DEI1282-SMS-G [DEIAZ]

8CH BIT PROGRAMMABLE GND/OPN & 28V/OPN DISCRETE INTERFACE IC;
DEI1282-SMS-G
型号: DEI1282-SMS-G
厂家: Device Engineering Incorporated    Device Engineering Incorporated
描述:

8CH BIT PROGRAMMABLE GND/OPN & 28V/OPN DISCRETE INTERFACE IC

光电二极管 接口集成电路
文件: 总17页 (文件大小:992K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DEI1282, 1284  
Device  
Engineering  
Incorporated  
8CH BIT PROGRAMMABLE  
GND/OPN & 28V/OPN  
DISCRETE INTERFACE IC  
385 East Alamo Drive  
Chandler, AZ 85225  
Phone: (480) 303-0822  
Fax: (480) 303-0824  
E-mail: admin@deiaz.com  
FEATURES  
·
Eight discrete inputs  
o
o
Individually configurable as either GND/OPEN or 28V/OPEN(GND) inputs.  
Input threshold and hysteresis per AirBus ABD0100H specification.  
§
§
GND/OPEN mode: 4.5V/10.5V threshold, 3V hysteresis  
28V/OPEN mode: 6V/12V threshold, 3V hysteresis  
o
o
o
o
o
o
1mA input current to prevent dry relay contacts.  
Internal isolation diodes  
Inputs protected from Lightning Induced Transients per DO160F, Section 22, Cat A3 and B3  
1284 version supports higher lightning levels and input filtering via use of off-chip input resistors  
Withstands inadvertent application of 115VAC/400Hz power  
Built-in Test (BIT) to test internal circuits including input comparator  
·
Serial I/O interface to read data register and write configuration register  
o
o
o
o
Direct interface to Serial Peripheral Interface (SPI) port.  
TTL/CMOS compatible inputs and Tristate output  
8.6MHz Max Data Rate  
Serial input to expand Shift Register  
·
·
·
Logic Supply Voltage (VCC):  
Analog Supply Voltage (VDD):  
16L SOIC EP package  
3.3V +/-5%  
12V to 16.5V  
PIN ASSIGNMENTS  
1
16  
VDD  
GND  
VCC  
SEL  
DIN1  
DIN2  
DIN3  
DIN4  
DIN5  
DIN6  
DIN7  
DIN8  
DEI  
1282  
&
1284  
SDI  
/CS  
SCLK  
SDO  
Figure 1 DEI1282, 1284 Pin Assignment (16 Lead SOIC)  
©2018 Device Engineering Inc.  
1 of 17  
DS-MW-01282-01 Rev. L  
05/18/2018  
FUNCTIONAL DESCRIPTION  
DEI1282 and DEI1284 are eight-channel discrete-to-digital interface ICs implemented in a High Voltage Dielectric Isolated  
technology. They sense eight discrete signals of the type commonly found in avionic systems and convert them to serial logic  
data. Each input can be individually configured as either GND/OPEN or 28V/OPEN format input via a serial data input. The  
discrete data is read from the device via an eight-bit serial shift register with 3-state output. This serial interface is compatible  
with the industry standard Serial Peripheral Interface (SPI) bus.  
The discrete inputs are implemented with a high voltage technology to provide immunity to lightning induced transients. The  
DEI1282 tolerates DO160F Level 3 (600V) stress directly to the input pins without the need for additional protection  
components.  
The DEI1284 version operates with 3K Ohm off-chip series resistors on the inputs. These are used in combination with  
Transient Voltage Suppressor (TVS) devices to achieve Level 4 (1500V) and Level 5 (3200V) immunity. The resistors act to  
limit surge current, thus allowing small TVS devices. The resistors are also used to implement low pass filtering by adding  
capacitors on the inputs. The filtering provides noise rejection and anti-aliasing of the sampled signal.  
The on-chip Built-in Test (BIT) feature provides a Test Mode which provides a means to inject a test signal into each input  
comparator without interfering with the discrete input signals. The test coverage includes each DIN comparator as well as the  
digital logic and IO.  
Table 1 Pin Descriptions  
PINS  
NAME  
DESCRIPTION  
1-8  
DIN[1:8]  
Discrete Inputs. Eight discrete signals which can be individually  
configured as either GND/OPEN or 28V/OPEN format inputs.  
Logic Output. Serial Data Output. This pin is the output from MSB (Bit  
8) of the selected shift register (Data/Configuration). It is clocked by the  
rising edge of SCLK. This is a 3-state output enabled by /CS.  
Logic Input. Serial Shift Clock. A low-to-high transition on this input  
shifts data on the serial data input into Bit 0 of the selected shift register.  
The selected shift register is shifted from Bit 1 to Bit 8. Bit 8 of the  
selected shift register is driven on SDO.  
9
SDO  
10  
SCLK  
11  
/CS  
Logic Input. Chip Select. A low level on this input enables the SDO 3-  
state output and the selected shift register. A high level on this input  
forces SDO to the high impedance state and disables the shift registers so  
SCLK transitions have no effect. When the Data Register is selected, a  
high-to-low transition causes the Discrete Input data to be loaded into the  
Data Register. When the Configuration Register is selected, a low-to-  
high transition causes the Serial Configuration Register data to be loaded  
into the parallel configuration outputs.  
12  
13  
SDI  
Logic Input. Serial Data Input. Data on this input is shifted into the LSB  
(Bit 1) of the selected shift register on the rising edge of the SCLK when  
/CS input is low.  
Logic Input. Selects between the Data Register and Configuration  
Register. H = DATA, L = CONF.  
SEL  
14  
15  
16  
VCC  
GND  
VDD  
Logic Supply Voltage. 3.3V+/-5%  
Logic/Signal Ground  
Analog Supply Voltage. 12V to 16.5V  
©2018 Device Engineering Inc.  
2 of 17  
DS-MW-01282-01 Rev. L  
05/18/2018  
Figure 2 Function Diagram  
Figure 3 Discrete AFE Function Diagram  
©2018 Device Engineering Inc.  
3 of 17  
DS-MW-01282-01 Rev. L  
05/18/2018  
Table 2 Truth Table  
Serial Interface Operation  
SEL  
X
H
/CS SCLK  
SDI  
X
X
DIN[1:8]  
SDO  
HI Z  
DIN[8]  
DR[8]  
Description  
Not Selected  
DR[1:8]DIN[1:8]  
H
X
L
X
Valid  
X
H
L
DR[1]  
DR[n+1] DR[n], DR[1] SDI  
L
L
L
L
CR[1]  
X
X
X
CR[8]  
HI Z  
CR[n+1] CR[n], CR[1] SDI  
CL[1:8]CR[1:8]  
Legend:  
DR = Data Register  
CR = Configuration Register  
CL = Configuration Latch  
X = Don’t Care  
DIN [1:8] Discrete AFE  
The Discrete Input Analog Front End circuit function is represented in Figure 3. Each DINn signal is conditioned by the  
resistor / diode network and presented to a comparator with hysteresis. When the input is configured for GND/OPEN  
operation, the pull-up resistor and diode are enabled and comparator threshold voltage is selected. When the input is  
configured for 28V/OPEN operation, the pull-down resistor is enabled and the comparator is appropriately configured. Prior to  
configuration (after power up) and during BIT, neither pull-up nor pull-down is enabled and the AFE presents a high  
impedance (Hi-Z).  
Some notable features are:  
·
Input voltage levels and hysteresis:  
o
28V/OPEN  
·
·
·
High level input voltage:  
Low level input voltage:  
Hysteresis:  
12.0 to 49 V  
-4 to 6.0 V  
> 3 V  
o
GND/OPEN  
·
·
·
High level input voltage:  
Low level input voltage:  
Hysteresis:  
10.5 to 49 V  
-4 to 4.5 V  
> 3 V  
·
·
The input current is ~ 1mA. This current will prevent a “dry” relay contact.  
Input noise immunity is maximized with a combination of voltage hysteresis and use of a slow input voltage  
comparator.  
·
The inputs can withstand continuous input voltages of 49V, lightning transient voltages per DO160 Level 3 pin  
injection tests, and survive inadvertent application of 115VAC/400Hz.  
Data Register  
The 8-bit Data Register is a “parallel-input, serial-output” register that samples the input channels and reads-out the data to the  
Serial Data Output. The register is read via the SDO output as described in Figure 4 and Figure 5. A low DIN input level  
results in a Logic 0, and a high input level results in a Logic 1.  
Configuration Register  
The 9-bit Configuration Register (CR) is a “serial-input, parallel-output with data latch” register that individually configures  
each AFE input as either GND/OPEN or 28V/OPEN format. (CR[n]: 0 sets DIN[n] to 28V/OPEN mode (pull-down); CR[n]: 1  
sets DIN[n] to GND/OPEN mode (pull-up). The register is reset to 0’s at Power Up and the AFE inputs are forced into high  
impedance mode until the CR is programmed (see Power Up Initialization). Bit 9 is used to enable or disable Built-in Test (see  
BIT Operation). The register is programmed via the serial data input as described in Figures 6– 8.  
Serial Interface  
The DEI1282/1284 incorporates a serial IO interface for programming the Discrete Input configuration and for reading the  
Discrete Input status. Refer to Figure 2. The interface is SPI Mode 0 compatible and consists of /CS, SEL, SCLK, SDO, and  
SDI signals. Figures 4 – 5 depict the Data Read sequence and Configuration Write sequence for both a single device and dual  
“daisy chained” devices; refer to Figure 16 for connection details.  
©2018 Device Engineering Inc.  
4 of 17  
DS-MW-01282-01 Rev. L  
05/18/2018  
Power Up Initialization  
The DEI1282/1284 incorporates an on-chip power-up reset (POR) circuit and logic to force the DIN inputs to a high  
impedance state at power up; the AFE pull-up and pull-down circuits are disabled. POR monitors the Vcc logic supply and  
forces the AFE to the high impedance state while Vcc is stabilizing. It remains high impedance until the Configuration Register  
is programmed by the first Write Configuration Register cycle when the pull-up or pull-down state is defined.  
The POR rising Vcc threshold is ~2.5V with ~0.4V of hysteresis. The POR includes a ~200us delay from the Vcc threshold to  
reset output; the Configuration Register ignores attempts to program it during this POR delay time.  
The POR will reset when there is sufficient voltage sag on Vcc. When Vcc drops below ~2.0V for ~9us, POR will activate, the  
Configuration and Data Registers will reset to “0”, and the AFEs (DIN’s) are set to Hi-Z.  
The part may be intentionally operated in the non-configured Hi-Z mode in order to read the inputs without presenting a pull-  
up or pull-down load. Hi-Z mode is only accessible after POR and before the device configuration register is programmed. In  
Hi-Z mode, the input thresholds are approximately:  
VTLH = low to high threshold = ~14V  
VTHL = high to low threshold = ~11V  
BIT Operation  
Bit 9 of the Configuration Register (CR) is used to enable or disable Built-in Test (1 = BIT enabled, 0 = NORMAL). When  
BIT is enabled, each channel configuration bit value is used to drive a test stimulus on the respective channel comparator (see  
Figure 3). Thus all channels can be tested by setting the BIT mode, programming test stimulus patterns into the CR, and  
reading the results from the DR. The DIN inputs are placed in Hi-Impedance mode (pull up and pull down switches are OFF)  
during test mode, so the test does not interfere with the DIN signals. The BIT test stimulus is isolated from the DIN pin by  
680KW.  
If a DINn input voltage is stuck within the input hysteresis voltage range during the time when the CR is programmed from  
BIT to NORMAL mode and the DINn value read via a Read DR cycle, then the corresponding DINn bit will be reported as the  
last BIT test value programmed in the CR BIT command.  
SEL  
/CS  
X
X
SCLK  
X
X
VALID  
X
DIN[1:8]  
SDI  
SDO  
DIN8  
DIN7  
DIN6  
DIN5  
DIN4  
DIN3  
DIN2  
DIN1  
DIN Data Shifted out from DATA S-Reg at SCLK  
DIN inputs latched into DATA S-Reg at /CS ¯  
Figure 4 Read Data Register  
©2018 Device Engineering Inc.  
5 of 17  
DS-MW-01282-01 Rev. L  
05/18/2018  
SEL  
/CS  
SCLK  
SDI  
SDO  
SDI datashifted to SDO after 8 bit delay  
Figure 5 Read Data Register, 16 Bit Daisy Chain (See Figure 18)  
SEL  
/CS  
X
SCLK  
X
X
DIN[1:8]  
NCD  
9
NCD  
8
NCD  
7
NCD  
6
NCD  
5
NCD  
4
NCD  
3
NCD  
2
NCD  
1
X
X
SDI  
PCD  
9
PCD  
8
PCD  
7
PCD  
6
PCD  
5
PCD  
4
PCD  
3
PCD  
2
PCD  
1
NCD  
9
SDO  
New  
Configuration  
PDO[1:9]  
Internal Config Latch  
Present Configuration  
NCDn = New Configuration Data Bits  
PCDn = Present Configuration Data Bits  
Figure 6 Write Configuration Register (9-bit cycle)  
SEL  
/CS  
SCLK  
X
DIN[1:8]  
NCD  
9
NCD  
8
NCD  
7
NCD  
6
NCD  
5
NCD  
4
NCD  
3
NCD  
2
NCD  
1
X
X
X
X
X
X
X
X
X
SDI  
PCD  
9
PCD  
8
PCD  
7
PCD  
6
PCD  
5
PCD  
4
PCD  
3
PCD  
2
PCD  
1
NCD  
9
X
X
X
X
X
X
X
SDO  
New  
Configuration  
PDO[1:8]  
Internal  
Config  
Present Configuration  
X
DCDn = Daisy Chain Data Bits  
NCDn = New Configuration Data Bits  
PCDn = Present Configuration Bits  
Latch  
NCD 9 latched into Config S-Reg at SCLK  
Figure 7 Write Configuration Register (16-bit cycle)  
©2018 Device Engineering Inc.  
6 of 17  
DS-MW-01282-01 Rev. L  
05/18/2018  
SEL  
/CS  
X
SCLK  
X
DIN[1:8]  
X
DCD  
9
DCD  
8
DCD  
7
DCD  
6
DCD  
5
DCD  
4
DCD  
3
DCD  
2
DCD  
1
NCD  
9
NCD  
8
NCD  
7
NCD  
6
NCD  
5
NCD  
4
NCD  
3
NCD  
2
NCD  
1
X
X
SDI  
PCD PCD  
PCD  
7
PCD  
6
PCD  
5
PCD  
4
PCD  
3
PCD  
2
PCD  
1
DCD  
9
DCD  
8
DCD  
7
DCD  
6
DCD  
5
DCD  
4
DCD  
3
DCD  
2
DCD  
1
NCD  
9
SDO  
9
8
New  
Config  
PDO[1:8]  
Internal  
Config  
Present Configuration  
Figure 8 Write Configuration Register, 18 bit Daisy Chain (See Figure 18)  
DCDn= Daisy Chain Data Bits  
NCDn= New Configuration Data Bits  
PCDn= Present Configuration Data Bits  
Latch  
©2018 Device Engineering Inc.  
7 of 17  
DS-MW-01282-01 Rev. L  
05/18/2018  
LIGHTNING TRANSIENT IMMUNITY  
The DIN inputs are designed to survive lightning induced transients as defined by RTCA DO160F, Section 22, Cat A3 and  
B3, Waveforms 3, 4 and 5A, Level 3. The DEI1282 withstands this stress applied directly to the DIN pins. Contact  
factory for lightning test report.  
The DEI1284 withstands Level 3 stress applied to the 3K Ohm series resistor in series with DINn pins. Insert a Transient  
Voltage Suppressor (48V bidirectional TVS) to ground on the DIN pin to implement higher immunity levels (i.e. Level 4  
(1500V) or Level 5 (3200V)), see Figure 12. The 3K Ohm resistor limits surge current, thus allowing use of small TVS  
devices.  
V
V/I  
Peak  
25% to 75%  
of Largest Peak  
T1 = 6.4us  
T2 = 70us  
50%  
0
t
50%  
F = 1MHZ and 10MHZ  
0
t
T1  
T2  
Figure 9 Voltage / Current Waveform 3  
Figure 10 Voltage Waveform 4  
V/I  
Peak  
T1=40us  
T2=120us  
Waveform Source Impedance characteristics:  
·
·
·
·
Waveform 3 Voc/Isc = 600V / 24A => 25 W  
Waveform 4 Voc/Isc = 300 V / 60 A => 5 W  
Waveform 5A Voc / Isc = 300V / 300A => 1 W  
Waveform 5A Voc / Isc = 500V / 500A => 1 W  
50%  
0
t
T1  
T2  
Figure 11 Voltage / Current Waveform 5A  
INADVERTENT SHORT TO 115VAC POWER  
The DIN inputs can withstand inadvertent shorts to 115VAC/400Hz aircraft power.  
Contact factory for test report.  
©2018 Device Engineering Inc.  
8 of 17  
DS-MW-01282-01 Rev. L  
05/18/2018  
ELECTRICAL DESCRIPTION  
Table 3 Absolute Maximum Ratings  
PARAMETER  
MIN  
MAX  
UNITS  
VCC Supply Voltage  
-0.3  
-0.3  
+5.0  
18  
V
V
VDD Supply Voltage  
Operating Temperature  
Exposed pad soldered to heat sink  
Storage Temperature  
Plastic Package  
-55  
-55  
+125  
+150  
°C  
°C  
Input Voltage  
DIN[1:8]  
Continuous  
DO160F, Waveform 3, Level 3  
DO160F, Waveform 4 and 5, Level 3  
DO160F, Abnormal Surge Voltage, 100ms  
(3)  
(3)  
(3)  
(3)  
-10  
-600  
-300  
+49  
+600  
+300  
Vdc  
Vpk  
Vpk  
Vpk  
V
80  
Logic Inputs  
DOUT  
-1.5  
-0.5  
VCC + 1.5  
VCC + 0.5  
V
Power Dissipation @ 125°C, Steady state  
16L SOIC  
Junction Temperature:  
Tjmax, Plastic Packages  
ESD per JEDEC A114-A Human Body Model  
Logic and Supply pins  
0.63  
150  
W
°C  
2000  
1000  
V
V
DIN pins  
Peak Body Temperature (10 sec duration)  
Notes:  
260  
°C  
1. Stresses above absolute maximum ratings may cause permanent damage to the device.  
2. Voltages referenced to Ground.  
3. Stress applied to external 3K Ohm series resistor in series with DINn pin. Applies to DEI1284 only.  
Table 4 Recommended Operating Conditions  
PARAMETER  
SYMBOL  
CONDITIONS  
VCC  
VDD  
3.3V±5%  
12V to 16.5V  
Supply Voltage  
Logic Inputs and Outputs  
Discrete Inputs  
0 to VCC  
0 to 49V  
DIN[1:8]  
Ta  
Operating Temperature  
Plastic  
-55ºC to 125ºC  
©2018 Device Engineering Inc.  
9 of 17  
DS-MW-01282-01 Rev. L  
05/18/2018  
Table 5 DC Electrical Characteristics  
CONDITIONS (1) MIN  
SYMBOL PARAMETER  
NOM  
MAX  
UNIT  
LIMIT  
LIMIT  
Logic Inputs/Outputs  
VIH  
VIL  
HI level input voltage  
VCC = 3.3V  
VCC = 3.3V  
2.0  
V
V
LO level input voltage  
Input hysteresis voltage,  
SCLK input  
0.8  
VIhst  
(3)  
50  
mV  
IOUT = -20uA  
VCC – 0.1  
2.4  
V
VOH  
HI level output voltage  
IOUT = -4mA, VCC = 3V  
IOUT = 20uA  
IOUT = 4mA, VCC = 3V  
V
V
V
0.1  
0.4  
10  
VOL  
IIN  
LO level output voltage  
Input leakage, except SEL VIN = VCC  
or GND  
-10  
uA  
IIN-SEL  
IOZ  
Input leakage, SEL  
VIN = VCC  
VIN = GND  
Output in Hi Impedance state.  
VOUT = VIHmin, VILmax  
-10  
-50  
10  
10  
uA  
uA  
3-state leakage current  
-10  
10  
Discrete Inputs, Configured as Ground/Open (internal pull-up) (4)  
10.5  
49  
V
VIH  
RIH  
HI level input voltage  
HI level DIN-to-GND  
resistance  
Resistor from DIN to GND to  
guarantee HI input condition.  
VIN = 28V, VDD = 15V  
VIN = 49V, VDD = 15V  
50K  
W
17  
45  
100  
250  
4.5  
uA  
uA  
V
IIH  
VIL  
RIL  
HI level input current  
-4.0  
LO level input voltage  
LO level DIN-to-GND  
resistance  
LO level input current  
Input hysteresis voltage  
Resistor from DIN to GND to  
guarantee LO input condition.  
VIN = 0V, VDD = 15V  
500  
-1.8  
W
-0.8  
3
-1.0  
mA  
V
IIL  
VIhst  
Discrete Inputs, Configured as 28V/Open (internal pull-down) (4)  
VIH  
IIH  
VIL  
IIL  
HI level input voltage  
12.0  
0.6  
-4  
49  
1.35  
6.0  
50  
V
mA  
V
uA  
V
HI level input current  
LO level input voltage  
LO level input current  
Input hysteresis voltage  
VIN = 28V, VDD = 15V  
VIN = 1V, VDD = 15V  
0.8  
VIhst  
3
Power Supply  
VIN(logic) = VCC or GND  
VIN[1:8] = open  
VIN(logic) = VCC or GND  
Ground/Open Mode,  
VIN[1:8] = Open  
Max quiescent logic  
supply current  
ICC  
IDD  
1.8  
3
mA  
mA  
Max quiescent analog  
supply current  
15  
22  
24  
33  
VIN[1:8] = GND  
Notes:  
1. Unless otherwise noted: Ta = -55ºC to 85/125ºC (-SES/-SMS). VDD = 12V to 16.5V. VCC = 3.3V+/-5%.  
2. Current flowing into device is ‘+’. Current flowing out of device is ‘-‘. Voltages are referenced to Ground.  
3. Guaranteed by design. Not production tested.  
4. With 3K Ohm, 2% resistor in series with DIN input pin. Applies to DEI1284 only.  
©2018 Device Engineering Inc.  
10 of 17  
DS-MW-01282-01 Rev. L  
05/18/2018  
Table 6 AC Electrical Characteristics  
CONDITIONS (5,6,7)  
MIN  
LIMIT LIMIT  
MAX  
SYMBOL PARAMETER  
UNIT  
SCLK frequency.  
SCLK pulse width.  
50% duty cycle  
fMAX  
0.1  
8.6  
MHz  
tW  
tsu1  
th1  
tsu2  
th2  
tsu3  
th3  
tsu4  
th4  
tp1  
tp2  
tp3  
tp4  
50  
30  
25  
15  
500  
25  
25  
30  
25  
ns  
ns  
ns  
us  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
pF  
pF  
Setup time, SCLK to /CS.  
Hold time, /CSto SCLK.  
Setup time, DIN valid to /CS.  
Hold time, /CSto DIN not valid.  
Setup time, SDIN valid to SCLK.  
Hold time, SCLKto SDIN not valid.  
Setup time, SEL valid to /CS.  
Hold time, SEL valid to /CS.  
Propagation delay, /CSto DOUT valid.  
Propagation delay, SCLKto DOUT valid.  
Propagation delay, /CSto DOUT HI-Z.  
Delay time between /CS active.  
Hold time, SCLKto DOUT  
Maximum logic input pin Capacitance.  
Maximum SDO pin capacitance, output in HI-Z state.  
(1)  
(1)  
(1) (2) (3)  
105  
90  
80  
20  
10  
th5  
Cin  
Cout  
(1)  
10  
15  
Notes:  
1. SDO loaded with 50pF to GND.  
2. SDO loaded with 1KW to GND for Hi output, 1KW to VCC for Low output.  
3. Timing measured at 25%VCC for “0” to Hi-Z, 75%VCC for “1” to Hi-Z.  
4. Sample tested on lot basis.  
5. Guaranteed by design. Not production tested.  
6. Ta = -55ºC to 85 or 125ºC, VCC = 3V, VDD = 15V, VIL = 0V, VIH = VCC unless otherwise noted.  
7. Measurements made at 50%VCC.  
tsu4  
th4  
SEL  
/CS  
tp4  
th1  
tW  
tsu1  
SCLK  
DIN[1:8]  
1/fmax  
tsu2  
th2  
valid  
X
X
tsu3  
th3  
X
X
valid  
SDI  
tp1  
tp3  
D/C0  
th5  
D/C1  
SDO  
tp2  
Figure 12 Switching Waveforms  
©2018 Device Engineering Inc.  
11 of 17  
DS-MW-01282-01 Rev. L  
05/18/2018  
APPLICATION INFORMATION  
Discrete Input Filtering  
The DEI1282/84 Analog Front End provides a moderate level of noise immunity via a combination of hysteresis and limited  
bandwidth. The Hysteresis is 3V minimum and the comparator bandwidth is approximately 10MHz. A capacitor may be  
installed in parallel with a TVS on the DEI1284 DIN pin to provide additional noise filtering.  
Figure 13 DEI1284 DIN with Filter Cap and TVS on DIN input.  
Applications may require additional noise immunity by means of debounce/filtering in software or in digital circuitry (i.e.:  
FPGA). Common input debounce techniques are readily found with a web search of the term “software debounce” and range  
from simple detectors of two or more sequential stable readings to FIR filters emulating RC time constants.  
Input Current Characteristics  
Figures 14-17 depicts the DIN Input Current vs. Voltage characteristics for the various operating and non-operating modes.  
Measurements are at Room temperature.  
Figure 14 28V/Open Mode Input IV Characteristics (VDD = 15V)  
©2018 Device Engineering Inc.  
12 of 17  
DS-MW-01282-01 Rev. L  
05/18/2018  
Figure 15 GND/OPEN Mode Input IV Characteristics (VDD = 15V)  
Figure 16 Hi-Z (Un-configured and BIT) Mode Input IV Characteristics (VDD = 15V)  
Figure 17 VDD = VCC= GND and VDD = VCC = Open Input IV Characteristics  
©2018 Device Engineering Inc.  
13 of 17  
DS-MW-01282-01 Rev. L  
05/18/2018  
Daisy Chain Connection  
Multiple DEI1282/1284 ICs can be connected as daisy chain. Figure 16 shows three devices connected in SPI series mode.  
The critical timing is Tsu3 (see Fig 12), minimum SDIN valid to SCLK setup time.  
Figure 18 Example connection of three DEI128X’s connected as daisy chain  
©2018 Device Engineering Inc.  
14 of 17  
DS-MW-01282-01 Rev. L  
05/18/2018  
Package Power Dissipation  
The DEI1282/84 power dissipation varies with channel configuration and operating conditions. Figure 18 shows the device  
package power dissipation for various conditions. This includes the contributions from Supply currents and Input currents.  
The four curves are as follows:  
Table 7 Legend for Power Dissipation Curves  
SUPPLY VOLTAGE, TEMPERATURE,  
CURVE ID  
IC VARIATION  
+28V/OPEN-Nom  
3.3V, 12V / 27ºC / typical IC parameters  
+28V/OPEN-Wst  
GND/OPEN-Nom  
GND/OPEN-Wst  
3.3V, 16.5V / 125ºC /  
Worst case IC parameters  
3.3V, 12V / 27ºC / typical IC parameters  
3.3V, 16.5V / 125ºC /  
Worst case IC parameters  
DEI1282 Power Dissipation Graph  
800  
700  
600  
500  
400  
300  
200  
100  
0
+28V/OPN-Nom  
+28V/OPN-Wst  
GND/OPN-Nom  
GND/OPN-Wst  
0
1
2
3
4
5
6
7
8
Number Channels Active  
Notes:  
1. The active channels are forced to Ground for GND/OPEN type and forced to 28V for 28V/OPEN type.  
2. The DEI1284 package power dissipation is lower than the DEI1282 because a portion of the power is shifted to the  
external resistors. The DEI1284 incremental Pd is ~20% lower for GND/OPEN and ~15% lower for 28V/OPEN.  
Figure 19 Power Dissipation for Various Conditions  
©2018 Device Engineering Inc.  
15 of 17  
DS-MW-01282-01 Rev. L  
05/18/2018  
PACKAGE DESCRIPTION - 16L Narrow Body, Exposed Pad SOIC  
Table 8 Package Information  
JEDEC  
Θjc/ Θja  
(°C/W)  
/1  
Lead Finish /  
JEDEC Pb-Free  
Code  
Moisture  
Sensitivity  
Level  
Pb Free  
Designation  
JEDEC  
MO  
Package Type  
Package Ref  
16 EP  
SOICN  
85/15 SnPb plate  
na  
MS-  
012-AC  
16L SOIC NB SnPb  
~10 / ~40  
~10 / ~40  
MSL 1 / 260°C  
MSL 1 / 260°C  
Not Pb-free  
RoHS  
16L SOIC NB  
Matte Sn RoHS  
16 EP  
SOICN G  
100% Matte Sn  
e3  
MS-  
012-AC  
Notes:  
1. Mounted on 4 layer PCB with exposed pad soldered to PCB land with thermal VIAs to internal GND plane  
The PCB design and layout is a significant factor in determining thermal resistance (Θja) of the IC package. Use maximum  
trace width on all power and signal connections at the IC; these traces serve as heat spreaders which improve heat flow from  
the IC leads.  
The exposed pad on the bottom of the SOIC package must be soldered to a heat-spreader land pattern on the PCB. The IC  
exposed pad is electrically isolated, but must be connected to some potential on the PCB, typically Ground or Vcc. Maximize  
the PCB land size by extending it beyond the IC outline if possible. A grid of thermal VIAs, which drop down and connect to  
the buried copper plane(s), should be placed under the heat-spreader land. A typical VIA grid is 12mil plated holes on a 50mil  
pitch. Use as many VIAs as space allows. VIAs should be plugged to prevent voids being formed between the exposed pad  
and PCB heat-spreader land due to solder escaping by the capillary effect. Wicking can be avoided by tenting the VIAs with  
solder mask.  
©2018 Device Engineering Inc.  
16 of 17  
DS-MW-01282-01 Rev. L  
05/18/2018  
Note: The bottom thermal contact (exposed pad) is electrically isolated.  
Figure 20 16 Lead Narrow Body EP SOIC Outline  
ORDERING INFORMATION  
Table 9 Ordering Information  
Package (1)  
Requires 3KΩ  
Resistor on DIN  
Part Number  
Marking  
Temperature  
DEI1282-SES  
DEI1282-SMS  
DEI1282-SES  
DEI1282-SMS  
16 EP SOIC  
16 EP SOIC  
No  
No  
-55ºC / 85ºC  
-55ºC / 125ºC  
-55ºC / 85ºC  
-55ºC / 125ºC  
-55ºC / 85ºC  
-55ºC / 125ºC  
DEI1282-SES-G  
DEI1282-SMS-G  
DEI1284-SES-G  
DEI1284-SMS-G  
DEI1282-SES-G / e3  
DEI1282-SMS-G / e3  
DEI1284-SES-G / e3  
DEI1284-SMS-G / e3  
16 EP SOIC G  
16 EP SOIC G  
16 EP SOIC G  
16 EP SOIC G  
No  
No  
Yes  
Yes  
Notes:  
1. Refer to Table 8  
DEI reserves the right to make changes to any products or specifications herein. DEI makes no warranty, representation, or  
guarantee regarding suitability of its products for any particular purpose.  
©2018 Device Engineering Inc.  
17 of 17  
DS-MW-01282-01 Rev. L  
05/18/2018  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY