DEI1198 [DEIAZ]

8CH GND/OPEN PARALLEL OUTPUT DISCRETE INTERFACE IC;
DEI1198
型号: DEI1198
厂家: Device Engineering Incorporated    Device Engineering Incorporated
描述:

8CH GND/OPEN PARALLEL OUTPUT DISCRETE INTERFACE IC

输出元件
文件: 总12页 (文件大小:234K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Device  
Engineering  
Incorporated  
DEI1198  
8CH GND/OPEN  
PARALLEL OUTPUT  
DISCRETE INTERFACE IC  
6031 South Maple Avenue  
Tempe, AZ 85283  
Phone: (480) 303-0822  
Fax: (480) 303-0824  
E-mail: admin@deiaz.com  
FEATURES  
·
Eight discrete inputs  
o
Senses GND/OPEN discrete signals.  
o
Meets input threshold and hysteresis requirements specified per AirBus ABD0100H specification.  
§
Thresholds: 4.5 V / 10.5 V, Hysteresis: 3 V  
o
o
o
~1 mA DIN source/sink current to prevent dry relay contacts.  
Internal isolation diode.  
Uses an external 3 kresistor on the inputs to implement lightning transient immunity of 1600 V and  
higher. i.e.: DO160E, Section 22, Levels 4 and 5.  
o
Inputs protected from Lightning Induced Transients per DO160, Section 22, Cat A3 and B3 plus  
waveform 5A to 500 V.  
·
Parallel I/O interface  
o
o
TTL/CMOS compatible inputs and Tristate outputs  
CLK & /OE control inputs and outputs  
·
·
·
Logic Supply Voltage (VCC):  
Analog Supply Voltage (VDD):  
Package Options  
3.3 V ±%  
12.0 V to 16.5 V  
o
o
24 Lead TSSOP  
24 Lead TSSOP EP Thermally Enhanced  
·
Pin compatible with DEI1166/67  
PIN ASSIGNMENTS  
Figure 1 DEI1198 Pin Assignment (24 Lead TSSOP)  
©2019 Device Engineering Inc.  
1 of 12  
DS-MW-01198-01 Rev. E  
5/10/2019  
FUNCTIONAL DESCRIPTION  
DEI1198 is an eight-channel parallel discrete-to-digital interface IC implemented in an HV DIMOS technology. It  
senses eight GND/OPEN discrete signals of the type commonly found in avionic systems and converts them to logic  
data. The discrete data is read from the device via a parallel tri-state bus.  
The discrete input circuits are designed to achieve a high level of lightning transient immunity. The application  
design requires a series 3 kΩ resistor on each discrete input to achieve DO160 Level 3 and WF5A 500 V pin injection  
immunity. Higher immunity levels can be achieved (i.e. Level 5) with the addition of a TVS between the resistor and  
the input pin.  
Table 1 Pin Description  
PINS  
1-8  
9-10  
11  
NAME  
DIN[1:8]  
NC  
DESCRIPTION  
Discrete Inputs. Eight GND/OPEN discrete input signals.  
Not Connected.  
Latch Clock Logic Input. A low level on this input enables  
transparent mode. A high level on this input enables latch mode.  
Output Enable Logic Input. Low input will enable the tri-state  
outputs  
CLK  
12  
/OE  
13  
14  
VDD  
GND  
Analog Supply Voltage. 12 V to 16.5 V  
Logic/Signal Ground  
19  
VCC  
Logic Supply Voltage. 3.3V+/-5%  
22  
15-18,20-21,23-  
24  
GND  
DO[1:8]  
Logic Ground  
Logic Outputs. Eight tri-state data outputs  
DIN[1:8] Discrete AFE  
The Discrete Input Analog Front End circuit function is represented in Figure 3. Each DINn signal is conditioned by  
the resistor / diode network and presented to a comparator with hysteresis. The external 3 kΩ resistor is part of  
the front end circuitry for achieving threshold and hysteresis requirements while protecting the chip from Lightning  
Induced Transients.  
Some notable features are:  
l
l
The DIN source/sink current is ~1 mA. This current will prevent a “dry” relay contact.  
The input voltage and hysteresis:  
o
o
o
Low Level:  
High Level:  
Hysteresis:  
-4.0 to +4.5 V  
10.5 to 49 V  
> 3 V  
l
l
Input noise immunity is maximized with a combination of voltage hysteresis and use of a slow input  
voltage comparator  
The inputs can withstand continuous input voltages of 49 V. The isolation diode breakdown voltage is  
greater than 45 V. The 10 kΩ input resistance (consists of a 7 kΩ On-Chip resistor and a 3 kΩ Off-Chip  
resistor) is designed to limit diode breakdown current to safe levels during transient events.  
©2019 Device Engineering Inc.  
2 of 12  
DS-MW-01198-01 Rev. E  
5/10/2019  
Table 2 Truth Table  
CLK /OE DIN[1:8] LATCH[1:8]  
DO[1:8]  
DESCRIPTION  
1
1
X
Open  
Ground  
X
Hold  
HiZ  
Output = HiZ, Latch = Hold mode  
0
1
X
X
Latch[1:8] <= DIN [1:8]  
1
1
0
0
X
Hold  
Latch[1:8]  
Output = Latched data  
X
DIN[1:8]  
X
0
1
Latch = Transparent mode  
Ground  
Open  
0
1
0
0
Output = Live data  
Legend:  
X = don’t care input or undefined output  
HiZ = Hi Impedance  
Figure 2 Function Block Diagram (two channels shown)  
Figure 3 Analog Front End Detail  
©2019 Device Engineering Inc.  
3 of 12  
DS-MW-01198-01 Rev. E  
5/10/2019  
LIGHTNING PROTECTION  
DINn inputs are designed to survive lightning induced transients as defined by RTCA DO160, Section 22, Cat A3 and  
B3, pin injection Waveforms 3, 4, and 5A. They can withstand Level 3 stress (and WF5A up to 500 V) with the external  
3 kseries resistor for current limiting.  
Protection for higher stress levels can be achieved (for example: the 3200 V of WF3 Level 5) with the addition of  
transient voltage suppressor (TVS) devices at the DINn pins. First select the TVS clamp voltage < 450 V (the intrinsic  
1198 device capability). A convenient value would be 48 V, which reduces the TVS capacitance to the lowest  
practicable level. The 3 kΩ series resistor limits the TVS surge current, thus allowing small low power TVS devices.  
V/I  
V
25% to 75%  
Peak  
of Largest Peak  
T1 = 6.4 us  
T2 = 70 us  
50%  
0
t
50%  
F = 1 MHZ  
0
t
T1  
T2  
Figure 4 Voltage/Current Waveform 3  
Figure 5: Voltage/Current Waveform 4  
V/I  
Peak  
T1=40 us  
T2=120 us  
Waveform Source Impedance characteristics:  
·
·
·
·
Waveform 3 Voc/Isc = 600 V / 24 A => 25 Ω  
Waveform 4 Voc/Isc = 300 V / 60 A => 5 Ω  
Waveform 5A Voc / Isc = 300 V / 300 A => 1 Ω  
Waveform 5A Voc / Isc = 500 V / 500 A => 1 Ω  
50%  
0
t
T1  
T2  
Figure 6 Voltage/Current Waveform 5A  
©2019 Device Engineering Inc.  
4 of 12  
DS-MW-01198-01 Rev. E  
5/10/2019  
ELECTRICAL DESCRIPTION  
Table 3 Absolute Maximum Ratings  
PARAMETER  
MIN  
-0.3  
-0.3  
MAX  
+5.0  
18  
UNITS  
VCC Supply Voltage  
VDD Supply Voltage  
V
V
Operating Temperature  
1198-TES-G  
-55  
-55  
+85  
+125  
°C  
°C  
1198-TMS-G  
Storage Temperature  
Plastic Package  
-55  
+150  
°C  
Input Voltage (3)(4)  
DIN[1:8]  
Continuous  
-10  
+49  
+600  
+300  
+500  
80  
V
V
V
V
V
DO160, Waveform 3, Level 3  
-600  
-300  
-500  
DO160, Waveform 4 and 5, Level 3  
DO160, Waveform 4 and 5  
DO160, Abnormal Surge Voltage, 100ms  
Logic Inputs  
DOUT  
-1.5  
-0.5  
VCC + 1.5  
VCC + 0.5  
0.8  
V
V
W
W
Power Dissipation @ 85 °C steady state, 1198-TES-G  
Power Dissipation @ 125 °C steady state, 1198-TMS-G  
Junction Temperature:  
0.8  
Tjmax  
145  
°C  
ESD per JEDEC A114 Human Body Model  
Logic and Supply pins  
2000  
1000  
V
DIN pins  
Peak Body Temperature (10 sec duration)  
260  
°C  
Notes:  
1. Stresses above absolute maximum ratings may cause permanent damage to the device.  
2. Voltages referenced to Ground  
3. Stress applied to external 3 kseries resistor in series with DINn pin.  
4. Discrete input voltage amplitude tolerance for WF3, 4 and 5 are +20% / -0%  
©2019 Device Engineering Inc.  
5 of 12  
DS-MW-01198-01 Rev. E  
5/10/2019  
Table 4 Recommended Operating Conditions  
PARAMETER  
SYMBOL  
CONDITIONS  
Supply Voltage  
VCC  
VDD  
3.3 V ±5%  
12.0 V to 16.5 V  
Logic Inputs and Outputs  
Discrete Inputs  
Operating Temperature  
1198-TES-G  
0 to VCC  
0 to 49 V  
DIN[1:8]  
Ta  
-55 to +85 °C  
1198-TMS-G  
-55 to +125 °C  
Table 5 DC Electrical Characteristics  
SYMOBL  
PARAMETER  
CONDITIONS (1)(2)  
LIMITS  
UNIT  
MIN  
2.0  
NOM  
MAX  
Logic Inputs/Outputs  
V1IH  
V1IL  
VOH  
HI level input voltage  
V
VCC = 3.3 V  
LO level input voltage  
HI level output voltage  
0.8  
V
V
I_DOUT = -20 uA  
I_DOUT = -4 mA,  
VCC = 3V  
I_DOUT = 20 uA  
I_DOUT = 4 mA,  
VCC = 3 V  
VCC – 0.1  
2.4  
V
V
V
VOL  
LO level output voltage  
0.1  
0.4  
IIN  
Input leakage  
VIN = VCC  
VIN = GND  
Output in Hi Impedance  
state.  
-10  
-35  
10  
0
uA  
uA  
IOZ  
3-state leakage current  
-10  
10  
DOUT = VIHmin, VILmax  
Discrete Inputs (4)  
V2IH  
RIH  
HI level input voltage  
10.5  
50  
49  
V
HI level DIN-to-GND  
resistance  
Resistor from DIN to GND  
to guarantee HI input  
condition.  
kΩ  
IIH  
HI level input current  
DIN = 28 V, VDD = 15 V  
DIN = 49 V, VDD = 15 V  
1
1
240  
2
uA  
mA  
V2IL  
RIL  
LO level input voltage  
LO level DIN-to-GND  
resistance  
-4.0  
4.5  
500  
-1.8  
V
Resistor from DIN to GND  
to guarantee LO input  
condition.  
Ω
IIL  
VIhst  
LO level input current  
Input hysteresis voltage  
DIN = 0V, VDD = 15V  
-0.8  
3
-1.3  
1.8  
mA  
V
Power Supply  
VIN(logic) = VCC or GND  
DIN[1:8]= open  
ICC  
Max quiescent logic  
supply current  
mA  
3
©2019 Device Engineering Inc.  
6 of 12  
DS-MW-01198-01 Rev. E  
5/10/2019  
SYMOBL  
PARAMETER  
CONDITIONS (1)(2)  
LIMITS  
UNIT  
MIN  
NOM  
MAX  
IDD  
Max quiescent analog  
supply current  
VIN(logic) = VCC or GND  
DIN[1:8]= Open  
15  
24  
mA  
DIN[1:8]= GND  
22  
33  
Notes:  
1. Ta = -55 to +85/+125 °C. VDD = 12.0 to 16.5 V, VCC = 3.3 V ±5% unless otherwise noted  
2. Current flowing into device is ‘+’. Current flowing out of device is ‘- ‘. Voltages are referenced to Ground  
3. Guaranteed by design. Not production tested  
4. With 3 kΩ, 2% resistor in series with DIN input pin  
©2019 Device Engineering Inc.  
7 of 12  
DS-MW-01198-01 Rev. E  
5/10/2019  
Table 6 AC Electrical Characteristics  
LIMITS  
CONDITIONS  
(1,2)  
CLK = /OE = 0  
SYMOBL  
PARAMETER  
Propagation delay,  
UNIT  
MIN  
MAX  
550  
tHL  
tLH  
ns  
DIN to DO. (3)  
tHZ  
tLZ  
Output disable delay, /OEto DO HI-Z.  
(4)(5)  
Output Enable delay, /OEto DO active.  
(4)(5)  
50  
50  
ns  
ns  
tZH  
tZL  
tSU  
tH  
Cin  
Cout  
DIN setup time, DIN to CLK(6)  
DIN hold time, DIN to CLK(6)  
Logic input pin Capacitance. (7)  
DOUT pin capacitance, output in HI-Z state.  
(7)  
550  
ns  
ns  
pf  
pf  
10  
10  
15  
Notes:  
1. DOUT loaded with 50 pF to GND.  
2. Ta = -55 to +85/+125 °C. VDD = 12 V, VCC = 3 V. VIL = 0 V, VIH = VCC unless otherwise noted.  
3. Timing measured from DO = 1.5 V to VDIN = 9 V (Rising Edge) / 4.5 V (Falling Edge). See Figure 7.  
4. DOUT loaded with 1 kto GND for Hi output, 1 kto VCC for Low output.  
5. Timing measured from /OE=1.5 V to DO=200 mV. See Figure 7.  
6. Timing measured from CLK = 1.5 V to VDIN = 9 V (Rising Edge) / 4.5 V (Falling Edge). See Figure 7.  
7. Not production tested. Guaranteed by design.  
8. AC characteristics are sample tested on lot basis.  
TIMING DIAGRAMS  
3.0  
DIN  
9
1.5  
CLK  
4.5  
0
tHL  
tSU  
tLH  
HI  
HI  
tH  
DO  
9
1.5  
DIN  
4.5  
0
3.0  
3.0  
1.5  
1.5  
1.5  
OE  
OE  
0
0
tZH  
tHZ  
HIGH Z  
tZL  
tLZ  
HIGH Z  
HI  
0.2  
DO  
DO  
1.3  
1.3  
0.2  
HIGH Z  
LO  
HIGH Z  
Figure 7 Switching Waveforms  
©2019 Device Engineering Inc.  
8 of 12  
DS-MW-01198-01 Rev. E  
5/10/2019  
APPLICATION INFORMATION  
Discrete Input Filtering  
The DEI1198 Analog Front End provides a moderate level of noise immunity via a combination of hysteresis and  
limited bandwidth. The Hysteresis is 3 V minimum, and the comparator bandwidth is approximately 10 MHZ.  
Many applications provide additional noise immunity by means of debounce/filtering in software or in digital  
circuitry (i.e. FPGA). Common input debounce techniques are readily found with a web search of the term “software  
debounce” and range from simple detectors of two or more sequential stable readings to FIR filters emulating RC  
time constants.  
Input Current Characteristics  
The DIN Input Current vs. Voltage characteristics are shown in Figure 8.  
Figure 8 Input IV Characteristics (VDD = 15 V)  
©2019 Device Engineering Inc.  
9 of 12  
DS-MW-01198-01 Rev. E  
5/10/2019  
Package Power Dissipation  
The DEI1198 power dissipation varies with operating conditions. Figure 9 shows the device package power  
dissipation for various operating conditions. This includes the contributions from Supply currents and DIN Input  
currents. The curves are as follows:  
Table 7 Legend for Power Dissipation Curves  
SUPPLY VOLTAGE, TEMPERATURE,  
CURVE ID  
IC VARIATION  
GND/OPEN-Nom  
3.3 V, 12 V / 27 °C / typical IC parameters  
GND/OPEN-Wst  
3.3 V, 16.5 V / 85 °C /  
Worst case IC parameters  
800  
700  
600  
500  
400  
300  
200  
100  
0
GND/OPN-Nom  
GND/OPN-Wst  
0
1
2
3
4
5
6
7
8
Number CH Active  
Number of Active Channels  
Figure 9 DEI1198 Power Dissipation vs Active Channels  
ORDERING INFORMATION  
Table 8 Ordering Information  
PART NUMBER  
DEI1198-TES-G  
DEI1198-TMS-G  
MARKING  
DEI1198-TES  
DEI1198-TMS  
PACKAGE  
24 TSSOP G  
24 TSSOP EP G  
TEMPERATURE  
-55 / +85 °C  
-55 / +125 °C  
DEI reserves the right to make changes to any products or specifications herein. DEI makes no warranty, representation,  
or guarantee regarding suitability of its products for any particular purpose.  
©2019 Device Engineering Inc.  
10 of 12  
DS-MW-01198-01 Rev. E  
5/10/2019  
PACKAGE DESCRIPTIONS  
Table 9 Package Information  
CHARACTERISTIC  
Moisture Sensitivity  
Lead Finish  
Materials  
JEDEC Reference  
Thermal Resistance (°C/W)  
25TSSOP G  
MSL 1 / 260 °C  
NiPdAu  
RoHS Compliant  
MO-153-AD  
24TSSOP EP G  
MSL 3 / 260 °C  
100% Matte Sn  
RoHS Compliant  
MO-153-AD  
Θja:  
Θjc:  
~84  
~16  
~29  
~7  
The PCB design and layout are a significant factor in determining thermal resistance (Θja) of the IC package. Use  
maximum trace width on all power and signal connections at the IC. These traces serve as heat spreaders which  
improve heat flow from the IC leads.  
The exposed thermal pad of the 24TSSOP EP G package must be soldered to a heat spreader land pattern on the  
PCB to achieve required thermal performance.  
·
·
·
Connect the exposed thermal pad to electrical Ground.  
Use large and multi-layer PCB boards, at least 4 layers 3” x 3”, with internal solid GND and Power planes.  
Maximize the thermal pad land size by extending it beyond the IC to form a dog-bone pattern on the top  
layer and a similar sized heat spreader copper pattern on the bottom layer.  
·
Use thermal VIAs to connect the thermal pad land pattern on the top layer, inter GND(s) and bottom GND  
layer. Place as many thermal VIA’s in the land pattern as space allows to conduct heat from the thermal  
pad to the internal ground plane and bottom heat spreader.  
Figure 10 24 TSSOP G Outline  
©2019 Device Engineering Inc.  
11 of 12  
DS-MW-01198-01 Rev. E  
5/10/2019  
Thermal  
Pad  
SYMBOLS  
MIN  
--  
NOM  
--  
--  
1.00  
--  
7.80  
4.40  
6.40 BSC  
0.65 BSC  
1.00 REF  
0.60  
--  
MAX  
1.20  
0.15  
1.05  
0.30  
7.90  
4.50  
A1  
A2  
b
D
E1  
E
0.00  
0.80  
0.19  
7.70  
4.30  
L1  
L
S
0.45  
0.20  
0 °  
0.75  
--  
8 °  
--  
E2  
D1  
2.28  
3.70  
--  
--  
3.00  
4.75  
Figure 11 24 TSSOP EP G Outline  
©2019 Device Engineering Inc.  
12 of 12  
DS-MW-01198-01 Rev. E  
5/10/2019  

相关型号:

DEI1198-TES-G

8CH GND/OPEN PARALLEL OUTPUT DISCRETE INTERFACE IC
DEIAZ

DEI1198-TMS-G

8CH GND/OPEN PARALLEL OUTPUT DISCRETE INTERFACE IC
DEIAZ

DEI1282

8CH BIT PROGRAMMABLE GND/OPN & 28V/OPN DISCRETE INTERFACE IC
DEIAZ

DEI1282-SES

Interface Circuit, PDSO16, PLASTIC, MS-012AC, SOIC-16
DIOTEC

DEI1282-SES

8CH BIT PROGRAMMABLE GND/OPN & 28V/OPN DISCRETE INTERFACE IC
DEIAZ

DEI1282-SES-G

Interface Circuit, PDSO16, ROHS COMPLIANT, PLASTIC, MS-012AC, SOIC-16
DIOTEC

DEI1282-SES-G

8CH BIT PROGRAMMABLE GND/OPN & 28V/OPN DISCRETE INTERFACE IC
DEIAZ

DEI1282-SMS

Interface Circuit, PDSO16, PLASTIC, MS-012AC, SOIC-16
DIOTEC

DEI1282-SMS

8CH BIT PROGRAMMABLE GND/OPN & 28V/OPN DISCRETE INTERFACE IC
DEIAZ

DEI1282-SMS-G

Interface Circuit, PDSO16, ROHS COMPLIANT, PLASTIC, MS-012AC, SOIC-16
DIOTEC

DEI1282-SMS-G

8CH BIT PROGRAMMABLE GND/OPN & 28V/OPN DISCRETE INTERFACE IC
DEIAZ

DEI1284-SES-G

8CH BIT PROGRAMMABLE GND/OPN & 28V/OPN DISCRETE INTERFACE IC
DEIAZ