DEI5072-SES-G [DEIAZ]

ARINC 429 5V LINE DRIVER FAMILY;
DEI5072-SES-G
型号: DEI5072-SES-G
厂家: Device Engineering Incorporated    Device Engineering Incorporated
描述:

ARINC 429 5V LINE DRIVER FAMILY

驱动 光电二极管 接口集成电路 驱动器
文件: 总11页 (文件大小:324K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Device  
Engineering  
DEI5070, 5071, 5072, 5270  
ARINC 429 ±5V LINE DRIVER  
FAMILY  
Incorporated  
385 East Alamo Drive  
Chandler, AZ 85225  
Phone: (480) 303-0822  
Fax: (480) 303-0824  
E-mail: admin@deiaz.com  
FEATURES  
TTL/CMOS TO ARINC 429 Line Driver.  
Rate control input set Hi (100KBS) or Lo (12.5KBS) speed slew rates.  
Operates from ±5V power supply.  
Drives full ARINC load.  
Output resistor options: 7.5, 27.5 or 37.5 Ohms.  
Packages:  
o
o
8L SOIC Exposed Pad (single driver)  
38L MLPQ (QFN) (dual driver)  
GENERAL DESCRIPTION  
The DEI5x7x family of CMOS integrated circuits are line drivers designed to directly drive the ARINC 429 avionics serial  
digital data bus. The device converts TTL/CMOS serial input data to the tri-level RZ bipolar differential modulation format of  
the ARINC bus. A TTL/CMOS control input selects the output slew rate for HI (100KBS) and LOW (12.5KBS) speed  
operation. No external timing capacitors are required.  
The 5070 has internal 37.5 Ohm output resistors, the 5071 has 27.5 Ohm resistors, the 5072 has 7.5 Ohm resistors, and the  
5270 has two drivers with all output resistor options. The 27.5 and 7.5 Ohm options require external series resistors which are  
typically used to implement a transient voltage protection network.  
Table 1 5070/71/72 PIN DESCRIPTION  
PIN  
1
NAME  
HI/LO  
TTLIN0  
TTLIN1  
GND  
DESCRIPTION  
LOGIC INPUT: Slew rate control.  
LOGIC INPUT: Serial digital data input 0  
LOGIC INPUT: Serial digital data input 1  
POWER INPUT: Ground  
2
1
2
3
4
8
7
6
5
HI/LO  
V+  
3
TTLIN0  
TTLIN1  
429OUTB  
429OUTA  
4
POWER INPUT: -5VDC  
5
V-  
GND  
V-  
429 OUTPUT: ARINC 429 format serial digital data  
6
429OUTA  
output A  
Note:  
Heatsink pad is electrically isolated  
© 2011 Device Engineering Inc  
429 OUTPUT: ARINC 429 format serial digital data  
7
8
429OUTB  
V+  
output B  
POWER INPUT: +5VDC  
Page 1 of 11  
DS-MW-05070-01 Rev D  
09/08/2011  
1
2
3
4
5
6
7
8
9 10 11 12  
13  
14  
15  
16  
17  
18  
19  
38  
37  
36  
35  
34  
33  
32  
Notes:  
1. Package: 38 Lead 5.0 x 7.0mm MLP  
2. Exposed Pad is electrically isolated  
31 30 29 28 27 26 25 24 23 22 21 20  
BOTTOM VIEW  
Table 2 5270 PIN DESCRIPTION  
Channel 1  
Pin  
Channel 2  
Pin  
DESCRIPTION  
SIGNAL NAME  
HI/LO_n  
LOGIC INPUT: Slew rate control. 1 = Hi speed. 0 = Low speed.  
LOGIC INPUT: Serial digital data input 0.  
5
24  
25  
7
TTLIN0_n  
TTLIN1_n  
429OUTA_7_n  
429OUTA_27_n  
429OUTA_37_n  
429OUTB_7_n  
429OUTB_27_n  
429OUTB_37_n  
V+  
6
LOGIC INPUT: Serial digital data input 1.  
26  
34  
33  
32  
36  
37  
38  
2
429 OUTPUTS: ARINC 429 format serial digital data output A, 7.5 Ohm  
429 OUTPUTS: ARINC 429 format serial digital data output A, 27.5 Ohm  
429 OUTPUTS: ARINC 429 format serial digital data output A, 37.5 Ohm  
429 OUTPUTS: ARINC 429 format serial digital data output B, 7.5 Ohm  
429 OUTPUTS: ARINC 429 format serial digital data output B, 27.5 Ohm  
429 OUTPUTS: ARINC 429 format serial digital data output B, 37.5 Ohm  
POWER INPUT: +5 VDC  
15  
14  
13  
17  
18  
19  
20  
9
POWER INPUT: Ground  
GND  
28  
30  
POWER INPUT: -5 VDC  
V-  
12  
1, 3, 4, 8, 10, 11, 16, 21, 22,  
23, 27, 29, 31, 35  
NC  
No Internal Connect  
© 2011 Device Engineering Inc  
Page 2 of 11  
DS-MW-05070-01 Rev D  
09/08/2011  
FUNCTIONAL DESCRIPTION  
HI/LO  
429OUTA  
429OUTB  
TTLIN1  
INPUT LOGIC  
OUTPUT  
DRIVERS  
EDGE  
and  
SHAPING  
LEVEL SHIFT  
TTLIN0  
Block Diagram (single channel shown)  
Table 3 Speed Control Function Table  
HI/LO  
OUTPUT TRANSITION TIME  
0
1
10us (12.5 KBS data)  
1.5us (100KBS data)  
Table 4 Transmit Data Function Table  
TTLIN1  
TTLIN0  
429OUTA  
429OUTB  
NOTES  
0
0
1
1
0
1
0
1
0V  
0V  
Null output  
Zero output  
One output  
Null output  
-5V  
5V  
5V  
-5V  
0V  
0V  
TTLIN1  
TTLIN0  
+5  
50%  
429OUTA  
-5  
+5  
Tskew  
50%  
429OUTB  
-5  
Tfall  
+10  
90%  
Differential  
Tfall  
429OUT  
(A-B)  
10%  
10%  
90%  
Trise  
-5  
Trise  
Figure 1 Timing Waveforms  
© 2011 Device Engineering Inc  
Page 3 of 11  
DS-MW-05070-01 Rev D  
09/08/2011  
ELECTRICAL DESCRIPTION  
Table 5 Absolute Maximum Ratings  
PARAMETER  
MIN  
MAX  
UNITS  
Voltages referenced to Ground  
V+ Supply Voltage  
-0.3  
0.3  
+7  
-7  
V
V
V- Supply Voltage  
Storage Temperature  
-65  
+150  
°C  
Input Voltage  
TTLIN and HI/LO Inputs  
Gnd – 0.3 V+ + 0.3  
V
V
429OUT Outputs  
V- – 0.3  
V+ + 0.3  
Power Dissipation @ 85 °C: (> 10 Sec), Thermal pad soldered to heat spreader  
-Sxx package, derate 20mW/C above 85°C  
-Mxx package, derate 28.3mW/C above 85°C  
Junction Temperature:  
1.2  
1.7  
W
Tjmax, Plastic Packages (Limited by molding compound Tg)  
ESD per JEDEC A114-A Human Body Model  
145  
2000  
°C  
V
Peak Body Temperature (Pb Free solder profile)  
260  
°C  
Notes:  
1. Stresses above absolute maximum ratings may cause permanent damage to the device.  
2. The device is tolerant of one or both outputs shorted to Ground and of both outputs shorted together.  
Table 6 Recommended Operating Conditions  
PARAMETER  
Supply Voltage  
SYMBOL  
CONDITIONS  
V+  
4.8 to 5.3V  
V-  
-4.8 to -5.3V  
Operating Temperature  
-xEx variants  
TOP  
-55 to +85 °C  
-55 to +125 °C  
-xMx variants  
© 2011 Device Engineering Inc  
Page 4 of 11  
DS-MW-05070-01 Rev D  
09/08/2011  
Table 7 Electrical Characteristics  
Conditions (Unless otherwise noted):  
Temperature: -55°C to +85°C (-xEx) or -55°C to +125°C (-xMx)  
V+ = +4.8V to +5.3V and V- = -4.8V to -5.3V  
PARAMETER  
TEST CONDITION  
SYMBOL  
MIN  
NOM  
MAX  
UNITS  
LOGIC INPUTS  
Input Voltage, Logic 1  
Input Voltage, Logic 0  
VIH  
2.0  
V+  
0.8  
V
V
VIL  
-0.3  
Input Current  
VIN = 0 to 5V  
IIH  
-10  
10  
uA  
ARINC OUTPUTS  
ARINC Output Voltage  
(Differential)  
Differential Output Voltage  
One  
= 429OUTA – 429OUTB.  
No Load.  
VDIF1  
VDIFnull  
VDIF0  
9.0  
-0.5  
10.0  
0
11.0  
+0.5  
-9.0  
V
V
V
Null  
Zero  
-11.0  
-10.0  
ARINC Output Voltage  
Referenced to Ground  
No Load.  
(Single Ended)  
Hi  
VoHI  
Vonull,  
VoLO  
4.5  
-0.25  
-5.5  
5.0  
0
5.5  
+0.25  
-4.5  
V
V
V
Null  
Lo  
-5.0  
ARINC Output Short Circuit Outputs shorted to Ground  
Current  
with Rout = 37ohms  
IscLO  
IscHI  
133  
mA  
mA  
-133  
Output Resistance:  
DEI5070  
Rout  
37.5  
27.5  
7.5  
Ohms  
Ohms  
Ohms  
Room Temperature  
DEI5071  
DEI5072  
Output Slew Rate  
Hi Speed  
HI/LO = 1  
No Load  
Trise  
Tfall  
10% to 90% voltage  
amplitude of differential  
output.  
1.0  
5.0  
1.5  
2.0  
us  
Output Slew Rate  
Lo Speed  
HI/LO = 0  
No Load  
Trise  
Tfall  
10% to 90% voltage  
amplitude of differential  
output.  
10.0  
15.0  
200  
us  
ns  
Output skew time between AHI/LO = 1  
and B outputs.  
Measured at 50% voltage  
amplitude of both outputs.  
Tskew  
SUPPLY CURRENT  
Quiescent Operating Supply  
V+ =5V, V- = -5V  
Current:  
IV+  
HI/LO = 0 or 1  
TTLIN0=TTLIN1= 0V  
No Load  
IV+  
IV-  
-
6
10  
-
mA  
mA  
IV-  
-10  
-6  
© 2011 Device Engineering Inc  
Page 5 of 11  
DS-MW-05070-01 Rev D  
09/08/2011  
DESIGN CONSIDERATIONS  
Power Supplies and Bypass Capacitors  
The DEI507X Line Driver operates from ±5V dual supplies. Proper bypassing capacitor ensures stability while driving large  
capacitive loads. The Line Driver requires a minimum of a 0.1uF bypass capacitor placed as close as possible to the V+ and V-  
pins.  
Transient Voltage Protection  
The DEI507X Line Driver requires external  
V+  
components to achieve immunity from surges such  
DEI507xA  
as those defined by DO160D Section 22, “Lightning  
Induced Transient Susceptibility”. Typical surge  
protection includes silicon Transient Voltage  
R2  
R1  
OUTPUT  
AMP  
OUTA  
Suppressor (TVS) devices and may include part of  
the 37.5 Ohm output resistance as external resistors  
to limit the surge current.  
Rout:  
7.5, 27.5,  
37.5 Ohms  
V-  
TVS  
to  
The 507X has a robust output stage which includes  
large driver devices and clamp diodes to the V+ and  
V- power rails as shown in Figure 2. It withstands  
surge currents of ±0.5A for 175us without damage  
when powered with ±5V supplies. At that surge  
current, the diodes clamp at ~1V above (below) the  
V+ ( V-) supply rail. ~350mA flows to the V- (V+)  
supply through the output amplifier, and ~150ma  
flows to the V+ (V-) supply through the clamp  
diode. The outputs may be damaged by surges  
greater than 1A / 175uS. At that current, the diodes  
clamp at ~1.8V above (below) the supply.  
ARINC DATA BUS  
Twisted Shielded Pair cable  
V+  
OUTPUT  
AMP  
OUTB  
V-  
Figure 2 Surge Protection Network  
The external lightning protection network should be designed to meet the specific requirements and constraints of the  
application equipment. The protection network should limit the OUTA/B pin surge current to the 0.5A / 175us maximum. The  
generalized circuit of Figure 2 represents several TVS protection network options:  
The on-chip Rout value is 7.5, 27.5, or 37.5 Ohms depending on the 5070 – 5072 part number  
Select the total output resistance, Rout + R1 + R2, = 37.5 Ohms to meet ARINC bus requirements  
o
o
o
Select R1 = 20, R2 = 10, Rout = 7.5to use low TVS surge current rating (small TVS devices)  
Select R1 = 0, Rout + R2 = 37.5to use high TVS clamp voltage (20V + V+/-)  
If the V+/V- supplies are un-powered or below operating voltage during the surge event, large currents may flow  
through the internal clamp diodes and damage the driver. If the application requires lightning immunity while un-  
powered, Select R1 = 0, Rout + R2 = 37.5, and select the TVS clamp voltage for <20V.  
Select TVS devices for the following  
o
TVS Surge power/current rating must withstand the application requirements for Lightning Induced Transient  
Levels and Waveforms. Microsemi Corporation publishes an application note specific to the DO160 lightning  
requirements, available at: http://www.microsemi.com/micnotes/126.pdf  
o
Select low capacitance TVS devices to minimize the load on the line driver. (Examples: Microsemi LC and  
HSMBJSA series TVS) This is a priority for Hi Speed ARINC applications where the low capacitance is  
important for optimum signal integrity and power consumption. Note that the maximum total capacitance on the  
ARINC bus is 30nF line to line.  
o
Select the TVS clamp voltage at the lightning surge conditions such that the voltage/current into the 507X OUT  
pin is within the safe region.  
If R1 is used to limit the TVS surge current, the resistor must withstand the surge current and voltage.  
© 2011 Device Engineering Inc  
Page 6 of 11  
DS-MW-05070-01 Rev D  
09/08/2011  
Alternate protection methods may be appropriate in some applications.  
External clamp diodes to the supply rails may be used to shunt surge current to the supply rails rather than to Ground.  
PTC “resetable fuses” may be used for R1 to protect the driver and TVS from shorts to 28V aircraft power.  
Some general considerations related to Lightning Immunity:  
Analyze the TVS high current signal and ground return path to insure adequate surge current capability. The IR  
voltage and L*di/dt voltage in the ground return will add additional stress beyond the TVS clamp voltage.  
Observe suitable PCB design rules for traces subject to high voltage and high current surges.  
When possible, locate TVS devices close to the equipment connector to minimize the length of the surge  
voltage/current traces within the equipment.  
The shields of ARINC 429 data bus cables should be terminated to aircraft ground at all ends and at all bulkhead  
disconnects.  
Thermal Management  
Good thermal management is fundamental to Line Driver device reliability. It is particularly important in designs operating at  
the HI speed data rate (100KBS) with high capacitive loads as this produces maximum power dissipation. While the 507X  
device will function at a junction temperature (Tj) above 190°C, it is inappropriate to continuously operate the plastic package  
above 150°C. Like all microcircuits, long term reliability is improved with lower operating temperatures.  
The Line Driver’s operating Tj is determined by internal power dissipation, package thermal resistance, and ambient  
temperature. The internal power dissipation (Pd) varies greatly with several variables:  
Data Rate – The Hi Speed (100kbs) rate produces maximum power dissipation  
Load – The maximum ARINC 429 load is 30nF||400 line-to-line. Many applications only drive a fraction of the  
full load.  
Data Duty Cycle – ARINC bus activity, averaged over 10 seconds = Bits transmitted / total possible bits. Many  
applications are active <70%.  
Supply Voltage +V / -V supplies are ±5V  
Rout configuration – The power dissipated in the two 37.5output resistors is internal to the IC for the 5070 and  
external for the 5072.  
The internal power dissipation for 100kbs applications can be estimated from Figures 4-7. Power dissipation for low speed  
operation (12.5kbs) is normally not an issue, so is not considered here. The curves in indicate power dissipation for various  
loads, supply voltage, and Rout configuration. It represents Pd for 100% Data Duty Cycle (DDC) at 100KBS with no word  
gap null times. Thus the indicated Pd values are considered maximum values and should be reduced to account for the Data  
Duty Cycle as follows:  
Estimate DDC = total bits transmitted in 10 sec period / 1,000,000  
= 32 x total ARINC words transmitted in 10 sec period / 1,000,000  
Select an indicated Pd for the application supply voltage and load. This may involve estimating the Line Driver’s load  
and interpolating between the curves.  
Calculate adjusted Pd = DDC * (Pd - 0.1) + 0.1 (W)  
The operating junction temperature is calculated as follows:  
Tj = Ta + Pd*Θja  
where  
Tj = junction temperature (°C)  
Ta = Ambient temperature (°C)  
Pd = Internal power dissipation (W)  
Θja = IC package thermal resistance from junction to ambient (°C/W). Refer to package details.  
© 2011 Device Engineering Inc  
Page 7 of 11  
DS-MW-05070-01 Rev D  
09/08/2011  
The ARINC 429 Line Driver outputs may be subject to short circuit conditions due to cable wiring errors or faults which  
typically occur during equipment test and aircraft installation environments. The common cases are one or both outputs  
shorted to Ground, or both outputs shorted together. These conditions may cause considerable internal power dissipation  
depending on the following:  
Data Duty Cycle – The line-to-line and line-to-Ground shorts cause little or no power dissipation when the outputs are  
in the Null state. However when the output is driving a HI/LO state, the short circuit current is limited by the 37.5Ω  
Rout at about ~133mA. This is modulated by the ARINC waveform, producing an effective current of ~88mA*  
DDC. This current causes heating in the output amplifier and Rout resistor.  
Supply Voltage – A lower supply voltage results in lower Pd during short circuit conditions. The internal Pd for both  
outputs shorted while operating at 100% DDC is ~750mW with ±5V supplies, but is reduced to ~650mW with ±4.8V  
supplies. This is for 37.5Rout configurations.  
Rout configuration – Each of the two 37.5Rout resistors dissipates ~0.7W when shorted at 100% DDC. This power  
is dissipated in the external resistors for the 5072 parts, and internal to the IC for the 5070 parts. Thus the 5072 have a  
lower Tj and are more tolerant to short circuit conditions.  
The PCB design and layout is a significant factor in determining thermal resistance (Θja) of the Line Driver IC package. Use  
maximum trace width on all power and signal connections at the IC. These traces serve as heat spreaders which improve heat  
flow from the IC leads. The exposed heat sink pad of the SOIC package should be soldered to a heat-spreader land pattern on  
the PCB. The IC exposed pad is electrically isolated, so the PCB land may be at any potential; typically Ground for the best  
heat sink. Maximize the PCB land size by extending it beyond the IC outline if possible. A grid of thermal VIAs, which drop  
down and connect to the buried copper plane(s), should be placed under the heat-spreader land. A typical VIA grid is 12mil  
holes on a 50mil pitch. The barrel is plated to about 1.0 ounce copper. Use as many VIAs as space allows. VIAs should be  
plugged to prevent voids being formed between the exposed pad and PCB heat-spreader land due to solder escaping by the  
capillary effect. This can be avoided by tenting the VIAs with solder mask.  
Figure 3 Example of a Thermal VIA Land Pattern  
© 2011 Device Engineering Inc  
Page 8 of 11  
DS-MW-05070-01 Rev D  
09/08/2011  
450.0  
400.0  
350.0  
300.0  
250.0  
200.0  
150.0  
Full Load  
2/3 Load  
1/3 Load  
Full Load  
2/3 Load  
1/3 Load  
500.0  
450.0  
400.0  
350.0  
300.0  
250.0  
200.0  
150.0  
4.7  
4.8  
4.9  
5
5.1  
5.2  
5.3  
5.4  
4.7  
4.8  
4.9  
5
5.1  
5.2  
5.3  
5.4  
Supply Voltage (VDD/VSS)  
Supply Voltage (VDD/VSS)  
Figure 4 5070 Power Dissipation Comparison  
Figure 5 5071 Power Dissipation Comparison  
300.0  
Full Load  
Full Load  
2/3 Load  
1/3 Load  
1050  
950  
850  
750  
650  
550  
450  
350  
280.0  
260.0  
240.0  
220.0  
200.0  
180.0  
160.0  
140.0  
120.0  
100.0  
2/3 Load  
1/3 Load  
4.7  
4.8  
4.9  
5
5.1  
5.2  
5.3  
5.4  
4.7  
4.8  
4.9  
5
5.1  
5.2  
5.3  
5.4  
Supply Voltage (VDD/VSS)  
Supply Voltage (VDD/VSS)  
Figure 6 5072 Power Dissipation Comparison  
Figure 7 5270 Power Dissipation Comparison (2 chan,  
OUT_27)  
Note:  
1. 100% Data Duty Cycle.  
2. Full Load: 400 //30nF, Mid Load: 600 //20nF, Light Load: 1200 //10nF  
© 2011 Device Engineering Inc  
Page 9 of 11  
DS-MW-05070-01 Rev D  
09/08/2011  
PACKAGE DESCRIPTIONS  
Table 8 Package Characteristics  
PACKAGE TYPE PACKAGE THERMAL  
JEDEC MOISTURE  
SENSITIVITY LEVEL  
& PEAK BODY  
TEMP  
LEAD FINISH  
MATERIAL /  
JEDEC Pb-Free  
CODE  
Pb Free  
REF  
RESIST.  
θJC / θJA  
(ºC/W)  
DESIGNATION  
8L EP SOIC  
8 EP  
10 / 49  
(1)  
MSL 1  
260ºC  
NiPdAu  
e4  
RoHS  
SOIC G  
Compliant  
38L 5X7 MLPQ  
38 5X7 I  
MLPQ G  
8 / 34  
(1)  
MSL 1  
260ºC  
NiPdAu  
e4  
RoHS  
Compliant  
Notes:  
1. θJA with the exposed pad soldered to a PCB land with thermal vias connected to an internal ground plane  
which is one of the 2 center layers on a 4 layer board .  
8 Lead EP SOIC  
© 2011 Device Engineering Inc  
Page 10 of 11  
DS-MW-05070-01 Rev D  
09/08/2011  
38 Lead MLPQ 5.0 x 7.0  
2.50 BSC  
5.00 BSC  
37  
38  
TOP VIEW  
1
2
Index  
7.00 BSC  
3.50 BSC  
0.80  
1.00  
SIDE VIEW  
0.20 REF  
0.05 MAX  
Seating  
Plane  
5.00  
5.25  
2.50  
2.62  
Index  
2
1
0.25 BSC  
BOTTOM VIEW  
1.50  
1.62  
36  
0.50 BSC  
3.00 BSC  
3.00  
3.25  
0.30  
0.50  
Exposed Pad  
0.18  
0.30  
5.50 BSC  
Dimensions in mm  
ORDERING INFORMATION  
Part Number  
DEI5070-SES-G  
DEI5071-SES-G  
DEI5072-SES-G  
DEI5270-MES-G  
DEI5070-SMS-G  
DEI5071-SMS-G  
DEI5072-SMS-G  
DEI5270-MMS-G  
Marking  
Package  
8 EP SOIC G  
8 EP SOIC G  
8 EP SOIC G  
38 5X7 I MLPQ G  
8 EP SOIC G  
8 EP SOIC G  
8 EP SOIC G  
38 5X7 I MLPQ G  
Output Resistor  
37.5 Ohm  
Temperature  
-55 / +85 ºC  
-55 / +85 ºC  
-55 / +85 ºC  
-55 / +85 ºC  
-55 / +125 ºC  
-55 / +125 ºC  
-55 / +125 ºC  
-55 / +125 ºC  
DEI5070 / ES  
DEI5071 / ES  
DEI5072 / ES  
DEI5270 MES  
DEI5070 / MS  
DEI5071 / MS  
DEI5072 / MS  
DEI5270MMS  
27.5 Ohm  
7.5 Ohm  
7.5/27.5/37.5 Ohm  
37.5 Ohm  
27.5 Ohm  
7.5 Ohm  
7.5/27.5/37.5 Ohm  
DEI reserves the right to make changes to any products or specifications herein. DEI makes no warranty, representation, or guarantee  
regarding suitability of its products for any particular purpose.  
© 2011 Device Engineering Inc  
Page 11 of 11  
DS-MW-05070-01 Rev D  
09/08/2011  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY