DEI3182A-EMS [DEIAZ]

ARINC 429 DIFFERENTIAL LINE DRIVER;
DEI3182A-EMS
型号: DEI3182A-EMS
厂家: Device Engineering Incorporated    Device Engineering Incorporated
描述:

ARINC 429 DIFFERENTIAL LINE DRIVER

驱动 接口集成电路 驱动器
文件: 总10页 (文件大小:385K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Device  
Engineering  
Incorporated  
DEI3182A  
ARINC 429 DIFFERENTIAL LINE  
DRIVER  
385 East Alamo Drive  
Chandler, AZ 85225  
Phone: (480) 303-0822  
Fax: (480) 303-0824  
E-mail: admin@deiaz.com  
FEATURES  
• Adjustable rise and fall times  
• Low supply current  
• Capable of driving 30 nF || 400Ω  
• Digitally selectable 12.5 or 100 kbit/sec data rate  
• Adjustable output voltages swing  
• Output over-voltage protected  
• Short circuit tolerant  
• TTL and CMOS compatible inputs  
• MIL-STD-883B burn-in screening available  
• Package Options:16L SB DIP, 16L CERDIP, 28L CLCC  
• Direct replacement for Fairchild/Raytheon RM3182A  
FUNCTION DIAGRAM  
©2005 Device Engineering Inc  
Page 1 of 10  
DS-MW-03182-01 Rev E  
04/20/2005  
Description  
The DEI3182A is a complete differential line driver IC. When Data A = Data B or Sync or Clock Signal is low, the driver forces the  
output to a Voltage Null level (0V ± 250 mV). Designed to address the ARINC 429 Standard, the DEI3182A has output rise and fall  
times that can be adjusted by the selection of an external capacitor (CA or CB) and an output voltage range adjustable through an  
externally applied VREF signal. All logic inputs and sync control inputs are TTL/CMOS compatible. The device is constructed on a  
monolithic IC using a junction-isolated bipolar process. SiCr resistors in the internal bias circuitry provide for stable bias currents and  
a tighter tolerance of output impedance. The DEI3182A is available in 16-lead ceramic side-brazed DIP and can be ordered with  
MIL-STD-883B burn-in screening.  
Functional Description  
The device contains three main functional blocks. The first block is a digital section used to decode the ARINC Clock,  
Synchronization, and Data inputs as shown in Block Diagram. This block takes these inputs and channels the data to the charge pump  
circuits. The logical relationship for these pins is presented in Table 1.  
Table 1. I/O Truth Table  
Sync  
X
Clock  
Data A  
Data B  
Out A  
0V  
Out B  
0V  
Comments  
Null  
L
X
H
H
H
H
X
X
L
X
X
L
L
0V  
0V  
Null  
H
0V  
0V  
Null  
H
L
H
L
H
-VREF  
+VREF  
0V  
+VREF  
-VREF  
0V  
Low  
H
H
H
High  
H
Null  
The second functional block is a charge pump circuit that is used to control the output waveform and its timing characteristics. This is  
achieved through charging and discharging a capacitor with a known current. The capacitor is user selectable, and is connected  
between CA or CB pins and ground. A rate select pin (digital input) enables to set the rise and fall time. If this pin is tied to ground,  
the device functions in the high rate. This mode is recommended if the user does not have an application requiring data rate switching.  
In the table below, recommended capacitor values are given for each possible data combination.  
Table 2. Rate Select Pin Truth Table  
Rate Select  
CA  
CB  
10% to 90% Rise/Fall  
time (µS)  
Ca/Cb nom.  
Data Rate  
(Kbits/sec)  
Comments  
charge current  
(pf)  
68*  
68*  
470  
470  
(uA)  
210  
30  
210  
30  
Logic 0  
Logic 1  
Logic 0  
Logic 1  
1.0 – 2.0  
5 - 15  
5 - 15  
N/A  
100  
High Rate  
Low Rate  
Low Rate  
Not Used  
12-14.5  
12-14.5  
N/A  
* Does not include the assumed 10pf for PCB trace and IC lead capacitance.  
The last functional block of the device consists of a voltage follower and a high power output differential amplifier. The voltage  
follower buffers the signals presented at the charge caps and presents the mirrored signal to the difference amplifier to drive the  
ARINC line. Two different outputs are available from the differential amplifiers: Amp A, Amp B, and Out A, Out B. The outputs  
Amp A and Amp B are the direct outputs of the power amplifier. The outputs Out A and Out B include 37.5series resistors added to  
minimize bus reflections by matching the power amplifier’s output impedance to the cable’s impedance of 75. Amp A and Amp B  
may be used to customize the output impedance of the device. These outputs can also be used to enhance the device’s drive  
capability. For example, driving the standard 30 nF || 400load defined in the ARINC specifications (see output drive capability and  
capacitive loads for more details). All outputs are protected from voltage spikes with diodes connected between the output pins and  
the supply lines.  
Output Drive Capability and Capacitive Loads  
The Traditional Approach  
The DEI3182A is capable of driving a high capacitive/resistive load. If complete ARINC compliance is required then Out A and Out  
B pins are recommended to maintain the output impedance. In this configuration, driving the full ARINC load of 30nF || 400the  
output characteristic takes on the transfer function of a low pass filter due to the internal 37.5resistor, the line resistance and the  
capacitance associated with the cable. This will result in a lower rise/fall time of the device. Equation 1.1 relates the output voltage at  
Out A and Out B to the voltage at the power amplifier’s output. Output A is taken for this example: The output as a function of  
©2005 Device Engineering Inc  
Page 2 of 10  
DS-MW-03182-01 Rev E  
04/20/2005  
frequency is given by equation 1.1  
AmpA ZL /2  
1.1 OutA =  
(ZL/2) + ROUT  
Where: ROUT = 37.5and ZL = RLCL  
The output as a function of Frequency is given by Equation 1.2.  
RL  
1.2 AOUT(jω) = Amp A(jω) [  
]
RL + 2ROUT(1+ jωCLRL)  
Using equation 1.2, a time constant can be determined for the given application which is shown in equation 1.3.  
1.3 τ = (ROUTRL)CL  
So, for the maximum loading condition of 30nF || 400the resulting time constant is 1.9 µs. This shows that with a maximum load,  
the output waveform is greatly affected by the low pass filter combination of the ROUT || RL resistor and the load capacitance.  
A New Option: Amp A/Amp B  
The DEI3182A also provides the user the option of connecting the data line directly to the power output amplifiers thus bypassing the  
internal 37.5resistance of the device and matching the line more precisely. For example, using a 1% 37.5resistor allows better  
control of the output impedance. By applying the load directly to the power amplifiers output pins, the resulting waveform is virtually  
unchanged when driving other loads. There may be applications where these pins present a more desirable result. For instance, if the  
line that the chip is driving is short, then the parasitic components of the line can be neglected, and power amplifier can be tied  
directly to the lines. This option can be utilized to achieve a greater noise immunity through bypassing the internal resistors.  
Pin Assignments  
©2005 Device Engineering Inc  
Page 3 of 10  
DS-MW-03182-01 Rev E  
04/20/2005  
Absolute Maximum Ratings  
Parameter  
Min.  
Max.  
+36  
Units  
Supply Voltage:  
+VS to -VS  
+VS to GND  
-Vs to GND  
V
V
V
V
V
V
V
+20  
-20  
0
VLOGIC Threshold Voltage  
VREF Voltage  
+7  
+6  
0
Logic Input Voltage  
AMP A/B Transient Pulse:  
-0.5  
-70  
VLOGIC + 0.5  
+70  
150uS pulse applied through an external  
37.5resistor. (1)  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature  
-65  
-55  
-55  
+150  
+125  
+175  
+300  
°C  
°C  
°C  
°C  
Lead Soldering Temperature (60 sec.)  
Note:  
1. Sample tested on each wafer lot.  
Thermal Characteristics  
(Still air, soldered into PC board)  
Parameter  
16-Lead Side-brazed DIP  
16-Lead CERDIP  
28-Lead LCC  
60°C/W  
Thermal Resistance, θJa  
Thermal Resistance, θJC  
70°C/W  
28°C/W  
70°C/W  
28°C/W  
25°C/W  
Recommended Operating Conditions  
Symbol Parameters  
Min.  
13.5  
-16.5  
4.5  
Max.  
Units  
V
+Vs  
Positive Supply Voltage  
16.5  
-13.5  
5.5  
-Vs  
Negative Supply Voltage  
VLOGIC Supply Voltage  
VREF Voltage  
V
VLOGIC  
VREF  
Top  
V
4.75  
-55  
5.25  
125  
V
Case Temperature  
ºC  
Electrical Characteristics  
Symbol Parameters  
Test Conditions (1,2)  
POWER SUPPLIES  
Min.  
Max.  
Units  
ICC  
Positive Supply Current  
Negative Supply Current  
VLOGIC Supply Current  
VREF Supply Current  
+VS = 16.5V, -VS = -16.5V,  
VLOGIC = VREF = 5.5V,  
DATAA =CLOCK=SYNC=VIH  
DATAB=RATE = VIL  
4.0  
18  
mA  
Outputs = HI, unloaded  
+VS = 16.5V, -VS = -16.5V,  
VLOGIC = VREF = 5.5V,  
DATAA =CLOCK=SYNC=VIH  
DATAB=RATE = VIL  
IEE  
4.0  
150  
-800  
18  
mA  
µA  
µA  
Outputs = HI, unloaded  
+VS = 16.5V, -VS = -16.5V,  
VLOGIC = VREF = 5.5V,  
DATAA =CLOCK=SYNC=VIH  
DATAB=RATE = VIL  
ILOGIC  
IREF  
300  
-100  
Outputs = HI, unloaded  
+VS = 16.5V, -VS = -16.5V,  
VLOGIC = VREF = 5.5V,  
DATAA =CLOCK=SYNC=VIH  
DATAB=RATE = VIL  
Outputs = HI, unloaded  
LOGIC INPUTS  
VIH  
Logic 1 Input Voltage  
Functional Tests  
2.0  
V
©2005 Device Engineering Inc  
Page 4 of 10  
DS-MW-03182-01 Rev E  
04/20/2005  
Symbol Parameters  
Test Conditions (1,2)  
Min.  
Max.  
0.5  
1
Units  
V
VIL  
IIH  
Logic 0 Input Voltage  
Functional Tests  
Logic 1 Input Current  
VIN = 2.0V,  
µA  
+Vs=+15V, -Vs=-15V,  
VLOGIC=VREF=4.5V  
IIL  
Logic 0 Input Current  
VIN = 0.5V,  
-645  
-50  
nA  
+Vs=+15V, -Vs=-15V,  
VLOGIC=VREF=5.5V  
CI  
Input Capacitance  
Output Voltage High  
Output Voltage Low  
Output Voltage Null  
Output Resistance  
(3)  
15  
pF  
V
A429 OUTPUTS  
VOH  
VOL  
VNULL  
Rout  
Outputs open, referenced to Ground,  
Vref =5.0V, Supplies = min to max  
Outputs open, referenced to Ground,  
Vref =5.0V, Supplies = min to max  
Outputs open, referenced to Ground,  
Vref =5.0V, Supplies = min to max  
Tc = 25ºC  
4.75  
-5.25  
-250  
5.25  
-4.75  
+250  
V
mV  
Ohms  
33.7  
33  
41.2  
44  
TC = -55ºC to +125ºC  
Rout = Vout/Iout  
Vout measured at 0mA & 10mA  
RATE = VIL, Ca/Cb = 68pf,  
Cload = 50pf  
Trf-hi  
Trf-lo  
HI rate rise/fall time  
LO rate rise/fall time  
1.0  
5.0  
2.0  
uS  
uS  
10 to 90% (4)  
RATE = VIH, Ca/Cb = 68pf,  
Cload = 50pf  
15.0  
10 to 90% (4)  
CAPACITOR PINS  
ICL  
Low Rate Capacitor Current  
Rate Sel = ‘1’, CA (CB) = 2.5V, HL  
edge currents are negative  
20  
60  
uA  
uA  
ICH  
High Rate Capacitor Current Rate Sel = ‘0’, CA (CB) = 2.5V, HL  
edge currents are negative  
138  
277  
SHORT CIRCUIT CONDITIONS  
ISC  
Output Short Circuit Current  
+VS Short Circuit Current  
-VS Short Circuit Current  
AOUT and/or BOUT shorted line-to-line  
or to GND. Outputs HI or LOW.  
AOUT and/or BOUT shorted line-to-line  
or to GND. Outputs HI or LOW.  
AOUT and/or BOUT shorted line-to-line  
or to GND. Outputs HI or LOW.  
100  
100  
100  
156  
165  
165  
mA  
mA  
mA  
ISC+VS  
ISC-VS  
Notes:  
1. Unless otherwise indicated, +VS = +15V, -VS = -15V, VREF = +5V, VLOGIC = +5V, Rate Select = 0V, RL = Open Circuit,  
CL = 0 pF, and -55°C < Tcase < +125°C.  
2. Unless otherwise indicated, currents flowing into DUT are positive, currents flowing out of DUT are negative, and voltages are  
referenced to Ground.  
3. Guaranteed by design. Not production tested  
4. Sample tested.  
Typical Power Dissipation Characteristics  
(+VS = +15V, -VS = -15V, VREF = +5V, TA = + 25°C, CA = CB = 68pF)  
Positive  
Supply  
Current  
Negative  
Supply  
VLOGIC  
Supply  
Current  
Total Power  
Dissipation  
Data  
Load  
Rate Select  
Current  
Rate  
(Kbits/sec)  
0 –100  
Open Circuit  
Full Load(1)  
Full Load(1)  
Logic 1,0  
Logic 1  
Logic 0  
5.7 mA  
19.6 mA  
39.1 mA  
4.9 mA  
22.7 mA  
38.4 mA  
214 µA  
200 µA  
200 µA  
160 mW  
655 mW  
1165 mW  
12.5 – 14  
100  
Note:  
1. RL = 400, CL = 0.03 µF (see Block Diagram).  
©2005 Device Engineering Inc  
Page 5 of 10  
DS-MW-03182-01 Rev E  
04/20/2005  
Applications  
Heat Sinking / Air Flow and Short Circuit Protection  
The user application will determine if and how much heat sinking/air flow will be required for the DEI3182A. Consideration must be  
given to ambient temperature, load conditions and output voltage swing. In addition, power consumption increases with increased  
operating frequency. Use the numbers given in the Thermal Characteristics Table to determine that the maximum allowable junction  
temperature of 175°C is not exceeded.  
Outputs Out A and Out B are short circuit protected by the internal 37.5back termination resistors. During a short circuit of the  
output to either power supply or ground, the device must be able to dissipate the generated heat. For example, if the output is shorted  
to ground and +VS = +15V, the device must dissipate 15V x 0.165A = 2.5W. An appropriate heat sink is required in this situation.  
Note that the Amp A and Amp B outputs are not short circuit protected. Shorting these pins to either power supply or ground will  
cause failure of the device. An added external resistor will protect the circuit by limiting the current.  
Power Supply Considerations  
Three power supplies are required to operate the DEI3182A in a typical ARINC 429 bus application: +15V for +VS, -15V for -VS,  
and +5V for both VREF and VLOGIC. The differential output swing of the DEI3182A is equal to 2 x VREF. Using +5V gives a  
differential output swing of 10V. If a different output voltage swing is required, an additional power supply is needed to set VLOGIC.  
Each power supply pin should be decoupled to ground using a high quality 10 µF tantalum capacitor. This is especially true when  
driving a large capacitive or resistive loads. The decoupling capacitors should be located as close to the device pins as possible to  
eliminate the wiring inductance.  
Typical ARINC 429 Application  
Figure 1 shows typical switching waveform for the DEI3182A in any configuration. Figure 2 depicts connections for a ARINC 429  
high speed bus driver application. This circuit shows the complete configuration for a 100 Kbits/sec, 10V differential output swing  
using the terminated output pins.  
+VREF x 2  
-VREF x 2  
Figure 1. Switching Waveforms  
©2005 Device Engineering Inc  
Page 6 of 10  
DS-MW-03182-01 Rev E  
04/20/2005  
68pF  
68pF  
Figure 2. ARINC 429 Bus Driver Applications (100 kb/s Mode)  
©2005 Device Engineering Inc  
Page 7 of 10  
DS-MW-03182-01 Rev E  
04/20/2005  
Mechanical Dimensions  
16-Lead Side-Braze Ceramic DIP  
Lead Finish:  
Au plated with Sn63/Pb37 solder dip covering the lead to the seating plane.  
©2005 Device Engineering Inc  
Page 8 of 10  
DS-MW-03182-01 Rev E  
04/20/2005  
16-Lead CERDIP  
PIN 1  
0.025 RAD  
.752 - .780  
Dimensions Are in Inches  
.280 - .296  
0.308 - 0.325  
0.050 MAX  
.200 MAX  
.056  
.010 - .012  
0.125 MIN  
0.325 - 0.410  
0.140 - 0.175  
0.100 ± 0.010  
0.018 ± 0.002  
28-Lead CLCC  
.008  
+
SQ  
- .005  
.450  
.300  
+
.006  
-
.060  
TYP.  
.050  
+.002  
-
TYP.  
11  
5
5
11  
MIN.  
12  
4
4
.015  
12  
TYP.  
PIN N0.1  
INDEX.  
1
1
MIN.  
.035  
+
.003  
-
.025  
TYP.  
18  
26  
26  
18  
19  
25  
25  
19  
.050  
0.015  
TYP.  
R .008  
+.008  
TYP.  
-
.085  
Lead Finish:  
Au plated with Sn63/Pb37 solder dip.  
©2005 Device Engineering Inc  
Page 9 of 10  
DS-MW-03182-01 Rev E  
04/20/2005  
Process Flow  
Process Step  
THERMAL CYCLE  
Standard  
10 Cycles  
YES  
Burn-In  
10 Cycles  
YES  
MIL-STD-883B M1010.4 Condition B  
CONSTANT ACCELERATION  
MIL-STD-883B M2001, Method D  
GROSS & FINE LEAK  
MIL-STD-883B M1014.10  
YES  
YES  
PRE-BURN-IN Electrical Test  
BURN IN  
NO  
YES  
MIL-STD-883B M1015 Condition A  
FINAL ELECTRICAL TEST,  
Room Temperature  
NO  
160hrs @ +125 °C  
100%  
100%  
FINAL ELECTRICAL TEST,  
High Temperature  
100% @ +125°C 100% @ +125°C  
FINAL ELECTRICAL TEST,  
Low Temperature  
0.65% AQL  
@ -55°C  
0.65% AQL  
@ -55°C  
Ordering Information  
Part Number  
Package  
Operating Temperature Range  
-55°C to + 125°C  
Burn In  
DEI3182A-DMS  
DEI3182A-DMB  
DEI3182A-CMS  
DEI3182A-CMB  
DEI3182A-EMS  
DEI3182A-EMB  
16-Lead Side-braze Ceramic DIP  
16-Lead Side-braze Ceramic DIP  
16-Lead CERDIP  
N
Y
N
Y
N
Y
-55°C to + 125°C  
-55°C to + 125°C  
16-Lead CERDIP  
-55°C to + 125°C  
28 Lead Ceramic LCC  
28 Lead Ceramic LCC  
-55°C to + 125°C  
-55°C to + 125°C  
Note: The –CMB/-DMB/-EMB parts may be marked as –CMS /–DMS/-EMS with a “B” stamp to denote burn-in.  
DEI reserves the right to make changes to any products or specifications herein. DEI makes no warranty, representation, or  
guarantee regarding suitability of its products for any particular purpose.  
©2005 Device Engineering Inc  
Page 10 of 10  
DS-MW-03182-01 Rev E  
04/20/2005  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY