free compli-  
ant” material type to “Standard”.  
GlobalRemoved 55 ns as a valid speed supported by PL127J.  
Product Selector GuideCorrected the 55 ns Speed Option's Max Page Access and Max  
OE# Access time from 2 to 20 ns.  
Corrected the 65 ns Speed Option's Max Access and Max CE# Access time from 25 to  
65 ns.  
Dynamic Protection Bit (DYB)Corrected reference to Table 17 to Table 10.15.  
Erase Suspend/Erase Resume CommandsCorrected “This command is valid only during  
the sector erase operation, including the 80 µs time-out period...” to “This command is  
valid only during the sector erase operation, including the 50 µs time-out period...”.  
Command Definitions TablesIn Table 15.2, corrected the value of the third bus cycle of  
the “PPB Status”, “PPB Lock Bit Status” and “DYB Status” commands from 555 to  
BA+555.  
Absolute Maximum RatingsCorrected the A9, OE# and RESET# “Voltage with Respect  
to Ground” maximum range value from +13.0V to +12.5V.  
DQ6: Toggle Bit ICorrected Figure 16.2: Toggle Bit Algorithm.  
Pin CapacitanceAdded TSOP package pin capacitance values.  
Ordering InformationFor model number 13, corrected “56-ball” TSOP package descrip-  
tion to “56-pin”.  
GlobalChanged 65 ns and 70 ns initial access time for VIO=1.8V to 80 ns.  
*A  
*B  
4959015  
5398456  
RYSU  
NFB  
10/13/2015  
08/10/2016  
Updated to Cypress template  
Ordering Information: Added 1.8V VIO TSOP package  
Valid Combinations to be Supported for this Device: Added 14 to Additional Ordering  
Options.  
Document Number: 002-00615 Rev. *B  
Page 100 of 101  
S29PL-J  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
Products  
PSoC®Solutions  
ARM® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/powerpsoc  
cypress.com/memory  
cypress.com/psoc  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Forums | Projects | Video | Blogs | Training | Components  
Technical Support  
Lighting & Power Control  
Memory  
cypress.com/support  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/touch  
cypress.com/usb  
cypress.com/wireless  
© Cypress Semiconductor Corporation 2004-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document,  
including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to  
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users  
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation  
of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent  
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any  
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is  
the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products  
are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or  
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the  
device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose failure to perform can be reasonably  
expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,  
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other  
liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United  
States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 002-00615 Rev. *B  
Revised August 10, 2016  
Page 101 of 101  
Cypress®, Spansion®, MirrorBit®, MirrorBit® Eclipse, ORNANDand combinations thereof, are trademarks and registered trademarks of Cypress Semiconductor Corporation.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY