DS26528_07 [DALLAS]

Octal T1/E1/J1 Transceiver; 八路T1 / E1 / J1收发器
DS26528_07
型号: DS26528_07
厂家: DALLAS SEMICONDUCTOR    DALLAS SEMICONDUCTOR
描述:

Octal T1/E1/J1 Transceiver
八路T1 / E1 / J1收发器

文件: 总276页 (文件大小:1751K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DS26528  
Octal T1/E1/J1 Transceiver  
www.maxim-ic.com  
GENERAL DESCRIPTION  
FEATURES  
Eight Complete T1, E1, or J1 Long-Haul/Short-  
Haul Transceivers (LIU plus Framer)  
The DS26528 is a single-chip 8-port framer and line  
interface unit (LIU) combination for T1, E1, and J1  
applications. Each channel is independently  
configurable, supporting both long-haul and short-haul  
lines.  
Independent T1, E1, or J1 Selections for Each  
Transceiver  
Internal Software-Selectable Transmit- and  
Receive-Side Termination for 100Ω T1 Twisted  
Pair, 110Ω J1 Twisted Pair, 120Ω E1 Twisted  
Pair, and 75Ω E1 Coaxial Applications  
APPLICATIONS  
Routers  
Crystal-Less Jitter Attenuator can be Selected  
for Transmit or Receive Path; Jitter Attenuator  
Meets ETS CTR 12/13, ITU-T G.736, G.742,  
G.823, and AT&T Pub 62411  
Channel Service Units (CSUs)  
Data Service Units (DSUs)  
Muxes  
Switches  
External Master Clock can be Multiple of  
2.048MHz or 1.544MHz for T1/J1 or E1  
Operation; This Clock is Internally Adapted for  
T1 or E1 Usage in the Host Mode  
Channel Banks  
T1/E1 Test Equipment  
Receive-Signal Level Indication from -2.5dB to  
-36dB in T1 Mode and -2.5dB to -44dB in E1  
Mode in Approximate 2.5dB Increments  
FUNCTIONAL DIAGRAM  
DS26528  
T1/E1/J1  
Transmit Open- and Short-Circuit Detection  
NETWORK  
LIU LOS in Accordance with G.775, ETS 300  
233, and T1.231  
T1/J1/E1  
Transceiver  
BACKPLANE  
Transmit Synchronizer  
x8  
TDM  
Flexible Signaling Extraction and Insertion  
Using Either the System Interface or  
Microprocessor Port  
Alarm Detection and Insertion  
T1 Framing Formats of D4, SLC-96, and ESF  
J1 Support  
ORDERING INFORMATION  
PART  
TEMP RANGE  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
256 TE-CSBGA  
256 TE-CSBGA  
256 TE-CSBGA  
256 TE-CSBGA  
E1 G.704 and CRC-4 Multiframe  
T1-to-E1 Conversion  
DS26528G  
DS26528G+  
DS26528GN  
DS26528GN+  
Features Continued in Section 2.  
+ Denotes lead-free/RoHS compliant device.  
Note: Some revisions of this device may incorporate deviations from published specifications known as errata. Multiple revisions of any device  
may be simultaneously available through various sales channels. For information about device errata, click here: www.maxim-ic.com/errata.  
1 of 276  
REV: 081707  
 
DS26528 Octal T1/E1/J1 Transceiver  
TABLE OF CONTENTS  
1.  
2.  
DETAILED DESCRIPTION.................................................................................................9  
1.1 MAJOR OPERATING MODES.............................................................................................................9  
FEATURE HIGHLIGHTS..................................................................................................10  
2.1 GENERAL......................................................................................................................................10  
2.2 LINE INTERFACE............................................................................................................................10  
2.3 CLOCK SYNTHESIZER ....................................................................................................................10  
2.4 JITTER ATTENUATOR .....................................................................................................................10  
2.5 FRAMER/FORMATTER ....................................................................................................................10  
2.6 SYSTEM INTERFACE ......................................................................................................................11  
2.7 HDLC CONTROLLERS ...................................................................................................................12  
2.8 TEST AND DIAGNOSTICS ................................................................................................................12  
2.9 CONTROL PORT ............................................................................................................................12  
3.  
4.  
5.  
6.  
7.  
APPLICATIONS ...............................................................................................................13  
SPECIFICATIONS COMPLIANCE...................................................................................14  
ACRONYMS AND GLOSSARY .......................................................................................16  
BLOCK DIAGRAMS.........................................................................................................17  
PIN DESCRIPTIONS ........................................................................................................19  
7.1 PIN FUNCTIONAL DESCRIPTION......................................................................................................19  
FUNCTIONAL DESCRIPTION .........................................................................................27  
8.  
8.1 PROCESSOR INTERFACE................................................................................................................27  
8.2 CLOCK STRUCTURE.......................................................................................................................27  
8.2.1  
Backplane Clock Generation ............................................................................................................... 27  
8.3 RESETS AND POWER-DOWN MODES..............................................................................................29  
8.4 INITIALIZATION AND CONFIGURATION..............................................................................................30  
8.4.1  
Example Device Initialization Sequence.............................................................................................. 30  
8.5 GLOBAL RESOURCES ....................................................................................................................30  
8.6 PER-PORT RESOURCES ................................................................................................................30  
8.7 DEVICE INTERRUPTS .....................................................................................................................30  
8.8 SYSTEM BACKPLANE INTERFACE ...................................................................................................32  
8.8.1  
8.8.2  
8.8.3  
8.8.4  
8.8.5  
8.8.6  
Elastic Stores ....................................................................................................................................... 32  
IBO Multiplexer..................................................................................................................................... 35  
H.100 (CT Bus) Compatibility .............................................................................................................. 42  
Receive and Transmit Channel Blocking Registers............................................................................. 43  
Transmit Fractional Support (Gapped Clock Mode) ............................................................................ 43  
Receive Fractional Support (Gapped Clock Mode) ............................................................................. 43  
8.9 FRAMERS......................................................................................................................................44  
8.9.1  
8.9.2  
8.9.3  
8.9.4  
8.9.5  
8.9.6  
8.9.7  
8.9.8  
8.9.9  
T1 Framing........................................................................................................................................... 44  
E1 Framing........................................................................................................................................... 47  
T1 Transmit Synchronizer.................................................................................................................... 49  
Signaling .............................................................................................................................................. 50  
T1 Data Link......................................................................................................................................... 54  
E1 Data Link......................................................................................................................................... 56  
Maintenance and Alarms ..................................................................................................................... 57  
E1 Automatic Alarm Generation .......................................................................................................... 60  
Error-Count Registers .......................................................................................................................... 61  
8.9.10 DS0 Monitoring Function...................................................................................................................... 63  
8.9.11 Transmit Per-Channel Idle Code Insertion........................................................................................... 64  
2 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
8.9.12 Receive Per-Channel Idle Code Insertion............................................................................................ 64  
8.9.13 Per-Channel Loopback ........................................................................................................................ 64  
8.9.14 E1 G.706 Intermediate CRC-4 Updating (E1 Mode Only)................................................................... 64  
8.9.15 T1 Programmable In-Band Loop Code Generator............................................................................... 65  
8.9.16 T1 Programmable In-Band Loop Code Detection................................................................................ 66  
8.9.17 Framer Payload Loopbacks................................................................................................................. 67  
8.10  
HDLC CONTROLLERS ................................................................................................................68  
8.10.1 Receive HDLC Controller..................................................................................................................... 68  
8.10.2 Transmit HDLC Controller.................................................................................................................... 71  
8.11  
LINE INTERFACE UNITS (LIUS)....................................................................................................73  
8.11.1 LIU Operation....................................................................................................................................... 76  
8.11.2 Transmitter........................................................................................................................................... 77  
8.11.3 Receiver............................................................................................................................................... 80  
8.11.4 Jitter Attenuator.................................................................................................................................... 83  
8.11.5 LIU Loopbacks ..................................................................................................................................... 84  
8.12  
BIT-ERROR-RATE TEST (BERT) FUNCTION ................................................................................86  
8.12.1 BERT Repetitive Pattern Set ............................................................................................................... 87  
8.12.2 BERT Error Counter............................................................................................................................. 87  
9.  
DEVICE REGISTERS.......................................................................................................88  
9.1 REGISTER LISTINGS ......................................................................................................................88  
9.1.1  
9.1.2  
9.1.3  
Global Register List.............................................................................................................................. 90  
Framer Register List............................................................................................................................. 91  
LIU and BERT Register List................................................................................................................. 98  
9.2 REGISTER BIT MAPS......................................................................................................................99  
9.2.1  
9.2.2  
9.2.3  
9.2.4  
Global Register Bit Map ....................................................................................................................... 99  
Framer Register Bit Map.................................................................................................................... 100  
LIU Register Bit Map.......................................................................................................................... 108  
BERT Register Bit Map...................................................................................................................... 108  
9.3 GLOBAL REGISTER DEFINITIONS ..................................................................................................109  
9.4 FRAMER REGISTER DEFINITIONS .................................................................................................124  
9.4.1  
9.4.2  
Receive Register Definitions.............................................................................................................. 124  
Transmit Register Definitions............................................................................................................. 183  
9.5 LIU REGISTER DEFINITIONS.........................................................................................................218  
9.6 BERT REGISTER DEFINITIONS.....................................................................................................227  
10. FUNCTIONAL TIMING ...................................................................................................235  
10.1  
10.2  
10.3  
10.4  
T1 RECEIVER FUNCTIONAL TIMING DIAGRAMS ..........................................................................235  
T1 TRANSMITTER FUNCTIONAL TIMING DIAGRAMS ....................................................................240  
E1 RECEIVER FUNCTIONAL TIMING DIAGRAMS..........................................................................245  
E1 TRANSMITTER FUNCTIONAL TIMING DIAGRAMS ....................................................................247  
11. OPERATING PARAMETERS.........................................................................................250  
11.1  
11.2  
THERMAL CHARACTERISTICS....................................................................................................251  
LINE INTERFACE CHARACTERISTICS..........................................................................................251  
12. AC TIMING CHARACTERISTICS ..................................................................................252  
12.1  
12.2  
12.3  
MICROPROCESSOR BUS AC CHARACTERISTICS........................................................................252  
JTAG INTERFACE TIMING.........................................................................................................261  
SYSTEM CLOCK AC CHARACTERISTICS ....................................................................................262  
13. JTAG BOUNDARY SCAN AND TEST ACCESS PORT................................................263  
13.1  
TAP CONTROLLER STATE MACHINE .........................................................................................264  
13.1.1 Test-Logic-Reset................................................................................................................................ 264  
13.1.2 Run-Test-Idle ..................................................................................................................................... 264  
13.1.3 Select-DR-Scan ................................................................................................................................. 264  
13.1.4 Capture-DR........................................................................................................................................ 264  
3 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
13.1.5 Shift-DR.............................................................................................................................................. 264  
13.1.6 Exit1-DR............................................................................................................................................. 264  
13.1.7 Pause-DR........................................................................................................................................... 264  
13.1.8 Exit2-DR............................................................................................................................................. 264  
13.1.9 Update-DR ......................................................................................................................................... 264  
13.1.10  
13.1.11  
13.1.12  
13.1.13  
13.1.14  
13.1.15  
13.1.16  
Select-IR-Scan ............................................................................................................................... 264  
Capture-IR...................................................................................................................................... 265  
Shift-IR............................................................................................................................................ 265  
Exit1-IR........................................................................................................................................... 265  
Pause-IR......................................................................................................................................... 265  
Exit2-IR........................................................................................................................................... 265  
Update-IR ....................................................................................................................................... 265  
13.2  
INSTRUCTION REGISTER...........................................................................................................267  
13.2.1 SAMPLE:PRELOAD .......................................................................................................................... 267  
13.2.2 BYPASS............................................................................................................................................. 267  
13.2.3 EXTEST ............................................................................................................................................. 267  
13.2.4 CLAMP............................................................................................................................................... 267  
13.2.5 HIGHZ................................................................................................................................................ 267  
13.2.6 IDCODE ............................................................................................................................................. 267  
13.3  
13.4  
JTAG ID CODES......................................................................................................................268  
TEST REGISTERS .....................................................................................................................268  
13.4.1 Boundary Scan Register.................................................................................................................... 268  
13.4.2 Bypass Register................................................................................................................................. 268  
13.4.3 Identification Register......................................................................................................................... 268  
14. PIN CONFIGURATION...................................................................................................273  
15. PACKAGE INFORMATION............................................................................................274  
15.1  
256-BALL TE-CSBGA (56-G6028-001)...................................................................................274  
16. DOCUMENT REVISION HISTORY ................................................................................275  
4 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
LIST OF FIGURES  
Figure 6-1. Block Diagram......................................................................................................................................... 17  
Figure 6-2. Detailed Block Diagram........................................................................................................................... 18  
Figure 8-1. Backplane Clock Generation................................................................................................................... 28  
Figure 8-2. Device Interrupt Information Flow Diagram............................................................................................. 31  
Figure 8-3. IBO Multiplexer Equivalent Circuit—4.096MHz ...................................................................................... 36  
Figure 8-4. IBO Multiplexer Equivalent Circuit—8.192MHz ...................................................................................... 37  
Figure 8-5. IBO Multiplexer Equivalent Circuit—16.384MHz .................................................................................... 38  
Figure 8-6. RSYNC Input in H.100 (CT Bus) Mode................................................................................................... 42  
Figure 8-7. TSSYNCIO (Input Mode) Input in H.100 (CT Bus) Mode ....................................................................... 43  
Figure 8-8. CRC-4 Recalculate Method .................................................................................................................... 64  
Figure 8-9. Receive HDLC Example.......................................................................................................................... 70  
Figure 8-10. HDLC Message Transmit Example....................................................................................................... 72  
Figure 8-11. Basic Balanced Network Connections .................................................................................................. 74  
Figure 8-12. T1/J1 Transmit Pulse Templates .......................................................................................................... 78  
Figure 8-13. E1 Transmit Pulse Templates............................................................................................................... 79  
Figure 8-14. Typical Monitor Application ................................................................................................................... 81  
Figure 8-15. Jitter Attenuation ................................................................................................................................... 83  
Figure 8-16. Analog Loopback................................................................................................................................... 84  
Figure 8-17. Local Loopback ..................................................................................................................................... 84  
Figure 8-18. Remote Loopback ................................................................................................................................. 85  
Figure 8-19. Dual Loopback ...................................................................................................................................... 85  
Figure 9-1. Register Memory Map for the DS26528.................................................................................................. 89  
Figure 10-1. T1 Receive-Side D4 Timing ................................................................................................................ 235  
Figure 10-2. T1 Receive-Side ESF Timing.............................................................................................................. 235  
Figure 10-3. T1 Receive-Side Boundary Timing (Elastic Store Disabled)............................................................... 236  
Figure 10-4. T1 Receive-Side 1.544MHz Boundary Timing (Elastic Store Enabled).............................................. 236  
Figure 10-5. T1 Receive-Side 2.048MHz Boundary Timing (Elastic Store Enabled).............................................. 237  
Figure 10-6. T1 Receive-Side Interleave Bus Operation—BYTE Mode.................................................................. 238  
Figure 10-7. T1 Receive-Side Interleave Bus Operation—FRAME Mode .............................................................. 239  
Figure 10-8. T1 Transmit-Side D4 Timing ............................................................................................................... 240  
Figure 10-9. T1 Transmit-Side ESF Timing............................................................................................................. 240  
Figure 10-10. T1 Transmit-Side Boundary Timing (Elastic Store Disabled)............................................................ 241  
Figure 10-11. T1 Transmit-Side 1.544MHz Boundary Timing (Elastic Store Enabled)........................................... 241  
Figure 10-12. T1 Transmit-Side 2.048MHz Boundary Timing (Elastic Store Enabled)........................................... 242  
Figure 10-13. T1 Transmit-Side Interleave Bus Operation—BYTE Mode............................................................... 243  
Figure 10-14. T1 Transmit Interleave Bus Operation—FRAME Mode.................................................................... 244  
Figure 10-15. E1 Receive-Side Timing.................................................................................................................... 245  
Figure 10-16. E1 Receive-Side Boundary Timing (Elastic Store Disabled) ............................................................ 245  
Figure 10-17. E1 Receive-Side 1.544MHz Boundary Timing (Elastic Store Enabled)............................................ 246  
Figure 10-18. E1 Receive-Side 2.048MHz Boundary Timing (Elastic Store Enabled)............................................ 246  
Figure 10-19. E1 Transmit-Side Timing................................................................................................................... 247  
Figure 10-20. E1 Transmit-Side Boundary Timing (Elastic Store Disabled) ........................................................... 247  
Figure 10-21. E1 Transmit-Side 1.544MHz Boundary Timing (Elastic Store Enabled)........................................... 248  
Figure 10-22. E1 Transmit-Side 2.048MHz Boundary Timing (Elastic Store Enabled)........................................... 248  
Figure 10-23. E1 G.802 Timing ............................................................................................................................... 249  
Figure 12-1. Intel Bus Read Timing (BTS = 0) ........................................................................................................ 253  
Figure 12-2. Intel Bus Write Timing (BTS = 0)......................................................................................................... 253  
Figure 12-3. Motorola Bus Read Timing (BTS = 1)................................................................................................. 254  
5 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
Figure 12-4. Motorola Bus Write Timing (BTS = 1) ................................................................................................. 254  
Figure 12-5. Receive Framer Timing—Backplane (T1 Mode)................................................................................. 256  
Figure 12-6. Receive-Side Timing, Elastic Store Enabled (T1 Mode)..................................................................... 257  
Figure 12-7. Receive Framer Timing—Line Side .................................................................................................... 257  
Figure 12-8. Transmit Formatter Timing—Backplane ............................................................................................. 259  
Figure 12-9. Transmit Formatter Timing, Elastic Store Enabled ............................................................................. 260  
Figure 12-10. BPCLK Timing................................................................................................................................... 260  
Figure 12-11. Transmit Formatter Timing—Line Side ............................................................................................. 260  
Figure 12-12. JTAG Interface Timing Diagram........................................................................................................ 261  
Figure 13-1. JTAG Functional Block Diagram......................................................................................................... 263  
Figure 13-2. TAP Controller State Diagram............................................................................................................. 266  
Figure 14-1. Pin Configuration—256-Ball TE-CSBGA ............................................................................................ 273  
6 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
LIST OF TABLES  
Table 4-1. T1-Related Telecommunications Specifications ...................................................................................... 14  
Table 4-2. E1-Related Telecommunications Specifications...................................................................................... 15  
Table 5-1. Time Slot Numbering Schemes................................................................................................................ 16  
Table 7-1. Detailed Pin Descriptions ......................................................................................................................... 19  
Table 8-1. Reset Functions........................................................................................................................................ 29  
Table 8-2. Registers Related to the Elastic Store...................................................................................................... 32  
Table 8-3. Elastic Store Delay After Initialization....................................................................................................... 33  
Table 8-4. Registers Related to the IBO Multiplexer ................................................................................................. 35  
Table 8-5. RSER Output Pin Definitions.................................................................................................................... 39  
Table 8-6. RSIG Output Pin Definitions..................................................................................................................... 39  
Table 8-7. TSER Input Pin Definitions....................................................................................................................... 40  
Table 8-8. TSIG Input Pin Definitions ........................................................................................................................ 40  
Table 8-9. RSYNC Input Pin Definitions.................................................................................................................... 41  
Table 8-10. D4 Framing Mode................................................................................................................................... 44  
Table 8-11. ESF Framing Mode ................................................................................................................................ 45  
Table 8-12. SLC-96 Framing ..................................................................................................................................... 45  
Table 8-13. E1 FAS/NFAS Framing .......................................................................................................................... 47  
Table 8-14. Registers Related to Setting Up the Framer .......................................................................................... 48  
Table 8-15. Registers Related to the Transmit Synchronizer.................................................................................... 49  
Table 8-16. Registers Related to Signaling............................................................................................................... 50  
Table 8-17. Registers Related to SLC-96.................................................................................................................. 53  
Table 8-18. Registers Related to T1 Transmit BOC.................................................................................................. 54  
Table 8-19. Registers Related to T1 Receive BOC................................................................................................... 55  
Table 8-20. Registers Related to T1 Transmit FDL................................................................................................... 55  
Table 8-21. Registers Related to T1 Receive FDL.................................................................................................... 56  
Table 8-22. Registers Related to E1 Data Link ......................................................................................................... 56  
Table 8-23. Registers Related to Maintenance and Alarms...................................................................................... 58  
Table 8-24. T1 Alarm Criteria .................................................................................................................................... 60  
Table 8-25. T1 Line Code Violation Counting Options .............................................................................................. 61  
Table 8-26. E1 Line Code Violation Counting Options.............................................................................................. 62  
Table 8-27. T1 Path Code Violation Counting Arrangements ................................................................................... 62  
Table 8-28. T1 Frames Out of Sync Counting Arrangements................................................................................... 62  
Table 8-29. Registers Related to DS0 Monitoring..................................................................................................... 63  
Table 8-30. Registers Related to T1 In-Band Loop Code Generator........................................................................ 65  
Table 8-31. Registers Related to T1 In-Band Loop Code Detection......................................................................... 66  
Table 8-32. Registers Related to Framer Payload Loopbacks.................................................................................. 67  
Table 8-33. Registers Related to the HDLC.............................................................................................................. 68  
Table 8-34. Recommended Supply Decoupling........................................................................................................ 75  
Table 8-35. Registers Related to Control of DS26528 LIU ....................................................................................... 76  
Table 8-36. Telecommunications Specification Compliance for DS26528 Transmitters .......................................... 77  
Table 8-37. Transformer Specifications..................................................................................................................... 77  
Table 8-38. ANSI T1.231, ITU-T G.775, and ETS 300 233 Loss Criteria Specifications.......................................... 81  
Table 8-39. Jitter Attenuator Standards Compliance................................................................................................. 83  
Table 8-40. Registers Related to BERT Configure, Control, and Status................................................................... 86  
Table 9-1. Register Address Ranges (in Hex)........................................................................................................... 88  
Table 9-2. Global Register List .................................................................................................................................. 90  
Table 9-3. Framer Register List................................................................................................................................. 91  
Table 9-4. LIU Register List....................................................................................................................................... 98  
7 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
Table 9-5. BERT Register List................................................................................................................................... 98  
Table 9-6. Global Register Bit Map............................................................................................................................ 99  
Table 9-7. Framer Register Bit Map ........................................................................................................................ 100  
Table 9-8. LIU Register Bit Map .............................................................................................................................. 108  
Table 9-9. BERT Register Bit Map .......................................................................................................................... 108  
Table 9-10. Global Register Set .............................................................................................................................. 109  
Table 9-11. Backplane Reference Clock Select...................................................................................................... 113  
Table 9-12. Master Clock Input Selection................................................................................................................ 114  
Table 9-13. Device ID Codes in this Product Family............................................................................................... 117  
Table 9-14. LIU Register Set ................................................................................................................................... 218  
Table 9-15. Transmit Load Impedance Selection.................................................................................................... 219  
Table 9-16. Transmit Pulse Shape Selection .......................................................................................................... 219  
Table 9-17. Receive Level Indication....................................................................................................................... 224  
Table 9-18. Receive Impedance Selection.............................................................................................................. 225  
Table 9-19. Receiver Sensitivity Selection with Monitor Mode Disabled................................................................. 226  
Table 9-20. Receiver Sensitivity Selection with Monitor Mode Enabled ................................................................. 226  
Table 9-21. BERT Register Set ............................................................................................................................... 227  
Table 9-22. BERT Pattern Select ............................................................................................................................ 229  
Table 9-23. BERT Error Insertion Rate ................................................................................................................... 230  
Table 9-24. BERT Repetitive Pattern Length Select ............................................................................................... 230  
Table 11-1. Recommended DC Operating Conditions............................................................................................ 250  
Table 11-2. Capacitance.......................................................................................................................................... 250  
Table 11-3. Recommended DC Operating Conditions............................................................................................ 250  
Table 11-4. Thermal Characteristics........................................................................................................................ 251  
Table 11-5. Transmitter Characteristics................................................................................................................... 251  
Table 11-6. Receiver Characteristics....................................................................................................................... 251  
Table 12-1. AC Characteristics—Microprocessor Bus Timing ................................................................................ 252  
Table 12-2. Receiver AC Characteristics ................................................................................................................ 255  
Table 12-3. Transmit AC Characteristics................................................................................................................. 258  
Table 12-4. JTAG Interface Timing.......................................................................................................................... 261  
Table 12-5. System Clock AC Charateristics .......................................................................................................... 262  
Table 13-1. Instruction Codes for IEEE 1149.1 Architecture................................................................................... 267  
Table 13-2. ID Code Structure................................................................................................................................. 268  
Table 13-3. Boundary Scan Control Bits ................................................................................................................. 268  
8 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
1.  
DETAILED DESCRIPTION  
The DS26528 is an 8-port monolithic device featuring independent transceivers that can be software configured for  
T1, E1, or J1 operation. Each transceiver is composed of a line interface unit, framer, HDLC controller, elastic  
store, and a TDM backplane interface. The DS26528 is controlled via an 8-bit parallel port. Internal impedance  
matching is provided for both transmit and receive paths, reducing external component count.  
The LIU is composed of a transmit interface, receive interface, and a jitter attenuator. The transmit interface is  
responsible for generating the necessary waveshapes for driving the network and providing the correct source  
impedance depending on the type of media used. T1 waveform generation includes DSX-1 line build-outs as well  
as CSU line build-outs of 0dB, -7.5dB, -15dB, and -22.5dB. E1 waveform generation includes G.703 waveshapes  
for both 75Ω coax and 120Ω twisted cables. The receive interface provides network termination and recovers clock  
and data from the network. The receive sensitivity adjusts automatically to the incoming signal level and can be  
programmed for 0dB to -43dB or 0dB to -12dB for E1 applications and 0dB to -15dB or 0dB to -36dB for T1  
applications. The jitter attenuator removes phase jitter from the transmitted or received signal. The crystal-less jitter  
attenuator requires only a T1 or E1 clock rate, or multiple thereof, for both E1 and T1 applications, and can be  
placed in either transmit or receive data paths.  
On the transmit side, clock, data, and frame-sync signals are provided to the framer by the backplane interface  
section. The framer inserts the appropriate synchronization framing patterns, alarm information, calculates and  
inserts the CRC codes, and provides the B8ZS/HDB3 (zero code suppression) and AMI line coding. The receive-  
side framer decodes AMI, B8ZS, and HDB3 line coding, synchronizes to the data stream, reports alarm  
information, counts framing/coding/CRC errors, and provides clock, data, and frame-sync signals to the backplane  
interface section.  
Both transmit and receive paths have access to an HDLC controller. The HDLC controller transmits and receives  
data via the framer block. The HDLC controller can be assigned to any time slot, a portion of a time slot, or to FDL  
(T1) or Sa bits (E1). Each controller has 64-byte FIFOs, reducing the amount of processor overhead required to  
manage the flow of data.  
The backplane interface provides a versatile method of sending and receiving data from the host system. Elastic  
stores provide a method for interfacing to asynchronous systems, converting from a T1/E1 network to a 2.048MHz,  
4.096MHz, 8.192MHz, 16.384MHz, or N x 64kHz system backplane. The elastic stores also manage slip conditions  
(asynchronous interface). The interleave bus option (IBO) is provided to allow up to eight transceivers to share a  
high-speed backplane. The DS26528 also contains an internal clock adapter useful for the creation of a  
synchronous, high-frequency backplane timing source.  
The parallel port provides access for configuration and status of all the DS26528’s features. Diagnostic capabilities  
include loopbacks, PRBS pattern generation/detection, and 16-bit loop-up and loop-down code generation and  
detection.  
1.1  
Major Operating Modes  
The DS26528 has two major modes of operation: T1 mode and E1 mode. The mode of operation for the LIU is  
configured in the LIU Transmit Receive Control register (LTRCR). The mode of operation for the framer is  
configured in the Transmit Master Mode register (TMMR). J1 operation is a special case of T1 operating mode.  
9 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
2.  
FEATURE HIGHLIGHTS  
General  
2.1  
Member of the TEX-series transceiver family of devices. Software compatible with the DS26521 single,  
DS26522 dual, and DS26524 quad transceivers  
256-pin TE-CSBGA package (17mm x 17mm, 1.00mm pitch)  
3.3V supply with 5V tolerant inputs and outputs  
IEEE 1149.1 JTAG boundary scan  
Development support includes evaluation kit, driver source code, and reference designs  
2.2  
Line Interface  
Requires a single master clock (MCLK) for both E1 and T1 operation. Master clock can be 1.544MHz,  
2.048MHz, 3.088MHz, 4.096MHz, 6.276MHz, 8.192MHz, 12.552MHz, or 16.384MHz  
Fully software configurable  
Short- and long-haul applications  
Ranges include 0dB to -43dB, 0dB to -30dB, 0dB to 20dB, and 0dB to -12dB for E1; 0dB to -36dB, 0dB to  
30dB, 0dB to 20dB, and 0dB to -15dB for T1  
Receiver signal level indication from -2.5dB to -36dB in T1 mode and -2.5dB to -44dB in E1 mode in 2.5dB  
increments  
Internal receive termination option for 75Ω, 100Ω, 110Ω, and 120Ω lines  
Monitor application gain settings of 14dB, 20dB, 26dB, and 32dB  
G.703 receive synchronization signal mode  
Flexible transmit waveform generation  
T1 DSX-1 line build-outs  
T1 CSU line build-outs of 0dB, -7.5dB, -15dB, and -22.5dB  
E1 waveforms include G.703 waveshapes for both 75Ω coax and 120Ω twisted cables  
Analog loss-of-signal detection  
AIS generation independent of loopbacks  
Alternating ones and zeros generation  
Receiver power-down  
Transmitter power-down  
Transmitter short-circuit limiter with current-limit-exceeded indication  
Transmit open-circuit-detected indication  
2.3  
2.4  
Clock Synthesizer  
Output frequencies include 2.048MHz, 4.096MHz, 8.192MHz, and 16.384MHz  
Derived from user-selected recovered receive clock  
Jitter Attenuator  
32-bit or 128-bit crystal-less jitter attenuator  
Requires only a 1.544MHz or 2.048MHz master clock or multiple thereof, for both E1 and T1 operation  
Can be placed in either the receive or transmit path or disabled  
Limit trip indication  
2.5  
Framer/Formatter  
Fully independent transmit and receive functionality  
Full receive and transmit path transparency  
T1 framing formats D4 and ESF per T1.403, and expanded SLC-96 support (TR-TSY-008)  
E1 FAS framing and CRC-4 multiframe per G.704, G.706, and G.732 CAS multiframe  
Transmit-side synchronizer  
Transmit midpath CRC recalculate (E1)  
10 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Detailed alarm and status reporting with optional interrupt support  
Large path and line error counters  
T1: BPV, CV, CRC-6, and framing bit errors  
E1: BPV, CV, CRC-4, E-bit, and frame alignment errors  
Timed or manual update modes  
DS1 Idle Code Generation on a per-channel basis in both transmit and receive paths  
User defined  
Digital Milliwatt  
ANSI T1.403-1999 support  
G.965 V5.2 link detect  
Ability to monitor one DS0 channel in both the transmit and receive paths  
In-band repeating pattern generators and detectors  
Three independent generators and detectors  
Patterns from 1 to 8 bits or 16 bits in length  
Bit-oriented code (BOC) support  
Flexible signaling support  
Software or hardware based  
Interrupt generated on change of signaling data  
Optional receive-signaling freeze on loss of frame, loss of signal, or frame slip  
Hardware pins provided to indicate loss of frame (LOF), loss of signal (LOS), loss of transmit clock  
(LOTC), or signaling freeze condition  
Automatic RAI generation to ETS 300 011 specifications  
RAI-CI and AIS-CI support  
Expanded access to Sa and Si bits  
Option to extend carrier loss criteria to a 1ms period as per ETS 300 233  
Japanese J1 support  
Ability to calculate and check CRC-6 according to the Japanese standard  
Ability to generate Yellow Alarm according to the Japanese standard  
T1-to-E1 conversion  
2.6  
System Interface  
Independent two-frame receive and transmit elastic stores  
Independent control and clocking  
Controlled slip capability with status  
Minimum delay mode supported  
Flexible TDM backplane supports bus rates from 1.544MHz to 16.384MHz  
Supports T1 to CEPT (E1) conversion  
Programmable output clocks for fractional T1, E1, H0, and H12 applications  
Interleaving PCM bus operation  
Hardware signaling capability  
Receive-signaling reinsertion to a backplane multiframe sync  
Availability of signaling in a separate PCM data stream  
Signaling freezing  
Ability to pass the T1 F-bit position through the elastic stores in the 2.048MHz backplane mode  
User-selectable synthesized clock output  
11 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
2.7  
2.8  
HDLC Controllers  
One HDLC controller engine for each T1/E1 port  
Independent 64-byte Rx and Tx buffers with interrupt support  
Access FDL, Sa, or single DS0 channel  
Compatible with polled or interrupt driven environments  
Test and Diagnostics  
IEEE 1149.1 support  
Per-channel programmable on-chip bit error-rate testing (BERT)  
Pseudorandom patterns including QRSS  
User-defined repetitive patterns  
Daly pattern  
Error insertion single and continuous  
Total-bit and errored-bit counts  
Payload error insertion  
Error insertion in the payload portion of the T1 frame in the transmit path  
Errors can be inserted over the entire frame or selected channels  
Insertion options include continuous and absolute number with selectable insertion rates  
F-bit corruption for line testing  
Loopbacks (remote, local, analog, and per-channel loopback)  
2.9  
Control Port  
8-bit parallel control port  
Intel or Motorola nonmultiplexed support  
Flexible status registers support polled, interrupt, or hybrid program environments  
Software reset supported  
Hardware reset pin  
Software access to device ID and silicon revision  
12 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
3.  
APPLICATIONS  
The DS26528 is useful in applications such as:  
Routers  
Channel Service Units (CSUs)  
Data Service Units (DSUs)  
Muxes  
Switches  
Channel Banks  
T1/E1 Test Equipment  
13 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
4.  
SPECIFICATIONS COMPLIANCE  
The DS26528 LIU meets all the latest relevant telecommunications specifications. Table 4-1 and Table 4-2 provide  
the T1 and E1 specifications and relevant sections that are applicable to the DS26528.  
Table 4-1. T1-Related Telecommunications Specifications  
ANSI T1.102: Digital Hierarchy Electrical Interface  
AMI Coding  
B8ZS Substitution Definition  
DS1 Electrical Interface. Line rate ±32ppm; Pulse Amplitude between 2.4V to 3.6V peak; power level between  
12.6dBm to 17.9dBm. The T1 pulse mask is provided that we comply. DSX-1 for cross connects the return loss is  
greater than -26dB. The DSX-1 cable is restricted up to 655 feet.  
This specification also provides cable characteristics of DSX-Cross Connect cable—22 AVG cables of 1000 feet.  
ANSI T1.231: Digital Hierarchy—Layer 1 in Service Performance Monitoring  
BPV Error Definition; Excessive Zero Definition; LOS description; AIS definition.  
ANSI T1.403: Network and Customer Installation Interface—DS1 Electrical Interface  
Description of the Measurement of the T1 Characteristics—100Ω. Pulse shape and template compliance  
according to T1.102; power level 12.4dBm to 19.7dBm when all ones are transmitted.  
LBO for the Customer Interface (CI) is specified as 0dB, -7.5dB, and -15dB. Line rate is ±32ppm. Pulse Amplitude  
is 2.4V to 3.6V.  
AIS generation as unframed all ones is defined.  
The total cable attenuation is defined as 22dB. The DS26528 functions with up to -36dB cable loss.  
Note that the pulse template defined by T1.403 and T1.102 are different, specifically at Times 0.61, -0.27, -34, and  
0.77. The DS26528 is compliant to both templates.  
Pub 62411  
This specification has tighter jitter tolerance and transfer characteristics than other specifications.  
The jitter transfer characteristics are tighter than G.736 and jitter tolerance is tighter the G.823.  
(ANSI) “Digital Hierarchy—Electrical Interfaces”  
(ANSI) “Digital Hierarchy—Formats Specification”  
(ANSI) “Digital Hierarchy—Layer 1 In-Service Digital Transmission Performance Monitoring”  
(ANSI) “Network and Customer Installation Interfaces—DS1 Electrical Interface”  
(AT&T) “Requirements for Interfacing Digital Terminal Equipment to Services Employing the Extended Super  
Frame Format”  
(AT&T) “High Capacity Digital Service Channel Interface Specification”  
(TTC) “Frame Structures on Primary and Secondary Hierarchical Digital Interfaces”  
(TTC) “ISDN Primary Rate User-Network Interface Layer 1 Specification”  
14 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Table 4-2. E1-Related Telecommunications Specifications  
ITU-T G.703 Physical/Electrical Characteristics of G.703 Hierarchical Digital Interfaces  
Defines the 2048kbps bit rate—2048 ±50ppm; the transmission media are 75Ω coax or 120Ω twisted pair; peak-to-  
peak space voltage is ±0.237V; nominal pulse width is 244ns.  
Return loss 51Hz to 102Hz is 6dB, 102Hz to 3072Hz is 8dB, 2048Hz to 3072Hz is 14dB.  
Nominal peak voltage is 2.37V for coax and 3V for twisted pair.  
The pulse template for E1 is defined in G.703.  
ITU-T G.736 Characteristics of Synchronous Digital Multiplex Equipment Operating at 2048kbps  
The peak-to-peak jitter at 2048kbps must be less than 0.05UI at 20Hz to 100Hz.  
Jitter transfer between 2.048 synchronization signal and 2.048 transmission signal is provided.  
ITU-T G.742 Second-Order Digital Multiplex Equipment Operating at 8448kbps  
The DS26528 jitter attenuator is complaint with jitter transfer curve for sinusoidal jitter input.  
ITU-T G.772  
This specification provides the method for using receiver for transceiver 0 as a monitor for the remaining seven  
transmitter/receiver combinations.  
ITU-T G.775  
An LOS detection criterion is defined.  
ITU-T G.823 The control of jitter and wander within digital networks that are based on 2.048kbps hierarchy.  
G.823 Provides the jitter amplitude tolerance at different frequencies, specifically 20Hz, 2.4kHz, 18kHz, and  
100kHz.  
ETS 300 233  
This specification provides LOS and AIS signal criteria for E1 mode.  
Pub 62411  
This specification has tighter jitter tolerance and transfer characteristics than other specifications.  
The jitter transfer characteristics are tighter than G.736 and jitter tolerance is tighter than G.823.  
(ITU-T) “Synchronous Frame Structures used at 1544, 6312, 2048, 8488, and 44736kbps Hierarchical Levels”  
(ITU-T) “Frame Alignment and Cyclic Redundancy Check (CRC) Procedures Relating to Basic Frame Structures  
Defined in Recommendation G.704”  
(ITU-T) “Characteristics of Primary PCM Multiplex Equipment Operating at 2048kbps”  
(ITU-T) Characteristics of a Synchronous Digital Multiplex Equipment Operating at 2048kbps”  
(ITU-T) “Loss Of Signal (LOS) and Alarm Indication Signal (AIS) Defect Detection and Clearance Criteria”  
(ITU-T) “The Control of Jitter and Wander Within Digital Networks Which are Based on the 2048kbps Hierarchy”  
(ITU-T) “Primary Rate User-Network Interface—Layer 1 Specification”  
(ITU-T) “Error Performance Measuring Equipment Operating at the Primary Rate and Above”  
(ITU-T) “In-Service Code Violation Monitors for Digital Systems”  
(ETS) “Integrated Services Digital Network (ISDN); Primary Rate User-Network Interface (UNI); Part 1/Layer 1  
Specification”  
(ETS) “Transmission and Multiplexing; Physical/Electrical Characteristics of Hierarchical Digital Interfaces for  
Equipment Using the 2048kbps-Based Plesiochronous or Synchronous Digital Hierarchies”  
(ETS) “Integrated Services Digital Network (ISDN); Access Digital Section for ISDN Primary Rate”  
(ETS) “Integrated Services Digital Network (ISDN); Attachment Requirements for Terminal Equipment to Connect  
to an ISDN Using ISDN Primary Rate Access”  
(ETS) “Business Telecommunications (BT); Open Network Provision (ONP) Technical Requirements; 2048kbps  
Digital Unstructured Leased Lines (D2048U) Attachment Requirements for Terminal Equipment Interface”  
(ETS) “Business Telecommunications (BTC); 2048kbps Digital Structured Leased Lines (D2048S); Attachment  
Requirements for Terminal Equipment Interface”  
(ITU-T) “Synchronous Frame Structures Used at 1544, 6312, 2048, 8488, and 44736kbps Hierarchical Levels”  
(ITU-T) “Frame Alignment and Cyclic Redundancy Check (CRC) Procedures Relating to Basic Frame Structures  
Defined in Recommendation G.704”  
15 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
5.  
ACRONYMS AND GLOSSARY  
This data sheet assumes a particular nomenclature of the T1 and E1 operating environment. In each 125μs T1  
frame, there are 24 8-bit channels plus a framing bit. It is assumed that the framing bit is sent first followed by  
channel 1. For T1 and E1, each channel is made up of 8 bits, which are numbered 1 to 8. Bit 1, the MSB, is  
transmitted first. Bit 8, the LSB, is transmitted last.  
Locked refers to two clock signals that are phase- or frequency-locked or derived from a common clock (i.e., a  
1.544MHz clock can be locked to a 2.048MHz clock if they share the same 8kHz component).  
Table 5-1. Time Slot Numbering Schemes  
0
1
2
1
2
3
2
3
4
3
4
5
4
5
6
5
6
7
6
7
8
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31  
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  
TS  
1
Channel  
8
Phone  
Channel  
16 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
6.  
BLOCK DIAGRAMS  
Figure 6-1. Block Diagram  
DS26528  
LIU #8  
FRAMER #8  
FRAMER #7  
FRAMER #6  
FRAMER #5  
FRAMER #4  
FRAMER #3  
FRAMER #2  
INTERFACE #8  
LIU #7  
LIU #6  
INTERFACE #7  
INTERFACE #6  
INTERFACE #5  
INTERFACE #4  
INTERFACE #3  
INTERFACE #2  
LIU #5  
LIU #4  
RECEIVE  
BACKPLANE  
SIGNALS  
LIU #3  
LIU #2  
RTIP  
RRING  
TTIP  
TRANSMIT  
BACKPLANE  
SIGNALS  
T1/E1 FRAMER  
HDLC  
BACKPLANE  
INTERFACE  
LINE  
INTERFACE  
UNIT  
ELASTIC  
STORES  
HARDWARE  
ALARM  
INDICATORS  
BERT  
TRING  
x8  
x8  
MICRO PROCESSOR  
INTERFACE  
CLOCK  
GENERATION  
JTAG PORT  
CONTROLLER  
PORT  
TEST  
PORT  
CLOCK  
ADAPTER  
17 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Figure 6-2. Detailed Block Diagram  
Tx  
BERT  
Tx  
HDLC  
TRANSCEIVER #1 of 8:  
Tx SIGNALING/  
CHANNEL  
BLOCKING  
Tx FRAMER:  
TCLKn  
TSERn  
TRANSMIT  
TTIPn  
LIU  
B8ZS/  
HDB3  
ENCODE  
ELASTIC  
STORE  
TSYNCn  
WAVEFORM  
SHAPER/LINE  
DRIVER  
TRINGn  
TSSYNCIO  
(INPUT MODE)  
TSYSCLK  
RSYSCLK  
Rx FRAMER:  
RECEIVE  
LIU  
RTIPn  
RSYNCn  
B8ZS/  
HDB3  
DECODE  
ELASTIC  
STORE  
CLOCK/DATA  
RECOVERY  
RSERn  
RCLKn  
RRINGn  
Rx SIGNALING/  
CHANNEL  
BLOCKING  
Rx  
BERT  
Rx  
HDLC  
DS26528  
PRE-SCALER  
PLL  
MICROPROCESSOR  
INTERFACE  
JTAG  
PORT  
RESET  
BLOCK  
MCLK  
TSSYNCIO  
(OUTPUT MODE)  
BPCLK  
BACKPLANE  
CLOCK  
GENERATOR  
REFCLK  
18 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
7.  
PIN DESCRIPTIONS  
7.1 Pin Functional Description  
Table 7-1. Detailed Pin Descriptions  
NAME  
PIN  
TYPE  
FUNCTION  
ANALOG TRANSMIT  
Transmit Bipolar Tip for Transceiver 1 to 8. These pins are differential line  
driver tip outputs. These pins can be high impedance if:  
TTIP1  
TTIP2  
A1, A2  
H1, H2  
If TXENABLE is low, the TTIP/TRING will be high impedance. Note that if  
TXENABLE is low, the register settings for control of the TTIP/TRING are ignored  
and output is high impedance.  
TTIP3  
J1 J2  
Analog  
Output,  
High  
TTIP4  
T1, T2  
The differential outputs of TTIPn and TRINGn can provide internal matched  
impedance for E1 75Ω, E1 120Ω, T1 100Ω, or J1 110Ω. The user has the option of  
turning off internal termination.  
TTIP5  
T15, T16  
J15, J16  
H15, H16  
A15, A16  
A3, B3  
Impedance  
TTIP6  
TTIP7  
Note: The two pins shown for each transmit bipolar tip (e.g., pins A1 and A2 for  
TTIP1) should be tied together.  
Transmit Bipolar Ring for Transceiver 1 to 8. These pins are differential line  
driver ring outputs. These pins can be high impedance if:  
TTIP8  
TRING1  
TRING2  
TRING3  
TRING4  
TRING5  
TRING6  
TRING7  
TRING8  
G3, H3  
If TXENABLE is low, the TTIP/TRING will be high impedance. Note that if  
TXENABLE is low, the register settings for control of the TTIP/TRING are ignored  
and output is high impedance.  
J3, K3  
Analog  
Output,  
High  
R3, T3  
The differential outputs of TTIPn and TRINGn can provide internal matched  
impedance for E1 75Ω, E1 120Ω, T1 100Ω, or J1 110Ω. The user has the option of  
turning off internal termination.  
R14,T14  
J14, K14  
G14, H14  
A14, B14  
Impedance  
Note: The two pins shown for each transmit bipolar ring (e.g., pins A3 and B3 for  
TRING1) should be tied together.  
Transmit Enable. If this pin is pulled low, all transmitter outputs (TTIP and TRING)  
are high impedance. The register settings for tri-state control of TTIP/TRING are  
ignored if TXENABLE is low. If TXENABLE is high, the particular driver can be tri-  
stated by the register settings.  
TXENABLE  
L13  
I
ANALOG RECEIVE  
RTIP1  
RTIP2  
RTIP3  
C1  
F1  
L1  
Receive Bipolar Tip for Transceiver 1 to 8. The differential inputs of RTIPn and  
RRINGn can provide internal matched impedance for E1 75Ω, E1 120Ω, T1 100Ω,  
or J1 110Ω. The user has the option of turning off internal termination via the LIU  
Receive Impedance and Sensitivity Monitor register (LRISMR).  
Analog  
Input  
RTIP4  
RTIP5  
RTIP6  
RTIP7  
RTIP8  
RRING1  
P1  
P16  
L16  
F16  
C16  
C2  
RRING2  
RRING3  
RRING4  
RRING5  
RRING6  
RRING7  
RRING8  
F2  
L2  
Receive Bipolar Ring for Transceiver 1 to 8. The differential inputs of RTIPn and  
RRINGn can provide internal matched impedance for E1 75Ω, E1 120Ω, T1 100Ω,  
or J1 110Ω. The user has the option of turning off internal termination via the LIU  
Receive Impedance and Sensitivity Monitor register (LRISMR).  
P2  
Analog  
Input  
P15  
L15  
F15  
C15  
19 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
NAME  
PIN  
TYPE  
FUNCTION  
TRANSMIT FRAMER  
TSER1  
TSER2  
TSER3  
TSER4  
TSER5  
TSER6  
TSER7  
TSER8  
TCLK1  
TCLK2  
TCLK3  
TCLK4  
TCLK5  
TCLK6  
TCLK7  
TCLK8  
F6  
E7  
Transmit NRZ Serial Data. These pins are sampled on the falling edge of TCLK  
when the transmit-side elastic store is disabled. These pins are sampled on the  
falling edge of TSYSCLK when the transmit-side elastic store is enabled.  
R4  
N7  
I
In IBO mode, data for multiple framers can be used in high-speed multiplexed  
scheme. This is described in Section 8.8.2. The table there presents the  
combination of framer data for each of the streams.  
M10  
L11  
F10  
D12  
C5  
TSYSCLK is used as a reference when IBO is invoked.  
D7  
P5  
Transmit Clock. A 1.544MHz or a 2.048MHz primary clock. Used to clock data  
through the transmit side of the transceiver. TSER data is sampled on the falling  
edge of TCLK. TCLK is used to sample TSER when the elastic store is not enabled  
or IBO is not used.  
L8  
I
I
L10  
N11  
E10  
B13  
Transmit System Clock. 1.544MHz, 2.048MHz, 4.096MHz, 8.192MHz, or  
16.384MHz clock. Only used when the transmit-side elastic store function is  
enabled. Should be tied low in applications that do not use the transmit-side elastic  
store. This is a common clock that is used for all eight transmitters. The clock can  
be 4.096MHz, 8.912MHz, or 16.384MHz when IBO mode is used.  
TSYSCLK  
P13  
TSYNC1  
TSYNC2  
TSYNC3  
TSYNC4  
TSYNC5  
TSYNC6  
TSYNC7  
TSYNC8  
B4  
F7  
Transmit Synchronization. A pulse at these pins establishes either frame or  
multiframe boundaries for the transmit side. These signals can also be  
programmed to output either a frame or multiframe pulse. If these pins are set to  
output pulses at frame boundaries, they can also be set to output double-wide  
pulses at signaling frames in T1 mode. The operation of these signals is  
synchronous with TCLK.  
M6  
M7  
I/O  
N10  
T12  
B11  
A13  
Transmit System Synchronization In. Only used when the transmit-side elastic  
store is enabled. A pulse at this pin establishes either frame or multiframe  
boundaries for the transmit side. Note that if the elastic store is enabled, frame or  
multiframe boundary will be established for all eight transmitters. Should be tied  
low in applications that do not use the transmit-side elastic store. The operation of  
this signal is synchronous with TSYSCLK.  
TSSYNCIO  
N13  
I/O  
Transmit System Synchronization Out. If configured as an output, an 8kHz  
pulse synchronous to the BPCLK will be generated. This pulse in combination with  
BPCLK can be used as an IBO master. The BPCLK can be sourced to RSYSCLK,  
TSYSCLK, and TSSYNCIO as a source to RSYNC, and TSSYNCIO of DS26528  
or RSYNC and TSSYNC of other Dallas Semiconductor parts.  
TSIG1  
TSIG2  
TSIG3  
TSIG4  
TSIG5  
TSIG6  
TSIG7  
TSIG8  
D5  
A6  
T4  
Transmit Signaling. When enabled, this input samples signaling bits for insertion  
into outgoing PCM data stream. Sampled on the falling edge of TCLK when the  
transmit-side elastic store is disabled. Sampled on the falling edge of TSYSCLK  
when the transmit-side elastic store is enabled. In IBO mode, the TSIG streams  
can run up to 16.384MHz.  
R6  
I
T10  
R12  
A11  
C13  
20 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
NAME  
PIN  
A5  
TYPE  
FUNCTION  
TCHBLK/  
CLK1  
TCHBLK/  
CLK2  
TCHBLK/  
CLK3  
TCHBLK/  
CLK4  
Transmit Channel Block/Transmit Channel Block Clock. A dual function pin.  
TCHBLK is a user-programmable output that can be forced high or low during any  
of the channels. It is synchronous with TCLK when the transmit-side elastic store is  
disabled. It is synchronous with TSYSCLK when the transmit-side elastic store is  
enabled. It is useful for blocking clocks to a serial UART or LAPD controller in  
applications where not all channels are used such as Fractional T1, Fractional E1,  
384kbps (H0), 768kbps, or ISDN-PRI. Also useful for locating individual channels  
in drop-and-insert applications, for external per-channel loopback, and for per-  
channel conditioning.  
C7  
L7  
P7  
O
TCHBLK/  
CLK5  
P9  
TCHBLK/  
CLK6  
TCHBLK/  
CLK7  
TCHBLK/  
CLK8  
TCHCLK. TCHCLK is a 192kHz (T1) or 256kHz (E1) clock that pulses high during  
the LSB of each channel. It can also be programmed to output a gated transmit bit  
clock controlled by TCHBLK. It is synchronous with TCLK when the transmit-side  
elastic store is disabled. It is synchronous with TSYSCLK when the transmit-side  
elastic store is enabled. Useful for parallel-to-serial conversion of channel data.  
P11  
D10  
E11  
RECEIVE FRAMER  
RSER1  
RSER2  
RSER3  
RSER4  
RSER5  
RSER6  
RSER7  
RSER8  
RCLK1  
RCLK2  
RCLK3  
RCLK4  
RCLK5  
RCLK6  
RCLK7  
RCLK8  
E5  
D6  
Received Serial Data. Received NRZ serial data. Updated on rising edges of  
RCLK when the receive-side elastic store is disabled. Updated on the rising edges  
of RSYSCLK when the receive-side elastic store is enabled.  
N4  
N6  
O
M11  
M12  
B12  
F11  
F4  
When IBO mode is used, the RSER pins can output data for multiple framers. The  
RSER data is synchronous to RSYSCLK. This is described in Section 8.8.2.  
G4  
Receive Clock. A 1.544MHz (T1) or 2.048MHz (E1) clock that is used to clock  
data through the receive-side framer. This clock is recovered from the signal at  
RTIP and RRING. RSER data is output on the rising edge of RCLK. RCLK is used  
to output RSER when the elastic store is not enabled or IBO is not used. When the  
elastic store is enabled or IBO is used, the RSER is clocked by RSYSCLK.  
L4  
M4  
O
K13  
J13  
F13  
E13  
Receive System Clock. 1.544MHz, 2.048MHz, 4.096MHz, 8.192MHz, or  
16.384MHz receive backplane clock. Only used when the receive-side elastic store  
function is enabled. Should be tied low in applications that do not use the receive-  
side elastic store. Multiple of 2.048MHz is expected when the IBO mode is used.  
Note that RSYSCLK is used for all eight transceivers.  
RSYSCLK  
L12  
I
RSYNC1  
RSYNC2  
RSYNC3  
RSYNC4  
RSYNC5  
RSYNC6  
RSYNC7  
RSYNC8  
A4  
B6  
N5  
Receive Synchronization. If the receive-side elastic store is enabled, then this  
signal is used to input a frame or multiframe boundary pulse. If set to output frame  
boundaries, then RSYNC can be programmed to output double-wide pulses on  
signaling frames in T1 mode. In E1 mode, RSYNC out can be used to indicate  
CAS and CRC-4 multiframe. The DS26528 can accept H.100-compatible  
synchronization signal. The default direction of this pin at power-up is input, as  
determined by the RSIO control bit in the RIOCR.2 register.  
T6  
I/O  
R10  
P12  
C11  
D13  
21 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
NAME  
PIN  
C4  
TYPE  
FUNCTION  
RMSYNC1/  
RFSYNC1  
RMSYNC2/  
RFSYNC2  
C6  
Receive Multiframe/Frame Synchronization. A dual function pin to indicate  
frame or multiframe synchronization. RFSYNC is an extracted 8kHz pulse, one  
RCLK wide that identifies frame boundaries. RMSYNC is an extracted pulse, one  
RCLK wide (elastic store disabled) or one RSYSCLK wide (elastic store enabled),  
that identifies multiframe boundaries. When the receive elastic store is enabled,  
the RMSYNC signal indicates the multiframe sync on the system (backplane) side  
of the elastic store. In E1 mode, this pin can indicate either the CRC-4 or CAS  
multiframe as determined by the RSMS2 control bit in the Receive I/O  
Configuration register (RIOCR.1).  
RMSYNC3/  
RFSYNC3  
P4  
RMSYNC4/  
RFSYNC4  
P6  
O
RMSYNC5/  
RFSYNC5  
P10  
N12  
D11  
E12  
RMSYNC6/  
RFSYNC6  
RMSYNC7/  
RFSYNC7  
RMSYNC8/  
RFSYNC8  
RSIG1  
RSIG2  
RSIG3  
RSIG4  
RSIG5  
RSIG6  
RSIG7  
RSIG8  
D4  
E6  
M5  
Receive Signaling. Outputs signaling bits in a PCM format. Updated on rising  
edges of RCLK when the receive-side elastic store is disabled. Updated on the  
rising edges of RSYSCLK when the receive-side elastic store is enabled.  
R5  
O
R11  
R13  
A12  
F12  
AL/  
RSIGF/  
FLOS1  
C3  
F3  
AL/  
RSIGF/  
FLOS2  
AL/  
RSIGF/  
FLOS3  
L3  
Analog Loss/Receive-Signaling Freeze/Framer LOS. Analog LOS reflects the  
LOS (loss of signal) detected by the LIU front-end and framer LOS is LOS  
detection by the corresponding framer; the same pins can reflect receive-signaling  
freeze indications. This selection can be made by settings in the Global  
Transceiver Clock Control register (GTCCR ).  
AL/  
RSIGF/  
FLOS4  
P3  
O
AL/  
RSIGF/  
FLOS5  
If framer LOS is selected, this pin can be programmed to toggle high when the  
framer detects an LOS condition, or when the signaling data is frozen via either  
automatic or manual intervention. The indication is used to alert downstream  
equipment of the condition.  
P14  
L14  
F14  
C14  
AL/  
RSIGF/  
FLOS6  
AL/  
RSIGF/  
FLOS7  
AL/  
RSIGF/  
FLOS8  
22 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
NAME  
PIN  
D3  
TYPE  
FUNCTION  
RLF/  
LTC1  
RLF/  
LTC2  
E3  
RLF/  
LTC3  
M3  
RLF/  
LTC4  
RLF/  
LTC5  
RLF/  
LTC6  
RLF/  
LTC7  
Receive Loss of Frame/Loss of Transmit Clock. This pin can be programmed to  
either toggle high when the synchronizer is searching for the frame and multiframe,  
or to toggle high if the TCLK pin has not been toggled for approximately three clock  
periods.  
N3  
O
N14  
M14  
E14  
D14  
RLF/  
LTC8  
RCHBLK/  
CLK1  
E4  
B5  
RCHBLK/  
CLK2  
Receive Channel Block/Receive Channel Block Clock. This pin can be  
configured to output either RCHBLK or RCHCLK. RCHBLK is a user-  
programmable output that can be forced high or low during any of the 24 T1 or 32  
E1 channels. It is synchronous with RCLK when the receive-side elastic store is  
disabled. It is synchronous with RSYSCLK when the receive-side elastic store is  
enabled. This pin is useful for blocking clocks to a serial UART or LAPD controller  
in applications where not all channels are used such as fractional service, 384kbps  
service, 768kbps, or ISDN-PRI. Also useful for locating individual channels in drop-  
and-insert applications, for external per-channel loopback, and for per-channel  
conditioning.  
RCHBLK/  
CLK3  
L6  
RCHBLK/  
CLK4  
T5  
O
RCHBLK/  
CLK5  
T11  
T13  
C12  
G13  
RCHCLK. RCHCLK is a 192kHz (T1) or 256kHz (E1) clock that pulses high during  
the LSB of each channel. It is synchronous with RCLK when the receive-side  
elastic store is disabled. It is synchronous with RSYSCLK when the receive-side  
elastic store is enabled. It is useful for parallel-to-serial conversion of channel data.  
RCHBLK/  
CLK6  
RCHBLK/  
CLK7  
RCHBLK/  
CLK8  
Backplane Clock. Programmable clock output that can be set to 2.048MHz,  
4.096MHz, 8.192MHz, or 16.384MHz. The reference for this clock can be RCLK  
from any of the LIU, 1.544MHz, or 2.048MHz frequency derived from MCLK or an  
external reference clock. This allows for the IBO clock to reference from external  
source or T1J1E1 recovered clock or the MCLK oscillator.  
BPCLK  
E8  
O
23 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
NAME  
PIN  
TYPE  
FUNCTION  
MICROPROCESSOR INTERFACE  
A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
C8  
A8  
B8  
F8  
B9  
A9  
C9  
D9  
E9  
F9  
B10  
A10  
C10  
T9  
N9  
M9  
R8  
T8  
Address [12:0]. This bus selects a specific register in the DS26528 during  
read/write access. A12 is the MSB and A0 is the LSB.  
I
Data [7:0]. This 8-bit, bidirectional data bus is used for read/write access of the  
DS26528 information and control registers. D7 is the MSB and D0 is the LSB.  
I
P8  
L9  
N8  
Chip-Select Bar. This active-low signal is used to qualify register read/write  
accesses. The RDB/DSB and WRB signals are qualified with CSB.  
T7  
I
I
CSB  
Read-Data Bar/Data-Strobe Bar. This active-low signal along with CSB qualifies  
read access to one of the DS26528 registers. The DS26528 drives the data bus  
with the contents of the addressed register while RDB and CSB are low.  
RDB/  
DSB  
M8  
Write-Read Bar/Read-Write Bar. This active-low signal along with CSB qualifies  
write access to one of the DS26528 registers. Data at D[7:0] is written into the  
addressed register at the rising edge of WRB while CSB is low.  
WRB/  
RWB  
R7  
I
Interrupt Bar. This active-low, open-drain output is asserted when an unmasked  
interrupt event is detected. INTB will be deasserted when all interrupts have been  
acknowledged and serviced. Extensive mask bits are provided at the global level,  
framer, LIU, and BERT level.  
Bus Type Select. Set high to select Motorola bus timing, low to select Intel bus  
timing. This pin controls the function of the RDB/DSB and WRB pins.  
R9  
U
I
INTB  
BTS  
M13  
24 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
NAME  
PIN  
TYPE  
FUNCTION  
SYSTEM INTERFACE  
Master Clock. This is an independent free-running clock whose input can be a  
multiple of 2.048MHz ±50ppm or 1.544MHz ±50ppm. The clock selection is  
available by bits MPS0 and MPS1 and FREQSEL. Multiple of 2.048MHz can be  
internally adapted to 1.544MHz. Multiple of 1.544MHz can be adapted to  
2.048MHz. Note that TCLK must be 2.048MHz for E1 and 1.544MHz for T1/J1  
operation. See Table 9-12.  
MCLK  
B7  
I
I
Reset Bar. Active-low reset. This input forces the complete DS26528 reset. This  
includes reset of the registers, framers, and LIUs.  
J12  
RESETB  
Reference Clock Input/Output  
Input: A 2.048MHz or 1.544MHz clock input. This clock can be used to generate  
the backplane clock. This allows for the users to synchronize the system  
backplane with the reference clock. The other options for the backplane clock  
reference are LIU-received clocks or MCLK.  
REFCLKIO  
A7  
I/O  
Output: This signal can also be used to output a 1.544MHz or 2.048MHz reference  
clock. This allows for multiple DS26528s to share the same reference for  
generation of the backplane clock. Hence, in a system consisting of multiple  
DS26528s, one can be a master and others a slave using the same reference  
clock.  
TEST  
Digital Enable. When this pin and JTRST are pulled low, all digital I/O pins are  
placed in a high-impedance state. If this pin is high the digital I/O pins operate  
normally. This pin must be connected to VDD for normal operation.  
DIGIOEN  
D8  
L5  
I, Pullup  
I, Pullup  
JTAG Reset. JTRST is used to asynchronously reset the test access port  
controller. After power-up, JTRST must be toggled from low to high. This action  
sets the device into the JTAG DEVICE ID mode. Pulling JTRST low restores  
normal device operation. JTRST is pulled high internally via a 10kΩ resistor  
operation. If boundary scan is not used, this pin should be held low.  
JTRST  
JTAG Mode Select. This pin is sampled on the rising edge of JTCLK and is used  
to place the test access port into the various defined IEEE 1149.1 states. This pin  
has a 10kΩ pullup resistor.  
JTMS  
JTCLK  
JTDI  
K4  
F5  
H4  
J4  
I, Pullup  
I
JTAG Clock. This signal is used to shift data into JTDI on the rising edge and out  
of JTDO on the falling edge.  
JTAG Data In. Test instructions and data are clocked into this pin on the rising  
edge of JTCLK. This pin has a 10kΩ pullup resistor.  
I, Pullup  
O, High  
JTAG Data Out. Test instructions and data are clocked out of this pin on the falling  
impedance edge of JTCLK. If not used, this pin should be left unconnected.  
JTDO  
25 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
NAME  
PIN  
TYPE  
FUNCTION  
POWER SUPPLIES  
ATVDD1  
ATVDD2  
ATVDD3  
ATVDD4  
ATVDD5  
ATVDD6  
ATVDD7  
ATVDD8  
ATVSS1  
ATVSS2  
ATVSS3  
ATVSS4  
ATVSS5  
ATVSS6  
ATVSS7  
ATVSS8  
ARVDD1  
ARVDD2  
ARVDD3  
ARVDD4  
ARVDD5  
ARVDD6  
ARVDD7  
ARVDD8  
ARVSS1  
ARVSS2  
ARVSS3  
ARVSS4  
ARVSS5  
ARVSS6  
ARVSS7  
ARVSS8  
B1  
G1  
K1  
R1  
3.3V Analog Transmit Power Supply. These VDD inputs are used for the transmit  
LIU sections of the DS26528.  
R16  
K16  
G16  
B16  
B2  
G2  
K2  
R2  
Analog Transmit VSS. These pins are used for transmit analog VSS.  
R15  
K15  
G15  
B15  
D1  
E1  
M1  
N1  
3.3V Analog Receive Power Supply. These VDD inputs are used for the receive  
LIU sections of the DS26528.  
N16  
M16  
E16  
D16  
D2  
E2  
M2  
N2  
Analog Receive VSS. These pins are used for analog VSS for the receivers.  
N15  
M15  
E15  
D15  
Analog Clock Conversion VDD. This VDD input is used for the clock conversion  
unit of the DS26528.  
ACVDD  
ACVSS  
DVDD  
H7  
J7  
Analog Clock VSS. This pin is used for clock converter analog VSS  
3.3V Power Supply for Digital Framers  
.
G5–G12,  
H8, H9  
H5, H6,  
H10, H11  
DVDDIO  
3.3V Power Supply for I/Os  
H12, H13,  
J8, J9,  
K5–K12  
DVSS  
-—  
Digital Ground for the Framers  
Digital Ground for the I/Os  
J5, J6,  
J10, J11  
DVSSIO  
26 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
8.  
FUNCTIONAL DESCRIPTION  
8.1 Processor Interface  
Microprocessor control of the DS26528 is accomplished through the 28 hardware pins of the microprocessor port.  
The 8-bit parallel data bus can be configured for Intel or Motorola modes of operation with the bus type select  
(BTS) pin. When the BTS pin is a logic 0, bus timing is in Intel mode, as shown in Figure 12-1 and Figure 12-2.  
When the BTS pin is a logic 1, bus timing is in Motorola mode, as shown in Figure 12-3 and Figure 12-4. The  
address space is mapped through the use of 13 address lines, A[12:0]. Multiplexed mode is not supported on the  
processor interface.  
The chip-select bar (CSB) pin must be brought to a logic-low level to gain read and write access to the  
microprocessor port. With Intel timing selected, the read-data bar (RDB) and write-read bar (WRB) pins are used to  
indicate read and write operations and latch data through the interface. With Motorola timing selected, the read-  
write bar (RWB) pin is used to indicate read and write operations while the data-strobe bar (DSB) pin is used to  
latch data through the interface.  
The interrupt output pin (INTB) is an open-drain output that asserts a logic-low level upon a number of software  
maskable interrupt conditions. This pin is normally connected to the microprocessor interrupt input. The device has  
a bulk write mode that allows a microprocessor to write all eight internal transceivers with each bus write cycle. By  
setting the BWE bit (GTCR1.2), each port write cycle will write to all four framers, LIUs, or BERTs at the same time.  
The BWE bit must be cleared before normal write operation is resumed. This function is useful for device  
initialization. The register map is shown in Figure 9-1.  
8.2  
Clock Structure  
The user should provide a system clock to the MCLK input of 2.048MHz, 1.544MHz, or a multiple of up to 8x the T1  
and E1 frequencies. To meet many specifications, the MCLK source should have ±50ppm accuracy.  
8.2.1 Backplane Clock Generation  
The DS26528 provides facility for provision of BPCLK at 2.048MHz, 4.096MHz, 8.192MHz, 16.384MHz (see  
Figure 8-1). The Global Transceiver Clock Control register (GTCCR) is used to control the backplane clock  
generation. This register is also used to program REFCLKIO as an input or output. REFCLKIO can output MCLKT1  
or MCLKE1 as shown in Figure 8-1.  
This backplane clock and frame pulse (TSSYNCIO) can be used by the DS26528 and other IBO-equipped devices  
as an IBO bus master. Hence, the DS26528 provides the 8kHz sync pulse and 4MHz, 8MHz, and 16MHz clock.  
This can be used by the link layer devices and frames connected to the IBO bus.  
27 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Figure 8-1. Backplane Clock Generation  
BPREFSEL3:0  
BPCLK1:0  
RCLK1  
RCLK2  
RCLK3  
RCLK4  
BFREQSEL  
RCLK5  
RCLK6  
BPCLK  
CLK  
GEN  
RCLK7  
RCLK8  
Pre  
Scaler  
PLL  
MCLK  
MCLKT1  
MCLKE1  
REFCLKIO  
TSSYNCIO  
REFCLKIO  
The reference clock for the backplane clock generator can be as follows:  
External Master Clock. A prescaler can be used to generate T1 or E1 frequency.  
External Reference Clock REFCLKIO. This allows for multiple DS26518s to use the backplane clock from  
a common reference.  
Internal LIU recovered RCLKs 1 to 8.  
The clock generator can be used to generate BPCLK1 of 2.048MHz, 4.096MHz, 8.192MHz, or 16.384MHz  
for the IBO.  
If MCLK or RCLK is used as a reference, REFCLKIO can be used to provide a 2.048MHz or 1.544MHz  
clock for external use.  
28 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
8.3  
Resets and Power-Down Modes  
A hardware reset is issued by forcing the RESETB pin to logic-low. The RESETB input pin resets all framers, LIUs,  
and BERTs. Note that not all registers are cleared to 00h on a reset condition. The register space must be  
reinitialized to appropriate values after a hardware or software reset has occurred. This includes writing  
reserved locations to 00h.  
The DS26528 has several features included to reduce power consumption. The LIU transmitters can be powered  
down by setting the TPDE bit in the LIU Maintenance Control register (LMCR). Note that powering down the  
transmit LIU results in a high-impedance state for the corresponding TTIP and TRING pins and reduced operating  
current. The RPDE bit in the LMCR register can be used to power down the LIU receiver.  
The TE (transmit enable) bit in the LMCR register can be used to disable the TTIP and TRING outputs and place  
them in a high-impedance mode, while keeping the LIU in an active state (powered up). This is useful for  
equipment protection-switching applications.  
Table 8-1. Reset Functions  
RESET FUNCTION  
Hardware Device Reset  
Hardware JTAG Reset  
LOCATION  
RESETB  
JTRST  
COMMENTS  
Transition to a logic 0 level resets the DS26528.  
Resets the JTAG test port.  
Writing to these bits resets the framer and BERT (transmit  
and receive).  
Global Framer and BERT Reset  
GFSRR.0:7  
Global LIU Reset  
GLSRR.0:7  
RMMR.1  
TMMR.1  
RHC.6  
Writing to these bits resets the associated LIU.  
Writing to this bit resets the receive framer.  
Framer Receive Reset  
Framer Transmit Reset  
HDLC Receive Reset  
Writing to this bit resets the transmit framer.  
Writing to this bit resets the receive HDLC controller.  
Writing to this bit resets the transmit HDLC controller.  
Writing to this bit resets the receive elastic store.  
Writing to this bit resets the transmit elastic store.  
HDLC Transmit Reset  
THC1.5  
Elastic Store Receive Reset  
Elastic Store Transmit Reset  
Bit Oriented Code Receive Reset  
RESCR.2  
TESCR.2  
T1RBOCC.7 Writing to this bit resets the receive BOC controller.  
T1RDNCD1, Writing to these registers resets the programmable in-band  
T1RUPCD1 code integration period.  
Loop Code Integration Reset  
Spare Code Integration Reset  
Writing to this register resets the programmable in-band  
T1RSCD1  
code integration period.  
29 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
8.4  
Initialization and Configuration  
8.4.1 Example Device Initialization Sequence  
STEP 1: Reset the device by pulling the RESETB pin low, applying power to the device, or by using the software  
reset bits outlined in Section 8.3. Clear all reset bits. Allow time for the reset recovery.  
STEP 2: Check the device ID in the Device Identification register (IDR).  
STEP 3: Write the GTCCR register to correctly configure the system clocks. If supplying a 1.544MHz MCLK, follow  
this write with at least a 300ns delay to allow the clock system to properly adjust.  
STEP 4: Write the entire remainder of the register space for each port with 00h, including reserved register  
locations.  
STEP 5: Choose T1/J1 or E1 operation for the framers by configuring the T1/E1 bit in the TMMR and RMMR  
registers for each framer. Set the FRM_EN bit to 1 in the TMMR and RMMR registers. If using software transmit  
signaling in E1 mode, program the E1TAF and E1TNAF registers as required. Configure the framer Transmit  
Control registers (TCR1:TCR4). Configure the Framer Receive Control registers (RCR1 (T1)/RCR1 (E1),  
T1RCR2/E1RCR2, RCR3). Configure other framer features as appropriate.  
STEP 6: Choose T1/J1 or E1 operation for the LIUs by configuring the T1J1E1S bit in the LTRCR register.  
Configure the line build-out for each LIU. Configure other LIU features as appropriate. Set the TE bit to turn on the  
TTIP and TRING outputs.  
STEP 7: Configure the elastic stores, HDLC controller, and BERT as needed.  
STEP 8: Set the INIT_DONE bit in the TMMR and RMMR registers for each framer.  
8.5  
Global Resources  
All eight framers share a common microprocessor port. All ports share a common MCLK, and there is a common  
software-configurable BPCLK output. A set of global registers are located at 0F0h–0FFh and include global resets,  
global interrupt status, interrupt masking, clock configuration, and the device ID registers. See the global register  
definitions in Table 9-2. A common JTAG controller is used.  
8.6  
Per-Port Resources  
Each port has an associated framer, LIU, BERT, jitter attenuator, and transmit/receive HDLC controller. Each of the  
per-port functions has its own register space.  
8.7  
Device Interrupts  
Figure 8-2 diagrams the flow of interrupt conditions from their source status bits through the multiple levels of  
information registers and mask bits to the interrupt pin. When an interrupt occurs, the host can read the global  
interrupt information registers GFISR, GLISR, and GBISR to identify which of the eight transceivers is causing the  
interrupt(s). The host can then read the specific transceiver’s interrupt information registers (TIIR, RIIR) and the  
latched status registers (LLSR, BLSR) to further identify the source of the interrupt(s). If TIIR or RIIR is the source,  
the host will then read the transmit-latched status or the receive-latched status registers for the source of the  
interrupt. All interrupt information register bits are real-time bits that clear once the appropriate interrupt has been  
serviced and cleared, as long as no additional, unmasked interrupt condition is present in the associated status  
register. The host must clear all latched status bits by writing a 1 to the bit location of the interrupt condition that  
has been serviced. Latched status bits that have been masked by the interrupt mask registers are masked from the  
interrupt information registers. The interrupt mask register bits prevent individual latched status conditions from  
generating an interrupt, but they do not prevent the latched status bits from being set. Therefore, when servicing  
interrupts, the user should XOR the latched status with the associated interrupt mask in order to exclude bits for  
which the user wished to prevent interrupt service. This architecture allows the application host to periodically poll  
the latched status bits for noninterrupt conditions, while using only one set of registers.  
30 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Figure 8-2. Device Interrupt Information Flow Diagram  
Receive Remote Alarm Indication Clear  
Receive Alarm Condition Clear  
Receive Loss of Signal Clear  
Receive Loss of Frame Clear  
Receive Remote Alarm Indication  
Receive Alarm Condition  
7
6
5
4
3
2
1
0
DRAWING LEGEND:  
0
INTERRUPT  
Receive Loss of Signal  
Receive Loss of Frame  
STATUS  
REGISTERS  
REGISTER NAME  
Receive Signal All Ones  
Receive Signal All Zeros  
Receive CRC-4 Multiframe  
Receive Align Frame  
3
2
1
0
INTERRUPT MASK  
REGISTERS  
1
2
Loss of Receive Clock Clear/Loss of Receive Clock Clear  
Spare Code Detected Condition Clear  
Loop-Down Code Clear/V52 Link Clear  
Loop-Up Code Clear/Receive Distant MF Alarm Clear  
Loss of Receive Clock/Loss of Receive Clock  
Spare Code Detect  
7
6
5
4
3
2
1
0
Loop-Down Detect/V52 Link Detect  
Loop-Up Detect/Receive Distant MF Alarm Detect  
Receive Elastic Store Full  
Receive Elastic Store Empty  
Receive Elastic Store Slip  
Receive Signaling Change of State (Enable in RSCSE1:4)  
One-Second Timer  
7
6
5
3
2
1
0
Timer  
Receive Multiframe  
3
Receive FIFO Overrun  
Receive HDLC Opening Byte  
Receive Packet End  
Receive Packet Start  
Receive Packet High Watermark  
Receive FIFO Not Empty  
5
4
3
2
1
0
4
5
Receive RAI-CI  
Receive AIS-CI  
Receive SLC-96 Alignment  
Receive FDL Register Full  
Receive BOC Clear  
Receive BOC  
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Transmit Elastic Store Full  
Transmit Elastic Store Empty  
Transmit Elastic Store Slip  
Transmit SLC-96 Multiframe  
Transmit Pulse Density Violation/Transmit Align Frame  
Transmit Multiframe  
Loss of Transmit Clock Clear  
Loss of Transmit Clock  
7
6
5
4
3
2
1
0
2
Transmit FDL Register Empty  
Transmit FIFO Underrun  
Transmit Message End  
Transmit FIFO Below Low Watermark  
Transmit FIFO Not Full Set  
4
3
2
1
0
1
0
Loss of Frame  
1
0
Loss of Frame Synchronization  
Jitter Attenuator Limit Trip Clear  
Open-Circuit Detect Clear  
Short-Circuit Detect Clear  
Loss of Signal Detect Clear  
Jitter Attenuator Limit Trip  
Open-Circuit Detect  
7
6
5
4
3
2
1
0
Short-Circuit Detect  
Loss of Signal Detect  
BERT Bit-Error Detected  
6
5
4
3
2
1
0
BERT Bit Counter Overflow  
BERT Error Counter Overflow  
BERT Receive All Ones  
BERT Receive All Zeros  
BERT Receive Loss of Synchronization  
BERT in Synchronization  
31 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
8.8  
System Backplane Interface  
The DS26528 provides a versatile backplane interface that can be configured to the following:  
Transmit and receive two-frame elastic stores  
Mapping of T1 channels into a 2.048MHz backplane  
IBO mode for multiple framers to share the backplane signals  
Transmit and receive channel-blocking capability  
Fractional T1/E1/J1 support  
Hardware-based (through the backplane interface) or processor-based signaling  
Flexible backplane clock providing frequencies of 2.048MHz, 4.096MHz, 8.192MHz, 16.384MHz  
Backplane clock and frame pulse (TSSYNCIOn) generator  
8.8.1 Elastic Stores  
The DS26528 contains dual two-frame elastic stores: one for the receive direction and one for the transmit  
direction. Both elastic stores are fully independent. The transmit- and receive-side elastic stores can be  
enabled/disabled independently of each other. Also, the transmit or receive elastic store can interface to either a  
1.544MHz or 2.048/4.096/8.192/16.384MHz backplane without regard to the backplane rate for the other elastic  
store. Since the DS26528 has a common TSYSCLK and RSYSCLK for all eight ports, the backplane signals in  
each direction must be synchronous for all ports on which the elastic stores are enabled. However, the transmit  
and receive signals are not required to be synchronous to each other. The TIOCR and RIOCR settings should be  
identical for all ports on which the elastic stores are enabled.  
The elastic stores have two main purposes. First, they can be used for rate conversion. When the DS26528 is in  
the T1 mode, the elastic stores can rate convert the T1 data stream to a 2.048MHz backplane. In E1 mode the  
elastic store can rate convert the E1 data stream to a 1.544MHz backplane. Second, the elastic stores can be used  
to absorb the differences in frequency and phase between the T1 or E1 data stream and an asynchronous (i.e., not  
locked) backplane clock, which can be 1.544MHz or 2.048MHz. In this mode, the elastic stores manage the rate  
difference and perform controlled slips, deleting or repeating frames of data to manage the difference between the  
network and the backplane.  
If the elastic store is enabled while in E1 mode, then either CAS or CRC-4 multiframe boundaries are indicated via  
the RMSYNC output as controlled by the RSMS2 control bit (RIOCR.1). If the user selects to apply a 1.544MHz  
clock to the RSYSCLK pin, then the Receive Blank Channel Select registers (RBCS1:RBCS4) registers determine  
which channels of the received E1 data stream will be deleted. In this mode an F-bit location is inserted into the  
RSER data and set to 1. Also, in 1.544MHz applications, the RCHBLK output will not be active in Channels 25 to  
32 (or in other words, RCBR4 is not active). If the two-frame elastic buffer either fills or empties, a controlled slip  
occurs. If the buffer empties, a full frame of data is repeated at RSER and the RLS4.5 and RLS4.6 bits are set to 1.  
If the buffer fills, a full frame of data is deleted and the RLS4.5 and RLS4.7 bits are set to 1.  
The elastic stores can also be used to multiplex T1 or E1 data streams into higher backplane rates. This is the  
Interleave Bus Option (IBO), which is discussed in Section 8.8.2. Table 8-2 shows the registers related to the  
elastic stores.  
Table 8-2. Registers Related to the Elastic Store  
FRAMER  
ADDRESSES  
REGISTER  
FUNCTION  
Receive I/O Configuration Register (RIOCR)  
084h  
Sync and clock selection for the receiver.  
Receive elastic store control.  
Receive Elastic Store Control Register  
(RESCR)  
085h  
Receive Latched Status Register 4 (RLS4)  
Receive Interrupt Mask Register 4 (RIM4)  
093h  
0A3h  
Receive elastic store empty full status.  
Receive interrupt mask for elastic store.  
Transmit Elastic Store Control Register  
(TESCR)  
Transmit elastic control such as minimum  
mode.  
185h  
Transmit Latched Status Register 1 (TLS1)  
Transmit Interrupt Mask Register 1 (TIM1)  
190h  
1A0h  
Transmit elastic store latched status.  
Transmit elastic store interrupt mask.  
Note: The addresses shown are for Framer 1. Addresses for Framers 2 to 8 can be calculated using the following: Framer n = (Framer 1  
address + (n - 1) x 200h), where n = 2 to 8 for Framers 2 to 8.  
32 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
8.8.1.1 Elastic Stores Initialization  
There are two elastic store initializations that can be used to improve performance in certain applications: elastic  
store reset and elastic store align. Both of these involve the manipulation of the elastic store’s read and write  
pointers and are useful primarily in synchronous applications (RSYSCLK/TSYSCLK are locked to RCLK/TCLK,  
respectively). The elastic store reset is used to minimize the delay through the elastic store. The elastic store align  
bit is used to “center” the read/write pointers to the extent possible.  
Table 8-3. Elastic Store Delay After Initialization  
INITIALIZATION  
REGISTER BIT  
DELAY  
Receive Elastic Store Reset  
Transmit Elastic Store Reset  
Receive Elastic Store Align  
Transmit Elastic Store Align  
RESCR.2  
TESCR.2  
RESCR.3  
TESCR.3  
N bytes < Delay < 1 Frame + N bytes  
N bytes < Delay < 1 Frame + N bytes  
1/2 Frame < Delay < 1 1/2 Frames  
1/2 Frame < Delay < 1 1/2 Frames  
N = 9 for RSZS = 0; N = 2 for RSZS = 1.  
8.8.1.2 Minimum Delay Mode  
Elastic store minimum-delay mode can be used when the elastic store’s system clock is locked to its network clock  
(i.e., RCLK locked to RSYSCLK for the receive side and TCLK locked to TSYSCLK for the transmit side).  
RESCR.1 enables the receive elastic store minimum-delay mode. When enabled, the elastic stores are forced to a  
maximum depth of 32 bits instead of the normal two-frame depth. This feature is useful primarily in applications that  
interface to a 2.048MHz bus. Certain restrictions apply when minimum-delay mode is used. In addition to the  
restriction mentioned above, RSYNC must be configured as an output when the receive elastic store is in  
minimum-delay mode and TSYNC must be configured as an output when transmit minimum-delay mode is  
enabled. In this mode the SYNC outputs are always in frame mode (multiframe outputs are not allowed). In a  
typical application, RSYSCLK and TSYSCLK are locked to RCLK and RSYNC (frame-output mode) is connected to  
TSSYNCIO (frame-input mode). The slip zone select bit (RSZS at RESCR.4) must be set to 1. All the slip  
contention logic in the framer is disabled (since slips cannot occur). On power-up, after the RSYSCLK and  
TSYSCLK signals have locked to their respective network clock signals, the elastic store reset bit (RESCR.2)  
should be toggled from a 0 to 1 to ensure proper operation  
8.8.1.3 Additional Receive Elastic Store Information  
If the receive-side elastic store is enabled, the user must provide either a 1.544MHz or 2.048MHz clock at the  
RSYSCLK pin. See Section 8.8.2 for higher rate system-clock applications. The user has the option of either  
providing a frame/multiframe sync at the RSYNC pin or having the RSYNC pin provide a pulse on frame/multiframe  
boundaries. If signaling reinsertion is enabled, the robbed-bit signaling data is realigned to the multiframe sync  
input on RSYNC. Otherwise, a multiframe sync input on RSYNC is treated as a simple frame boundary by the  
elastic store. The framer always indicates frame boundaries on the network side of the elastic store via the  
RFSYNC output, whether the elastic store is enabled or not. Multiframe boundaries arel always indicated via the  
RMSYNC output. If the elastic store is enabled, RMSYNC outputs the multiframe boundary on the backplane side  
of the elastic store. When the device is receiving T1 and the backplane is enabled for 2.048MHz operation, the  
RMSYNC signal outputs the T1 multiframe boundaries as delayed through the elastic store. When the device is  
receiving E1 and the backplane is enabled for 1.544MHz operation, the RMSYNC signal outputs the E1 multiframe  
boundaries as delayed through the elastic store.  
If the user selects to apply a 2.048MHz clock to the RSYSCLK pin, the user can use the Receive Blank Channel  
Select registers (RBCS1:RBCS4) to determine which channels will have the data output at RSER forced to all  
ones.  
33 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
8.8.1.4 Receiving Mapped T1 Channels from a 2.048MHz Backplane  
Setting the TSCLKM bit (TIOCR.4) enables the transmit elastic store to operate with a 2.048MHz backplane (32  
time slots/frame). In this mode the user can choose which of the backplane channels on TSER will be mapped into  
the T1 data stream by programming the Transmit Blank Channel Select registers (TBCS1:TBCS4). A logic 1 in the  
associated bit location forces the transmit elastic store to ignore backplane data for that channel. Typically the user  
will want to program eight channels to be ignored. The default (power-up) configuration ignores channels 25 to 32,  
so that the first 24 backplane channels are mapped into the T1 transmit data stream.  
For example, if the user desired to transmit data from the 2.048MHz backplane channels 2 to 16 and 18 to 26, the  
TBCS1:TBCS4 registers should be programmed as follows:  
TBCS1 = 01h :: ignore backplane channel 1 ::  
TBCS2 = 00h  
TBCS3 = 01h :: ignore backplane channel 17 ::  
TBCS4 = FCh :: ignore backplane channels 27 to 32 ::  
8.8.1.5 Mapping T1 Channels onto a 2.048MHz Backplane  
Setting the RSCLKM bit (RIOCR.4) enables the receive elastic store to operate with a 2.048MHz backplane (32  
time slots/frame). In this mode the user can choose which of the backplane channels on RSER receive the T1 data  
by programming the Receive Blank Channel Select registers (RBCS1:RBCS4). A logic 1 in the associated bit  
location forces RSER high for that backplane channel. Typically the user will want to program eight channels to be  
blanked. The default (power-up) configuration blanks channels 25 to 32, so that the 24 T1 channels are mapped  
into the first 24 channels of the 2.048MHz backplane. If the user chooses to blank channel 1 (TS0) by setting  
RBCS1.0 = 1, the F-bit will be passed into the MSB of TS0 on RSER.  
For example, if:  
RBCS1 = 01h  
RBCS2 = 00h  
RBCS3 = 01h  
RBCS4 = FCh  
Then on RSER:  
Channel 1 (MSB) = F-bit  
Channel 1 (bits 1 to 7) = all ones  
Channels 2 to 16 = T1 channels 1 to 15  
Channel 17 = all ones  
Channels 18 to 26 = T1 channels 16 to 24  
Channels 27 to 32 = all ones  
Note that when two or more sequential channels are chosen to be blanked, the receive slip zone select bit should  
be set to 0. If the blank channels are distributed (such as 1, 5, 9, 13, 17, 21, 25, 29), the RSZS bit can be set to 1,  
which can provide a lower occurrence of slips in certain applications.  
If the two-frame elastic buffer either fills or empties, a controlled slip occurs. If the buffer empties, a full frame of  
data is repeated at RSER and the RLS4.5 and RLS4.6 bits are set to 1. If the buffer fills, a full frame of data is  
deleted and the RLS4.5 and RLS4.7 bits are set to 1.  
8.8.1.6 Receiving Mapped E1 Transmit Channels from a 1.544MHz Backplane  
The user can use the TSCLKM bit in TIOCR.4 to enable the transmit elastic store to operate with a 1.544MHz  
backplane (24 channels / frame + F-bit). In this mode the user can choose which of the E1 time slots will have all-  
ones data inserted by programming the Transmit Blank Channel Select registers (TBCS1:TBCS4). A logic 1 in the  
associated bit location causes the elastic store to force all ones at the outgoing E1 data for that channel. Typically  
the user will want to program eight channels to be blanked. The default (power-up) configuration blanks channels  
25 to 32, so that the first 24 E1 channels are mapped from the 24 channels of the 1.544MHz backplane.  
34 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
8.8.1.7 Mapping E1 Channels onto a 1.544MHz Backplane  
The user can use the RSCLKM bit (RIOCR.4) to enable the receive elastic store to operate with a 1.544MHz  
backplane (24 channels / frame + F-bit). In this mode the user can choose which of the E1 time slots will be  
ignored (not transmitted onto RSER) by programming the Receive Blank Channel Select registers  
(RBCS1:RBCS4). A logic 1 in the associated bit location causes the elastic store to ignore the incoming E1 data for  
that channel. Typically the user will want to program eight channels to be ignored. The default (power-up)  
configuration will ignore channels 25 to 32, so that the first 24 E1 channels are mapped into the 24 channels of the  
1.544MHz backplane. In this mode the F-bit location at RSER is always set to 1.  
For example, if the user wants to ignore E1 time slots 0 (channel 1) and TS16 (channel 17), the RBCS1:RBCS4  
registers would be programmed as follows:  
RBCS1 = 01h  
RBCS2 = 00h  
RBCS3 = 01h  
RBCS4 = FCh  
8.8.2 IBO Multiplexer  
The Interleaved Bus Operation (IBO) multiplexer is used in conjunction with the IBO function located within each  
framer/formatter block (controlled by the RIBOC and TIBOC registers). When enabled, the IBO multiplexer  
simplifies user interface by connecting bus signals internally. The IBO multiplexer eliminates the need for ganged  
external wiring and tri-state output drivers on the RSER and RSIG pins. This option provides a more controlled,  
cleaner, and lower power mode of operation.  
Note that the channel block signals TCHBLK and RCHBLK are output at the rate of the of IBO selection. Hence, a  
4.096MHz IBO would have the channel blocks (if programmed active at the rate of 4.096MHz). The particular  
blocking channel would be active for a duration of the channel if programmed.  
The DS26528 also supports the traditional mode of IBO operation by allowing complete access to individual  
framers, and tri-stating the RSER and RSIG pins at the appropriate times for external bus wiring. This mode of  
operation is enabled per framer in the associated RIBOC and TIBOC registers, while leaving the IBO multiplexer is  
disabled (IBOMS0 = 0 and IBOMS1 = 0).  
Figure 8-3, Figure 8-4, and Figure 8-5 show the equivalent internal circuit for each IBO mode. Table 8-4 describes  
the pin function changes for each mode of the IBO multiplexer.  
Table 8-4. Registers Related to the IBO Multiplexer  
FRAMER  
ADDRESSES  
REGISTER  
FUNCTION  
Global Transceiver Control Register 1  
(GTCR1)  
This is a global register for all eight framers. It can be  
used to specify ganged operation for the IBO.  
0F0h  
This register can be used for control of how many  
framers and the corresponding speed for the IBO  
links for the receiver.  
Receive Interleave Bus Operation  
Control Register (RIBOC)  
088h  
188h  
This register can be used for control of how many  
framers and the corresponding speed for the IBO  
links for the transmitter.  
Transmit Interleave Bus Operation  
Control Register (TIBOC)  
Note: The addresses shown are for Framer 1. Addresses for Framers 2 to 8 can be calculated by using the following: Framer n = (Framer 1  
address + (n – 1) x 200h), where n = 2 to 8 for Framers 2 to 8.  
35 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Figure 8-3. IBO Multiplexer Equivalent Circuit—4.096MHz  
RSER1  
RSIG1  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
RSYSCLK  
Port # 1  
Backplane  
Interface  
RSYNC1  
RSYSCLK  
TSER  
TSIG  
TSER1  
TSIG1  
TSSYNCIO  
TSYSCLK  
TSSYNC  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
RSYSCLK  
Port # 2  
Backplane  
Interface  
TSER  
TSIG  
RSER3  
RSIG3  
TSSYNC  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
RSYSCLK  
Port # 3  
Backplane  
Interface  
RSYNC3  
RSYSCLK  
TSER  
TSIG  
TSSYNC  
TSYSCLK  
TSER3  
TSIG3  
TSSYNCIO  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
RSYSCLK  
Port # 4  
Backplane  
Interface  
TSER  
TSIG  
RSER5  
RSIG5  
TSSYNC  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
RSYSCLK  
Port # 5  
Backplane  
Interface  
RSYNC5  
RSYSCLK  
TSER  
TSIG  
TSSYNC  
TSYSCLK  
TSER5  
TSIG5  
TSSYNCIO  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
RSYSCLK  
Port # 6  
Backplane  
Interface  
TSER  
TSIG  
RSER7  
RSIG7  
TSSYNC  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
RSYSCLK  
Port # 7  
Backplane  
Interface  
RSYNC7  
RSYSCLK  
TSER  
TSIG  
TSSYNC  
TSYSCLK  
TSER7  
TSIG7  
TSSYNCIO  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
RSYSCLK  
Port # 8  
Backplane  
Interface  
TSER  
TSIG  
TSSYNC  
TSYSCLK  
36 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Figure 8-4. IBO Multiplexer Equivalent Circuit—8.192MHz  
RSER1  
RSIG1  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
RSYSCLK  
Port # 1  
Backplane  
Interface  
RSYNC1  
RSYSCLK  
TSER  
TSIG  
TSER1  
TSIG1  
TSSYNCIO  
TSYSCLK  
TSSYNC  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
RSYSCLK  
Port # 2  
Backplane  
Interface  
TSER  
TSIG  
TSSYNC  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
RSYSCLK  
Port # 3  
Backplane  
Interface  
TSER  
TSIG  
TSSYNC  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
RSYSCLK  
Port # 4  
Backplane  
Interface  
TSSYNC  
TSYSCLK  
RSER5  
RSIG5  
TSER  
TSIG  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
RSYSCLK  
Port # 5  
Backplane  
Interface  
RSYNC5  
RSYSCLK  
TSER  
TSIG  
TSER5  
TSIG5  
TSSYNCIO  
TSYSCLK  
TSSYNC  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
RSYSCLK  
Port # 6  
Backplane  
Interface  
TSER  
TSIG  
TSSYNC  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
RSYSCLK  
Port # 7  
Backplane  
Interface  
TSER  
TSIG  
TSSYNC  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
RSYSCLK  
Port # 8  
Backplane  
Interface  
TSER  
TSIG  
TSSYNC  
TSYSCLK  
37 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Figure 8-5. IBO Multiplexer Equivalent Circuit—16.384MHz  
RSER(1)  
RSER(2)  
RSER(3)  
RSER(4)  
RSER(5)  
RSER(6)  
RSER1  
RSIG1  
RSIG(1)  
RSER(7)  
RSIG(2)  
RSER(8)  
RSIG(3)  
RIBO_OEB(1-8)  
RSIG(4)  
RSIG(5)  
RSIG(6)  
RSIG(7)  
RSIG(8)  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
To Mux  
RIBO_OEB(1-8)  
Port # 1  
Backplane  
Interface  
RSYNC1  
RSYSCLK  
RSYSCLK  
TSER  
TSIG  
TSSYNC  
TSER1  
TSIG1  
TSSYNCIO  
TSYSCLK  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
To Mux  
Port # 2  
Backplane  
Interface  
RSYSCLK  
TSER  
TSIG  
TSSYNC  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
To Mux  
To Mux  
To Mux  
To Mux  
To Mux  
To Mux  
Port # 3  
Backplane  
Interface  
RSYSCLK  
TSER  
TSIG  
TSSYNC  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
Port # 4  
Backplane  
Interface  
RSYSCLK  
TSER  
TSIG  
TSSYNC  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
Port # 5  
Backplane  
Interface  
RSYSCLK  
TSER  
TSIG  
TSSYNC  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
Port # 6  
Backplane  
Interface  
RSYSCLK  
TSER  
TSIG  
TSSYNC  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
Port # 7  
Backplane  
Interface  
RSYSCLK  
TSER  
TSIG  
TSSYNC  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
Port # 8  
Backplane  
Interface  
RSYNC  
RSYSCLK  
TSER  
TSIG  
TSSYNC  
TSYSCLK  
38 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Table 8-5. RSER Output Pin Definitions  
PIN  
NORMAL USE  
4.096MHz IBO  
8.192MHz IBO  
16.384MHz IBO  
Combined Receive  
Serial Data for  
Ports 1 and 2  
Combined Receive  
Serial Data for  
Ports 1–4  
Receive Serial Data  
for Port 1  
Receive Serial Data  
for Ports 1–8  
RSER1  
Receive Serial Data  
for Port 2  
RSER2  
RSER3  
RSER4  
RSER5  
RSER6  
RSER7  
RSER8  
Reserved  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Combined Receive  
Serial Data for Ports 3  
and 4  
Receive Serial Data  
for Port 3  
Receive Serial Data  
for Port 4  
Unused  
Combined Receive  
Serial Data for Ports 5  
and 6  
Combined Receive  
Serial Data for Ports  
5–8  
Receive Serial Data  
for Port 5  
Receive Serial Data  
for Port 6  
Unused  
Unused  
Unused  
Unused  
Combined Receive  
Serial Data for Ports 7  
and 8  
Receive Serial Data  
for Port 7  
Receive Serial Data  
for Port 8  
Unused  
Table 8-6. RSIG Output Pin Definitions  
PIN  
NORMAL USE  
4.096MHz IBO  
8.192MHz IBO  
16.384MHz IBO  
Combined Receive  
Signaling Data for  
Ports 1 and 2  
Combined Receive  
Signaling Data for  
Ports 1–4  
Receive Signaling  
Data for Port 1  
Receive Signaling  
Data for Ports 1–8  
RSIG1  
Receive Signaling  
Data for Port 2  
RSIG2  
RSIG3  
RSIG4  
RSIG5  
RSIG6  
RSIG7  
RSIG8  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Combined Receive  
Signaling Data for  
Ports 3 and 4  
Receive Signaling  
Data for Port 3  
Receive Signaling  
Data for Port 4  
Unused  
Combined Receive  
Signaling Data for  
Ports 5 and 6  
Combined Receive  
Signaling Data for  
Ports 5–8  
Receive Signaling  
Data for Port 5  
Receive Signaling  
Data for Port 6  
Unused  
Unused  
Unused  
Unused  
Combined Receive  
Signaling Data for  
Ports 7 and 8  
Receive Signaling  
Data for Port 7  
Receive Signaling  
Data for Port 8  
Unused  
39 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Table 8-7. TSER Input Pin Definitions  
PIN  
NORMAL USE  
4.096MHz IBO  
8.192MHz IBO  
16.384MHz IBO  
Combined Transmit  
Serial Data for  
Ports 1 and 2  
Combined Transmit  
Serial Data for Ports  
1–4  
Transmit Serial Data  
for Port 1  
Transmit Serial Data  
for Ports 1–8  
TSER1  
Transmit Serial Data  
for Port 2  
TSER2  
TSER3  
TSER4  
TSER5  
TSER6  
TSER7  
TSER8  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Combined Transmit  
Serial Data for  
Ports 3 and 4  
Transmit Serial Data  
for Port 3  
Transmit Serial Data  
for Port 4  
Unused  
Combined Transmit  
Serial Data for  
Ports 5 and 6  
Combined Transmit  
Serial Data for  
Ports 5–8  
Transmit Serial Data  
for Port 5  
Transmit Serial Data  
for Port 6  
Unused  
Unused  
Unused  
Unused  
Combined Transmit  
Serial Data for  
Ports 7 and 8  
Transmit Serial Data  
for Port 7  
Transmit Serial Data  
for Port 8  
Unused  
Table 8-8. TSIG Input Pin Definitions  
PIN  
NORMAL USE  
4.096MHz IBO  
8.192MHz IBO  
16.384MHz IBO  
Combined Transmit  
Signaling Data for  
Ports 1 and 2  
Combined Transmit  
Signaling Data for  
Ports 1–4  
Transmit Signaling  
Data for Port 1  
Transmit Signaling  
Data for Ports 1–8  
TSIG1  
Transmit Signaling  
Data for Port 2  
TSIG2  
TSIG3  
TSIG4  
TSIG5  
TSIG6  
TSIG7  
TSIG8  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Combined Transmit  
Signaling Data for  
Ports 3 and 4  
Transmit Signaling  
Data for Port 3  
Transmit Signaling  
Data for Port 4  
Unused  
Combined Transmit  
Signaling Data for  
Ports 5 and 6  
Combined Transmit  
Signaling Data for  
Ports 5–8  
Transmit Signaling  
Data for Port 5  
Transmit Signaling  
Data for Port 6  
Unused  
Unused  
Unused  
Unused  
Combined Transmit  
Signaling Data for  
Ports 7 and 8  
Transmit Signaling  
Data for Port 7  
Transmit Signaling  
Data for Port 8  
Unused  
40 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Table 8-9. RSYNC Input Pin Definitions  
PIN  
NORMAL USE  
4.096MHz IBO  
8.192MHz IBO  
16.384MHz IBO  
Receive Frame Pulse  
for Port 1  
Receive Frame Pulse  
for Ports 1 and 2  
Receive Frame Pulse  
for Ports 1–4  
Receive Frame Pulse  
for Ports 1–8  
RSYNC1  
Receive Frame Pulse  
for Port 2  
RSYNC2  
RSYNC3  
RSYNC4  
RSYNC5  
RSYNC6  
RSYNC7  
RSYNC8  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Receive Frame Pulse  
for Port 3  
Receive Frame Pulse  
for Ports 3 and 4  
Receive Frame Pulse  
for Port 4  
Unused  
Receive Frame Pulse  
for Port 5  
Receive Frame Pulse  
for Ports 5 and 6  
Receive Frame Pulse  
for Ports 5–8  
Receive Frame Pulse  
for Port 6  
Unused  
Unused  
Unused  
Unused  
Receive Frame Pulse  
for Port 7  
Receive Frame Pulse  
for Ports 7 and 8  
Receive Frame Pulse  
for Port 8  
Unused  
41 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
8.8.3 H.100 (CT Bus) Compatibility  
The registers used for controlling the H.100 backplane are RIOCR and TIOCR.  
The H.100 (or CT bus) is a synchronous, bit-serial, TDM transport bus operating at 8.192MHz. The H.100 standard  
also allows compatibility modes to operate at 2.048MHz, 4.096MHz, or 8.192MHz. The control bit H100EN  
(RIOCR.5), when combined with RSYNCINV and TSSYNCINV, allows the DS26528 to accept a CT bus-  
compatible frame-sync signal (CT_FRAME) at the RSYNC and TSSYNCIO (input mode) inputs.  
The following rules apply to the H100EN control bit.  
1) The H100EN bit controls the sampling point for the RSYNC (input mode) and TSSYNCIO (input mode)  
only. The RSYNC output and other sync signals are not affected.  
2) The H100EN bit would always be used in conjunction with the receive and transmit elastic store buffers.  
3) The H100EN bit would typically be used with 8.192MHz IBO mode, but could also be used with 4.096MHz  
IBO mode or 2.048MHz backplane operation.  
4) The H100EN bit in RIOCR controls both RSYNC and TSSYNCIO (i.e., there is no separate control bit for  
the TSSYNCIO).  
5) The H100EN bit does not invert the expected signal; RSYNCINV (RIOCR) and TSSYNCINV (TIOCR) must  
be set high to invert the inbound sync signals.  
Figure 8-6. RSYNC Input in H.100 (CT Bus) Mode  
RSYNC1  
RSYNC2  
RSYSCLK  
RSER  
BIT 8  
BIT 1  
BIT 2  
3
tBC  
NOTE 1: RSYNC INPUT MODE IN NORMAL OPERATION.  
NOTE 2: RSYNC INPUT MODE, H.100EN = 1 AND RSYNCINV = 1.  
NOTE 3: tBC (BIT CELL TIME) = 122ns (typ). tBC = 244ns or 488ns ALSO ACCEPTABLE.  
42 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Figure 8-7. TSSYNCIO (Input Mode) Input in H.100 (CT Bus) Mode  
TSSYNCIO1  
TSSYNCIO2  
TSYSCLK  
TSER  
BIT 8  
BIT 1  
BIT 2  
3
tBC  
NOTE 1: TSSYNCIO IN NORMAL OPERATION.  
NOTE 2: TSSYNCIO WITH H.100EN = 1 and TSSYNCINV = 1.  
NOTE 3: tBC (BIT CELL TIME) = 122ns (typ). tBC = 244ns OR 488ns ALSO ACCEPTABLE.  
8.8.4 Receive and Transmit Channel Blocking Registers  
The Receive Channel Blocking registers (RCBR1:RCBR4) and the Transmit Channel Blocking registers  
(TCBR1:TCBR4) control the RCHBLK and TCHBLK pins, respectively. The RCHBLK and TCHBLK pins are user-  
programmable outputs that can be forced either high or low during individual channels. These outputs can be used  
to block clocks to a USART or LAPD controller in ISDN-PRI applications. When the appropriate bits are set to 1,  
the RCHBLK and TCHBLK pins are held high during the entire corresponding channel time. When used with a T1  
(1.544MHz) backplane, only TCBR1:TCBR2:TCBR3 are used. TCBR4 is included to support an E1 (2.048MHz)  
backplane when the elastic store is configured for T1-to-E1 rate conversion. See Section 8.8.1.  
8.8.5 Transmit Fractional Support (Gapped Clock Mode)  
The DS26528 can be programmed to output gapped clocks for selected channels in the receive and transmit paths  
to simplify connections into a USART or LAPD controller in fractional T1/E1 or ISDN-PRI applications. When the  
gapped clock feature is enabled, a gated clock is output on the TCHCLK signal. The channel selection is controlled  
via the Transmit Gapped-Clock Channel Select registers (TGCCS1:TGCCS4). The transmit path is enabled for  
gapped clock mode with the TGCLKEN bit (TESCR.6). Both 56kbps and 64kbps channel formats are supported as  
determined by TESCR.7. When 56kbps mode is selected, the clock corresponding to the data/control bit in the  
channel is omitted (only the seven most significant bits of the channel have clocks).  
8.8.6 Receive Fractional Support (Gapped Clock Mode)  
The DS26528 can be programmed to output gapped clocks for selected channels in the receive and transmit paths  
to simplify connections into a USART or LAPD controller in fractional T1/E1 or ISDN-PRI applications. When the  
gapped clock feature is enabled, a gated clock is output on the RCHCLK signal. The channel selection is controlled  
via the Receive Gapped-Clock Channel Select registers (RGCCS1:RGCCS4). The receive path is enabled for  
gapped clock mode with the RGCLKEN bit (RESCR.6). Both 56kbps and 64kbps channel formats are supported as  
determined by RESCR.7. When 56kbps mode is selected, the clock corresponding to the data/control bit in the  
channel is omitted (only the seven most significant bits of the channel have clocks).  
43 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
8.9  
Framers  
The DS26528 framer cores are software selectable for T1, J1, or E1. The receive framer locates the frame and  
multiframe boundaries and monitors the data stream for alarms. It is also used for extracting and inserting signaling  
data, T1 FDL data, and E1 Si- and Sa-bit information. The receive-side framer decodes AMI, B8ZS line coding,  
synchronizes to the data stream, reports alarm information, counts framing/coding and CRC errors, and provides  
clock/data and frame-sync signals to the backplane interface section. Diagnostic capabilities include loopbacks,  
and 16-bit loop-up and loop-down code detection. The device contains a set of internal registers for host access  
and control of the device.  
On the transmit side, clock, data, and frame-sync signals are provided to the framer by the backplane interface  
section. The framer inserts the appropriate synchronization framing patterns, alarm information, calculates and  
inserts the CRC codes, and provides the B8ZS (zero code suppression) and AMI line coding.  
Both the transmit and receive path have an HDLC controller. The HDLC controller transmits and receives data via  
the framer block. The HDLC controller can be assigned to any time slot, portion of a time slot, or to FDL (T1). The  
HDLC controller has separate 64-byte Tx and Rx FIFO to reduce the amount of processor overhead required to  
manage the flow of data.  
The backplane interface provides a versatile method of sending and receiving data from the host system. Elastic  
stores provide a method for interfacing to asynchronous systems, converting from a T1/E1 network to a 2.048MHz,  
4.096MHz, 8.192MHz, or N x 64kHz system backplane. The elastic stores also manage slip conditions  
(asynchronous interface). An IBO is provided to allow multiple framers in the DS26528 to share a high-speed  
backplane.  
8.9.1 T1 Framing  
DS1 trunks contain 24 bytes of serial voice/data channels bundled with an overhead bit, the F-bit. The F-bit  
contains a fixed pattern for the receiver to delineate the frame boundaries. The F-bit is inserted once per frame at  
the beginning of the transmit frame boundary. The frames are further grouped into bundles of frames 12 for D4 and  
24 for ESF.  
The D4 and ESF framing modes are outlined in Table 8-10 and Table 8-11. In the D4 mode, framing bit for frame  
12 is ignored if Japanese Yellow is selected.  
Table 8-10. D4 Framing Mode  
FRAME  
NUMBER  
Ft  
Fs  
SIGNALING  
1
2
3
4
5
6
7
8
9
1
0
0
1
1
1
0
0
1
0
1
0
A
B
10  
11  
12  
44 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Table 8-11. ESF Framing Mode  
FRAME  
FRAMING  
NUMBER  
FDL  
CRC  
SIGNALING  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
CRC-1  
0
0
CRC-2  
CRC-3  
CRC-4  
CRC-5  
CRC-6  
0
1
1
Table 8-12. SLC-96 Framing  
FRAME NUMBER  
Ft  
Fs  
SIGNALING  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
1
1
0
0
0
1
1
1
A
B
C
45 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
FRAME NUMBER  
Ft  
Fs  
SIGNALING  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
C1 (Concentrator Bit)  
D
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
C2 (Concentrator Bit)  
C3 (Concentrator Bit)  
C4 (Concentrator Bit)  
C5 (Concentrator Bit)  
C6 (Concentrator Bit)  
C7 (Concentrator Bit)  
C8 (Concentrator Bit)  
C9 (Concentrator Bit)  
C10 (Concentrator Bit)  
C11 (Concentrator Bit)  
0 (Spoiler Bit)  
A
B
C
D
1 (Spoiler Bit)  
0 (Spoiler Bit)  
M1 (Maintenance Bit)  
M2 (Maintenance Bit)  
M3 (Maintenance Bit)  
A1 (Alarm Bit)  
A
A2 (Alarm Bit)  
B
C
S1 (Switch Bit)  
S2 (Switch Bit)  
S3 (Switch Bit)  
S4 (Switch Bit)  
1 (Spoiler Bit)  
0
D
46 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
8.9.2 E1 Framing  
The E1 framing consists of FAS, NFAS detection as shown in Table 8-13.  
Table 8-13. E1 FAS/NFAS Framing  
CRC-4  
FRAME  
TYPE  
1
2
3
4
5
6
7
8
#
0
1
2
3
4
5
6
7
FAS  
NFAS  
FAS  
NFAS  
FAS  
NFAS  
FAS  
NFAS  
FAS  
NFAS  
FAS  
NFAS  
FAS  
NFAS  
FAS  
NFAS  
C1  
0
C2  
0
C3  
1
C4  
0
C1  
1
C2  
1
C3  
E1  
C4  
E2  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
A
0
A
0
A
0
A
0
A
0
A
0
A
0
A
1
Sa4  
1
Sa4  
1
Sa4  
1
Sa4  
1
Sa4  
1
Sa4  
1
Sa4  
1
Sa4  
1
Sa5  
1
Sa5  
1
Sa5  
1
Sa5  
1
Sa5  
1
Sa5  
1
Sa5  
1
Sa5  
0
Sa6  
0
Sa6  
0
Sa6  
0
Sa6  
0
Sa6  
0
Sa6  
0
Sa6  
0
Sa6  
1
Sa7  
1
Sa7  
1
Sa7  
1
Sa7  
1
Sa7  
1
Sa7  
1
Sa7  
1
Sa7  
1
Sa8  
1
Sa8  
1
Sa8  
1
Sa8  
1
Sa8  
1
Sa8  
1
Sa8  
1
Sa8  
8
9
10  
11  
12  
13  
14  
15  
C = C bits are the CRC-4 remainder, A = alarm bits, Sa = bits for data link.  
47 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Table 8-14 shows registers that are related to setting up the framing.  
Table 8-14. Registers Related to Setting Up the Framer  
FRAMER  
ADDRESSES  
REGISTER  
FUNCTION  
Transmit Master Mode Register (TMMR)  
Transmit Control Register 1 (TCR1)  
180h  
T1/E1 mode.  
181h  
Source of the F-bit.  
Transmit Control Register 2 (TCR2)  
182h  
183h  
080h  
081h  
014h  
082h  
090h  
0A0h  
091h  
0A1h  
093h  
0A3h  
054h  
055h  
064h  
065h  
164h  
165h  
166h  
064h  
065h  
066h  
F-bit corruption, selection of SLC-96.  
ESF or D4 mode selection.  
T1/E1 selection for receiver.  
Resynchronization criteria for the framer.  
T1 remote alarm and OOF criteria.  
E1 receive loss of signal criteria selection.  
Receive latched status 1.  
Receive interrupt mask 1.  
Receive latched status 2.  
Receive interrupt mask 2.  
Receive latched status 4.  
Receive interrupt mask 4.  
Framer out of sync register 1.  
Framer out of sync register 2.  
RAF byte.  
Transmit Control Register 3 (TCR3)  
Receive Master Mode Register (RMMR)  
Receive Control Register 1 (RCR1)  
Receive Control Register 2 (T1RCR2)  
Receive Control Register 2 (E1RCR2)  
Receive Latched Status Register 1 (RLS1)  
Receive Interrupt Mask Register 1 (RIM1)  
Receive Latched Status Register 2 (RLS2)  
Receive Interrupt Mask Register 2 (RIM2)  
Receive Latched Status Register 4 (RLS4)  
Receive Interrupt Mask Register 4 (RIM4)  
Frames Out of Sync Count Register 1  
(FOSCR1)  
Frames Out of Sync Count Register 2  
(FOSCR2)  
E1 Receive Align Frame Register (E1RAF)  
E1 Receive Non-Align Frame Register  
(E1RNAF)  
Transmit SLC-96 Data Link Register 1  
(T1TSLC1)  
Transmit SLC-96 Data Link Register 2  
(T1TSLC2)  
Transmit SLC-96 Data Link Register 3  
(T1TSLC3)  
Receive SLC-96 Data Link Register 1  
(T1RSLC1)  
Receive SLC-96 Data Link Register 2  
(T1RSLC2)  
Receive SLC-96 Data Link Register 3  
(T1RSLC3)  
RNAF byte.  
Transmit SLC-96 bits.  
Transmit SLC-96 bits.  
Transmit SLC-96 bits.  
Receive SLC-96 bits.  
Receive SLC-96 bits.  
Receive SLC-96 bits.  
Note: The addresses shown are for Framer 1. Addresses for Framers 2 to 8 can be calculated using the following: Framer n = (Framer 1  
address + (n - 1) x 200h); where n = 2 to 8 for Framers 2 to 8.  
48 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
8.9.3 T1 Transmit Synchronizer  
The DS26528 transmitter can identify the D4 or ESF frame boundary, as well as the CRC multiframe boundaries  
within the incoming NRZ data stream at TSER. The TFM (TCR3.2) control bit determines whether the transmit  
synchronizer searches for the D4 or ESF multiframe. Additional control signals for the transmit synchronizer are  
located in the TSYNCC register. The latched status bit TLS3.0 (LOFD) is provided to indicate that a loss-of-frame  
synchronization has occurred. The real-time bit (LOF) is also provided to indicate when the synchronizer is  
searching for frame/multiframe alignment. The LOFD bit can be enabled to cause an interrupt condition on INTB.  
Note that when the transmit synchronizer is used, the TSYNC signal should be set as an output (TSIO = 1) and the  
recovered frame-sync pulse will be output on this signal. The recovered CRC-4 multiframe sync pulse is output if  
enabled with TIOCR.0 (TSM = 1).  
Other key points concerning the E1 transmit synchronizer:  
1) The Tx synchronizer is not operational when the transmit elastic store is enabled, including IBO modes.  
2) The Tx synchronizer does not perform CRC-6 alignment verification (ESF mode) and does not verify  
CRC-4 codewords.  
The Tx synchronizer cannot search for the CAS multiframe. Table 8-15 shows the registers related to the transmit  
synchronizer.  
Table 8-15. Registers Related to the Transmit Synchronizer  
FRAMER  
ADDRESSES  
REGISTER  
FUNCTION  
Transmit Synchronizer Control Register  
(TSYNCC)  
Resynchronization control for the transmit  
synchronizer.  
18Eh  
TFM bit selects between D4 and ESF for the  
transmit synchronizer.  
Transmit Control Register 3 (TCR3)  
183h  
Transmit Latched Status Register 3  
(TLS3)  
Provides latched status for the transmit  
synchronizer.  
192h  
1A2h  
184h  
Transmit Interrupt Mask Register 3  
(TIM3)  
Provides mask bits for the TLS3 status.  
TSYNC should be set as an output.  
Transmit I/O Configuration Register  
(TIOCR)  
Note: The addresses shown are for Framer 1. Addresses for Framers 2 to 8 can be calculated using the following: Framer n = (Framer 1  
address + (n - 1) x 200h); where n = 2 to 8 for Framers 2 to 8.  
49 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
8.9.4 Signaling  
The DS26528 supports both software- and hardware-based signaling. Interrupts can be generated on changes of  
signaling data. The DS26528 is also equipped with receive-signaling freeze on loss of synchronization (OOF),  
carrier loss, or change of frame alignment. The DS26528 also has hardware pins to indicate signaling freeze.  
Flexible signaling support  
o Software or hardware based  
o Interrupt generated on change of signaling data  
o Receive-signaling freeze on loss of frame, loss of signal, or change of frame alignment  
Hardware pins for carrier loss and signaling freeze indication  
Table 8-16. Registers Related to Signaling  
FRAMER  
ADDRESSES  
REGISTER  
FUNCTION  
Transmit-Signaling Registers 1 to 16  
(TS1 to TS16)  
140h to 14Bh (T1/J1)  
140h to 14Fh (E1 CAS)  
Transmit ABCD signaling.  
Software-Signaling Insertion Enable  
Registers 1 to 4 (SSIE1 to SSIE4)  
When enabled, signaling is inserted for  
the channel.  
118h, 119h, 11Ah, 11Bh  
Transmit Hardware-Signaling Channel  
Select Registers 1 to 4  
(THSCS1 to THSCS4)  
Bits determine which channels will have  
1C8h, 1C9h, 1CAh, 1CBh signaling inserted in hardware-signaling  
mode.  
Receive-Signaling Control Register  
(RSIGC)  
013h  
Freeze control for receive signaling.  
Receive-Signaling All-Ones Insertion  
Registers 1 to 3  
(T1RSAOI1 to T1RSAOI3)  
Registers for all-ones insertion (T1 mode  
only).  
038h, 039h, 03Ah  
Receive-Signaling Registers 1 to 16  
(RS1 to RS16)  
040h to 04Bh (T1/J1)  
040h to 04Fh (E1)  
Receive-signaling bytes.  
Receive-Signaling Status Registers 1  
to 4 (RSS1 to RSS4)  
098h to 09Ah (T1/J1)  
98h to 9Fh (E1)  
Receive-signaling change of status bits.  
Receive-Signaling Change of State  
Enable Registers 1 to 4 (RSCSE1 to  
RSCSE4)  
Receive-signaling change of state  
interrupt enable.  
0A8h, 0A9h, 0AAh, 0ABh  
Receive Latched Status Register 4  
(RLS4)  
093h  
0A3h  
Receive-signaling change of state bit.  
Receive Interrupt Mask Register 4  
(RIM4)  
Receive-signaling change of state  
interrupt mask bit.  
Receive-Signaling Reinsertion Enable  
Registers 1 to 4 (RSI1 to RSI4)  
0C8h, 0C9h, 0CAh, 0CBh Registers for signaling reinsertion.  
Note: The addresses shown are for Framer 1. Addresses for Framers 2 to 4 can be calculated using the following: Framer n = (Framer 1  
address + (n - 1) x 200h); where n = 2 to 4 for Framers 2 to 4.  
50 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
8.9.4.1 Transmit-Signaling Operation  
There are two methods to provide transmit-signaling data. These are processor based (i.e., software based) or  
hardware based. Processor based refers to access through the transmit-signaling registers, TS1:TS16, while  
hardware based refers to using the TSIG pins. Both methods can be used simultaneously.  
8.9.4.1.1 Processor-Based Signaling  
In processor-based mode, signaling data is loaded into the transmit-signaling registers (TS1:TS16) via the host  
interface. On multiframe boundaries, the contents of these registers are loaded into a shift register for placement in  
the appropriate bit position in the outgoing data stream. The user can use the transmit multiframe interrupt in  
Latched Status Register 1 (TLS1.2) to know when to update the signaling bits. The user need not update any  
transmit-signaling register for which there is no change of state for that register.  
Each transmit-signaling register contains the robbed-bit signaling (TCR1.4 in T1 mode) or TS16 CAS signaling  
(TCR1.6 in E1 mode) for one time slot that will be inserted into the outgoing stream. Signaling data can be sourced  
from the TS registers on a per-channel basis by using the software-signaling insertion enable registers,  
SSIE1:SSIE4.  
In T1 ESF framing mode, there are four signaling bits per channel (A, B, C, and D). TS1:TS12 contain a full  
multiframe of signaling data. In T1 D4 framing mode, there are only two signaling bits per channel (A and B). In T1  
D4 framing mode, the framer uses A and B bit positions for the next multiframe. The C and D bit positions become  
“don’t care” in D4 mode.  
In E1 mode, TS16 carries the signaling information. This information can be in either CCS (common-channel  
signaling) or CAS (channel-associated signaling) format. The 32 time slots are referenced by two different channel  
number schemes in E1. In channel numbering, TS0 to TS31 are labeled channel 1 to channel 32. In phone channel  
numbering, TS1 to TS15 are labeled channel 1 to channel 15, and TS17 to TS31 are labeled channel 15 to  
channel 30.  
8.9.4.2 Time Slot Numbering Schemes  
0
1
1
2
1
2
3
2
3
4
3
4
5
4
5
6
5
6
7
6
7
8
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31  
TS  
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  
Channel  
8
Phone  
Channel  
8.9.4.2.1 Hardware-Based Signaling  
In hardware-based mode, signaling data is input via the TSIG pin. This signaling PCM stream is buffered and  
inserted to the data stream being input at the TSER pin.  
Signaling data can be input via the transmit hardware-signaling channel select (THSCS1) function. The framer can  
be set up to take the signaling data presented at the TSIG pin and insert the signaling data into the PCM data  
stream that is being input at the TSER pin. The user can control which channels are to have signaling data from the  
TSIG pin inserted into them on a per-channel basis. The signaling insertion capabilities of the framer are available  
whether the transmit-side elastic store is enabled or disabled. If the elastic store is enabled, the backplane clock  
(TSYSCLK) can be either 1.544MHz or 2.048MHz.  
51 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
8.9.4.3 Receive-Signaling Operation  
There are two methods to access receive-signaling data and provide transmit-signaling data: processor based (i.e.,  
software based) or hardware based. Processor based refers to access through the transmit- and receive-signaling  
registers, RS1:RS16. Hardware based refers to the RSIG pin. Both methods can be used simultaneously.  
8.9.4.3.1 Processor-Based Signaling  
Signaling information is sampled from the receive data stream and copied into the receive-signaling registers,  
RS1:RS16. The signaling information in these registers is always updated on multiframe boundaries. This function  
is always enabled.  
8.9.4.3.2 Change of State  
To avoid constant monitoring of the receive-signaling registers, the DS26528 can be programmed to alert the host  
when any specific channel or channels undergo a change of their signaling state. RSCSE1:RSCSE4 are used to  
select which channels can cause a change-of-state indication. The change of state is indicated in Latched Status  
Register 4 (RLS4.3). If signaling integration is enabled, the new signaling state must be constant for three  
multiframes before a change-of-state indication is indicated. The user can enable the INTB pin to toggle low upon  
detection of a change in signaling by setting the interrupt mask bit RIM4.3. The signaling integration mode is global  
and cannot be enabled on a channel-by-channel basis.  
The user can identity which channels have undergone a signaling change of state by reading the receive-signaling  
status (RSS1:RSS4) registers. The information from these registers tells the user which RSx register to read for the  
new signaling data. All changes are indicated in the RSS1:RSS4 registers regardless of the RSCSE1:RSCSE4  
registers.  
8.9.4.3.3 Hardware-Based Receive Signaling  
In hardware-based signaling, the signaling data can be obtained from the RSER pin or the RSIG pin. RSIG is a  
signaling PCM stream output on a channel-by-channel basis from the signaling buffer. The T1 robbed bit or E1  
TS16 signaling data is still present in the original data stream at RSER. The signaling buffer provides signaling data  
to the RSIG pin and also allows signaling data to be reinserted into the original data stream in a different alignment  
that is determined by a multiframe signal from the RSYNC pin. In this mode, the receive elastic store can be  
enabled or disabled. If the receive elastic store is enabled, the backplane clock (RSYSCLK) can be either  
1.544MHz or 2.048MHz. In the ESF framing mode, the ABCD signaling bits are output on RSIG in the lower nibble  
of each channel. The RSIG data is updated once a multiframe (3ms for T1 ESF, 1.5ms for T1 D4, 2ms for E1 CAS)  
unless a signaling freeze is in effect. In the D4 framing mode, the AB signaling bits are output twice on RSIG in the  
lower nibble of each channel. Thus, bits 5 and 6 contain the same data as bits 7 and 8, respectively, in each  
channel.  
8.9.4.3.4 Receive-Signaling Reinsertion at RSER  
In this mode, the user provides a multiframe sync at the RSYNC pin and the signaling data will be reinserted based  
on this alignment. In T1 mode, this results in two copies of the signaling data in the RSER data stream. The original  
signaling data is based on the Fs/ESF frame positions, and the realigned data is based on the user-supplied  
multiframe sync applied at RSYNC. In voice channels, this extra copy of signaling data is of little consequence.  
Reinsertion can be avoided in data channels since this feature is activated on a per-channel basis. For reinsertion,  
the elastic store must be enabled; for T1, the backplane clock can be either 1.544MHz or 2.048MHz. E1 signaling  
information cannot be reinserted into a 1.544MHz backplane.  
Signaling-reinsertion mode is enabled on a per-channel basis by setting the receive-signaling reinsertion channel  
select bit high in the Receive-Signaling Reinsertion Enable register (RSI1:RSI4). The channels that are to have  
signaling reinserted are selected by writing to the RSI1:RSI4 registers. In E1 mode, the user generally selects all  
channels or none for reinsertion.  
8.9.4.3.5 Force Receive-Signaling All Ones  
In T1 mode, the user can, on a per-channel basis, force the robbed-bit signaling bit positions to 1. This is done by  
using the T1-mode Receive-Signaling All-Ones Insertion registers (T1RSAOI1:T1RSAOI3). The user sets the  
channel select bit in the T1RSAOI1:T1RSAOI3 registers to select the channels that are to have the signaling forced  
to one.  
52 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
8.9.4.3.6 Receive-Signaling Freeze  
The signaling data in the four multiframe signaling buffers is frozen in a known good state upon either a loss of  
synchronization (OOF event), carrier loss, or change of frame alignment. In T1 mode, this action meets the  
requirements of BellCore TR-TSY-000170 for signaling freezing. To allow this freeze action to occur, the RSFE  
control bit (RSIGC.1) should be set high. The user can force a freeze by setting the RSFF control bit (RSIGC.2)  
high. The RSIGF output pin provides a hardware indication that a freeze is in effect. The four multiframe buffer  
provides a three multiframe delay in the signaling bits provided at the RSIG pin (and at the RSER pin if receive-  
signaling reinsertion is enabled). When freezing is enabled (RSFE = 1), the signaling data is held in the last known  
good state until the corrupting error condition subsides. When the error condition subsides, the signaling data is  
held in the old state for at least an additional 9ms (4.5ms in D4 framing mode, 6ms for E1 mode) before being  
allowed to be updated with new signaling data.  
The receive-signaling registers are frozen and not updated during a loss-of-sync condition. They will contain the  
most recent signaling information before the LOF occurred.  
8.9.4.4 Transmit SLC-96 Operation (T1 Mode Only)  
In an SLC-96-based transmission scheme, the standard Fs-bit pattern is robbed to make room for a set of  
message fields. The SLC-96 multiframe is made up of six D4 superframes, thus it is 72 frames long. In the 72-  
frame SLC-96 multiframe, 36 of the framing bits are the normal Ft pattern and the other 36 bits are divided into  
alarm, maintenance, spoiler, and concentrator bits, as well as 12 bits of the normal Fs pattern. Additional SLC-96  
information can be found in BellCore document TR-TSY-000008. Registers related to the transmit FDL are shown  
in Table 8-17.  
Table 8-17. Registers Related to SLC-96  
FRAMER  
ADDRESSES  
REGISTER  
FUNCTION  
For sending messages in transmit SLC-96 Ft/Fs  
bits.  
Transmit FDL Register (T1TFDL)  
162h  
Transmit SLC-96 Data Link Registers 1  
to 3 (T1TSLC1:T1TSLC3)  
Registers that control the SLC-96 overhead  
values.  
164h, 165h, 166h  
182h  
Transmit control for data selection source for the  
Ft/Fs bits.  
Transmit Control Register 2 TCR2)  
Transmit Latched Status Register 1  
(TLS1)  
Status bit for indicating transmission of data link  
buffer.  
190h  
Receive SLC-96 Data Link Registers 1  
to 3 (T1RSLC1:T1RSLC3)  
064h, 065h, 066h  
096h  
Receive Latched Status Register 7  
(RLS7)  
Receive SLC-96 alignment event.  
Note: The addresses shown are for Framer 1. Addresses for Framers 2 to 8 can be calculated using the following: Framer n = (Framer 1  
address + (n - 1) x 200h); where n = 2 to 8 for Framers 2 to 8.  
The T1TFDL register is used to insert the SLC-96 message fields. To insert the SLC-96 message using the  
T1TFDL register, the user should configure the DS26528 as shown:  
TCR2.6 (TSLC96) = 1  
TCR2.7 (TFDLS) = 0  
TCR3.2 (TFM) = 1  
TCR1.6 (TFPT) = 0  
Enable transmit SLC-96.  
Source FS bits via TFDL or SLC-96 formatter.  
D4 framing mode.  
Do not “pass through” TSER F-bits.  
The DS26528 automatically inserts the 12-bit alignment pattern in the Fs bits for the SLC-96 data link frame. Data  
from T1TSLC1:T1TSLC3 is inserted into the remaining Fs-bit locations of the SLC-96 multiframe. The status bit  
TSLC96 located at TLS1.4 is set to indicate that the SLC-96 data link buffer has been transmitted and that the user  
should write new message data into T1TSLC1:T1TSLC3. The host has 9ms after the assertion of TLS1.4 to write  
the registers T1TSLC1:T1TSLC3. If no new data is provided in these registers, the previous values are  
retransmitted.  
53 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
8.9.4.5 Receive SLC-96 Operation (T1 Mode Only)  
In an SLC-96-based transmission scheme, the standard Fs-bit pattern is robbed to make room for a set of  
message fields. The SLC-96 multiframe is made up of six D4 superframes, thus it is 72 frames long. In the 72-  
frame SLC-96 multiframe, 36 of the framing bits are the normal Ft pattern and the other 36 bits are divided into  
alarm, maintenance, spoiler, and concentrator bits, as well as 12 bits of the normal Fs pattern. Additional SLC-96  
information can be found in BellCore document TR-TSY-000008.  
To enable the DS26528 to synchronize onto a SLC-96 pattern, the following configuration should be used:  
RCR1.5 (RFM) = 1  
RCR1.3 (SYNCC) = 1  
T1RCR2.4 (RSLC96) = 1 Enable SLC-96 synchronizer.  
RCR1.7 (SYNCT) = 0 Set to minimum sync time.  
Set to D4 framing mode.  
Set to cross-couple Ft and Fs bits.  
The SLC-96 message bits can be extracted via the T1RSLC1:T1RSLC3 registers. The status bit RSLC96 located  
at RLS7.3 is useful for retrieving SLC-96 message data. The RSLC96 bit indicates when the framer has updated  
the data link registers T1RSLC1:T1RSLC3 with the latest message data from the incoming data stream. Once the  
RSLC96 bit is set, the user has 9ms (or until the next RSLC96 interrupt) to retrieve the most recent message data  
from the T1RSLC1:T1RSLC3 registers. Note that RSLC96 will not set if the DS26528 is unable to detect the 12-bit  
SLC-96 alignment pattern.  
8.9.5 T1 Data Link  
8.9.5.1 T1 Transmit Bit-Oriented Code (BOC) Transmit Controller  
The DS26528 contains a BOC generator on the transmit side and a BOC detector on the receive side. The BOC  
function is available only in T1 mode. Table 8-18 shows the registers related to the transmit bit-oriented code.  
Table 8-18. Registers Related to T1 Transmit BOC  
FRAMER  
ADDRESSES  
REGISTER  
FUNCTION  
Transmit BOC Register (T1TBOC)  
Transmit HDLC Control Register 2 (THC2)  
Transmit Control Register 1(TCR1)  
163h  
Transmit bit-oriented message code register.  
Bit to enable sending of transmit BOC.  
Determines the sourcing of the F-bit.  
113h  
181h  
Note: The addresses shown are for Framer 1. Addresses for Framers 2 to 8 can be calculated using the following: Framer n = (Framer 1  
address + (n - 1) x 200h); where n = 2 to 8 for Framers 2 to 8.  
Bits 0 to 5 in the T1TBOC register contain the BOC message to be transmitted. Setting SBOC = 1 (THC2.6)  
causes the transmit BOC controller to immediately begin inserting the BOC sequence into the FDL bit position. The  
transmit BOC controller automatically provides the abort sequence. BOC messages will be transmitted as long as  
SBOC is set. Note that the TFPT (TCR1.6) control bit must be set to 0 for the BOC message to overwrite F-bit  
information being sampled on TSER.  
8.9.5.1.1 To Transmit a BOC  
1) Write 6-bit code into the T1TBOC register.  
2) Set SBOC bit in THC2 = 1.  
54 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
8.9.5.2 Receive Bit-Oriented Code (BOC) Controller  
The DS26528 framers contain a BOC generator on the transmit side and a BOC detector on the receive side. The  
BOC function is available only in T1, ESF mode in the data link bits. Table 8-19 shows the registers related to the  
receive BOC operation.  
Table 8-19. Registers Related to T1 Receive BOC  
FRAMER  
ADDRESSES  
REGISTER  
FUNCTION  
Receive BOC Control Register  
(T1RBOCC)  
015h  
Controls the receive BOC function.  
Receive bit-oriented message.  
Receive BOC Register (T1RBOC)  
063h  
096h  
0A6h  
Indicates changes to the receive bit-oriented  
messages.  
Mask bits for RBOC for generation of  
interrupts.  
Receive Latched Status Register 7(RLS7)  
Receive Interrupt Mask Register 7 (RIM7)  
Note: The addresses shown are for Framer 1. Addresses for Framers 2 to 8 can be calculated using the following: Framer n = (Framer 1  
address + (n - 1) x 200h); where n = 2 to 8 for Framers 2 to 8.  
In ESF mode, the DS26528 continuously monitors the receive message bits for a valid BOC message. The BOC  
detect (BD) status bit at RLS7.0 is set once a valid message has been detected for a time determined by the  
receive BOC filter bits RBF0 and RBF1 in the T1RBOCC register. The 6-bit BOC message is available in the  
T1RBOC register. Once the user has cleared the BD bit, it remains clear until a new BOC is detected (or the same  
BOC is detected following a BOC clear event). The BOC clear (BC) bit at RLS7.1 is set when a valid BOC is no  
longer being detected for a time determined by the receive BOC disintegration bits RBD0 and RBD1 in the  
T1RBOCC register.  
The BD and BC status bits can create a hardware interrupt on the INTB signal as enabled by the associated  
interrupt mask bits in the RIM7 register.  
8.9.5.3 Legacy T1 Transmit FDL  
It is recommended that the DS26528’s built-in BOC or HDLC controllers be used for most applications requiring  
access to the FDL. Table 8-21 shows the registers related to control of the transmit FDL.  
Table 8-20. Registers Related to T1 Transmit FDL  
FRAMER  
ADDRESSES  
REGISTER  
FUNCTION  
Transmit FDL Register (T1TFDL)  
162h  
FDL code used to insert transmit FDL.  
Defines the source of the FDL.  
Transmit FDL empty bit.  
Transmit Control Register 2 (TCR2)  
Transmit Latched Status Register 2 (TLS2)  
182h  
191h  
Transmit Interrupt Mask Register 2 (HDLC)  
(TIM2)  
1A1h  
Mask bit for TFDL empty.  
Note: The addresses shown are for Framer 1. Addresses for Framers 2 to 8 can be calculated using the following: Framer n = (Framer 1  
address + (n - 1) x 200h); where n = 2 to 8 for Framers 2 to 8.  
When enabled with TCR2.7, the transmit section shifts out into the T1 data stream either the FDL (in the ESF  
framing mode) or the Fs bits (in the D4 framing mode) contained in the Transmit FDL register (T1TFDL). When a  
new value is written to the T1TFDL, it is multiplexed serially (LSB first) into the proper position in the outgoing T1  
data stream. After the full eight bits have been shifted out, the framer signals the host controller that the buffer is  
empty and that more data is needed by setting the TLS2.4 bit to a 1. The INTB bit also toggles low if enabled via  
TIM2.4. The user has 2ms to update the T1TFDL with a new value. If the T1TFDL is not updated, the old value in  
the T1TFDL is transmitted once again. Note that in this mode, no zero stuffing is applied to the FDL data. It is  
strongly suggested that the HDLC controller be used for FDL messaging applications.  
In the D4 framing mode, the framer uses the T1TFDL register to insert the Fs framing pattern. To accomplish this,  
the T1TFDL register must be programmed to 1Ch and TCR2.7 should be set to 0 (source Fs data from the T1TFDL  
register).  
55 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
The Transmit FDL register (T1TFDL) contains the facility data link (FDL) information that is to be inserted on a byte  
basis into the outgoing T1 data stream. The LSB is transmitted first. In D4 mode, only the lower six bits are used.  
8.9.5.4 Legacy T1 Receive FDL  
It is recommended that the DS26528’s built-in BOC or HDLC controllers be used for most applications requiring  
access to the FDL. Table 8-21 shows the registers related to the receive FDL.  
Table 8-21. Registers Related to T1 Receive FDL  
FRAMER  
ADDRESSES  
REGISTER  
FUNCTION  
Receive FDL Register (T1RFDL)  
062h  
FDL code used to insert transmit FDL.  
Receive FDL full bit is in this register.  
Mask bit for RFDL full.  
Receive Latched Status Register 7(RLS7)  
Receive Interrupt Mask Register 7(RIM7)  
096h  
0A6h  
Note: The addresses shown are for Framer 1. Addresses for Framers 2 to 8 can be calculated using the following: Framer n = (Framer 1  
address + (n - 1) x 200h); where n = 2 to 8 for Framers 2 to 8.  
In the receive section, the recovered FDL bits or Fs bits are shifted bit-by-bit into the Receive FDL register  
(T1RFDL). Since the T1RFDL is 8 bits in length, it fills up every 2ms (8 x 250μs). The framer signals an external  
controller that the buffer has filled via the RLS7.2 bit. If enabled via RIM7.2, the INTB pin toggles low, indicating  
that the buffer has filled and needs to be read. The user has 2ms to read this data before it is lost. Note that no  
zero destuffing is applied for the data provided through the T1RFDL register. The T1RFDL reports the incoming  
facility data link (FDL) or the incoming Fs bits. The LSB is received first. In D4 framing mode, T1RFDL updates on  
multiframe boundaries and reports only the Fs bits.  
8.9.6 E1 Data Link  
Table 8-22 shows the registers related to E1 data link.  
Table 8-22. Registers Related to E1 Data Link  
FRAMER  
ADDRESSES  
REGISTER  
FUNCTION  
E1 Receive Align Frame Register (E1RAF)  
E1 Receive Non-Align Frame Register  
Register (E1RNAF)  
E1 Received Si Bits of the Align Frame  
Register (E1RSiAF)  
064h  
Receive frame alignment register.  
Receive non-frame alignment register.  
065h  
066h  
067h  
Receive Si bits of the frame alignment frames.  
Received Si Bits of the Non-Align Frame  
Register E1RSiNAF)  
Receive Si bits of the non-frame alignment  
frames.  
069h, 06Ah,  
06Bh, 06Ch,  
06Dh  
Received Sa4 to Sa8 Bits Register  
(E1RSa4 to E1RSa8)  
Receive Sa bits.  
Transmit Align Frame Register (E1TAF)  
164h  
165h  
166h  
167h  
Transmit align frame register.  
Transmit Non-Align Frame Register  
(E1TNAF)  
Transmit Si Bits of the Align Frame  
Register (E1TSiAF)  
Transmit Si Bits of the Non-Align Frame  
Register (E1TSiNAF)  
Transmit non-align frame register.  
Transmit Si bits of the frame alignment frames.  
Transmit Si bits of the non-frame alignment  
frames.  
169h, 16Ah,  
16Bh, 16Ch,  
16Dh  
Transmit Sa4 to Sa8 Bits Register  
(E1TSa4 to E1TSa8)  
Transmit Sa4 to Sa8.  
E1 Transmit Sa-Bit Control Register  
(E1TSACR)  
114h  
Transmit sources of Sa control.  
Note: The addresses shown are for Framer 1. Addresses for Framers 2 to 8 can be calculated using the following: Framer n = (Framer 1  
address + (n - 1) x 200h); where n = 2 to 8 for Framers 2 to 8.  
56 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
8.9.6.1 Additional E1 Receive Sa- and Si-Bit Receive Operation (E1 Mode)  
The DS26528, when operated in the E1 mode, provides for access to both the Sa and the Si bits via two methods.  
The first involves using the internal E1RAF/E1RNAF and E1TAF/E1TNAF registers. The second method involves  
an expanded version of the first method.  
8.9.6.1.1 Internal Register Scheme Based on Double-Frame (Method 1)  
On the receive side, the E1RAF and E1RNAF registers will always report the data as it received in the Sa- and Si-  
bit locations. The E1RAFand E1RNAF registers are updated on align frame boundaries. The setting of the receive  
align frame bit in Receive Latched Status Register 2 (RLS2.0) indicates that the contents of the RAF and RNAF  
have been updated. The host can use the RLS2.0 bit to know when to read the E1RAF and E1RNAF registers. The  
host has 250μs to retrieve the data before it is lost.  
8.9.6.1.2 Internal Register Scheme Based on CRC-4 Multiframe (Receive Side)  
On the receive side there is a set of eight registers (E1RSiAF, E1RSiNAF, E1RRA, E1RSa4:E1RSa8) that report  
the Si and Sa bits as they are received. These registers are updated with the setting of the receive CRC-4  
multiframe bit in Receive Latched Status Register 2 (RLS2.1). The host can use the RLS2.1 bit to know when to  
read these registers. The user has 2ms to retrieve the data before it is lost. See the register descriptions for  
additional information.  
8.9.6.1.3 Internal Register Scheme Based on CRC-4 Multiframe (Transmit Side)  
On the transmit side there is a set of eight registers (E1TSiAF, E1TSiNAF, E1TRA, E1TSa4:E1TSa8) that, via the  
Transmit Sa-Bit Control register (E1TSACR), can be programmed to insert both Si and Sa data. Data is sampled  
from these registers with the setting of the transmit multiframe bit in Transmit Latched Status Register 1 (TLS1.3).  
The host can use the TLS1.3 bit to know when to update these registers. It has 2ms to update the data or else the  
old data will be retransmitted. See the register descriptions for additional information.  
8.9.6.2 Sa-Bit Monitoring and Reporting  
In addition to the registers outlined above, the DS26528 provides status and interrupt capability in order to detect  
changes in the state of selected Sa bits. The E1RSAIMR register can be used to select which Sa bits are  
monitored for a change of state. When a change of state is detected in one of the enabled Sa-bit positions, a status  
bit is set in the RLS7 register via the SaXCD bit (bit 0). This status bit can, in turn, be used to generate an interrupt  
by unmasking RIM7.0 (SaXCD). If multiple Sa bits have been enabled, the user can read the SaBITS register at  
address 06Eh to determine the current value of each Sa bit.  
For the Sa6 bits, additional support is available to detect specific codewords per ETS 300 233. The Sa6CODE  
register reports the received Sa6 codeword. The codeword must be stable for a period of three submultiframes and  
be different from the previous stored value in order to be updated in this register. See the Sa6CODE register  
description for further details on the operation of this register and the values reported in it. An additional status bit is  
provided in RLS7 (Sa6CD) to indicate if the received Sa6 codeword has changed. A mask bit is provided for this  
status bit in RIM7 to allow for interrupt generation when enabled.  
8.9.7 Maintenance and Alarms  
The DS26528 provides extensive functions for alarm detection and generation. It also provides diagnostic functions  
for monitoring of performance and sending of diagnostic information such as the following:  
Real-time and latched status bits, interrupts, and interrupt mask for transmitter and receiver  
LOS detection  
RIA detection and generation  
PDV violation detection  
Error counters  
DS0 monitoring  
Milliwatt generation and detection  
Slip buffer status for transmit and receive  
57 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Table 8-23 shows some of the registers related to maintenance and alarms.  
Table 8-23. Registers Related to Maintenance and Alarms  
FRAMER  
ADDRESSES  
REGISTER  
FUNCTION  
Receive Real-Time Status Register 1 (RRTS1)  
Receive Interrupt Mask Register 1(RIM1)  
Receive Latched Status Register 2 (RLS2)  
Receive Real-Time Status Register 3 (RRTS3)  
Receive Latched Status Register 3 (RLS3)  
Receive Interrupt Mask Register 3 (RIM3)  
Receive Interrupt Mask Register 4 (RIM4)  
Receive Latched Status Register 7 (RLS7)  
Receive Interrupt Mask Register 7 (RIM7)  
Transmit Latched Status Register 1 (TLS1)  
0B0h  
0A0h  
091h  
0B2h  
092h  
0A2h  
0A3h  
096h  
0A6h  
190h  
192h  
060h  
086h  
Real-time receive status 1.  
Real-time interrupt mask 1.  
Real-time latched status 2.  
Real-time receive status 2.  
Real-time latched status 3.  
Real-time interrupt mask 3.  
Real-time interrupt mask 3.  
Real-time latched status 7.  
Real-time interrupt mask 7.  
Loss of transmit clock status, TPDV, etc.  
Loss of frame status.  
Transmit Latched Status Register 3  
(Synchronizer) (TLS3)  
Receive DS0 Monitor Register (RDS0M)  
Receive DS0 monitor.  
Error-Counter Configuration Register (ERCNT)  
Configuration of the error counters.  
Line Code Violation Count Register 1  
(LCVCR1)  
050h  
051h  
052h  
053h  
Line code violation counter 1.  
Line Code Violation Count Register 2  
(LCVCR2)  
Line code violation counter 2.  
Path Code Violation Count Register 1  
(PCVCR1)  
Receive path code violation counter 1.  
Receive path code violation counter 2.  
Path Code Violation Count Register 2  
(PCVCR2)  
Frames Out of Sync Count Register 1  
(FOSCR1)  
054h  
055h  
056h  
057h  
Receive frame out of sync counter 1  
Receive frame out of sync counter 2  
E-bit count register 1.  
Frames Out of Sync Count Register 2  
(FOSCR2)  
E-Bit Count Register 1 (E1EBCR1)  
E-Bit Count Register 2 (E1EBCR2)  
E-bit count register 2.  
Note: The addresses shown are for Framer 1. Addresses for Framers 2 to 8 can be calculated using the following: Framer n = (Framer 1  
address + (n - 1) x 200h); where n = 2 to 8 for Framers 2 to 8.  
58 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
8.9.7.1 Status and Information Bit Operation  
When a particular event has occurred (or is occurring), the appropriate bit in one of these registers is set to 1.  
Status bits can operate in either a latched or real-time fashion. Some latched bits can be enabled to generate a  
hardware interrupt via the INTB signal.  
8.9.7.1.1 Real-Time Bits  
Some status bits operate in a real-time fashion. These bits are read-only and indicate the present state of an alarm  
or a condition. Real-time bits remain stable and valid during the host read operation. The current value of the  
internal status signals can be read at any time from the real-time status registers without changing any the latched  
status register bits.  
8.9.7.1.2 Latched Bits  
When an event or an alarm occurs and a latched bit is set to 1, it remains set until cleared by the user. These bits  
typically respond on a change-of-state for an alarm, condition, or event, and operate in a read-then-write fashion.  
The user should read the value of the desired status bit and then write a 1 to that particular bit location to clear the  
latched value (write a 0 to locations not to be cleared). Once the bit is cleared, it is not set again until the event has  
occurred again.  
8.9.7.1.3 Mask Bits  
Some of the alarms and events can be either masked or unmasked from the interrupt pin via the Receive Interrupt  
Mask registers (RIM1:RIM7). When unmasked, the INTB signal is forced low when the enabled event or condition  
occurs. The INTB pin is allowed to return high (if no other unmasked interrupts are present) when the user reads  
and then clears (with a write) the alarm bit that caused the interrupt to occur. Note that the latched status bit and  
the INTB pin clear even if the alarm is still present.  
Note that some conditions can have multiple status indications. For example, receive loss of frame (RLOF)  
provides the following indications:  
Real-time indication that the receiver is not synchronized with  
incoming data stream. Read-only bit that remains high as long as  
the condition is present.  
RRTS1.0  
(RLOF)  
Latched indication that the receiver has lost synchronization since  
RLS1.0  
the bit was last cleared. Bit clears when written by the user, even  
(RLOFD)  
if the condition is still present (rising edge detect of RRTS1.0).  
Latched indication that the receiver has reacquired  
RLS1.4  
(RLOFC)  
synchronization since the bit was last cleared. Bit clears when  
written by the user, even if the condition is still present (falling  
edge detect of RRTS1.0).  
59 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
Table 8-24. T1 Alarm Criteria  
ALARM  
SET CRITERIA  
CLEAR CRITERIA  
AIS  
When over a 3ms window, 4 or  
fewer zeros are received.  
When bit 2 of 256 consecutive  
channels is set to zero for at least  
254 occurrences.  
When over a 3ms window, 5 or  
more zeros are received.  
When bit 2 of 256 consecutive  
channels is set to zero for less than  
254 occurrences.  
(Blue Alarm) (See Note 1)  
1) D4 Bit 2 Mode  
(T1RCR2.0 = 0)  
2) D4 12th F-Bit Mode  
(T1RCR2.0 = 1)  
(Note: This mode is  
also referred to as the  
“Japanese Yellow  
Alarm.”)  
When the 12th framing bit is set to  
one for two consecutive  
occurrences.  
When the 12th framing bit is set to  
zero for two consecutive  
occurrences.  
RAI  
(Yellow  
Alarm)  
3) ESF Mode  
When 16 consecutive patterns of  
00FF appear in the FDL.  
When 14 or fewer patterns of 00FF  
hex out of 16 possible appear in the  
FDL.  
LOS  
(Loss of Signal)  
(Note: This alarm is also referred to  
as receive carrier loss (RCL).)  
When 192 consecutive zeros are  
received.  
When 14 or more ones out of 112  
possible bit positions are received  
starting with the first one received.  
Note 1:  
The definition of the Alarm Indication Signal (Blue Alarm) is an unframed all-ones signal. AIS detectors should be able to operate  
properly in the presence of a 10E-3 error rate and they should not falsely trigger on a framed all-ones signal. The AIS alarm criteria  
in the DS26528 has been set to achieve this performance. It is recommended that the RAIS bit be qualified with the RLOF bit.  
Note 2:  
The following terms are equivalent:  
RAIS = Blue Alarm  
RLOS = RCL  
RLOF = Loss of Frame (conventionally RLOS for Dallas Semiconductor devices)  
RRAI = Yellow Alarm  
8.9.8 E1 Automatic Alarm Generation  
The device can be programmed to automatically transmit AIS or remote alarm. When automatic AIS generation is  
enabled (TCR2.6 = 1), the device monitors the receive-side framer to determine if any of the following conditions  
are present: loss of receive frame synchronization, AIS alarm (all ones) reception, or loss of receive carrier (or  
signal). If any one (or more) of these conditions is present, the framer forces an AIS.  
When automatic RAI generation is enabled (TCR2.5 = 1), the framer monitors the receive side to determine if any  
of the following conditions are present: loss of receive frame synchronization, AIS alarm (all ones) reception, loss of  
receive carrier (or signal), or if CRC-4 multiframe synchronization cannot be found within 128ms of FAS  
synchronization (if CRC-4 is enabled). If any one (or more) of the above conditions is present, the framer transmits  
an RAI alarm. RAI generation conforms to ETS 300 011 and ITU-T G.706 specifications.  
Note: It is an illegal state to have both automatic AIS generation and automatic remote alarm generation enabled  
at the same time.  
8.9.8.1 Receive AIS-CI and RAI-CI Detection  
AIS-CI is a repetitive pattern of 1.26 seconds. It consists of 1.11 seconds of an unframed all-ones pattern and 0.15  
seconds of all ones modified by the AIS-CI signature. The AIS-CI signature is a repetitive pattern 6176 bits in  
length in which, if the first bit is numbered bit 0, bits 3088, 3474, and 5790 are logical zeros and all other bits in the  
pattern are logical ones (T1.403). AIS-CI is an unframed pattern, so it is defined for all T1 framing formats. The  
RAIS-CI bit is set when the AIS-CI pattern has been detected and RAIS (RRTS1.2) is set. RAIS-CI is a latched bit  
that should be cleared by the host when read. RAIS-CI continues to set approximately every 1.2 seconds that the  
condition is present. The host needs to poll the bit in conjunction with the normal AIS indicators to determine when  
the condition has cleared.  
60 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
RAI-CI is a repetitive pattern within the ESF data link with a period of 1.08 seconds. It consists of sequentially  
interleaving 0.99 seconds of “00000000 11111111” (right-to-left ) with 90ms of “00111110 11111111.” The RRAI-CI  
bit is set when a bit-oriented code of “00111110 11111111” is detected while RRAI (RRTS1.3) is set. The RRAI-CI  
detector uses the receive BOC filter bits (RBF0 and RBF1) located in RBOCC to determine the integration time for  
RAI-CI detection. Like RAIS-CI, the RRAI-CI bit is latched and should be cleared by the host when read.  
RRAI-CI continues to set approximately every 1.1 seconds that the condition is present. The host needs to poll the  
bit in conjunction with the normal RAI indicators to determine when the condition has cleared. It may be useful to  
enable the 200ms ESF RAI integration time with the RAIIE control bit (T1RCR2.1) in networks that use RAI-CI.  
8.9.8.2 T1 Receive-Side Digital Milliwatt Code Generation  
Receive-side digital milliwatt code generation involves using the T1 Receive Digital Milliwatt registers  
(T1RDMWE1:T1RDMWE3) to determine which of the 24 T1 channels of the T1 line going to the backplane should  
be overwritten with a digital milliwatt pattern. The digital milliwatt code is an 8-byte repeating pattern that represents  
a 1kHz sine wave (1E/0B/0B/1E/9E/8B/8B/9E). Each bit in the T1RDMWE1, T1RDMWE2, and T1RDMWE3  
registers represents a particular channel. If a bit is set to 1, the receive data in that channel is replaced with the  
digital milliwatt code. If a bit is set to 0, no replacement occurs.  
8.9.9 Error-Count Registers  
The DS26528 contains four counters that are used to accumulate line coding errors, path errors, and  
synchronization errors. Counter update options include one-second boundaries, 42ms (T1 mode only), 62.5ms (E1  
mode only), or manually. See the Error-Counter Configuration register (ERCNT). When updated automatically, the  
user can use the interrupt from the timer to determine when to read these registers. All four counters saturate at  
their respective maximum counts and they will not roll over. (Note: Only the Line Code Violation Count register has  
the potential to overflow, but the bit error would have to exceed 10E-2 before this would occur.)  
The DS26528 can share the one-second timer from Port 1 across all ports. All DS26528 error/performance  
counters can be configured to update on the shared one-second source, or a separate manual update signal input.  
See the Error-Counter Configuration register ERCNT register for more information. By allowing multiple framer  
cores to synchronously latch their counters, the host software can be streamlined to read and process performance  
information from multiple spans in a more controlled manner.  
8.9.9.1 Line Code Violation Count Register (LCVCR)  
Either bipolar violations or code violations can be counted. Bipolar violations are defined as consecutive marks of  
the same polarity. In T1 mode, if the B8ZS mode is set for the receive side, then B8ZS codewords are not counted  
as BPVs. In E1 mode, if the HDB3 mode is set for the receive side, then HDB3 codewords are not counted as  
BPVs. If ERCNT.0 is set, then the LCVCR counts code violations as defined in ITU-T O.161. Code violations are  
defined as consecutive bipolar violations of the same polarity. In most applications, the framer should be  
programmed to count BPVs when receiving AMI code and to count CVs when receiving B8ZS or HDB3 code. This  
counter increments at all times and is not disabled by loss of sync conditions. The counter saturates at 65,535 and  
will not rollover. The bit-error rate on an E1 line would have to be greater than 10E-2 before the PCVCR would  
saturate. See Table 8-25 and Table 8-26 for details of exactly what the LCVCRs count.  
Table 8-25. T1 Line Code Violation Counting Options  
COUNT EXCESSIVE  
B8ZS ENABLED?  
(RCR1.6)  
WHAT IS COUNTED IN  
LCVCR1, LCVCR2  
ZEROS?  
(ERCNT.0)  
No  
No  
No  
Yes  
Yes  
BPVs  
Yes  
No  
Yes  
BPVs + 16 consecutive zeros  
BPVs (B8ZS/HDB3 codewords not counted)  
BPVs + 8 consecutive zeros  
61 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Table 8-26. E1 Line Code Violation Counting Options  
E1 CODE VIOLATION SELECT  
(ERCNT.0)  
WHAT IS COUNTED IN  
LCVCR1, LCVCR2  
0
1
BPVs  
CVs  
8.9.9.2 Path Code Violation Count Register (PCVCR)  
In T1 operation, the Path Code Violation Count register (PCVCR) records either Ft, Fs, or CRC-6 errors. When the  
receive side of a framer is set to operate in the T1 ESF framing mode, PCVCR records errors in the CRC-6  
codewords. When set to operate in the T1 D4 framing mode, PCVCR counts errors in the Ft framing bit position.  
Via the ERCNT.2 bit, a framer can be programmed to also report errors in the Fs framing bit position. PCVCR is  
disabled during receive loss of synchronization (RLOF = 1) conditions. See Table 8-27 for a detailed description of  
exactly what errors the PCVCR counts in T1 operation.  
In E1 operation, PCVCR records CRC-4 errors. Since the maximum CRC-4 count in a one-second period is 1000,  
this counter cannot saturate. The counter is disabled during loss of sync at either the FAS or CRC-4 level; it  
continues to count if loss of multiframe sync occurs at the CAS level.  
The Path Code Violation Count Register 1 (PCVCR1) is the most significant word and Path Code Violation Count  
Register 2 (PCVCR2) is the least significant word of a 16-bit counter that records path violations (PVs).  
Table 8-27. T1 Path Code Violation Counting Arrangements  
WHAT IS COUNTED IN  
FRAMING MODE  
COUNT Fs ERRORS?  
PCVCR1, PCVCR2  
D4  
D4  
No  
Yes  
Errors in the Ft pattern  
Errors in both the Ft and Fs patterns  
Errors in the CRC-6 codewords  
ESF  
Don’t Care  
8.9.9.3 Frames Out of Sync Count Register (FOSCR)  
The FOSCR is used to count the number of multiframes that the receive synchronizer is out of sync. This number is  
useful in ESF applications needing to measure the parameters loss of frame count (LOFC) and ESF error events  
as described in AT&T publication TR54016. When the FOSCR is operated in this mode, it is not disabled during  
receive loss of synchronization (RLOF = 1) conditions. The FOSCR has an alternate operating mode whereby it will  
count either errors in the Ft framing pattern (in the D4 mode) or errors in the FPS framing pattern (in the ESF  
mode). When the FOSCR is operated in this mode, it is disabled during receive loss of synchronization (RLOF = 1)  
conditions. See Table 8-28 for a detailed description of what the FOSCR is capable of counting.  
In E1 mode, the FOSCR counts word errors in the frame alignment signal in time slot 0. This counter is disabled  
when RLOF is high. FAS errors will not be counted when the framer is searching for FAS alignment and/or  
synchronization at either the CAS or CRC-4 multiframe level. Since the maximum FAS word error count in a one-  
second period is 4000, this counter cannot saturate.  
The Frames Out of Sync Count Register 1 (FOSCR1) is the most significant word and Frames Out of Sync Count  
Register 2 (FOSCR2) is the least significant word of a 16-bit counter that records frames out of sync.  
Table 8-28. T1 Frames Out of Sync Counting Arrangements  
FRAMING MODE  
COUNT MOS OR F-BIT ERRORS  
WHAT IS COUNTED IN  
FOSCR1, FOSCR2  
(RCR1.5)  
(ERCNT.1)  
D4  
D4  
MOS  
F-Bit  
Number of multiframes out of sync  
Errors in the Ft pattern  
ESF  
ESF  
MOS  
F-Bit  
Number of multiframes out of sync  
Errors in the FPS pattern  
62 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
8.9.9.4 E-Bit Counter (EBCR)  
This counter is only available in E1 mode. E-Bit Count Register 1 (E1EBCR1) is the most significant word and E-Bit  
Count Register 2 (E1EBCR2) is the least significant word of a 16-bit counter that records far-end block errors  
(FEBE) as reported in the first bit of frames 13 and 15 on E1 lines running with CRC-4 multiframe. These count  
registers increment once each time the received E-bit is set to 0. Since the maximum E-bit count in a one-second  
period is 1000, this counter cannot saturate. The counter is disabled during loss of sync at either the FAS or CRC-4  
level; it continues to count if loss of multiframe sync occurs at the CAS level.  
8.9.10 DS0 Monitoring Function  
The DS26528 can monitor one DS0 (64kbps) channel in the transmit direction and one DS0 channel in the receive  
direction at the same time. Table 8-29 shows the registers related to the control of transmit and receive DS0.  
Table 8-29. Registers Related to DS0 Monitoring  
FRAMER  
ADDRESSES  
REGISTER  
FUNCTION  
Transmit channel to be monitored.  
Monitored data.  
Transmit DS0 Channel Monitor Select  
(TDS0SEL)  
Transmit DS0 Monitor Register  
(TDS0M)  
Receive Channel Monitor Select Register  
(RDS0SEL)  
Receive DS0 Monitor Register  
(RDS0M)  
189h  
1BBh  
012h  
060h  
Receive channel to be monitored.  
Monitored data.  
Note: The addresses shown are for Framer 1. Addresses for Framers 2 to 8 can be calculated using the following: Framer n = (Framer 1  
address + (n - 1) x 200h); where n = 2 to 8 for Framers 2 to 8.  
In the transmit direction, the user determines which channel is to be monitored by properly setting the TCM[4:0] bits  
in the TDS0SEL register. In the receive direction, the RCM[4:0] bits in the RDS0SEL register need to be properly  
set. The DS0 channel pointed to by the TCM[4:0] bits appear in the Transmit DS0 Monitor register (TDS0M) and  
the DS0 channel pointed to by the RCM[4:0] bits appear in the Receive DS0 Monitor register (RDS0M). The  
TCM[4:0] and RCM[4:0] bits should be programmed with the decimal decode of the appropriate T1 or E1 channel.  
T1 channels 1 to 24 map to register values 0 to 23. E1 channels 1 to 32 map to register values 0 to 31. For  
example, if DS0 channel 6 in the transmit direction and DS0 channel 15 in the receive direction needed to be  
monitored, then the following values would be programmed into TDS0SEL and RDS0SEL:  
TCM4 = 0  
TCM3 = 0  
TCM2 = 1  
TCM1 = 0  
TCM0 = 1  
RCM4 = 0  
RCM3 = 1  
RCM2 = 1  
RCM1 = 1  
RCM0 = 0  
63 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
8.9.11 Transmit Per-Channel Idle Code Insertion  
Channel data can be replaced by an idle code on a per-channel basis in the transmit and receive directions.  
The Transmit Idle Code Definition registers (TIDR1:TIDR32) are provided to set the 8-bit idle code for each  
channel. The Transmit Channel Idle Code Enable registers (TCICE1:TCICE4) are used to enable idle code  
replacement on a per-channel basis.  
8.9.12 Receive Per-Channel Idle Code Insertion  
Channel data can be replaced by an idle code on a per-channel basis in the transmit and receive directions. The  
Receive Idle Code Definition registers (RIDR1:RIDR32) are provided to set the 8-bit idle code for each channel.  
The Receive Channel Idle Code Enable registers (RCICE1:RCICE4) are used to enable idle code replacement on  
a per-channel basis.  
8.9.13 Per-Channel Loopback  
The Per-Channel Loopback Enable registers (PCL1:PCL4) determine which channels (if any) from the backplane  
should be replaced with the data from the receive side, i.e., off the T1 or E1 line. If this loopback is enabled, the  
transmit and receive clocks and frame syncs must be synchronized. One method to accomplish this would be to tie  
RCLK to TCLK and RFSYNC to TSYNC. There are no restrictions on which channels can be looped back or on  
how many channels can be looped back.  
Each of the bit positions in the Per-Channel Loopback Enable registers (PCL1:PCL4) represents a DS0 channel in  
the outgoing frame. When these bits are set to 1, data from the corresponding receive channel replaces the data  
on TSER for that channel.  
8.9.14 E1 G.706 Intermediate CRC-4 Updating (E1 Mode Only)  
The DS26528 can implement the G.706 CRC-4 recalculation at intermediate path points. When this mode is  
enabled, the data stream presented at TSER will already have the FAS/NFAS, CRC multiframe alignment word,  
and CRC-4 checksum in time slot 0. The user can modify the Sa-bit positions and this change in data content will  
be used to modify the CRC-4 checksum. This modification, however, does not corrupt any error information the  
original CRC-4 checksum may contain. In this mode of operation, TSYNC must be configured to multiframe mode.  
The data at TSER must be aligned to the TSYNC signal. If TSYNC is an input, the user must assert TSYNC  
aligned at the beginning of the multiframe relative to TSER. If TSYNC is an output, the user must multiframe align  
the data presented to TSER. This mode is enabled with the TCR3.0 control bit (CRC4R). Note that the E1  
transmitter must already be enabled for CRC insertion with the TCR1.0 control bit (TCRC4).  
Figure 8-8. CRC-4 Recalculate Method  
TTIP/TRING  
INSERT  
NEW CRC-4  
CODE  
EXTRACT  
OLD CRC-4  
CODE  
TSER  
CRC-4  
CALCULATOR  
XOR  
MODIFY  
Sa-BIT  
+
POSITIONS  
NEW Sa-BIT  
DATA  
64 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
8.9.15 T1 Programmable In-Band Loop Code Generator  
The DS26528 can generate and detect a repeating bit pattern from one to eight bits or 16 bits in length. This  
function is available only in T1 mode.  
Table 8-30. Registers Related to T1 In-Band Loop Code Generator  
FRAMER  
ADDRESSES  
REGISTER  
FUNCTION  
Pattern to be sent for loop code.  
Length of the pattern to be sent.  
Transmit Code Definition Register 1  
(T1TCD1)  
Transmit Code Definition Register 2  
(T1TCD2)  
1ACh  
1ADh  
183h  
186h  
TLOOP bit for control of number of patterns being  
sent.  
Transmit Control Register 3 (TCR3)  
Transmit Control Register 4 (TCR4)  
Length of the code being sent.  
Note: The addresses shown are for Framer 1. Addresses for Framers 2 to 8 can be calculated using the following: Framer n = (Framer 1  
address + (n - 1) x 200h); where n = 2 to 8 for Framers 2 to 8.  
To transmit a pattern, the user loads the pattern to be sent into the Transmit Code Definition registers (T1TCD1  
and T1TCD2) and selects the proper length of the pattern by setting the TC1 and TC0 bits in Transmit Control  
Register 4 (TCR4). When generating a 1-, 2-, 4-, 8-, or 16-bit pattern, both T1TCD1 and T1TCD2 must be filled  
with the proper code. Generation of a 3-, 5-, 6-, and 7-bit pattern only requires T1TCD1 to be filled. Once this is  
accomplished, the pattern is transmitted as long as the TLOOP control bit (TCR3.0) is enabled. Normally (unless  
the transmit formatter is programmed to not insert the F-bit position) the framer overwrites the repeating pattern  
once every 193 bits to allow the F-bit position to be sent.  
As an example, to transmit the standard loop-up code for Channel Service Units (CSUs), which is a repeating  
pattern of ...10000100001..., set TCD1 = 80h, TC0 = 0, TC1 = 0, and TCR3.0 = 1.  
65 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
8.9.16 T1 Programmable In-Band Loop Code Detection  
The DS26528 can generate and detect a repeating bit pattern from one to eight bits or 16 bits in length. This  
function is available only in T1 mode.  
Table 8-31. Registers Related to T1 In-Band Loop Code Detection  
FRAMER  
ADDRESSES  
REGISTER  
FUNCTION  
Receive In-Band Code Control Register  
(T1RIBCC)  
Used for selecting length of receive in-  
band loop code register.  
082h  
Receive Up Code Definition Register 1  
(T1RUPCD1)  
0ACh  
0ADh  
0AEh  
0AFh  
Receive up code definition register 1.  
Receive up code definition register 2.  
Receive down code definition register 1.  
Receive up code definition register 2.  
Receive Up Code Definition Register 2  
(T1RUPCD2)  
Receive Down Code Definition Register 1  
(T1RDNCD1)  
Receive Down Code Definition Register 2  
(T1RDNCD2)  
Receive Spare Code Register 1 (T1RSCD1)  
Receive Spare Code Register 2 (T1RSCD2)  
Receive Real-Time Status Register 3 (RRTS3)  
Receive Latched Status Register 3 (RLS3)  
Receive Interrupt Mask Register 3 (RIM3)  
09Ch  
09Dh  
0B2h  
092h  
0A2h  
Receive spare code register 1.  
Receive spare code register 2.  
Real-time loop code detect.  
Latched loop code detect bits.  
Mask for latched loop code detect bits.  
Note: The addresses shown are for Framer 1. Addresses for Framers 2 to 8 can be calculated using the following: Framer n = (Framer 1  
address + (n - 1) x 200h); where n = 2 to 8 for Framers 2 to 8.  
The framer has three programmable pattern detectors. Typically, two of the detectors are used for “loop-up” and  
“loop-down” code detection. The user programs the codes to be detected in the Receive Up Code Definition  
registers (T1RUPCD1 and T1RUPCD2) and the Receive Down Code Definition registers (T1RDNCD1 and  
T1RDNCD2). The length of each pattern is selected via the Receive In-Band Code Control register (T1RIBCC).  
There is a third detector (Spare) and it is defined and controlled via the T1RSCD1/T1RSCD2 and T1RSCC  
registers. When detecting a 16-bit pattern, both receive code definition registers are used together to form a 16-bit  
register. For 8-bit patterns, both receive code definition registers are filled with the same value. Detection of a 1-,  
2-, 3-, 4-, 5-, 6-, and 7-bit pattern only requires the first receive code definition register to be filled. The framer  
detects repeating pattern codes in both framed and unframed circumstances with bit-error rates as high as 10E-2.  
The detectors can handle both F-bit inserted and F-bit overwrite patterns. Writing the least significant byte of the  
receive code definition register resets the integration period for that detector. The code detector has a nominal  
integration period of 48ms. Thus, after about 48ms of receiving a valid code, the proper status bit (LUP, LDN, and  
LSP) is set to 1. Note that real-time status bits, as well as latched set and clear bits, are available for LUP, LDN,  
and LSP (RRTS3 and RLS3). Normally codes are sent for a period of 5 seconds. It is recommended that the  
software poll the framer every 50ms to 100ms until 5 seconds has elapsed to ensure that the code is continuously  
present.  
66 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
8.9.17 Framer Payload Loopbacks  
The framer, payload, and remote loopbacks are controlled by Receive Control Register 3 (RCR3).  
Table 8-32. Registers Related to Framer Payload Loopbacks  
RECEIVE CONTROL  
REGISTER 3 (RCR3)  
FRAMER  
ADDRESSES  
FUNCTION  
Framer Loopback  
Payload Loopback  
Remote Loopback  
083h  
083h  
083h  
Transmit data output from the framer is looped back to the receiver.  
The 192-bit payload data is looped back to the transmitter.  
Data recovered by the receiver is looped back to the transmitter.  
Note: The addresses shown are for Framer 1. Addresses for Framers 2 to 8 can be calculated using the following: Framer n = (Framer 1  
address + (n - 1) x 200h); where n = 2 to 8 for Framers 2 to 8.  
67 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
8.10 HDLC Controllers  
8.10.1 Receive HDLC Controller  
The DS26528 has an enhanced HDLC controller that can be mapped into a single time slot, or Sa4 to Sa8 bits (E1  
mode), or the FDL (T1 mode). The HDLC controller has a 64-byte FIFO buffer in both the transmit and receive  
paths. The user can select any specific bits within the time slot(s) to assign to the HDLC controller, as well as  
specific Sa bits (E1 mode).  
The HDLC controller performs all the necessary overhead for generating and receiving performance report  
messages (PRMs) as described in ANSI T1.403 and the messages as described in AT&T TR54016. The HDLC  
controller automatically generates and detects flags, generates and checks the CRC check sum, generates and  
detects abort sequences, stuffs and destuffs zeros, and byte aligns to the data stream. The 64-byte buffers in the  
HDLC controller are large enough to allow a full PRM to be received or transmitted without host intervention.  
Table 8-33 shows the registers related to the HDLC.  
Table 8-33. Registers Related to the HDLC  
FRAMER  
ADDRESSES  
REGISTER  
FUNCTION  
Receive HDLC Control Register (RHC)  
010h  
Mapping of the HDLC to DS0 or FDL.  
Receive HDLC bit suppression register.  
Receive HDLC Bit Suppress Register  
(RHBSE)  
Receive HDLC FIFO Control Register  
(RHFC)  
011h  
087h  
Determines the length of the receive HDLC  
FIFO.  
Receive HDLC Packet Bytes Available  
Register (RHPBA)  
Tells the user how many bytes are available in  
the teceive HDLC FIFO.  
0B5h  
0B6h  
0B4h  
094h  
0A4h  
110h  
111h  
Receive HDLC FIFO Register (RHF)  
The actual FIFO data.  
Indicates the FIFO status.  
Latched status.  
Receive Real-Time Status Register 5  
(RRTS5)  
Receive Latched Status Register 5 (RLS5)  
Receive Interrupt Mask Register 5 (RIM5)  
Transmit HDLC Control Register 1(THC1)  
Interrupt mask for interrupt generation for the  
latched status.  
Miscellaneous transmit HDLC control.  
Transmit HDLC Bit Suppress Register  
(THBSE)  
Transmit HDLC bit suppress for bits not to be  
used.  
HDLC to DS0 channel selection and other  
control.  
Transmit HDLC Control Register 2 (THC2)  
113h  
187h  
1B1h  
191h  
1A1h  
Transmit HDLC FIFO Control Register  
(THFC)  
Transmit Real-Time Status Register 2  
(TRTS2)  
Transmit HDLC Latched Status Register 2  
(TLS2)  
Transmit Interrupt Mask Register 2 (HDLC)  
Register (TIM2)  
Used to control the transmit HDLC FIFO.  
Indicates the real-time status of the transmit  
HDLC FIFO.  
Indicates the FIFO status.  
Interrupt mask for the latched status.  
Transmit HDLC FIFO Buffer Available  
Register (TFBA)  
Indicates the number of bytes that can be  
written into the transmit FIFO.  
1B3h  
1B4h  
Transmit HDLC FIFO Register (THF)  
Transmit HDLC FIFO.  
Note: The addresses shown are for Framer 1. Addresses for Framers 2 to 8 can be calculated using the following: Framer n = (Framer 1  
address + (n - 1) x 200h); where n = 2 to 8 for Framers 2 to 8.  
68 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
8.10.1.1  
HDLC FIFO Control  
Control of the transmit and receive FIFOs is accomplished via the Receive HDLC FIFO Control (RHFC) and  
Transmit HDLC FIFO Control (THFC) registers. The FIFO control registers set the watermarks for the FIFO.  
When the receive FIFO fills above the high watermark, the RHWM bit (RRTS5.1) is set. RHWM and THRM are  
real-time bits and remain set as long as the FIFO’s write pointer is above the watermark. When the transmit FIFO  
empties below the low watermark, the TLWM bit in the TRTS2 register is set. TLWM is a real-time bit and remains  
set as long as the transmit FIFO’s write pointer is below the watermark. If enabled, this condition can also cause an  
interrupt via the INTB pin.  
If the receive HDLC FIFO does overrun, the current packet being processed is dropped. The receive FIFO is  
emptied. The packet status bit in RRTS5 and RLS5.5 (ROVR) indicate an overrun.  
8.10.1.2  
Receive HDLC Packet Bytes Available  
The lower 7 bits of the Receive HDLC Packet Bytes Available register (RHPBA) indicates the number of bytes (0 to  
64) that can be read from the receive FIFO. The value indicated by this register informs the host as to how many  
bytes can be read from the receive FIFO without going past the end of a message. This value refers to one of four  
possibilities: the first part of a packet, the continuation of a packet, the last part of a packet, or a complete packet.  
After reading the number of bytes indicated by this register, the host then checks the HDLC status registers for  
detailed message status.  
If the value in the RHPBA register refers to the beginning portion of a message or continuation of a message, then  
the MSB of the RHPBA register returns a value of 1. This indicates that the host can safely read the number of  
bytes returned by the lower 7 bits of the RHPBA register, but there is no need to check the information register  
since the packet has not yet terminated (successfully or otherwise).  
8.10.1.3  
HDLC Status and Information  
RRTS5, RLS5, and TLS2 provide status information for the HDLC controller. When a particular event has occurred  
(or is occurring), the appropriate bit in one of these registers is set to 1. Some of the bits in these registers are  
latched and some are real-time bits that are not latched. This section contains register descriptions that list which  
bits are latched and which are real-time. With the latched bits, when an event occurs and a bit is set to 1, it remains  
set until the user reads and clears that bit. The bit is cleared when a 1 is written to the bit, and it will not be set  
again until the event has occurred again. The real-time bits report the current instantaneous conditions that are  
occurring and the history of these bits is not latched.  
Like the other latched status registers, the user follows a read of the status bit with a write. The byte written to the  
register informs the device which of the latched bits the user wishes to clear (the real-time bits are not affected by  
writing to the status register). The user writes a byte to one of these registers, with a 1 in the bit positions he or she  
wishes to clear and a 0 in the bit positions he or she does not wish to clear.  
The HDLC status registers RLS5 and TLS2 have the ability to initiate a hardware interrupt via the INTB output  
signal. Each of the events in this register can be either masked or unmasked from the interrupt pin via the HDLC  
interrupt mask registers RIM5 and TIM2. Interrupts force the INTB signal low when the event occurs. The INTB pin  
is allowed to return high (if no other interrupts are present) when the user reads the event bit that caused the  
interrupt to occur.  
8.10.1.4  
HDLC Receive Example  
The HDLC status registers in the DS26528 allow for flexible software interface to meet the user’s preferences.  
When receiving HDLC messages, the host can choose to be interrupt driven, or to poll to desired status registers,  
or a combination of polling and interrupt processes can be used. An example routine for using the DS26528 HDLC  
receiver is given in Figure 8-9.  
69 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
Figure 8-9. Receive HDLC Example  
Configure Receive  
HDLC Controller  
(RHC, RHBSE, RHFC)  
Reset Receive  
HDLC Controller  
(RHC.6)  
Start New  
Message Buffer  
Enable Interrupts  
RPE and RHWM  
No Action Required  
Work Another Process.  
NO  
Interrupt?  
YES  
Read Register  
RHPBA  
Start New  
Message Buffer  
NO  
MS = 1?  
(MS = RHPBA[7])  
YES  
Read N Bytes From  
Rx HDLC FIFO (RHF)  
N = RHPBA[5..0]  
Read N Bytes From  
Rx HDLC FIFO (RHF)  
N = RHPBA[5..0]  
Read RRTS5 for  
Packet Status (PS2..0)  
Take appropriate action  
70 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
8.10.2 Transmit HDLC Controller  
8.10.2.1 FIFO Information  
The Transmit HDLC FIFO Buffer Available register (TFBA) indicates the number of bytes that can be written into  
the transmit FIFO. The count from this register informs the host as to how many bytes can be written into the  
transmit FIFO without overflowing the buffer. This is a real-time register. The count shall remain valid and stable  
during the read cycle.  
8.10.2.2  
HDLC Transmit Example  
The HDLC status registers in the DS26528 allow for flexible software interface to meet the user’s preferences.  
When transmitting HDLC messages, the host can choose to be interrupt driven, or to poll to desired status  
registers, or a combination of polling and interrupt processes can be used. An example routine for using the  
DS26528 HDLC receiver is given in Figure 8-10.  
71 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Figure 8-10. HDLC Message Transmit Example  
Configure Transmit  
HDLC Controller  
(THC1,THC2,THBSE,THFC)  
Reset Transmit  
HDLC Controller  
(THC.5)  
Enable TLWM  
Interrupt and  
Verify TLWM Clear  
Set TEOM  
(THC1.2)  
Push Last Byte  
into Tx FIFO  
Read TFBA  
N = TFBA[6..0]  
Push Message Byte  
into Tx HDLC FIFO  
(THF)  
Enable TMEND  
Interrupt  
Loop N  
NO  
Last Byte of  
Message?  
YES  
TMEND  
Interrupt?  
A
NO  
YES  
Read TUDR  
Status Bit  
NO  
TLWM  
Interrupt?  
A
YES  
NO  
TUDR = 1  
YES  
A
Disable TMEND Interrupt  
Prepare New  
No Action Required  
Work Another Process  
Disable TMEND Interrupt  
Resend Message  
Message  
72 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
8.11 Line Interface Units (LIUs)  
The DS26528 has eight identical LIU transmit and receive front-ends for the eight framers. Each LIU contains three  
sections: the transmitter, which waveshapes and drives the network line; the receiver, which handles clock and  
data recovery; and the jitter attenuator. The DS26528 LIUs can switch between T1 or E1 networks without  
changing any external components on either the transmit or receive side. Figure 8-11 shows a recommended  
circuit for software-selected termination with protection. In this configuration, the device can connect to 100Ω T1  
twisted pair, 110Ω J1 twisted pair, 75Ω or 120Ω E1 twisted pair without additional component changes. The signals  
between the framer and LIU are not accessible by the user, thus the framer and LIU cannot be separated. The  
transmitters have fast high-impedance capability and can be individually powered down.  
The DS26528’s transmit waveforms meet the corresponding G.703 and T1.102 specifications. Internal software-  
selectable transmit termination is provided for 100Ω T1 twisted pair, 110Ω J1 twisted pair, 120Ω E1 twisted pair,  
and 75Ω E1 coaxial applications. The receiver can connect to 100Ω T1 twisted pair, 110Ω J1 twisted pair, 120Ω E1  
twisted pair, and 75Ω E1 coaxial. The receive LIU can function with a receive signal attenuation of up to 36dB for  
T1 mode and 43dB for E1 mode. The receiver sensitivity is programmable from 12dB to 43dB of cable loss. Also, a  
monitor gain setting can be enabled to provide 14dB, 20dB, 26dB, and 32dB of resistive gain.  
73 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Figure 8-11. Basic Balanced Network Connections  
3.3 V  
F1  
T1  
TX  
TIP  
DVDD  
T3  
TTIP  
0.01 uF  
0.1 uF  
S3  
S4  
S1  
DVSS  
S7  
560 pF  
TRING  
TX  
RING  
Dallas  
2:1  
T2  
F2  
F3  
Single Chip Transceiver  
or  
Line Interface Unit  
68 uF  
3.3 V  
TVDD  
RX  
TIP  
RTIP  
T4  
0.1 uF  
0.1 uF  
TVSS  
RVDD  
RVSS  
S5  
S6  
S2  
S8  
RX  
RING  
RRING  
1:1  
F4  
60  
60  
0.1 uF  
NAME  
DESCRIPTION  
PART  
MANUFACTURER NOTES  
1.25A Slow Blow Fuse  
1.25A Slow Blow Fuse  
SMP 1.25  
F1250T  
Bel Fuse  
Teccor Electronics  
5
5
F1 to F4  
S1, S2  
S3 to S6  
S7, S8  
25V (max) Transient Suppressor  
180V (max) Transient Suppressor  
40V (max) Transient Suppressor  
P0080SA MC Teccor Electronics  
P1800SC MC Teccor Electronics  
P0300SC MC Teccor Electronics  
1, 5  
1, 4, 5  
1, 5  
2, 3, 5  
2, 3, 5  
5
T1 and T2 Transformer 1:1CT and 1:136CT (5.0V, SMT)  
T1 and T2 Transformer 1:1CT and 1:2CT (3.3V, SMT)  
T3 and T4 Dual Common-Mode Choke (SMT)  
T1136  
Pulse Engineering  
Pulse Engineering  
Pulse Engineering  
PE-68678  
PE-65857  
Note 1:  
Changing S7 and S8 to P1800SC devices provides symmetrical voltage suppresion between tip, ring, and ground.  
Note 2:  
The layout from the transformers to the network interface is critical. Traces should be at least 25 mils wide and separated  
from other circuit lines by at least 150 mils. The area under this portion of the circuit should not contain power planes.  
Some T1 (never in E1) applications source or sink power from the network-side center taps of the Rx/Tx transformers.  
The ground trace connected to the S3/S4 pair and the S5/S6 pair should be at least 50 mils wide to conduct the extra current  
from a longitudinal power-cross event.  
Note 3:  
Note 4:  
Note 5:  
Note 6:  
Alternative component recommendations and line interface circuits can be found by contacting  
telecom.support@dalsemi.com or in Application Note 324, which is available at www.maxim-ic.com/AN324.  
The 560pF on TTIP/TRING must be tuned to your application.  
74 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Table 8-34. Recommended Supply Decoupling  
SUPPLY PINS  
DVDD/DVSS  
DECOUPLING CAPACITANCE  
NOTES  
0.01μF + 0.1μF + 1μF + 10μF  
0.01μF + 0.1μF + 1μF + 10μF  
DVDDIO/DVSSIO  
It is recommended to use one 0.1μF capacitor for  
each ATVDD/ATVSS pair (8 total), one 1μF for  
every two ATVDD/ATVSS pairs (4 total), and two  
10μF capacitors for the analog transmit supply  
pins. These capacitors should be located as close  
to the intended power pins as possible.  
ATVDD/ATVSS  
0.1μF (x8) + 1μF (x4) + 10μF (x2)  
It is recommended to use one 0.1μF capacitor for  
each ARVDD/ARVSS pair (8 total), one 1μF for  
every two ARVDD/ARVSS pairs (4 total), and two  
10μF capacitors for the analog receive supply pins.  
These capacitors should be located as close to the  
intended power pins as possible.  
ARVDD/ARVSS  
ACVDD/ACVSS  
0.1μF (x8) + 1μF (x4) + 10μF (x2)  
0.1μF + 1μF + 10μF  
75 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
8.11.1 LIU Operation  
The analog AMI/HDB3 waveforms off of the E1 lines or the AMI/B8ZS waveform off of the T1 lines are transformer  
coupled into the RTIP and RRING pins of the DS26528. The user has the option to use internal termination,  
software selectable for 75Ω/100Ω/110Ω/120Ω applications, or external termination. The LIU recovers clock and  
data from the analog signal and passes it through the jitter attenuation mux. The DS26528 contains an active filter  
that reconstructs the analog received signal for the nonlinear losses that occur in transmission. The receive  
circuitry also is configurable for various monitor applications. The device has a usable receive sensitivity of 0dB to  
-43dB for E1 and 0dB to -36dB for T1, which allows the device to operate on 0.63mm (22AWG) cables up to 2.5km  
(E1) and 6k feet (T1) in length. Data input to the transmit side of the LIU is sent via the jitter attenuation mux to the  
waveshaping circuitry and line driver. The DS26528 drives the E1 or T1 line from the TTIP and TRING pins via a  
coupling transformer. The line driver can handle both CEPT 30/ISDN-PRI lines for E1 and long-haul (CSU) or  
short-haul (DSX-1) lines for T1. The registers that control the LIU operation are shown in Table 8-35.  
Table 8-35. Registers Related to Control of DS26528 LIU  
FRAMER  
ADDRESSES  
REGISTER  
FUNCTION  
Global Transceiver Control Register 2  
(GTCR2)  
0F2h  
Global transceiver control.  
Global Transceiver Clock Control Register  
(GTCCR)  
MPS selections, backplane clock  
selections  
0F3h  
0F5h  
0FBh  
0FEh  
1000h  
Global LIU Software Reset Register (GLSRR)  
Global LIU Interrupt Status Register (GLISR)  
Global LIU Interrupt Mask Register (GLIMR)  
Software reset control for the LIU.  
Interrupt status bit for each of the eight  
LIUs.  
Interrupt mask register for the LIU.  
LIU Transmit Receive Control Register  
(LTRCR)  
T1/J1/E1 selection, output tri-state, loss  
criteria.  
LIU Transmit Impedance and Pulse Shape  
Selection Register (LTITSR)  
Transmit pulse shape and impedance  
selection.  
1001h  
Transmit maintenance and jitter  
attenuation control register.  
LIU Maintenance Control Register (LMCR)  
LIU Real Status Register (LRSR)  
1002h  
1003h  
1004h  
LIU real-time status register.  
LIU mask registers based on latched  
status bits.  
LIU Status Interrupt Mask Register (LSIMR)  
LIU latched status bits related to loss, open  
circuit, etc.  
LIU Latched Status Register (LLSR)  
1005h  
1006h  
LIU Receive Signal Level Register (LRSL)  
LIU receive signal level indicator.  
LIU Receive Impedance and Sensitivity  
Monitor Register (LRISMR)  
LIU impedance match and sensitivity  
monitor.  
1007h  
Note: The addresses shown are for Framer 1. Addresses for Framers 2 to 8 can be calculated using the following framer: Framer n = (Framer 1  
address + (n - 1) x 200h); where n = 2 to 8 for Framers 2 to 8.  
76 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
8.11.2 Transmitter  
NRZ data arrives from the framer transmitter; the data is encoded with HDB3 or B8ZS or AMI. The encoded data  
passes through a jitter attenuator if it is enabled for the transmit path. A digital sequencer and DAC are used to  
generate transmit waveforms complaint with T1.102 and G.703 pulse templates.  
A line driver is used to drive an internal matched impedance circuit for provision of 75Ω, 100Ω, 110Ω, and 120Ω  
terminations. The transmitter couples to the E1 or T1 transmit twisted pair (or coaxial cable in some E1  
applications) via a 1:2 step-up transformer. For the device to create the proper waveforms, the transformer used  
must meet the specifications listed in Table 8-37. The transmitter requires a transmit clock of 2.048MHz for E1 or  
1.544MHz for T1/J1 operation.  
The DS26528 drivers have a short-circuit and open-circuit detection driver-fail monitor. The TXENABLE pin can  
high impedance the transmitter outputs for protection switching. The individual transmitters can also be placed in  
high impedance through register settings. The DS26528 also has functionality for powering down the transmitters  
individually. The relevant telecommunications specification compliance is shown in Table 8-36.  
Table 8-36. Telecommunications Specification Compliance for DS26528 Transmitters  
TRANSMITTER FUNCTION  
TELECOMMUNICATIONS COMPLIANCE  
T1 Telecom Pulse Template Compliance  
T1 Telecom Pulse Template Compliance  
ANSI T1.403  
ANSI T1.102  
Transmit Electrical Characteristics for E1 Transmission  
and Return Loss Compliance  
ITU-T G.703  
Table 8-37. Transformer Specifications  
SPECIFICATION  
RECOMMENDED VALUE  
Turns Ratio 3.3V Applications  
Primary Inductance  
1:1 (receive) and 1:2 (transmit) ±2%  
600μH minimum  
Leakage Inductance  
1.0μH maximum  
Intertwining Capacitance  
40pF maximum  
Primary (Device Side)  
1.0Ω maximum  
Transmit Transformer DC  
Resistance  
Secondary  
2.0Ω maximum  
1.2Ω maximum  
1.2Ω maximum  
Primary (Device Side)  
Secondary  
Receive Transformer DC  
Resistance  
77 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
8.11.2.1  
Transmit-Line Pulse Shapes  
The DS26528 transmitters can be selected individually to meet the pulse templates for E1 and T1/J1 modes. The  
T1/J1 pulse template is shown in Figure 8-12. The E1 pulse template is shown in Figure 8-13. The transmit pulse  
shape can be configured for each LIU on an individual basis. The LIU transmit impedance selection registers can  
be used to select an internal transmit terminating impedance of 100Ω for T1, 110Ω for J1 mode, 75Ω or 120Ω for  
E1 mode or no internal termination for E1 or T1 mode. The transmit pulse shape and terminating impedance is  
selected by LTITSR registers. The pulse shapes will be complaint to T1.102 and G.703. Pulse shapes are  
measured for compliance at the appropriate network interface (NI). For T1 long haul and E1, the pulse shape is  
measured at the far end. For T1 short haul, the pulse shape is measured at the near end.  
Figure 8-12. T1/J1 Transmit Pulse Templates  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
T1.102/87, T1.403,  
CB 119 (Oct. 79), &  
I.431 Template  
-0.2  
-0.3  
-0.4  
-0.5  
-500  
-400  
-300  
-200  
-100  
0
100  
200  
300  
400  
500  
600  
700  
TIME (ns)  
DS1 Template (per ANSI T1.403-1995  
DSX-1 Template (per ANSI T1.102-1993  
MAXIMUM CURVE  
MINIMUM CURVE  
MAXIMUM CURVE  
MINIMUM CURVE  
UI  
Time  
Amp.  
UI  
Time  
Amp.  
UI  
Time  
Amp.  
UI  
Time  
Amp.  
-0.77  
-0.39  
-0.27  
-0.27  
-0.12  
0.00  
0.27  
0.35  
0.93  
1.16  
-500  
-255  
-175  
-175  
-75  
0.05  
0.05  
0.80  
1.15  
1.15  
1.05  
1.05  
-0.07  
0.05  
0.05  
-0.77  
-0.23  
-0.23  
-0.15  
0.00  
0.15  
0.23  
0.23  
0.46  
0.66  
0.93  
1.16  
-500  
-150  
-150  
-100  
0
100  
150  
150  
300  
430  
600  
750  
-0.05  
-0.05  
0.50  
0.95  
0.95  
0.90  
0.50  
-0.45  
-0.45  
-0.20  
-0.05  
-0.05  
-0.77  
-0.39  
-0.27  
-0.27  
-0.12  
0.00  
0.27  
0.34  
0.77  
1.16  
-500  
-255  
-175  
-175  
-75  
0.05  
0.05  
0.80  
1.20  
1.20  
1.05  
1.05  
-0.05  
0.05  
0.05  
-0.77  
-0.23  
-0.23  
-0.15  
0.00  
0.15  
0.23  
0.23  
0.46  
0.61  
0.93  
1.16  
-500  
-150  
-150  
-100  
0
100  
150  
150  
300  
430  
600  
750  
-0.05  
-0.05  
0.50  
0.95  
0.95  
0.90  
0.50  
-0.45  
-0.45  
-0.26  
-0.05  
-0.05  
0
0
175  
225  
600  
750  
175  
225  
600  
750  
78 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Figure 8-13. E1 Transmit Pulse Templates  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
269ns  
G.703  
Template  
194ns  
219ns  
-0.1  
-0.2  
-250  
-200  
-150  
-100  
-50  
0
50  
100  
150  
200  
250  
TIME (ns)  
8.11.2.2  
Transmit Power-Down  
The individual transmitters can be powered down by setting the TPDE bit in the LIU Maintenance Control register  
(LMCR). Note that powering down the transmit LIU results in a high-impedance state for the corresponding TTIP  
and TRING pins.  
When tansmit all ones (AIS) is invoked, continuous ones are transmitted using MCLK as the timing reference. Data  
input from the framer is ignored. AIS can be sent by setting a bit in the LMCR. Transmit all ones will also be sent if  
the corresponding receiver goes into LOS state and the ATAIS bit is set in the LMCR.  
8.11.2.3  
Transmit Short-Circuit Detector/Limiter  
Each transmitter has an automatic short-circuit current limiter that activates when the load resistance is  
approximately 25Ω or less. SCS (LRSR.2) provides a real-time indication of when the current limiter is activated.  
The LIU Latched Status register (LLSR) provides latched versions of the information, which can be used to activate  
an interrupt when enabled via the LSIMR register.  
8.11.2.4  
Transmit Open-Circuit Detector  
The DS26528 can also detect when the TTIP or TRING outputs are open circuited. OCS (LRSR.1) provides a real-  
time indication of when an open circuit is detected. Register LLSR provides latched versions of the information,  
which can be used to activate an interrupt when enabled via the LSIMR register. The open-circuit detect feature is  
not available in T1 CSU operating modes (LBO5, LBO6, and LBO7).  
79 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
8.11.3 Receiver  
The DS26528 contains eight identical receivers. All the receivers are designed to be fully software-selectable for  
E1, T1, and J1 without the need to change any external resistors. The device couples to the receive E1 or T1  
twisted pair (or coaxial cable in 75Ω E1 applications) via a 1:1 or 2:1 transformer. See Table 8-37 for transformer  
details. Receive termination and sensitivity are user configurable. Receive termination is configurable for 75Ω,  
100Ω, 110Ω, or 120Ω termination by setting the appropriate RIMPM[1:0] bits (LRISMR). When using the internal  
termination feature, the resistors labeled Rr in Figure 8-11 should be 60Ω each. If external termination is required,  
the resistors need to be 37.5Ω, 50Ω, or 60Ω each depending on the line impedance. Receive sensitivity is  
configurable by setting the appropriate RSMS[1:0] bits (LRISMR).  
The DS26528 uses a digital clock recovery system. The resultant E1, T1, or J1 clock derived from MCLK is  
multiplied by 16 via an internal PLL and fed to the clock recovery system. The clock recovery system uses the  
clock from the PLL circuit to form a 16 times oversampler, which is used to recover the clock and data. This  
oversampling technique offers outstanding performance to meet jitter tolerance specifications shown in  
Figure 8-15.  
Normally, the clock that is output at the RCLK pin is the recovered clock from the E1 AMI/HDB3 or T1 AMI/B8ZS  
waveform presented at the RTIP and RRING inputs. If the jitter attenuator (LTRCR) is placed in the receive path  
(as is the case in most applications), the jitter attenuator restores the RCLK to an approximate 50% duty cycle. If  
the jitter attenuator is either placed in the transmit path or is disabled, the RCLK output can exhibit slightly shorter  
high cycles of the clock. This is due to the highly oversampled digital clock recovery circuitry. See Table 12-2 for  
more details. When no signal is present at RTIP and RRING, a receive carrier loss (RCL) condition occurs and the  
RCLK is derived from the MCLKT1 or MCLKE1, depending on the operation of the device.  
8.11.3.1  
Receive Level Indicator  
The DS26528 reports the signal strength at RTIP and RRING in approximately 2.5dB increments via RSL[3:0]  
located in the LIU Receive Signal Level register (LRSL). This feature is helpful when trouble shooting line  
performance problems.  
8.11.3.2  
Receive G.703 Section 10 Synchronization Signal  
The DS26528 can receive a 2.048MHz square-wave synchronization clock as specified in Section 10 of ITU-T  
G.703. To use this mode, set the receive G.703 clock-enable bit RG703 (LRISMR.7) found in the LIU Receive  
Impedance and Sensitivity Monitor register (LRISMR).  
8.11.3.3  
Receiver Monitor Mode  
The receive equalizer is equipped with a monitor mode function that is used to overcome the signal attenuation  
caused by the resistive bridge used in monitoring applications. This function allows for a resistive gain of up to  
32dB, along with cable attenuation of 12dB to 30dB as shown in the LIU Receive Impedance and Sensitivity  
Monitor register (LRISMR).  
80 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Figure 8-14. Typical Monitor Application  
PRIMARY  
T1/E1 LINE  
Rm  
T1/E1 TERMINATING  
DEVICE  
Rm  
X
F
M
R
DS26528  
Rt  
MONITOR  
PORT JACK  
SECONDARY T1/E1  
TERMINATING  
DEVICE  
8.11.3.4  
Loss of Signal (LOS)  
The DS26528 uses both the digital and analog loss-detection method in compliance with the latest ANSI T1.231 for  
T1/J1 and ITU-T G.775, or ETS 300 233 for E1 mode of operation.  
Loss of signal (LOS) is detected if the receiver level falls below a threshold analog voltage for certain duration.  
Alternatively, this can be termed as having received “0s” for a certain duration. The signal level and timing duration  
are defined in accordance with the ANSI T1.231, ITU-T G.775, or ETS 300 233 specifications.  
For short-haul mode, the loss-detection thresholds are based on cable loss of 12dB to 18dB for both T1/J1 and E1  
modes. The loss thresholds are selectable based on Table 9-19. For long-haul mode, the LOS detection threshold  
is based on cable loss of 30dB to 38dB for T1/J1 and 30dB to 45dB for E1 mode. Note there is no explicit bit called  
short-haul mode selection. Loss declaration level is set at 3dB lower that the maximum sensitivity setting  
programmed in Table 9-19.  
The loss state is exited when the receiver detects a certain ones density at the maximum sensitivity level or higher,  
which is 3dB higher than the loss-detection level. The loss-detection signal level and loss-reset signal level are  
defined with hysteresis to prevent the receiver from bouncing between “LOS” and “no LOS” states. Table 8-38  
outlines the specifications governing the loss function.  
Table 8-38. ANSI T1.231, ITU-T G.775, and ETS 300 233 Loss Criteria Specifications  
STANDARD  
ITU-T G.775  
CRITERIA  
ANSI T1.231  
ETS 300 233  
No pulses are detected for a  
duration of 2048-bit periods or  
1ms.  
No pulses are detected for 175 No pulses are detected for  
Loss  
Detection  
±75 bits.  
duration of 10 to 255-bit  
periods.  
Loss is terminated if a duration The incoming signal has  
Loss reset criteria are not  
defined.  
of 12.5% ones are detected  
over duration of 175 ±75 bits.  
Loss is not terminated if 8  
transitions for duration of 10 to  
255-bit periods.  
Loss Reset consecutive zeros are found if  
B8ZS encoding is used. If  
B8ZS is not used, loss is not  
terminated if 100 consecutive  
pulses are zero.  
81 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
8.11.3.5  
ANSI T1.231 for T1 and J1 Modes  
For short-haul mode, loss is declared if the received signal level is 3dB lower from the programmed value (based  
on Table 9-19) for a duration of 192-bit periods. Hence, if the sensitivity is programmed to be 12dB, loss will be  
declared at 15dB. LOS is reset if the following criteria are met:  
1) 24 or more ones are detected in 192-bit period with a programmed sensitivity level measured at RTIP and  
RRING.  
2) During the 192 bits, fewer than 100 consecutive zeros are detected.  
For long-haul mode, loss is detected if the received signal level is 3dB lower from the programmed value (based on  
Table 9-19) for a duration of 192-bit periods. Hence, if the sensitivity is programmed at 30dB, loss declaration level  
will be 33dB. LOS is reset if the following criteria are met:  
1) 24 or more ones are detected in 192-bit period with a programmed sensitivity level measured at RTIP and  
RRING.  
2) During the 192 bits, fewer than 100 consecutive zeros are detected.  
8.11.3.6  
ITU-T G.775 for E1 Modes  
For short-haul mode, loss is declared if the received signal level is 3dB lower from the programmed value (based  
on Table 9-19) for a duration of 192-bit periods. Hence, if the sensitivity is programmed to be 12dB, loss will be  
declared at 15dB. LOS is reset if the receive signal level is greater than or equal to the programmed sensitivity  
level for a duration of 192-bit periods.  
For long-haul mode, loss is detected if the received signal level is 3dB lower from the programmed value (based on  
Table 9-19) for a duration of 192-bit periods. Hence, if the sensitivity is programmed at 30dB, loss declaration level  
will be 33dB. LOS is reset if the receive signal level is greater than or equal to the programmed sensitivity level for  
a duration of 192-bit periods.  
8.11.3.7  
ETS 200 233 for E1 Modes  
For short-haul mode, loss is declared if the received signal level is 3dB lower from the programmed value (based  
on Table 9-19) continuous duration of 2048-bit periods (1ms). LOS is reset if the receive signal level is greater than  
or equal to programmed sensitivity level for a duration of 192-bit periods.  
For long-haul mode, loss is declared if the received signal level is 3dB lower from the programmed value (based on  
Table 9-19) continuous duration of 2048-bit periods (1ms). LOS is reset if the receive signal level is greater than or  
equal to the programmed sensitivity level for a duration of 192-bit periods.  
82 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
8.11.4 Jitter Attenuator  
The DS26528 contains a jitter attenuator for each LIU that can be set to a depth of 32 or 128 bits via the JADS  
(LTRCR.4) bit in the LIU Transmit Receive Control register (LTRCR).  
The 128-bit mode is used in applications where large excursions of wander are expected. The 32-bit mode is used  
in delay-sensitive applications. The characteristics of the attenuation are shown in Figure 8-15. The jitter attenuator  
can be placed in either the receive path, the transmit path, or disabled by appropriately setting the JAPS1 and  
JAPS0 bits in LTRCR.  
For the jitter attenuator to operate properly, a 2.048MHz, 1.544MHz, or a multiple of up to 8x clock must be applied  
at MCLK. See the Global Transceiver Clock Control register (GTCCR) for MCLK options. ITU-T specification G.703  
requires an accuracy of ±50ppm for both T1/J1 and E1 applications. TR62411 and ANSI specs require an accuracy  
of ±32ppm for T1/J1 interfaces. Circuitry adjusts either the recovered clock from the clock/data recovery block or  
the clock applied at the TCLK pin to create a smooth jitter-free clock, which is used to clock data out of the jitter  
attenuator FIFO. It is acceptable to provide a gapped/bursty clock at the TCLK pin if the jitter attenuator is placed in  
the transmit side. If the incoming jitter exceeds either 120UIP-P (buffer depth is 128 bits) or 28UIP-P (buffer depth is  
32 bits), the DS26528 sets the jitter attenuator limit trip set (JALTS) bit in the LIU Latched Status register (LLSR.3).  
In T1/J1 mode, the jitter attenuator corner frequency is 3.75Hz and in E1 mode it is 0.6Hz.  
The DS26528 jitter attenuator is complaint with the following specifications shown in Table 8-39.  
Table 8-39. Jitter Attenuator Standards Compliance  
STANDARD  
ITU-T I.431, G.703, G.736, G.823  
ETS 300 011, TBR 12/13  
AT&T TR62411, TR43802  
TR-TSY-009, TR-TSY-253, TR-TSY-499  
Figure 8-15. Jitter Attenuation  
0dB  
ITU G.7XX  
TBR12  
Prohibited  
Area  
Prohibited Area  
-20dB  
-40dB  
-60dB  
E1  
T1  
TR 62411 (Dec. 90)  
Prohibited Area  
1
10  
100  
1K  
10K  
100K  
FREQUENCY (Hz)  
83 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
8.11.5 LIU Loopbacks  
The DS26528 provides four LIU loopbacks for diagnostic purposes: analog loopback, local loopback, remote  
loopback, and dual loopback. In the loopback diagrams that follow, TSER, TCLK, RSER, and RCLK are  
inputs/outputs from the framer. Note that the framer input/output can be in IBO mode where a single TSER/RSER  
can be shared by up to eight framers.  
8.11.5.1  
Analog Loopback  
The analog output of the transmitter TTIP and TRING is looped back to RTIP and RRING of the receiver. Data at  
RTIP and RRING is ignored in analog loopback. This is shown in Figure 8-16.  
Figure 8-16. Analog Loopback  
OPTIONAL  
JITTER  
ATTENUATOR  
TCLK  
TSER  
TRANSMIT  
DIGITAL  
TRANSMIT  
ANALOG  
TRANSMIT  
FRAMER  
LINE  
DRIVER  
OPTIONAL  
JITTER  
ATTENUATOR  
RTIP  
RECEIVE  
ANALOG  
RCLK  
RSER  
RECEIVE  
DIGITAL  
RECEIVE  
FRAMER  
RRING  
8.11.5.2  
Local Loopback  
The transmit system data (the internal signals TPOS, TNEG, and TCLK) is looped back to receive-side inputs to  
the receive jitter attenuator. The data is also output on TTIP and TRING. Signals at RTIP and RRING are ignored.  
Signals at RTIP and RRING are ignored. This loopback is conceptually shown in Figure 8-17.  
Figure 8-17. Local Loopback  
TCLK  
TSER  
TTIP  
TRANSMIT  
FRAMER  
OPTIONAL  
JITTER  
ATTENUATOR  
TRANSMIT  
DIGITAL  
TRANSMIT  
ANALOG  
LINE  
DRIVER  
TRING  
RCLK  
RSER  
OPTIONAL  
JITTER  
ATTENUATOR  
RTIP  
RECEIVE  
FRAMER  
RECEIVE  
DIGITAL  
RECEIVE  
ANALOG  
RRING  
84 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
8.11.5.3  
Remote Loopback  
The outputs decoded from the receive LIU are looped back to the transmit LIU. The inputs from the transmit framer  
are ignored during a remote loopback. This loopback is conceptually shown in Figure 8-18.  
Figure 8-18. Remote Loopback  
TCLK  
TSER  
TTIP  
TRANSMIT  
DIGITAL  
OPTIONAL JITTER  
TRANSMIT  
TRANSMIT  
ATTENUATOR  
ANALOG  
FRAMER  
LINE  
DRIVER  
TRING  
RCLK  
RECEIVE  
RECEIVE  
RTIP  
DIGITAL  
ANALOG  
RECEIVE  
OPTIONAL JITTER  
ATTENUATOR  
FRAMER  
RSER  
RRING  
8.11.5.4  
Dual Loopback  
The inputs decoded from the receive LIU are looped back to the transmit LIU. The inputs from the transmit framer  
are looped back to the receiver with the optional jitter attenuator. This loopback is invoked if RLB and LLB are both  
set in the LIU Maintenance Control register (LMCR). This loopback is conceptually shown in Figure 8-19.  
Figure 8-19. Dual Loopback  
TTIP  
TCLK  
OPTIONAL  
JITTER  
ATTENUATOR  
TRANSMIT  
FRAMER  
LINE  
DRIVER  
TRANSMIT  
DIGITAL  
TRANSMIT  
ANALOG  
TSER  
TRING  
RCLK  
RSER  
RTIP  
OPTIONAL  
JITTER  
ATTENUATOR  
RECEIVE  
DIGITAL  
RECEIVE  
ANALOG  
RECEIVE  
FRAMER  
RRING  
85 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
8.12 Bit-Error-Rate Test (BERT) Function  
The bit-error-rate tester (BERT) block can generate and detect both pseudorandom and repeating bit patterns. It is  
used to test and stress data-communication links. BERT functionality is dedicated for each of the transceivers.  
Table 8-40 shows the registers related to the configure, control, and status of the BERT.  
Table 8-40. Registers Related to BERT Configure, Control, and Status  
FRAMER  
ADDRESSES  
REGISTER  
FUNCTION  
Global BERT Interrupt Status Register  
(GBISR)  
When any of the 8 BERTs issue an interrupt, a  
bit is set.  
0FAh  
Global BERT Interrupt Mask Register  
(GBIMR)  
Receive Expansion Port Control Register  
(RXPC)  
Receive BERT Port Bit Suppress Register  
(RBPBS)  
When any of the 8 BERTs issue an interrupt, a  
bit is set.  
0FDh  
08Ah  
08Bh  
Enable for the receiver BERT.  
Bit suppression for the receive BERT.  
Receive BERT Port Channel Select  
Registers 1 to 4 (RBPCS1:RBPCS4)  
Transmit Expansion Port Control Register  
(TXPC)  
0D4h, 0D5h, 0D6h, Channels to be enabled for the framer to  
0D7h  
accept data from the BERT pattern generator.  
18Ah  
Enable for the transmitter BERT  
Transmit BERT Port Bit Suppress  
Register (TBPBS)  
18Bh  
Bit suppression for the transmit BERT  
Channels to be enabled for the framer to  
accept data from the transmit BERT pattern  
generator.  
Transmit BERT Port Channel Select  
Registers 1 to 4 (TBPCS1:TBPCS4)  
1D4h, 1D5h, 1D6h,  
1D7h  
BERT Alternating Word Count Rate  
Register (BAWC)  
BERT Repetitive Pattern Set Register 1  
(BRP1)  
BERT Repetitive Pattern Set Register 2  
(BRP2)  
BERT Repetitive Pattern Set Register 3  
(BRP3)  
1100h  
1101h  
1102h  
1103h  
1104h  
1105h  
1106h  
1107h  
BERT alternating pattern count register.  
BERT repetitive pattern set register 1.  
BERT repetitive pattern set register 2.  
BERT repetitive pattern set register 3.  
BERT repetitive pattern set register 4.  
Pattern selection and miscellaneous control.  
BERT bit pattern length control.  
BERT Repetitive Pattern Set Register 4  
(BRP4)  
BERT Control Register 1 (BC1)  
BERT Control Register 2 (BC2)  
BERT Bit Count Register 1 (BBC1)  
BERT bit counter—increments for BERT bit  
clocks.  
BERT Bit Count Register 2 (BBC2)  
BERT Bit Count Register 3 (BBC3)  
BERT Bit Count Register 4 (BBC4)  
BERT Error Count Register 1 (BEC1)  
BERT Error Count Register 2 (BEC2)  
BERT Error Count Register 3 (BEC3)  
1108h  
1109h  
110Ah  
110Bh  
110Ch  
110Dh  
BERT bit counter.  
BERT bit counter.  
BERT bit counter.  
BERT error counter.  
BERT error counter.  
BERT error counter.  
BERT status registers—denotes  
synchronization loss and other status.  
BERT Latched Status Register (BLSR)  
110Eh  
110Fh  
BERT Status Interrupt Mask Register  
(BSIM)  
BERT Interrupt mask.  
Note: The addresses shown are for Framer 1.Addresses for Framers 2 to 8 can be calculated using the following framer: Framer n = (Framer 1  
address + (n - 1) x 200h); where n = 2 to 8 for Framers 2 to 8.  
86 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
The BERT block can generate and detect the following patterns:  
The pseudorandom patterns 2E7-1, 2E9-1, 2E11-1, 2E15-1, and QRSS  
A repetitive pattern from 1 to 32 bits in length  
Alternating (16-bit) words that flip every 1 to 256 words  
Daly pattern  
The BERT function must be enabled and configured in the TXPC and RXPC registers for each port. The BERT can  
then be assigned on a per-channel basis for both the transmitter and receiver, using the special per-channel  
function in the TBPCS1:TBPCS4 and RBCS1:RBCS4 registers. Individual bit positions within the channels can be  
suppressed with the TBPBS and RBPBS registers. Using combinations of these functions, the BERT pattern can  
be transmitted and/or received in single or across multiple DS0s, contiguous or broken. Transmit and receive  
bandwidth assignments are independent of each other.  
The BERT receiver has a 32-bit bit counter and a 24-bit error counter. The BERT receiver can generate interrupts  
on: a change in receive-synchronizer status, receive all zeros, receive all ones, error counter overflow, bit counter  
overflow, and bit error detection. Interrupts from each of these events can be masked within the BERT function via  
the BERT Status Interrupt Mask register (BSIM). If the software detects that the BERT has reported an event, then  
the software must read the BERT Latched Status register (BLSR) to determine which event(s) has occurred.  
8.12.1 BERT Repetitive Pattern Set  
These registers must be properly loaded for the BERT to generate and synchronize to a repetitive pattern, a  
pseudorandom pattern, alternating word pattern, or a Daly pattern. For a repetitive pattern that is fewer than 32  
bits, the pattern should be repeated so that all 32 bits are used to describe the pattern. For example, if the pattern  
was the repeating 5-bit pattern …01101… (where the rightmost bit is the one sent first and received first), then  
BRP1 should be loaded with ADh, BRP2 with B5h, BRP3 with D6h, and BRP4 should be loaded with 5Ah. For a  
pseudorandom pattern, all four registers should be loaded with all ones (i.e., FFh). For an alternating word pattern,  
one word should be placed into BRP1 and BRP2 and the other word should be placed into BRP3 and BRP4. For  
example, if the DDS stress pattern “7E” is to be described, the user would place 00h in BRP1, 00h in BRP2, 7Eh in  
BRP3, and 7Eh in BRP4, and the alternating word counter would be set to 50 (decimal) to allow 100 bytes of 00h  
followed by 100 bytes of 7Eh to be sent and received.  
8.12.2 BERT Error Counter  
Once the BERT has achieved synchronization, this 24-bit counter will increment for each data bit received in error.  
Toggling the LC control bit in BC1 can clear this counter. This counter saturates when full and will set the BECO  
status bit in the BLSR register.  
87 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
9.  
DEVICE REGISTERS  
Thirteen address bits are used to control the settings of the registers. The address map is compatible with the  
Dallas Semiconductor octal framer product, DS26401, as well as the DS26521, DS26522, and DS26524.  
The registers control functions of the framers, LIU, and BERT within the DS26528. The map is divided into eight  
framers, followed by eight LIUs and eight BERTs. Global registers (applicable to all eight transceivers and BERTs)  
are located within the address space of Framer 1.  
The bulk write mode is a special mode to write all eight transceivers with one write command (see the GTCR1  
register). Figure 9-1 shows the register map.  
The register details are provided in the following tables. The framer registers bits are provided for Framer 0, and  
address bits A[11:8] determine the framer addressed.  
9.1  
Register Listings  
Table 9-1. Register Address Ranges (in Hex)  
GLOBAL  
REGISTERS  
RECEIVE  
FRAMER  
TRANSMIT  
FRAMER  
CHANNEL  
LIU  
BERT  
00F0–00FF  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
CH8  
0000–00EF  
0200–02EF  
0400–04EF  
0600–06EF  
0800–08EF  
0A00–0AEF  
0C00–0CEF  
0E00–0EEF  
0100–01EF  
0300–03EF  
0500–05EF  
0700–07EF  
0900–09EF  
0B00–0BEF  
0D00–0DEF  
0F00–0FEF  
1000–101F  
1020–103F  
1040–105F  
1060–107F  
1080–109F  
10A0–10BF  
10C0–10DF  
10E0–10FF  
1100–110F  
1110–111F  
1120–112F  
1130–113F  
1140–114F  
1150–115F  
1160–116F  
1170–117F  
88 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Figure 9-1. Register Memory Map for the DS26528  
000  
0EF  
0F0  
Adrs = 0000 0000 0000  
Framer 1 Rx Regs  
240 Regs  
Adrs = 0000 1111 0000  
Global Registers  
0FF  
100  
Adrs = 0001 0000 0000  
Adrs = 0001 1111 0000  
Adrs = 0010 0000 0000  
Framer 1 Tx Regs 240 Regs  
Reserved  
1EF  
1F0  
1FF  
200  
Framer 2 Regs  
Framer 3 Regs  
3FF  
400  
Adrs = 0100 0000 0000  
Adrs = 0101 1111 1111  
Adrs = 0110 0000 0000  
5FF  
600  
Framer 4 Regs  
Framer 5 Regs  
Adrs = 0111 1111 1111  
Adrs = 1000 0000 0000  
7FF  
800  
Adrs = 01001 1111 1111  
Adrs = 01010 0000 0000  
9FF  
A00  
Framer 6 Regs  
Framer 7 Regs  
Adrs = 01011 1111 1111  
Adrs = 01100 0000 0000  
BFF  
C00  
Adrs = 01101 1111 1111  
Adrs = 01110 0000 0000  
DFF  
E00  
Framer 8 Regs  
LIU Regs  
Adrs = 01111 1111 1111  
Adrs = 10000 0000 0000  
FFF  
1000  
10FF  
1100  
Adrs = 10000 1111 1111  
Adrs = 10001 0000 0000  
BERT  
117F  
1FFF  
Adrs = 10001 0111 1111  
Adrs = 11111 1111 1111  
Reserved  
89 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
9.1.1 Global Register List  
Table 9-2. Global Register List  
GLOBAL REGISTER LIST  
DESCRIPTION  
ADDRESS  
0F0h  
0F1h  
0F2h  
0F3h  
0F4h  
0F5h  
0F6h  
0F7h  
0F8h  
0F9h  
0FAh  
0FBh  
0FCh  
0FDh  
0FEh  
01Fh  
NAME  
GTCR1  
GFCR  
GTCR2  
GTCCR  
R/W  
R/W  
R/W  
R/W  
Global Transceiver Control Register 1  
Global Framer Control Register  
Global Transceiver Control Register 2  
Global Transceiver Clock Control Register  
Reserved  
R/W  
GLSRR  
GFSRR  
Global LIU Software Reset Register  
Global Framer and BERT Software Reset Register  
Reserved  
R/W  
R/W  
IDR  
Device Identification Register  
Global Framer Interrupt Status Register  
Global BERT Interrupt Status Register  
Global LIU Interrupt Status Register  
Global Framer Interrupt Mask Register  
Global BERT Interrupt Mask Register  
Global LIU Interrupt Mask Register  
Reserved  
R
GFISR  
GBISR  
GLISR  
GFIMR  
GBIMR  
GLIMR  
R
R
R
R/W  
R/W  
R/W  
Note 1:  
Note 2:  
Reserved registers should only be written with all zeros.  
The global registers are located in the framer address space. The corresponding address space for the other seven framers is  
“Reserved,” and should be initialized with all zeros for proper operation.  
90 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
9.1.2 Framer Register List  
Table 9-3. Framer Register List  
Note: Only the Framer 1 address is presented here.The same set of register definitions applies for Transceiver 2 to 8 in accordance with the  
DS26528 map offsets. Transceiver offset is (n - 1) x 200 hex, where n designates the transceiver in question.  
FRAMER REGISTER LIST  
ADDRESS  
NAME  
DESCRIPTION  
R/W  
000h–00Fh  
010h  
RHC  
RHBSE  
RDS0SEL  
RSIGC  
Reserved  
Receive HDLC Control Register  
Receive HDLC Bit Suppress Register  
Receive Channel Monitor Select Register  
Receive-Signaling Control Register  
R/W  
R/W  
R/W  
R/W  
011h  
012h  
013h  
T1RCR2  
E1RSAIMR  
T1RBOCC  
Receive Control Register 2 (T1 Mode)  
014h  
R/W  
Receive Sa-Bit Interrupt Mask Register (E1 Mode)  
Receive BOC Control Register (T1 Mode Only)  
Reserved  
Receive Idle Code Definition Register 1  
Receive Idle Code Definition Register 2  
Receive Idle Code Definition Register 3  
Receive Idle Code Definition Register 4  
Receive Idle Code Definition Register 5  
Receive Idle Code Definition Register 6  
015h  
016h–01Fh  
020h  
021h  
022h  
023h  
024h  
025h  
026h  
027h  
028h  
029h  
02Ah  
02Bh  
02Ch  
02Dh  
02Eh  
02Fh  
030h  
031h  
032h  
033h  
034h  
035h  
036h  
037h  
R/W  
RIDR1  
RIDR2  
RIDR3  
RIDR4  
RIDR5  
RIDR6  
RIDR7  
RIDR8  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Receive Idle Code Definition Register 7  
Receive Idle Code Definition Register 8  
Receive Idle Code Definition Register 9  
RIDR9  
RIDR10  
RIDR11  
RIDR12  
RIDR13  
RIDR14  
RIDR15  
RIDR16  
RIDR17  
RIDR18  
RIDR19  
RIDR20  
RIDR21  
RIDR22  
RIDR23  
RIDR24  
T1RSAOI1  
RIDR25  
T1RSAOI2  
RIDR26  
T1RSAOI3  
RIDR27  
RIDR28  
T1RDMWE1  
RIDR29  
T1RDMWE2  
RIDR30  
T1RDMWE3  
RIDR31  
Receive Idle Code Definition Register 10  
Receive Idle Code Definition Register 11  
Receive Idle Code Definition Register 12  
Receive Idle Code Definition Register 13  
Receive Idle Code Definition Register 14  
Receive Idle Code Definition Register 15  
Receive Idle Code Definition Register 16  
Receive Idle Code Definition Register 17  
Receive Idle Code Definition Register 18  
Receive Idle Code Definition Register 19  
Receive Idle Code Definition Register 20  
Receive Idle Code Definition Register 21  
Receive Idle Code Definition Register 22  
Receive Idle Code Definition Register 23  
Receive Idle Code Definition Register 24  
Receive-Signaling All-Ones Insertion Register 1 (T1 Mode Only)  
Receive Idle Code Definition Register 25 (E1 Mode)  
Receive-Signaling All-Ones Insertion Register 2 (T1 Mode Only)  
Receive Idle Code Definition Register 26 (E1 Mode)  
Receive-Signaling All-Ones Insertion Register 3 (T1 Mode Only)  
Receive Idle Code Definition Register 27 (E1 Mode)  
Receive Idle Code Definition Register 28 (E1 Mode)  
T1 Receive Digital Milliwatt Enable Register 1 (T1 Mode Only)  
Receive Idle Code Definition Register 29 (E1 Mode)  
T1 Receive Digital Milliwatt Enable Register 2 (T1 Mode Only)  
Receive Idle Code Definition Register 30 (E1 Mode)  
T1 Receive Digital Milliwatt Enable Register 3 (T1 Mode Only)  
Receive Idle Code Definition Register 31 (E1 Mode)  
038h  
039h  
R/W  
R/W  
03Ah  
03B  
R/W  
03C  
R/W  
03Dh  
03Eh  
R/W  
R/W  
91 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
FRAMER REGISTER LIST  
DESCRIPTION  
ADDRESS  
NAME  
R/W  
03Fh  
040h  
041h  
042h  
043h  
044h  
045h  
046h  
047h  
048h  
049h  
04Ah  
04Bh  
04Ch  
04Dh  
04Eh  
04Fh  
050h  
051h  
052h  
053h  
054h  
055h  
056h  
057h  
058h–05Fh  
060h  
061h  
RIDR32  
RS1  
RS2  
RS3  
RS4  
RS5  
RS6  
RS7  
RS8  
RS9  
RS10  
RS11  
RS12  
RS13  
RS14  
RS15  
RS16  
LCVCR1  
LCVCR2  
PCVCR1  
PCVCR2  
FOSCR1  
FOSCR2  
E1EBCR1  
E1EBCR2  
RDS0M  
E1RFRID  
T1RFDL  
E1RRTS7  
T1RBOC  
T1RSLC1  
E1RAF  
T1RSLC2  
E1RNAF  
T1RSLC3  
E1RSiAF  
E1RSiNAF  
E1RRA  
E1RSa4  
E1RSa5  
E1RSa6  
E1RSa7  
E1RSa8  
SaBITS  
Sa6CODE  
Receive Idle Code Definition Register 32 (E1 Mode)  
Receive-Signaling Register 1  
Receive-Signaling Register 2  
Receive-Signaling Register 3  
Receive-Signaling Register 4  
Receive-Signaling Register 5  
Receive-Signaling Register 6  
Receive-Signaling Register 7  
Receive-Signaling Register 8  
Receive-Signaling Register 9  
Receive-Signaling Register 10  
Receive-Signaling Register 11  
Receive-Signaling Register 12  
Receive-Signaling Register 13 (E1 Mode only)  
Receive-Signaling Register 14 (E1 Mode only)  
Receive-Signaling Register 15 (E1 Mode only)  
Receive-Signaling Register 16 (E1 Mode only)  
Line Code Violation Count Register 1  
Line Code Violation Count Register 2  
Path Code Violation Count Register 1  
Path Code Violation Count Register 2  
Frames Out of Sync Count Register 1  
Frames Out of Sync Count Register 2  
E-Bit Counter 1 (E1 Mode Only)  
E-Bit Counter 2 (E1 Mode Only)  
Reserved  
Receive DS0 Monitor Register  
Receive Firmware Revision ID Register (E1 Mode Only)  
Receive FDL Register (T1 Mode)  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
062h  
063h  
064h  
R
R
R
Receive Real-Time Status Register 7 (E1 Mode)  
Receive BOC Register (T1 Mode)  
Receive SLC-96 Data Link Register 1 (T1 Mode)  
E1 Receive Align Frame Register (E1 Mode)  
Receive SLC-96 Data Link Register 2 (T1 Mode)  
E1 Receive Non-Align Frame Register (E1 Mode)  
Receive SLC-96 Data Link Register 3 (T1 Mode)  
E1 Received Si Bits of the Align Frame Register (E1 Mode)  
Received Si Bits of the Non-Align Frame Register (E1 Mode)  
Received Remote Alarm Register (E1 Mode)  
E1 Receive Sa4 Bits Register (E1 Mode Only)  
E1 Receive Sa5 Bits Register (E1 Mode Only)  
E1 Receive Sa6 Bits Register (E1 Mode Only)  
E1 Receive Sa7 Bits Register (E1 Mode Only)  
Receive Sa8 Bits Register (E1 Mode Only)  
E1 Receive SaX Bits Register  
Received Sa6 Codeword Register  
Reserved  
Receive Master Mode Register  
Receive Control Register 1 (T1 Mode)  
Receive Control Register 1 (E1 Mode)  
Receive In-Band Code Control Register (T1 Mode)  
Receive Control Register 2 (E1 Mode)  
065h  
066h  
R
R
067h  
068h  
069h  
06Ah  
06Bh  
06Ch  
06Dh  
06Eh  
06Fh  
R
R
R
R
R
R
R
R
R
070h–07Fh  
080h  
R/W  
RMMR  
RCR1  
RCR1  
T1RIBCC  
E1RCR2  
081h  
082h  
R/W  
R/W  
92 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
FRAMER REGISTER LIST  
DESCRIPTION  
ADDRESS  
NAME  
R/W  
083h  
084h  
085h  
086h  
087h  
088h  
089h  
08Ah  
08B  
RCR3  
RIOCR  
RESCR  
ERCNT  
RHFC  
RIBOC  
T1RSCC  
RXPC  
RBPBS  
RLS1  
RLS2  
RLS3  
RLS4  
RLS5  
Receive Control Register 3  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Receive I/O Configuration Register  
Receive Elastic Store Control Register  
Error-Counter Configuration Register  
Receive HDLC FIFO Control Register  
Receive Interleave Bus Operation Control Register  
In-Band Receive Spare Control Register (T1 Mode Only)  
Receive Expansion Port Control Register  
Receive BERT Port Bit Suppress Register  
Reserved  
Receive Latched Status Register 1  
Receive Latched Status Register 2  
Receive Latched Status Register 3  
Receive Latched Status Register 4  
08Ch–08Fh  
090h  
091h  
092h  
093  
094h  
Receive Latched Status Register 5 (HDLC)  
Reserved  
095h  
RLS7  
RLS7  
RSS1  
RSS2  
RSS3  
RSS4  
T1RSCD1  
T1RSCD2  
Receive Latched Status Register 7 (T1 Mode)  
Receive Latched Status Register 7 (E1 Mode)  
Reserved  
Receive-Signaling Status Register 1  
Receive-Signaling Status Register 2  
Receive-Signaling Status Register 3  
Receive-Signaling Status Register 4 (E1 Mode Only)  
Receive Spare Code Definition Register 1 (T1 Mode Only)  
Receive Spare Code Definition Register 2 (T1 Mode Only)  
Reserved  
Receive Interrupt Information Register  
Receive Interrupt Mask Register 1  
Receive Interrupt Mask Register 2 (E1 Mode Only)  
Receive Interrupt Mask Register 3 (T1 Mode)  
Receive Interrupt Mask Register 3 (E1 Mode)  
Receive Interrupt Mask Register 4  
096h  
R/W  
097h  
098h  
099h  
09Ah  
09Bh  
09Ch  
09Dh  
09Eh  
09Fh  
0A0h  
0A1h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RIIR  
RIM1  
RIM2  
RIM3  
RIM3  
RIM4  
RIM5  
0A2h  
R/W  
0A3h  
0A4h  
0A5h  
0A6h  
0A7h  
0A8h  
0A9h  
0AAh  
0ABh  
0ACh  
0ADh  
0AEh  
0AFh  
0B0h  
0B1h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Receive Interrupt Mask Register 5 (HDLC)  
Reserved  
Receive Interrupt Mask Register 7 (T1 Mode)  
Reserved  
RIM7  
RSCSE1  
RSCSE2  
RSCSE3  
RSCSE4  
T1RUPCD1  
T1RUPCD2  
T1RDNCD1  
T1RDNCD2  
RRTS1  
Receive-Signaling Change of State Enable Register 1  
Receive-Signaling Change of State Enable Register 2  
Receive-Signaling Change of State Enable Register 3  
Receive-Signaling Change of State Enable Register 4 (E1 Mode Only)  
Receive Up Code Definition Register 1 (T1 Mode Only)  
Receive Up Code Definition Register 2 (T1 Mode Only)  
Receive Down Code Definition Register 1 (T1 Mode Only)  
Receive Down Code Definition Register 2 (T1 Mode Only)  
Receive Real-Time Status Register 1  
Reserved  
RRTS3  
RRTS3  
RRTS5  
RHPBA  
RHF  
Receive Real-Time Status Register 3 (T1 Mode)  
Receive Real-Time Status Register 3 (E1 Mode)  
Reserved  
Receive Real-Time Status Register 5 (HDLC)  
Receive HDLC Packet Bytes Available Register  
Receive HDLC FIFO Register  
0B2h  
R
0B3h  
0B4h  
0B5h  
0B6h  
R
R
R
93 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
FRAMER REGISTER LIST  
DESCRIPTION  
ADDRESS  
NAME  
R/W  
0B7h–0BFh  
0C0h  
RBCS1  
RBCS2  
RBCS3  
RBCS4  
RCBR1  
RCBR2  
RCBR3  
RCBR4  
RSI1  
Reserved  
Receive Blank Channel Select Register 1  
Receive Blank Channel Select Register 2  
Receive Blank Channel Select Register 3  
Receive Blank Channel Select Register 4 (E1 Mode Only)  
Receive Channel Blocking Register 1  
R/W  
R/W  
R/W  
0C1h  
0C2h  
0C3h  
0C4h  
0C5h  
0C6h  
0C7h  
0C8h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Receive Channel Blocking Register 2  
Receive Channel Blocking Register 3  
Receive Channel Blocking Register 4 (E1 Mode Only)  
Receive-Signaling Reinsertion Enable Register 1  
Receive-Signaling Reinsertion Enable Register 2  
Receive-Signaling Reinsertion Enable Register 3  
Receive-Signaling Reinsertion Enable Register 4 (E1 Mode Only)  
Receive Gapped Clock Channel Select Register 1  
Receive Gapped Clock Channel Select Register 2  
Receive Gapped Clock Channel Select Register 3  
Receive Gapped Clock Channel Select Register (E1 Mode Only)  
Receive Channel Idle Code Enable Register 1  
Receive Channel Idle Code Enable Register 2  
Receive Channel Idle Code Enable Register 3  
Receive Channel Idle Code Enable Register 4 (E1 Mode Only)  
Receive BERT Port Channel Select Register 1  
Receive BERT Port Channel Select Register 2  
Receive BERT Port Channel Select Register 3  
Receive BERT Port Channel Select Register 4 (E1 Mode Only)  
Reserved  
0C9h  
RSI2  
RSI3  
RSI4  
0CAh  
0CBh  
0CCh  
0CDh  
0CEh  
0CFh  
0D0h  
0D1h  
0D2h  
0D3h  
0D4h  
RGCCS1  
RGCCS2  
RGCCS3  
RGCCS4  
RCICE1  
RCICE2  
RCICE3  
RCICE4  
RBPCS1  
RBPCS2  
RBPCS3  
RBPCS4  
0D5h  
0D6h  
0D7h  
0D8h–0EFh  
Global  
Registers  
(Section 9.3)  
See the Global Register list in Table 9-2. Note that this space is  
“Reserved” in Framers 2 to 8.  
0F0h–0FFh  
R/W  
100h–10Fh  
110h  
Reserved  
THC1  
THBSE  
Transmit HDLC Control Register 1  
Transmit HDLC Bit Suppress Register  
Reserved  
R/W  
R/W  
111h  
112h  
113h  
114h  
115h–117h  
118h  
THC2  
E1TSACR  
Transmit HDLC Control Register 2  
E1 Transmit Sa-Bit Control Register (E1 Mode)  
Reserved  
Software-Signaling Insertion Enable Register 1  
Software-Signaling Insertion Enable Register 2  
Software-Signaling Insertion Enable Register 3  
Software-Signaling Insertion Enable Register 4 (E1 Mode Only)  
Reserved  
Transmit Idle Code Definition Register 1  
Transmit Idle Code Definition Register 2  
Transmit Idle Code Definition Register 3  
Transmit Idle Code Definition Register 4  
Transmit Idle Code Definition Register 5  
Transmit Idle Code Definition Register 6  
Transmit Idle Code Definition Register 7  
Transmit Idle Code Definition Register 8  
Transmit Idle Code Definition Register 9  
Transmit Idle Code Definition Register 10  
Transmit Idle Code Definition Register 11  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
SSIE1  
SSIE2  
SSIE3  
SSIE4  
TIDR1  
TIDR2  
TIDR3  
TIDR4  
TIDR5  
TIDR6  
TIDR7  
TIDR8  
TIDR9  
TIDR10  
TIDR11  
119h  
11Ah  
11Bh  
11Ch–11Fh  
120h  
121h  
122h  
123h  
124h  
125h  
126h  
127h  
128h  
129h  
12Ah  
94 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
FRAMER REGISTER LIST  
DESCRIPTION  
ADDRESS  
NAME  
R/W  
12Bh  
12Ch  
12Dh  
12Eh  
12Fh  
130h  
131h  
132h  
133h  
134h  
135h  
136h  
137h  
138h  
139h  
13Ah  
13Bh  
13Ch  
13Dh  
13Eh  
13Fh  
140h  
141h  
142h  
143h  
144h  
145h  
146h  
147h  
148h  
149h  
14Ah  
14Bh  
14Ch  
14Dh  
14Eh  
14Fh  
150h  
151h  
152h  
153h  
154h–160h  
161h  
162h  
163h  
TIDR12  
TIDR13  
TIDR14  
TIDR15  
TIDR16  
TIDR17  
TIDR18  
TIDR19  
TIDR20  
TIDR21  
TIDR22  
TIDR23  
TIDR24  
TIDR25  
TIDR26  
TIDR27  
TIDR28  
TIDR29  
TIDR30  
TIDR31  
TIDR32  
TS1  
TS2  
TS3  
TS4  
TS5  
TS6  
TS7  
TS8  
TS9  
TS10  
TS11  
TS12  
TS13  
TS14  
TS15  
TS16  
TCICE1  
TCICE2  
TCICE3  
TCICE4  
TFRID  
T1TFDL  
T1TBOC  
T1TSLC1  
E1TAF  
T1TSLC2  
E1TNAF  
T1TSLC3  
E1TSiAF  
E1TSiNAF  
Transmit Idle Code Definition Register 12  
Transmit Idle Code Definition Register 13  
Transmit Idle Code Definition Register 14  
Transmit Idle Code Definition Register 15  
Transmit Idle Code Definition Register 16  
Transmit Idle Code Definition Register 17  
Transmit Idle Code Definition Register 18  
Transmit Idle Code Definition Register 19  
Transmit Idle Code Definition Register 20  
Transmit Idle Code Definition Register 21  
Transmit Idle Code Definition Register 22  
Transmit Idle Code Definition Register 23  
Transmit Idle Code Definition Register 24  
Transmit Idle Code Definition Register 25 (E1 Mode Only)  
Transmit Idle Code Definition Register 26 (E1 Mode Only)  
Transmit Idle Code Definition Register 27 (E1 Mode Only)  
Transmit Idle Code Definition Register 28 (E1 Mode Only)  
Transmit Idle Code Definition Register 29 (E1 Mode Only)  
Transmit Idle Code Definition Register 30 (E1 Mode Only)  
Transmit Idle Code Definition Register 31 (E1 Mode Only)  
Transmit Idle Code Definition Register 32 (E1 Mode Only)  
Transmit-Signaling Register 1  
Transmit-Signaling Register 2  
Transmit-Signaling Register 3  
Transmit-Signaling Register 4  
Transmit-Signaling Register 5  
Transmit-Signaling Register 6  
Transmit-Signaling Register 7  
Transmit-Signaling Register 8  
Transmit-Signaling Register 9  
Transmit-Signaling Register 10  
Transmit-Signaling Register 11  
Transmit-Signaling Register 12  
Transmit-Signaling Register 13  
Transmit-Signaling Register 14  
Transmit-Signaling Register 15  
Transmit-Signaling Register 16  
Transmit Channel Idle Code Enable Register 1  
Transmit Channel Idle Code Enable Register 2  
Transmit Channel Idle Code Enable Register 3  
Transmit Channel Idle Code Enable Register 4 (E1 Mode Only)  
Reserved  
Transmit Firmware Revision ID Register  
Transmit FDL Register (T1 Mode Only)  
Transmit BOC Register (T1 Mode Only)  
Transmit SLC-96 Data Link Register 1 (T1 Mode)  
Transmit Align Frame Register (E1 Mode)  
Transmit SLC-96 Data Link Register 2 (T1 Mode)  
Transmit Non-Align Frame Register (E1 Mode)  
Transmit SLC-96 Data Link Register 3 (T1 Mode)  
Transmit Si Bits of the Align Frame Register (E1 Mode)  
Transmit Si Bits of the Non-Align Frame Register (E1 Mode Only)  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
R/W  
R/W  
164h  
165h  
R/W  
R/W  
166h  
167h  
R/W  
R/W  
95 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
FRAMER REGISTER LIST  
DESCRIPTION  
ADDRESS  
NAME  
R/W  
168h  
169h  
16Ah  
16Bh  
16Ch  
E1TRA  
E1TSa4  
E1TSa5  
E1TSa6  
E1TSa7  
E1RSa8  
TMMR  
TCR1  
TCR1  
TCR2  
TCR2  
TCR3  
TIOCR  
TESCR  
TCR4  
THFC  
TIBOC  
TDS0SEL  
TXPC  
TBPBS  
Transmit Remote Alarm Register (E1 Mode)  
Transmit Sa4 Bits Register (E1 Mode Only)  
Transmit Sa5 Bits Register (E1 Mode Only)  
Transmit Sa6 Bits Register (E1 Mode Only)  
Transmit Sa7 Bits Register (E1 Mode Only)  
Receive Sa8 Bits Register (E1 Mode Only)  
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
16Dh  
16Eh–17Fh  
180h  
Transmit Master Mode Register  
R/W  
Transmit Control Register 1 (T1 Mode)  
Transmit Control Register 1 (E1 Mode)  
Transmit Control Register 2 (T1 Mode)  
Transmit Control Register 2 (E1 Mode)  
Transmit Control Register 3  
Transmit I/O Configuration Register  
Transmit Elastic Store Control Register  
Transmit Control Register 4 (T1 Mode Only)  
Transmit HDLC FIFO Control Register  
Transmit Interleave Bus Operation Control Register  
Transmit DS0 Channel Monitor Select Register  
Transmit Expansion Port Control Register  
Transmit BERT Port Bit Suppress Register  
Reserved  
181h  
182h  
R/W  
R/W  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
18Ch–18Dh  
18Eh  
TSYNCC  
Transmit Synchronizer Control Register  
Reserved  
R/W  
18F  
190h  
191h  
192h  
TLS1  
TLS2  
TLS3  
TIIR  
TIM1  
TIM2  
TIM3  
Transmit Latched Status Register 1  
Transmit Latched Status Register 2 (HDLC)  
Transmit Latched Status Register 3 (Synchronizer)  
Reserved  
Transmit Interrupt Information Register  
Transmit Interrupt Mask Register 1  
Transmit Interrupt Mask Register 2 (HDLC)  
Transmit Interrupt Mask Register 3 (Synchronizer)  
Reserved  
Transmit Code Definition Register 1 (T1 Mode Only)  
Transmit Code Definition Register 2 (T1 Mode Only)  
Reserved  
Transmit Real-Time Status Register 2 (HDLC)  
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
193h–19Eh  
19Fh  
1A0h  
1A1h  
1A2h  
1A3h–1ABh  
1ACh  
1ADh  
1AEh–1B0h  
1B1h  
T1TCD1  
T1TCD2  
TRTS2  
1B2h  
1B3h  
1B4h  
TFBA  
THF  
Transmit HDLC FIFO Buffer Available  
Transmit HDLC FIFO Register  
R
W
1B5h–1BhA  
1BBh  
1BCh–1BFh  
1C0h  
TDS0M  
Reserved  
Transmit DS0 Monitor Register  
Reserved  
R
TBCS1  
TBCS2  
TBCS3  
TBCS4  
TCBR1  
TCBR2  
TCBR3  
TCBR4  
THSCS1  
Transmit Blank Channel Select Register 1  
Transmit Blank Channel Select Register 2  
Transmit Blank Channel Select Register 3  
Transmit Blank Channel Select Register 4 (E1 Mode Only)  
Transmit Channel Blocking Register 1  
Transmit Channel Blocking Register 2  
Transmit Channel Blocking Register 3  
Transmit Channel Blocking Register 4 (E1 Mode Only)  
Transmit Hardware-Signaling Channel Select Register 1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1C1h  
1C2h  
1C3h  
1C4h  
1C5h  
1C6h  
1C7h  
1C8h  
96 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
FRAMER REGISTER LIST  
DESCRIPTION  
ADDRESS  
NAME  
R/W  
1C9h  
1CAh  
THSCS2  
THSCS3  
Transmit Hardware-Signaling Channel Select Register 2  
Transmit Hardware-Signaling Channel Select Register 3  
Transmit Hardware-Signaling Channel Select Register 4 (E1 Mode  
Only)  
R/W  
R/W  
1CBh  
THSCS4  
R/W  
1CCh  
1CDh  
1CEh  
1CFh  
1D0h  
1D1h  
1D2h  
1D3h  
1D4h  
TGCCS1  
TGCCS2  
TGCCS3  
TGCCS4  
PCL1  
PCL2  
PCL3  
PCL4  
TBPCS1  
TBPCS2  
TBPCS3  
TBPCS4  
Transmit Gapped-Clock Channel Select Register 1  
Transmit Gapped-Clock Channel Select Register 2  
Transmit Gapped-Clock Channel Select Register 3  
Transmit Gapped-Clock Channel Select Register 4 (E1 Mode Only)  
Per-Channel Loopback Enable Register 1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Per-Channel Loopback Enable Register 2  
Per-Channel Loopback Enable Register 3  
Per-Channel Loopback Enable Register 4 (E1 Mode Only)  
Transmit BERT Port Channel Select Register 1  
Transmit BERT Port Channel Select Register 2  
Transmit BERT Port Channel Select Register 3  
Transmit BERT Port Channel Select Register 4 (E1 Mode Only)  
Reserved  
1D5h  
1D6h  
1D7h  
1D8h–1FFh  
97 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
9.1.3 LIU and BERT Register List  
Table 9-4. LIU Register List  
LIU REGISTER LIST  
DESCRIPTION  
LIU Transmit Receive Control Register  
ADDRESS  
1000h  
NAME  
LTRCR  
LTITSR  
LMCR  
LRSR  
LSIMR  
LLSR  
1001h  
LIU Transmit Impedance and Pulse Shape Selection Register  
LIU Maintenance Control Register  
LIU Real Status Register  
1002h  
1003h  
1004h  
LIU Status Interrupt Mask Register  
LIU Latched Status Register  
1005h  
1006h  
LRSL  
LIU Receive Signal Level Register  
LIU Receive Impedance and Sensitivity Monitor Register  
Reserved  
1007  
LRISMR  
1008h–101Fh  
Table 9-5. BERT Register List  
BERT REGISTER LIST  
DESCRIPTION  
ADDRESS  
1100h  
1101h  
1102h  
1103h  
1104h  
1105h  
1106h  
1107h  
1108h  
1109h  
110Ah  
110Bh  
110Ch  
110Dh  
110Eh  
110Fh  
NAME  
BAWC  
BRP1  
BRP2  
BRP3  
BRP4  
BC1  
BERT Alternating Word Count Rate Register  
BERT Repetitive Pattern Set Register 1  
BERT Repetitive Pattern Set Register 2  
BERT Repetitive Pattern Set Register 3  
BERT Repetitive Pattern Set Register 4  
BERT Control Register 1  
BC2  
BERT Control Register 2  
BBC1  
BBC2  
BBC3  
BBC4  
BEC1  
BEC2  
BEC3  
BLSR  
BSIM  
BERT Bit Count Register 1  
BERT Bit Count Register 2  
BERT Bit Count Register 3  
BERT Bit Count Register 4  
BERT Error Count Register 1  
BERT Error Count Register 2  
BERT Error Count Register 3  
BERT Latched Status Register  
BERT Status Interrupt Mask Register  
98 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
9.2  
Register Bit Maps  
9.2.1 Global Register Bit Map  
Table 9-6. Global Register Bit Map  
ADDR  
0F0h  
0F1h  
0F2h  
0F3h  
0F4h  
0F5h  
0F6h  
0F7h  
0F8h  
0F9h  
0Fah  
0FBh  
0FCh  
0FDh  
0FEh  
NAME  
GTCR1  
GFCR  
GTCR2  
GTCCR  
BIT 7  
BIT 6  
BIT 5  
RLOFLTS  
BPCLK1  
BIT 4  
BIT 3  
BIT 2  
BWE  
BIT 1  
GCLE  
BIT 0  
GIPI  
GIBO  
IBOMS1  
IBOMS0  
BPCLK0 RFLOSSFS  
RFMSS  
LOSS  
TCBCS  
RCBCS  
TSSYNCIOSEL  
BPREFSEL3 BPREFSEL2 BPREFSEL1 BPREFSEL0  
BFREQSEL FREQSEL  
MPS1  
MPS0  
LSRST8  
FSRST8  
LSRST7  
FSRST7  
LSRST6  
FSRST6  
LSRST5  
FSRST5  
LSRST4  
FSRST4  
LSRST3  
FSRST3  
GLSRR  
GFSRR  
LSRST2  
FSRST2  
LSRST1  
FSRST1  
IDR  
ID7  
ID6  
ID5  
ID4  
ID3  
ID2  
ID1  
ID0  
GFISR  
GBISR  
GLISR  
GFIMR  
GBIMR  
GLIMR  
FIS8  
FIS7  
FIS6  
FIS5  
FIS4  
FIS3  
FIS2  
BIS2  
LIS2  
FIS1  
BIS1  
LIS1  
BIS8  
LIS8  
BIS7  
LIS7  
BIS6  
LIS6  
BIS5  
LIS5  
BIS4  
LIS4  
BIS3  
LIS3  
FIM8  
BIM8  
LIM8  
FIM7  
BIM7  
LIM7  
FIM6  
BIM6  
LIM6  
FIM5  
BIM5  
LIM5  
FIM4  
BIM4  
LIM4  
FIM3  
BIM3  
LIM3  
FIM2  
BIM2  
LIM2  
FIM1  
BIM1  
LIM1  
99 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
9.2.2 Framer Register Bit Map  
Table 9-7 contains the framer registers of the DS26528. Some registers have dual functionality based on the  
selection of T1/J1 or E1 operating mode in the RMMR and TMMR registers. These dual-function registers are  
shown below using two lines of text. The first line of text is the bit functionality for T1/J1 mode. The second line is  
the bit functionality in E1 mode, in italics. Bits that are not used for an operating mode are noted with a dash “—“.  
When there is only one set of bit definitions listed for a register, the bit functionality does not change with respect to  
the selection of T1/J1 or E1 mode. All registers not listed are reserved and should be initialized with a value of 00h  
for proper operation. The addresses shown are for Framer 1. Addresses for Framer 2 to 8 can be calculated using  
the following formula: Address for Framer n = (Framer 1 address + (n - 1) x 200h).  
Table 9-7. Framer Register Bit Map  
ADDR  
NAME  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
010h  
011h  
012h  
RHC  
RCRCD  
BSE8  
RHR  
BSE7  
RHMS  
BSE6  
RHCS4  
BSE5  
RHCS3  
BSE4  
RCM3  
RHCS2  
BSE3  
RCM2  
RSFF  
RSFF  
OOF1  
RHCS1  
BSE2  
RCM1  
RSFE  
RSFE  
RAIIE  
RHCS0  
BSE1  
RHBSE  
RDS0SEL  
RCM4  
RCM0  
RSIE  
RFSA1  
CASMS  
RSLC96  
013h  
RSIGC  
RSEI  
T1RCR2  
E1RSAIMR  
T1RBOCC  
OOF2  
RD4RM  
014h  
015h  
RSa4IM  
RSa5IM  
RSa6IM  
RSa7IM  
RSa8IM  
RBR  
RBD1  
RBD0  
RBF1  
RBF0  
020h  
021h  
022h  
023h  
024h  
025h  
026h  
027h  
028h  
029h  
02Ah  
02Bh  
02Ch  
02Dh  
02Eh  
02Fh  
030h  
031h  
032h  
033h  
034h  
035h  
036h  
037h  
RIDR1  
RIDR2  
C7  
C7  
C6  
C6  
C5  
C5  
C4  
C4  
C3  
C3  
C2  
C2  
C1  
C1  
C0  
C0  
C0  
C0  
C0  
C0  
C0  
C0  
C0  
C0  
C0  
C0  
C0  
C0  
C0  
C0  
C0  
C0  
C0  
C0  
C0  
C0  
C0  
C0  
CH1  
C0  
CH9  
C0  
CH17  
C0  
RIDR3  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
RIDR4  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
RIDR5  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
RIDR6  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
RIDR7  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
RIDR8  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
RIDR9  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
RIDR10  
RIDR11  
RIDR12  
RIDR13  
RIDR14  
RIDR15  
RIDR16  
RIDR17  
RIDR18  
RIDR19  
RIDR20  
RIDR21  
RIDR22  
RIDR23  
RIDR24  
T1RSAOI1  
RIDR25  
T1RSAOI2  
RIDR26  
T1RSAOI3  
RIDR27  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
CH8  
C7  
CH7  
C6  
CH6  
C5  
CH5  
C4  
CH4  
C3  
CH3  
C2  
CH2  
C1  
038h  
039h  
03Ah  
CH16  
C7  
CH15  
C6  
CH14  
C5  
CH13  
C4  
CH12  
C3  
CH11  
C2  
CH10  
C1  
CH24  
C7  
CH23  
C6  
CH22  
C5  
CH21  
C4  
CH20  
C3  
CH19  
C2  
CH18  
C1  
100 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
ADDR  
NAME  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
03Bh  
RIDR28  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
T1RDMWE1  
RIDR29  
CH8  
C7  
CH7  
C6  
CH6  
C5  
CH5  
C4  
CH4  
C3  
CH3  
C2  
CH2  
C1  
CH1  
C0  
03Ch  
03Dh  
03Eh  
03Fh  
040h  
T1RDMWE2  
RIDR30  
CH16  
C7  
CH15  
C6  
CH14  
C5  
CH13  
C4  
CH12  
C3  
CH11  
C2  
CH10  
C1  
CH9  
C0  
T1RDMWE3  
RIDR31  
CH24  
C7  
CH23  
C6  
CH22  
C5  
CH21  
C4  
CH20  
C3  
CH19  
C2  
CH18  
C1  
CH17  
C0  
RIDR32  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
CH1-A  
0
CH1-B  
0
CH1-C  
0
CH1-D  
0
CH13-A  
X
CH13-B  
Y
CH13-C  
X
CH13-D  
X
RS1  
CH2-A  
CH2-B  
CH2-C  
CH2-D  
CH14-A  
CH14-B  
CH14-C  
CH14-D  
041h  
042h  
043h  
044h  
RS2  
RS3  
RS4  
RS5  
CH1-A  
CH3-A  
CH2-A  
CH4-A  
CH3-A  
CH5-A  
CH4-A  
CH1-B  
CH3-B  
CH2-B  
CH4-B  
CH3-B  
CH5-B  
CH4-B  
CH1-C  
CH3-C  
CH2-C  
CH4-C  
CH3-C  
CH5-C  
CH4-C  
CH1-D  
CH3-D  
CH2-D  
CH4-D  
CH3-D  
CH5-D  
CH4-D  
CH16-A  
CH15-A  
CH17-A  
CH16-A  
CH18-A  
CH17-A  
CH19-A  
CH16-B  
CH15-B  
CH17-B  
CH16-B  
CH18-B  
CH17-B  
CH19-B  
CH16-C  
CH15-C  
CH17-C  
CH16-C  
CH18-C  
CH17-C  
CH19-C  
CH16-D  
CH15-D  
CH17-D  
CH16-D  
CH18-D  
CH17-D  
CH19-D  
CH6-A  
CH5-A  
CH7-A  
CH6-A  
CH8-A  
CH7-A  
CH9-A  
CH8-A  
CH10-A  
CH9-A  
CH11-A  
CH10-A  
CH12-A  
CH11-A  
CH6-B  
CH5-B  
CH7-B  
CH6-B  
CH8-B  
CH7-B  
CH9-B  
CH8-B  
CH10-B  
CH9-B  
CH11-B  
CH10-B  
CH12-B  
CH11-B  
CH6-C  
CH5-C  
CH7-C  
CH6-C  
CH8-C  
CH7-C  
CH9-C  
CH8-C  
CH10-C  
CH9-C  
CH11-C  
CH10-C  
CH12-C  
CH11-C  
CH6-D  
CH5-D  
CH7-D  
CH6-D  
CH8-D  
CH7-D  
CH9-D  
CH8-D  
CH10-D  
CH9-D  
CH11-D  
CH10-D  
CH12-D  
CH11-D  
CH18-A  
CH20-A  
CH19-A  
CH21-A  
CH20-A  
CH22-A  
CH21-A  
CH23-A  
CH22-A  
CH24-A  
CH23-A  
CH25-A  
CH24-A  
CH26-A  
CH18-B  
CH20-B  
CH19-B  
CH21-B  
CH20-B  
CH22-B  
CH21-B  
CH23-B  
CH22-B  
CH24-B  
CH23-B  
CH25-B  
CH24-B  
CH26-B  
CH18-C  
CH20-C  
CH19-C  
CH21-C  
CH20-C  
CH22-C  
CH21-C  
CH23-C  
CH22-C  
CH24-C  
CH23-C  
CH25-C  
CH24-C  
CH26-C  
CH18-D  
CH20-D  
CH19-D  
CH21-D  
CH20-D  
CH22-D  
CH21-D  
CH23-D  
CH22-D  
CH24-D  
CH23-D  
CH25-D  
CH24-D  
CH26-D  
045h  
046h  
047h  
048h  
049h  
04Ah  
04Bh  
04Ch  
04Dh  
04Eh  
04Fh  
RS6  
RS7  
RS8  
RS9  
RS10  
RS11  
RS12  
RS13  
RS14  
RS15  
RS16  
CH12-A  
CH12-B  
CH12-C  
CH12-D  
CH27-A  
CH27-B  
CH27-C  
CH27-D  
CH13-A  
CH13-B  
CH13-C  
CH13-D  
CH28-A  
CH28-B  
CH28-C  
CH28-D  
CH14-A  
CH14-B  
CH14-C  
CH14-D  
CH29-A  
CH29-B  
CH29-C  
CH29-D  
CH15-A  
LCVC15  
LCVC7  
PCVC15  
PCVC7  
FOS15  
FOS7  
CH15-B  
LCVC14  
LCVC6  
PCVC14  
PCVC6  
FOS14  
FOS6  
CH15-C  
LCVC13  
LCVC5  
PCVC13  
PCVC5  
FOS13  
FOS5  
CH15-D  
LCVC12  
LCVC4  
PCVC12  
PCVC4  
FOS12  
FOS4  
CH30-A  
LCVC11  
LCVC3  
PCVC11  
PCVC3  
FOS11  
FOS3  
CH30-B  
LCVC10  
LCVC2  
PCVC10  
PCVC2  
FOS10  
FOS2  
CH30-C  
LCVC9  
LCVC1  
PCVC9  
PCVC1  
FOS9  
CH30-D  
LCCV8  
LCVC0  
PCVC8  
PCVC0  
FOS8  
050h  
051h  
052h  
053h  
054h  
055h  
LCVCR1  
LCVCR2  
PCVCR1  
PCVCR2  
FOSCR1  
FOSCR2  
FOS1  
FOS0  
101 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
ADDR  
NAME  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
056h  
057h  
060h  
061h  
E1EBCR1  
E1EBCR2  
RDS0M  
EB15  
EB7  
EB14  
EB6  
EB13  
EB5  
EB12  
EB4  
EB11  
EB3  
EB10  
EB2  
EB9  
EB1  
EB8  
EB0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
E1RFRID  
FR7  
FR6  
FR5  
FR4  
FR3  
FR2  
FR1  
FR0  
T1RFDL  
RFDL7  
RFDL6  
RFDL5  
RFDL4  
RFDL3  
RFDL2  
RFDL1  
RFDL0  
062h  
E1RRTS7  
CSC5  
CSC4  
CSC3  
CSC2  
CSC0  
RBOC3  
C4  
CRC4SA  
CASSA  
FASSA  
063h  
064h  
T1RBOC  
T1RSLC1  
E1RAF  
C8  
C7  
RBOC5  
C6  
RBOC4  
C5  
RBOC2  
C3  
RBOC1  
C2  
RBOC0  
C1  
Si  
0
0
1
1
0
1
1
T1RSLC2  
E1RNAF  
T1RSLC3  
E1RSiAF  
E1RSiNAF  
E1RRA  
M2  
M1  
S=0  
S=1  
S=0  
C11  
C10  
C9  
065h  
066h  
Si  
1
A
Sa4  
Sa5  
Sa6  
Sa7  
Sa8  
S=1  
S4  
S3  
S2  
S1  
A2  
A1  
M3  
SiF14  
SiF15  
RRAF15  
RSa4F15  
RSa5F15  
RSa6F15  
RSa7F15  
RSa8F15  
SiF12  
SiF13  
RRAF13  
RSa4F13  
RSa5F13  
RSa6F13  
RSa7F13  
RSa8F13  
SiF10  
SiF11  
RRAF11  
RSa4F11  
RSa5F11  
RSa6F11  
RSa7F11  
RSa8F11  
SiF8  
SiF6  
SiF4  
SiF2  
SiF0  
067h  
068h  
069h  
06Ah  
06Bh  
06Ch  
06Dh  
06Eh  
06Fh  
080h  
SiF9  
SiF7  
SiF5  
SiF3  
SiF1  
RRAF9  
RSa4F9  
RSa5F9  
RSa6F9  
RSa7F9  
RSa8F9  
Sa4  
RRAF7  
RSa4F7  
RSa5F7  
RSa6F7  
RSa7F7  
RSa8F7  
Sa5  
RRAF5  
RSa4F5  
RSa5F5  
RSa6F5  
RSa7F5  
RSa8F5  
Sa6  
RRAF3  
RSa4F3  
RSa5F3  
RSa6F3  
RSa7F3  
RSa8F3  
Sa7  
RRAF1  
RSa4F1  
RSa5F1  
RSa6F1  
RSa7F1  
RSa8F1  
Sa8  
E1RSa4  
E1RSa5  
E1RSa6  
E1RSa7  
E1RSa8  
SaBITS  
Sa6CODE  
RMMR  
Sa6n  
Sa6n  
Sa6n  
Sa6n  
INIT_DONE  
RB8ZS  
RHDB3  
FRM_EN  
SYNCT  
SFTRST  
SYNCE  
SYNCE  
RDN1  
T1/E1  
RESYNC  
RESYNC  
RDN0  
RLOSA  
FLB  
RCR1 (T1)  
RCR1 (E1)  
T1RIBCC  
E1RCR2  
RCR3  
RFM  
ARC  
SYNCC  
RCRC4  
RUP0  
RSa4S  
RJC  
081h  
RSIGM  
RUP2  
RSa6S  
RSERC  
H100EN  
RG802  
RUP1  
RSa5S  
FRC  
RDN2  
082h  
083h  
RSa8S  
IDF  
RSa7S  
PLB  
RSYNCINV  
RCLKINV  
RSCLKM  
RSMS  
RSIO  
RSMS2  
RSMS1  
084h  
RIOCR  
RSYNCINV  
RCLKINV  
H100EN  
RSCLKM  
RSZS  
ECUS  
ECUS  
RESALGN  
EAMS  
EAMS  
RSIO  
RESR  
FSBE  
RSMS2  
RESMDM  
MOSCRF  
RSMS1  
RESE  
085h  
086h  
RESCR  
ERCNT  
RDATFMT RGCLKEN  
1SECS  
1SECS  
MCUS  
MCUS  
MECU  
MECU  
LCVCRF  
LCVCRF  
087h  
088h  
089h  
RHFC  
RIBOC  
RFHWM1 RFHWM0  
IBS1  
IBS0  
IBOSEL  
IBOEN  
DA2  
DA1  
RSC1  
DA0  
RSC0  
T1RSCC  
RSC2  
RBPDIR  
RBPFUS  
RBPEN  
08Ah  
RXPC  
BPBSE8  
RRAIC  
RPDV  
BPBSE7  
RAISC  
RBPDIR  
BPBSE3  
RAISD  
SEFE  
RSA0  
LSPD  
RBPEN  
BPBSE1  
RLOFD  
FBE  
08Bh  
090h  
RBPBS  
RLS1  
BPBSE6  
RLOSC  
COFA  
BPBSE5  
RLOFC  
8ZD  
BPBSE4  
RRAID  
16ZD  
BPBSE2  
RLOSD  
B8ZS  
RLS2 (T1)  
RLS2 (E1)  
RLS3 (T1)  
RLS3 (E1)  
RLS4  
091h  
092h  
CRCRC  
LSPC  
CASRC  
LDNC  
FASRC  
LUPC  
RDMAC  
RSA1  
RCMF  
LDND  
RAF  
LORCC  
LORCC  
RESF  
LORCD  
LORCD  
RSCOS  
RPE  
LUPD  
RDMAD  
RMF  
V52LNKC  
RSLIP  
ROVR  
RRAI-CI  
V52LNKD  
TIMER  
RHWMS  
BC  
093h  
094h  
RESEM  
1SEC  
RPS  
RLS5  
RHOBT  
RAIS-CI  
RNES  
BD  
RLS7 (T1)  
RLS7 (E1)  
RSLC96  
RFDLF  
096h  
Sa6CD  
SaXCD  
102 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
ADDR  
NAME  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
097h  
098h  
099h  
09Ah  
CH8  
CH16  
CH24  
CH7  
CH15  
CH23  
CH6  
CH14  
CH22  
CH5  
CH13  
CH21  
CH4  
CH12  
CH20  
CH3  
CH11  
CH19  
CH2  
CH10  
CH18  
CH1  
CH9  
CH17  
RSS1  
RSS2  
RSS3  
09Bh  
09Ch  
09Dh  
RSS4  
CH32  
C7  
CH31  
C6  
CH30  
C5  
CH29  
C4  
CH28  
C3  
CH27  
C2  
CH26  
C1  
CH25  
C0  
T1RSCD1  
T1RSCD2  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
09Fh  
0A0h  
RIIR  
RLS7  
RAISC  
RLS6*  
RLOSC  
RLS5  
RLOFC  
RLS4  
RRAID  
RLS3  
RAISD  
RLS2**  
RLOSD  
RLS1  
RLOFD  
RIM1  
RRAIC  
0A1h  
0A2h  
RIM2  
RSA1  
LORCD  
LORCD  
RSCOS  
RPE  
RSLC96  
RSA0  
LSPD  
RCMF  
LDND  
V52LNKD  
TIMER  
RHWMS  
BC  
RAF  
LUPD  
RDMAD  
RMF  
RNES  
BD  
RIM3 (T1)  
RIM3 (E1)  
RIM4  
LORCC  
LORCC  
RESF  
LSPC  
LDNC  
V52LNKC  
RSLIP  
ROVR  
RRAI-CI  
LUPC  
RDMAC  
0A3h  
0A4h  
RESEM  
1SEC  
RPS  
RFDLF  
RIM5  
RHOBT  
RAIS-CI  
RIM7 (T1)  
RIM7 (E1)  
RSCSE1  
RSCSE2  
RSCSE3  
0A6h  
Sa6CD  
CH2  
CH10  
CH18  
SaXCD  
CH1  
CH9  
CH17  
0A8h  
0A9h  
0AAh  
CH8  
CH16  
CH24  
CH32  
C7  
CH7  
CH15  
CH23  
CH31  
C6  
CH6  
CH14  
CH22  
CH30  
C5  
CH5  
CH13  
CH21  
CH29  
C4  
CH4  
CH12  
CH20  
CH28  
C3  
CH3  
CH11  
CH19  
CH27  
C2  
0Abh  
RSCSE4  
CH26  
C1  
CH25  
C0  
0ACh T1RUPCD1  
0ADh T1RUPCD2  
0AEh T1RDNCD1  
0AFh T1RDNCD2  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
0B0h  
0B2h  
RRTS1  
RRTS3 (T1)  
RRTS3 (E1)  
RRTS5  
RRAI  
LORC  
LORC  
RAIS  
LSP  
RLOS  
LDN  
V52LNK  
RHWM  
RPBA1  
RHD1  
CH2  
CH10  
CH18  
RLOF  
LUP  
RDMA  
RNE  
RPBA0  
RHD0  
CH1  
CH9  
CH17  
0B4h  
0B5h  
0B6h  
0C0h  
0C1h  
0C2h  
PS2  
RPBA6  
RHD6  
CH7  
CH15  
CH23  
PS1  
RPBA5  
RHD5  
CH6  
CH14  
CH22  
PS0  
RPBA4  
RHD4  
CH5  
CH13  
CH21  
RHPBA  
RHF  
MS  
RPBA3  
RHD3  
CH4  
CH12  
CH20  
RPBA2  
RHD2  
CH3  
CH11  
CH19  
RHD7  
CH8  
CH16  
CH24  
RBCS1  
RBCS2  
RBCS3  
0C3h  
RBCS4  
CH32  
CH8  
CH16  
CH24  
CH31  
CH7  
CH15  
CH23  
CH30  
CH6  
CH14  
CH22  
CH29  
CH5  
CH13  
CH21  
CH28  
CH4  
CH12  
CH20  
CH27  
CH3  
CH11  
CH19  
CH26  
CH2  
CH10  
CH18  
CH25  
CH1  
CH9  
CH17  
0C4h  
0C5h  
0C6h  
RCBR1  
RCBR2  
RCBR3  
0C7h  
0C8h  
RCBR4  
CH32  
CH8  
CH31  
CH7  
CH30  
CH6  
CH29  
CH5  
CH28  
CH4  
CH27  
CH3  
CH26  
CH2  
CH25(F-bit)  
CH1  
RSI1  
103 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
ADDR  
NAME  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
0C9h  
0CAh  
RSI2  
RSI3  
CH16  
CH24  
CH15  
CH23  
CH14  
CH22  
CH13  
CH21  
CH12  
CH200  
CH11  
CH19  
CH10  
CH18  
CH9  
CH17  
0CBh  
RSI4  
CH32  
CH8  
CH16  
CH24  
CH31  
CH7  
CH15  
CH23  
CH30  
CH6  
CH14  
CH22  
CH29  
CH5  
CH13  
CH21  
CH28  
CH4  
CH12  
CH20  
CH27  
CH3  
CH11  
CH19  
CH26  
CH2  
CH10  
CH18  
CH25  
CH1  
0CCh  
0CDh  
0CEh  
RGCCS1  
RGCCS2  
RGCCS3  
CH9  
CH17  
0CFh  
RGCCS4  
CH32  
CH8  
CH16  
CH24  
CH31  
CH7  
CH15  
CH23  
CH30  
CH6  
CH14  
CH22  
CH29  
CH5  
CH13  
CH21  
CH28  
CH4  
CH12  
CH20  
CH27  
CH3  
CH11  
CH19  
CH26  
CH2  
CH10  
CH18  
CH25(F-bit)  
CH1  
0D0h  
0D1h  
0D2h  
RCICE1  
RCICE2  
RCICE3  
CH9  
CH17  
0D3h  
RCICE4  
CH32  
CH31  
CH30  
CH29  
CH28  
CH27  
CH26  
CH25  
0D4h  
0D5h  
0D6h  
RBPCS1  
RBPCS2  
RBPCS3  
CH8  
CH16  
CH24  
CH7  
CH15  
CH23  
CH6  
CH14  
CH22  
CH5  
CH13  
CH21  
CH4  
CH12  
CH20  
CH3  
CH11  
CH19  
CH2  
CH10  
CH18  
CH1  
CH9  
CH17  
0D7h  
RBPCS4  
CH32  
NOFS  
TBSE8  
TABT  
CH31  
TEOML  
TBSE7  
SBOC  
CH30  
THR  
CH29  
THMS  
TBSE5  
THCS4  
CH28  
TFS  
CH27  
TEOM  
TBSE3  
THCS2  
CH26  
TZSD  
CH25  
TCRCD  
TBSE1  
THCS0  
110h  
111h  
THC1  
THBSE  
TBSE6  
THCEN  
TBSE4  
THCS3  
TBSE2  
THCS1  
113h  
THC2  
TABT  
CH8  
CH16  
CH24  
CH7  
CH15  
CH23  
THCEN  
CH6  
CH14  
CH22  
THCS4  
CH5  
CH13  
CH21  
THCS3  
CH4  
CH12  
CH20  
THCS2  
CH3  
CH11  
CH19  
THCS1  
CH2  
CH10  
CH18  
THCS0  
CH1  
CH9  
CH17  
118h  
119h  
11Ah  
SSIE1  
SSIE2  
SSIE3  
11Bh  
SSIE4  
CH32  
C7  
CH31  
C6  
CH30  
C5  
CH29  
C4  
CH28  
C3  
CH27  
C2  
CH26  
C1  
CH25  
C0  
120h  
121h  
122h  
123h  
124h  
125h  
126h  
127h  
128h  
129h  
12Ah  
12Bh  
12Ch  
12Dh  
12Eh  
12Fh  
130h  
131h  
132h  
133h  
134h  
TIDR1  
TIDR2  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
TIDR3  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
TIDR4  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
TIDR5  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
TIDR6  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
TIDR7  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
TIDR8  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
TIDR9  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
TIDR10  
TIDR11  
TIDR12  
TIDR13  
TIDR14  
TIDR15  
TIDR16  
TIDR17  
TIDR18  
TIDR19  
TIDR20  
TIDR21  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
104 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
ADDR  
NAME  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
135h  
136h  
137h  
TIDR22  
TIDR23  
TIDR24  
C7  
C7  
C6  
C6  
C5  
C5  
C4  
C4  
C3  
C3  
C2  
C2  
C1  
C1  
C0  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
138h  
139h  
13Ah  
13Bh  
13Ch  
13Dh  
13Eh  
13Fh  
140h  
141h  
142h  
143h  
144h  
145h  
146h  
147h  
148h  
149h  
14Ah  
14Bh  
14Ch  
14Dh  
TIDR25  
TIDR26  
TIDR27  
TIDR28  
TIDR29  
TIDR30  
TIDR31  
TIDR32  
TS1  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
CH1-A  
0
CH1-B  
0
CH1-C  
0
CH1-D  
0
CH13-A  
X
CH13-B  
Y
CH13-C  
X
CH13-D  
X
CH2-A  
CH1-A  
CH3-A  
CH2-A  
CH4-A  
CH3-A  
CH5-A  
CH4-A  
CH6-A  
CH5-A  
CH7-A  
CH6-A  
CH8-A  
CH7-A  
CH9-A  
CH8-A  
CH10-A  
CH9-A  
CH11-A  
CH10-A  
CH12-A  
CH11-A  
CH2-B  
CH1-B  
CH3-B  
CH2-B  
CH4-B  
CH3-B  
CH5-B  
CH4-B  
CH6-B  
CH5-B  
CH7-B  
CH6-B  
CH8-B  
CH7-B  
CH9-B  
CH8-B  
CH10-B  
CH9-B  
CH11-B  
CH10-B  
CH12-B  
CH11-B  
CH2-C  
CH1-C  
CH3-C  
CH2-C  
CH4-C  
CH3-C  
CH5-C  
CH4-C  
CH6-C  
CH5-C  
CH7-C  
CH6-C  
CH8-C  
CH7-C  
CH9-C  
CH8-C  
CH10-C  
CH9-C  
CH11-C  
CH10-C  
CH12-C  
CH11-C  
CH2-D  
CH1-D  
CH3-D  
CH2-D  
CH4-D  
CH3-D  
CH5-D  
CH4-D  
CH6-D  
CH5-D  
CH7-D  
CH6-D  
CH8-D  
CH7-D  
CH9-D  
CH8-D  
CH10-D  
CH9-D  
CH11-D  
CH10-D  
CH12-D  
CH11-D  
CH14-A  
CH16-A  
CH15-A  
CH17-A  
CH16-A  
CH18-A  
CH17-A  
CH19-A  
CH18-A  
CH20-A  
CH19-A  
CH21-A  
CH20-A  
CH22-A  
CH21-A  
CH23-A  
CH22-A  
CH24-A  
CH23-A  
CH25-A  
CH24-A  
CH26-A  
CH14-B  
CH16-B  
CH15-B  
CH17-B  
CH16-B  
CH18-B  
CH17-B  
CH19-B  
CH18-B  
CH20-B  
CH19-B  
CH21-B  
CH20-B  
CH22-B  
CH21-B  
CH23-B  
CH22-B  
CH24-B  
CH23-B  
CH25-B  
CH24-B  
CH26-B  
CH14-C  
CH16-C  
CH15-C  
CH17-C  
CH16-C  
CH18-C  
CH17-C  
CH19-C  
CH18-C  
CH20-C  
CH19-C  
CH21-C  
CH20-C  
CH22-C  
CH21-C  
CH23-C  
CH22-C  
CH24-C  
CH23-C  
CH25-C  
CH24-C  
CH26-C  
CH14-D  
CH16-D  
CH15-D  
CH17-D  
CH16-D  
CH18-D  
CH17-D  
CH19-D  
CH18-D  
CH20-D  
CH19-D  
CH21-D  
CH20-D  
CH22-D  
CH21-D  
CH23-D  
CH22-D  
CH24-D  
CH23-D  
CH25-D  
CH24-D  
CH26-D  
TS2  
TS3  
TS4  
TS5  
TS6  
TS7  
TS8  
TS9  
TS10  
TS11  
TS12  
TS13  
TS14  
CH12-A  
CH12-B  
CH12-C  
CH12-D  
CH27-A  
CH27-B  
CH27-C  
CH27-D  
CH13-A  
CH13-B  
CH13-C  
CH13-D  
CH28-A  
CH28-B  
CH28-C  
CH28-D  
105 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
ADDR  
NAME  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
CH14-A  
CH14-B  
CH14-C  
CH14-D  
CH29-A  
CH29-B  
CH29-C  
CH29-D  
14Eh  
TS15  
14Fh  
TS16  
CH15-A  
CH8  
CH15-B  
CH7  
CH15  
CH23  
CH15-C  
CH6  
CH14  
CH22  
CH15-D  
CH5  
CH13  
CH21  
CH30-A  
CH4  
CH12  
CH20  
CH30-B  
CH3  
CH11  
CH19  
CH30-C  
CH2  
CH10  
CH18  
CH30-D  
CH1  
CH9  
CH17  
150h  
151h  
152h  
TCICE1  
TCICE2  
TCICE3  
CH16  
CH24  
153h  
161h  
162h  
TCICE4  
TFRID  
CH32  
FR7  
CH31  
FR6  
TFDL6  
CH30  
FR5  
CH29  
FR4  
CH28  
FR3  
CH27  
FR2  
CH26  
FR1  
CH25  
FR0  
TFDL7  
TFDL5  
TFDL4  
TFDL3  
TFDL2  
TFDL1  
TFDL0  
T1TFDL  
TBOC5  
TBOC4  
TBOC3  
TBOC2  
TBOC1  
TBOC0  
163h  
164h  
165h  
166h  
167h  
168h  
169h  
16Ah  
16Bh  
16Ch  
T1TBOC  
T1TSLC1  
E1TAF  
C8  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
Si  
0
0
1
1
0
1
1
T1TSLC2  
E1TNAF  
T1TSLC3  
E1TSiAF  
M2  
M1  
S=0  
S=1  
S=0  
C11  
C10  
C9  
Si  
1
A
Sa4  
Sa5  
Sa6  
Sa7  
Sa8  
S=1  
S4  
S3  
S2  
S1  
A2  
A1  
M3  
TSiF14  
TSiF12  
TSiF10  
TSiF8  
TSiF6  
TSiF4  
TSiF2  
TSiF0  
E1TSiNAF  
E1TRA  
TsiF15  
TSiF13  
TSiF11  
TSiF9  
TSiF7  
TSiF5  
TSiF3  
TSiF1  
TRAF15  
TRAF13  
TRAF11  
TRAF9  
TRAF7  
TRAF5  
TRAF3  
TRAF1  
E1TSa4  
E1TSa5  
E1TSa6  
E1TSa7  
E1TSa8  
TSa4F15  
TSa4F13  
TSa4F11  
TSa4F9  
TSa4F7  
TSa4F5  
TSa4F3  
TSa4F1  
TSa5F15  
TSa5F13  
TSa5F11  
TSa5F9  
TSa5F7  
TSa5F5  
TSa5F3  
TSa5F1  
TSa6F15  
TSa6F13  
TSa6F11  
TSa6F9  
TSa6F7  
TSa6F5  
TSa6F3  
TSa6F1  
TSa7F15  
TSa7F13  
TSa7F11  
TSa7F9  
TSa7F7  
TSa7F5  
TSa7F3  
TSa7F1  
16Dh  
180h  
181h  
TSa8F15  
FRM_EN  
TJC  
TSa8F13  
INIT_DONE  
TFPT  
TSa8F11  
TSa8F9  
TSa8F7  
TSa8F5  
TSa8F3  
SFTRST  
TAIS  
TAIS  
PDE  
TSa8F1  
T1/E1  
TRAI  
TCRC4  
TB7ZS  
TMMR  
TCR1 (T1)  
TCR1 (E1)  
TCR2 (T1)  
TCR2 (E1)  
TCPT  
TG802  
TSSE  
TSiS  
FBCT2  
GB7S  
TSA1  
FBCT1  
TB8ZS  
THDB3  
TD4RM  
TTPT  
TFDLS  
T16S  
TSLC96  
AAIS  
182h  
183h  
184h  
AEBE  
ODF  
ARA  
TCSS1  
TCSS1  
TSSYNCINV  
Sa4S  
TCSS0  
TCSS0  
TSCLKM  
Sa5S  
MFRS  
MFRS  
TSSM  
Sa6S  
TFM  
Sa7S  
IBPV  
Sa8S  
TLOOP  
CRC4R  
TSM  
ODM  
TCR3  
ODF  
ODM  
IBPV  
TSYNCINV  
TCLKINV  
TSIO  
TSDW  
TIOCR  
TSSYNCINV  
TSYNCINV  
TCLKINV  
TSCLKM  
TSSM  
TSIO  
TSM  
185h  
186h  
TESCR  
TCR4  
TDATFMT TGCLKEN  
——  
TSZS  
TESALGN  
TRAIM  
TESR  
TAISM  
TESMDM  
TC1  
TESE  
TC0  
187h  
188h  
THFC  
TFLWM1  
DA1  
TFLWM2  
DA0  
TIBOC  
IBS1  
IBS0  
IBOSEL  
IBOEN  
DA2  
106 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
ADDR  
NAME  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
189h  
18Ah  
18Bh  
TDS0SEL  
TXPC  
TCM4  
TCM3  
TCM2  
TBPDIR  
BPBSE3  
TSEN  
TCM1  
TBPFUS  
BPBSE2  
SYNCE  
TCM0  
TBPEN  
TBPBS  
BPBSE8  
BPBSE7  
BPBSE6  
BPBSE5  
BPBSE4  
BPBSE1  
RESYNC  
18Eh  
190h  
191h  
TSYNCC  
TLS1  
CRC4  
TSEN  
SYNCE  
RESYNC  
TESF  
TESEM  
TSLIP  
TSLC96  
TPDV  
TMF  
LOTCC  
LOTC  
TESF  
TESEM  
TSLIP  
TFDLE  
TAF  
TUDR  
TUDR  
TMF  
TMEND  
TMEND  
LOTCC  
TLWMS  
TLWMS  
LOF  
LOTC  
TNFS  
TNFS  
LOFD  
TLS1  
LOTC  
LOTC  
TNFS  
TLS2  
192h  
19Fh  
TLS3  
TIIR  
TLS3  
TMF  
TLS2  
TESF  
TESF  
TESEM  
TESEM  
TSLIP  
TSLIP  
TSLC96  
TPDV  
TAF  
LOTCC  
LOTCC  
TLWMS  
1A0h  
1A1h  
TIM1  
TIM2  
TMF  
TFDLE  
TUDR  
TMEND  
TUDR  
TMEND  
TLWMS  
TNFS  
1A2h  
1ACh  
TIM3  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
LOFD  
C0  
T1TCD1  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
ADh  
T1TCD2  
1B1h  
1B3h  
1B4h  
1BBh  
1C0h  
1C1h  
1C2h  
TRTS2  
TFBA  
TEMPTY  
TFBA3  
THD3  
B5  
TFULL  
TFBA2  
THD2  
B6  
TLWM  
TFBA1  
THD1  
B7  
TNF  
TFBA0  
THD0  
B8  
——  
THD7  
B1  
TFBA6  
THD6  
B2  
TFBA5  
THD5  
B3  
TFBA4  
THD4  
B4  
THF  
TDS0M  
TBCS1  
TBCS2  
TBCS3  
CH8  
CH16  
CH24  
CH7  
CH15  
CH23  
CH6  
CH14  
CH22  
CH5  
CH13  
CH21  
CH4  
CH12  
CH20  
CH3  
CH11  
CH19  
CH2  
CH10  
CH18  
CH1  
CH9  
CH17  
1C3h  
TBCS4  
CH32  
CH8  
CH16  
CH24  
CH31  
CH7  
CH15  
CH23  
CH30  
CH6  
CH14  
CH22  
CH29  
CH5  
CH13  
CH21  
CH28  
CH4  
CH12  
CH20  
CH27  
CH3  
CH11  
CH19  
CH26  
CH2  
CH10  
CH18  
CH25  
CH1  
CH9  
CH17  
1C4h  
1C5h  
1C6h  
TCBR1  
TCBR2  
TCBR3  
1C7h  
TCBR4  
CH32  
CH8  
CH16  
CH24  
CH31  
CH7  
CH15  
CH23  
CH30  
CH6  
CH14  
CH22  
CH29  
CH5  
CH13  
CH21  
CH28  
CH4  
CH12  
CH20  
CH27  
CH3  
CH11  
CH19  
CH26  
CH2  
CH10  
CH18  
CH25:Fbit  
CH1  
CH9  
CH17  
1C8h  
1C9h  
1CAh  
THSCS1  
THSCS2  
THSCS3  
1CBh  
THSCS4  
CH32  
CH8  
CH16  
CH24  
CH31  
CH7  
CH15  
CH23  
CH30  
CH6  
CH14  
CH22  
CH29  
CH5  
CH13  
CH21  
CH28  
CH4  
CH12  
CH20  
CH27  
CH3  
CH11  
CH19  
CH26  
CH2  
CH10  
CH18  
CH25  
CH1  
CH9  
CH17  
1CCh  
1CDh  
1CEh  
TGCCS1  
TGCCS2  
TGCCS3  
1CFh  
TGCCS4  
CH32  
CH31  
CH30  
CH29  
CH28  
CH27  
CH26  
CH25(F-bit)  
1D0h  
1D1h  
1D2h  
1D3h  
PCL1  
PCL2  
PCL3  
PCL4  
CH8  
CH16  
CH24  
CH7  
CH15  
CH23  
CH6  
CH14  
CH22  
CH5  
CH13  
CH21  
CH4  
CH12  
CH20  
CH3  
CH11  
CH19  
CH2  
CH10  
CH18  
CH1  
CH9  
CH17  
107 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
ADDR  
NAME  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
CH32  
CH31  
CH30  
CH29  
CH28  
CH27  
CH26  
CH25  
1D4h  
1D5h  
1D6h  
TBPCS1  
TBPCS2  
TBPCS3  
CH8  
CH16  
CH24  
CH7  
CH15  
CH23  
CH6  
CH14  
CH22  
CH5  
CH13  
CH21  
CH4  
CH12  
CH20  
CH3  
CH11  
CH19  
CH2  
CH10  
CH18  
CH1  
CH9  
CH17  
1D7h  
TBPCS4  
CH32  
CH31  
CH30  
CH29  
CH28  
CH27  
CH26  
CH25  
*RLS6 is reserved for future use.  
**Currently, RLS2 does not create an interrupt, therefore this bit is not used in T1 mode.  
9.2.3 LIU Register Bit Map  
Table 9-8. LIU Register Bit Map  
ADDR  
NAME  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
JADS  
BIT 3  
JAPS1  
BIT 2  
JAPS0  
L2  
BIT 1  
T1J1E1S  
L1  
BIT 0  
LSC  
1000h LTRCR  
1001h LTITSR  
TIMPTOFF  
ATAIS  
TIMPL1  
LLB  
TIMPL0  
ALB  
L0  
1002h  
1003h  
1004h  
1005h  
1006h  
LMCR  
LRSR  
LSIMR  
LLSR  
LRSL  
TAIS  
RLB  
TPDE  
SCS  
RPDE  
OCS  
TE  
OEQ  
UEQ  
LOSS  
LOSDIM  
LOSD  
JALTCIM  
JALTC  
RSL3  
RG703  
OCCIM  
OCC  
SCCIM  
SCC  
LOSCIM  
LOSC  
RLS0  
JALTSIM  
JALTS  
OCDIM  
OCD  
SCDIM  
SCD  
RSL2  
RLS1  
RIMPM1  
1007h LRISMR  
RIMPOFF  
RIMPM0  
RTR  
RMONEN  
RSMS1  
RSMS0  
9.2.4 BERT Register Bit Map  
Table 9-9. BERT Register Bit Map  
ADDR  
1100h  
1101h  
1102h  
1103h  
1104h  
1105h  
1106h  
1107h  
1108h  
1109h  
110Ah  
110Bh  
110Ch  
110Dh  
110Eh  
110Fh  
NAME  
BAWC  
BRP1  
BRP2  
BRP3  
BRP4  
BC1  
BIT 7  
ACNT7  
RPAT7  
RPAT15  
RPAT23  
RPAT31  
TC  
BIT 6  
ACNT6  
RPAT6  
RPAT14  
RPAT22  
RPAT30  
TINV  
BIT 5  
BIT 4  
BIT 3  
ACNT3  
RPAT3  
RPAT11  
RPAT19  
RPAT27  
PS1  
BIT 2  
ACNT2  
RPAT2  
RPAT10  
RPAT18  
RPAT26  
PS0  
BIT 1  
ACNT1  
RPAT1  
RPAT9  
RPAT17  
RPAT25  
LC  
BIT 0  
ACNT0  
RPAT0  
RPAT8  
RPAT16  
RPAT24  
RESYNC  
RPL0  
ACNT5  
RPAT5  
RPAT13  
RPAT21  
RPAT29  
RINV  
ACNT4  
RPAT4  
RPAT12  
RPAT20  
RPAT28  
PS2  
EIB2  
EIB1  
EIB0  
SBE  
RPL3  
RPL2  
RPL1  
BC2  
BBC7  
BBC15  
BBC23  
BBC31  
EC7  
BBC6  
BBC5  
BBC4  
BBC3  
BBC2  
BBC1  
BBC0  
BBC1  
BBC2  
BBC3  
BBC4  
BEC1  
BEC2  
BEC3  
BLSR  
BSIM  
BBC14  
BBC22  
BBC30  
EC6  
BBC13  
BBC21  
BBC29  
EC5  
BBC12  
BBC20  
BBC28  
EC4  
BBC11  
BBC19  
BBC27  
EC3  
BBC10  
BBC18  
BBC26  
EC2  
BBC9  
BBC8  
BBC17  
BBC25  
EC1  
BBC16  
BBC24  
EC0  
EC15  
EC23  
EC14  
EC13  
EC12  
EC11  
EC10  
EC9  
EC8  
EC22  
EC21  
EC20  
EC19  
EC18  
EC17  
EC16  
BBED  
BBED  
BBCO  
BBCO  
BECO  
BECO  
BRA1  
BRA0  
BRLOS  
BRLOS  
BSYNC  
BSYNC  
BRA1  
BRA0  
108 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
9.3  
Global Register Definitions  
Functions contained in the global registers include: framer reset, LIU reset, device ID, BERT interrupt status,  
framer interrupt status, IBO configuration, MCLK configuration, and BPCLK configuration. The global registers bit  
descriptions are presented in this section.  
Table 9-10. Global Register Set  
ADDRESS  
0F0h  
0F1h  
0F2h  
0F3h  
0F4h  
0F5h  
0F6h  
0F7h  
0F8h  
0F9h  
0FAh  
0FBh  
0FCh  
0FDh  
0FEh  
01Fh  
NAME  
GTCR1  
GFCR  
GTCR2  
GTCCR  
DESCRIPTION  
Global Transceiver Control Register 1  
Global Framer Control Register  
Global Transceiver Control Register 2  
Global Transceiver Clock Control Register  
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
GLSRR  
GFSRR  
Global LIU Software Reset Register  
Global Framer and BERT Software Reset Register  
Reserved  
R/W  
R/W  
IDR  
Device Identification Register  
R
GFISR  
GBISR  
GLISR  
GFIMR  
GBIMR  
GLIMR  
Global Framer Interrupt Status Register  
Global BERT Interrupt Status Register  
Global LIU Interrupt Status Register  
Global Framers Interrupt Mask Register  
Global BERT Interrupt Mask Register  
Global LIU Interrupt Mask Register  
Reserved  
R
R
R
R/W  
R/W  
R/W  
Note 1:  
Note 2:  
Reserved registers should only be written with all zeros.  
The global registers are located in the framer address space. The corresponding address space for the other seven framers is  
“Reserved,” and should be initialized with all zeros for proper operation.  
109 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name  
GTCR1  
Register Description:  
Register Address:  
Global Transceiver Control Register 1  
0F0h  
Bit #  
Name  
Default  
7
0
6
0
5
RLOFLTS  
0
4
GIBO  
0
3
0
2
BWE  
0
1
GCLE  
0
0
GIPI  
0
Bit 5: Receive Loss of Frame/Loss of Transmit Clock Indication Select (RLOFLTS).  
0 = RLOF/LTCx pin indicates framer receive loss of frame  
1 = RLOF/LTCx pin indicates framer loss of transmit clock  
Bit 4: Global IBO Enable (GIBO). This bit is used to select either the internal mux for IBO operation or an external  
wire-OR operation. Normally this bit should be set = 0 and the internal mux used.  
0 = Use internal IBO mux  
1 = Externally wire-OR TSERs and RSERs for IBO operation  
Bit 2: Bulk Write Enable (BWE). When this bit is set, a port write to one of the octal ports is mapped into all eight  
ports. This applies to the framer, BERT, and LIU register sets. It must be cleared before performing a read  
operation. This bit is useful for device initialization.  
0 = Normal operation  
1 = Bulk write is enabled  
Bit 1: Global Counter Latch Enable (GCLE). A low-to-high transition on this bit will, when enabled, latch the  
framer performance monitor counters. Each framer can be independently enabled to accept this input. This bit must  
be cleared and set again to perform another counter latch.  
Bit 0: Global Interrupt Pin Inhibit (GIPI).  
0 = Normal operation. Interrupt pin (INTB) will toggle low on an unmasked interrupt condition.  
1 = Interrupt inhibit. Interrupt pin (INTB) is forced high (inactive) when this bit is set.  
110 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Description:  
Register Address:  
GFCR  
Global Framer Control Register  
0F1h  
Bit #  
Name  
Default  
7
IBOMS1  
0
6
IBOMS0  
0
5
BPCLK1  
0
4
BPCLK0  
0
3
2
RFMSS  
0
1
TCBCS  
0
0
RCBCS  
0
RFLOSSFS  
0
Bits 7 and 6: Interleave Bus Operation Mode Select 1 and 0 (IBOMS[1:0]). These bits determine the  
configuration of the IBO (interleaved bus) multiplexer. These bits should be used in conjunction with the Rx and Tx  
IBO control registers within each of the framer units. Additional information concerning the IBO multiplexer is given  
in Section 8.8.2.  
IBOMS1  
IBOMS0  
IBO MODE  
0
0
1
1
0
1
0
1
IBO multiplexer disabled  
2 devices on bus (4.096MHz)  
4 devices on bus (8.192MHz)  
8 devices on bus (16.384MHz)  
Bits 5 and 4: Backplane Clock Select 1 and 0 (BPCLK[1:0]). These bits determine the clock frequency output on  
the BPCLK pin.  
BPCLK1  
BPCLK0  
BPCLK FREQUENCY  
2.048MHz  
0
0
1
1
0
1
0
1
4.096MHz  
8.192MHz  
16.384MHz  
Bit 3: Receive Loss of Signal/Signaling Freeze Select (RLOSSFS). This bit controls the function of all eight  
AL/RSIGF/FLOS pins. The receive LOS is further selected between framer LOS and LIU LOS by GTCR2.2.  
0 = AL/RSIGF/FLOS pin outputs RLOS[1:8] (receive loss)  
1 = AL/RSIGF/FLOS pin outputs RSIGF[1:8] (receive-signaling freeze)  
Bit 2: Receive Frame/Multiframe Sync Select (RFMSS). This bit controls the function of all eight  
RMSYNC/RFSYNC pins.  
0 = RMSYNC/RFSYNC pin outputs RFSYNC[1:8] (receive frame sync)  
1 = RMSYNC/RFSYNC pin outputs RMSYNC[1:8] (receive multiframe sync)  
Bit 1: Transmit Channel Block/Clock Select (TCBCS). This bit controls the function of all eight TCHBLK/CLK  
pins.  
0 = TCHBLK/CLK pin outputs TCHBLK[1:8] (transmit channel block)  
1 = TCHBLK/CLK pin outputs TCHCLK[1:8] (transmit channel clock)  
Bit 0: Receive Channel Block/Clock Select (RCBCS). This bit controls the function of all eight RCHBLK/CLK  
pins.  
0 = RCHBLK/CLK pin outputs RCHBLK[1:8] (receive channel block)  
1 = RCHBLK/CLK pin outputs RCHCLK[1:8] (receive channel clock)  
111 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
GTCR2  
Global Transceiver Control Register 2  
0F2h  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
0
2
LOSS  
0
1
0
0
TSSYNCIOSEL  
0
Bit 2: LOS Selection (LOSS). If this bit is set, the AL/RSIGF/FLOS pins can be driven with LIU loss. If reset, they  
can be driven by framer LOS. The selection of whether to drive AL/RSIGF/FLOS pins with LOS (analog or digital)  
or signalling freeze is controlled by GFCR.2. This selection affects all ports.  
Bit 1: Transmit System Synchronization I/O Select (TSSYNCIOSEL). If this bit is set to a 1, the TSSYNCIO is  
an 8kHz output synchronous to the BPCLK. This “frame pulse” can be used in conjunction with the backplane clock  
to provide IBO signals for a system backplane. If this bit is reset, TSSYNCIO is an input. An 8kHz frame pulse is  
required for transmit synchronization and IBO operation.  
112 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
GTCCR  
Register Description:  
Register Address:  
Global Transceiver Clock Control Register  
0F3h  
Bit #  
Name  
Default  
7
6
5
4
3
2
1
MPS1  
0
0
MPS0  
0
BPREFSEL3 BPREFSEL2 BPREFSEL1 BPREFSEL0 BFREQSEL FREQSEL  
0
0
0
0
0
0
Bits 7 to 4: Backplane Clock Reference Selects (BPREFSEL[3:0]).These bits select which reference clock  
source will be used for BPCLK generation. The BPCLK can be generated from the LIU recovered clock, an external  
reference, or derivatives of MCLK input. This is shown in Table 9-11. See Figure 8-1 for additional information.  
Bit 3: Backplane Frequency Select (BFREQSEL). In conjunction with BPRFSEL[3:0], this bit identifies the  
reference clock frequency used by the DS26528 backplane clock generation circuit. Note that the setting of this bit  
should match the T1E1 selection for the LIU whose recovered clock is being used to generate the backplane clock.  
See Figure 8-1 for additional information.  
0 = Backplane reference clock is 2.048MHz.  
1 = Backplane reference clock is 1.544MHz.  
Bit 2: Frequency Selection (FREQSEL). In conjunction with the MPS[1:0] bits, this bit selects the external MCLK  
frequency of the signal input at the MCLK pin of the DS26528.  
0 = The external master clock is 2.048MHz or multiple thereof.  
1 = The external master clock is 1.544MHz or multiple thereof.  
Bits 1 and 0: Master Period Select 1 and 0 (MPS[1:0]). In conjunction with the FREQSEL bit, these bits select  
the external MCLK frequency of the signal input at the MCLK pin of the DS26528. This is shown in Table 9-12.  
Table 9-11. Backplane Reference Clock Select  
REFERENCE CLOCK  
BPREFSEL3 BPREFSEL2 BPREFSEL1 BPREFSEL0  
BFREQSEL  
SOURCE  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
2.048MHz RCLK1  
1.544MHz RCLK1  
2.048MHz RCLK2  
1.544MHz RCLK2  
2.048MHz RCLK3  
1.544MHz RCLK3  
2.048MHz RCLK4  
1.544MHz RCLK4  
2.048MHz RCLK5  
1.544MHz RCLK5  
2.048MHz RCLK6  
1.544MHz RCLK6  
2.048MHz RCLK7  
1.544MHz RCLK7  
2.048MHz RCLK8  
1.544MHz RCLK8  
1.544MHz derived from MCLK.  
(REFCLKIO is an output.)  
2.048MHz derived from MCLK.  
(REFCLKIO is an output.)  
2.048MHz external clock input at REFCLKIO.  
(REFCLKIO is an input.)  
1.544MHz external clock input at REFCLKIO.  
(REFCLKIO is an input.)  
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
0
1
0
0
1
113 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Table 9-12. Master Clock Input Selection  
MCLK  
FREQSEL MPS1 MPS0  
(MHz ±50ppm)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2.048  
4.096  
8.192  
16.384  
1.544  
3.088  
6.176  
12.352  
114 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
GLSRR  
Global LIU Software Reset Register  
0F5h  
Bit #  
Name  
Default  
7
LSRST8  
0
6
LSRST7  
0
5
LSRST6  
0
4
LSRST5  
0
3
LSRST4  
0
2
LSRST3  
0
1
LSRST2  
0
0
LSRST1  
0
Bit 7: Channel 8 LIU Software Reset (LSRST8). LIU logic and registers are reset with a 0-to-1 transition in this  
bit. The reset is released when a zero is written to this bit.  
0 = Normal operation  
1 = Reset LIU  
Bit 6: Channel 7 LIU Software Reset (LSRST7). LIU logic and registers are reset with a 0-to-1 transition in this  
bit. The reset is released when a zero is written to this bit.  
0 = Normal operation  
1 = Reset LIU  
Bit 5: Channel 6 LIU Software Reset (LSRST6). LIU logic and registers are reset with a 0-to-1 transition in this  
bit. The reset is released when a zero is written to this bit.  
0 = Normal operation  
1 = Reset LIU  
Bit 4: Channel 5 LIU Software Reset (LSRST5). LIU logic and registers are reset with a 0-to-1 transition in this  
bit. The reset is released when a zero is written to this bit.  
0 = Normal operation  
1 = Reset LIU  
Bit 3: Channel 4 LIU Software Reset (LSRST4). LIU logic and registers are reset with a 0-to-1 transition in this  
bit. The reset is released when a zero is written to this bit.  
0 = Normal operation  
1 = Reset LIU  
Bit 2: Channel 3 LIU Software Reset (LSRST3). LIU logic and registers are reset with a 0-to-1 transition in this  
bit. The reset is released when a zero is written to this bit.  
0 = Normal operation  
1 = Reset LIU  
Bit 1: Channel 2 LIU Software Reset (LSRST2). LIU logic and registers are reset with a 0-to-1 transition in this  
bit. The reset is released when a zero is written to this bit.  
0 = Normal operation  
1 = Reset LIU  
Bit 0: Channel 1 LIU Software Reset (LSRST1). LIU logic and registers are reset with a 0-to-1 transition in this  
bit. The reset is released when a zero is written to this bit.  
0 = Normal operation  
1 = Reset LIU  
115 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
GFSRR  
Global Framer and BERT Software Reset Register  
0F6h  
Bit #  
Name  
Default  
7
FSRST8  
0
6
FSRST7  
0
5
FSRST6  
0
4
FSRST5  
0
3
FSRST4  
0
2
FSRST3  
0
1
FSRST2  
0
0
FSRST1  
0
Bit 7: Channel 8 Framer and BERT Software Reset (FSRST8). Framer logic and registers are reset with a 0-to-1  
transition in this bit. The reset is released when a zero is written to this bit.  
0 = Normal operation  
1 = Reset framer and BERT  
Bit 6: Channel 7 Framer and BERT Software Reset (FSRST7). Framer logic and registers are reset with a 0-to-1  
transition in this bit. The reset is released when a zero is written to this bit.  
0 = Normal operation  
1 = Reset framer and BERT  
Bit 5: Channel 6 Framer and BERT Software Reset (FSRST6). Framer logic and registers are reset with a 0-to-1  
transition in this bit. The reset is released when a zero is written to this bit.  
0 = Normal operation  
1 = Reset framer and BERT  
Bit 4: Channel 5 Framer and BERT Software Reset (FSRST5). Framer logic and registers are reset with a 0-to-1  
transition in this bit. The reset is released when a zero is written to this bit.  
0 = Normal operation  
1 = Reset framer and BERT  
Bit 3: Channel 4 Framer and BERT Software Reset (FSRST4). Framer logic and registers are reset with a 0-to-1  
transition in this bit. The reset is released when a zero is written to this bit.  
0 = Normal operation  
1 = Reset framer and BERT  
Bit 2: Channel 3 Framer and BERT Software Reset (FSRST3). Framer logic and registers are reset with a 0-to-1  
transition in this bit. The reset is released when a zero is written to this bit.  
0 = Normal operation  
1 = Reset framer and BERT  
Bit 1: Channel 2 Framer and BERT Software Reset (FSRST2). Framer logic and registers are reset with a 0-to-1  
transition in this bit. The reset is released when a zero is written to this bit.  
0 = Normal operation  
1 = Reset framer and BERT  
Bit 0: Channel 1 Framer and BERT Software Reset (FSRST1). Framer logic and registers are reset with a 0-to-1  
transition in this bit. The reset is released when a zero is written to this bit.  
0 = Normal operation  
1 = Reset framer and BERT  
116 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
IDR  
Device Identification Register  
0F8h  
Bit #  
Name  
Default  
7
ID7  
0
6
ID6  
1
5
ID5  
1
4
ID4  
0
3
ID3  
0
2
ID2  
0
1
ID1  
0
0
ID0  
1
Bits 7 to 3: Device ID (ID[7:3]). The upper five bits of the IDR are used to display the DS26528 ID.  
Table 9-13. Device ID Codes in this Product Family  
DEVICE  
DS26528  
DS26524  
DS26522  
DS26521  
ID7  
0
0
0
0
ID6  
1
1
1
1
ID5  
0
1
1
1
ID4  
1
0
0
1
ID3  
1
0
1
0
Bits 2 to 0: Silicon Revision Bits (ID[2:0]). The lower three bits of the IDR are used to display a sequential  
number denoting the die revision of the chip. The initial silicon revision = “000,” and is incremented with each  
silicon revision. This value is not the same as the two-character device revision on the top brand of the device. This  
is due to the fact that portions of the device assembly other than the silicon may change, causing the device  
revision increment on the brand without having a revision of the silicon. ID0 is the LSB of a decimal code that  
represents the chip revision.  
117 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
GFISR  
Register Description:  
Register Address:  
Global Framer Interrupt Status Register  
0F9h  
Bit #  
Name  
Default  
7
FIS8  
0
6
FIS7  
0
5
FIS6  
0
4
FIS5  
0
3
FIS4  
0
2
FIS3  
0
1
FIS2  
0
0
FIS1  
0
The GFISR register reports the framer interrupt status for each of the eight T1/E1 framers. A logic one in the  
associated bit location indicates a framer has set its interrupt signal.  
Bit 7: Framer Interrupt Status 8 (FIS8).  
0 = Framer 8 has not issued an interrupt.  
1 = Framer 8 has issued an interrupt.  
Bit 6: Framer Interrupt Status 7 (FIS7).  
0 = Framer 7 has not issued an interrupt.  
1 = Framer 7 has issued an interrupt.  
Bit 5: Framer Interrupt Status 6 (FIS6).  
0 = Framer 6 has not issued an interrupt.  
1 = Framer 6 has issued an interrupt.  
Bit 4: Framer Interrupt Status 5 (FIS5).  
0 = Framer 5 has not issued an interrupt.  
1 = Framer 5 has issued an interrupt.  
Bit 3: Framer Interrupt Status 4 (FIS4).  
0 = Framer 4 has not issued an interrupt.  
1 = Framer 4 has issued an interrupt.  
Bit 0: Framer Interrupt Status 3 (FIS3).  
0 = Framer 3 has not issued an interrupt.  
1 = Framer 3 has issued an interrupt.  
Bit 0: Framer Interrupt Status 2 (FIS2).  
0 = Framer 2 has not issued an interrupt.  
1 = Framer 2 has issued an interrupt.  
Bit 0: Framer Interrupt Status 1 (FIS1).  
0 = Framer 1 has not issued an interrupt.  
1 = Framer 1 has issued an interrupt.  
118 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
GBISR  
Register Description:  
Register Address:  
Global BERT Interrupt Status Register  
0FAh  
Bit #  
Name  
Default  
7
BIS8  
0
6
BIS7  
0
5
BIS6  
0
4
BIS5  
0
3
BIS4  
0
2
BIS3  
0
1
BIS2  
0
0
BIS1  
0
The GBISR register reports the interrupt status for each of the eight T1/E1 bit error-rate testers (BERTs). A logic  
one in the associated bit location indicates a BERT has set its interrupt signal.  
Bit 7: BERT Interrupt Status 8 (BIS8).  
0 = BERT 8 has not issued an interrupt.  
1 = BERT 8 has issued an interrupt.  
Bit 6: BERT Interrupt Status 7 (BIS7).  
0 = BERT 7 has not issued an interrupt.  
1 = BERT 7 has issued an interrupt.  
Bit 5: BERT Interrupt Status 6 (BIS6).  
0 = BERT 6 has not issued an interrupt.  
1 = BERT 6 has issued an interrupt.  
Bit 4: BERT Interrupt Status 5 (BIS5).  
0 = BERT 5 has not issued an interrupt.  
1 = BERT 5 has issued an interrupt.  
Bit 3: BERT Interrupt Status 4 (BIS4).  
0 = BERT 4 has not issued an interrupt.  
1 = BERT 4 has issued an interrupt.  
Bit 2: BERT Interrupt Status 3 (BIS3).  
0 = BERT 3 has not issued an interrupt.  
1 = BERT 3 has issued an interrupt.  
Bit 1: BERT Interrupt Status 2 (BIS2).  
0 = BERT 2 has not issued an interrupt.  
1 = BERT 2 has issued an interrupt.  
Bit 0: BERT Interrupt Status 1 (BIS1).  
0 = BERT 1 has not issued an interrupt.  
1 = BERT 1 has issued an interrupt.  
119 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
GLISR  
Register Description:  
Register Address:  
Global LIU Interrupt Status Register  
0FBh  
Bit #  
Name  
Default  
7
LIS8  
0
6
LIS7  
0
5
LIS6  
0
4
LIS5  
0
3
LIS4  
0
2
LIS3  
0
1
LIS2  
0
0
LIS1  
0
The GLISR register reports the LIU interrupt status for each of the eight T1/E1 LIUs. A logic one in the associated  
bit location indicates a LIU has set its interrupt signal.  
Bit 7: LIU Interrupt Status 8 (LIS8).  
0 = LIU 8 has not issued an interrupt.  
1 = LIU 8 has issued an interrupt.  
Bit 6: LIU Interrupt Status 7 (LIS7).  
0 = LIU 7 has not issued an interrupt.  
1 = LIU 7 has issued an interrupt.  
Bit 5: LIU Interrupt Status 6 (LIS6).  
0 = LIU 6 has not issued an interrupt.  
1 = LIU 6 has issued an interrupt.  
Bit 4: LIU Interrupt Status 5 (LIS5).  
0 = LIU 5 has not issued an interrupt.  
1 = LIU 5 has issued an interrupt.  
Bit 3: LIU Interrupt Status 4 (LIS4).  
0 = LIU 4 has not issued an interrupt.  
1 = LIU 4 has issued an interrupt.  
Bit 2: LIU Interrupt Status 3 (LIS3).  
0 = LIU 3 has not issued an interrupt.  
1 = LIU 3 has issued an interrupt.  
Bit 1: LIU Interrupt Status 2 (LIS2).  
0 = LIU 2 has not issued an interrupt.  
1 = LIU 2 has issued an interrupt.  
Bit 0: LIU Interrupt Status 1 (LIS1).  
0 = LIU 1 has not issued an interrupt.  
1 = LIU 1 has issued an interrupt.  
120 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
GFIMR  
Register Description:  
Register Address:  
Global Framer Interrupt Mask Register  
0FCh  
Bit #  
Name  
Default  
7
FIM8  
0
6
FIM7  
0
5
FIM6  
0
4
FIM5  
0
3
FIM4  
0
2
FIM3  
0
1
FIM2  
0
0
FIM1  
0
Bit 7: Framer 8 Interrupt Mask (FIM8).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 6: Framer 7 Interrupt Mask (FIM7).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 5: Framer 6 Interrupt Mask (FIM6).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 4: Framer 5 Interrupt Mask (FIM5).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 3: Framer 4 Interrupt Mask (FIM4).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 2: Framer 3 Interrupt Mask (FIM3).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 1: Framer 2 Interrupt Mask (FIM2).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 0: Framer 1 Interrupt Mask (FIM1).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
121 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
GBIMR  
Register Description:  
Register Address:  
Global BERT Interrupt Mask Register  
0FDh  
Bit #  
Name  
Default  
7
BIM8  
0
6
BIM7  
0
5
BIM6  
0
4
BIM5  
0
3
BIM4  
0
2
BIM3  
0
1
BIM2  
0
0
BIM1  
0
Bit 7: BERT Interrupt Mask 8 (BIM8).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 6: BERT Interrupt Mask 7 (BIM7).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 5: BERT Interrupt Mask 6 (BIM6).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 4: BERT Interrupt Mask 5 (BIM5).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 3: BERT Interrupt Mask 4 (BIM4).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 2: BERT Interrupt Mask 3 (BIM3).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 1: BERT Interrupt Mask 2 (BIM2).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 0: BERT Interrupt Mask 1 (BIM1).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
122 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
GLIMR  
Register Description:  
Register Address:  
Global LIU Interrupt Mask Register  
0FEh  
Bit #  
Name  
Default  
7
LIM8  
0
6
LIM7  
0
5
LIM6  
0
4
LIM5  
0
3
LIM4  
0
2
LIM3  
0
1
LIM2  
0
0
LIM1  
0
Bit 7: LIU Interrupt Mask 8 (LIM8).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 6: LIU Interrupt Mask 7 (LIM7).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 5: LIU Interrupt Mask 6 (LIM6).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 4: LIU Interrupt Mask 5 (LIM5).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 3: LIU Interrupt Mask 4 (LIM4).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 2: LIU Interrupt Mask 3 (LIM3).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 1: LIU Interrupt Mask 2 (LIM2).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 0: LIU Interrupt Mask 1 (LIM1).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
123 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
9.4  
Framer Register Definitions  
See Table 9-3 for the complete framer register list.  
9.4.1 Receive Register Definitions  
Register Name:  
RHC  
Register Description:  
Register Address:  
Receive HDLC Control Register  
010h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
RCRCD  
0
6
RHR  
0
5
RHMS  
0
4
RHCS4  
0
3
RHCS3  
0
2
RHCS2  
0
1
RHCS1  
0
0
RHCS0  
0
Bit 7: Receive CRC-16 Display (RCRCD).  
0 = Do not write received CRC-16 code to FIFO (default)  
1 = Write received CRC-16 code to FIFO after last octet of packet  
Bit 6: Receive HDLC Reset (RHR). Will reset the receive HDLC controller and flush the receive FIFO. Note that  
this bit is a acknowledged reset. The host should set this bit and the DS26528 will clear it once the reset operation  
is complete. The DS26528 will complete the HDLC reset within two frames.  
0 = Normal operation  
1 = Reset receive HDLC controller and flush the receive FIFO  
Note: This bit will clear automatically if RMMR.INT_DONE has been set.  
Bit 5: Receive HDLC Mapping Select (RHMS).  
0 = Receive HDLC assigned to channels  
1 = Receive HDLC assigned to FDL (T1 mode), Sa bits (E1 mode)  
Bit 4 to 0: Receive HDLC Channel Select 4 to 0 (RHCS[4:0]). These bits determine which DS0 is mapped to the  
HDLC controller when enabled with RHMS = 0. RHCS[4:0] = all 0s selects channel 1, RHCS[4:0] = all 1s selects  
channel 32 (E1). A change to the receive HDLC channel select is acknowledged only after a receive HDLC reset  
(RHR).  
124 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RHBSE  
Register Description:  
Register Address:  
Receive HDLC Bit Suppress Register  
011h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
BSE8  
0
6
BSE7  
0
5
BSE6  
0
4
BSE5  
0
3
BSE4  
0
2
BSE3  
0
1
BSE2  
0
0
BSE1  
0
Bit 7: Receive Channel Bit 8 Suppress (BSE8). MSB of the channel. Set to one to stop this bit from being used.  
Bit 6: Receive Channel Bit 7 Suppress (BSE7). Set to one to stop this bit from being used.  
Bit 5: Receive Channel Bit 6 Suppress (BSE6). Set to one to stop this bit from being used.  
Bit 4: Receive Channel Bit 5 Suppress (BSE5). Set to one to stop this bit from being used.  
Bit 3: Receive Channel Bit 4 Suppress (BSE4). Set to one to stop this bit from being used.  
Bit 2: Receive Channel Bit 3 Suppress (BSE3). Set to one to stop this bit from being used.  
Bit 1: Receive Channel Bit 2 Suppress (BSE2). Set to one to stop this bit from being used.  
Bit 0: Receive Channel Bit 1 Suppress (BSE1). LSB of the channel. Set to one to stop this bit from being used.  
125 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RDS0SEL  
Register Description:  
Register Address:  
Receive Channel Monitor Select Register  
012h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
RCM4  
0
3
RCM3  
0
2
RCM2  
0
1
RCM1  
0
0
RCM0  
0
Bits 4 to 0: Receive Channel Monitor Bits (RCM[4:0]). RCM0 is the LSB of a 5-bit channel select that  
determines which receive DS0 channel data will appear in the RDS0M register.  
Register Name:  
RSIGC  
Register Description:  
Register Address:  
Receive-Signaling Control Register  
013h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
4
3
2
1
0
Name  
RFSA1  
RSFF  
RSFE  
RSIE  
0
0
0
CASMS  
0
RSFF  
RSFE  
RSIE  
Default  
0
0
0
0
Bit 4 (T1 Mode): Receive Force Signaling All Ones (RFSA1).  
0 = do not force robbed bit signaling to all ones  
1 = force signaling bits to all ones on a per-channel basis according to the T1RSAOI1:T1RSAOI3 registers.  
Bit 4 (E1 Mode): CAS Mode Select (CASMS).  
0 = The DS26528 will initiate a resync when two consecutive multiframe alignment signals have been  
received with an error.  
1 = The DS26528 will initiate a resync when two consecutive multiframe alignment signals have been  
received with an error, or 1 multiframe has been received with all the bits in time slot 16 in state 0.  
Alignment criteria is met when at least one bit in state 1 is present in the time slot 16 preceding the  
multiframe alignment signal first detected (G.732 alternate criteria).  
Bit 2: Receive-Signaling Force Freeze (RSFF). Freezes receive-side signaling at RSIG (and RSER if receive-  
signaling reinsertion is enabled); will override receive freeze enable (RFE).  
0 = do not force a freeze event  
1 = force a freeze event  
Bit 1: Receive-Signaling Freeze Enable (RSFE).  
0 = no freezing of receive-signaling data will occur  
1 = allow freezing of receive-signaling data at RSIG (and RSER if receive-signaling reinsertion is enabled)  
Bit 0: Receive-Signaling Integration Enable (RSIE).  
0 = signaling changes of state reported on any change in selected channels  
1 = signaling must be stable for three multiframes in order for a change of state to be reported  
126 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
T1RCR2 (T1 Mode)  
Register Description:  
Register Address:  
Receive Control Register 2  
014h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
RSLC96  
0
3
OOF2  
0
2
OOF1  
0
1
RAIIE  
0
0
RD4RM  
0
Bit 4: Receive SLC-96 Synchronizer Enable (RSLC96). See Section 8.9.4.5 for SLC-96 details.  
0 = SLC-96 synchronizer is disabled  
1 = SLC-96 synchronizer is enabled  
Bits 3 and 2: Out of Frame Select Bits (OOF[2:1]).  
OOF2 OOF1  
OUT OF FRAME CRITERIA  
2/4 frame bits in error  
2/5 frame bits in error  
2/6 frame bits in error  
2/6 frame bits in error  
0
0
1
1
0
1
0
1
Bit 1: Receive RAI Integration Enable (RAIIE). The ESF RAI indication can be interrupted for a period not to  
exceed 100ms per interruption (T1.403). In ESF mode, setting RAIIE will cause the RAI status from the DS26528  
to be integrated for 200ms.  
0 =  
RAI detects when 16 consecutive patterns of 00FF appear in the FDL.  
RAI clears when 14 or fewer patterns of 00FF hex out of 16 possible appear in the FDL.  
RAI detects when the condition has been present for greater than 200ms.  
RAI clears when the condition has been absent for greater than 200ms.  
1 =  
Bit 0: Receive-Side D4 Remote Alarm Select (RD4RM).  
0 = zeros in bit 2 of all channels  
1 = a one in the S-bit position of frame 12 (J1 Yellow Alarm Mode)  
127 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
E1RSAIMR (E1 Mode Only)  
Register Description:  
Register Address:  
Receive Sa-Bit Interrupt Mask Register  
014h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
RSa4IM  
0
3
RSa5IM  
0
2
RSa6IM  
0
1
RSa7IM  
0
0
RSa8IM  
0
Bit 4: Sa4 Change Detect Interrupt Mask (RSa4IM). This bit will enable the change detect interrupt for the Sa4  
bits. Any change of state of the Sa4 bit will then generate an interrupt in RLS7.0 to indicate the change of state.  
0 = interrupt masked  
1 = interrupt enabled  
Bit 3: Sa5 Change Detect Interrupt Mask (RSa5IM). This bit will enable the change detect interrupt for the Sa5  
bits. Any change of state of the Sa5 bit will then generate an interrupt in RLS7.0 to indicate the change of state.  
0 = interrupt masked  
1 = interrupt enabled  
Bit 2: Sa6 Change Detect Interrupt Mask (RSa6IM). This bit will enable the change detect interrupt for the Sa6  
bits. Any change of state of the Sa6 bit will then generate an interrupt in RLS7.0 to indicate the change of state.  
0 = interrupt masked  
1 = interrupt enabled  
Bit 1: Sa7 Change Detect Interrupt Mask (RSa7IM). This bit will enable the change detect interrupt for the Sa7  
bits. Any change of state of the Sa7 bit will then generate an interrupt in RLS7.0 to indicate the change of state.  
0 = interrupt masked  
1 = interrupt enabled  
Bit 0: Sa8 Change Detect Interrupt Mask (RSa8IM). This bit will enable the change detect interrupt for the Sa8  
bits. Any change of state of the Sa8 bit will then generate an interrupt in RLS7.0 to indicate the change of state.  
0 = interrupt masked  
1 = interrupt enabled  
128 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
T1RBOCC (T1 Mode Only)  
Register Description:  
Register Address:  
Receive BOC Control Register  
015h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
RBR  
0
6
0
5
RBD1  
0
4
RBD0  
0
3
0
2
RBF1  
0
1
RBF0  
0
0
0
Bit 7: Receive BOC Reset (RBR). The host should set this bit to force a reset of the BOC circuitry. Note that this is  
an acknowledged reset, that is, the host need only set the bit and the DS26528 will clear it once the reset operation  
is complete (less than 250μs). Modifications to the RBF[1:0] and RBD[1:0] bits will not be applied to the BOC  
controller until a BOC reset has been completed.  
Note: This bit will clear automatically if RMMR.INIT_DONE has been set.  
Bits 5 and 4: Receive BOC Disintegration Bits (RBD[1:0]). The BOC disintegration filter sets the number of  
message bits that must be received without a valid BOC to set the BC bit indicating that a valid BOC is no longer  
being received.  
CONSECUTIVE MESSAGE BITS  
FOR BOC CLEAR IDENTIFICATION  
RBD1  
RBD0  
0
0
1
1
0
1
0
1
16  
32  
48  
64 (See Note 1)  
Bits 2 and 1: Receive BOC Filter Bits (RBF[1:0]). The BOC filter sets the number of consecutive patterns that  
must be received without error prior to an indication of a valid message.  
CONSECUTIVE BOC CODES FOR  
VALID SEQUENCE IDENTIFICATION  
RBF1  
RBF0  
0
0
1
1
0
1
0
1
None  
3
5
7 (See Note 1)  
Note 1: The DS26528’s BOC controller does not integrate and disintegrate concurrently. Therefore, if the maximum integration  
time and the maximum disintegration time are used together, BOC messages that repeat fewer than 11 times may not be  
detected.  
Register Name:  
RIDR1 to RIDR32  
Register Description:  
Register Address:  
Receive Idle Code Definition Registers 1 to 32  
020h to 03Fh + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
C7  
0
6
C6  
0
5
C5  
0
4
C4  
0
3
C3  
0
2
C2  
0
1
C1  
0
0
C0  
0
Bits 7 to 0: Per-Channel Idle Code Bits (C[7:0]). C0 is the LSB of the code (this bit is transmitted last). Address  
020h is for channel 1. Address 037h is for channel 24. Address 03Fh is for channel 32. RIDR1:RIDR24 are T1  
mode only. RIDR25:RIDR32 are E1 mode only.  
129 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
T1RSAOI1, T1RSAOI2, T1RSAOI3 (T1 Mode Only)  
Register Description:  
Register Address:  
Receive-Signaling All-Ones Insertion Registers 1 to 3  
038h, 039h, 03Ah + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
(MSB) 7  
CH8  
CH16  
CH24  
0
6
5
4
3
2
1
0 (LSB)  
CH1  
CH9  
CH17  
0
CH7  
CH15  
CH23  
0
CH6  
CH14  
CH22  
0
CH5  
CH13  
CH21  
0
CH4  
CH12  
CH20  
0
CH3  
CH11  
CH19  
0
CH2  
CH10  
CH18  
0
T1RSAOI1  
T1RSAOI2  
T1RSAOI3  
Default  
Setting any of the CH[1:24] bits in the T1RSAOI1:T1RSAOI3 registers will cause signaling data to be replaced with  
logic ones as reported on RSER. The RSIG signal will continue to report received signaling data. Note that this  
feature must be enabled with control bit RSIGC.4.  
Register Name:  
Register Description:  
Register Address:  
T1RDMWE1, T1RDMWE2, T1RDMWE3 (T1 Mode Only)  
T1 Receive Digital Milliwatt Enable Registers 1 to 3  
03Ch, 03Dh, 03Eh + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
(MSB) 7  
CH8  
CH16  
CH24  
0
6
5
4
3
2
1
0 (LSB)  
CH1  
CH9  
CH17  
0
CH7  
CH15  
CH23  
0
CH6  
CH14  
CH22  
0
CH5  
CH13  
CH21  
0
CH4  
CH12  
CH20  
0
CH3  
CH11  
CH19  
0
CH2  
CH10  
CH18  
0
T1RDMWE1  
T1RDMWE2  
T1RDMWE3  
Default  
Bits 7 to 0: Receive Digital Milliwatt Enable for Channels 1 to 24 (CH[1:24]).  
0 =do not affect the receive data associated with this channel  
1 = replace the receive data associated with this channel with digital milliwatt code  
130 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RS1 to RS16  
Register Description:  
Register Address:  
Receive-Signaling Registers 1 to 16  
040h to 04Fh + (200h x n): where n = 0 to 7, for Ports 1 to 8  
T1 Mode:  
(MSB)  
(LSB)  
CH1-A  
CH2-A  
CH3-A  
CH4-A  
CH5-A  
CH6-A  
CH7-A  
CH8-A  
CH9-A  
CH10-A  
CH11-A  
CH12-A  
CH1-B  
CH1-C  
CH2-C  
CH3-C  
CH4-C  
CH5-C  
CH6-C  
CH7-C  
CH8-C  
CH9-C  
CH10-C  
CH11-C  
CH12-C  
CH1-D  
CH2-D  
CH3-D  
CH4-D  
CH5-D  
CH6-D  
CH7-D  
CH8-D  
CH9-D  
CH10-D  
CH11-D  
CH12-D  
CH13-A  
CH14-A  
CH15-A  
CH16-A  
CH17-A  
CH18-A  
CH19-A  
CH20-A  
CH21-A  
CH22-A  
CH23-A  
CH24-A  
CH13-B  
CH14-B  
CH15-B  
CH16-B  
CH17-B  
CH18-B  
CH19-B  
CH20-B  
CH21-B  
CH22-B  
CH23-B  
CH24-B  
CH13-C  
CH14-C  
CH15-C  
CH16-C  
CH17-C  
CH18-C  
CH19-C  
CH20-C  
CH21-C  
CH22-C  
CH23-C  
CH24-C  
CH13-D  
CH14-D  
CH15-D  
CH16-D  
CH17-D  
CH18-D  
CH19-D  
CH20-D  
CH21-D  
CH22-D  
CH23-D  
CH24-D  
RS1  
RS2  
RS3  
RS4  
RS5  
RS6  
RS7  
RS8  
RS9  
RS10  
RS11  
RS12  
CH2-B  
CH3-B  
CH4-B  
CH5-B  
CH6-B  
CH7-B  
CH8-B  
CH9-B  
CH10-B  
CH11-B  
CH12-B  
E1 Mode:  
(MSB)  
0
(LSB)  
X
0
0
0
X
Y
X
RS1  
CH1-A  
CH2-A  
CH3-A  
CH4-A  
CH5-A  
CH6-A  
CH7-A  
CH8-A  
CH9-A  
CH10-A  
CH11-A  
CH12-A  
CH13-A  
CH14-A  
CH15-A  
CH1-B  
CH2-B  
CH3-B  
CH4-B  
CH5-B  
CH6-B  
CH7-B  
CH8-B  
CH9-B  
CH10-B  
CH11-B  
CH12-B  
CH13-B  
CH14-B  
CH15-B  
CH1-C  
CH2-C  
CH3-C  
CH4-C  
CH5-C  
CH6-C  
CH7-C  
CH8-C  
CH9-C  
CH10-C  
CH11-C  
CH12-C  
CH13-C  
CH14-C  
CH15-C  
CH1-D  
CH2-D  
CH3-D  
CH4-D  
CH5-D  
CH6-D  
CH7-D  
CH8-D  
CH9-D  
CH10-D  
CH11-D  
CH12-D  
CH13-D  
CH14-D  
CH15-D  
CH16-A  
CH17-A  
CH18-A  
CH19-A  
CH20-A  
CH21-A  
CH22-A  
CH23-A  
CH24-A  
CH25-A  
CH26-A  
CH27-A  
CH28-A  
CH29-A  
CH30-A  
CH16-B  
CH17-B  
CH18-B  
CH19-B  
CH20-B  
CH21-B  
CH22-B  
CH23-B  
CH24-B  
CH25-B  
CH26-B  
CH27-B  
CH28-B  
CH29-B  
CH30-B  
CH16-C  
CH17-C  
CH18-C  
CH19-C  
CH20-C  
CH21-C  
CH22-C  
CH23-C  
CH24-C  
CH25-C  
CH26-C  
CH27-C  
CH28-C  
CH29-C  
CH30-C  
CH16-D  
CH17-D  
CH18-D  
CH19-D  
CH20-D  
CH21-D  
CH22-D  
CH23-D  
CH24-D  
CH25-D  
CH26-D  
CH27-D  
CH28-D  
CH29-D  
CH30-D  
RS2  
RS3  
RS4  
RS5  
RS6  
RS7  
RS8  
RS9  
RS10  
RS11  
RS12  
RS13  
RS14  
RS15  
RS16  
In the ESF framing mode, there can be up to four signaling bits per channel (A, B, C, and D). In the D4 framing  
mode, there are only two signaling bits per channel (A and B). In the D4 framing mode, the framer will repeat the A  
and B signaling data in the C and D bit locations. Therefore, when the framer is operated in D4 framing mode, the  
user will need to retrieve the signaling bits every 1.5ms as opposed to 3ms for ESF mode. The receive-signaling  
registers are frozen and not updated during a loss of sync condition. They will contain the most recent signaling  
information before the “OOF” occurred.  
131 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
LCVCR1  
Register Description:  
Register Address:  
Line Code Violation Count Register 1  
050h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
LCVC15  
0
6
LCVC14  
0
5
LCVC13  
0
4
LCVC12  
0
3
LCVC11  
0
2
LCVC10  
0
1
LCVC9  
0
0
LCVC8  
0
Bits 7 to 0: Line Code Violation Counter Bits 15 to 8 (LCVC[15:8]). LCVC15 is the MSB of the 16-bit code  
violation count.  
Register Name:  
LCVCR2  
Register Description:  
Register Address:  
Line Code Violation Count Register 2  
051h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
LCVC7  
0
6
LCVC6  
0
5
LCVC5  
0
4
LCVC4  
0
3
LCVC3  
0
2
LCVC2  
0
1
LCVC1  
0
0
LCVC0  
0
Bits 7 to 0: Line Code Violation Counter Bits 7 to 0 (LCVC[7:0]). LCVC0 is the LSB of the 16-bit code violation  
count.  
Register Name:  
PCVCR1  
Register Description:  
Register Address:  
Path Code Violation Count Register 1  
052h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
PCVC15  
0
6
PCVC14  
0
5
PCVC13  
0
4
PCVC12  
0
3
PCVC11  
0
2
PCVC10  
0
1
PCVC9  
0
0
PCVC8  
0
Bits 7 to 0: Path Code Violation Counter Bits 15 to 8 (PCVC[15:8]). PCVC15 is the MSB of the 16-bit path code  
violation count.  
Register Name:  
PCVCR2  
Register Description:  
Register Address:  
Path Code Violation Count Register 2  
053h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
PCVC7  
0
6
PCVC6  
0
5
PCVC5  
0
4
PCVC4  
0
3
PCVC3  
0
2
PCVC2  
0
1
PCVC1  
0
0
PCVC0  
0
Bits 7 to 0: Path Code Violation Counter Bits 0 to 7 (PCVC[7:0]). PCVC0 is the LSB of the 16-bit path code  
violation count.  
132 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
FOSCR1  
Register Description:  
Register Address:  
Frames Out of Sync Count Register 1  
054h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
FOS15  
0
6
FOS14  
0
5
FOS13  
0
4
FOS12  
0
3
FOS11  
0
2
FOS10  
0
1
FOS9  
0
0
FOS8  
0
Bits 7 to 0: Frames Out of Sync Counter Bits 15 to 8 (FOS[15:8]). FOS15 is the MSB of the 16-bit frames out of  
sync count.  
Register Name:  
FOSCR2  
Register Description:  
Register Address:  
Frames Out of Sync Count Register 2  
055h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
FOS7  
0
6
FOS6  
0
5
FOS5  
0
4
FOS4  
0
3
FOS3  
0
2
FOS2  
0
1
FOS1  
0
0
FOS0  
0
Bits 7 to 0: Frames Out of Sync Counter Bits 7 to 0 (FOS[7:0]). FOS0 is the LSB of the 16-bit frames out of  
sync count.  
Register Name:  
E1EBCR1 (E1 Mode Only)  
Register Description:  
Register Address:  
E-Bit Count Register 1  
056h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
EB15  
0
6
EB14  
0
5
EB13  
0
4
EB12  
0
3
EB11  
0
2
EB10  
0
1
EB9  
0
0
EB8  
0
Bits 7 to 0: E-Bit Counter Bits 15 to 8 (EB[15:8]). EB15 is the MSB of the 16-bit E-bit count.  
Register Name:  
Register Description:  
E1EBCR2 (E1 Mode Only)  
E-Bit Count Register 2  
Register Address:  
057h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
EB7  
0
6
EB6  
0
5
EB5  
0
4
EB4  
0
3
EB3  
0
2
EB2  
0
1
EB1  
0
0
EB0  
0
Bits 7 to 0: E-Bit Counter Bits 7 to 0 (EB[7:0]). EB0 is the LSB of the 16-bit E-bit count.  
133 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RDS0M  
Register Description:  
Register Address:  
Receive DS0 Monitor Register  
060h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
B1  
0
6
B2  
0
5
B3  
0
4
B4  
0
3
B5  
0
2
B6  
0
1
B7  
0
0
B8  
0
Bits 7 to 0: Receive DS0 Channel Bits (B[1:8]). Receive channel data that has been selected by the Receive  
Channel Monitor Select register (RDS0SEL). B8 is the LSB of the DS0 channel (last bit to be received).  
Register Name:  
E1RFRID (E1 Mode Only)  
Register Description:  
Register Address:  
Receive Firmware Revision ID Register  
061h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
FR7  
0
6
FR6  
0
5
FR5  
0
4
FR4  
0
3
FR3  
0
2
FR2  
0
1
FR1  
0
0
FR0  
0
Bits 7 to 0: Firmware Revision (FR[7:0]). This read-only register reports the current revision of the receive  
firmware.  
134 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
T1RFDL (T1 Mode)  
Register Description:  
Register Address:  
Receive FDL Register  
062h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
RFDL7  
0
6
RFDL6  
0
5
RFDL5  
0
4
RFDL4  
0
3
RFDL3  
0
2
RFDL2  
0
1
RFDL1  
0
0
RFDL0  
0
Note: This register has an alternate definition for E1 mode. See E1RRTS7.  
Bit 7: Receive FDL Bit 7 (RFDL7). MSB of the received FDL code.  
Bit 6: Receive FDL Bit 6 (RFDL6).  
Bit 5: Receive FDL Bit 5 (RFDL5).  
Bit 4: Receive FDL Bit 4 (RFDL4).  
Bit 3: Receive FDL Bit 3 (RFDL3).  
Bit 2: Receive FDL Bit 2 (RFDL2).  
Bit 1: Receive FDL Bit 1 (RFDL1).  
Bit 0: Receive FDL Bit 0 (RFDL0). LSB of the received FDL code.  
Register Name:  
E1RRTS7 (E1 Mode)  
Register Description:  
Register Address:  
Receive Real-Time Status Register 7  
062h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
CSC5  
0
6
CSC4  
0
5
CSC3  
0
4
CSC2  
0
3
CSC0  
0
2
CRC4SA  
0
1
CASSA  
0
0
FASSA  
0
Note: This register has an alternate definition for T1 mode. See T1RFDL. All bits in this register are real-time (not latched).  
Bits 7 to 3: CRC-4 Sync Counter Bits (CSC[5:2] and CSC0). The CRC-4 sync counter increments each time the  
8ms CRC-4 multiframe search times out. The counter is cleared when the framer has successfully obtained  
synchronization at the CRC-4 level. The counter can also be cleared by disabling the CRC-4 mode (RCR1.3 = 0).  
This counter is useful for determining the amount of time the framer has been searching for synchronization at the  
CRC-4 level. ITU-T G.706 suggests that if synchronization at the CRC-4 level cannot be obtained within 400ms,  
then the search should be abandoned and proper action taken. The CRC-4 sync counter will saturate (not rollover).  
CSC0 is the LSB of the 6-bit counter. (CSC1 is omitted to allow resolution to > 400ms using 5 bits.)  
Bit 2: CRC-4 MF Sync Active (CRC4SA). Set while the synchronizer is searching for the CRC-4 MF alignment  
word.  
Bit 1: CAS MF Sync Active (CASSA). Set while the synchronizer is searching for the CAS MF alignment word.  
Bit 0: FAS Sync Active (FASSA). Set while the synchronizer is searching for alignment at the FAS level.  
135 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
T1RBOC (T1 Mode)  
Register Description:  
Register Address:  
Receive BOC Register  
063h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
0
5
RBOC5  
0
4
RBOC4  
0
3
RBOC3  
0
2
RBOC2  
0
1
RBOC1  
0
0
RBOC0  
0
Bit 5: BOC Bit 5 (RBOC5).  
Bit 4: BOC Bit 4 (RBOC4).  
Bit 3: BOC Bit 3 (RBOC3).  
Bit 2: BOC Bit 2 (RBOC2).  
Bit 1: BOC Bit 1 (RBOC1).  
Bit 0: BOC Bit 0 (RBOC0).  
The T1RBOC register always contains the last valid BOC received. The Receive FDL register (T1RFDL) reports  
the incoming Facility Data Link (FDL) or the incoming Fs bits. The LSB is received first. In D4 framing mode, RFDL  
updates on multiframe boundaries and reports the six Fs bits in RFDL[5:0].  
136 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
T1RSLC1, T1RSLC2, T1RSLC3 (T1 Mode)  
Receive SLC-96 Data Link Registers 1 to 3  
064h, 065h, 066h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
(MSB) 7  
C8  
M2  
S=1  
0
6
5
C6  
S=0  
S3  
0
4
C5  
S=1  
S2  
0
3
C4  
S=0  
S1  
0
2
C3  
C11  
A2  
0
1
C2  
C10  
A1  
0
0 (LSB)  
C1  
C7  
M1  
S4  
0
T1RSLC1  
T1RSLC2  
T1RSLC3  
C9  
M3  
0
Default  
Note: These registers have an alternate definition for E1 mode. See E1RAF, E1RNAF, and E1RSiAF.  
Register Name:  
E1RAF (E1 Mode)  
Register Description:  
Register Address:  
E1 Receive Align Frame Register  
064h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
Si  
0
6
0
0
5
0
0
4
1
0
3
1
0
2
0
0
1
1
0
0
1
0
Note: This register has an alternate definition for T1 mode. See T1RSLC1.  
Bit 7: International Bit (Si).  
Bit 6: Frame Alignment Signal Bit (0).  
Bit 5: Frame Alignment Signal Bit (0).  
Bit 4: Frame Alignment Signal Bit (1).  
Bit 3: Frame Alignment Signal Bit (1).  
Bit 2: Frame Alignment Signal Bit (0).  
Bit 1: Frame Alignment Signal Bit (1).  
Bit 0: Frame Alignment Signal Bit (1).  
137 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
E1RNAF (E1 Mode)  
Register Description:  
Register Address:  
E1 Receive Non-Align Frame Register  
065h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
Si  
0
6
1
0
5
A
0
4
Sa4  
0
3
Sa5  
0
2
Sa6  
0
1
Sa7  
0
0
Sa8  
0
Note: This register has an alternate definition for T1 mode. See T1RSLC2.  
Bit 7: International Bit (Si).  
Bit 6: Frame Non-Alignment Signal Bit (1).  
Bit 5: Remote Alarm (A).  
Bit 4: Additional Bit 4 (Sa4).  
Bit 3: Additional Bit 5 (Sa5).  
Bit 2: Additional Bit 6 (Sa6).  
Bit 1: Additional Bit 7 (Sa7).  
Bit 0: Additional Bit 8 (Sa8).  
Register Name:  
E1RSiAF (E1 Mode)  
Register Description:  
Register Address:  
E1 Received Si Bits of the Align Frame Register  
066h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
SiF14  
0
6
SiF12  
0
5
SiF10  
0
4
SiF8  
0
3
SiF6  
0
2
SiF4  
0
1
SiF2  
0
0
SiF0  
0
Note: This register has an alternate definition for T1 mode. See T1RSLC3.  
Bit 7: Si Bit of Frame 14 (SiF14).  
Bit 6: Si Bit of Frame 12 (SiF12).  
Bit 5: Si Bit of Frame 10 (SiF10).  
Bit 4: Si Bit of Frame 8 (SiF8).  
Bit 3: Si Bit of Frame 6 (SiF6).  
Bit 2: Si Bit of Frame 4 (SiF4).  
Bit 1: Si Bit of Frame 2 (SiF2).  
Bit 0: Si Bit of Frame 0 (SiF0).  
138 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
E1RSiNAF (E1 Mode Only)  
Register Description:  
Register Address:  
Receive Si Bits of the Non-Align Frame Register  
067h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
SiF15  
0
6
SiF13  
0
5
SiF11  
0
4
SiF9  
0
3
SiF7  
0
2
SiF5  
0
1
SiF3  
0
0
SiF1  
0
Bit 7: Si Bit of Frame 15 (SiF15).  
Bit 6: Si Bit of Frame 13 (SiF13).  
Bit 5: Si Bit of Frame 11 (SiF11).  
Bit 4: Si Bit of Frame 9 (SiF9).  
Bit 3: Si Bit of Frame 7 (SiF7).  
Bit 2: Si Bit of Frame 5 (SiF5).  
Bit 1: Si Bit of Frame 3 (SiF3).  
Bit 0: Si Bit of Frame 1 (SiF1).  
Register Name:  
E1RRA (E1 Mode Only)  
Register Description:  
Register Address:  
Receive Remote Alarm Register  
068h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
RRAF15  
0
6
RRAF13  
0
5
RRAF11  
0
4
RRAF9  
0
3
RRAF7  
0
2
RRAF5  
0
1
RRAF3  
0
0
RRAF1  
0
Bit 7: Remote Alarm Bit of Frame 15 (RRAF15).  
Bit 6: Remote Alarm Bit of Frame 13 (RRAF13).  
Bit 5: Remote Alarm Bit of Frame 11 (RRAF11).  
Bit 4: Remote Alarm Bit of Frame 9 (RRAF9).  
Bit 3: Remote Alarm Bit of Frame 7 (RRAF7).  
Bit 2: Remote Alarm Bit of Frame 5 (RRAF5).  
Bit 1: Remote Alarm Bit of Frame 3 (RRAF3).  
Bit 0: Remote Alarm Bit of Frame 1 (RRAF1).  
139 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
E1RSa4 (E1 Mode Only)  
Register Description:  
Register Address:  
Receive Sa4 Bits Register  
069h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
RSa4F15  
0
6
RSa4F13  
0
5
RSa4F11  
0
4
RSa4F9  
0
3
RSa4F7  
0
2
RSa4F5  
0
1
RSa4F3  
0
0
RSa4F1  
0
Bit 7: Sa4 Bit of Frame 15 (RSa4F15).  
Bit 6: Sa4 Bit of Frame 13 (RSa4F13).  
Bit 5: Sa4 Bit of Frame 11 (RSa4F11).  
Bit 4: Sa4 Bit of Frame 9 (RSa4F9).  
Bit 3: Sa4 Bit of Frame 7 (RSa4F7).  
Bit 2: Sa4 Bit of Frame 5 (RSa4F5).  
Bit 1: Sa4 Bit of Frame 3 (RSa4F3).  
Bit 0: Sa4 Bit of Frame 1 (RSa4F1).  
Register Name:  
Register Description:  
Register Address:  
E1RSa5 (E1 Mode Only)  
Receive Sa5 Bits Register  
06Ah + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
RSa5F15  
0
6
RSa5F13  
0
5
RSa5F11  
0
4
RSa5F9  
0
3
RSa5F7  
0
2
RSa5F5  
0
1
RSa5F3  
0
0
RSa5F1  
0
Bit 7: Sa5 Bit of Frame 15 (RSa5F15).  
Bit 6: Sa5 Bit of Frame 13 (RSa5F13).  
Bit 5: Sa5 Bit of Frame 11 (RSa5F11).  
Bit 4: Sa5 Bit of Frame 9 (RSa5F9).  
Bit 3: Sa5 Bit of Frame 7 (RSa5F7).  
Bit 2: Sa5 Bit of Frame 5 (RSa5F5).  
Bit 1: Sa5 Bit of Frame 3 (RSa5F3).  
Bit 0: Sa5 Bit of Frame 1 (RSa5F1).  
140 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
E1RSa6 (E1 Mode Only)  
Receive Sa6 Bits Register  
06Bh + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
RSa6F15  
0
6
RSa6F13  
0
5
RSa6F11  
0
4
RSa6F9  
0
3
RSa6F7  
0
2
RSa6F5  
0
1
RSa6F3  
0
0
RSa6F1  
0
Bit 7: Sa6 Bit of Frame 15 (RSa6F15).  
Bit 6: Sa6 Bit of Frame 13 (RSa6F13).  
Bit 5: Sa6 Bit of Frame 11 (RSa6F11).  
Bit 4: Sa6 Bit of Frame 9 (RSa6F9).  
Bit 3: Sa6 Bit of Frame 7 (RSa6F7).  
Bit 2: Sa6 Bit of Frame 5 (RSa6F5).  
Bit 1: Sa6 Bit of Frame 3 (RSa6F3).  
Bit 0: Sa6 Bit of Frame 1 (RSa6F1).  
Register Name:  
Register Description:  
Register Address:  
E1RSa7 (E1 Mode Only)  
Receive Sa7 Bits Register  
06Ch + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
RSa7F15  
0
6
RSa7F13  
0
5
RSa7F11  
0
4
RSa7F9  
0
3
RSa7F7  
0
2
RSa7F5  
0
1
RSa7F3  
0
0
RSa7F1  
0
Bit 7: Sa7 Bit of Frame 15 (RSa7F15).  
Bit 6: Sa7 Bit of Frame 13 (RSa7F13).  
Bit 5: Sa7 Bit of Frame 11 (RSa7F11).  
Bit 4: Sa7 Bit of Frame 9 (RSa7F9).  
Bit 3: Sa7 Bit of Frame 7 (RSa7F7).  
Bit 2: Sa7 Bit of Frame 5 (RSa7F5).  
Bit 1: Sa7 Bit of Frame 3 (RSa7F3).  
Bit 0: Sa7 Bit of Frame 1 (RSa7F1).  
141 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
E1RSa8 (E1 Mode Only)  
Receive Sa8 Bits Register  
06Dh + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
RSa8F15  
0
6
RSa8F13  
0
5
RSa8F11  
0
4
RSa8F9  
0
3
RSa8F7  
0
2
RSa8F5  
0
1
RSa8F3  
0
0
RSa8F1  
0
Bit 7: Sa8 Bit of Frame 15 (RSa8F15).  
Bit 6: Sa8 Bit of Frame 13 (RSa8F13).  
Bit 5: Sa8 Bit of Frame 11 (RSa8F11).  
Bit 4: Sa8 Bit of Frame 9 (RSa8F9).  
Bit 3: Sa8 Bit of Frame 7 (RSa8F7).  
Bit 2: Sa8 Bit of Frame 5 (RSa8F5).  
Bit 1: Sa8 Bit of Frame 3 (RSa8F3).  
Bit 0: Sa8 Bit of Frame 1 (RSa8F1).  
Register Name:  
Register Description:  
Register Address:  
SaBITS  
Receive SaX Bits Register  
06Eh + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
Sa4  
0
3
Sa5  
0
2
Sa6  
0
1
Sa7  
0
0
Sa8  
0
This register indicates the last received SaX bit. This can be used in conjunction with the RLS7 register to  
determine which SaX bits have changed. The user can program which Sa bit positions should be monitored via the  
E1RSAIMR register, and when a change is detected through an interrupt inRLS7.0, the user can determine which  
bit has changed by reading this register and comparing it with previous known values.  
Bit 4: Last Received Sa4 Bit (Sa4).  
Bit 3: Last Received Sa5 Bit (Sa5).  
Bit 2: Last Received Sa6 Bit (Sa6).  
Bit 1: Last Received Sa7 Bit (Sa7).  
Bit 0: Last Received Sa8 Bit (Sa8).  
142 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Sa6CODE  
Register Description:  
Register Address:  
Received Sa6 Codeword Register  
06Fh + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
Sa6n  
0
2
Sa6n  
0
1
Sa6n  
0
0
Sa6n  
0
This register reports the received Sa6 codeword per ETS 300 233. The bits are monitored on a submultiframe  
asynchronous basis, so the pattern reported could be one of multiple patterns that would represent a valid  
codeword. The table below indicates which patterns reported in this register correspond to a given valid Sa6  
codeword.  
Bits 3 to 0: Sa6 Codeword Bit (Sa6n).  
POSSIBLE REPORTED  
VALID Sa6 CODE  
PATTERNS  
Sa6_8  
Sa6_A  
Sa6_C  
Sa6_E  
Sa6_F  
1000, 0100, 0010, 0001  
1010, 0101  
110, 0110, 0011, 1001  
1110, 0111, 1011, 1101  
1111  
Register Name:  
RMMR  
Register Description:  
Register Address:  
Receive Master Mode Register  
080h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
7
6
5
0
4
0
3
0
2
0
1
SFTRST  
0
0
T1/E1  
0
FRM_EN INIT_DONE  
Default  
0
0
Bit 7: Framer Enable (FRM_EN). This bit must be set to the desired state before writing INIT_DONE.  
0 = Framer disabled—held in low-power state  
1 = Framer enabled—all features active  
Bit 6: Initialization Done (INIT_DONE). The user must set this bit once he has written the configuration registers.  
The host is required to write or clear all device registers prior to setting this bit. Once INIT_DONE is set, the  
DS26528 will check the FRM_EN bit and, if enabled, will begin operation based on the initial configuration.  
Bit 1: Soft Reset (SFTRST). Level sensitive soft reset. Should be taken high then low to reset the receiver.  
0 = Normal operation  
1 = Reset the receiver  
Bit 0: Receiver T1/E1 Mode Select (T1/E1). Sets operating mode for receiver only! This bit must be set to the  
desired state before writing INIT_DONE.  
0 = T1 operation  
1 = E1 operation  
143 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RCR1 (T1 Mode)  
Register Description:  
Register Address:  
Receive Control Register 1  
081h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
SYNCT  
0
6
RB8ZS  
0
5
RFM  
0
4
ARC  
0
3
SYNCC  
0
2
RJC  
0
1
SYNCE  
0
0
RESYNC  
0
Note: This register has an alternate definition for E1 mode. See RCR1.  
Bit 7: Sync Time (SYNCT).  
0 = qualify 10 bits  
1 = qualify 24 bits  
Bit 6: Receive B8ZS Enable (RB8ZS).  
0 = B8ZS disabled  
1 = B8ZS enabled  
Bit 5: Receive Frame Mode Select (RFM).  
0 = ESF framing mode  
1 = D4 framing mode  
Bit 4: Auto Resync Criteria (ARC).  
0 = resync on OOF or LOS event  
1 = resync on OOF only  
Bit 3: Sync Criteria (SYNCC).  
In D4 Framing Mode:  
0 = search for Ft pattern, then search for Fs pattern  
1 = cross couple Ft and Fs pattern  
In ESF Framing Mode:  
0 = search for FPS pattern only  
1 = search for FPS and verify with CRC-6  
Bit 2: Receive Japanese CRC6 Enable (RJC).  
0 = use ANSI:AT&T:ITU-T CRC-6 calculation (normal operation)  
1 = use Japanese standard JT-G704 CRC-6 calculation  
Bit 1: Sync Enable (SYNCE).  
0 = auto resync enabled  
1 = auto resync disabled  
Bit 0: Resynchronize (RESYNC). When toggled from low to high, a resynchronization of the receive-side framer is  
initiated. Must be cleared and set again for a subsequent resync.  
144 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RCR1 (E1 Mode)  
Register Description:  
Register Address:  
Receive Control Register 1  
081h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
RHDB3  
0
5
RSIGM  
0
4
RG802  
0
3
RCRC4  
0
2
FRC  
0
1
SYNCE  
0
0
RESYNC  
0
Note: This register has an alternate definition for T1 mode. See RCR1.  
Bit 6: Receive HDB3 Enable (RHDB3).  
0 = HDB3 disabled  
1 = HDB3 enabled (decoded per O.162)  
Bit 5: Receive-Signaling Mode Select (RSIGM).  
0 = CAS signaling mode  
1 = CCS signaling mode  
Bit 4: Receive G.802 Enable (RG802). See Figure 10-23 for details.  
0 = do not force RCHBLK high during bit 1 of time slot 26  
1 = force RCHBLK high during bit 1 of time slot 26  
Bit 3: Receive CRC-4 Enable (RCRC4).  
0 = CRC-4 disabled  
1 = CRC-4 enabled  
Bit 2: Frame Resync Criteria (FRC).  
0 = resync if FAS received in error three consecutive times  
1 = resync if FAS or bit 2 of non-FAS is received in error three consecutive times  
Bit 1: Sync Enable (SYNCE).  
0 = auto resync enabled  
1 = auto resync disabled  
Bit 0: Resynchronize (RESYNC). When toggled from low to high, a resynchronization of the receive-side framer is  
initiated. Must be cleared and set again for a subsequent resync.  
145 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
T1RIBCC (T1 Mode)  
Register Description:  
Register Address:  
Receive In-Band Code Control Register  
082h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
0
5
RUP2  
0
4
RUP1  
0
3
RUP0  
0
2
RDN2  
0
1
RDN1  
0
0
RDN0  
0
Note: This register has an alternate definition for E1 mode. See E1RCR2.  
Bits 5 to 3: Receive Up Code Length Definition Bits (RUP[2:0]).  
RUP2  
RUP1  
RUP0  
LENGTH SELECTED  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1 bits  
2 bits  
3 bits  
4 bits  
5 bits  
6 bits  
7 bits  
8 : 16 bits  
Bits 2 to 0: Receive Down Code Length Definition Bits (RDN[2:0]).  
RDN2  
RDN1  
RDN0  
LENGTH SELECTED  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1 bits  
2 bits  
3 bits  
4 bits  
5 bits  
6 bits  
7 bits  
8 : 16 bits  
146 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
E1RCR2 (E1 Mode)  
Register Description:  
Register Address:  
Receive Control Register 2  
082h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
RSa8S  
0
6
RSa7S  
0
5
RSa6S  
0
4
RSa5S  
0
3
RSa4S  
0
2
0
1
0
0
RLOSA  
0
Note: This register has an alternate definition for T1 mode. See T1RIBCC.  
Bit 7: Sa8 Bit Select (RSa8S). Set to one to have RLCLK pulse at the Sa8 bit position; set to zero to force RLCLK  
low during Sa8 bit position.  
Bit 6: Sa7 Bit Select (RSa7S). Set to one to have RLCLK pulse at the Sa7 bit position; set to zero to force RLCLK  
low during Sa7 bit position.  
Bit 5: Sa6 Bit Select (RSa6S). Set to one to have RLCLK pulse at the Sa6 bit position; set to zero to force RLCLK  
low during Sa6 bit position.  
Bit 4: Sa5 Bit Select (RSa5S). Set to one to have RLCLK pulse at the Sa5 bit position; set to zero to force RLCLK  
low during Sa5 bit position.  
Bit 3: Sa4 Bit Select (RSa4S). Set to one to have RLCLK pulse at the Sa4 bit position; set to zero to force RLCLK  
low during Sa4 bit position.  
Bit 0: Receive Loss of Signal Alternate Criteria (RLOSA). Defines the criteria for a loss-of-signal condition.  
0 = LOS declared upon 255 consecutive zeros (125μs)  
1 = LOS declared upon 2048 consecutive zeros (1ms)  
147 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RCR3  
Register Description:  
Register Address:  
Receive Control Register 3  
083h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
IDF  
0
6
0
5
RSERC  
0
4
0
3
0
2
0
1
PLB  
0
0
FLB  
0
Bit 7: Input Data Format (IDF).  
0 = bipolar data is expected at RTIP and RRING (either AMI or B8ZS)  
1 = NRZ data is expected at RTIP. The BPV counter will be disabled and RRING will be ignored by the  
DS26528.  
Bit 5: RSER Control (RSERC).  
0 = allow RSER to output data as received under all conditions (normal operation)  
1 = force RSER to one under loss of frame alignment conditions  
Bit 1: Payload Loopback (PLB).  
0 = loopback disabled  
1 = loopback enabled  
When PLB is enabled, the following will occur:  
1) Data will be transmitted from the TTIP and TRING pins synchronous with RCLK instead of TCLK.  
2) All the receive-side signals will continue to operate normally.  
3) The TCHCLK and TCHBLK signals are forced low.  
4) Data at the TSER, TDATA, and TSIG pins is ignored.  
5) The TLCLK signal will become synchronous with RCLK instead of TCLK.  
In a PLB situation, the DS26528 loops the 192 bits (248 for E1) of payload data (with BPVs corrected) from the  
receive section back to the transmit section. The transmitter follows the frame alignment provided by the receiver.  
The receive frame boundary is automatically fed into the transmit section, such that the transmit frame position is  
locked to the receiver (i.e., TSYNC is sourced from RSYNC). The FPS framing pattern, CRC-6 calculation, and the  
FDL bits (FAS word, Si, Sa, E-bits, and CRC-4 for E1) are not looped back. Rather, they are reinserted by the  
DS26528 (i.e., the transmit section will modify the payload as if it was input at TSER).  
Bit 0: Framer Loopback (FLB).  
0 = loopback disabled  
1 = loopback enabled  
This loopback is useful in testing and debugging applications. In FLB, the DS26528 loops data from the transmit  
side back to the receive side. When FLB is enabled, the following will occur:  
1) (T1 mode) An unframed all-ones code will be transmitted at TTIP and TRING.  
(E1 mode) Normal data will be transmitted at TTIP and TRING.  
2) Data at RTIP and RRING will be ignored.  
3) All receive-side signals will take on timing synchronous with TCLK instead of RCLK.  
4) Note that it is not acceptable to have RCLK tied to TCLK during this loopback because this will cause an  
unstable condition.  
148 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RIOCR  
Register Description:  
Register Address:  
Receive I/O Configuration Register  
084h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
7
6
5
4
3
RSMS  
2
1
0
RCLKINV  
RCLKINV  
0
RSYNCINV  
RSYNCINV  
0
H100EN  
H100EN  
0
RSCLKM  
RSCLKM  
0
RSIO  
RSIO  
1
RSMS2  
RSMS2  
0
RSMS1  
RSMS1  
0
Default  
0
Bit 7: RCLK Invert (RCLKINV).  
0 = no inversion  
1 = invert RCLK as input  
Bit 6: RSYNC Invert (RSYNCINV).  
0 = no inversion  
1 = invert RSYNC as either input or output  
Bit 5: H.100 SYNC Mode (H100EN). See Section 8.8.3 for more information.  
0 = normal operation  
1 = RSYNC and TSSYNCIO signals are shifted  
Bit 4: RSYSCLK Mode Select (RSCLKM).  
0 = if RSYSCLK is 1.544MHz  
1 = if RSYSCLK is 2.048MHz or IBO enabled  
Bit 3: RSYNC Multiframe Skip Control (RSMS) (T1 Mode Only). Useful in framing format conversions from D4 to  
ESF. This function is not available when the receive-side elastic store is enabled. RSYNC must be set to output  
multiframe pulses.  
0 = RSYNC will output a pulse at every multiframe  
1 = RSYNC will output a pulse at every other multiframe  
Bit 2: RSYNC I/O Select (RSIO). (Note: This bit must be set to zero when elastic store is disabled) The default  
value for this bit is a logic 1 so that the default state of RSYNC is as an input.  
0 = RSYNC is an output  
1 = RSYNC is an input (only valid if elastic store enabled)  
Bit 1: RSYNC Mode Select 2 (RSMS2).  
T1 Mode: RSYNC pin must be programmed in the output frame mode.  
0 = do not pulse double-wide in signaling frames  
1 = do pulse double-wide in signaling frames  
E1 Mode: RSYNC pin must be programmed in the output multiframe mode.  
0 = RSYNC outputs CAS multiframe boundaries  
1 = RSYNC outputs CRC-4 multiframe boundaries  
In E1 mode, RSMS2 also selects which multiframe signal is available at the RMSYNC pin, regardless of the  
configuration for RSYNC. When RSMS2 = 0, RMSYNC outputs CAS multiframe boundaries; when RSMS2 = 1,  
RMSYNC outputs CRC-4 multiframe boundaries.  
Bit 0: RSYNC Mode Select 1 (RSMS1). Selects frame or multiframe pulse when RSYNC pin is in output mode. In  
input mode (elastic store must be enabled) multiframe mode is only useful when receive-signaling reinsertion is  
enabled.  
0 = frame mode  
1 = multiframe mode  
149 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RESCR  
Register Description:  
Register Address:  
Receive Elastic Store Control Register  
085h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
RDATFMT  
0
6
RGCLKEN  
0
5
0
4
RSZS  
0
3
RESALGN  
0
2
RESR  
0
1
RESMDM  
0
0
RESE  
0
Bit 7: Receive Channel Data Format (RDATFMT).  
0 = 64kbps (data contained in all 8 bits)  
1 = 56kbps (data contained in 7 out of the 8 bits)  
Bit 6: Receive Gapped Clock Enable (RGCLKEN).  
0 = RCHCLK functions normally  
1 = Enable gapped bit clock output on RCHCLK  
Note: RGPCKEN and RDATFMT are not associated with the elastic store and are explained in the fractional  
support section.  
Bit 4: Receive Slip Zone Select (RSZS). This bit determines the minimum distance allowed between the elastic  
store read and write pointers before forcing a controlled slip. This bit only applies during T1-to-E1 or E1-to-T1  
conversion applications.  
0 = force a slip at 9 bytes or less of separation (used for clustered blank channels)  
1 = force a slip at 2 bytes or less of separation (used for distributed blank channels and minimum delay  
mode)  
Bit 3: Receive Elastic Store Align (RESALGN). Setting this bit from 0 to 1 forces the receive elastic store’s  
write/read pointers to a minimum separation of half a frame. No action is taken if the pointer separation is already  
greater or equal to half a frame. If pointer separation is less than half a frame, the command is executed and the  
data is disrupted. Should be toggled after RSYSCLK has been applied and is stable. Must be cleared and set again  
for a subsequent align.  
Bit 2: Receive Elastic Store Reset (RESR). Setting this bit from 0 to 1 forces the read pointer into the same frame  
that the write pointer is exiting, minimizing the delay through the elastic store. If this command should place the  
pointers within the slip zone (see bit 4), then an immediate slip occurs and the pointers move back to opposite  
frames. Should be toggled after RSYSCLK has been applied and is stable. Do not leave this bit set HIGH.  
Bit 1: Receive Elastic Store Minimum Delay Mode (RESMDM).  
0 = elastic stores operate at full two-frame depth  
1 = elastic stores operate at 32-bit depth  
Bit 0: Receive Elastic Store Enable (RESE).  
0 = elastic store is bypassed  
1 = elastic store is enabled  
150 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
ERCNT  
Register Description:  
Register Address:  
Error-Counter Configuration Register  
086h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
7
6
5
4
3
2
FSBE  
1
0
1SECS  
1SECS  
0
MCUS  
MCUS  
0
MECU  
MECU  
0
ECUS  
ECUS  
0
EAMS  
EAMS  
0
MOSCRF  
LCVCRF  
LCVCRF  
0
0
Default  
0
Bit 7: One-Second Select (1SECS). This bit allows for synchronization of the error counter updates between  
multiple ports. When ERCNT.3 = 0, setting this bit (on a specific framer) will update the framer’s error counters on  
the transition of the one-second timer from framer 1. Note that this bit should always be clear for framer 1.  
0 = use the one-second timer that is internal to the framer  
1 = use the one-second timer from framer 1 to latch updates  
Bit 6: Manual Counter Update Select (MCUS). When manual update mode is enabled with EAMS, this bit can be  
used to allow the incoming LATCH_CNT signal to latch all counters. Used for synchronously latching counters or  
multiple DS26528 cores located on the same die.  
0 = MECU is used to manually latch counters  
1 = counters are latched on the rising edge of the LATCH_CNT signal  
Bit 5: Manual Error Counter Update (MECU). When enabled by ERCNT.3, the changing of this bit from 0 to 1  
allows the next clock cycle to load the error counter registers with the latest counts and reset the counters. The  
user must wait a minimum of 250μs before reading the error count registers to allow for proper update.  
Bit 4: Error Counter Update Select (ECUS).  
T1 Mode:  
0 = update error counters once a second  
1 = update error counters every 42ms (333 frames)  
E1 Mode:  
0 = update error counters once a second  
1 = update error counters every 62.5ms (500 frames)  
Bit 3: Error Accumulation Mode Select (EAMS).  
0 = automatic updating of error counters enabled. The state of ERCNT.4 determines accumulation time  
(timed update)  
1 = user toggling of ERCNT.5 determines accumulation time (manual update)  
Bit 2: PCVCR Fs-Bit Error Report Enable (FSBE) (T1 Mode Only).  
0 = do not report bit errors in Fs-bit position; only Ft-bit position  
1 = report bit errors in Fs-bit position as well as Ft-bit position  
Bit 1: Multiframe Out of Sync Count Register Function Select (MOSCRF) (T1 Mode Only).  
0 = count errors in the framing bit position  
1 = count the number of multiframes out of sync  
Bit 0: T1 Line Code Violation Count Register Function Select (LCVCRF).  
0 = do not count excessive zeros  
1 = count excessive zeros  
151 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RHFC  
Register Description:  
Register Address:  
Receive HDLC FIFO Control Register  
087h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
RFHWM1 RFHWM0  
0
0
Bits 1 and 0: Receive FIFO High Watermark Select (RFHWM[1:0]).  
RECEIVE FIFO WATERMARK  
RFHWM1  
RFHWM0  
(BYTES)  
0
0
1
1
0
1
0
1
4
16  
32  
48  
152 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RIBOC  
Register Description:  
Register Address:  
Receive Interleave Bus Operation Control Register  
088h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
IBS1  
0
5
IBS0  
0
4
IBOSEL  
0
3
IBOEN  
0
2
DA2  
0
1
DA1  
0
0
DA0  
0
Bits 6 and 5: IBO Bus Size Bits (IBS[1:0]). Indicates how many devices on the bus.  
IBS1  
IBS0  
BUS SIZE  
0
0
1
1
0
1
0
1
2 devices on bus (4.096MHz)  
4 devices on bus (8.192MHz)  
8 devices on bus (16.384MHz)  
Reserved for future use  
Bit 4: Interleave Bus Operation Select (IBOSEL). This bit selects channel or frame interleave mode.  
0 = Channel Interleave  
1 = Frame Interleave  
Bit 3: Interleave Bus Operation Enable (IBOEN).  
0 = interleave bus operation disabled  
1 = interleave bus operation enabled  
Bits 2 to 0: Device Assignment Bits (DA[2:0]).  
DA2  
0
0
0
0
1
1
1
1
DA1  
0
0
1
1
0
0
1
1
DA0  
0
1
0
1
0
1
0
1
DEVICE POSITION  
1st device on bus  
2nd device on bus  
3rd device on bus  
4th device on bus  
5th device on bus  
6th device on bus  
7th device on bus  
8th device on bus  
153 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
T1RSCC (T1 Mode Only)  
Register Description:  
Register Address:  
In-Band Receive Spare Control Register  
089h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
0
2
RSC2  
0
1
RSC1  
0
0
RSC0  
0
Bits 2 to 0: Receive Spare Code Length Definition Bits (RSC[2:0]).  
LENGTH SELECTED  
RSC2  
RSC1  
RSC0  
(BITS)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
2
3
4
5
6
7
8:16  
Register Name:  
RXPC  
Register Description:  
Register Address:  
Receive Expansion Port Control Register  
08Ah + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
7
6
5
4
3
0
2
1
0
RBPDIR  
RBPDIR  
0
RBPFUS  
RBPEN  
RBPEN  
0
0
Default  
0
0
0
0
Bit 2: Receive BERT Port Direction Control (RBPDIR).  
0 = Normal (line) operation. Receive BERT port receives data from the receive framer.  
1 = System (backplane) operation. Receive BERT port receives data from the transmit path. The transmit  
path enters the receive BERT on the line side of the elastic store (if enabled).  
Bit 1: Receive BERT Port Framed/Unframed Select (RBPFUS) (T1 Mode Only).  
0 = The receive BERT will not clock data from the F-bit position (framed).  
1 = The receive BERT will clock data from the F-bit position (unframed).  
Bit 0: Receive BERT Port Enable (RBPEN).  
0 = Receive BERT port is not active.  
1 = Receive BERT port is active.  
154 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RBPBS  
Register Description:  
Register Address:  
Receive BERT Port Bit Suppress Register  
08Bh + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
BPBSE8  
0
6
BPBSE7  
0
5
BPBSE6  
0
4
BPBSE5  
0
3
BPBSE4  
0
2
BPBSE3  
0
1
BPBSE2  
0
0
BPBSE1  
0
Bit 7: Receive Channel Bit 8 Suppress (BPBSE8). MSB of the channel. Set to one to stop this bit from being  
used.  
Bit 6: Receive Channel Bit 7 Suppress (BPBSE7). Set to one to stop this bit from being used.  
Bit 5: Receive Channel Bit 6 Suppress (BPBSE6). Set to one to stop this bit from being used.  
Bit 4: Receive Channel Bit 5 Suppress (BPBSE5). Set to one to stop this bit from being used.  
Bit 3: Receive Channel Bit 4 Suppress (BPBSE4). Set to one to stop this bit from being used.  
Bit 2: Receive Channel Bit 3 Suppress (BPBSE3). Set to one to stop this bit from being used.  
Bit 1: Receive Channel Bit 2 Suppress (BPBSE2). Set to one to stop this bit from being used.  
Bit 0: Receive Channel Bit 1 Suppress (BPBSE1). LSB of the channel. Set to one to stop this bit from being  
used.  
155 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RLS1  
Register Description:  
Register Address:  
Receive Latched Status Register 1  
090h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
RRAIC  
0
6
RAISC  
0
5
RLOSC  
0
4
RLOFC  
0
3
RRAID  
0
2
RAISD  
0
1
RLOSD  
0
0
RLOFD  
0
Note: All bits in this register are latched and can create interrupts.  
Bit 7: Receive Remote Alarm Indication Condition Clear (RRAIC). Falling edge detect of RRAI. Set when a  
RRAI condition has cleared.  
Bit 6: Receive Alarm Indication Signal Condition Clear (RAISC). Falling edge detect of RAIS. Set when a RAIS  
condition has cleared.  
Bit 5: Receive Loss of Signal Condition Clear (RLOSC). Falling edge detect of RLOS. Set when an RLOS  
condition has cleared.  
Bit 4: Receive Loss of Frame Condition Clear (RLOFC). Falling edge detect of RLOF. Set when an RLOF  
condition has cleared.  
Bit 3: Receive Remote Alarm Indication Condition Detect (RRAID). Rising edge detect of RRAI. Set when a  
remote alarm is received at RTIP and RRING.  
Bit 2: Receive Alarm Indication Signal Condition Detect (RAISD). Rising edge detect of RAIS.Set when an  
unframed all-ones code is received at RTIP and RRING.  
Bit 1: Receive Loss of Signal Condition Detect (RLOSD). Rising edge detect of RLOS. Set when 192  
consecutive zeros have been detected at RTIP and RRING.  
Bit 0: Receive Loss of Frame Condition Detect (RLOFD). Rising edge detect of RLOF. Set when the DS26528  
has lost synchronized to the received data stream.  
156 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RLS2 (T1 Mode)  
Register Description:  
Register Address:  
Receive Latched Status Register 2  
091h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
RPDV  
0
6
0
5
COFA  
0
4
8ZD  
0
3
16ZD  
0
2
SEFE  
0
1
B8ZS  
0
0
FBE  
0
Note: All bits in these register are latched. This register does not create interrupts. See RLS2 for E1 mode.  
Bit 7: Receive Pulse Density Violation Event (RPDV). Set when the receive data stream does not meet the ANSI  
T1.403 requirements for pulse density.  
Bit 5: Change of Frame Alignment Event (COFA). Set when the last resync resulted in a change of frame or  
multiframe alignment.  
Bit 4: Eight Zero Detect Event (8ZD). Set when a string of at least eight consecutive zeros (regardless of the  
length of the string) have been received.  
Bit 3: Sixteen Zero Detect Event (16ZD). Set when a string of at least 16 consecutive zeros (regardless of the  
length of the string) have been received.  
Bit 2: Severely Errored Framing Event (SEFE). Set when two out of six framing bits (Ft or FPS) are received in  
error.  
Bit 1: B8ZS Codeword Detect Event (B8ZS). Set when a B8ZS codeword is detected at RTIP and RRING  
independent of whether the B8ZS mode is selected or not. Useful for automatically setting the line coding.  
Bit 0: Frame Bit Error Event (FBE). Set when a Ft (D4) or FPS (ESF) framing bit is received in error.  
157 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RLS2 (E1 Mode)  
Register Description:  
Register Address:  
Receive Latched Status Register 2  
091h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
CRCRC  
0
5
CASRC  
0
4
FASRC  
0
3
RSA1  
0
2
RSA0  
0
1
RCMF  
0
0
RAF  
0
Note: All bits in this register are latched. Bits 0 to 3 can cause interrupts. There is no associated real-time register. See RLS2 for T1 mode.  
Bit 6: CRC Resync Criteria Met Event (CRCRC). Set when 915:1000 codewords are received in error.  
Bit 5: CAS Resync Criteria Met Event (CASRC). Set when two consecutive CAS MF alignment words are  
received in error.  
Bit 4: FAS Resync Criteria Met Event (FASRC). Set when three consecutive FAS words are received in error.  
Bit 3: Receive-Signaling All-Ones Event (RSA1). Set when the contents of time slot 16 contains fewer than three  
zeros over 16 consecutive frames. This alarm is not disabled in the CCS signaling mode.  
Bit 2: Receive-Signaling All-Zeros Event (RSA0). Set when over a full MF, time slot 16 contains all zeros.  
Bit 1: Receive CRC-4 Multiframe Event (RCMF). Set on CRC-4 multiframe boundaries. This bit continues to be  
set every 2ms on an arbitrary boundary if CRC-4 is disabled.  
Bit 0: Receive Align Frame Event (RAF). Set approximately every 250μs to alert the host that Si and Sa bits are  
available in the RAF and RNAF registers.  
158 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RLS3 (T1 Mode)  
Register Description:  
Register Address:  
Receive Latched Status Register 3  
092h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
LORCC  
0
6
LSPC  
0
5
LDNC  
0
4
LUPC  
0
3
LORCD  
0
2
LSPD  
0
1
LDND  
0
0
LUPD  
0
Note: All bits in this register are latched and can create interrupts. See RLS3 for E1 mode.  
Bit 7: Loss of Receive Clock Condition Clear (LORCC). Falling edge detect of LORC. Set when an LORC  
condition was detected and then removed.  
Bit 6: Spare Code Detected Condition Clear (LSPC). Falling edge detect of LSP. Set when a spare-code match  
condition was detected and then removed.  
Bit 5: Loop-Down Code Detected Condition Clear (LDNC). Falling edge detect of LDN. Set when a loop-down  
condition was detected and then removed  
Bit 4: Loop-Up Code Detected Condition Clear (LUPC). Falling edge detect of LUP. Set when a loop-up  
condition was detected and then removed.  
Bit 3: Loss of Receive Clock Condition Detect (LORCD). Rising edge detect of LORC. Set when the RCLK pin  
has not transitioned for one channel time.  
Bit 2: Spare Code Detected Condition Detect (LSPD). Rising edge detect of LSP. Set when the spare code as  
defined in the T1RSCD1:T1RSCD2 registers is being received.  
Bit 1: Loop-Down Code Detected Condition Detect (LDND). Rising edge detect of LDN. Set when the loop-  
down code as defined in the T1RDNCD1:T1RDNCD2 register is being received.  
Bit 0: Loop-Up Code Detected Condition Detect (LUPD). Rising edge detect of LUP. Set when the loop-up code  
as defined in the T1RUPCD1:T1RUPCD2 register is being received.  
159 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RLS3 (E1 Mode)  
Register Description:  
Register Address:  
Receive Latched Status Register 3  
092h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
LORCC  
0
6
0
5
V52LNKC  
0
4
RDMAC  
0
3
LORCD  
0
2
0
1
V52LNKD  
0
0
RDMAD  
0
Note: All bits in this register are latched and can create interrupts. See RLS3 for T1 mode.  
Bit 7: Loss of Receive Clock Clear (LORCC). Change of state indication. Set when an LORC condition has  
cleared (falling edge detect of LORC).  
Bit 5: V5.2 Link Detected Clear (V52LNKC). Change of state indication. Set when a V52LNK condition has  
cleared (falling edge detect of V52LNK).  
Bit 4: Receive Distant MF Alarm Clear (RDMAC). Change of state indication. Set when an RDMA condition has  
cleared (falling edge detect of RDMA).  
Bit 3: Loss of Receive Clock Detect (LORCD). Change of state indication. Set when the RCLK pin has not  
transitioned for one channel time (rising edge detect of LORC).  
Bit 1: V5.2 Link Detect (V52LNKD). Change of state indication. Set on detection of a V5.2 link identification signal.  
(G.965). This is the rising edge detect of V52LNK.  
Bit 0: Receive Distant MF Alarm Detect (RDMAD). Change of state indication. Set when bit 6 of time slot 16 in  
frame 0 has been set for two consecutive multiframes. This alarm is not disabled in the CCS signaling mode. This  
is the rising edge detect of RDMA.  
160 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RLS4  
Register Description:  
Register Address:  
Receive Latched Status Register 4  
093h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
RESF  
0
6
RESEM  
0
5
RSLIP  
0
4
0
3
RSCOS  
0
2
1SEC  
0
1
TIMER  
0
0
RMF  
0
Note: All bits in this register are latched and can create interrupts.  
Bit 7: Receive Elastic Store Full Event (RESF). Set when the receive elastic store buffer fills and a frame is  
deleted.  
Bit 6: Receive Elastic Store Empty Event (RESEM). Set when the receive elastic store buffer empties and a  
frame is repeated.  
Bit 5: Receive Elastic Store Slip Occurrence Event (RSLIP). Set when the receive elastic store has either  
repeated or deleted a frame.  
Bit 3: Receive-Signaling Change-of-State Event (RSCOS). Set when any channel selected by the Receive-  
Signaling Change-of-State Interrupt Enable registers (RSCSE1:RSCSE3) changes signaling state.  
Bit 2: One-Second Timer (1SEC). Set on every one-second interval based on RCLK.  
Bit 1: Timer Event (TIMER). This status bit indicates that the performance monitor counters have been updated  
and are available to be read by the host. The error counter update interval as determined by the settings in the  
Error Counter Configuration register (ERCNT).  
T1 Mode: Set on increments of one second or 42ms based on RCLK, or a manual latch event.  
E1 Mode: Set on increments of one second or 62.5ms based on RCLK, or a manual latch event.  
Bit 0: Receive Multiframe Event (RMF).  
T1 Mode: Set every 1.5ms on D4 MF boundaries or every 3ms on ESF MF boundaries.  
E1 Mode: Set every 2.0ms on receive CAS multiframe boundaries to alert host the signaling data is  
available. Continues to set on an arbitrary 2.0ms boundary when CAS signaling is not enabled.  
161 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RLS5  
Register Description:  
Register Address:  
Receive Latched Status Register 5 (HDLC)  
094h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
0
5
ROVR  
0
4
RHOBT  
0
3
RPE  
0
2
RPS  
0
1
RHWMS  
0
0
RNES  
0
Note: All bits in this register are latched and can cause interrupts.  
Bit 5: Receive FIFO Overrun (ROVR). Set when the receive HDLC controller has terminated packet reception  
because the FIFO buffer is full.  
Bit 4: Receive HDLC Opening Byte Event (RHOBT). Set when the next byte available in the receive FIFO is the  
first byte of a message.  
Bit 3: Receive Packet-End Event (RPE). Set when the HDLC controller detects either the finish of a valid  
message (i.e., CRC check complete) or when the controller has experienced a message fault such as a CRC  
checking error, or an overrun condition, or an abort has been seen. This is a latched bit and will be cleared when  
read.  
Bit 2: Receive Packet-Start Event (RPS). Set when the HDLC controller detects an opening byte. This is a  
latched bit and will be cleared when read.  
Bit 1: Receive FIFO Above High Watermark Set Event (RHWMS). Set when the receive 64-byte FIFO crosses  
the high watermark as defined by the Receive HDLC FIFO Control register (RHFC). Rising edge detect of RHWM.  
Bit 0: Receive FIFO Not Empty Set Event (RNES). Set when the receive FIFO has transitioned from empty to not  
empty (at least one byte has been put into the FIFO). Rising edge detect of RNE.  
162 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RLS7 (T1 Mode)  
Register Description:  
Register Address:  
Receive Latched Status Register 7  
096h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
0
5
RRAI-CI  
0
4
RAIS-CI  
0
3
RSLC96  
0
2
RFDLF  
0
1
BC  
0
0
BD  
0
Note: All bits in this register are latched and can create interrupts. See RLS7 for E1 mode.  
Bit 5: Receive RAI-CI Detect (RRAI-CI). Set when an RAI-CI pattern has been detected by the receiver. This bit is  
active in ESF framing mode only, and will set only if an RAI condition is being detected (RRTS1.3). When the host  
reads (and clears) this bit, it will set again each time the RAI-CI pattern is detected (approximately every 1.1  
seconds).  
Bit 4: Receive AIS-CI Detect (RAIS-CI). Set when an AIS-CI pattern has been detected by the receiver. This bit  
will set only if an AIS condition is being detected (RRTS1.2). This is a latched bit that must be cleared by the host,  
and will set again each time the AIS-CI pattern is detected (approximately every 1.2 seconds).  
Bit 3: Receive SLC-96 Alignment Event (RSLC96). Set when a valid SLC-96 alignment pattern is detected in the  
Fs-bit stream, and the RSLCx registers have data available for retrieval. See Section 8.9.4.5 for more information.  
Bit 2: Receive FDL Register Full Event (RFDLF). Set when the 8-bit T1RFDL register is full. Useful for SLC-96  
operation, or manual extraction of FDL data bits. See Section 8.9.5.4 for more information.  
Bit 1: BOC Clear Event (BC). Set when a valid BOC is no longer detected (with the disintegration filter applied).  
Bit 0: BOC Detect Event (BD). Set when a valid BOC has been detected (with the BOC filter applied).  
Register Name:  
RLS7 (E1 Mode)  
Register Description:  
Register Address:  
Receive Latched Status Register 7  
096h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
0
2
0
1
Sa6CD  
0
0
SaXCD  
0
Note: All bits in this register are latched and can create interrupts. See RLS7 for T1 mode.  
Bit 1: Sa6 Codeword Detect (Sa6CD). Set when a valid codeword (per ETS 300 233) is detected in the Sa6 bit  
positions.  
Bit 0: SaX Bit Change Detect (SaXCD). Set when a bit change is detected in the SaX bit position. The enabled  
SaX bits are selected by the E1RSAIMR register.  
163 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RSS1, RSS2, RSS3, RSS4  
Register Description:  
Register Address:  
Receive-Signaling Status Registers 1 to 4  
098h, 099h, 09Ah, 09Bh + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
(MSB) 7  
CH8  
CH16  
CH24  
6
5
4
3
2
1
0 (LSB)  
CH1*  
CH9  
CH7  
CH15  
CH23  
CH6  
CH14  
CH22  
CH5  
CH13  
CH21  
CH4  
CH12  
CH20  
CH3  
CH11  
CH19  
CH2  
CH10  
CH18  
RSS1  
RSS2  
RSS3  
RSS4  
CH17*  
CH32  
CH31  
CH30  
CH29  
CH28  
CH27  
CH26  
CH25  
(E1 Mode  
Only)  
Default  
0
0
0
0
0
0
0
0
Note: Status bits in this register are latched.  
When a channel’s signaling data changes state, the respective bit in registers RSS1:RSS4 will be set and latched.  
The RSCOS bit (RLS4.3) will be set if the channel was also enabled by setting the appropriate bit in RSCSE1:4.  
The INTB signal will go low if enabled by the interrupt mask bit RIM4.3. The bit will remain set until read.  
*Note that in E1 CAS mode, the LSB of RSS1 would typically represent the CAS alignment bits, and the LSB of RSS3  
represents reserved bits and the distant multiframe alarm.  
164 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
T1RSCD1 (T1 Mode Only)  
Register Description:  
Register Address:  
Receive Spare Code Definition Register 1  
09Ch + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
C7  
0
6
C6  
0
5
C5  
0
4
C4  
0
3
C3  
0
2
C2  
0
1
C1  
0
0
C0  
0
Note: Writing this register resets the detector’s integration period.  
Bit 7: Receive Spare Code Definition Bit 7 (C7). First bit of the repeating pattern.  
Bit 6: Receive Spare Code Definition Bit 6 (C6). A Don’t Care if a 1-bit length is selected.  
Bit 5: Receive Spare Code Definition Bit 5 (C5). A Don’t Care if a 1- or 2-bit length is selected.  
Bit 4: Receive Spare Code Definition Bit 4 (C4). A Don’t Care if a 1- to 3-bit length is selected.  
Bit 3: Receive Spare Code Definition Bit 3 (C3). A Don’t Care if a 1- to 4-bit length is selected.  
Bit 2: Receive Spare Code Definition Bit 2 (C2). A Don’t Care if a 1- to 5-bit length is selected.  
Bit 1: Receive Spare Code Definition Bit 1 (C1). A Don’t Care if a 1- to 6-bit length is selected.  
Bit 0: Receive Spare Code Definition Bit 0 (C0). A Don’t Care if a 1- to 7-bit length is selected.  
Register Name:  
T1RSCD2 (T1 Mode Only)  
Register Description:  
Register Address:  
Receive Spare Code Definition Register 2  
09Dh + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
C7  
0
6
C6  
0
5
C5  
0
4
C4  
0
3
C3  
0
2
C2  
0
1
C1  
0
0
C0  
0
Bit 7: Receive Spare Code Definition Bit 7 (C7). A Don’t Care if a 1- to 7-bit length is selected.  
Bit 6: Receive Spare Code Definition Bit 6 (C6). A Don’t Care if a 1- to 7-bit length is selected.  
Bit 5: Receive Spare Code Definition Bit 5 (C5). A Don’t Care if a 1- to 7-bit length is selected.  
Bit 4: Receive Spare Code Definition Bit 4 (C4). A Don’t Care if a 1- to 7-bit length is selected.  
Bit 3: Receive Spare Code Definition Bit 3 (C3). A Don’t Care if a 1- to 7-bit length is selected.  
Bit 2: Receive Spare Code Definition Bit 2 (C2). A Don’t Care if a 1- to 7-bit length is selected.  
Bit 1: Receive Spare Code Definition Bit 1 (C1). A Don’t Care if a 1- to 7-bit length is selected.  
Bit 0: Receive Spare Code Definition Bit 0 (C0). A Don’t Care if a 1- to 7-bit length is selected.  
165 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RIIR  
Register Description:  
Register Address:  
Receive Interrupt Information Register  
09Fh + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
RLS7  
0
5
RLS6*  
0
4
RLS5  
0
3
RLS4  
0
2
RLS3  
0
1
RLS2**  
0
0
RLS1  
0
*RLS6 is reserved for future use.  
**Currently, RLS2 does not create an interrupt, therefore this bit is not used in T1 mode.  
The Receive Interrupt Information register (RIIR) indicates which of the DS26528 status registers are generating an  
interrupt. When an interrupt occurs, the host can read RIIR to quickly identify which of the receive status registers  
is (are) causing the interrupt(s). The RIIR bits clear once the appropriate interrupt has been serviced and cleared,  
as long as no additional, unmasked interrupt condition is present in the associated status register. Status bits that  
have been masked via the Receive Interrupt Mask (RIMx) registers will also be masked from the RIIR register.  
Register Name:  
RIM1  
Register Description:  
Register Address:  
Receive Interrupt Mask Register 1  
0A0h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
RRAIC  
0
6
RAISC  
0
5
RLOSC  
0
4
RLOFC  
0
3
RRAID  
0
2
RAISD  
0
1
RLOSD  
0
0
RLOFD  
0
Bit 7: Receive Remote Alarm Indication Condition Clear (RRAIC).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 6: Receive Alarm Indication Signal Condition Clear (RAISC).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 5: Receive Loss of Signal Condition Clear (RLOSC).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 4: Receive Loss of Frame Condition Clear (RLOFC).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 3: Receive Remote Alarm Indication Condition Detect (RRAID).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 2: Receive Alarm Indication Signal Condition Detect (RAISD).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 1: Receive Loss of Signal Condition Detect (RLOSD).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 0: Receive Loss of Frame Condition Detect (RLOFD).  
0 = interrupt masked  
1 = interrupt enabled  
166 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RIM2 (E1 Mode Only)  
Register Description:  
Register Address:  
Receive Interrupt Mask Register 2  
0A1h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
RSA1  
0
2
RSA0  
0
1
RCMF  
0
0
RAF  
0
Bit 3: Receive-Signaling All-Ones Event (RSA1).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 2: Receive-Signaling All-Zeros Event (RSA0).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 1: Receive CRC-4 Multiframe Event (RCMF).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 0: Receive Align Frame Event (RAF).  
0 = interrupt masked  
1 = interrupt enabled  
167 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RIM3 (T1 Mode)  
Register Description:  
Register Address:  
Receive Interrupt Mask Register 3  
0A2h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
LORCC  
0
6
LSPC  
0
5
LDNC  
0
4
LUPC  
0
3
LORCD  
0
2
LSPD  
0
1
LDND  
0
0
LUPD  
0
Note: For E1 mode, see RIM3.  
Bit 7: Loss of Receive Clock Condition Clear (LORCC).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 6: Spare Code Detected Condition Clear (LSPC).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 5: Loop-Down Code Detected Condition Clear (LDNC).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 4: Loop-Up Code Detected Condition Clear (LUPC).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 3: Loss of Receive Clock Condition Detect (LORCD).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 2: Spare Code Detected Condition Detect (LSPD).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 1: Loop-Down Code Detected Condition Detect (LDND).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 0: Loop-Up Code Detected Condition Detect (LUPD).  
0 = interrupt masked  
1 = interrupt enabled  
168 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RIM3 (E1 Mode)  
Register Description:  
Register Address:  
Receive Interrupt Mask Register 3  
0A2h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
LORCC  
0
6
0
5
V52LNKC  
0
4
RDMAC  
0
3
LORCD  
0
2
0
1
V52LNKD  
0
0
RDMAD  
0
Note: For T1 mode, see RIM3.  
Bit 7: Loss of Receive Clock Clear (LORCC).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 5: V5.2 Link Detected Clear (V52LNKC).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 4: Receive Distant MF Alarm Clear (RDMAC).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 3: Loss of Receive Clock Detect (LORCD).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 1: V5.2 Link Detect (V52LNKD).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 0: Receive Distant MF Alarm Detect (RDMAD).  
0 = interrupt masked  
1 = interrupt enabled  
169 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RIM4  
Register Description:  
Register Address:  
Receive Interrupt Mask Register 4  
0A3h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
RESF  
0
6
RESEM  
0
5
RSLIP  
0
4
0
3
RSCOS  
0
2
1SEC  
0
1
TIMER  
0
0
RMF  
0
Bit 7: Receive Elastic Store Full Event (RESF).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 6: Receive Elastic Store Empty Event (RESEM).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 5: Receive Elastic Store Slip Occurrence Event (RSLIP).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 3: Receive-Signaling Change-of-State Event (RSCOS).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 2: One-Second Timer (1SEC).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 1: Timer Event (TIMER).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 0: Receive Multiframe Event (RMF).  
0 = interrupt masked  
1 = interrupt enabled  
170 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RIM5  
Register Description:  
Register Address:  
Receive Interrupt Mask Register 5 (HDLC)  
0A4h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
0
5
ROVR  
0
4
RHOBT  
0
3
RPE  
0
2
RPS  
0
1
RHWMS  
0
0
RNES  
0
Bit 5: Receive FIFO Overrun (ROVR).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 4: Receive HDLC Opening Byte Event (RHOBT).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 3: Receive Packet-End Event (RPE).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 2: Receive Packet-Start Event (RPS).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 1: Receive FIFO Above High Watermark Set Event (RHWMS).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 0: Receive FIFO Not Empty Set Event (RNES).  
0 = interrupt masked  
1 = interrupt enabled  
171 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RIM7 (T1 Mode)  
Register Description:  
Register Address:  
Receive Interrupt Mask Register 7 (BOC:FDL)  
0A6h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
0
5
RRAI-CI  
0
4
RAIS-CI  
0
3
RSLC96  
0
2
RFDLF  
0
1
BC  
0
0
BD  
0
Note: For E1 mode, see RIM7.  
Bit 5: Receive RAI-CI (RRAI-CI).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 4: Receive AIS-CI (RAIS-CI).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 3: Receive SLC-96 (RSLC96).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 2: Receive FDL Register Full (RFDLF).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 1: BOC Clear Event (BC).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 0: BOC Detect Event (BD).  
0 = interrupt masked  
1 = interrupt enabled  
Register Name:  
RIM7 (E1 Mode)  
Register Description:  
Register Address:  
Receive Interrupt Mask Register 7 (BOC:FDL)  
A6h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
0
2
0
1
Sa6CD  
0
0
SaXCD  
0
Note: For T1 mode, see RIM7.  
Bit 1: Sa6 Codeword Detect. This bit will enable the interrupt generated when a valid codeword (per ETS 300  
233) is detected in the Sa6 bits.  
0 = interrupt masked  
1 = interrupt enabled  
Bit 0: SaX Change Detect. This bit will enable the interrupt generated when a change of state is detected in any of  
the unmasked SaX bit positions. The masked or unmasked SaX bits are selected by the E1RSAIMR register.  
0 = interrupt masked  
1 = interrupt enabled  
172 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RSCSE1, RSCSE2, RSCSE3, RSCSE4  
Register Description:  
Register Address:  
Receive-Signaling Change of State Enable Registers 1 to 4  
0A8h, 0A9h, 0AAh, 0Abh + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
(MSB) 7  
CH8  
CH16  
CH24  
6
5
4
3
2
1
0 (LSB)  
CH1  
CH9  
CH7  
CH15  
CH23  
CH6  
CH14  
CH22  
CH5  
CH13  
CH21  
CH4  
CH12  
CH20  
CH3  
CH11  
CH19  
CH2  
CH10  
CH18  
RSCSE1  
RSCSE2  
RSCSE3  
RSCSE4  
(E1 Mode  
Only)  
CH17  
CH32  
CH31  
CH30  
CH29  
CH28  
CH27  
CH26  
CH25  
Default  
0
0
0
0
0
0
0
0
Setting any of the CH[1:32] bits in the RSCSE1:RSCSE4 registers will cause RSCOS (RLS4.3) to be set when that  
channel’s signaling data changes state.  
173 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
T1RUPCD1 (T1 Mode Only)  
Register Description:  
Register Address:  
Receive Up Code Definition Register 1  
0ACh + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
C7  
0
6
C6  
0
5
C5  
0
4
C4  
0
3
C3  
0
2
C2  
0
1
C1  
0
0
C0  
0
Note: Writing this register resets the detector’s integration period.  
Bit 7: Receive Up Code Definition Bit 7 (C7). First bit of the repeating pattern.  
Bit 6: Receive Up Code Definition Bit 6 (C6). A Don’t Care if a 1-bit length is selected.  
Bit 5: Receive Up Code Definition Bit 5 (C5). A Don’t Care if a 1- or 2-bit length is selected.  
Bit 4: Receive Up Code Definition Bit 4 (C4). A Don’t Care if a 1- to 3-bit length is selected.  
Bit 3: Receive Up Code Definition Bit 3 (C3). A Don’t Care if a 1- to 4-bit length is selected.  
Bit 2: Receive Up Code Definition Bit 2 (C2). A Don’t Care if a 1- to 5-bit length is selected.  
Bit 1: Receive Up Code Definition Bit 1 (C1). A Don’t Care if a 1- to 6-bit length is selected.  
Bit 0: Receive Up Code Definition Bit 0 (C0). A Don’t Care if a 1- to 7-bit length is selected.  
Register Name:  
T1RUPCD2 (T1 Mode Only)  
Register Description:  
Register Address:  
Receive Up Code Definition Register 2  
0ADh + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
C7  
0
6
C6  
0
5
C5  
0
4
C4  
0
3
C3  
0
2
C2  
0
1
C1  
0
0
C0  
0
Bit 7: Receive Up Code Definition Bit 7 (C7). A Don’t Care if a 1- to 7-bit length is selected.  
Bit 6: Receive Up Code Definition Bit 6 (C6). A Don’t Care if a 1- to 7-bit length is selected.  
Bit 5: Receive Up Code Definition Bit 5 (C5). A Don’t Care if a 1- to 7-bit length is selected.  
Bit 4: Receive Up Code Definition Bit 4 (C4). A Don’t Care if a 1- to 7-bit length is selected.  
Bit 3: Receive Up Code Definition Bit 3 (C3). A Don’t Care if a 1- to 7-bit length is selected.  
Bit 2: Receive Up Code Definition Bit 2 (C2). A Don’t Care if a 1- to 7-bit length is selected.  
Bit 1: Receive Up Code Definition Bit 1 (C1). A Don’t Care if a 1- to 7-bit length is selected.  
Bit 0: Receive Up Code Definition Bit 0 (C0). A Don’t Care if a 1- to 7-bit length is selected.  
174 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
T1RDNCD1 (T1 Mode Only)  
Register Description:  
Register Address:  
Receive Down Code Definition Register 1  
0AEh + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
C7  
0
6
C6  
0
5
C5  
0
4
C4  
0
3
C3  
0
2
C2  
0
1
C1  
0
0
C0  
0
Note: Writing this register resets the detector’s integration period.  
Bit 7: Receive Down Code Definition Bit 7 (C7). First bit of the repeating pattern.  
Bit 6: Receive Down Code Definition Bit 6 (C6). A Don’t Care if a 1-bit length is selected.  
Bit 5: Receive Down Code Definition Bit 5 (C5). A Don’t Care if a 1- or 2-bit length is selected.  
Bit 4: Receive Down Code Definition Bit 4 (C4). A Don’t Care if a 1- to 3-bit length is selected.  
Bit 3: Receive Down Code Definition Bit 3 (C3). A Don’t Care if a 1- to 4-bit length is selected.  
Bit 2: Receive Down Code Definition Bit 2 (C2). A Don’t Care if a 1- to 5-bit length is selected.  
Bit 1: Receive Down Code Definition Bit 1 (C1). A Don’t Care if a 1- to 6-bit length is selected.  
Bit 0: Receive Down Code Definition Bit 0 (C0). A Don’t Care if a 1- to 7-bit length is selected.  
Register Name:  
T1RDNCD2 (T1 Mode Only)  
Register Description:  
Register Address:  
Receive Down Code Definition Register 2  
0AFh + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
C7  
0
6
C6  
0
5
C5  
0
4
C4  
0
3
C3  
0
2
C2  
0
1
C1  
0
0
C0  
0
Bit 7: Receive Down Code Definition Bit 7 (C7). A Don’t Care if a 1- to 7-bit length is selected.  
Bit 6: Receive Down Code Definition Bit 6 (C6). A Don’t Care if a 1- to 7-bit length is selected.  
Bit 5: Receive Down Code Definition Bit 5 (C5). A Don’t Care if a 1- to 7-bit length is selected.  
Bit 4: Receive Down Code Definition Bit 4 (C4). A Don’t Care if a 1- to 7-bit length is selected.  
Bit 3: Receive Down Code Definition Bit 3 (C3). A Don’t Care if a 1- to 7-bit length is selected.  
Bit 2: Receive Down Code Definition Bit 2 (C2). A Don’t Care if a 1- to 7-bit length is selected.  
Bit 1: Receive Down Code Definition Bit 1 (C1). A Don’t Care if a 1- to 7-bit length is selected.  
Bit 0: Receive Down Code Definition Bit 0 (C0). A Don’t Care if a 1- to 7-bit length is selected.  
175 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RRTS1  
Register Description:  
Register Address:  
Receive Real-Time Status Register 1  
0B0h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
RRAI  
0
2
RAIS  
0
1
RLOS  
0
0
RLOF  
0
Note: All bits in this register are real-time (not latched).  
Bit 3: Receive Remote Alarm Indication Condition (RRAI). Set when a remote alarm is received at RTIP and  
RRING.  
Bit 2: Receive Alarm Indication Signal Condition (RAIS). Set when an unframed all-ones code is received at  
RTIP and RRING.  
Bit 1: Receive Loss of Signal Condition (RLOS). Set when 192 consecutive zeros have been detected after the  
B8ZS/HDB3 decoder.  
Bit 0: Receive Loss of Frame Condition (RLOF). Set when the DS26528 is not synchronized to the received  
data stream.  
176 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RRTS3 (T1 Mode)  
Register Description:  
Register Address:  
Receive Real-Time Status Register 3  
0B2h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
LORC  
0
2
LSP  
0
1
LDN  
0
0
LUP  
0
Note: All bits in this register are real-time (not latched). See RRTS3 for E1 mode.  
Bit 3: Loss of Receive Clock Condition (LORC). Set when the RCLK pin has not transitioned for one channel  
time.  
Bit 2: Spare Code Detected Condition (LSP). Set when the spare code as defined in the T1RSCD1:T1RSCD2  
registers is being received.  
Bit 1: Loop-Down Code Detected Condition (LDN). Set when the loop-down code as defined in the  
T1RDNCD1:T1RDNCD2 register is being received.  
Bit 0: Loop-Up Code Detected Condition (LUP). Set when the loop-up code as defined in the  
T1RUPCD1:T1RUPCD2 register is being received.  
Register Name:  
RRTS3 (E1 Mode)  
Register Description:  
Register Address:  
Receive Real-Time Status Register 3  
0B2h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
LORC  
0
2
0
1
V52LNK  
0
0
RDMA  
0
Note: All bits in this register are real-time (not latched). See RRTS3 for T1 mode.  
Bit 3: Loss of Receive Clock Condition (LORC). Set when the RCLK pin has not transitioned for one channel  
time.  
Bit 1: V5.2 Link Detected Condition (V52LNK). Set on detection of a V5.2 link identification signal (G.965).  
Bit 0: Receive Distant MF Alarm Condition (RDMA). Set when bit 6 of time slot 16 in frame 0 has been set for  
two consecutive multiframes. This alarm is not disabled in the CCS signaling mode.  
177 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RRTS5  
Register Description:  
Register Address:  
Receive Real-Time Status Register 5 (HDLC)  
0B4h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
PS2  
0
5
PS1  
0
4
PS0  
0
3
0
2
0
1
RHWM  
0
0
RNE  
0
Note: All bits in this register are real time.  
Bits 6 to 4: Receive Packet Status (PS[2:0]). These are real-time bits indicating the status as of the last read of  
the receive FIFO.  
PS2  
PS1  
PS0  
PACKET STATUS  
0
0
0
In Progress: End of message has not yet been reached.  
0
0
0
1
0
1
1
0
1
0
1
0
Packet OK: Packet ended with correct CRC codeword.  
CRC Error: A closing flag was detected, preceded by a corrupt CRC codeword.  
Abort: Packet ended because an abort signal was detected (7 or more ones in a row).  
Overrun: HDLC controller terminated reception of packet because receive FIFO is full.  
Bit 1: Receive FIFO Above High Watermark Condition (RHWM). Set when the receive 64-byte FIFO fills beyond  
the high watermark as defined by the Receive HDLC FIFO Control register (RHFC). This is a real-time bit.  
Bit 0: Receive FIFO Not Empty Condition (RNE). Set when the receive 64-byte FIFO has at least one byte  
available for a read. This is a real-time bit.  
Register Name:  
RHPBA  
Register Description:  
Register Address:  
Receive HDLC Packet Bytes Available Register  
0B5h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
MS  
0
6
RPBA6  
0
5
RPBA5  
0
4
RPBA4  
0
3
RPBA3  
0
2
RPBA2  
0
1
RPBA1  
0
0
RPBA0  
0
Bit 7: Message Status (MS).  
0 = Bytes indicated by RPBA[6:0] are the end of a message. Host must check the HDLC status register for  
details.  
1 = Bytes indicated by RPBA[6:0] are the beginning or continuation of a message. The host does not need  
to check the HDLC status. The MS bit returns to a value of 1 when the Rx HDLC FIFO is empty.  
Bits 6 to 0: Receive FIFO Packet Bytes Available Count (RPBA[6:0]). RPBA0 is the LSB.  
178 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RHF  
Register Description:  
Register Address:  
Receive HDLC FIFO Register  
0B6h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
RHD7  
0
6
RHD6  
0
5
RHD5  
0
4
RHD4  
0
3
RHD3  
0
2
RHD2  
0
1
RHD1  
0
0
RHD0  
0
Bit 7: Receive HDLC Data Bit 7 (RHD7). MSB of a HDLC packet data byte.  
Bit 6: Receive HDLC Data Bit 6 (RHD6).  
Bit 5: Receive HDLC Data Bit 5 (RHD5).  
Bit 4: Receive HDLC Data Bit 4 (RHD4).  
Bit 3: Receive HDLC Data Bit 3 (RHD3).  
Bit 2: Receive HDLC Data Bit 2 (RHD2).  
Bit 1: Receive HDLC Data Bit 1 (RHD1).  
Bit 0: Receive HDLC Data Bit 0 (RHD0). LSB of a HDLC packet data byte.  
Register Name:  
RBCS1, RBCS2, RBCS3, RBCS4  
Register Description:  
Register Address:  
Receive Blank Channel Select Registers 1 to 4  
0C0h, 0C1h, 0C2h, 0C3h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
4
3
2
1
0
Name  
CH8  
CH16  
CH24  
CH7  
CH15  
CH23  
CH6  
CH14  
CH22  
CH5  
CH13  
CH21  
CH4  
CH12  
CH20  
CH3  
CH11  
CH19  
CH2  
CH10  
CH18  
CH1  
CH9  
CH17  
RBCS1  
RBCS2  
RBCS3  
RBCS4  
(E1 Mode  
Only)  
CH32  
CH31  
CH30  
CH29  
CH28  
CH27  
CH26  
CH25  
Default  
0
0
0
0
0
0
0
0
Bit 7 to 0: Receive Blank Channel Select for Channels 1 to 32 (CH[1:32]).  
0 = Do not blank this channel (channel data is available on RSER)  
1 = Data on RSER is forced to all ones for this channel  
Note that when two or more sequential channels are chosen to be blanked, the receive-slip zone select bit should  
be set to 0. If the blank channels are distributed (such as 1, 5, 9, 13, 17, 21, 25, 29), the RSZS bit can be set to 1,  
which may provide a lower occurrence of slips in certain applications.  
179 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RCBR1, RCBR2, RCBR3, RCBR4  
Register Description:  
Register Address:  
Receive Channel Blocking Registers 1 to 4  
0C4h, 0C5h, 0C6h, 0C7h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
4
3
2
1
0
Name  
CH8  
CH16  
CH24  
CH7  
CH15  
CH23  
CH6  
CH14  
CH22  
CH5  
CH13  
CH21  
CH4  
CH12  
CH20  
CH3  
CH11  
CH19  
CH2  
CH10  
CH18  
CH1  
CH9  
CH17  
RCBR1  
RCBR2  
RCBR3  
RCBR4*  
(E1 Mode  
Only)  
CH25  
(F-bit)  
CH32  
CH31  
CH30  
CH29  
CH28  
CH27  
CH26  
Default  
0
0
0
0
0
0
0
0
Bits 7 to 0: Receive Channel Blocking Control Bits for Channels 1 to 32 (CH[1:32]).  
0 = force the RCHBLK pin to remain low during this channel time  
1 = force the RCHBLK pin high during this channel time  
*Note that RCBR4 has two functions:  
When 2.048MHz backplane mode is selected, this register allows the user to enable the channel blocking  
signal for any of the 32 possible backplane channels.  
When 1.544MHz backplane mode is selected, the LSB of this register determines whether or not the  
RCHBLK signal will pulse high during the F-Bit time. In this mode, RCBR4.1:RCBR4.7 should be set to 0.  
RCBR4.0 = 0, do not pulse RCHBLK during the F-bit.  
RCBR4.0 = 1, pulse RCHBLK during the F-bit.  
Register Name:  
RSI1, RSI2, RSI3, RSI4  
Register Description:  
Register Address:  
Receive-Signaling Reinsertion Enable Registers 1 to 4  
0C8h, 0C9h, 0CAh, 0CBh + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
4
3
2
1
0
Name  
CH8  
CH16  
CH24  
CH7  
CH15  
CH23  
CH6  
CH14  
CH22  
CH5  
CH13  
CH21  
CH4  
CH12  
CH20  
CH3  
CH11  
CH19  
CH2  
CH10  
CH18  
CH1  
CH9  
CH17  
RSI1  
RSI2  
RSI3  
RSI4  
CH32  
CH31  
CH30  
CH29  
CH28  
CH27  
CH26  
CH25  
(E1 Mode  
Only)  
Default  
0
0
0
0
0
0
0
0
Setting any of the CH[1:24] bits in the RSI1:RSI3 registers causes signaling data to be reinserted for the associated  
channel. RSI4 is used for 2.048MHz backplane operation.  
180 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RGCCS1, RGCCS2, RGCCS3, RGCCS4  
Register Description:  
Register Address:  
Receive Gapped-Clock Channel Select Registers 1 to 4  
0CCh, 0CDh, 0CEh, 0CFh + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
4
3
2
1
0
Name  
CH8  
CH16  
CH24  
CH7  
CH15  
CH23  
CH6  
CH14  
CH22  
CH5  
CH13  
CH21  
CH4  
CH12  
CH20  
CH3  
CH11  
CH19  
CH2  
CH10  
CH18  
CH1  
CH9  
CH17  
RGCCS1  
RGCCS2  
RGCCS3  
RGCCS4*  
(E1 Mode  
Only)  
CH25  
(F-bit)  
CH32  
CH31  
CH30  
CH29  
CH28  
CH27  
CH26  
Default  
0
0
0
0
0
0
0
0
Bits 7 to 0: Receive Gapped Clock Channel Select Bits for Channels 1 to 32 (CH[1:32]).  
0 = no clock is present on RCHCLK during this channel time  
1 = force a clock on RCHCLK during this channel time. The clock will be synchronous with RCLK if the  
elastic store is disabled, and synchronous with RSYSCLK if the elastic store is enabled.  
*Note that RGCCS4 has two functions:  
When 2.048MHz backplane mode is selected, this register allows the user to enable the gapped clock on  
RCHCLK for any of the 32 possible backplane channels.  
When 1.544MHz backplane mode is selected, the LSB of this register determines whether or not a clock is  
generated on RCHCLK during the F-bit time:  
RGCCS4.0 = 0, do not generate a clock during the F-bit.  
RGCCS4.0 = 1, generate a clock during the F-bit.  
In this mode, RGCCS4.1:RGCCS4.7 should be set to 0.  
Register Name:  
RCICE1, RCICE2, RCICE3, RCICE4  
Register Description:  
Register Address:  
Receive Channel Idle Code Enable Registers 1 to 4  
0D0h, 0D1h, 0D2h, 0D3h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
(MSB) 7  
CH8  
CH16  
CH24  
6
5
4
3
2
1
0 (LSB)  
CH1  
CH9  
CH7  
CH15  
CH23  
CH6  
CH14  
CH22  
CH5  
CH13  
CH21  
CH4  
CH12  
CH20  
CH3  
CH11  
CH19  
CH2  
CH10  
CH18  
RCICE1  
RCICE2  
RCICE3  
RCICE4  
(E1 Mode  
Only)  
CH17  
CH32  
CH31  
CH30  
CH29  
CH28  
CH27  
CH26  
CH25  
Default  
0
0
0
0
0
0
0
0
Bits 7 to 0: Receive Channel Idle Code Insertion Control Bits for Channels 1 to 32 (CH[1:32]).  
0 = do not insert data from the Idle Code Array into the receive data stream  
1 = insert data from the Idle Code Array into the receive data stream  
181 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
RBPCS1, RBPCS2, RBPCS3, RBPCS4  
Register Description:  
Register Address:  
Receive BERT Port Channel Select Registers 1 to 4  
0D4h, 0D5h, 0D6h, 0D7h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
(MSB) 7  
CH8  
CH16  
CH24  
6
5
4
3
2
1
0 (LSB)  
CH1  
CH9  
CH7  
CH15  
CH23  
CH6  
CH14  
CH22  
CH5  
CH13  
CH21  
CH4  
CH12  
CH20  
CH3  
CH11  
CH19  
CH2  
CH10  
CH18  
RBPCS1  
RBPCS2  
RBPCS3  
RBPCS4  
(E1 Mode  
Only)  
CH17  
CH32  
CH31  
CH30  
CH29  
CH28  
CH27  
CH26  
CH25  
Default  
0
0
0
0
0
0
0
0
Bits 7 to 0: BERT Port Channel Select Receive Channels 1 to 32 (CH[1:32]).  
0 = Do not enable the receive BERT clock for the associated channel time, or map the selected channel  
data out of the receive BERT port.  
1 = Enable the receive BERT clock for the associated channel time, and allow mapping of the selected  
channel data out of the receive BERT port. Multiple or all channels may be selected simultaneously.  
182 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
9.4.2 Transmit Register Definitions  
Register Name:  
THC1  
Register Description:  
Register Address:  
Transmit HDLC Control Register 1  
110h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
NOFS  
0
6
TEOML  
0
5
THR  
0
4
THMS  
0
3
TFS  
0
2
TEOM  
0
1
TZSD  
0
0
TCRCD  
0
Bit 7: Number of Flags Select (NOFS).  
0 = send one flag between consecutive messages  
1 = send two flags between consecutive messages  
Bit 6: Transmit End of Message and Loop (TEOML). To loop on a message, this bit should be set to a one just  
before the last data byte of an HDLC packet is written into the transmit FIFO. The message will repeat until the  
user clears this bit or a new message is written to the transmit FIFO. If the host clears the bit, the looping message  
will complete then flags will be transmitted until new message is written to the FIFO. If the host terminates the loop  
by writing a new message to the FIFO the loop will terminate, one or two flags will be transmitted and the new  
message will start. If not disabled via TCRCD, the transmitter will automatically append a 2-byte CRC code to the  
end of all messages.  
Bit 5: Transmit HDLC Reset (THR). Will reset the transmit HDLC controller and flush the transmit FIFO. An abort  
followed by 7Eh or FFh flags/idle will be transmitted until a new packet is initiated by writing new data into the  
FIFO. This is an acknowledged reset, that is, the host need only to set the bit and the DS26528 will clear it once  
the reset operation is complete. Total time for the reset is less than 250μs.  
0 = Normal operation  
1 = Reset transmit HDLC controller and flush the transmit FIFO  
Note: This bit will clear automatically if TMMR.INT_DONE has been set.  
Bit 4: Transmit HDLC Mapping Select (THMS).  
0 = Transmit HDLC assigned to channels  
1 = Transmit HDLC assigned to FDL (T1 mode), Sa bits (E1 mode). This mode must be enabled with  
TCR2.7.  
Bit 3: Transmit Flag/Idle Select (TFS). This bit selects the inter-message fill character after the closing and before  
the opening flags (7Eh).  
0 = 7Eh  
1 = FFh  
Bit 2: Transmit End of Message (TEOM). Should be set to a one just before the last data byte of an HDLC packet  
is written into the transmit FIFO at THF. If not disabled via TCRCD, the transmitter will automatically append a  
2-byte CRC code to the end of the message.  
Bit 1: Transmit Zero Stuffer Defeat (TZSD). The zero stuffer function automatically inserts a zero in the message  
field (between the flags) after five consecutive ones to prevent the emulation of a flag or abort sequence by the  
data pattern. The receiver automatically removes (destuffs) any zero after five ones in the message field.  
0 = enable the zero stuffer (normal operation)  
1 = disable the zero stuffer  
Bit 0: Transmit CRC Defeat (TCRCD). A 2-byte CRC code is automatically appended to the outbound message.  
This bit can be used to disable the CRC function.  
0 = enable CRC generation (normal operation)  
1 = disable CRC generation  
183 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
THBSE  
Register Description:  
Register Address:  
Transmit HDLC Bit Suppress Register  
111h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
TBSE8  
0
6
TBSE7  
0
5
TBSE6  
0
4
TBSE5  
0
3
TBSE4  
0
2
TBSE3  
0
1
TBSE2  
0
0
TBSE1  
0
Bit 7: Transmit Bit 8 Suppress (TBSE8). MSB of the channel. Set to one to stop this bit from being used.  
Bit 6: Transmit Bit 7 Suppress (TBSE7). Set to one to stop this bit from being used.  
Bit 5: Transmit Bit 6 Suppress (TBSE6). Set to one to stop this bit from being used.  
Bit 4: Transmit Bit 5 Suppress (TBSE5). Set to one to stop this bit from being used.  
Bit 3: Transmit Bit 4 Suppress (TBSE4). Set to one to stop this bit from being used.  
Bit 2: Transmit Bit 3 Suppress (TBSE3). Set to one to stop this bit from being used.  
Bit 1: Transmit Bit 2 Suppress (TBSE2). Set to one to stop this bit from being used.  
Bit 0: Transmit Bit 1 Suppress (TBSE1). LSB of the channel. Set to one to stop this bit from being used.  
Register Name:  
THC2  
Register Description:  
Register Address:  
Transmit HDLC Control Register 2  
113h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
7
6
SBOC  
5
4
3
2
1
0
TABT  
TABT  
0
THCEN  
THCEN  
0
THCS4  
THCS4  
0
THCS3  
THCS3  
0
THCS2  
THCS2  
0
THCS1  
THCS1  
0
THCS0  
THCS0  
0
Default  
0
Bit 7: Transmit Abort (TABT). A 0-to-1 transition will cause the FIFO contents to be dumped and one FEh abort to  
be sent followed by 7Eh or FFh flags/idle until a new packet is initiated by writing new data into the FIFO. Must be  
cleared and set again for a subsequent abort to be sent.  
Bit 6: Send BOC (SBOC) (T1 Mode Only). Set = 1 to transmit the BOC code placed in bits 0 to 5 of the T1TBOC  
register.  
Bit 5: Transmit HDLC Controller Enable (THCEN).  
0 = Transmit HDLC controller is not enabled.  
1 = Transmit HDLC controller is enabled.  
Bits 4 to 0: Transmit HDLC Channel Select (THCS[4:0]). Determines which DSO channel will carry the HDLC  
message if enabled. Changes to this value are acknowledged only upon a transmit HDLC controller reset (THR at  
THC1.5).  
184 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
E1TSACR (E1 Mode)  
Register Description:  
Register Address:  
E1 Transmit Sa-Bit Control Register  
114h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
SiAF  
0
6
SiNAF  
0
5
RA  
0
4
Sa4  
0
3
Sa5  
0
2
Sa6  
0
1
Sa7  
0
0
Sa8  
0
Bit 7: International Bit in Align Frame Insertion Control Bit (SiAF).  
0 = do not insert data from the TSiAF register into the transmit data stream  
1 = insert data from the TSiAF register into the transmit data stream  
Bit 6: International Bit in Non-Align Frame Insertion Control Bit (SiNAF).  
0 = do not insert data from the TSiNAF register into the transmit data stream  
1 = insert data from the TSiNAF register into the transmit data stream  
Bit 5: Remote Alarm Insertion Control Bit (RA).  
0 = do not insert data from the TRA register into the transmit data stream  
1 = insert data from the TRA register into the transmit data stream  
Bit 4: Additional Bit 4 Insertion Control Bit (Sa4).  
0 = do not insert data from the TSa4 register into the transmit data stream  
1 = insert data from the TSa4 register into the transmit data stream  
Bit 3: Additional Bit 5 Insertion Control Bit (Sa5).  
0 = do not insert data from the TSa5 register into the transmit data stream  
1 = insert data from the TSa5 register into the transmit data stream  
Bit 2: Additional Bit 6 Insertion Control Bit (Sa6).  
0 = do not insert data from the TSa6 register into the transmit data stream  
1 = insert data from the TSa6 register into the transmit data stream  
Bit 1: Additional Bit 7 Insertion Control Bit (Sa7).  
0 = do not insert data from the TSa7 register into the transmit data stream  
1 = insert data from the TSa7 register into the transmit data stream  
Bit 0: Additional Bit 8 Insertion Control Bit (Sa8).  
0 = do not insert data from the TSa8 register into the transmit data stream  
1 = insert data from the TSa8 register into the transmit data stream  
185 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
SSIE1, SSIE2, SSIE3, SSIE4  
Register Description:  
Register Address:  
Software-Signaling Insertion Enable Registers 1 to 4  
118h, 119h, 11Ah, 11Bh + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
(MSB) 7  
CH8  
CH16  
CH24  
6
5
4
3
2
1
0 (LSB)  
CH1  
CH9  
CH7  
CH15  
CH23  
CH6  
CH14  
CH22  
CH5  
CH13  
CH21  
CH4  
CH12  
CH20  
CH3  
CH11  
CH19  
CH2  
CH10  
CH18  
SSIE1  
SSIE2  
SSIE3  
SSIE4  
(E1 Mode  
Only)  
CH17  
CH32  
CH31  
CH30  
CH29  
CH28  
CH27  
CH26  
CH25  
Default  
0
0
0
0
0
0
0
0
Bits 7 to 0: Software Signaling Insertion Enable for Channels 1 to 32 (CH[1:32]). These bits determine which  
channels are to have signaling inserted form the transmit-signaling registers.  
0 = do not source signaling data from the TS registers for this channel  
1 = source signaling data from the TS registers for this channel  
Register Name:  
TIDR1 to TIDR32  
Register Description:  
Register Address:  
Transmit Idle Code Definition Registers 1 to 32  
120h to 13Fh + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
C7  
0
6
C6  
0
5
C5  
0
4
C4  
0
3
C3  
0
2
C2  
0
1
C1  
0
0
C0  
0
Bits 7 to 0: Per-Channel Idle Code Bits (C[7:0]). C0 is the LSB of the code (this bit is transmitted last). Address  
120h is for channel 1, address 13Fh is for channel 32. TIDR1:TIDR24 are T1 mode. TIDR25:TIDR32 are E1 mode.  
186 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
TS1 to TS16  
Register Description:  
Register Address:  
Transmit-Signaling Registers 1 to 16  
140h to 14Fh + (200h x n): where n = 0 to 7, for Ports 1 to 8  
T1 Mode:  
Bit #  
Name  
(MSB) 7  
CH1-A  
CH2-A  
CH3-A  
CH4-A  
CH5-A  
CH6-A  
CH7-A  
CH8-A  
CH9-A  
6
5
4
3
2
1
0 (LSB)  
CH1-B  
CH2-B  
CH3-B  
CH4-B  
CH5-B  
CH6-B  
CH7-B  
CH8-B  
CH9-B  
CH1-C  
CH2-C  
CH3-C  
CH4-C  
CH5-C  
CH6-C  
CH7-C  
CH8-C  
CH9-C  
CH1-D  
CH2-D  
CH3-D  
CH4-D  
CH5-D  
CH6-D  
CH7-D  
CH8-D  
CH9-D  
CH13-A CH13-B CH13-C CH13-D TS1  
CH14-A CH14-B CH14-C CH14-D TS2  
CH15-A CH15-B CH15-C CH15-D TS3  
CH16-A CH16-B CH16-C CH16-D TS4  
CH17-A CH17-B CH17-C CH17-D TS5  
CH18-A CH18-B CH18-C CH18-D TS6  
CH19-A CH19-B CH19-C CH19-D TS7  
CH20-A CH20-B CH20-C CH20-D TS8  
CH21-A CH21-B CH21-C CH21-D TS9  
CH10-A CH10-B CH10-C CH10-D CH22-A CH22-B CH22-C CH22-D TS10  
CH11-A CH11-B CH11-C CH11-D CH23-A CH23-B CH23-C CH23-D TS11  
CH12-A CH12-B CH12-C CH12-D CH24-A CH24-B CH24-C CH24-D TS12  
Note: In D4 framing mode, the C and D bits are not used.  
E1 Mode:  
Bit #  
Name  
(MSB) 7  
0
6
0
5
0
4
0
3
X
2
Y
1
X
0 (LSB)  
X
TS1  
CH1-A  
CH2-A  
CH3-A  
CH4-A  
CH5-A  
CH6-A  
CH7-A  
CH8-A  
CH9-A  
CH1-B  
CH2-B  
CH3-B  
CH4-B  
CH5-B  
CH6-B  
CH7-B  
CH8-B  
CH9-B  
CH1-C  
CH2-C  
CH3-C  
CH4-C  
CH5-C  
CH6-C  
CH7-C  
CH8-C  
CH9-C  
CH1-D  
CH2-D  
CH3-D  
CH4-D  
CH5-D  
CH6-D  
CH7-D  
CH8-D  
CH9-D  
CH16-A CH16-B CH16-C CH16-D TS2  
CH17-A CH17-B CH17-C CH17-D TS3  
CH18-A CH18-B CH18-C CH18-D TS4  
CH19-A CH19-B CH19-C CH19-D TS5  
CH20-A CH20-B CH20-C CH20-D TS6  
CH21-A CH21-B CH21-C CH21-D TS7  
CH22-A CH22-B CH22-C CH22-D TS8  
CH23-A CH23-B CH23-C CH23-D TS9  
CH24-A CH24-B CH24-C CH24-D TS10  
CH10-A CH10-B CH10-C CH10-D CH25-A CH25-B CH25-C CH25-D TS11  
CH11-A CH11-B CH11-C CH11-D CH26-A CH26-B CH26-C CH26-D TS12  
CH12-A CH12-B CH12-C CH12-D CH27-A CH27-B CH27-C CH27-D TS13  
CH13-A CH13-B CH13-C CH13-D CH28-A CH28-B CH28-C CH28-D TS14  
CH14-A CH14-B CH14-C CH14-D CH29-A CH29-B CH29-C CH29-D TS15  
CH15-A CH15-B CH15-C CH15-D CH30-A CH30-B CH30-C CH30-D TS16  
187 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
TCICE1, TCICE2, TCICE3, TCICE4  
Register Description:  
Register Address:  
Transmit Channel Idle Code Enable Registers 1 to 4  
150h, 151h, 152h, 153h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
(MSB) 7  
CH8  
CH16  
CH24  
6
5
4
3
2
1
0 (LSB)  
CH1  
CH9  
CH7  
CH15  
CH23  
CH6  
CH14  
CH22  
CH5  
CH13  
CH21  
CH4  
CH12  
CH20  
CH3  
CH11  
CH19  
CH2  
CH10  
CH18  
TCICE1  
TCICE2  
TCICE3  
TCICE4  
(E1 Mode  
Only)  
CH17  
CH32  
CH31  
CH30  
CH29  
CH28  
CH27  
CH26  
CH25  
Default  
0
0
0
0
0
0
0
0
The Transmit Channel Idle Code Enable registers (TCICE1:TCICE4) are used to determine which of the 24 T1  
channels (or 32 E1 channels) from the backplane should be overwritten with the code placed in the Transmit Idle  
Code Definition register (TIDR1:TIDR32).  
Bits 7 to 0: Transmit Channels 1 to 32 Code Insertion Control Bits (CH[1:32]).  
0 = do not insert data from the Idle Code Array into the transmit data stream  
1 = insert data from the Idle Code Array into the transmit data stream  
188 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
TFRID  
Register Description:  
Register Address:  
Transmit Firmware Revision ID Register  
161h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
FR7  
0
6
FR6  
0
5
FR5  
0
4
FR4  
0
3
FR3  
0
2
FR2  
0
1
FR1  
0
0
FR0  
0
Bits 7 to 0: Firmware Revision (FR[7:0]). This read-only register reports the transmitter firmware revision.  
Register Name:  
T1TFDL (T1 Mode)  
Register Description:  
Register Address:  
Transmit FDL Register  
162h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
TFDL7  
0
6
TFDL6  
0
5
TFDL5  
0
4
TFDL4  
0
3
TFDL3  
0
2
TFDL2  
0
1
TFDL1  
0
0
TFDL0  
0
Note: Also used to insert Fs framing pattern in D4 framing mode.  
The Transmit FDL register (T1TFDL) contains the Facility Data Link (FDL) information that is to be inserted on a  
byte basis into the outgoing T1 data stream. The LSB is transmitted first. In D4 mode, only the lower six bits are  
used.  
Bit 7: Transmit FDL Bit 7 (TFDL7). MSB of the transmit FDL code.  
Bit 6: Transmit FDL Bit 6 (TFDL6).  
Bit 5: Transmit FDL Bit 5 (TFDL5).  
Bit 4: Transmit FDL Bit 4 (TFDL4).  
Bit 3: Transmit FDL Bit 3 (TFDL3).  
Bit 2: Transmit FDL Bit 2 (TFDL2).  
Bit 1: Transmit FDL Bit 1 (TFDL1).  
Bit 0: Transmit FDL Bit 0 (TFDL0). LSB of the transmit FDL code.  
Register Name:  
T1TBOC (T1 Mode Only)  
Register Description:  
Register Address:  
Transmit BOC Register  
163h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
0
5
TBOC5  
0
4
TBOC4  
0
3
TBOC3  
0
2
TBOC2  
0
1
TBOC1  
0
0
TBOC0  
0
Bit 5: Transmit BOC Bit 5 (TBOC5). MSB of the transmit BOC code.  
Bit 4: Transmit BOC Bit 4 (TBOC4).  
Bit 3: Transmit BOC Bit 3 (TBOC3).  
Bit 2: Transmit BOC Bit 2 (TBOC2).  
Bit 1: Transmit BOC Bit 1 (TBOC1).  
Bit 0: Transmit BOC Bit 0 (TBOC0). LSB of the transmit BOC code.  
189 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
T1TSLC1, T1TSLC2, T1TSLC3 (T1 Mode)  
Transmit SLC-96 Data Link Registers 1 to 3  
164h, 165h, 166h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
(MSB) 7  
C8  
M2  
S=1  
0
6
5
C6  
S=0  
S3  
0
4
C5  
S=1  
S2  
0
3
C4  
S=0  
S1  
0
2
C3  
C11  
A2  
0
1
C2  
C10  
A1  
0
0 (LSB)  
C1  
C7  
M1  
S4  
0
T1TSLC1  
T1TSLC2  
T1TSLC3  
C9  
M3  
0
Default  
Note: See E1TAF, E1TNAF, and E1TSiAF for E1 modes.  
Register Name:  
Register Description:  
Register Address:  
E1TAF (E1 Mode)  
Transmit Align Frame Register  
164h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
Si  
0
6
0
0
5
0
0
4
1
1
3
1
1
2
0
0
1
1
1
0
1
1
Bit 7: International Bit (Si).  
Bit 6: Frame Alignment Signal Bit (0).  
Bit 5: Frame Alignment Signal Bit (0).  
Bit 4: Frame Alignment Signal Bit (1).  
Bit 3: Frame Alignment Signal Bit (1).  
Bit 2: Frame Alignment Signal Bit (0).  
Bit 1: Frame Alignment Signal Bit (1).  
Bit 0: Frame Alignment Signal Bit (1).  
Register Name:  
E1TNAF (E1 Mode)  
Register Description:  
Register Address:  
Transmit Non-Align Frame Register  
165h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
Si  
0
6
1
1
5
A
0
4
Sa4  
0
3
Sa5  
0
2
Sa6  
0
1
Sa7  
0
0
Sa8  
0
Bit 7: International Bit (Si).  
Bit 6: Frame Non-Alignment Signal Bit (1).  
Bit 5: Remote Alarm (Used to Transmit the Alarm) (A).  
Bit 4: Additional Bit 4 (Sa4).  
Bit 3: Additional Bit 5 (Sa5).  
Bit 2: Additional Bit 6 (Sa6).  
Bit 1: Additional Bit 7 (Sa7).  
Bit 0: Additional Bit 8 (Sa8).  
190 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
E1TSiAF (E1 Mode)  
Register Description:  
Register Address:  
Transmit Si Bits of the Align Frame Register  
166h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
TSiF14  
0
6
TSiF12  
0
5
TSiF10  
0
4
TSiF8  
0
3
TSiF6  
0
2
TSiF4  
0
1
TSiF2  
0
0
TSiF0  
0
Bit 7: Si Bit of Frame 14 (TSiF14).  
Bit 6: Si Bit of Frame 12 (TSiF12).  
Bit 5: Si Bit of Frame 10 (TSiF10).  
Bit 4: Si Bit of Frame 8 (TSiF8).  
Bit 3: Si Bit of Frame 6 (TSiF6).  
Bit 2: Si Bit of Frame 4 (TSiF4).  
Bit 1: Si Bit of Frame 2 (TSiF2).  
Bit 0: Si Bit of Frame 0 (TSiF0).  
Register Name:  
E1TSiNAF (E1 Mode Only)  
Register Description:  
Register Address:  
Transmit Si Bits of the Non-Align Frame Register  
167h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
TSiF15  
0
6
TSiF13  
0
5
TSiF11  
0
4
TSiF9  
0
3
TSiF7  
0
2
TSiF5  
0
1
TSiF3  
0
0
TSiF1  
0
Bit 7: Si Bit of Frame 15 (TSiF15).  
Bit 6: Si Bit of Frame 13 (TSiF13).  
Bit 5: Si Bit of Frame 11 (TSiF11).  
Bit 4: Si Bit of Frame 9 (TSiF9).  
Bit 3: Si Bit of Frame 7 (TSiF7).  
Bit 2: Si Bit of Frame 5 (TSiF5).  
Bit 1: Si Bit of Frame 3 (TSiF3).  
Bit 0: Si Bit of Frame 1 (TSiF1).  
191 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
E1TRA (E1 Mode Only)  
Register Description:  
Register Address:  
Transmit Remote Alarm Register  
168h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
TRAF15  
0
6
TRAF13  
0
5
TRAF11  
0
4
TRAF9  
0
3
TRAF7  
0
2
TRAF5  
0
1
TRAF3  
0
0
TRAF1  
0
Bit 7: Remote Alarm Bit of Frame 15 (TRAF15).  
Bit 6: Remote Alarm Bit of Frame 13 (TRAF13).  
Bit 5: Remote Alarm Bit of Frame 11 (TRAF11).  
Bit 4: Remote Alarm Bit of Frame 9 (TRAF9).  
Bit 3: Remote Alarm Bit of Frame 7 (TRAF7).  
Bit 2: Remote Alarm Bit of Frame 5 (TRAF5).  
Bit 1: Remote Alarm Bit of Frame 3 (TRAF3).  
Bit 0: Remote Alarm Bit of Frame 1 (TRAF1).  
Register Name:  
Register Description:  
Register Address:  
E1TSa4 (E1 Mode Only)  
Transmit Sa4 Bits Register  
169h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
TSa4F15  
0
6
TSa4F13  
0
5
TSa4F11  
0
4
TSa4F9  
0
3
TSa4F7  
0
2
TSa4F5  
0
1
TSa4F3  
0
0
TSa4F1  
0
Bit 7: Sa4 Bit of Frame 15 (TSa4F15).  
Bit 6: Sa4 Bit of Frame 13 (TSa4F13).  
Bit 5: Sa4 Bit of Frame 11 (TSa4F11).  
Bit 4: Sa4 Bit of Frame 9 (TSa4F9).  
Bit 3: Sa4 Bit of Frame 7 (TSa4F7).  
Bit 2: Sa4 Bit of Frame 5 (TSa4F5).  
Bit 1: Sa4 Bit of Frame 3 (TSa4F3).  
Bit 0: Sa4 Bit of Frame 1 (TSa4F1).  
192 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
E1TSa5 (E1 Mode Only)  
Register Description:  
Register Address:  
Transmit Sa5 Bits Register  
16Ah + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
TSa5F15  
0
6
TSa5F13  
0
5
TSa5F11  
0
4
TSa5F9  
0
3
TSa5F7  
0
2
TSa5F5  
0
1
TSa5F3  
0
0
TSa5F1  
0
Bit 7: Sa5 Bit of Frame 15 (TSa5F15).  
Bit 6: Sa5 Bit of Frame 13 (TSa5F13).  
Bit 5: Sa5 Bit of Frame 11 (TSa5F11).  
Bit 4: Sa5 Bit of Frame 9 (TSa5F9).  
Bit 3: Sa5 Bit of Frame 7 (TSa5F7).  
Bit 2: Sa5 Bit of Frame 5 (TSa5F5).  
Bit 1: Sa5 Bit of Frame 3 (TSa5F3).  
Bit 0: Sa5 Bit of Frame 1 (TSa5F1).  
Register Name:  
Register Description:  
Register Address:  
E1TSa6 (E1 Mode)  
Transmit Sa6 Bits Register  
16Bh + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
TSa6F15  
0
6
TSa6F13  
0
5
TSa6F11  
0
4
TSa6F9  
0
3
TSa6F7  
0
2
TSa6F5  
0
1
TSa6F3  
0
0
TSa6F1  
0
Bit 7: Sa6 Bit of Frame 15 (TSa6F15).  
Bit 6: Sa6 Bit of Frame 13 (TSa6F13).  
Bit 5: Sa6 Bit of Frame 11 (TSa6F11).  
Bit 4: Sa6 Bit of Frame 9 (TSa6F9).  
Bit 3: Sa6 Bit of Frame 7 (TSa6F7).  
Bit 2: Sa6 Bit of Frame 5 (TSa6F5).  
Bit 1: Sa6 Bit of Frame 3 (TSa6F3).  
Bit 0: Sa6 Bit of Frame 1 (TSa6F1).  
193 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
E1TSa7 (E1 Mode Only)  
Register Description:  
Register Address:  
Transmit Sa7 Bits Register  
16Ch + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
TSa7F15  
0
6
TSa7F13  
0
5
TSa7F11  
0
4
TSa7F9  
0
3
TSa7F7  
0
2
TSa7F5  
0
1
TSa7F3  
0
0
TSa7F1  
0
Bit 7: Sa7 Bit of Frame 15 (TSa7F15).  
Bit 6: Sa7 Bit of Frame 13 (TSa7F13).  
Bit 5: Sa7 Bit of Frame 11 (TSa7F11).  
Bit 4: Sa7 Bit of Frame 9 (TSa7F9).  
Bit 3: Sa7 Bit of Frame 7 (TSa7F7).  
Bit 2: Sa7 Bit of Frame 5 (TSa7F5).  
Bit 1: Sa7 Bit of Frame 3 (TSa7F3).  
Bit 0: Sa7 Bit of Frame 1 (TSa7F1).  
Register Name:  
Register Description:  
Register Address:  
E1TSa8 (E1 Mode Only)  
Transmit Sa8 Bits Register  
16Dh + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
TSa8F15  
0
6
TSa8F13  
0
5
TSa8F11  
0
4
TSa8F9  
0
3
TSa8F7  
0
2
TSa8F5  
0
1
TSa8F3  
0
0
TSa8F1  
0
Bit 7: Sa8 Bit of Frame 15 (TSa8F15).  
Bit 6: Sa8 Bit of Frame 13 (TSa8F13).  
Bit 5: Sa8 Bit of Frame 11 (TSa8F11).  
Bit 4: Sa8 Bit of Frame 9 (TSa8F9).  
Bit 3: Sa8 Bit of Frame 7 (TSa8F7).  
Bit 2: Sa8 Bit of Frame 5 (TSa8F5).  
Bit 1: Sa8 Bit of Frame 3 (TSa8F3).  
Bit 0: Sa8 Bit of Frame 1 (TSa8F1).  
194 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
TMMR  
Register Description:  
Register Address:  
Transmit Master Mode Register  
180h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
7
6
5
0
4
0
3
0
2
0
1
SFTRST  
0
0
T1/E1  
0
FRM_EN INIT_DONE  
Default  
0
0
Bit 7: Framer Enable (FRM_EN). This bit must be set to the desired state before writing INIT_DONE.  
0 = Framer disabled—held in low-power state  
1 = Framer enabled—all features active  
Bit 6: Initialization Done (INIT_DONE). The user must set this bit once he has written the configuration registers.  
The host is required to write or clear all device registers prior to setting this bit. Once INIT_DONE is set, the  
DS26528 will check the FRM_EN bit and, if enabled will begin operation based on the initial configuration.  
Bit 1: Soft Reset (SFTRST). Level sensitive-soft reset. Should be taken high then low to reset the transceiver.  
0 = Normal operation  
1 = Reset the transceiver  
Bit 0: Transmitter T1/E1 Mode Select (T1/E1). Sets operating mode for transmitter only! This bit must be written  
with the desired value prior to setting INIT_DONE.  
0 = T1 operation  
1 = E1 operation  
195 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
TCR1 (T1 Mode)  
Register Description:  
Register Address:  
Transmit Control Register 1  
181h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
TJC  
0
6
TFPT  
0
5
TCPT  
0
4
TSSE  
0
3
GB7S  
0
2
TB8ZS  
0
1
TAIS  
0
0
TRAI  
0
Note: See TCR1 for E1 mode.  
Bit 7: Transmit Japanese CRC-6 Enable (TJC).  
0 = use ANSI/AT&T:ITU-T CRC-6 calculation (normal operation)  
1 = use Japanese standard JT-G704 CRC-6 calculation  
Bit 6: Transmit F-Bit Pass Through (TFPT).  
0 = F-bits sourced internally  
1 = F-bits sampled at TSER (TFDLS (TCR2.7) must be programmed to 0.)  
Bit 5: Transmit CRC Pass Through (TCPT).  
0 = source CRC-6 bits internally  
1 = CRC-6 bits sampled at TSER during F-bit time  
Bit 4: Transmit Software-Signaling Enable (TSSE). This function is enabled by TB7ZS (TCR2.0).  
0 = do not source signaling data from the TSx registers regardless of the SSIEx registers. The SSIEx  
registers still define which channels are to have B7 stuffing performed.  
1 = source signaling data as enabled by the SSIEx registers.  
Bit 3: Global Bit 7 Stuffing (GB7S). This function is enabled by TB7ZS (TCR2.0).  
0 = allow the SSIEx registers to determine which channels containing all zeros are to be bit 7 stuffed  
1 = force bit 7 stuffing in all zero-byte channels of that port, regardless of how the SSIEx registers are  
programmed  
Bit 2: Transmit B8ZS Enable (TB8ZS).  
0 = B8ZS disabled  
1 = B8ZS enabled  
Bit 1: Transmit Alarm Indication Signal (TAIS).  
0 = transmit data normally  
1 = transmit an unframed all-ones code at TPOS and TNEG  
Bit 0: Transmit Remote Alarm Indication (TRAI).  
0 = do not transmit remote alarm  
1 = transmit remote alarm  
196 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
TCR1 (E1 Mode)  
Register Description:  
Register Address:  
Transmit Control Register 1  
181h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
TTPT  
0
6
T16S  
0
5
TG802  
0
4
TSiS  
0
3
TSA1  
0
2
THDB3  
0
1
TAIS  
0
0
TCRC4  
0
Note: See TCR1 for T1 mode.  
Bit 7: Transmit Time Slot 0 Pass Through (TTPT).  
0 = FAS bits/Sa bits/remote alarm sourced internally from the E1TAF and E1TNAF registers  
1 = FAS bits/Sa bits/remote alarm sourced from TSER  
Bit 6: Transmit Time Slot 16 Data Select (T16S). See Section 8.9.4 on software signaling.  
0 = time slot 16 determined by the SSIEx and THSCS1:THSCS4 registers  
1 = source time slot 16 from TS1:TS16 registers  
Bit 5: Transmit G.802 Enable (TG802). See Section 10.4.  
0 = do not force TCHBLK high during bit 1 of time slot 26  
1 = force TCHBLK high during bit 1 of time slot 26  
Bit 4: Transmit International Bit Select (TSiS).  
0 = sample Si bits at TSER pin  
1 = source Si bits from E1TAF and E1TNAF registers (in this mode, TCR1.7 must be set to 0)  
Bit 3: Transmit-Signaling All Ones (TSA1).  
0 = normal operation  
1 = force time slot 16 in every frame to all ones  
Bit 2: Transmit HDB3 Enable (THDB3).  
0 = HDB3 disabled  
1 = HDB3 enabled  
Bit 1: Transmit AIS (TAIS).  
0 = transmit data normally  
1 = transmit an unframed all-ones code at TPOS and TNEG  
Bit 0: Transmit CRC-4 Enable (TCRC4).  
0 = CRC-4 disabled  
1 = CRC-4 enabled  
197 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
TCR2 (T1 Mode)  
Register Description:  
Register Address:  
Transmit Control Register 2  
182h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
TFDLS  
0
6
TSLC96  
0
5
0
4
FBCT2  
0
3
FBCT1  
0
2
TD4RM  
0
1
PDE  
0
0
TB7ZS  
0
Note: See TCR2 for E1 mode.  
Bit 7: TFDL Register Select (TFDLS).  
0 = source FDL or Fs bits from the internal TFDL register or the SLC-96 data formatter (TCR2.6)  
1 = source FDL or Fs bits from the internal HDLC controller  
Bit 6: Transmit SLC-96 (TSLC96). Set this bit to a one in SLC-96 framing applications. Must be set to source the  
SLC-96 alignment pattern and data from the T1TSLC1:T1TSLC3 registers. See Section 8.9.4.4 for details.  
0 = SLC-96 insertion disabled  
1 = SLC-96 insertion enabled  
Bit 4: F-Bit Corruption Type 2 (FBCT2). Setting this bit high enables the corruption of one Ft (D4 framing mode)  
or FPS (ESF framing mode) bit in every 128 Ft or FPS bits as long as the bit remains set.  
Bit 3: F-Bit Corruption Type 1 (FBCT1). A low-to-high transition of this bit causes the next three consecutive Ft  
(D4 framing mode) or FPS (ESF framing mode) bits to be corrupted causing the remote end to experience a loss of  
synchronization.  
Bit 2: Transmit D4 RAI Select (TD4RM).  
0 = zeros in bit 2 of all channels  
1 = a one in the S-bit position of frame 12  
Bit 1: Pulse Density Enforcer Enable (PDE). The framer always examines both the transmit and receive data  
streams for violations of the following rules which are required by ANSI T1.403: no more than 15 consecutive zeros  
and at least N ones in each and every time window of 8 x (N +1) bits where N = 1 through 23. Violations for the  
transmit and receive data streams are reported in the TLS1.3 and RLS2.7 bits, respectively. When this bit is set to  
one, the DS26528 will force the transmitted stream to meet this requirement no matter the content of the  
transmitted stream. When running B8ZS, this bit should be set to zero since B8ZS-encoded data streams cannot  
violate the pulse density requirements.  
0 = disable transmit pulse density enforcer  
1 = enable transmit pulse density enforcer  
Bit 0: Transmit-Side Bit 7 Zero-Suppression Enable (TB7ZS).  
0 = no stuffing occurs  
1 = force bit 7 to a one as determined by the GB7S bit at TCR1.3  
198 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
TCR2 (E1 Mode)  
Register Description:  
Register Address:  
Transmit Control Register 2  
182h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
AEBE  
0
6
AAIS  
0
5
ARA  
0
4
Sa4S  
0
3
Sa5S  
0
2
Sa6S  
0
1
Sa7S  
0
0
Sa8S  
0
Note: See TCR2 for T1 mode.  
Bit 7: Automatic E-Bit Enable (AEBE).  
0 = E-bits not automatically set in the transmit direction  
1 = E-bits automatically set in the transmit direction  
Bit 6: Automatic AIS Generation (AAIS).  
0 = disabled  
1 = enabled  
Bit 5: Automatic Remote Alarm Generation (ARA).  
0 = disabled  
1 = enabled  
Bit 4: Sa4 Bit Select (Sa4S). Set to one to source the Sa4 bit; set to zero to not source the Sa4 bit.  
Bit 3: Sa5 Bit Select (Sa5S). Set to one to source the Sa5 bit; set to zero to not source the Sa5 bit.  
Bit 2: Sa6 Bit Select (Sa6S). Set to one to source the Sa6 bit; set to zero to not source the Sa6 bit  
Bit 1: Sa7 Bit Select (Sa7S). Set to one to source the Sa7 bit; set to zero to not source the Sa7 bit.  
Bit 0: Sa8 Bit Select (Sa8S). Set to one to source the Sa8 bit; set to zero to not source the Sa8 bit.  
199 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
TCR3  
Register Description:  
Register Address:  
Transmit Control Register 3  
183h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
7
6
5
4
3
2
TFM  
1
0
ODF  
ODF  
0
ODM  
ODM  
0
TCSS1  
TCSS1  
0
TCSS0  
TCSS0  
0
MFRS  
MFRS  
0
IBPV  
IBPV  
0
TLOOP  
CRC4R  
0
Default  
0
Bit 7: Output Data Format (ODF).  
0 = bipolar data at TTIP and TRING  
1 = NRZ data at TTIP; TRING = 0  
Bit 6: Output Data Mode (ODM).  
0 = pulses at TTIP and TRING are one full TCLK period wide  
1 = pulses at TTIP and TRING are 1/2 TCLK period wide  
Bits 5 and 4: Transmit Clock Source Select 1 and 0 (TCSS[1:0]).  
TCSS1  
TCSS0  
TRANSMIT CLOCK SOURCE  
The TCLK pin is always the source of transmit clock.  
0
0
Switch to the clock present at RCLK when the signal at the TCLK pin fails to transition after  
one channel time.  
0
1
1
1
0
1
Reserved  
Use the signal present at RCLK as the transmit clock. The TCLK pin is ignored.  
Bit 3: Multiframe Reference Select (MFRS). This bit selects the source for the transmit formatter multiframe  
boundary.  
0 = Normal operation. Transmit multiframe boundary is determined by line-side counters referenced to  
TSYNC when TSYNC is an input. Free-running when TSYNC is an output.  
1 = Pass-forward operation. Transmit multiframe boundary determined by system-side counters referenced  
to TSSYNCIO (input mode 3), which is then passed forward to the line-side clock domain. This mode can  
only be used when the transmit elastic store is enabled with a synchronous backplane (i.e., no frame slips  
allowed). This mode must be used to allow transmit hardware-signaling insertion while the transmit elastic  
store is enabled.  
Bit 2: Transmit Frame Mode Select (TFM) (T1 Mode Only).  
0 = ESF framing mode  
1 = D4 framing mode  
Bit 1: Insert BPV (IBPV). A 0-to-1 transition on this bit will cause a single bipolar violation (BPV) to be inserted into  
the transmit data stream. Once this bit has been toggled from 0 to 1, the device waits for the next occurrence of  
three consecutive ones to insert the BPV. This bit must be cleared and set again for a subsequent error to be  
inserted.  
Bit 0 (T1 Mode): Transmit Loop Code Enable (TLOOP). See Section 8.9.15 for details.  
0 = transmit data normally  
1 = replace normal transmitted data with repeating code as defined in registers T1TCD1 and T1TCD2  
Bit 0 (E1 Mode): CRC-4 Recalculate (CRC4R).  
0 = transmit CRC-4 generation and insertion operates in normal mode  
1 = transmit CRC-4 generation operates according to G.706 Intermediate Path Recalculation method  
200 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
TIOCR  
Register Description:  
Register Address:  
Transmit I/O Configuration Register  
184h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
7
6
5
4
3
2
1
TSDW  
0
TSYNCINV TSSYNCINV  
TSYNCINV TSSYNCINV  
TCLKINV  
TCLKINV  
0
TSCLKM  
TSCLKM  
0
TSSM  
TSSM  
0
TSIO  
TSIO  
0
TSM  
TSM  
0
Default  
0
0
0
Bit 7: TCLK Invert (TCLKINV).  
0 = No inversion  
1 = Invert  
Bit 6: TSYNC Invert (TSYNCINV).  
0 = No inversion  
1 = Invert  
Bit 5: TSSYNCIO Invert (TSSYNCINV) (Input Mode Only).  
0 = No inversion  
1 = Invert  
Bit 4: TSYSCLK Mode Select (TSCLKM).  
0 = if TSYSCLK is 1.544MHz  
1 = if TSYSCLK is 2.048/4.096/8.192MHz or IBO enabled (see Section 8.8.2 for details on IBO function)  
Bit 3: TSSYNCIO Mode Select (TSSM). Selects frame or multiframe mode for the TSSYNCIO pin.  
0 = frame mode  
1 = multiframe mode  
Bit 2: TSYNC I/O Select (TSIO).  
0 = TSYNC is an input  
1 = TSYNC is an output  
Bit 1: TSYNC Double-Wide (TSDW) (T1 Mode Only). (Note: This bit must be set to zero when TSM = 1 or when  
TSIO = 0.)  
0 = do not pulse double-wide in signaling frames  
1 = do pulse double-wide in signaling frames  
Bit 0: TSYNC Mode Select (TSM). Selects frame or multiframe mode for the TSYNC pin.  
0 = frame mode  
1 = multiframe mode  
201 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
TESCR  
Register Description:  
Register Address:  
Transmit Elastic Store Control Register  
185h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
6
5
0
4
TSZS  
0
3
TESALGN  
0
2
TESR  
0
1
TESMDM  
0
0
TESE  
0
TDATFMT TGCLKEN  
0
0
Note: Bits 7 and 6 are used for fractional backplane support. See Section 8.8.5.  
Bit 7: Transmit Channel Data Format (TDATFMT).  
0 = 64kbps (data contained in all 8 bits)  
1 = 56kbps (data contained in 7 out of the 8 bits)  
Bit 6: Transmit Gapped-Clock Enable (TGCLKEN).  
0 = TCHCLK functions normally  
1 = enable gapped bit clock output on TCHCLK  
Bit 4: Transmit Slip Zone Select (TSZS). This bit determines the minimum distance allowed between the elastic  
store read and write pointers before forcing a controlled slip. This bit is only applies during T1-to-E1 or E1-to-T1  
conversion applications.  
0 = force a slip at 9 bytes or less of separation (used for clustered blank channels)  
1 = force a slip at 2 bytes or less of separation (used for distributed blank channels)  
Bit 3: Transmit Elastic Store Align (TESALGN). Setting this bit from 0 to 1 will force the transmit elastic store’s  
write/read pointers to a minimum separation of half a frame. No action will be taken if the pointer separation is  
already greater or equal to half a frame. If pointer separation is less than half a frame, the command will be  
executed and the data will be disrupted. Should be toggled after TSYSCLK has been applied and is stable. Must  
be cleared and set again for a subsequent align.  
Bit 2: Transmit Elastic Store Reset (TESR). Setting this bit from 0 to 1 will force the read pointer into the same  
frame that the write pointer is exiting, minimizing the delay through the elastic store. If this command should place  
the pointers within the slip zone (see bit 4), then an immediate slip will occur and the pointers will move back to  
opposite frames. Should be toggled after TSYSCLK has been applied and is stable. Do not leave this bit set HIGH.  
Bit 1: Transmit Elastic Store Minimum-Delay Mode (TESMDM).  
0 = elastic stores operate at full two-frame depth  
1 = elastic stores operate at 32-bit depth  
Bit 0: Transmit Elastic Store Enable (TESE).  
0 = elastic store is bypassed  
1 = elastic store is enabled  
202 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
TCR4 (T1 Mode Only)  
Register Description:  
Register Address:  
Transmit Control Register 4  
186h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
TRAIM  
0
2
TAISM  
0
1
TC1  
0
0
TC0  
0
Bits 3: Transmit RAI Mode (TRAIM). Determines the pattern sent when TRAI (TCR1.0) is activated in ESF frame  
mode only.  
0 = transmit normal RAI upon activation with TCR1.0  
1 = transmit RAI-CI (T1.403) upon activation with TCR1.0  
Bits 2: Transmit AIS Mode (TAISM). Determines the pattern sent when TAIS (TCR1.1) is activated.  
0 = transmit normal AIS (unframed all ones) upon activation with TCR1.1  
1 = transmit AIS-CI (T1.403) upon activation with TCR1.1  
Bits 1 and 0: Transmit Code Length Definition Bits (TC[1:0]).  
LENGTH SELECTED  
TC1  
TC0  
(BITS)  
0
0
1
1
0
1
0
1
5
6 : 3  
7
16 : 8 : 4 : 2 : 1  
Register Name:  
THFC  
Register Description:  
Register Address:  
Transmit HDLC FIFO Control Register  
187h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
0
2
0
1
TFLWM1  
0
0
TFLWM2  
0
Bits 1 and 0: Transmit HDLC FIFO Low Watermark Select (TFLWM[1:2]).  
TRANSMIT FIFO WATERMARK  
TFLWM1 TFLWM2  
(BYTES)  
0
0
1
1
0
1
0
1
4
16  
32  
48  
203 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
TIBOC  
Register Description:  
Register Address:  
Transmit Interleave Bus Operation Control Register  
188h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
IBS1  
0
5
IBS0  
0
4
IBOSEL  
0
3
IBOEN  
0
2
DA2  
0
1
DA1  
0
0
DA0  
0
Bits 6 and 5: IBO Bus Size (IBS[1:0]). Indicates how many devices are on the bus.  
IBS1  
IBS0  
BUS SIZE  
2 devices on bus  
4 devices on bus  
8 devices on bus  
Reserved for future use  
0
0
1
1
0
1
0
1
Bit 4: Interleave Bus Operation Select (IBOSEL). This bit selects channel or frame interleave mode.  
0 = Channel Interleave  
1 = Frame Interleave  
Bit 3: Interleave Bus Operation Enable (IBOEN).  
0 = Interleave Bus Operation disabled  
1 = Interleave Bus Operation enabled  
Bits 2 to 0: Device Assignment Bits (DA[2:0]).  
DA2  
0
0
0
0
1
1
1
1
DA1  
0
0
1
1
0
0
1
1
DA0  
0
1
0
1
0
1
0
1
DEVICE POSITION  
1st device on bus  
2nd device on bus  
3rd device on bus  
4th device on bus  
5th device on bus  
6th device on bus  
7th device on bus  
8th device on bus  
Register Name:  
TDS0SEL  
Register Description:  
Register Address:  
Transmit DS0 Channel Monitor Select Register  
189h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
TCM4  
0
3
TCM3  
0
2
TCM2  
0
1
TCM1  
0
0
TCM0  
0
Bits 4 to 0: Transmit Channel Monitor Bits (TCM[4:0]). TCM0 is the LSB of a 5-bit channel select that  
determines which transmit channel data will appear in the TDS0M register. Channels 1 to 32 are represented by a  
5-bit BCD code from 0 to 31. TCM[4:0] = all zeros selects channel 1, TCM[4:0] = 11111 selects channel 32.  
204 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
TXPC  
Register Description:  
Register Address:  
Transmit Expansion Port Control Register  
18Ah + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
0
2
TBPDIR  
0
1
TBPFUS  
0
0
TBPEN  
0
Bit 2: Transmit BERT Port Direction Control (TBPDIR).  
0 = Normal (line) operation. Transmit BERT port sources data into the transmit path.  
1 = System (backplane) operation. Transmit BERT port sources data into the receive path (RDATA). In this  
mode the data out of the transmit BERT is muxed into the receive path at RDATA (the line side of the  
elastic store).  
Bit 1: Transmit BERT Port Framed/Unframed Select (TBPFUS).  
0 = The transmit BERT will not clock data into the F-bit position (framed)  
1 = The transmit BERT will clock data into the F-bit position (unframed)  
Bit 0: Transmit BERT Port Enable (TBPEN).  
0 = Transmit BERT port is not active  
1 = Transmit BERT port is active  
205 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
TBPBS  
Register Description:  
Register Address:  
Transmit BERT Port Bit Suppress Register  
18Bh + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
BPBSE8  
0
6
BPBSE7  
0
5
BPBSE6  
0
4
BPBSE5  
0
3
BPBSE4  
0
2
BPBSE3  
0
1
BPBSE2  
0
0
BPBSE1  
0
Bit 7: Transmit Channel Bit 8 Suppress (BPBSE8). MSB of the channel. Set to one to stop this bit from being  
used.  
Bit 6: Transmit Channel Bit 7 Suppress (BPBSE7). Set to one to stop this bit from being used.  
Bit 5: Transmit Channel Bit 6 Suppress (BPBSE6). Set to one to stop this bit from being used.  
Bit 4: Transmit Channel Bit 5 Suppress (BPBSE5). Set to one to stop this bit from being used.  
Bit 3: Transmit Channel Bit 4 Suppress (BPBSE4). Set to one to stop this bit from being used.  
Bit 2: Transmit Channel Bit 3 Suppress (BPBSE3). Set to one to stop this bit from being used.  
Bit 1: Transmit Channel Bit 2 Suppress (BPBSE2). Set to one to stop this bit from being used.  
Bit 0: Transmit Channel Bit 1 Suppress (BPBSE1). LSB of the channel. Set to one to stop this bit from being  
used.  
Register Name:  
TSYNCC  
Register Description:  
Register Address:  
Transmit Synchronizer Control Register  
18Eh + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
7
0
6
0
5
0
4
0
3
CRC4  
0
2
1
0
TSEN  
TSEN  
0
SYNCE  
SYNCE  
0
RESYNC  
RESYNC  
0
Default  
Bit 3: CRC-4 Enable (CRC4) (E1 Mode Only).  
0 = Do not search for the CRC-4 multiframe word  
1 = Search for the CRC-4 multiframe word  
Bit 2: Transmit Synchronizer Enable (TSEN).  
0 = Transmit synchronizer disabled  
1 = Transmit synchronizer enabled  
Bit 1: Sync Enable (SYNCE).  
0 = auto resync enabled  
1 = auto resync disabled  
Bit 0: Resynchronize (RESYNC). When toggled from low to high, a resynchronization of the transmit-side framer  
is initiated. Must be cleared and set again for a subsequent resync.  
206 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
TLS1  
Register Description:  
Register Address:  
Transmit Latched Status Register 1  
190h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
7
6
5
4
3
TPDV  
TAF  
0
2
1
0
TESF  
TESF  
0
TESEM  
TESEM  
0
TSLIP  
TSLIP  
0
TSLC96  
TMF  
TMF  
0
LOTCC  
LOTCC  
0
LOTC  
LOTC  
0
0
Default  
Note: All bits in this register are latched and can cause interrupts.  
Bit 7: Transmit Elastic Store Full Event (TESF). Set when the transmit elastic store buffer fills and a frame is  
deleted.  
Bit 6: Transmit Elastic Store Empty Event (TESEM). Set when the transmit elastic store buffer empties and a  
frame is repeated.  
Bit 5: Transmit Elastic Store Slip Occurrence Event (TSLIP). Set when the transmit elastic store has either  
repeated or deleted a frame.  
Bit 4: Transmit SLC-96 Multiframe Event (TSLC96) (T1 Mode Only). When enabled by TCR2.6, this bit will set  
once per SLC-96 multiframe (72 frames) to alert the host that new data may be written to the T1TSLC1:T1TSLC3  
registers. See Section 8.9.4.4 for more information.  
Bit 3 (T1 Mode): Transmit Pulse Density Violation Event (TPDV). Set when the transmit data stream does not  
meet the ANSI T1.403 requirements for pulse density.  
Bit 3 (E1 Mode): Transmit Align Frame Event (TAF). Set every 250μs to alert the host that the E1TAF and  
E1TNAF registers need to be updated.  
Bit 2: Transmit Multiframe Event (TMF). In T1 mode, this bit is set every 1.5ms on D4 MF boundaries or every  
3ms on ESF MF boundaries. In E1 operation, this but is set every 2ms (regardless if CRC-4 is enabled) on transmit  
multiframe boundaries. Used to alert the host that signaling data needs to be updated.  
Bit 1: Loss of Transmit Clock Condition Clear (LOTCC). Set when the LOTC condition has cleared (a clock has  
been sensed at the TCLK pin).  
Bit 0: Loss of Transmit Clock Condition (LOTC). Set when the TCLK pin has not transitioned for approximately  
3 clock periods. Will force the LOTC bit high if enabled. This bit can be cleared by the host even if the condition is  
still present. LOTC will remain high while the condition exists, even if the host has cleared the status bit. If enabled  
by TIM1.0, the INTB pin will transition low when this bit is set, and transition high when this bit is cleared (if no other  
unmasked interrupt conditions exist).  
207 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
TLS2  
Register Description:  
Register Address:  
Transmit Latched Status Register 2 (HDLC)  
191h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
7
0
6
0
5
0
4
TFDLE  
3
2
1
0
TUDR  
TUDR  
0
TMEND  
TMEND  
0
TLWMS  
TLWMS  
0
TNFS  
TNFS  
0
Default  
0
Note: All bits in this register are latched and can create interrupts.  
Bit 4: Transmit FDL Register Empty (TFDLE) (T1 Mode Only). Set when the TFDL register has shifted out all 8  
bits. Useful if the user wants to manually use the TFDL register to send messages, instead of using the HDLC or  
BOC controller circuits.  
Bit 3: Transmit FIFO Underrun Event (TUDR). Set when the transmit FIFO empties out without having seen the  
TMEND bit set. An abort is automatically sent.  
Bit 2: Transmit Message End Event (TMEND). Set when the transmit HDLC controller has finished sending a  
message.  
Bit 1: Transmit FIFO Below Low Watermark Set Condition (TLWMS). Set when the transmit 64-byte FIFO  
empties beyond the low watermark as defined by the transmit low watermark bit (TLWM), rising edge detect of  
TLWM.  
Bit 0: Transmit FIFO Not Full Set Condition (TNFS). Set when the transmit 64-byte FIFO has at least one empty  
byte available for write. Rising edge detect of TNF. Indicates change of state from full to not full.  
Register Name:  
TLS3  
Register Description:  
Register Address:  
Transmit Latched Status Register 3 (Synchronizer)  
192h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
0
2
0
1
LOF  
0
0
LOFD  
0
Note: Some bits in this register are latched and can create interrupts.  
Bit 1: Loss of Frame (LOF). A real-time bit that indicates that the transmit synchronizer is searching for the sync  
pattern in the incoming data stream.  
Bit 0: Loss of Frame Synchronization Detect (LOFD). This latched bit is set when the transmit synchronizer is  
searching for the sync pattern in the incoming data stream.  
208 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
TIIR  
Register Description:  
Register Address:  
Transmit Interrupt Information Register  
19Fh + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
0
2
TLS3  
0
1
TLS2  
0
0
TLS1  
0
The Transmit Interrupt Information register provides an indication of which status registers are generating an  
interrupt. When an interrupt occurs, the host can read TIIR to quickly identify which of the transmit status registers  
are causing the interrupt(s). These are real-time registers in that the bits will clear once the appropriate interrupt  
has been serviced and cleared.  
Bit 2: Transmit Latched Status Register 3 Interrupt Status (TLS3).  
0 = no interrupt pending  
1 = interrupt pending  
Bit 1: Transmit Latched Status Register 2 Interrupt Status (TLS2).  
0 = no interrupt pending  
1 = interrupt pending  
Bit 0: Transmit Latched Status Register 1 Interrupt Status (TLS1).  
0 = no interrupt pending  
1 = interrupt pending  
209 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
TIM1  
Register Description:  
Register Address:  
Transmit Interrupt Mask Register 1  
1A0h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
7
6
5
4
3
TPDV  
TAF  
0
2
1
0
TESF  
TESF  
0
TESEM  
TESEM  
0
TSLIP  
TSLIP  
0
TSLC96  
TMF  
TMF  
0
LOTCC  
LOTCC  
0
LOTC  
LOTC  
0
0
Default  
Bit 7: Transmit Elastic Store Full Event (TESF).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 6: Transmit Elastic Store Empty Event (TESEM).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 5: Transmit Elastic Store Slip Occurrence Event (TSLIP).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 4: Transmit SLC-96 Multiframe Event (TSLC96) (T1 Mode Only).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 3 (T1 Mode): Transmit Pulse Density Violation Event (TPDV).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 3 (E1 Mode): Transmit Align Frame Event (TAF).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 2: Transmit Multiframe Event (TMF).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 1: Loss of Transmit Clock Clear Condition (LOTCC).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 0: Loss of Transmit Clock Condition (LOTC).  
0 = interrupt masked  
1 = interrupt enabled  
210 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
TIM2  
Register Description:  
Register Address:  
Transmit Interrupt Mask Register 2 (HDLC)  
1A1h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
7
0
6
0
5
0
4
TFDLE  
3
2
1
0
TUDR  
TUDR  
0
TMEND  
TMEND  
0
TLWMS  
TLWMS  
0
TNFS  
TNFS  
0
Default  
0
Bit 4: Transmit FDL Register Empty (TFDLE) (T1 Mode Only).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 3: Transmit FIFO Underrun Event (TUDR).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 2: Transmit Message End Event (TMEND).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 1: Transmit FIFO Below Low Watermark Set Condition (TLWMS).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 0: Transmit FIFO Not Full Set Condition (TNFS).  
0 = interrupt masked  
1 = interrupt enabled  
Register Name:  
TIM3  
Register Description:  
Register Address:  
Transmit Interrupt Mask Register 3 (Synchronizer)  
1A2h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
LOFD  
0
Bit 0: Loss of Frame Synchronization Detect (LOFD).  
0 = interrupt masked  
1 = interrupt enabled  
211 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
T1TCD1 (T1 Mode Only)  
Register Description:  
Register Address:  
Transmit Code Definition Register 1  
1ACh + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
C7  
0
6
C6  
0
5
C5  
0
4
C4  
0
3
C3  
0
2
C2  
0
1
C1  
0
0
C0  
0
Bit 7: Transmit Code Definition Bit 7 (C7). First bit of the repeating pattern.  
Bit 6: Transmit Code Definition Bit 6 (C6).  
Bit 5: Transmit Code Definition Bit 5 (C5).  
Bit 4: Transmit Code Definition Bit 4 (C4).  
Bit 3: Transmit Code Definition Bit 3 (C3).  
Bit 2: Transmit Code Definition Bit 2 (C2). A Don’t Care if a 5-bit length is selected.  
Bit 1: Transmit Code Definition Bit 1 (C1). A Don’t Care if a 5- or 6-bit length is selected.  
Bit 0: Transmit Code Definition Bit 0 (C0). A Don’t Care if a 5-, 6-, or 7-bit length is selected.  
Register Name:  
T1TCD2 (T1 Mode Only)  
Register Description:  
Register Address:  
Transmit Code Definition Register 2  
1ADh + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
C7  
0
6
C6  
0
5
C5  
0
4
C4  
0
3
C3  
0
2
C2  
0
1
C1  
0
0
C0  
0
Bit 7: Transmit Code Definition Bit 7 (C7). A Don’t Care if a 5-, 6-, or 7-bit length is selected.  
Bit 6: Transmit Code Definition Bit 6 (C6). A Don’t Care if a 5-, 6-, or 7-bit length is selected.  
Bit 5: Transmit Code Definition Bit 5 (C5). A Don’t Care if a 5-, 6-, or 7-bit length is selected.  
Bit 4: Transmit Code Definition Bit 4 (C4). A Don’t Care if a 5-, 6-, or 7-bit length is selected.  
Bit 3: Transmit Code Definition Bit 3 (C3). A Don’t Care if a 5-, 6-, or 7-bit length is selected.  
Bit 2: Transmit Code Definition Bit 2 (C2). A Don’t Care if a 5-, 6-, or 7-bit length is selected.  
Bit 1: Transmit Code Definition Bit 1 (C1). A Don’t Care if a 5-, 6-, or 7-bit length is selected.  
Bit 0: Transmit Code Definition Bit 0 (C0). A Don’t Care if a 5-, 6-, or 7-bit length is selected.  
212 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
TRTS2  
Register Description:  
Register Address:  
Transmit Real-Time Status Register 2 (HDLC)  
1B1h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
TEMPTY  
0
2
TFULL  
0
1
TLWM  
0
0
TNF  
0
Note: All bits in this register are real time.  
Bit 3: Transmit FIFO Empty (TEMPTY). A real-time bit that is set high when the FIFO is empty.  
Bit 2: Transmit FIFO Full (TFULL). A real-time bit that is set high when the FIFO is full.  
Bit 1: Transmit FIFO Below Low Watermark Condition (TLWM). Set when the transmit 64-byte FIFO empties  
beyond the low watermark as defined by the transmit low watermark bits (TLWM).  
Bit 0: Transmit FIFO Not Full Condition (TNF). Set when the transmit 64-byte FIFO has at least one byte  
available.  
Register Name:  
TFBA  
Register Description:  
Register Address:  
Transmit HDLC FIFO Buffer Available  
1B3h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
TFBA6  
0
5
TFBA5  
0
4
TFBA4  
0
3
TFBA3  
0
2
TFBA2  
0
1
TFBA1  
0
0
TFBA0  
0
Bits 6 to 0: Transmit FIFO Bytes Available (TFBA[6:0]). TFBA0 is the LSB.  
Register Name:  
THF  
Register Description:  
Register Address:  
Transmit HDLC FIFO Register  
1B4h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
THD7  
0
6
THD6  
0
5
THD5  
0
4
THD4  
0
3
THD3  
0
2
THD2  
0
1
THD1  
0
0
THD0  
0
Bit 7: Transmit HDLC Data Bit 7 (THD7). MSB of an HDLC packet data byte.  
Bit 6: Transmit HDLC Data Bit 6 (THD6).  
Bit 5: Transmit HDLC Data Bit 5 (THD5).  
Bit 4: Transmit HDLC Data Bit 4 (THD4).  
Bit 3: Transmit HDLC Data Bit 3 (THD3).  
Bit 2: Transmit HDLC Data Bit 2 (THD2).  
Bit 1: Transmit HDLC Data Bit 1 (THD1).  
Bit 0: Transmit HDLC Data Bit 0 (THD0). LSB of an HDLC packet data byte.  
213 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
TDS0M  
Register Description:  
Register Address:  
Transmit DS0 Monitor Register  
1BBh + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
B1  
0
6
B2  
0
5
B3  
0
4
B4  
0
3
B5  
0
2
B6  
0
1
B7  
0
0
B8  
0
Bits 7 to 0: Transmit DS0 Channel Bits (B[1:8]). Transmit channel data that has been selected by the Transmit  
DS0 Channel Monitor Select register (TDS0SEL). B8 is the LSB of the DS0 channel (last bit to be transmitted).  
Register Name:  
TBCS1, TBCS2, TBCS3, TBCS4  
Register Description:  
Register Address:  
Transmit Blank Channel Select Registers 1 to 4  
1C0h, 1C1h, 1C2h, 1C3h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
(MSB) 7  
CH8  
CH16  
CH24  
6
5
4
3
2
1
0 (LSB)  
CH1  
CH9  
CH7  
CH15  
CH23  
CH6  
CH14  
CH22  
CH5  
CH13  
CH21  
CH4  
CH12  
CH20  
CH3  
CH11  
CH19  
CH2  
CH10  
CH18  
TBCS1  
TBCS2  
TBCS3  
TBCS4  
(E1 Mode  
Only)  
CH17  
CH32  
CH31  
CH30  
CH29  
CH28  
CH27  
CH26  
CH25  
Default  
0
0
0
0
0
0
0
0
Bits 7 to 0: Transmit Blank Channel Select for Channels 1 to 32 (CH[1:32]).  
0 = transmit TSER data from this channel  
1 = ignore TSER data from this channel  
Note that when two or more sequential channels are chosen to be ignored, the receive slip zone select bit should  
be set to zero. If the ignore channels are distributed (such as 1, 5, 9, 13, 17, 21, 25, 29), the RSZS bit can be set to  
one, which may provide a lower occurrence of slips in certain applications.  
214 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
TCBR1, TCBR2, TCBR3, TCBR4  
Register Description:  
Register Address:  
Transmit Channel Blocking Registers 1 to 4  
1C4h, 1C5h, 1C6h, 1C7h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
(MSB)  
CH8  
CH16  
CH24  
(LSB)  
CH1  
CH9  
CH7  
CH15  
CH23  
CH6  
CH14  
CH22  
CH5  
CH13  
CH21  
CH4  
CH12  
CH20  
CH3  
CH11  
CH19  
CH2  
CH10  
CH18  
TCBR1  
TCBR2  
TCBR3  
TCBR4*  
(E1 Mode  
Only)  
CH17  
CH25  
(F-bit)  
CH32  
CH31  
CH30  
CH29  
CH28  
CH27  
CH26  
Default  
0
0
0
0
0
0
0
0
Bits 7 to 0: Transmit Channel Blocking Channels 1 to 32 Control Bits (CH[1:32]).  
0 = force the TCHBLK pin to remain low during this channel time  
1 = force the TCHBLK pin high during this channel time  
*Note that TCBR4 has two functions:  
When 2.048MHz backplane mode is selected, this register allows the user to enable the channel blocking  
signal for any of the 32 possible backplane channels.  
When 1.544MHz backplane mode is selected, the LSB of this register determines whether or not the  
TCHBLK signal will pulse high during the F-bit time:  
TCBR4.0 = 0: Do not pulse TCHBLK during the F-bit.  
TCBR4.0 = 1: Pulse TCHBLK during the F-bit.  
In this mode, TCBR4.1 to TCBR4.7 should be set to 0.  
215 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
THSCS1, THSCS2, THSCS3, THSCS4  
Register Description:  
Register Address:  
Transmit Hardware-Signaling Channel Select Registers 1 to 4  
1C8h, 1C9h, 1CAh, 1CBh + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
(MSB) 7  
CH8  
CH16  
CH24  
6
5
4
3
2
1
0 (LSB)  
CH1  
CH9  
CH7  
CH15  
CH23  
CH6  
CH14  
CH22  
CH5  
CH13  
CH21  
CH4  
CH12  
CH20  
CH3  
CH11  
CH19  
CH2  
CH10  
CH18  
THSCS1  
THSCS2  
THSCS3  
THSCS4*  
(E1 Mode  
Only)  
CH17  
CH32  
CH31  
CH30  
CH29  
CH28  
CH27  
CH26  
CH25  
Default  
0
0
0
0
0
0
0
0
Bits 7 to 0: Transmit Hardware-Signaling Channel Select for Channels 1 to 32 (CH[1:32]). These bits  
determine which channels have signaling data inserted from the TSIG pin into the TSER PCM data.  
0 = do not source signaling data from the TSIG pin for this channel  
1 = source signaling data from the TSIG pin for this channel  
*Note that THSCS4 is only used in 2.048MHz backplane applications.  
Register Name:  
TGCCS1, TGCCS2, TGCCS3, TGCCS4  
Register Description:  
Register Address:  
Transmit Gapped-Clock Channel Select Registers 1 to 4  
1CCh, 1CDh, 1CEh, 1CFh + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
(MSB)  
CH8  
CH16  
CH24  
(LSB)  
CH1  
CH9  
CH7  
CH15  
CH23  
CH6  
CH14  
CH22  
CH5  
CH13  
CH21  
CH4  
CH12  
CH20  
CH3  
CH11  
CH19  
CH2  
CH10  
CH18  
TGCCS1  
TGCCS2  
TGCCS3  
TGCCS4*  
(E1 Mode  
Only)  
CH17  
CH25  
(F-bit)  
CH32  
CH31  
CH30  
CH29  
CH28  
CH27  
CH26  
Default  
0
0
0
0
0
0
0
0
Bits 7 to 0: Transmit Gapped-Clock Channel Select Channels 1 to 32 (CH[1:32]).  
0 = no clock is present on TCHCLK during this channel time  
1 = force a clock on TCHCLK during this channel time. The clock will be synchronous with TCLK if the  
elastic store is disabled, and synchronous with TSYSCLK if the elastic store is enabled.  
*Note that TGCCS4 has two functions:  
When 2.048MHz backplane mode is selected, this register allows the user to enable the gapped clock on  
TCHCLK for any of the 32 possible backplane channels.  
When 1.544MHz backplane mode is selected, the LSB of this register determines whether or not a clock is  
generated on TCHCLK during the F-bit time:  
TGCCS4.0 = 0: Do not generate a clock during the F-bit  
TGCCS4.0 = 1: Generate a clock during the F-bit  
In this mode, TGCCS4.1 to TGCCS4.7 should be set to 0.  
216 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
PCL1, PCL2, PCL3, PCL4  
Register Description:  
Register Address:  
Per-Channel Loopback Enable Registers 1 to 4  
1D0h, 1D1h, 1D2h, 1D3h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
(MSB)  
CH8  
CH16  
CH24  
(LSB)  
CH1  
CH9  
CH7  
CH15  
CH23  
CH6  
CH14  
CH22  
CH5  
CH13  
CH21  
CH4  
CH12  
CH20  
CH3  
CH11  
CH19  
CH2  
CH10  
CH18  
PCL1  
PCL2  
PCL3  
PCL4  
CH17  
CH32  
CH31  
CH30  
CH29  
CH28  
CH27  
CH26  
CH25  
(E1 Mode  
Only)  
Default  
0
0
0
0
0
0
0
0
Bits 7 to 0: Per-Channel Loopback Enable for Channels 1 to 32 (CH[1:32]).  
0 = loopback disabled  
1 = enable loopback; source data from the corresponding receive channel  
Register Name:  
TBPCS1, TBPCS2, TBPCS3, TBPCS4  
Register Description:  
Register Address:  
Transmit BERT Port Channel Select Registers 1 to 4  
1D4h, 1D5h, 1D6h, 1D7h + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
(MSB) 7  
CH8  
CH16  
CH24  
6
5
4
3
2
1
0 (LSB)  
CH1  
CH9  
CH7  
CH15  
CH23  
CH6  
CH14  
CH22  
CH5  
CH13  
CH21  
CH4  
CH12  
CH20  
CH3  
CH11  
CH19  
CH2  
CH10  
CH18  
TBPCS1  
TBPCS2  
TBPCS3  
TBPCS4  
(E1 Mode  
Only)  
CH17  
CH32  
CH31  
CH30  
CH29  
CH28  
CH27  
CH26  
CH25  
Default  
0
0
0
0
0
0
0
0
Setting any of the CH[1:32] bits in the TBPCS1:TBPCS4 registers will enable the transmit BERT clock for the  
associated channel time, and allow mapping of the selected channel data out of the receive BERT port. Multiple or  
all channels can be selected simultaneously.  
217 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
9.5  
LIU Register Definitions  
Table 9-14. LIU Register Set  
ADDRESS  
1000h  
NAME  
LTRCR  
LTITSR  
LMCR  
LRSR  
DESCRIPTION  
LIU Transmit Receive Control Register  
R/W  
R/W  
1001h  
LIU Transmit Impedance and Pulse Shape Selection Register  
LIU Maintenance Control Register  
LIU Real Status Register  
R/W  
R/W  
R
1002h  
1003h  
1004h  
LSIMR  
LLSR  
LIU Status Interrupt Mask Register  
LIU Latched Status Register  
R/W  
R/W  
R
1005h  
1006h  
LRSL  
LIU Receive Signal Level Register  
1007h  
LRISMR LIU Receive Impedance and Sensitivity Monitor Register  
Reserved  
R/W  
1008h–101Fh  
Note: Reserved registers should only be written with all zeros.  
Register Name:  
LTRCR  
Register Description:  
Register Address:  
LIU Transmit Receive Control Register  
1000h + (20h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
JADS  
0
3
JAPS1  
0
2
JAPS0  
0
1
T1J1E1S  
0
0
LSC  
0
Bit 4: Jitter Attenuator Depth Select (JADS).  
0 = Jitter attenuator FIFO depth set to 128 bits.  
1 = Jitter attenuator FIFO depth set to 32 bits. Use for delay-sensitive applications.  
Bits 3 and 2: Jitter Attenuator Position Select 1 and 0 (JAPS[1:0]). These bits are used to select the position of  
the jitter attenuator.  
JAPS1  
JAPS0  
FUNCTION  
0
0
1
1
0
1
0
1
Jitter attenuator is in the receive path.  
Jitter attenuator is in the transmit path.  
Jitter attenuator is not used.  
Jitter attenuator is not used.  
Bit 1: T1J1E1 Selection (T1J1E1S). This bit configures the LIU for E1 or T1/J1 operation.  
0 = E1  
1 = T1 or J1  
Bit 0: LOS Criteria Selection (LCS). This bit is used for LIU LOS selection criteria.  
E1 Mode:  
0 = G.775  
1 = ETS 300 233  
T1/J1 Mode:  
0 = T1.231  
1 = T1.231  
218 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
LTITSR  
Register Description:  
Register Address:  
LIU Transmit Impedance and Pulse Shape Selection Register  
1001h + (20h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
5
TIMPL1  
0
4
TIMPL0  
0
3
0
2
L2  
0
1
L1  
0
0
L0  
0
TIMPTOFF  
0
Bit 6: Transmit Impedance Off (TIMPTOFF).  
0 = Enable transmit terminating impedance.  
1 = Disable transmit terminating impedance.  
Bits 5 and 4: Transmit Load Impedance 1 and 0 (TIMPL[1:0]). These bits are used to select the transmit load  
impedance. These must be set to match the cable impedance. Even if the internal load impedance is turned off (via  
TIMPTOFF); the external cable impedance must be specified for optimum operation. For J1 applications, use  
110Ω. See Table 9-15.  
Bits 2 to 0: Line Build-Out Select 2 to 0 (L[2:0]). Used to select the transmit waveshape. The waveshape has a  
voltage level and load impedance associated with it once the T1/J1 or E1 selection is made by settings in the  
LTRCR register. See Table 9-16.  
Table 9-15. Transmit Load Impedance Selection  
TIMPL1  
TIMPL0  
IMPEDANCE SELECTION  
0
0
1
1
0
1
0
1
75Ω  
100Ω  
110Ω  
120Ω  
Table 9-16. Transmit Pulse Shape Selection  
NOMINAL  
VOLTAGE  
L2 L1 L0 MODE  
IMPEDANCE  
0
0
0
0
0
1
E1  
E1  
2.37V  
3.0V  
75Ω  
120Ω  
MAX  
ALLOWED  
CABLE LOSS  
0.6dB  
L2 L1 L0 MODE  
CABLE LENGTH  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
T1/J1  
T1/J1  
T1/J1  
T1/J1  
T1/J1  
T1/J1  
T1/J1  
T1/J1  
DSX-1/0dB CSU, 0ft–133ft ABAM 100Ω  
DSX-1, 133ft–266ft ABAM 100Ω  
DSX-1, 266ft–399ft ABAM 100Ω  
DSX-1, 399ft–533ft ABAM 100Ω  
DSX-1, 533ft–655ft ABAM 100Ω  
-7.5dB CSU  
1.2dB  
1.8dB  
2.4dB  
3.0dB  
-15dB CSU  
-22.5dB CSU  
219 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
LMCR  
Register Description:  
Register Address:  
LIU Maintenance Control Register  
1002h + (20h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
TAIS  
0
6
ATAIS  
0
5
LLB  
0
4
ALB  
0
3
RLB  
0
2
TPDE  
0
1
RPDE  
0
0
TE  
0
Bit 7: Transmit AIS (TAIS). Alarm Indication Signal (AIS) is sent using MCLK as the reference clock. The transmit  
data coming from the framer is ignored.  
0 = TAIS is disabled.  
1 = Output an unframed all-ones pattern (AIS) at TTIP and TRING.  
Bit 6: Automatic Transmit AIS (ATAIS).  
0 = ATAIS is disabled.  
1 = Automatically transmit AIS on the occurrence of an LIU LOS.  
Bit 5: Local Loopback (LLB). See Section 8.11.5.2 for operational details.  
0 = LLB is disabled.  
1 = LLB is enabled.  
Bit 4: Analog Loopback (ALB). See Section 8.11.5.1 for operational details.  
0 = ALB is disabled.  
1 = ALB is enabled.  
Bit 3: Remote Loopback (RLB). See Section 8.11.5.3 for operational details.  
0 = Remote loopback is disabled.  
1 = Remote loopback is enabled.  
In this loopback, received data passes all the way through the receive LIU and is then transmitted back  
through the transmit side of the LIU. Data will continue to pass through the receive-side framer of the  
DS26528 as it would normally and the data from the transmit side of the framer will be ignored.  
Bit 2: Transmit Power-Down Enable (TPDE).  
0 = Transmitter power enabled.  
1 = Transmitter powered down. TTIP/TRING outputs are high impedance.  
Bit 1: Receiver Power-Down Enable (RPDE).  
0 = Receiver power enabled.  
1 = Receiver powered down.  
Bit 0: Transmit Enable (TE). This function is overridden by the TXENABLE pin.  
0 = TTIP/TRING outputs are high impedance.  
1 = TTIP/TRING outputs enabled.  
220 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
LRSR  
Register Description:  
Register Address:  
LIU Real Status Register  
1003h + (20h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
0
5
OEQ  
0
4
UEQ  
0
3
0
2
SCS  
0
1
OCS  
0
0
LOSS  
0
Bit 5: Over Equalized (OEQ). The equalizer is over equalized. This can happen if there is very large unexpected  
resistive loss. This could result if monitor mode is used and the device is not placed in monitor mode. This indicator  
provides more qualitative information to the receive loss indicators.  
Bit 4: Under Equalized (UEQ). The equalizer is under equalized. A signal with a very high resistive gain is being  
applied. This indicator provides more qualitative information to the receive loss indicators.  
Bit 2: Short-Circuit Status (SCS). A real-time bit that is set when the LIU detects that the TTIP and TRING  
outputs are short-circuited. The load resistance must be 25Ω (typically) or less for short-circuit detection.  
Bit 1: Open-Circuit Status (OCS). A real-time bit that is set when the LIU detects that the TTIP and TRING  
outputs are open-circuited.  
Bit 0: Loss-of-Signal Status (LOSS). A real-time bit that is set when the LIU detects a LOS condition at RTIP and  
RRING.  
221 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
LSIMR  
Register Description:  
Register Address:  
LIU Status Interrupt Mask Register  
1004h + (20h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
JALTCIM  
0
6
OCCIM  
0
5
SCCIM  
0
4
LOSCIM  
0
3
JALTSIM  
0
2
OCDIM  
0
1
SCDIM  
0
0
LOSDIM  
0
Bit 7: Jitter Attenuator Limit Trip Clear Interrupt Mask (JALTCIM).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 6: Open-Circuit Clear Interrupt Mask (OCCIM).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 5: Short-Circuit Clear Interrupt Mask (SCCIM).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 4: Loss of Signal Clear Interrupt Mask (LOSCIM).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 3: Jitter Attenuator Limit Trip Set Interrupt Mask (JALTSIM).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 2: Open-Circuit Detect Interrupt Mask (OCDIM).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 1: Short-Circuit Detect Interrupt Mask (SCDIM).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 0: Loss of Signal Detect Interrupt Mask (LOSDIM).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
222 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
LLSR  
Register Description:  
Register Address:  
LIU Latched Status Register  
1005h + (20h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
JALTC  
0
6
OCC  
0
5
SCC  
0
4
LOSC  
0
3
JALTS  
0
2
OCD  
0
1
SCD  
0
0
LOSD  
0
Note: All bits in this register are latched and can create interrupts.  
Bit 7: Jitter Attenuator Limit Trip Clear (JALTC). This latched bit is set when a jitter attenuator limit trip condition  
was detected and then removed.  
Bit 6: Open-Circuit Clear (OCC). This latched bit is set when an open-circuit condition was detected at TTIP and  
TRING and then removed.  
Bit 5: Short-Circuit Clear (SCC). This latched bit is set when a short-circuit condition was detected at TTIP and  
TRING and then removed.  
Bit 4: Loss of Signal Clear (LOSC). This latched bit is set when a loss-of-signal condition was detected at RTIP  
and RRING and then removed.  
Bit 3: Jitter Attenuator Limit Trip Set (JALTS). This latched bit is set when the jitter attenuator limit trip condition  
is detected.  
Bit 2: Open-Circuit Detect (OCD). This latched bit is set when an open-circuit condition is detected at TTIP and  
TRING. This bit is not functional in T1 CSU operating modes (T1 LBO 5, LBO 6, and LBO 7).  
Bit 1: Short-Circuit Detect (SCD). This latched bit is set when a short-circuit condition is detected at TTIP and  
TRING. This bit is not functional in T1 CSU operating modes (T1 LBO 5, LBO 6, and LBO 7).  
Bit 0: Loss of Signal Detect (LOSD). This latched bit is set when an LOS condition is detected at RTIP and  
RRING.  
223 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
LRSL  
Register Description:  
Register Address:  
LIU Receive Signal Level Register  
1006h + (20h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
RSL3  
0
6
RSL2  
0
5
RLS1  
0
4
RLS0  
0
3
0
2
0
1
0
0
0
Bits 7 to 4: Receiver Signal Level 3 to 0 (RSL[3:0]). Real-time receive signal level as shown in Table 9-17. Note  
that the range of signal levels reported the RSL[3:0] is limited by the Equalizer Gain Limit (EGL) in short-haul  
applications.  
Table 9-17. Receive Level Indication  
RECEIVE LEVEL (dB)  
RSL3  
RSL2  
RSL1  
RSL0  
T1  
E1  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
> -2.5  
> -2.5  
-2.5 to -5  
-5 to -7.5  
-7.5 to -10  
-10 to -12.5  
-12.5 to -15  
-15 to -17.5  
-17.5 to -20  
-20 to -23  
-23 to -26  
-26 to -29  
-29 to -32  
-32 to -36  
< -36  
-2.5 to -5  
-5 to -7.5  
-7.5 to -10  
-10 to -12.5  
-12.5 to -15  
-15 to -17.5  
-17.5 to -20  
-20 to -23  
-23 to -26  
-26 to -29  
-29 to -32  
-32 to -36  
-36 to -40  
-40 to -44  
< -44  
224 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
LRISMR  
Register Description:  
Register Address:  
LIU Receive Impedance and Sensitivity Monitor Register  
1007h + (20h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
RG703  
0
6
RIMPOFF  
0
5
RIMPM1  
0
4
RIMPM0  
0
3
RTR  
0
2
RMONEN  
0
1
RSMS1  
0
0
RSMS0  
0
Bit 7: Receive G.703 Clock Enable (RG703). If this bit is set, the receiver expects a 2.048MHz or 1.544MHz  
clock from the RTIP/RRING, based on the selection of T1 (1.544) or E1 (2.048) mode in the LTRCR register.  
Bit 6: Receive Impedance Termination Off (RIMPOFF).  
0 = Receive terminating impedance match is enabled.  
1 = Receive terminating impedance match is disabled.  
Bits 5 and 4: Receive Impedance Match 1 and 0 (RIMPM[1:0]). These bits are used to select the receive  
impedance match value. These must be set according to the cable impedance. Even if the internal receive match  
impedance is turned off (RIMPOFF); the external cable impedance must be specified for optimum operation by  
RIMPM1 to 0. See Table 9-18.  
Bit 3: Receiver Turns Ratio (RTR).  
0 = Receive transformer turns ratio is 1:1.  
1 = Receive transformer turns ratio is 2:1. This option should only be used in short-haul applications.  
Bit 2: Receiver Monitor Mode Enable (RMONEN).  
0 = Disable receive monitor mode.  
1 = Enable receive monitor mode. Resistive gain is added with the maximum sensitivity. The receiver  
sensitivity is determined by RSMS1 and RSMS0.  
Bits 1 and 0: Receiver Sensitivity/Monitor Gain Select 1 and 0 (RSMS[1:0]). These bits are used to select the  
receiver sensitivity level and additional gain in monitoring applications. The monitor mode (RMONEN) adds  
resistive gain to compensate for the signal loss caused by the isolation resistors. See Table 9-19 and Table 9-20.  
Table 9-18. Receive Impedance Selection  
RECEIVE IMPEDANCE  
RIMPM[1:0]  
SELECTED (Ω)  
00  
01  
10  
11  
75  
100  
110  
120  
225 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Table 9-19. Receiver Sensitivity Selection with Monitor Mode Disabled  
RECEIVER  
MONITOR MODE  
GAIN (dB)  
RECEIVER SENSITIVITY  
RMONEN  
RSMS[1:0]  
(MAX CABLE LOSS  
ALLOWED) (dB)  
0
0
0
0
00  
01  
10  
11  
0
0
0
0
12  
18  
30  
36 for T1; 43 for E1  
Table 9-20. Receiver Sensitivity Selection with Monitor Mode Enabled  
RECEIVER  
MONITOR MODE  
GAIN (dB)  
RECEIVER SENSITIVITY  
(MAX CABLE LOSS  
ALLOWED) (dB)  
RMONEN  
RSMS[1:0]  
1
1
1
1
00  
01  
10  
11  
14  
20  
26  
32  
30  
22.5  
17.5  
12  
226 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
9.6  
BERT Register Definitions  
Table 9-21. BERT Register Set  
ADDR  
1100h  
1101h  
1102h  
1103h  
1104h  
1105h  
1106h  
1107h  
1108h  
1109h  
110Ah  
110Bh  
110Ch  
110Dh  
110Eh  
110Fh  
NAME  
BAWC  
BRP1  
BRP2  
BRP3  
BRP4  
BC1  
DESCRIPTION  
BERT Alternating Word Count Rate Register  
BERT Repetitive Pattern Set Register 1  
BERT Repetitive Pattern Set Register 2  
BERT Repetitive Pattern Set Register 3  
BERT Repetitive Pattern Set Register 4  
BERT Control Register 1  
R/W  
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
BC2  
BERT Control Register 2  
BBC1  
BBC2  
BBC3  
BBC4  
BEC1  
BEC2  
BEC3  
BLSR  
BSIM  
BERT Bit Count Register 1  
BERT Bit Count Register 2  
R
BERT Bit Count Register 3  
R
BERT Bit Count Register 4  
R
BERT Error Count Register 1  
R
BERT Error Count Register 2  
R
BERT Error Count Register 3  
R
BERT Latched Status Register  
BERT Status Interrupt Mask Register  
R
R/W  
Register Name:  
BAWC  
Register Description:  
Register Address:  
BERT Alternating Word Count Rate Register  
1100h + (10h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
ACNT7  
0
6
ACNT6  
0
5
ACNT5  
0
4
ACNT4  
0
3
ACNT3  
0
2
ACNT2  
0
1
ACNT1  
0
0
ACNT0  
0
Bits 7 to 0: Alternating Word Count Rate Bits 7 to 0 (ACNT[7:0]). When the BERT is programmed in the  
alternating word mode, the words will repeat for the count loaded into this register, then flip to the other word and  
again repeat for the number of times loaded into this register. ACNT0 is the LSB of the 8-bit alternating word count  
rate counter.  
227 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
BRP1  
Register Description:  
Register Address:  
BERT Repetitive Pattern Set Register 1  
1101h + (10h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
RPAT7  
0
6
RPAT6  
0
5
RPAT5  
0
4
RPAT4  
0
3
RPAT3  
0
2
RPAT2  
0
1
RPAT1  
0
0
RPAT0  
0
Bits 7 to 0: BERT Repetitive Pattern Set Bits 7 to 0 (RPAT[7:0]). RPAT0 is the LSB of the 32-bit repetitive  
pattern.  
Register Name:  
BRP2  
Register Description:  
Register Address:  
BERT Repetitive Pattern Set Register 2  
1102h + (10h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
RPAT15  
0
6
RPAT14  
0
5
RPAT13  
0
4
RPAT12  
0
3
RPAT11  
0
2
RPAT10  
0
1
RPAT9  
0
0
RPAT8  
0
Bits 7 to 0: BERT Repetitive Pattern Set Bits 15 to 8 (RPAT[15:8]).  
Register Name:  
BRP3  
Register Description:  
Register Address:  
BERT Repetitive Pattern Set Register 3  
1103h + (10h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
RPAT23  
0
6
RPAT22  
0
5
RPAT21  
0
4
RPAT20  
0
3
RPAT19  
0
2
RPAT18  
0
1
RPAT17  
0
0
RPAT16  
0
Bits 7 to 0: BERT Repetitive Pattern Set Bits 23 to 16 (RPAT[23:16]).  
Register Name:  
BRP4  
Register Description:  
Register Address:  
BERT Repetitive Pattern Set Register 4  
1104h + (10h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
RPAT31  
0
6
RPAT30  
0
5
RPAT29  
0
4
RPAT28  
0
3
RPAT27  
0
2
RPAT26  
0
1
RPAT25  
0
0
RPAT24  
0
Bits 7 to 0: BERT Repetitive Pattern Set Bits 31 to 24 (RPAT[31:24]). RPAT31 is the MSB of the 32-bit  
repetitive pattern.  
228 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
BC1  
Register Description:  
Register Address:  
BERT Control Register 1  
1105h + (10h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
TC  
0
6
TINV  
0
5
RINV  
0
4
PS2  
0
3
PS1  
0
2
PS0  
0
1
LC  
0
0
RESYNC  
0
Bit 7: Transmit Pattern Load (TC). A low-to-high transition loads the pattern generator with the pattern that is to  
be generated. This bit should be toggled from low to high whenever the host wishes to load a new pattern. Must be  
cleared and set again for subsequent loads.  
Bit 6:Transmit Invert Data Enable (TINV).  
0 = do not invert the outgoing data stream  
1 = invert the outgoing data stream  
Bit 5:Receive Invert Data Enable (RINV).  
0 = do not invert the incoming data stream  
1 = invert the incoming data stream  
Bits 4 to 2: Pattern Select Bits 2 to 0 (PS[2:0]). These bits select data pattern used by the transmit and receive  
circuits. See Table 9-22.  
Table 9-22. BERT Pattern Select  
PS2  
PS1  
PS0  
PATTERN DEFINITION  
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
Pseudorandom 2E7-1  
Pseudorandom 2E11-1  
Pseudorandom 2E15-1  
Pseudorandom Pattern QRSS. A 220 - 1 pattern with 14 consecutive zero restriction.  
Repetitive Pattern  
Alternating Word Pattern  
Modified 55 Octet (Daly) Pattern. The Daly pattern is a repeating 55 octet pattern that is  
byte-aligned into the active DS0 time slots. The pattern is defined in an ATIS (Alliance  
for Telecommunications Industry Solutions) Committee T1 Technical Report Number 25  
(November 1993).  
1
1
1
1
0
1
Pseudorandom 2E-9-1  
Bit 1: Load Bit and Error Counter (LC). A low-to-high transition latches the current bit and error counts into the  
registers BBC1, BBC2, BBC3, BBC4 and BEC1, BEC2, and BEC3, and clears the internal count. This bit should be  
toggled from low to high whenever the host wishes to begin a new acquisition period. Must be cleared and set  
again for subsequent loads.  
Bit 0: Force Resynchronization (RESYNC). A low-to-high transition forces the receive BERT synchronizer to  
resynchronize to the incoming data stream. This bit should be toggled from low to high whenever the host wishes  
to acquire synchronization on a new pattern. Must be cleared and set again for a subsequent resynchronization.  
229 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
BC2  
Register Description:  
Register Address:  
BERT Control Register 2  
1106h + (10h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
EIB2  
0
6
EIB1  
0
5
EIB0  
0
4
SBE  
0
3
RPL3  
0
2
RPL2  
0
1
RPL1  
0
0
RPL0  
0
Bits 7 to 5: Error Insert Bits 2 to 0 (EIB[2:0]). Will automatically insert bit errors at the prescribed rate into the  
generated data pattern. Can be used for verifying error detection features. See Table 9-23.  
Table 9-23. BERT Error Insertion Rate  
EIB2 EIB1 EIB0  
ERROR RATE INSERTED  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
No errors automatically inserted  
10E-1  
10E-2  
10E-3  
10E-4  
10E-5  
10E-6  
10E-7  
Bit 4: Single Bit Error Insert (SBE). A low-to-high transition will create a single bit error. Must be cleared and set  
again for a subsequent bit error to be inserted.  
Bits 3 to 0: Repetitive Pattern Length Select 3 to 0 (RPL[3:0]). RPL0 is the LSB and RPL3 is the MSB of a  
nibble that describes how long the repetitive pattern is. The valid range is 17 (0000) to 32 (1111). These bits are  
ignored if the receive BERT is programmed for a pseudorandom pattern. To create repetitive patterns fewer than  
17 bits in length, the user must set the length to an integer number of the desired length that is less than or equal  
to 32. For example, to create a 6-bit pattern, the user can set the length to 18 (0001) or to 24 (0111) or to 30  
(1101). See Table 9-24.  
Table 9-24. BERT Repetitive Pattern Length Select  
LENGTH  
RPL3  
RPL2  
RPL1  
RPL0  
(BITS)  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
230 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
BBC1  
Register Description:  
Register Address:  
BERT Bit Count Register 1  
1107h + (10h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
BBC7  
0
6
BBC6  
0
5
BBC5  
0
4
BBC4  
0
3
BBC3  
0
2
BBC2  
0
1
BBC1  
0
0
BBC0  
0
Bits 7 to 0: BERT Bit Counter Bits 7 to 0 (BBC[7:0]). BBC0 is the LSB of the 32-bit counter.  
Register Name:  
BBC2  
Register Description:  
Register Address:  
BERT Bit Count Register 2  
1108h + (10h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
BBC15  
0
6
BBC14  
0
5
BBC13  
0
4
BBC12  
0
3
BBC11  
0
2
BBC10  
0
1
BBC9  
0
0
BBC8  
0
Bits 7 to 0: BERT Bit Counter Bits 15 to 8 (BBC[15:8]).  
Register Name:  
BBC3  
Register Description:  
Register Address:  
BERT Bit Count Register 3  
1109h + (10h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
BBC23  
0
6
BBC22  
0
5
BBC21  
0
4
BBC20  
0
3
BBC19  
0
2
BBC18  
0
1
BBC17  
0
0
BBC16  
0
Bits 7 to 0: BERT Bit Counter Bits 23 to 16 (BBC[23:16]).  
Register Name:  
BBC4  
Register Description:  
Register Address:  
BERT Bit Count Register 4  
110Ah + (10h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
BBC31  
0
6
BBC30  
0
5
BBC29  
0
4
BBC28  
0
3
BBC27  
0
2
BBC26  
0
1
BBC25  
0
0
BBC24  
0
Bits 7 to 0: BERT Bit Counter Bits 31 to 24 (BBC[31:24]). BBC31 is the MSB of the 32-bit counter.  
231 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
BEC1  
Register Description:  
Register Address:  
BERT Error Count Register 1  
110Bh + (10h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
EC7  
0
6
EC6  
0
5
EC5  
0
4
EC4  
0
3
EC3  
0
2
EC2  
0
1
EC1  
0
0
EC0  
0
Bits 7 to 0: Error Counter Bits 7 to 0 (EC[7:0]). EC0 is the LSB of the 24-bit counter.  
Register Name:  
BEC2  
Register Description:  
Register Address:  
BERT Error Count Register 2  
110Ch + (10h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
EC15  
0
6
EC14  
0
5
EC13  
0
4
EC12  
0
3
EC11  
0
2
EC10  
0
1
EC9  
0
0
EC8  
0
Bits 7 to 0: Error Counter Bits 15 to 8 (EC[15:8]).  
Register Name:  
Register Description:  
Register Address:  
BEC3  
BERT Error Count Register 3  
110Dh + (10h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
EC23  
0
6
EC22  
0
5
EC21  
0
4
EC20  
0
3
EC19  
0
2
EC18  
0
1
EC17  
0
0
EC16  
0
Bits 7 to 0: Error Counter Bits 23 to 16 (EC[23:16]). EC23 is the MSB of the 24-bit counter.  
232 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
BLSR  
BERT Latched Status Register  
110Eh + (10h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
BBED  
0
5
BBCO  
0
4
BECO  
0
3
BRA1  
0
2
BRA0  
0
1
BRLOS  
0
0
BSYNC  
0
Note: All bits in this register are latched and can create interrupts.  
Bit 6: BERT Bit-Error-Detected Event (BBED). A latched bit that is set when a bit error is detected. The receive  
BERT must be in synchronization for it to detect bit errors.  
Bit 5: BERT Bit Counter Overflow Event (BBCO). A latched bit that is set when the 32-bit BERT bit counter  
(BBC) overflows.  
Bit 4: BERT Error Counter Overflow Event (BECO). A latched bit that is set when the 24-bit BERT error counter  
(BEC) overflows.  
Bit 3: BERT Receive All-Ones Condition (BRA1). A latched bit that is set when 32 consecutive ones are  
received.  
Bit 2: BERT Receive All-Zeros Condition (BRA0). A latched bit that is set when 32 consecutive zeros are  
received.  
Bit 1: BERT Receive Loss of Synchronization Condition (BRLOS). A latched bit that is set whenever the  
receive BERT begins searching for a pattern.  
Bit 0: BERT in Synchronization Condition (BSYNC). Will be set when the incoming pattern matches for 32  
consecutive bit positions.  
233 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
BSIM  
Register Description:  
Register Address:  
BERT Status Interrupt Mask Register  
110Fh + (10h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
Name  
Default  
7
0
6
BBED  
0
5
BBCO  
0
4
BECO  
0
3
BRA1  
0
2
BRA0  
0
1
BRLOS  
0
0
BSYNC  
0
Bit 6: BERT Bit-Error-Detected Event (BBED).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 5: BERT Bit Counter Overflow Event (BBCO).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 4: BERT Error Counter Overflow Event (BECO).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 3: BERT Receive All-Ones Condition (BRA1).  
0 = interrupt masked  
1 = interrupt enabled—interrupts on rising and falling edges  
Bit 2: BERT Receive All-Zeros Condition (BRA0).  
0 = interrupt masked  
1 = interrupt enabled—interrupts on rising and falling edges  
Bit 1: BERT Receive Loss of Synchronization Condition (BRLOS)  
0 = interrupt masked  
1 = interrupt enabled—interrupts on rising and falling edges  
Bit 0: BERT in Synchronization Condition (BSYNC).  
0 = interrupt masked  
1 = interrupt enabled—interrupts on rising and falling edges  
234 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
10. FUNCTIONAL TIMING  
10.1 T1 Receiver Functional Timing Diagrams  
Figure 10-1. T1 Receive-Side D4 Timing  
1
FRAME#  
RFSYNC  
RSYNC 1  
RSYNC 2  
RSYNC3  
2
3
4
5
6
7
8
9
10 11 12  
1
2
3
4
5
NOTE 1: RSYNC IN THE FRAME MODE (RIOCR.0 = 0) AND DOUBLE-WIDE FRAME SYNC IS NOT ENABLED (RIOCR.1 = 0).  
NOTE 2: RSYNC IN THE FRAME MODE (RIOCR.0 = 0) AND DOUBLE-WIDE FRAME SYNC IS ENABLED (RIOCR.1 = 1).  
NOTE 3: RSYNC IN THE MULTIFRAME MODE (RIOCR.0 = 1).  
Figure 10-2. T1 Receive-Side ESF Timing  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
1
2
3
4
5
FRAME#  
RSYNC1  
RFSYNC  
RSYNC2  
RSYNC3  
NOTE 1: RSYNC IN THE FRAME MODE (RIOCR.0 = 0) AND DOUBLE-WIDE FRAME SYNC IS NOT ENABLED (RIOCR.1 = 0).  
NOTE 2: RSYNC IN THE FRAME MODE (RIOCR.0 = 0) AND DOUBLE-WIDE FRAME SYNC IS ENABLED (RIOCR.1 = 1).  
NOTE 3: RSYNC IN THE MULTIFRAME MODE (RIOCR.0 = 1).  
235 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Figure 10-3. T1 Receive-Side Boundary Timing (Elastic Store Disabled)  
RCLK  
CHANNEL 23  
CHANNEL 24  
CHANNEL 1  
MSB  
LSB  
LSB MSB  
F
RSER  
RSYNC  
RFSYNC  
CHANNEL 23  
C/A  
CHANNEL 24  
C/A  
CHANNEL 1  
A
A
B
A
B
D/B  
D/B  
RSIG  
RCHCLK  
1
RCHBLK  
NOTE 1: RCHBLK IS PROGRAMMED TO BLOCK CHANNEL 24.  
Figure 10-4. T1 Receive-Side 1.544MHz Boundary Timing (Elastic Store Enabled)  
RSYSCLK  
CHANNEL 23  
CHANNEL 24  
CHANNEL 1  
MSB  
LSB  
LSB MSB  
F
RSER  
RSYNC1  
RMSYNC  
RSYNC2  
CHANNEL 1  
CHANNEL 23  
C/A  
CHANNEL 24  
C/A  
A
A
B
A
B
D/B  
D/B  
RSIG  
RCHCLK  
RCHBLK 3  
NOTE 1: RSYNC IS IN THE OUTPUT MODE (RIOCR.2 = 0).  
NOTE 2: RSYNC IS IN THE INPUT MODE (RIOCR.2 = 1).  
NOTE 3: RCHBLK IS PROGRAMMED TO BLOCK CHANNEL 24.  
236 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Figure 10-5. T1 Receive-Side 2.048MHz Boundary Timing (Elastic Store Enabled)  
RSYSCLK  
CHANNEL 31  
CHANNEL 32  
CHANNEL 1  
RSER 1  
RSYNC2  
RMSYNC  
LSB  
LSB MSB  
3
RSYNC  
CHANNEL 1  
CHANNEL 32  
C/A  
CHANNEL 31  
C/A  
A
B
A
B
D/B  
D/B  
RSIG  
RCHCLK  
RCHBLK 4  
NOTE 1: RSER DATA IN CHANNELS 1, 5, 9, 13, 17, 21, 25, AND 29 ARE FORCED TO ONE.  
NOTE 2: RSYNC IS IN THE OUTPUT MODE (RIOCR.2 = 0).  
NOTE 3: RSYNC IS IN THE INPUT MODE (RIOCR.2 = 1).  
NOTE 4: RCHBLK IS PROGRAMMED TO BLOCK CHANNEL 1.  
NOTE 5: THE F-BIT POSITION IS PASSED THROUGH THE RECEIVE-SIDE ELASTIC STORE.  
237 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Figure 10-6. T1 Receive-Side Interleave Bus Operation—BYTE Mode  
RSYNC  
RSER1  
RSIG1  
RSER2  
RSIG2  
RSER3  
RSIG3  
FR1 CH 32  
FR1 CH132  
FR0 CH1  
FR0 CH1  
FR1 CH1  
FR1 CH1  
FR0 CH2  
FR0 CH2  
FR1 CH2  
FR1 CH2  
FR2 CH32  
FR3 CH32  
FR3 CH32  
FR0 CH1  
FR1 CH1  
FR1 CH1  
FR2 CH1  
FR3 CH1  
FR3 CH1  
FR0 CH2  
FR1 CH2  
FR1 CH2  
FR2 CH2  
FR3 CH2  
FR3 CH2  
FR2 CH32  
FR0 CH1  
FR2 CH1  
FR0 CH2  
FR2 CH2  
FR4  
Ch32  
FR5  
FR6  
FR7  
Ch32  
FR0  
Ch1  
FR1  
Ch1  
FR2  
Ch1  
FR3  
Ch1  
FR4  
Ch1  
FR5  
Ch1  
FR6  
Ch1  
FR7  
Ch1  
FR0  
Ch2  
FR1  
Ch2  
FR2  
Ch2  
FR3  
Ch2  
FR4  
Ch2  
FR5  
Ch2  
FR6  
Ch2  
FR7  
Ch2  
Ch32  
Ch32  
FR4  
Ch32  
FR5  
FR6  
FR7  
Ch32  
FR0  
Ch1  
FR1  
Ch1  
FR2  
Ch1  
FR3  
Ch1  
FR4  
Ch1  
FR5  
Ch1  
FR6  
Ch1  
FR7  
Ch1  
FR0  
Ch2  
FR1  
Ch2  
FR2  
Ch2  
FR3  
Ch2  
FR4  
Ch2  
FR5  
Ch2  
FR6  
Ch2  
FR7  
Ch2  
Ch32  
Ch32  
BIT DETAIL  
SYSCLK  
RSYNC4  
Framer 3, Channel 32  
Framer 3, Channel 32  
Framer 0, Channel 1  
Framer 0, Channel 1  
Framer 1, Channel 1  
Framer 1, Channel 1  
RSER  
RSIG  
MSB  
LSB MSB  
LSB MSB  
LSB  
A
B
A
B
C/A D/B  
A
B
C/A D/B  
A
B
C/A D/B  
Notes:  
1. 4.096 MHz bus configuration.  
2. 8.192 MHz bus configuration.  
3. 16.384 MHz bus configuration.  
4. RSYNC is in the input mode (RIOCR.2 = 0).  
5. Shows system implementation with multiple DS26528 cores driving the backplane.  
6. Though not shown, RCHCLK continues to mark the channel LSB for the framers active period.  
7. Though not shown, RCHBLK continues to mark the blocked channels for the framers active period.  
238 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Figure 10-7. T1 Receive-Side Interleave Bus Operation—FRAME Mode  
RSYNC  
RSER1  
RSIG1  
RSER2  
RSIG2  
RSER3  
RSIG3  
FR1 CH1-32  
FR1 CH1-32  
FR0 CH1-32  
FR0 CH1-32  
FR1 CH1-32  
FR1 CH1-32  
FR0 CH1-32  
FR0 CH1-32  
FR1 CH1-32  
FR1 CH1-32  
FR2 CH1-32 FR3 CH1-32 FR0 CH1-32 FR1 CH1-32 FR2 CH1-32 FR3 CH1-32 FR0 CH1-32 FR1 CH1-32 FR2 CH1-32 FR3 CH1-32  
FR2 CH1-32 FR3 CH1-32 FR0 CH1-32 FR1 CH1-32 FR2 CH1-32 FR3 CH1-32 FR0 CH1-32 FR1 CH1-32 FR2 CH1-32 FR3 CH1-32  
FR4  
FR5  
FR6  
FR7  
FR0  
FR1  
FR2  
FR3  
FR4  
FR5  
FR6  
FR7  
FR0  
FR1  
FR2  
FR3  
FR4  
FR5  
FR6  
FR7  
Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32  
FR4  
FR5  
FR6  
FR7  
FR0  
FR1  
FR2  
FR3  
FR4  
FR5  
FR6  
FR7  
FR0  
FR1  
FR2  
FR3  
FR4  
FR5  
FR6  
FR7  
Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32  
BIT DETAIL  
SYSCLK  
RSYNC4  
Framer 3, Channel 32  
Framer 3, Channel 32  
Framer 0, Channel 1  
Framer 0, Channel 1  
Framer 0, Channel 2  
Framer 0, Channel 2  
RSER  
RSIG  
MSB  
LSB MSB  
LSB MSB  
LSB  
A
B
A
B
C/A D/B  
A
B
C/A D/B  
A
B
C/A D/B  
Notes:  
1. 4.096 MHz bus configuration.  
2. 8.192 MHz bus configuration.  
3. 16.384 MHz bus configuration.  
4. RSYNC is in the input mode (RIOCR.2 = 0).  
5. Shows system implementation with multiple DS26528 cores driving the backplane.  
6. Though not shown, RCHCLK continues to mark the channel LSB for the framers active period.  
7. Though not shown, RCHBLK continues to mark the blocked channels for the framers active period.  
239 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
10.2 T1 Transmitter Functional Timing Diagrams  
Figure 10-8. T1 Transmit-Side D4 Timing  
FRAME#  
1
2
3
4
5
6
7
8
9
10 11 12  
1
2
3
4
5
TSYNC1  
TSSYNC  
TSYNC2  
TSYNC3  
NOTE 1: TSYNC IN THE FRAME MODE (TIOCR.0 = 0) AND DOUBLE-WIDE FRAME SYNC IS NOT ENABLED (TIOCR.1 = 0).  
NOTE 2: TSYNC IN THE FRAME MODE (TIOCR.0 = 0) AND DOUBLE-WIDE FRAME SYNC IS ENABLED (TIOCR.1 = 1).  
NOTE 3: TSYNC IN THE MULTIFRAME MODE (TIOCR.0 = 1).  
Figure 10-9. T1 Transmit-Side ESF Timing  
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5  
FRAME#  
TSYNC1  
TSSYNC  
TSYNC2  
TSYNC3  
NOTE 1: TSYNC IN THE FRAME MODE (TIOCR.0 = 0) AND DOUBLE-WIDE FRAME SYNC IS NOT ENABLED (TIOCR.1 = 0).  
NOTE 2: TSYNC IN THE FRAME MODE (TIOCR.0 = 0) AND DOUBLE-WIDE FRAME SYNC IS ENABLED (TIOCR.1 = 1).  
NOTE 3: TSYNC IN THE MULTIFRAME MODE (TIOCR.0 = 1).  
240 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Figure 10-10. T1 Transmit-Side Boundary Timing (Elastic Store Disabled)  
TCLK  
CHANNEL 1  
CHANNEL 2  
LSB  
F
MSB  
LSB MSB  
LSB MSB  
TSER  
TSYNC1  
TSYNC2  
CHANNEL 1  
CHANNEL 2  
D/B  
A
B
C/A D/B  
A
B
C/A D/B  
TSIG  
TCHCLK  
TCHBLK3  
NOTE 1: TSYNC IS IN THE OUTPUT MODE (TIOCR.2 = 1).  
NOTE 2: TSYNC IS IN THE INPUT MODE (TIOCR.2 = 0).  
NOTE 3: TCHBLK IS PROGRAMMED TO BLOCK CHANNEL 2.  
Figure 10-11. T1 Transmit-Side 1.544MHz Boundary Timing (Elastic Store Enabled)  
TSYSCLK  
CHANNEL 23  
CHANNEL 24  
CHANNEL 1  
LSB MSB  
LSB  
F MSB  
TSER  
TSSYNC  
CHANNEL 23  
CHANNEL 24  
CHANNEL 1  
A
A
B
C/A D/B  
A
B
C/A D/B  
TSIG  
TCHCLK  
TCHBLK1  
NOTE 1: TCHBLK IS PROGRAMMED TO BLOCK CHANNEL 24.  
241 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Figure 10-12. T1 Transmit-Side 2.048MHz Boundary Timing (Elastic Store Enabled)  
TSYSCLK  
CHANNEL 31  
CHANNEL 32  
CHANNEL 1  
F3  
TSER1  
LSB MSB  
LSB  
TSSYNC  
CHANNEL 31  
CHANNEL 32  
CHANNEL 1  
A
B
C/A D/B  
A
B
C/A D/B  
A
TSIG  
TCHCLK  
TCHBLK2  
NOTE 1: TSER DATA IN CHANNELS 1, 5, 9, 13, 17, 21, 25, AND 29 IS IGNORED.  
NOTE 2: TCHBLK IS PROGRAMMED TO BLOCK CHANNELS 31 AND 1.  
NOTE 3: THE F-BIT POSITION FOR THE T1 FRAME IS SAMPLED AND PASSED THROUGH THE TRANSMIT-SIDE  
ELASTIC STORE INTO THE MSB BIT POSITION OF CHANNEL 1. (NORMALLY THE TRANSMIT-SIDE FORMATTER  
OVERWRITES THE F-BIT POSITION UNLESS THE FORMATTER IS PROGRAMMED TO PASS THROUGH THE F-BIT  
POSITION).  
242 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Figure 10-13. T1 Transmit-Side Interleave Bus Operation—BYTE Mode  
TSYNC  
TSER1  
TSIG1  
TSER2  
TSIG2  
TSER3  
TSIG3  
FR1 CH 32  
FR1 CH132  
FR0 CH1  
FR0 CH1  
FR1 CH1  
FR1 CH1  
FR0 CH2  
FR0 CH2  
FR1 CH2  
FR1 CH2  
FR2 CH32  
FR3 CH32  
FR3 CH32  
FR0 CH1  
FR1 CH1  
FR1 CH1  
FR2 CH1  
FR3 CH1  
FR3 CH1  
FR0 CH2  
FR1 CH2  
FR1 CH2  
FR2 CH2  
FR3 CH2  
FR3 CH2  
FR2 CH32  
FR0 CH1  
FR2 CH1  
FR0 CH2  
FR2 CH2  
FR4  
Ch32  
FR5  
FR6  
FR7  
Ch32  
FR0  
Ch1  
FR1  
Ch1  
FR2  
Ch1  
FR3  
Ch1  
FR4  
Ch1  
FR5  
Ch1  
FR6  
Ch1  
FR7  
Ch1  
FR0  
Ch2  
FR1  
Ch2  
FR2  
Ch2  
FR3  
Ch2  
FR4  
Ch2  
FR5  
Ch2  
FR6  
Ch2  
FR7  
Ch2  
Ch32  
Ch32  
FR4  
Ch32  
FR5  
FR6  
FR7  
Ch32  
FR0  
Ch1  
FR1  
Ch1  
FR2  
Ch1  
FR3  
Ch1  
FR4  
Ch1  
FR5  
Ch1  
FR6  
Ch1  
FR7  
Ch1  
FR0  
Ch2  
FR1  
Ch2  
FR2  
Ch2  
FR3  
Ch2  
FR4  
Ch2  
FR5  
Ch2  
FR6  
Ch2  
FR7  
Ch2  
Ch32  
Ch32  
BIT DETAIL  
SYSCLK  
TSYNC4  
Framer 3, Channel 32  
Framer 3, Channel 32  
Framer 0, Channel 1  
Framer 0, Channel 1  
Framer 1, Channel 1  
Framer 1, Channel 1  
TSER  
TSIG  
MSB  
LSB MSB  
LSB MSB  
LSB  
A
B
A
B
C/A D/B  
A
B
C/A D/B  
A
B
C/A D/B  
Notes:  
1. 4.096 MHz bus configuration.  
2. 8.192 MHz bus configuration.  
3. 16.384 MHz bus configuration.  
4. TSYNC is in the input mode (TIOCR.2 = 0).  
5. Though not shown, TCHCLK continues to mark the channel LSB for the framers active period.  
6. Though not shown, TCHBLK continues to mark the blocked channels for the framers active period.  
243 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Figure 10-14. T1 Transmit Interleave Bus Operation—FRAME Mode  
TSYNC  
TSER1  
TSIG1  
TSER2  
TSIG2  
TSER3  
TSIG3  
FR1 CH1-32  
FR1 CH1-32  
FR0 CH1-32  
FR0 CH1-32  
FR1 CH1-32  
FR1 CH1-32  
FR0 CH1-32  
FR0 CH1-32  
FR1 CH1-32  
FR1 CH1-32  
FR2 CH1-32 FR3 CH1-32 FR0 CH1-32 FR1 CH1-32 FR2 CH1-32 FR3 CH1-32 FR0 CH1-32 FR1 CH1-32 FR2 CH1-32 FR3 CH1-32  
FR2 CH1-32 FR3 CH1-32 FR0 CH1-32 FR1 CH1-32 FR2 CH1-32 FR3 CH1-32 FR0 CH1-32 FR1 CH1-32 FR2 CH1-32 FR3 CH1-32  
FR4  
FR5  
FR6  
FR7  
FR0  
FR1  
FR2  
FR3  
FR4  
FR5  
FR6  
FR7  
FR0  
FR1  
FR2  
FR3  
FR4  
FR5  
FR6  
FR7  
Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32  
FR4  
FR5  
FR6  
FR7  
FR0  
FR1  
FR2  
FR3  
FR4  
FR5  
FR6  
FR7  
FR0  
FR1  
FR2  
FR3  
FR4  
FR5  
FR6  
FR7  
Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32  
BIT DETAIL  
SYSCLK  
TSYNC4  
Framer 3, Channel 32  
Framer 3, Channel 32  
Framer 0, Channel 1  
Framer 0, Channel 1  
Framer 0, Channel 2  
Framer 0, Channel 2  
TSER  
TSIG  
MSB  
LSB MSB  
LSB MSB  
LSB  
A
B
A
B
C/A D/B  
A
B
C/A D/B  
A
B
C/A D/B  
Notes:  
1. 4.096 MHz bus configuration.  
2. 8.192 MHz bus configuration.  
3. 16.384 MHz bus configuration.  
4. TSYNC is in the input mode (TIOCR.2 = 0).  
5. Though not shown, TCHCLK continues to mark the channel LSB for the framers active period.  
6. Though not shown, TCHBLK continues to mark the blocked channels for the framers active period.  
244 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
10.3 E1 Receiver Functional Timing Diagrams  
Figure 10-15. E1 Receive-Side Timing  
1
FRAME#  
RFSYNC  
RSYNC 1  
RSYNC2  
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
1
NOTE 1: RSYNC IN FRAME MODE (RIOCR.0 = 0).  
NOTE 2: RSYNC IN MULTIFRAME MODE (RIOCR.0 = 1).  
NOTE 3: THIS DIAGRAM ASSUMES THE CAS MF BEGINS IN THE RAF FRAME.  
Figure 10-16. E1 Receive-Side Boundary Timing (Elastic Store Disabled)  
RCLK  
CHANNEL 32  
CHANNEL 1  
CHANNEL 2  
MSB  
LSB Si  
1
A
Sa4 Sa5 Sa6 Sa7 Sa8  
RSER  
RSYNC  
RFSYNC  
CHANNEL 32  
CHANNEL 1  
CHANNEL 2  
C
D
A
A
B
B
RSIG  
RCHCLK  
RCHBLK1  
Note 3  
NOTE 1: RCHBLK IS PROGRAMMED TO BLOCK CHANNEL 1.  
NOTE 2: SHOWN IS A RNAF FRAME BOUNDARY.  
NOTE 3. RSIG NORMALLY CONTAINS THE CAS MULTIFRAME ALIGNMENT NIBBLE (0000) IN CHANNEL 1.  
245 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Figure 10-17. E1 Receive-Side 1.544MHz Boundary Timing (Elastic Store Enabled)  
RSYSCLK  
CHANNEL 23/31  
LSB MSB  
CHANNEL 24/32  
CHANNEL 1/2  
RSER1  
RSYNC2  
RMSYNC  
RSYNC3  
MSB  
LSB  
F
RCHCLK  
RCHBLK 4  
NOTE 1: DATA FROM THE E1 CHANNELS 1, 5, 9, 13, 17, 21, 25, AND 29 IS DROPPED (CHANNEL 2 FROM THE E1 LINK IS  
MAPPED TO CHANNEL 1 OF THE T1 LINK, ETC.) AND THE F-BIT POSITION IS ADDED (FORCED TO ONE).  
NOTE 2: RSYNC IN THE OUTPUT MODE (RIOCR.2 = 0).  
NOTE 3: RSYNC IN THE INPUT MODE (RIOCR.2 = 1).  
NOTE 4: RCHBLK IS PROGRAMMED TO BLOCK CHANNEL 24.  
Figure 10-18. E1 Receive-Side 2.048MHz Boundary Timing (Elastic Store Enabled)  
RSYSCLK  
CHANNEL 31  
CHANNEL 32  
CHANNEL 1  
LSB MSB  
MSB  
LSB  
RSER  
RSYNC1  
RMSYNC  
2
RSYNC  
CHANNEL 1  
CHANNEL 32  
CHANNEL 31  
C
C
A
B
A
B
D
D
RSIG  
RCHCLK  
RCHBLK3  
Note 4  
NOTE 1: RSYNC IN THE OUTPUT MODE (RIOCR.2 = 0).  
NOTE 2: RSYNC IN THE INPUT MODE (RIOCR.2 = 1).  
NOTE 3: RCHBLK IS PROGRAMMED TO BLOCK CHANNEL 1.  
NOTE 4: RSIG NORMALLY CONTAINS THE CAS MULTIFRAME ALIGNMENT NIBBLE (0000) IN CHANNEL 1.  
246 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
10.4 E1 Transmitter Functional Timing Diagrams  
Figure 10-19. E1 Transmit-Side Timing  
1
2
3
4
5
6
7
8
9
10 11 12 13  
1
14 15 16  
2
3
4
5
6
7
8
9 10  
FRAME# 14 15 16  
TSYNC1  
TSSYNC  
TSYNC2  
NOTE 1: TSYNC IN FRAME MODE (TIOCR.0 = 0).  
NOTE 2: TSYNC IN MULTIFRAME MODE (TIOCR.0 = 1).  
NOTE 3: THIS DIAGRAM ASSUMES BOTH THE CAS MF AND THE CRC-4 MF BEGIN WITH THE TAF FRAME.  
Figure 10-20. E1 Transmit-Side Boundary Timing (Elastic Store Disabled)  
TCLK  
CHANNEL 1  
CHANNEL 2  
LSB  
MSB  
LSB MSB  
Si  
1
A
Sa4 Sa5 Sa6 Sa7 Sa8  
TSER  
TSYNC1  
TSYNC2  
CHANNEL 1  
CHANNEL 2  
D
A
B
C
D
TSIG  
TCHCLK  
TCHBLK3  
NOTE 1: TSYNC IN THE OUTPUT MODE (TIOCR.2 = 1).  
NOTE 2: TSYNC IN THE INPUT MODE (TIOCR.2 = 0).  
NOTE 3: TCHBLK IS PROGRAMMED TO BLOCK CHANNEL 2.  
NOTE 4: THE SIGNALING DATA AT TSIG DURING CHANNEL 1 IS NORMALLY OVERWRITTEN IN THE TRANSMIT  
FORMATTER WITH THE CAS MF ALIGNMENT NIBBLE (0000).  
NOTE 5: SHOWN IS A TNAF FRAME BOUNDARY.  
247 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Figure 10-21. E1 Transmit-Side 1.544MHz Boundary Timing (Elastic Store Enabled)  
TSYSCLK  
CHANNEL 23  
CHANNEL 24  
CHANNEL 1  
1
LSB MSB  
LSB  
F
MSB  
TSER  
TSSYNC  
TCHCLK  
TCHBLK2  
NOTE 1: THE F-BIT POSITION IN THE TSER DATA IS IGNORED.  
NOTE 2: TCHBLK IS PROGRAMMED TO BLOCK CHANNEL 24.  
Figure 10-22. E1 Transmit-Side 2.048MHz Boundary Timing (Elastic Store Enabled)  
TSYSCLK  
CHANNEL 31  
CHANNEL 32  
CHANNEL 1  
LSB MSB  
MSB  
LSB  
TSER  
1
TSYNC  
TSIG  
CHANNEL 1  
CHANNEL 32  
CHANNEL 31  
C
C
A
B
A
B
D
D
TCHCLK  
TCHBLK 2  
NOTE 1: TSYNC IN THE INPUT MODE (TIOCR.2 = 0).  
NOTE 2: TCHBLK IS PROGRAMMED TO BLOCK CHANNEL 1.  
248 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Figure 10-23. E1 G.802 Timing  
31 32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2  
TS #  
RSYNC  
TSYNC  
RCHCLK  
TCHCLK  
RCHBLK  
TCHBLK  
RCLK / RSYSCLK  
TCLK / TSYSCLK  
CHANNEL 25  
CHANNEL 26  
MSB  
LSB  
RSER / TSER  
RCHCLK / TCHCLK  
RCHBLK / TCHBLK  
NOTE: RCHBLK OR TCHBLK PROGRAMMED TO PULSE HIGH DURING TIME SLOTS 1 THROUGH 15, 17 THROUGH  
25, AND BIT 1 OF TIME SLOT 26.  
249 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
11. OPERATING PARAMETERS  
ABSOLUTE MAXIMUM RATINGS  
Voltage Range on Any Lead with Respect to VSS (except VDD)…………………………………………….-0.3V to +5.5V  
Supply Voltage (VDD) Range with Respect to VSS…………………………………………………………..-0.3V to +3.63V  
Operating Temperature Range  
Commercial (DS26528G)………………………………………………………………………………0°C to +70°C  
Industrial (DS26528GN)……………………………………………………………………-40°C to +85°C (Note 1)  
Storage Temperature Range...………………………………………………………………………………-55°C to +125°C  
Soldering Temperature………………………………………………………….See IPC/JEDEC J-STD-020 Specification  
This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation  
sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.  
Note 1: Specifications to -40°C are guaranteed by design (GBD) and not production tested.  
Table 11-1. Recommended DC Operating Conditions  
(TA = -40°C to +85°C for DS26528GN.)  
PARAMETER  
SYMBOL  
VIH  
CONDITIONS  
MIN  
2.0  
TYP  
MAX  
5.5  
UNITS  
Logic 1  
Logic 0  
Supply  
V
V
V
VIL  
-0.3  
+0.8  
3.465  
VDD  
3.135  
3.3  
Table 11-2. Capacitance  
(TA = +25°C)  
PARAMETER  
Input Capacitance  
SYMBOL  
CIN  
CONDITIONS  
MIN  
TYP  
7
MAX  
UNITS  
pF  
Output Capacitance  
COUT  
7
pF  
Table 11-3. Recommended DC Operating Conditions  
(VDD = 3.135V to 3.465V, TA = -40°C to +85°C.)  
PARAMETER  
Supply Current at 3.3V  
SYMBOL  
IDD  
CONDITIONS  
MIN  
TYP  
MAX  
875  
UNITS  
mA  
µA  
µA  
µA  
V
(Notes 2, 3)  
510  
Input Leakage  
IIL  
-10.0  
-500.0  
-10.0  
2.4  
+10.0  
+10.0  
+10.0  
Pullup Pin Input Leakage  
Tri-State Output Leakage  
Output Voltage (Io = -1.6mA)  
Output Voltage (Io = +0.4mA)  
IILP  
(Note 4)  
IOL  
VOH  
VOL  
0.4  
V
Note 2:  
Note 3:  
Note 4:  
RCLK1-n = TCLK1-n = 2.048MHz.  
Max power dissipation is measured with both ports transmitting an all-ones data pattern with a transmitter load of 100Ω.  
Pullup pins include DIGIOEN, JTRST, JTMS, and JTDI.  
250 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
11.1 Thermal Characteristics  
Table 11-4. Thermal Characteristics  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Ambient Temperature  
(Note 1)  
-40  
+85  
°C  
Junction Temperature  
+125  
°C  
(Note 2)  
+17.5  
°C/W  
Theta-JA (θJA) in Still Air for 256-Pin TE-CSBGA  
Note 1:  
Note 2:  
The package is mounted on a four-layer JEDEC standard test board.  
Theta-JA (θJA) is the junction-to-ambient thermal resistance, when the package is mounted on a four-layer JEDEC standard test  
board.  
11.2 Line Interface Characteristics  
Table 11-5. Transmitter Characteristics  
PARAMETER  
SYMBOL  
CONDITIONS  
E1 75Ω  
E1 120Ω  
T1 100Ω  
J1 110Ω  
MIN  
TYP  
MAX  
UNITS  
2.13  
2.70  
2.40  
2.40  
2.37  
3.00  
3.00  
3.00  
2.61  
3.30  
3.60  
3.60  
Output Mark Amplitude  
Vm  
V
Output Zero Amplitude  
Vs  
(Note 1)  
-0.3  
-1  
+0.3  
+1  
V
Transmit Amplitude Variation with  
Supply  
%
Table 11-6. Receiver Characteristics  
PARAMETER  
Cable Attenuation  
SYMBOL  
Attn  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
43  
dB  
192  
192  
2048  
24  
192  
192  
Allowable Zeros Before Loss  
(Note 1)  
Allowable Ones Before Loss  
(Note 2)  
Note 1:  
Note 2:  
192 zeros for T1 and T1.231 Specification Compliance. 192 zeros for E1 and G.775 Specification Compliance. 2048 zeros for  
ETS 300 233 compliance.  
24 ones in 192-bit period for T1.231; 192 ones for G.775; 192 ones for ETS 300 233.  
251 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
12. AC TIMING CHARACTERISTICS  
Unless otherwise noted, all timing numbers assume 20pF test load on output signals, 40pF test load on bus  
signals.  
12.1 Microprocessor Bus AC Characteristics  
Table 12-1. AC Characteristics—Microprocessor Bus Timing  
(VDD = 3.3V ±5%, TA = -40°C to +85°C.) (Note 1) (See Figure 12-1, Figure 12-2, Figure 12-3, and  
Figure 12-4.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Setup Time for A[12:0] Valid to CSB  
Active  
t1  
0
ns  
Setup Time for CSB Active to Either RDB,  
or WRB Active  
t2  
t3  
0
ns  
ns  
Delay Time from Either RDB or DSB  
Active to D[7:0] Valid  
(Note 2)  
125  
20  
Hold Time from Either RDB or WRB  
Inactive to CSB Inactive  
t4  
t5  
0
5
ns  
ns  
Hold Time from CSB or RDB or DSB  
Inactive to D[7:0] Tri-State  
t6  
t7  
t8  
t9  
40  
10  
2
ns  
ns  
ns  
ns  
Wait Time from WRB Active to Latch Data  
Data Setup Time to WRB Inactive  
Data Hold Time from WRB Inactive  
Address Hold from WRB Inactive  
0
Write Access to Subsequent Write/Read  
Access Delay Time  
t10  
(Note 2)  
80  
ns  
Note 1:  
Note 2:  
The timing parameters in this table are guaranteed by design (GBD).  
If supplying a 1.544MHz MCLK, the FREQSEL bit must be set to meet this timing.  
252 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Figure 12-1. Intel Bus Read Timing (BTS = 0)  
t9  
Address Valid  
A[12:0]  
Data Valid  
D[7:0]  
t5  
WRB  
t1  
CSB  
t4  
t2  
t3  
t10  
RDB  
Figure 12-2. Intel Bus Write Timing (BTS = 0)  
t9  
Address Valid  
A[12:0]  
D[7:0]  
t7  
t8  
RDB  
t1  
CSB  
t2  
t4  
t6  
t10  
WRB  
253 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Figure 12-3. Motorola Bus Read Timing (BTS = 1)  
t9  
Address Valid  
A[12:0]  
Data Valid  
D[7:0]  
t5  
RWB  
t1  
CSB  
t4  
t2  
t3  
t10  
DSB  
Figure 12-4. Motorola Bus Write Timing (BTS = 1)  
t9  
Address Valid  
A[12:0]  
D[7:0]  
t7  
t8  
RWB  
t1  
CSB  
t2  
t4  
t6  
t10  
DSB  
254 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Table 12-2. Receiver AC Characteristics  
(VDD = 3.3V ±5%, TA = -40°C to +85°C.) (Note 1) (See Figure 12-5, Figure 12-6, and Figure 12-7.)  
PARAMETER  
SYMBOL  
CONDITIONS  
(Note 2)  
MIN  
TYP  
MAX  
UNITS  
648  
488  
RCLK Period  
tCP  
ns  
(Note 3)  
tCH  
tCL  
125  
125  
60  
RCLK Pulse Width  
RSYSCLK Period  
ns  
ns  
ns  
(Note 4)  
(Note 5)  
648  
488  
tSP  
60  
30  
tSH  
tSL  
RSYSCLK Pulse Width  
30  
RSYNC Setup to RSYSCLK Falling  
RSYNC Pulse Width  
tSU  
tPW  
tSU  
tHD  
tD1  
tD2  
20  
50  
20  
20  
tSH - 5  
ns  
ns  
ns  
ns  
ns  
ns  
RTIP:RRING Setup to RCLK Falling  
RTIP:RRING Hold from RCLK Falling  
Delay RCLK to RSER, RSIG Valid  
50  
50  
50  
50  
Delay RCLK to RCHCLK, RSYNC,  
RCHBLK, RFSYNC  
Delay RSYSCLK to RSER, RSIG  
Valid  
Delay RSYSCLK to RCHCLK,  
RCHBLK, RMSYNC, RSYNC  
tD3  
tD4  
ns  
ns  
Note 1:  
Note 2:  
Note 3:  
Note 4:  
Note 5:  
The timing parameters in this table are guaranteed by design (GBD).  
T1 Mode.  
E1 Mode.  
RSYSCLK = 1.544MHz.  
RSYSCLK = 2.048MHz.  
255 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Figure 12-5. Receive Framer Timing—Backplane (T1 Mode)  
RCLK  
t
D1  
F-BIT  
RSER/RSIG  
RCHCLK  
t
D2  
t
t
t
D2  
D2  
D2  
RCHBLK  
RFSYNC/RMSYNC  
1
RSYNC  
NOTE 1: RSYNC IS IN THE OUTPUT MODE.  
NOTE 2: NO RELATIONSHIP BETWEEN RCHCLK AND RCHBLK AND OTHER SIGNALS IS IMPLIED.  
256 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Figure 12-6. Receive-Side Timing, Elastic Store Enabled (T1 Mode)  
t
t
SL  
SH  
RSYSCLK  
t
SP  
t
D3  
SEE NOTE 3  
RSER/RSIG  
t
D4  
RCHCLK  
RCHBLK  
RMSYNC  
RSYNC1  
t
D4  
t
t
D4  
D4  
t
HD  
t
SU  
RSYNC2  
NOTE 1: RSYNC IS IN THE OUTPUT MODE.  
NOTE 2: RSYNC IS IN THE INPUT MODE.  
NOTE 3: F-BIT WHEN RIOCR.4 = 0, MSB OF TS0 WHEN RIOCR.4 = 1.  
Figure 12-7. Receive Framer Timing—Line Side  
t
t
CL  
CH  
RCLK  
tCP  
t
SU  
RTIP, RRING  
t
HD  
257 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Table 12-3. Transmit AC Characteristics  
(VDD = 3.3V ±5%, TA = -40°C to +85°C.) (Note 1) (See Figure 12-8, Figure 12-9, Figure 12-10, and  
Figure 12-11.)  
PARAMETER  
TCLK Period  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
(Note 2)  
(Note 3)  
648  
488  
tCP  
ns  
tCH  
tCL  
125  
125  
60  
60  
30  
TCLK Pulse Width  
TSYSCLK Period  
ns  
ns  
ns  
(Note 4)  
(Note 5)  
648  
448  
tSP  
tSH  
tSL  
TSYSCLK Pulse Width  
30  
tCH - 5  
or  
TSYNC or TSSYNCIO Setup to TCLK  
or TSYSCLK falling  
tSU  
20  
ns  
ns  
tSH - 5  
TSYNC or TSSYNCIO Pulse Width  
tPW  
(Note 6)  
50  
488  
244  
122  
61  
TSSYNCIO Pulse Width (Notes 7, 8)  
tPW  
ns  
TSER, TSIG Setup to TCLK,  
TSYSCLK Falling  
TSER, TSIG Hold from TCLK,  
TSYSCLK Falling  
Delay TCLK to TCHBLK, TCHCLK,  
TSYNC  
tSU  
tHD  
tD2  
tD3  
tD4  
tD5  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
50  
50  
50  
5
Delay TSYSCLK to TCHCLK, TCHBLK  
Delay TCLK to TTIP, TRING  
Delay BPCLK to TSSYNCIO (Note 7)  
Note 1:  
Note 2:  
Note 3:  
Note 4:  
Note 5:  
Note 6:  
Note 7:  
Note 8:  
The timing parameters in this table are guaranteed by design (GBD).  
T1 Mode.  
E1 Mode.  
RSYSCLK = 1.544MHz.  
RSYSCLK = 2.048MHz.  
TSSYNCIO configured as an input (GTCR2.1 = 0).  
TSSYNCIO configured as an output (GTCR2.1 = 1).  
Varies depending on the frequency of BPCLK.  
258 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Figure 12-8. Transmit Formatter Timing—Backplane  
t
CP  
t
t
CL  
CH  
TCLK  
t
D1  
TESO  
t
SU  
TSER/TSIG  
t
t
HD  
D2  
TCHCLK  
TCHBLK  
t
D2  
t
D2  
t
1
TSYNC  
t
HD  
SU  
2
TSYNC  
NOTE 1: TSYNC IS IN THE OUTPUT MODE.  
NOTE 2: TSYNC IS IN THE INPUT MODE.  
NOTE 3: TSER IS SAMPLED ON THE FALLING EDGE OF TCLK WHEN THE TRANSMIT-SIDE ELASTIC STORE IS DISABLED.  
NOTE 4: TCHCLK AND TCHBLK ARE SYNCHRONOUS WITH TCLK WHEN THE TRANSMIT-SIDE ELASTIC STORE IS DISABLED.  
NOTE 5: NO RELATIONSHIP BETWEEN TCHCLK AND TCHBLK AND THE OTHER SIGNALS IS IMPLIED.  
259 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Figure 12-9. Transmit Formatter Timing, Elastic Store Enabled  
t
SP  
t
t
SL  
SH  
TSYSCLK  
TSER  
t
SU  
t
t
D3  
HD  
TCHCLK  
TCHBLK  
t
D3  
t
HD  
t
SU  
TSSYNC  
NOTE 1: TSER IS ONLY SAMPLED ON THE FALLING EDGE OF TSYSCLK WHEN THE TRANSMIT-SIDE ELASTIC STORE IS ENABLED.  
NOTE 2: TCHCLK AND TCHBLK ARE SYNCHRONOUS WITH TSYSCLK WHEN THE TRANSMIT-SIDE ELASTIC STORE IS ENABLED.  
Figure 12-10. BPCLK Timing  
BPCLK  
tD5  
TSSYNCIO1  
Notes:  
1. TSSYNCIO is configured as an Output (GTCR2.TSSYNIOSEL = 1)  
Figure 12-11. Transmit Formatter Timing—Line Side  
t
CP  
t
t
CL  
CH  
TCLK  
TTIP, TRING  
t
D3  
260 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
12.2 JTAG Interface Timing  
Table 12-4. JTAG Interface Timing  
(VDD = 3.3V ±5%, TA = -40°C to +85°C.) (Note 1) (See Figure 12-12.)  
PARAMETER  
JTCLK Clock Period  
SYMBOL  
CONDITIONS  
MIN  
TYP  
1000  
500  
MAX  
UNITS  
ns  
t1  
t2:t3  
t4  
JTCLK Clock High:Low Time  
JTCLK to JTDI, JTMS Setup Time  
JTCLK to JTDI, JTMS Hold Time  
JTCLK to JTDO Delay  
(Note 2)  
50  
5
ns  
ns  
t5  
2
ns  
t6  
2
50  
50  
ns  
JTCLK to JTDO High-Impedance Delay  
JTRST Width Low Time  
t7  
2
ns  
t8  
100  
ns  
Note 1:  
Note 2:  
The timing parameters in this table are guaranteed by design (GBD).  
Clock can be stopped high or low.  
Figure 12-12. JTAG Interface Timing Diagram  
t1  
t2  
t3  
JTCLK  
t4  
t5  
JTDI, JTMS, JTRST  
t6  
t7  
JTD0  
t8  
JTRST  
261 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
12.3 System Clock AC Characteristics  
Table 12-5. System Clock AC Charateristics  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
1.544  
REF_CLK Frequency  
MHz  
2.048  
45  
REF_CLK Duty Cycle  
40  
43  
40  
60  
60  
60  
%
MHz  
%
Gapped Clock Frequency  
Gapped Clock Duty Cycle  
(Note 1)  
Note 1:  
The gapped clock is output on the RCHCLK pin when RESCR.6 = 1.  
262 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
13. JTAG BOUNDARY SCAN AND TEST ACCESS PORT  
The DS26528 IEEE 1149.1 design supports the standard instruction codes SAMPLE:PRELOAD, BYPASS, and  
EXTEST. Optional public instructions included are HIGHZ, CLAMP, and IDCODE. See Table 13-1. The DS26528  
contains the following as required by IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture.  
Test Access Port (TAP)  
TAP Controller  
Instruction Register  
Bypass Register  
Boundary Scan Register  
Device Identification Register  
The Test Access Port has the necessary interface pins: JTRST, JTCLK, JTMS, JTDI, and JTDO. See the pin  
descriptions for details.  
Figure 13-1. JTAG Functional Block Diagram  
BOUNDRY SCAN  
REGISTER  
IDENTIFICATION  
REGISTER  
MUX  
BYPASS  
REGISTER  
INSTRUCTION  
REGISTER  
TEST ACCESS PORT  
SELECT  
CONTROLLER  
OUTPUT ENABLE  
VDD  
VDD  
VDD  
10kΩ  
10kΩ  
10kΩ  
JTDO  
JTDI  
JTMS  
JTCLK  
JTRST  
263 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
13.1 TAP Controller State Machine  
The TAP controller is a finite state machine that responds to the logic level at JTMS on the rising edge of JTCLK.  
See Figure 13-2.  
13.1.1 Test-Logic-Reset  
Upon power-up, the TAP controller is in the Test-Logic-Reset state. The instruction register contains the IDCODE  
instruction. All system logic of the device operates normally.  
13.1.2 Run-Test-Idle  
The Run-Test-Idle is used between scan operations or during specific tests. The instruction register and test  
registers remain idle.  
13.1.3 Select-DR-Scan  
All test registers retain their previous state. With JTMS LOW, a rising edge of JTCLK moves the controller into the  
Capture-DR state and initiates a scan sequence. JTMS HIGH during a rising edge on JTCLK moves the controller  
to the Select-IR-Scan state.  
13.1.4 Capture-DR  
Data can be parallel-loaded into the test data registers selected by the current instruction. If the instruction does not  
call for a parallel load or the selected register does not allow parallel loads, the test register remains at its current  
value. On the rising edge of JTCLK, the controller goes to the Shift-DR state if JTMS is LOW, or it goes to the  
Exit1-DR state if JTMS is HIGH.  
13.1.5 Shift-DR  
The test data register selected by the current instruction is connected between JTDI and JTDO and shifts data one  
stage towards its serial output on each rising edge of JTCLK. If a test register selected by the current instruction is  
not placed in the serial path, it maintains its previous state.  
13.1.6 Exit1-DR  
While in this state, a rising edge on JTCLK puts the controller in the Update-DR state, which terminates the  
scanning process, if JTMS is HIGH. A rising edge on JTCLK with JTMS LOW puts the controller in the Pause-DR  
state.  
13.1.7 Pause-DR  
Shifting of the test registers is halted while in this state. All test registers selected by the current instruction retain  
their previous state. The controller remains in this state while JTMS is LOW. A rising edge on JTCLK with JTMS  
HIGH puts the controller in the Exit2-DR state.  
13.1.8 Exit2-DR  
A rising edge on JTCLK with JTMS HIGH while in this state puts the controller in the Update-DR state and  
terminates the scanning process. A rising edge on JTCLK with JTMS LOW enters the Shift-DR state.  
13.1.9 Update-DR  
A falling edge on JTCLK while in the Update-DR state latches the data from the shift register path of the test  
registers into the data output latches. This prevents changes at the parallel output due to changes in the shift  
register.  
13.1.10 Select-IR-Scan  
All test registers retain their previous state. The instruction register remains unchanged during this state. With  
JTMS LOW, a rising edge on JTCLK moves the controller into the Capture-IR state and initiates a scan sequence  
for the instruction register. JTMS HIGH during a rising edge on JTCLK puts the controller back into the Test-Logic-  
Reset state.  
264 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
13.1.11 Capture-IR  
The Capture-IR state is used to load the shift register in the instruction register with a fixed value. This value is  
loaded on the rising edge of JTCLK. If JTMS is HIGH on the rising edge of JTCLK, the controller enters the Exit1-  
IR state. If JTMS is LOW on the rising edge of JTCLK, the controller enters the Shift-IR state.  
13.1.12  
Shift-IR  
In this state, the shift register in the instruction register is connected between JTDI and JTDO and shifts data one  
stage for every rising edge of JTCLK towards the serial output. The parallel register, as well as all test registers,  
remains at their previous states. A rising edge on JTCLK with JTMS HIGH moves the controller to the Exit1-IR  
state. A rising edge on JTCLK with JTMS LOW keeps the controller in the Shift-IR state while moving data one  
stage thorough the instruction shift register.  
13.1.13  
Exit1-IR  
A rising edge on JTCLK with JTMS LOW puts the controller in the Pause-IR state. If JTMS is HIGH on the rising  
edge of JTCLK, the controller enters the Update-IR state and terminates the scanning process.  
13.1.14  
Pause-IR  
Shifting of the instruction shift register is halted temporarily. With JTMS HIGH, a rising edge on JTCLK puts the  
controller in the Exit2-IR state. The controller remains in the Pause-IR state if JTMS is LOW during a rising edge on  
JTCLK.  
13.1.15  
Exit2-IR  
A rising edge on JTCLK with JTMS LOW puts the controller in the Update-IR state. The controller loops back to  
Shift-IR if JTMS is HIGH during a rising edge of JTCLK in this state.  
13.1.16  
Update-IR  
The instruction code shifted into the instruction shift register is latched into the parallel output on the falling edge of  
JTCLK as the controller enters this state. Once latched, this instruction becomes the current instruction. A rising  
edge on JTCLK with JTMS LOW puts the controller in the Run-Test-Idle state. With JTMS HIGH, the controller  
enters the Select-DR-Scan state.  
265 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
Figure 13-2. TAP Controller State Diagram  
Test Logic  
Reset  
1
0
1
1
1
Run Test/  
Idle  
Select  
DR-Scan  
Select  
IR-Scan  
0
0
0
1
1
Capture DR  
Capture IR  
0
0
Shift DR  
Shift IR  
0
1
0
1
1
1
Exit DR  
Exit IR  
0
0
Pause DR  
Pause IR  
0
0
1
1
0
0
Exit2 DR  
Exit2 IR  
1
1
Update DR  
Update IR  
1
0
1
0
266 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
13.2 Instruction Register  
The instruction register contains a shift register as well as a latched parallel output, and is 3 bits in length. When  
the TAP controller enters the Shift-IR state, the instruction shift register will be connected between JTDI and JTDO.  
While in the Shift-IR state, a rising edge on JTCLK with JTMS LOW will shift the data one stage towards the serial  
output at JTDO. A rising edge on JTCLK in the Exit1-IR state or the Exit2-IR state with JTMS HIGH will move the  
controller to the Update-IR state. The falling edge of that same JTCLK will latch the data in the instruction shift  
register to the instruction parallel output. Instructions supported by the DS26528 and its respective operational  
binary codes are shown in Table 13-1.  
Table 13-1. Instruction Codes for IEEE 1149.1 Architecture  
INSTRUCTION  
SELECTED REGISTER  
INSTRUCTION CODES  
SAMPLE:PRELOAD  
BYPASS  
Boundary Scan  
Bypass  
Boundary Scan  
Bypass  
010  
111  
000  
011  
100  
001  
EXTEST  
CLAMP  
HIGHZ  
IDCODE  
Bypass  
Device Identification  
13.2.1 SAMPLE:PRELOAD  
This is a mandatory instruction for the IEEE 1149.1 specification. This instruction supports two functions. The  
digital I/Os of the device can be sampled at the boundary scan register without interfering with the normal operation  
of the device by using the Capture-DR state. SAMPLE:PRELOAD also allows the device to shift data into the  
boundary scan register via JTDI using the Shift-DR state.  
13.2.2 BYPASS  
When the BYPASS instruction is latched into the parallel instruction register, JTDI connects to JTDO through the  
one-bit bypass test register. This allows data to pass from JTDI to JTDO without affecting the device’s normal  
operation.  
13.2.3 EXTEST  
This allows testing of all interconnections to the device. When the EXTEST instruction is latched in the instruction  
register, the following actions occur. Once enabled via the Update-IR state, the parallel outputs of all digital output  
pins will be driven. The boundary scan register will be connected between JTDI and JTDO. The Capture-DR will  
sample all digital inputs into the boundary scan register.  
13.2.4 CLAMP  
All digital outputs of the device will output data from the boundary scan parallel output while connecting the bypass  
register between JTDI and JTDO. The outputs will not change during the CLAMP instruction.  
13.2.5 HIGHZ  
All digital outputs of the device will be placed in a high-impedance state. The BYPASS register will be connected  
between JTDI and JTDO.  
13.2.6 IDCODE  
When the IDCODE instruction is latched into the parallel instruction register, the identification test register is  
selected. The device identification code will be loaded into the identification register on the rising edge of JTCLK  
following entry into the Capture-DR state. Shift-DR can be used to shift the identification code out serially via  
JTDO. During Test-Logic-Reset, the identification code is forced into the instruction register’s parallel output. The  
ID code will always have a 1 in the LSB position. The next 11 bits identify the manufacturer’s JEDEC number and  
number of continuation bytes followed by 16 bits for the device and 4 bits for the version.  
267 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
13.3 JTAG ID Codes  
Table 13-2. ID Code Structure  
REVISION  
DEVICE  
DEVICE CODE  
ID[27:12]  
MANUFACTURER’S CODE  
REQUIRED  
ID[0]  
ID[31:28]  
ID[11:1]  
DS26528  
DS26524  
Consult factory  
Consult factory  
0000000000110111  
0000000000111001  
00010100001  
00010100001  
1
1
13.4 Test Registers  
IEEE 1149.1 requires a minimum of two test registers: the bypass register and the boundary scan register. An  
optional test register has been included with the DS26528 design. This test register is the identification register and  
is used in conjunction with the IDCODE instruction and the Test-Logic-Reset state of the TAP controller.  
13.4.1 Boundary Scan Register  
This register contains both a shift register path and a latched parallel output for all control cells and digital I/O cells,  
and is n bits in length. See Table 13-3 for all the cell bit locations and definitions.  
13.4.2 Bypass Register  
This is a single one-bit shift register used in conjunction with the BYPASS, CLAMP, and HIGHZ instructions, which  
provides a short path between JTDI and JTDO.  
13.4.3 Identification Register  
The identification register contains a 32-bit shift register and a 32-bit latched parallel output. This register is  
selected during the IDCODE instruction and when the TAP controller is in the Test-Logic-Reset state.  
Table 13-3. Boundary Scan Control Bits  
CONTROL  
CELL  
CONTROL  
CELL  
CELL#  
NAME  
TYPE  
CELL#  
NAME  
TYPE  
0
1
rser(1)  
controlr  
output3  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
rchblk_clk(2)  
rchblk_clk(2)  
output3  
observe_only  
controlr  
19  
0
2
2
controlr  
3
rm_rfsync(1)  
rm_rfsync(1)  
output3  
rsig(2)  
rsig(2)  
output3  
22  
4
observe_only  
controlr  
observe_only  
controlr  
5
6
rsync(1)  
rsync(1)  
output3  
5
8
rlf_ltc(2)  
output3  
25  
27  
29  
31  
7
observe_only  
controlr  
controlr  
8
al_rsigf_flos(2)  
output3  
9
tsig(1)  
tsig(1)  
output3  
controlr  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
observe_only  
controlr  
rser(2)  
output3  
controlr  
tsync(1)  
tsync(1)  
tser(1)  
tclk(1)  
output3  
11  
rm_rfsync(2)  
rm_rfsync(2)  
output3  
observe_only  
observe_only  
observe_only  
controlr  
observe_only  
controlr  
rsync(2)  
rsync(2)  
output3  
34  
37  
observe_only  
controlr  
tchblk_clk(1)  
tchblk_clk(1)  
output3  
16  
observe_only  
controlr  
tsig(2)  
output3  
tsig(2)  
observe_only  
268 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
CONTROL  
CELL  
CONTROL  
CELL#  
NAME  
TYPE  
CELL#  
NAME  
TYPE  
CELL  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
tsync(2)  
tsync(2)  
tser(2)  
tclk(2)  
controlr  
output3  
82  
83  
rm_rfsync(7)  
rm_rfsync(7)  
controlr  
output3  
40  
82  
observe_only  
observe_only  
observe_only  
controlr  
84  
observe_only  
controlr  
85  
86  
rser(7)  
output3  
85  
87  
89  
91  
87  
controlr  
tchblk_clk(2)  
tchblk_clk(2)  
mclk  
output3  
45  
88  
al_rsigf_flos(7)  
output3  
observe_only  
observe_only  
controlr  
89  
controlr  
90  
rlf_ltc(7)  
output3  
91  
controlr  
refclkio  
refclkio  
output3  
49  
52  
92  
rsig(7)  
rsig(7)  
output3  
observe_only  
controlr  
93  
observe_only  
controlr  
94  
bpclk  
output3  
95  
rchblk_clk(7)  
rchblk_clk(7)  
output3  
94  
97  
a(12)  
observe_only  
observe_only  
observe_only  
observe_only  
observe_only  
observe_only  
observe_only  
observe_only  
observe_only  
observe_only  
observe_only  
observe_only  
observe_only  
observe_only  
controlr  
96  
observe_only  
controlr  
a(11)  
97  
a(10)  
98  
tchblk_clk(8)  
tchblk_clk(8)  
tclk(8)  
output3  
digio_en  
a(9)  
99  
observe_only  
observe_only  
observe_only  
controlr  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
a(8)  
tser(8)  
a(7)  
a(6)  
tsync(8)  
tsync(8)  
output3  
102  
105  
108  
111  
a(5)  
observe_only  
controlr  
a(4)  
a(3)  
tsig(8)  
tsig(8)  
output3  
a(2)  
observe_only  
controlr  
a(1)  
a(0)  
rsync(8)  
rsync(8)  
output3  
observe_only  
controlr  
tchblk_clk(7)  
tchblk_clk(7)  
tclk(7)  
tser(7)  
output3  
68  
observe_only  
observe_only  
observe_only  
controlr  
rm_rfsync(8)  
rm_rfsync(8)  
output3  
observe_only  
controlr  
rser(8)  
output3  
114  
116  
118  
120  
tsync(7)  
tsync(7)  
output3  
73  
76  
79  
controlr  
observe_only  
controlr  
al_rsigf_flos(8)  
output3  
controlr  
tsig(7)  
tsig(7)  
output3  
rlf_ltc(8)  
output3  
observe_only  
controlr  
controlr  
rclk(8)  
rclk(8)  
output3  
rsync(7)  
rsync(7)  
output3  
observe_only  
controlr  
observe_only  
269 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
CONTROL  
CELL  
CONTROL  
CELL#  
NAME  
TYPE  
CELL#  
NAME  
TYPE  
CELL  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
rclk(7)  
rclk(7)  
output3  
observe_only  
controlr  
123  
126  
129  
132  
135  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
tsig(6)  
observe_only  
controlr  
tsync(6)  
tsync(6)  
tser(6)  
tclk(6)  
output3  
167  
rsig(8)  
rsig(8)  
output3  
observe_only  
observe_only  
observe_only  
controlr  
observe_only  
controlr  
rchblk_clk(8)  
rchblk_clk(8)  
output3  
observe_only  
controlr  
tchblk_clk(6)  
tchblk_clk(6)  
output3  
172  
175  
178  
observe_only  
controlr  
rclk(6)  
rclk(6)  
output3  
observe_only  
controlr  
rchblk_clk(5)  
rchblk_clk(5)  
output3  
observe_only  
controlr  
rclk(5)  
rclk(5)  
resetb  
txen_b  
bts  
output3  
observe_only  
observe_only  
observe_only  
observe_only  
observe_only  
controlr  
rsig(5)  
rsig(5)  
output3  
observe_only  
controlr  
rlf_ltc(5)  
output3  
181  
183  
185  
187  
rsysclk  
controlr  
al_rsigf_flos(5)  
output3  
tssyncio  
tssyncio  
tsysclk  
output3  
142  
controlr  
observe_only  
observe_only  
controlr  
rser(5)  
output3  
controlr  
rm_rfsync(5)  
rm_rfsync(5)  
output3  
rchblk_clk(6)  
rchblk_clk(6)  
output3  
146  
149  
observe_only  
controlr  
observe_only  
controlr  
rsync(5)  
rsync(5)  
output3  
190  
193  
196  
rsig(6)  
rsig(6)  
output3  
observe_only  
controlr  
observe_only  
controlr  
tsig(5)  
tsig(5)  
output3  
rlf_ltc(6)  
output3  
152  
154  
156  
158  
observe_only  
controlr  
controlr  
al_rsigf_flos(6)  
output3  
tsync(5)  
tsync(5)  
tser(5)  
tclk(5)  
output3  
controlr  
observe_only  
observe_only  
observe_only  
controlr  
rser(6)  
output3  
controlr  
rm_rfsync(6)  
rm_rfsync(6)  
output3  
observe_only  
controlr  
tchblk_clk(5)  
tchblk_clk(5)  
output3  
201  
observe_only  
controlr  
rsync(6)  
rsync(6)  
output3  
161  
164  
observe_only  
controlr  
intb  
output3  
204  
220  
d(7)  
output3  
tsig(6)  
output3  
d(7)  
observe_only  
270 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
CONTROL  
CELL  
CONTROL  
CELL#  
NAME  
TYPE  
CELL#  
NAME  
TYPE  
CELL  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
d(6)  
d(6)  
output3  
observe_only  
output3  
220  
220  
220  
220  
220  
220  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
rsig(4)  
rsig(4)  
output3  
observe_only  
controlr  
249  
d(5)  
d(5)  
observe_only  
output3  
rchblk_clk(4)  
rchblk_clk(4)  
output3  
252  
255  
d(4)  
observe_only  
controlr  
d(4)  
observe_only  
output3  
d(3)  
tchblk_clk(3)  
tchblk_clk(3)  
tclk(3)  
tser(3)  
output3  
d(3)  
observe_only  
output3  
observe_only  
observe_only  
observe_only  
controlr  
d(2)  
d(2)  
observe_only  
output3  
d(1)  
d(1)  
observe_only  
controlr  
tsync(3)  
tsync(3)  
output3  
260  
263  
266  
269  
observe_only  
controlr  
d(0)  
output3  
220  
d(0)  
observe_only  
observe_only  
observe_only  
observe_only  
controlr  
tsig(3)  
tsig(3)  
output3  
rdb_dsb  
wrb_rwb  
csb  
observe_only  
controlr  
rsync(3)  
rsync(3)  
output3  
observe_only  
controlr  
tchblk_clk(4)  
tchblk_clk(4)  
tclk(4)  
tser(4)  
output3  
226  
observe_only  
observe_only  
observe_only  
controlr  
rm_rfsync(3)  
rm_rfsync(3)  
output3  
observe_only  
controlr  
rser(3)  
output3  
272  
274  
276  
278  
tsync(4)  
tsync(4)  
output3  
231  
234  
237  
240  
controlr  
observe_only  
controlr  
al_rsigf_flos(3)  
output3  
controlr  
tsig(4)  
tsig(4)  
output3  
rlf_ltc(3)  
output3  
observe_only  
controlr  
controlr  
rsig(3)  
rsig(3)  
output3  
rsync(4)  
rsync(4)  
output3  
observe_only  
controlr  
observe_only  
controlr  
rchblk_clk(3)  
rchblk_clk(3)  
output3  
281  
284  
287  
290  
rm_rfsync(4)  
rm_rfsync(4)  
output3  
observe_only  
controlr  
observe_only  
controlr  
rclk(4)  
rclk(4)  
output3  
rser(4)  
output3  
243  
245  
247  
observe_only  
controlr  
controlr  
al_rsigf_flos(4)  
output3  
rclk(3)  
rclk(3)  
output3  
controlr  
observe_only  
controlr  
rlf_ltc(4)  
output3  
controlr  
rclk(2)  
output3  
271 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
CONTROL  
CELL  
CONTROL  
CELL#  
NAME  
TYPE  
CELL#  
NAME  
TYPE  
CELL  
292  
293  
294  
295  
296  
297  
298  
rclk(2)  
observe_only  
controlr  
299  
300  
301  
302  
303  
304  
305  
rsig(1)  
rsig(1)  
controlr  
output3  
299  
rclk(1)  
output3  
293  
296  
observe_only  
controlr  
rclk(1)  
observe_only  
controlr  
rlf_ltc(1)  
output3  
302  
304  
rchblk_clk(1)  
rchblk_clk(1)  
output3  
controlr  
observe_only  
al_rsigf_flos(1)  
output3  
272 of 276  
DS26528 Octal T1/E1/J1 Transceiver  
14. PIN CONFIGURATION  
Figure 14-1. Pin Configuration—256-Ball TE-CSBGA  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
TCHBLK/  
CLK1  
TTIP1  
TTIP1  
TRING1  
RSYNC1  
TSIG2  
REFCLKIO  
A11  
A7  
A1  
TSIG7  
RSIG7  
TSYNC8  
TRING8  
TTIP8  
TTIP8  
A
B
C
D
E
F
RCHBLK/  
CLK2  
ATVDD1  
RTIP1  
ATVSS1  
RRING1  
ARVSS1  
ARVSS2  
RRING2  
ATVSS2  
TTIP2  
TRING1  
TSYNC1  
RSYNC2  
MCLK  
A10  
A12  
A8  
A6  
A2  
A0  
TSYNC7  
RSYNC7  
RSER7  
TCLK8  
TSIG8  
TRING8  
ATVSS8  
RRING8  
ARVSS8  
ARVSS7  
RRING7  
ATVSS7  
TTIP7  
ATVDD8  
RTIP8  
AL/RSIGF/ RMSYNC1/  
FLOS1  
RMSYNC2/ TCHBLK/  
RFSYNC2  
RCHBLK/  
CLK7  
AL/RSIGF/  
FLOS8  
TCLK1  
TSIG1  
RFSYNC1  
CLK2  
RLF/  
LTC1  
TCHBLK/ RMSYNC7/  
CLK7  
RLF/  
LTC8  
ARVDD1  
ARVDD2  
RTIP2  
RSIG1  
RSER2  
TCLK2  
DIGIOEN  
BPCLK  
A9  
A5  
TSER8  
RSYNC8  
RCLK8  
RCLK7  
ARVDD  
ARVDD7  
RTIP7  
RFSYNC7  
RLF/  
LTC2  
RCHBLK/  
CLK1  
TCHBLK/ RMSYNC8/  
CLK8  
RLF/  
LTC7  
RSER1  
JTCLK  
DVDD  
RSIG2  
TSER1  
DVDD  
TSER2  
TSYNC2  
DVDD  
A4  
TCLK7  
RFSYNC8  
AL/RSIGF/  
FLOS2  
AL/RSIGF/  
FLOS7  
RCLK1  
RCLK2  
JTDI  
A3  
TSER7  
DVDD  
RSER8  
RSIG8  
RCHBLK/  
CLK8  
ATVDD2  
TTIP2  
TRING2  
TRING2  
TRING3  
TRING3  
DVDD  
DVDD  
DVSS  
DVSS  
TCLK4  
DVDD  
DVDD  
DVSS  
DVSS  
D1  
DVDD  
DVDDIO  
DVSSIO  
DVSS  
DVDD  
DVSS  
TRING7  
TRING7  
TRING6  
TRING6  
ATVDD7  
TTIP7  
G
H
J
DVDDIO  
DVSSIO  
DVSS  
DVDDIO  
DVSSIO  
DVSS  
ACVDD  
ACVSS  
DVSS  
DVDDIO  
DVSSIO  
DVSS  
DVSS  
RCLK6  
RCLK5  
TTIP3  
TTIP3  
JTDO  
RESETB  
DVSS  
TTIP6  
TTIP6  
ATVDD3  
RTIP3  
ATVSS3  
RRING3  
ARVSS3  
ARVSS4  
RRING4  
ATVSS4  
TTIP4  
JTMS  
ATVSS6  
RRING6  
ARVSS6  
ARVSS5  
RRING5  
ATVSS5  
TTIP5  
ATVDD6  
RTIP6  
K
L
AL/RSIGF/  
FLOS3  
RCHBLK/  
CLK3  
TCHBLK/  
CLK3  
AL/RSIGF/  
FLOS6  
RCLK3  
RCLK4  
RSER3  
TCLK5  
TSER5  
TSYNC5  
TSER6  
RSER5  
TCLK6  
RSYSCLK TXENABLE  
JTRST  
RSIG3  
RSYNC3  
TCLK3  
RSIG4  
RLF/  
LTC3  
RL/  
FLTC6  
RDB/  
DSB  
ARVDD3  
ARVDD4  
RTIP4  
TSYNC3  
RSER4  
TSYNC4  
TSER4  
D5  
RSER6  
BTS  
ARVDD6  
ARVDD5  
RTIP5  
M
N
P
R
T
RLF/  
LTC4  
RMSYNC6/  
RFSYNC6  
RLF/  
LTC5  
D0  
D2  
D4  
D3  
D6  
TSSYNCIO  
TSYSCLK  
RSIG6  
AL/RSIGF/ RMSYNC3/  
FLOS4  
RMSYNC4/  
RFSYNC4  
RMSYNC5/ TCHBLK/  
RFSYNC5  
AL/RSIGF/  
FLOS5  
TCHBLK4  
TCHBLK5  
INTB  
D7  
RSYNC6  
TSIG6  
RFSYNC3  
CLK6  
WRB/  
RWB  
ATVDD4  
TTIP4  
TRING4  
TSER3  
TSIG4  
RSYNC5  
RSIG5  
TRING5  
TRING5  
ATVDD5  
TTIP5  
RCHBLK/  
CLK4  
RCHBLK/  
CLK5  
RCHBLK/  
CLK6  
TRING4  
TSIG3  
RSYNC4  
TSIG5  
TSYNC6  
CSB  
273 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
15. PACKAGE INFORMATION  
(The package drawing(s) in this data sheet may not reflect the most current specifications. The package number provided for  
each package is a link to the latest package outline information.)  
15.1 256-Ball TE-CSBGA (56-G6028-001)  
274 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
16. DOCUMENT REVISION HISTORY  
REVISION  
DESCRIPTION  
072304  
New Product Release.  
1. Corrected the default direction of RIOCR.RSIO = 1 to show that the default direction of RSYNC is  
Input.  
2. Added Figure 13-3 for BPCLK and TSSYNCIO timing and updated Table 13-3.  
3. Corrected Figure 7-3 to show different relationship of TSSYNCIO depending on the operation  
mode (either Input or Output).  
4. Added Section 9.9.6.3 to provide more details on Sa bit support.  
5. Modified RIM7 register at address 0A6h for E1 mode document additional Sa bit support.  
6. Added E1RSAIMR (014h) for E1 mode to allow Sa bit interrupt masks.  
7. Added SABITS (06Eh) register to indicate the last valid Sa bits received.  
8. Added Sa6CODE (06Fh) register to indicate the reported Sa6 received pattern.  
9. Changed the recommended Line Interface Circuit (Figure 9-11) to match the Telecom App Note  
324.  
10. Corrected the Recommended Supply Decoupling Capacitor values: changed the digital  
120204  
recommended value from 0.1μF to 0.01μF because the 0.01μF value was listed twice.  
11. Figure 8-1: Added associated port number to each analog ATVDD/ATVSS and ARVDD/ARVSS  
pair to help clarify the recommended decoupling for these pins. Note: The pin locations did not  
change, and the functional description did not change, the numbers 1-8 were only added for  
clarification purposes.  
12. Added a note to TTIP and TRING Pin descriptions in Table 8-1 to clarify that the two pins shown  
should tied together (for example, pins A1 and A2 for TTIP1).  
13. Corrected the AIS (Blue Alarm) set criteria from 5 or less zeros in a 3ms window to 4 or less zeros  
and changed the clear criteria from 6 or more zeros in a 3ms window to 5 or more zeros. This is  
defined in Table 9-23.  
14. Added E1BCR1 and E1EBCR2 to Table 9-22.  
15. Added note to indicate that Transmit Open Circuit Detect and Short Circuit Detect are not  
functional in the CSU modes (T1 LBO 5, 6 and 7). This was added in the bit description of register  
LLSR Bit 1 (SCD) and Bit2 (OCD), as well as Section 9.11.2.4.  
1. Removed references to RPOS/RNEG, TPOS/TNEG and replaced them with RTIP/RRING and  
TTIP/TRING for clarification.  
2. Corrected the typical current draw in Section 12.  
012405  
081805  
1. Updated ordering information and absolute maximum ratings specs to show DS26528G and  
DS26528GN package variants.  
2. Replaced Figure 9-11 with corrected recommended network interface.  
1. Added lead-free package (DS26528GN+) to Ordering Information table (page 1).  
2. Removed incorrect reference to JACLK (page 79) in Section 9.11.3.  
3. Changed IDR register default value for Bit 1 from 0 to 1 (rev A4) (page 114).  
4. Updated package information drawing and added link to online drawing (page 269).  
1. Added commercial range parts to Ordering Information table (page 1).  
071006  
102506  
2. Updated entire data sheet for typos and clarity to match the TEX-family data sheets (DS26521,  
DS26522, DS26524).  
3. Modified description of TFPT bit for TCR1 (T1 Mode) (page 196).  
275 of 276  
 
DS26528 Octal T1/E1/J1 Transceiver  
DOCUMENT REVISION HISTORY (continued)  
REVISION  
DESCRIPTION  
1. Corrected TSYNC1 ball (from B1 to B4) (page 20).  
2. Corrected RSYNC3 and RSYNC4 (previously said RSYNC2 for both) (page 21).  
3. Figure 8-11: In Note 4, changed S2/S3 to S3/S4 and changed S4/S5 to S5/S6; added Note 6  
(page 74).  
012307  
1. Added note to RHC.RHR stating that the bit will clear automatically if RMMR.INIT_DONE has been  
set (page 124).  
2. Added note to T1RBOCC.RBR stating that the bit will clear automatically if RMMR.INIT_DONE has  
been set (page 129).  
3. Added note to THC1.THR stating that the bit will clear automatically if TMMR.INIT_DONE has  
been set (page 184).  
1. Added E1RFRID (061h) and TFRID (161h) (previously incorrectly listed as reserved) to Table 9-3.  
2. Added E1RFRID (061h) (previously incorrectly listed as reserved) and added TFRID (161h)  
(previously missing) to Table 9-7.  
3. Added Note 1 (specifications to -40°C are guaranteed by design and not production tested) to the  
Absolute Maximum Ratings for -40°C to +85°C temp range (page 250).  
4. Added Note 1 (timing parameters in the JTAG table are GBD) to Table 12-4 (page 261).  
072507  
081707  
276 of 276  
Maxim/Dallas Semiconductor cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim/Dallas Semiconductor product.  
No circuit patent licenses are implied. Maxim/Dallas Semiconductor reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2007 Maxim Integrated Products  
The Maxim logo is a registered trademark of Maxim Integrated Products, Inc. The Dallas logo is a registered trademark of Dallas Semiconductor Corporation.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY